

1 Title: White matter microstructure across the adult lifespan: A mixed longitudinal and cross-
2 sectional study using advanced diffusion models and brain-age prediction

3
4 Authors: Dani Beck^{1,2,3}, Ann-Marie de Lange^{1,2,4}, Ivan I. Maximov^{1,2}, Geneviève Richard², Ole
5 A. Andreassen^{2,5}, Jan E. Nordvik⁶, Lars T. Westlye^{1,2,5}

6
7 ¹ Department of Psychology, University of Oslo, Oslo, Norway
8 ² NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute
9 of Clinical Medicine, University of Oslo, Oslo, Norway

10 ³ Sunnaas Rehabilitation Hospital HT, Nesodden, Oslo, Norway

11 ⁴ Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK

12 ⁵ KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway

13 ⁶ CatoSenteret Rehabilitation Center, Son, Norway

14
15
16
17 * Corresponding authors: Dani Beck (dani.beck@psykologi.uio.no) & Lars T. Westlye
18 (l.t.westlye@psykologi.uio.no), Department of Psychology, University of Oslo, PO Box 1094
19 Blindern, 0317 OSLO, Norway, phone: +47 22845000, Fax: +47 22845001

20
21
22
23 Declarations of interest: none.
24 Conflict of interest: none.

25
26

27 **Abstract**

28 The macro- and microstructural architecture of human brain white matter undergoes substantial
29 alterations throughout development and ageing. Most of our understanding of the spatial and
30 temporal characteristics of these lifespan adaptations come from magnetic resonance imaging
31 (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of
32 brain white matter with unprecedented sensitivity and detail. However, with some notable
33 exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and
34 diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-
35 sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI
36 datasets, we combined complementary dMRI models to investigate age trajectories in healthy
37 individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and
38 machine learning based brain age prediction, we assessed the age-dependence of diffusion
39 metrics, and compared the age prediction accuracy of six different diffusion models, including
40 diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density
41 imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-
42 compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the
43 age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD],
44 axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research,
45 and that the highest performing advanced dMRI models showed comparable age prediction
46 accuracy to conventional DTI. Linear mixed effects models and Wilk's theorem analysis
47 showed that the 'FA fine' metric of the RSI model and 'orientation dispersion' (OD) metric of
48 the NODDI model showed the highest sensitivity to age. The results indicate that advanced
49 diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-
50 related microstructural changes of white matter in the brain that complement and extend the
51 contribution of conventional DTI.

52

53 *Key words:* ageing, white matter, multi-shell, longitudinal, diffusion, brain age

54

55

56

57

58

59

60

61

62 1. Introduction

63 The architecture of human brain white matter undergoes constant remodelling throughout life.
64 Age-related trajectories of white matter macro- and microstructure typically reflect increases in
65 anisotropy and decreases in diffusivity during childhood, adolescence and early adulthood
66 (Krogsrud et al., 2016; Tamnes et al., 2018; Westlye et al., 2010), and subsequent anisotropy
67 decreases and diffusivity increase in adulthood and senescence (Cox et al., 2016; Davis et al.,
68 2009). While the field has primarily been dominated by cross-sectional studies, which by
69 design lack information on individual trajectories (Schaie, 2005), longitudinal studies in the
70 last decade have shown corresponding white matter changes in both development and ageing
71 (Barrick et al., 2010; Bender et al., 2016; Bender & Raz, 2015; de Groot et al., 2016;
72 Likitjaroen et al., 2012; Racine et al., 2019; Sexton et al., 2014; Storsve et al., 2016; Teipel et
73 al., 2010). However, studies that have evaluated individual differences in change across a wide
74 age range are rare (Bender et al., 2016).

75 White matter properties have commonly been investigated using traditional diffusion
76 tensor imaging (DTI), and the DTI-based metrics fractional anisotropy (FA) as well as mean
77 (MD), axial (AD), and radial (RD) diffusivity are highly sensitive to age (Cox et al., 2016;
78 Sexton et al., 2014; Westlye et al., 2010; Yap et al., 2013). However, limitations of
79 conventional DTI metrics such as their inability to capture restricted non-Gaussian diffusion
80 and lack of specificity to different diffusion pools (Pines et al., 2020) have motivated continued
81 development of more advanced diffusion MRI (dMRI) models. These models include *diffusion*
82 *kurtosis imaging* (DKI) (Jensen et al., 2005), which was developed to address the restricted
83 diffusion or non-Gaussianity in the diffusion signal; *neurite orientation dispersion and density*
84 *imaging* (NODDI) (Zhang et al., 2012), which models three types of microstructural
85 environments: intra-cellular, extra-cellular, and an isotropic water pool responsible for the
86 space occupied by cerebrospinal fluid (CSF); *white matter tract integrity* (WMTI) (Chung et
87 al., 2018; Fieremans et al., 2011), which derives microstructural characteristics from intra- and
88 extra-axonal environments; *restriction spectrum imaging* (RSI) (White et al., 2013), which
89 applies linear mixture modelling to resolve a spectrum of length scales while simultaneously
90 acquiring geometric information; and *spherical mean technique multi-compartment* (SMT mc)
91 (Kaden, Kruggel, et al., 2016), a method for microscopic diffusion anisotropy imaging that is
92 unconfounded by effects of fibre crossings and orientation dispersion.

93 Usually based on multi-shell acquisitions with several diffusion weightings (Andersson
94 & Sotiroopoulos, 2015; Jbabdi et al., 2012), these models can be broadly split into “signal” and
95 “tissue” models (D. C. Alexander et al., 2019). Signal representations, such as DTI and DKI,
96 describe the diffusion signal behaviour in a voxel without assumptions about underlying tissue,

97 but as the estimated parameters lack specificity, their characterisation of tissue microstructure
98 remains indirect (Jelescu & Budde, 2017). Tissue models (NODDI, RSI, SMT-mc, and WMTI)
99 involve estimations of the geometry of underlying tissue (Novikov et al., 2019), which may
100 provide higher biological specificity and more precise measures of white matter microstructure
101 and architecture (Jelescu & Budde, 2017; Novikov et al., 2019; Pines et al., 2020). However,
102 despite tissue models being designed to increase specificity, they also require assumptions
103 about the underlying microstructure that may not be fully accurate.

104 Building on the opportunities from big data in neuroimaging (S. M. Smith & Nichols,
105 2018), age related brain changes have recently been investigated using machine learning
106 techniques such as brain age prediction; the estimation of the ‘biological’ age of a brain based
107 on neuroimaging data (J. H. Cole et al., 2018; de Lange et al., 2019; Kaufmann et al., 2019;
108 Franke et al., 2010; Richard et al., 2018). Predicting the age of a brain, and subsequently
109 looking at the disparity between predicted and chronological age, can identify important
110 individualised markers of brain integrity that may reveal risk of neurological and/or
111 neuropsychiatric disorders (Kaufmann et al., 2019). While brain age prediction has grown
112 more popular in recent years, most studies have used grey matter features for brain age
113 prediction, while only few have exclusively (Tønnesen et al., 2020), or partly (James H Cole,
114 2019; Maximov et al., 2020; Richard et al., 2018; S. M. Smith, Elliott, et al., 2019; S. M.
115 Smith, Vidaurre, et al., 2019) utilised dMRI. However, the brain-age prediction accuracy of
116 advanced diffusion models such as RSI and NODDI are not known.

117 Including cross-sectional and longitudinal data obtained from 573 healthy individuals
118 (with 702 multi-shell dMRI datasets) aged 18-94 years, the primary aim of this study was to
119 offer a comprehensive description of normative age-related white matter trajectories in
120 adulthood by comparing relevant curve parameters such as key deflection points and rate of
121 change as well as age prediction accuracy of different dMRI metrics, with a particular focus on
122 relatively novel parameters based on advanced (DKI, NODDI, RSI, SMT mc, and WMTI) and
123 conventional (DTI) diffusion models of white matter coherence and microstructure.

124 First, we estimated the trajectories of each of the diffusion metrics across the age range.
125 Secondly, we utilised three separate methods to compare the age-sensitivity of the diffusion
126 models: i) we used linear mixed effect (lme) models including age, sex, and timepoint, ii) for
127 each model, we ran fits with and without age terms and compared the fit likelihood values
128 using Wilk's theorem (Wilks, 1938), iii) we used machine learning to predict age based on the
129 diffusion metrics, and compared the prediction accuracy of the models. Thirdly, we looked at
130 the derivatives of each function of the lme models’ age curve to identify the point of change in
131 trajectory for each diffusion metric. Based on previous work characterising age differences and

132 longitudinal changes with a range of diffusion MRI metrics (Benitez et al., 2018; Falangola et
133 al., 2008; Jelescu et al., 2015; Kodiweera et al., 2016; Reas et al., 2017; Westlye et al., 2010),
134 we expected the included metrics to show curvilinear relationships with age, with varying
135 trajectories and deflection points possibly reflecting differential involvement and rate of
136 change of the putative biological underpinnings during the different phases of brain ageing.
137

138 **2. Methods and material**

139 **2.1. Description of sample**

140 The initial sample included 754 multi-shell datasets of healthy participants from two integrated
141 studies; the Tematisk Område Psykoser (TOP) (Tønnesen et al., 2018) and StrokeMRI
142 (Richard et al., 2018). Following the removal of 52 datasets after quality checking (QC, see
143 section 2.4), the final sample comprised 702 scans from 573 individuals, including longitudinal
144 data (two time-points with 15.2 months interval) for 129 of the participants. Demographic
145 information is summarised in Table 1 and Figure 1.

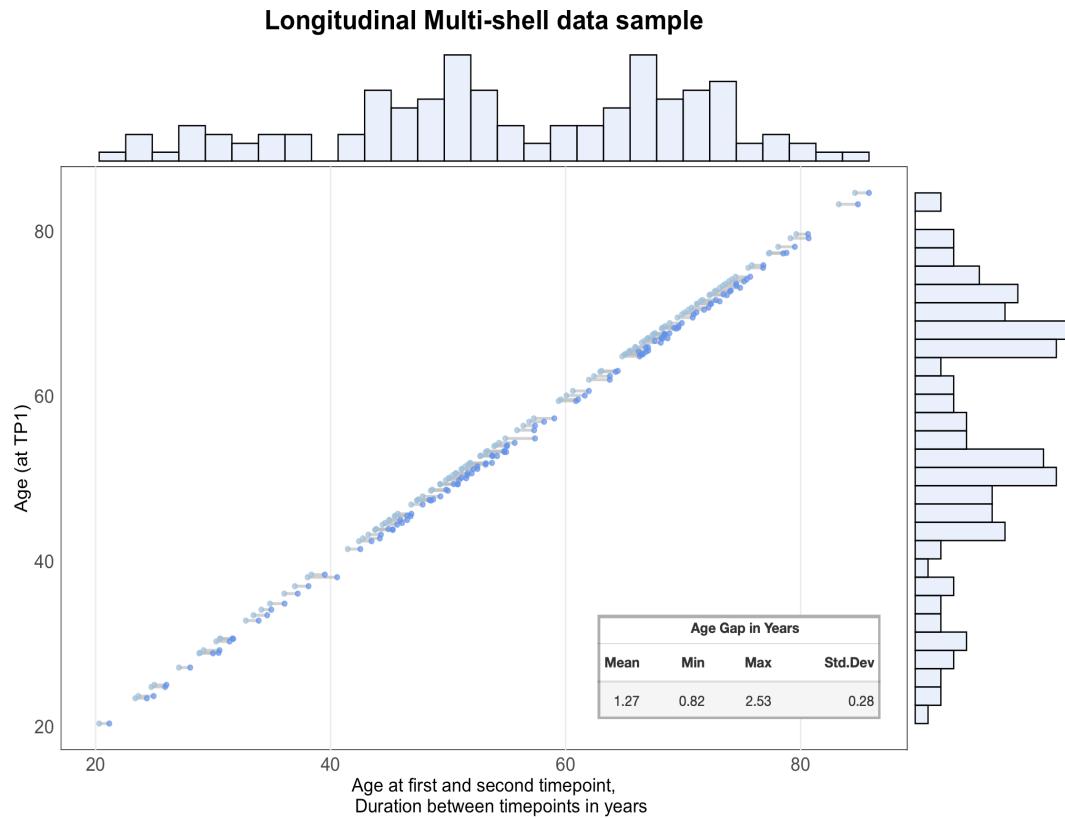
146 Exclusion criteria included neurological and mental disorders, and previous head
147 trauma. Ethical guidelines followed those in line with the Declaration of Helsinki. The study
148 has been approved by the Regional Ethics Committee and all participants provided written
149 informed consent.

150

151 **Table 1.** Demographics of descriptive statistics pertaining to the study sample. N refers to datasets.

	Age		
	Mean ± SD	Min	Max
Full (mixed) sample (n = 702)	50.86 ± 16.61	18.52	94.67
Male (301, 42.88%)	49.45 ± 17.48	18.52	92.05
Female (401, 57.12%)	51.92 ± 15.86	18.63	94.67
Cross-sectional sample (n = 444)	47.61 ± 16.59	18.52	94.67
Male (214, 48.20%)	46.75 ± 16.71	18.52	92.05
Female (230, 51.80%)	48.57 ± 16.51	18.63	94.67
Longitudinal sample (n = 258)	56.60 ± 15.03	20.30	85.82
Male (44, 35.11%)	55.72 ± 17.78	20.30	85.82
Female (85, 65.89%)	55.65 ± 13.70	23.37	80.62

152



153
154 **Figure 1.** Interval between timepoint 1 and timepoint 2 for complete longitudinal sample, n = 258 (129 subjects).
155 Histogram representing density of data points.
156

157 **2.2. MRI acquisition**

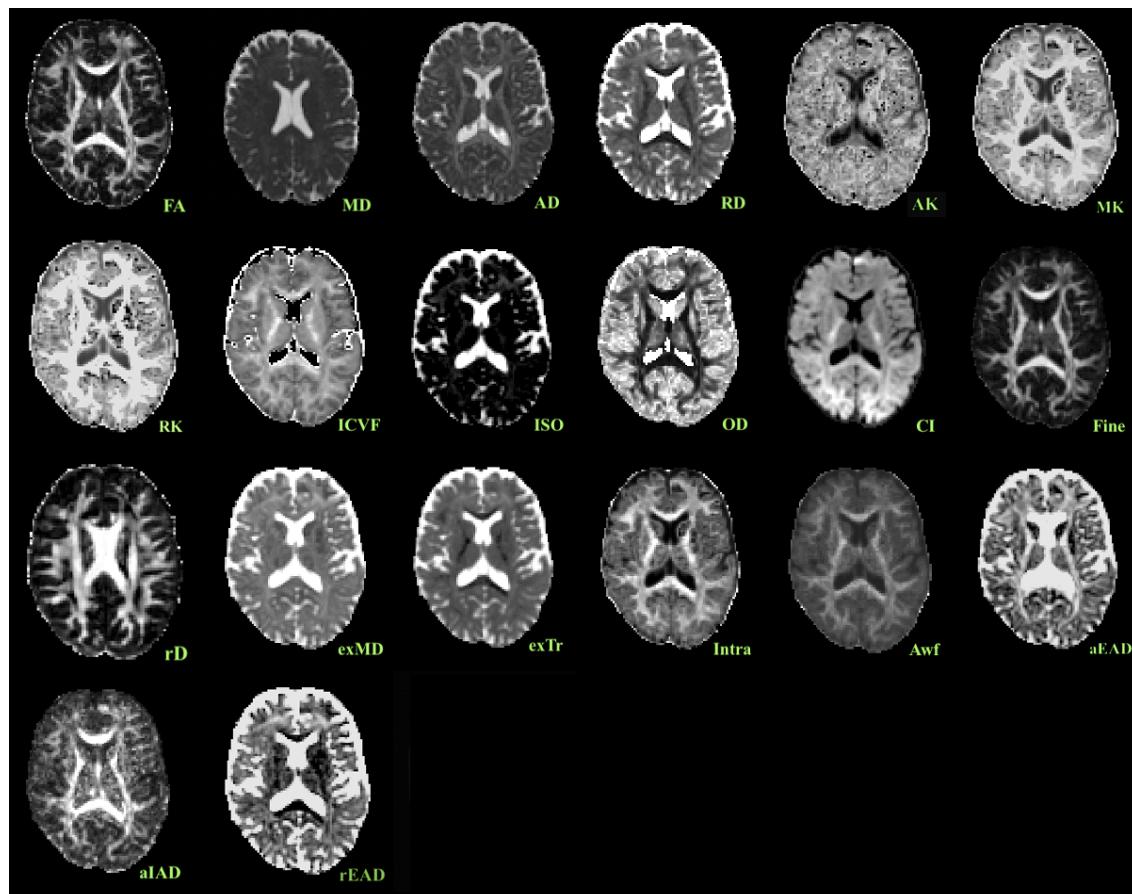
158 Imaging was performed at Oslo University Hospital on a General Electric Discovery MR750
159 3T scanner with a 32-channel head coil. dMRI data were acquired with a spin echo planar
160 imaging (EPI) sequence with the following parameters: TR/TE/flip angle: 8,150 ms/83.1
161 ms/90°, FOV: 256 × 256 mm, slice thickness: 2 mm, in-plane resolution: 2 mm. We obtained
162 10 volumes of $b=0$ and diffusion weighted data along 60 ($b=1000$ s/mm 2) and 30 ($b=2000$
163 s/mm 2) diffusion weighted volumes. In addition, 7 $b=0$ volumes with reversed phase-encoding
164 direction were acquired for correction of susceptibility distortions.
165

166 **2.3. Diffusion MRI processing**

167 Processing steps followed a previously described pipeline (Maximov et al., 2019), including
168 noise correction (Veraart et al., 2016), Gibbs ringing correction (Kellner et al., 2016),
169 corrections for susceptibility induced distortions, head movements and eddy current induced
170 distortions using topup (<http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup>) and eddy
171 (<http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy>) (Andersson & Sotiroopoulos, 2016). Isotropic
172 smoothing was carried out with a Gaussian kernel of 1 mm 3 implemented in the FSL
173 function *fslmaths*. DTI was estimated using FSL tool *dtifit* and excluded the $b=2000$ shell from

174 the fit. Employing the multi-shell data, DKI and WMTI metrics were estimated using Matlab
175 code (<https://github.com/NYU-DiffusionMRI/DESIGNER>), (Fieremans et al., 2011). NODDI
176 metrics were derived using AMICO in Matlab (<https://github.com/daducci/AMICO>). SMT mc
177 metrics were estimated with the original code (<https://github.com/ekaden/smt>). RSI metrics
178 were estimated using in-house Matlab tools.

179 We selected 20 scalar metrics from the six models (DTI, DKI, NODDI, RSI, SMT mc,
180 WMTI) based on recent studies (Benitez et al., 2018; De Santis et al., 2011; Hope et al., 2019;
181 Jelescu et al., 2015; Kaden, Kelm, et al., 2016; Maximov et al., 2019; Pines et al., 2020).
182 Models were also selected based on feasibility in relation to our acquisition protocol and
183 availability of open source scripts. Figure 2 shows each of the included metrics for one
184 participant, for illustrative purposes. All metrics and their corresponding abbreviations are
185 summarised in Supplementary table 1). Brain age prediction was performed for each model,
186 using all available metrics extracted from a range of regions-of-interest (see section 2.5).



187
188 **Figure 2.** Diffusion metrics from one participant. **DTI:** FA (fractional anisotropy), MD (mean diffusivity), AD
189 (axial diffusivity), RD (radial diffusivity). **DKI:** AK (axial kurtosis), MK (mean kurtosis), RK (radial kurtosis).
190 **NODDI:** ICVF (intracellular volume fraction), ISOVF (isotropic volume fraction), OD (oriental dispersion). **RSI:**
191 CI (cellular index), Fine (FA fine scale/slow compartment), rD (restricted diffusivity coefficient). **SMT mc:**
192 exMD (extra cellular space), exTr (extra-cellular space transverse), Intra (intra axonal diffusivity). **WMTI:** Awf
193 (axonal water fraction), aEAD, aIAD (axial extra and intra axonal diffusivity), rEAD (radial extra axonal
194 diffusivity).

195 **2.4. Quality checking procedure**

196 We implemented a rigorous QC procedure to ensure data quality was not contaminated by
197 motion, noise, or artefacts. Using a published approach (Roalf et al., 2016), we derived various
198 quality assurance (QA) metrics (see Supplementary material; SI table 2), including temporal-
199 signal-to-noise-ratio (TSNR). Outliers were manually checked and removed if deemed to have
200 unsatisfactory data quality. A total of 52 datasets were removed, leaving the dataset at $n = 702$
201 scans. This dataset was put through the same visual inspection. As an additional step, images
202 were manually inspected if TSNR Z scores deviated minus or plus 2.5 standard deviations from
203 the mean. Following this step, the final dataset remained at 702 scans from 573 individuals.

204

205 **2.5. Tract-Based-Spatial-Statistics**

206 Voxelwise statistical analysis of the FA data was carried out using Tract-Based Spatial
207 Statistics (TBSS) (S. M. Smith et al., 2006), as part of FSL (S. M. Smith et al., 2004). First, FA
208 images were brain-extracted using BET (S. M. Smith, 2002) and aligned into a common space
209 (FMRI58_FA template) using the nonlinear registration tool FNIRT (Andersson, Jenkinson, &
210 Smith., 2007; Jenkinson et al., 2012), which uses a b-spline representation of the registration
211 warp field (Rueckert et al., 1999). Next, the mean FA image of all subjects was created and
212 thinned to create a mean FA skeleton that represents the centres of all tracts common to the
213 group. Each subject's aligned FA data was then projected onto this skeleton. The mean FA
214 skeleton was thresholded at $FA > 0.2$. This procedure was repeated for all metrics. *fslmeans*
215 was used to extract the mean skeleton and 20 regions of interest (ROI) based on a probabilistic
216 white matter atlas (JHU) (Hua et al., 2008) for each metric. Including the mean skeleton
217 values, 420 features per individual were derived (20 metrics x 20+1 ROIs). Of these, 20
218 metrics were used for fitting of age curve trajectories, lme analysis, and Wilk's theorem
219 analysis, while all 420 MRI features were used for age prediction. Number of MRI features can
220 be found in Table 4. Additional voxelwise analysis were carried out on the 573 participants
221 (excluding longitudinal measures) using the FSL tool Randomise with permutation-based
222 statistics (Winkler et al., 2014) and threshold-free cluster enhancement method (TFCE; (S.
223 Smith & Nichols, 2009)). 5000 permutations were run, where each diffusion metric was tested
224 for its association with age. TBSS fill was used to create voxelwise statistical maps for each
225 metric, which can be found in SI Figure 10.

226

227 **2.6. Diffusion metric reproducibility**

228 The validity and sensitivity of the different diffusion models essentially rely on the richness,
229 quality and specific properties of the data used for model fitting. In order to assess the

230 reproducibility of the included advanced metrics (Maximov et al., 2015), we estimated the
231 dMRI models using data obtained from different acquisition schemes varying the number of
232 directions and maximum b value in 23 healthy participants with mean age 35.77 years (SD =
233 8.37, 56.5% women). This represented a sub-sample of the full sample. The following three
234 acquisition schemes were compared: i) $b=[1000,2000]$ with [60,30] directions, which is
235 identical to the acquisition scheme used in the main analysis, ii) $b=[1000,2000]$ with [60,60]
236 directions and iii) $b=[1000,2000,3000]$ with [60,60,60] directions. For each scheme we
237 processed the data using an identical pipeline (Maximov et al., 2019) as described above and
238 extracted the mean skeleton values for each metric. The comparisons between acquisition
239 protocols were performed using box plots (SI Figure 4), scatterplots with age as a function of
240 mean skeleton values (SI Figures 5), and Pearson's correlation coefficient plots, where protocol
241 1 is factored by protocol 3 (SI Figures 6).

242

243 **2.7. Statistical analysis**

244 All statistical analyses were carried out using the statistical environment R, version 3.6.0
245 (www.r-project.org/) (R Core Team, 2012) and Python 3.7.0 (www.python.org/).

246

247 **2.8. Linear mixed effects models (lme)**

248 To investigate the relationship between age and global mean skeleton values for each diffusion
249 metric, lme analyses were performed using the *lme* function (Bates & Pinheiro, 1998) in R (R
250 Core Team, 2012). In fitting the model, we scaled (z normalised) each variable and entered
251 age, orthogonalised age², sex, and timepoint (TP) as fixed effects. Subject ID was entered as a
252 random effect. For each diffusion metric M, we employed the following function:

253

$$254 M = A + B \times Age + C \times Age^2 + Sex + TP \quad (1)$$

255

256 where A is the intercept, B is the age coefficient, and C is the coefficient of the orthogonalised
257 quadratic age term (expressed as *poly(age,2)[,2]* in R). Age curves were obtained with
258 predictions from the fitted model using the *predict* function in R and used for age curve
259 trajectory figures. Visual inspection of residual plots did not reveal any obvious deviations
260 from homoscedasticity or normality. The significance threshold was set at $p < 0.05$, and the
261 results were corrected for multiple comparisons using the false discovery rate (FDR)
262 adjustment (Benjamini & Hochberg, 1995).

263 To investigate the rate of change for each of the age curves at any point, we calculated
264 their derivatives using numerical differentiation with finite differences (Burden & Faires,

265 2011). To compare the age-sensitivity of the models, we ran lme fits with and without age
266 terms, and calculated the difference in likelihood ratios (Glover & Dixon, 2004). The
267 significance of the age dependence was calculated using Wilk's theorem (Wilks, 1938) as
268 $\sqrt{2(L_2 - L_1)}$, where L_2 is the likelihood ratio obtained from the models with age terms, and
269 L_1 is the likelihood ratio obtained from the models without age terms.
270

271 **2.9. Brain-age prediction**

272 The XGBoost regressor model was used to run the brain age prediction
273 (<https://xgboost.readthedocs.io/en/latest/python/index.html>), including a decision-tree-based
274 ensemble algorithm that has been used in recent large-scale brain age studies (A.-M. G. de
275 Lange et al., 2019; Kaufmann et al., 2019). Parameters were set to max depth = 3, number of
276 estimators = 100, and learning rate = 0.1 (defaults). For each diffusion model (DTI, DKI,
277 NODDI, RSI, SMT mc, WMTI), predicted age was estimated in a 10-fold cross validation,
278 assigning a model-specific brain age estimate to each individual, as well as a multimodal brain
279 age estimate based on all diffusion features. To investigate the prediction accuracy of each
280 model, correlation analyses were run for predicted versus chronological age, and model-
281 specific R^2 , root mean square error (RMSE) and mean absolute error (MAE) were calculated.
282 To statistically compare the prediction accuracy of the models, Z tests for correlated samples
283 (Zimmerman, 2012) were run on the model-specific correlations between predicted and
284 chronological age in a pairwise manner using
285

$$286 Z = (\beta_{m1} - \beta_{m2}) / \sqrt{\sigma_{m1}^2 + \sigma_{m2}^2 - 2\rho\sigma_{m1}\sigma_{m2}},$$

287 where “m1” and “m2” represent model 1 and model 2, the β terms represent the beta value
288 from the regression fit, the σ terms represent their errors, and ρ represents the correlation
289 between the two sets of associations. In order to assess the complementary value of the
290 different models, we computed the correlations between the brain age predictions (Figure 6).
291 The predictions were first corrected for age-bias using linear models (Le et al., 2018), and the
292 residuals were used in the correlation analysis.

293 To evaluate the importance of each diffusion modality in the multimodal model, we ran an
294 additional prediction model including only mean-skeleton values to reduce the number of
295 highly correlated features in the regressor input, and calculated a) the proportion of the total
296 *weight* contributed by each modality, where weight represents the number of times a feature is
297 used to split the data across all trees, and b) *gain* values, which represent the improvement in

299 accuracy added by a feature to the branches it is on. To assess the significance of the general
300 model performance, average RMSE was calculated for the multimodal model using cross
301 validation with ten splits and ten repetitions and compared to a null distribution calculated
302 from 1000 permutations.

303

304 **3. Results**

305 **3.1. Diffusion metric reproducibility**

306 The reproducibility of the estimated diffusion metrics based on data obtained with different
307 acquisition schemes (described in 2.6) revealed overall high correlations between the mean
308 skeleton values for all the model metrics. Highest overall reproducibility was observed for
309 NODDI OD ($r(22) = 0.96, p < 0.001$) and RSI rD ($r(22) = 0.97, p < 0.001$). The lowest
310 reproducibility was observed for WMTI radEAD ($r(22) = 0.44, p = 0.597$). Supplementary
311 Table 4 and Supplementary Figures 4, 5, 6, and 7 show the results from the comparisons.

312

313 **3.2. Age trajectories**

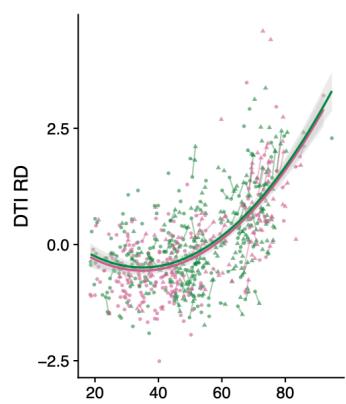
314 Figure 3 shows the linear mixed effect model-derived age curves for each diffusion metric
315 plotted as a function of age, where age curves are fitted with the predicted values of the lme
316 models. Figure 4 shows all lme model-derived age curves from Figure 3 in standardised form
317 in one plot. Figure 5 shows the derivatives of the lme fits, providing the estimated rate of
318 change at every point (of age), including the point of change in trajectory for each model curve
319 and the steepness of the turning point. Correlations between the metrics are available in the
320 supplementary material (SI Figures 2 and 3) for both raw and standardised values respectively.

321

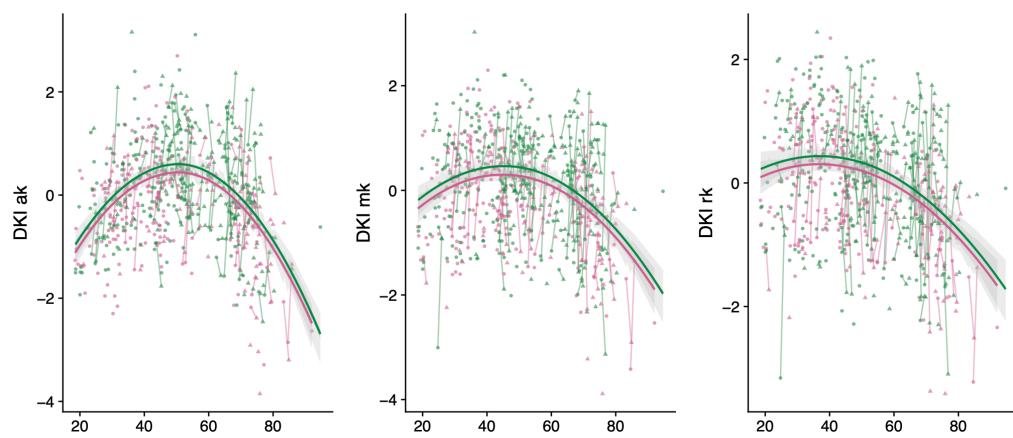
322 **3.3. Comparing age curves**

323 Figure 3 shows the estimated age curves for all metrics. Briefly, FA decreased steadily after the
324 age of 30, with a steeper decline after the age of 50. MD, AD, and RD followed a reverse
325 profile, with decreases in diffusivity until the 40's, whereby the trajectories subsequently
326 increased thereafter. DKI metrics revealed curvilinear trajectories, with NODDI ICVF, RSI CI,
327 SMT mc intra, and WMTI awf metrics following similar trajectories. RSI rD, NODDI ISOVF,
328 RSI FA fine, and WMTI axIAD metrics followed decreasing trajectories from the offset. SMT
329 mc extramd and extratrans, and WMTI radEAD followed similar trajectories to MD and RD.
330 NODDI OD revealed a steady increase until older age where the slope stabilised thereafter.
331 Lastly, WMTI axEAD showed u-trajectories.

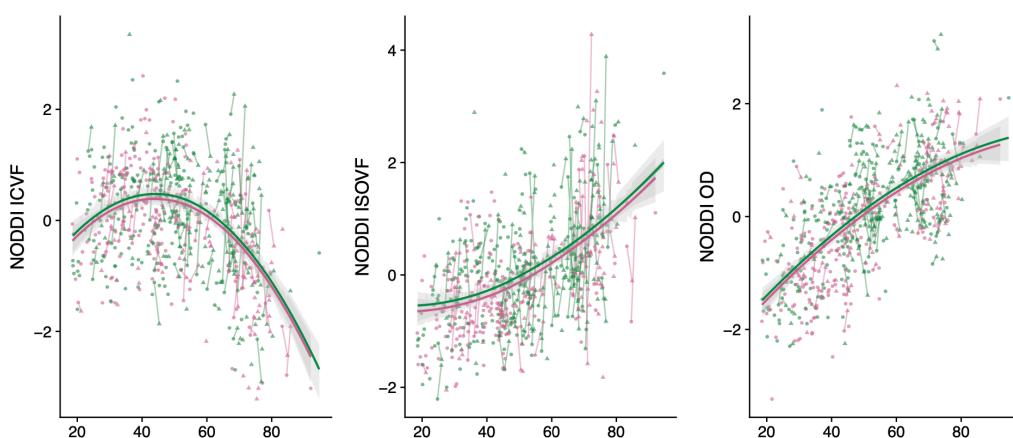
332



333

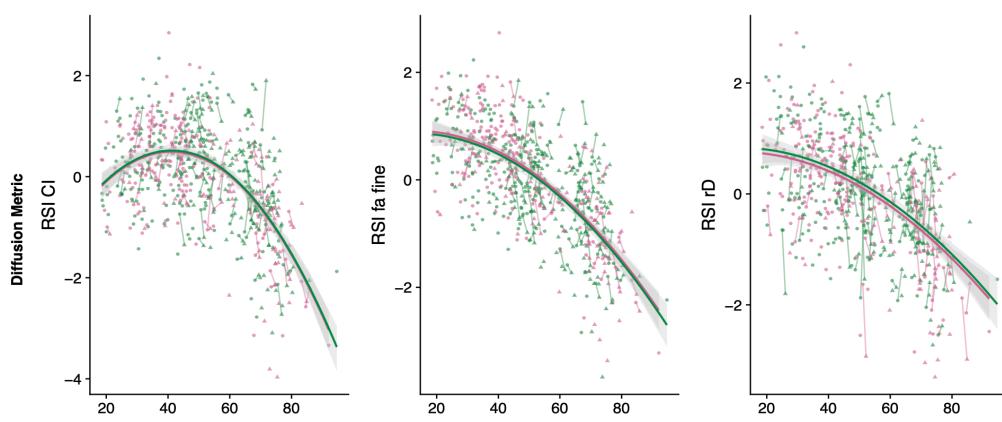


334

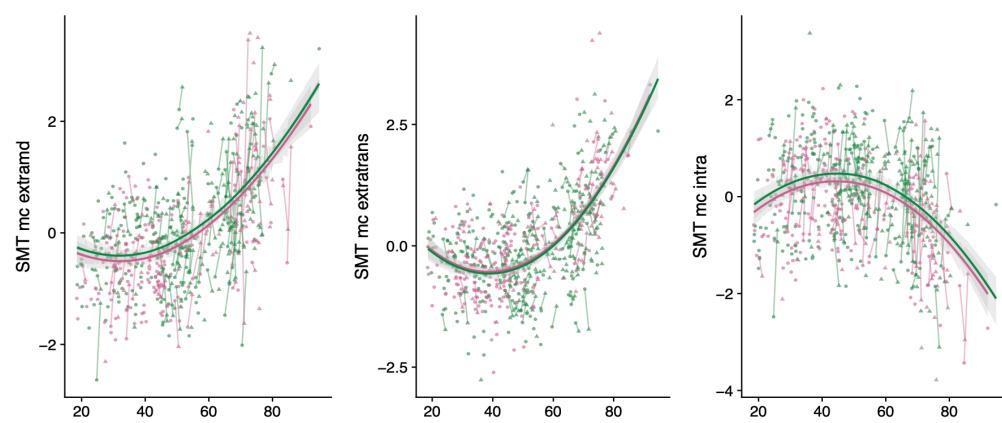


335

336

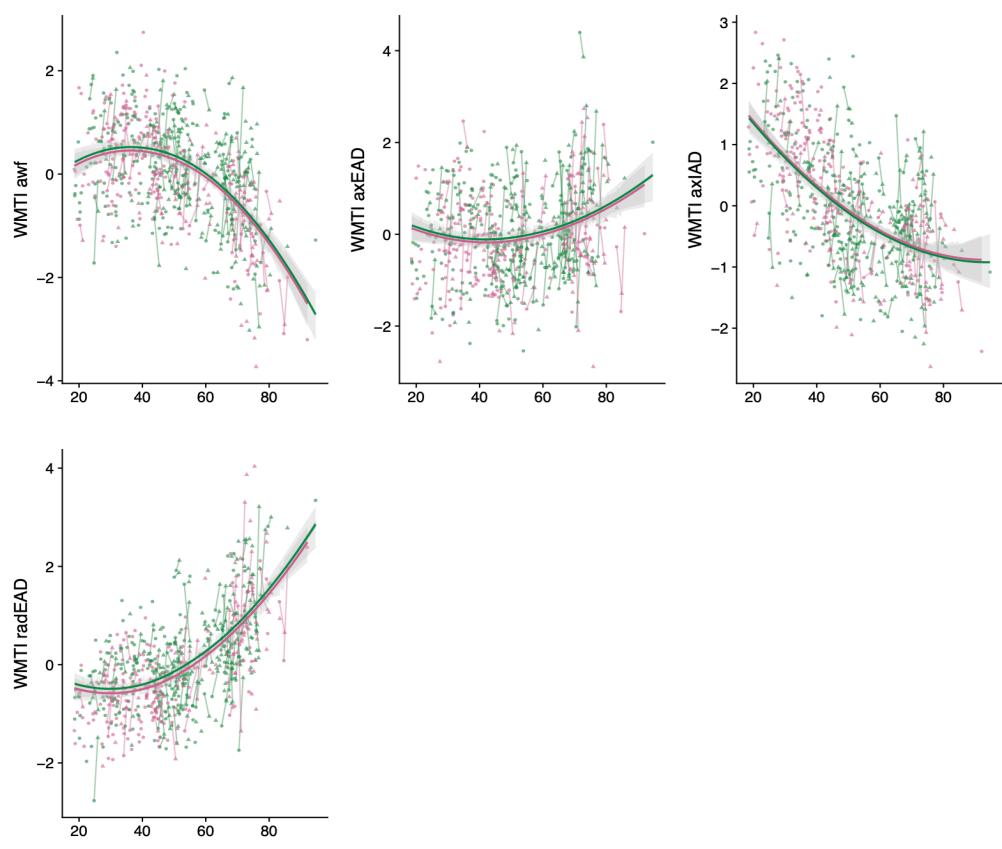


337

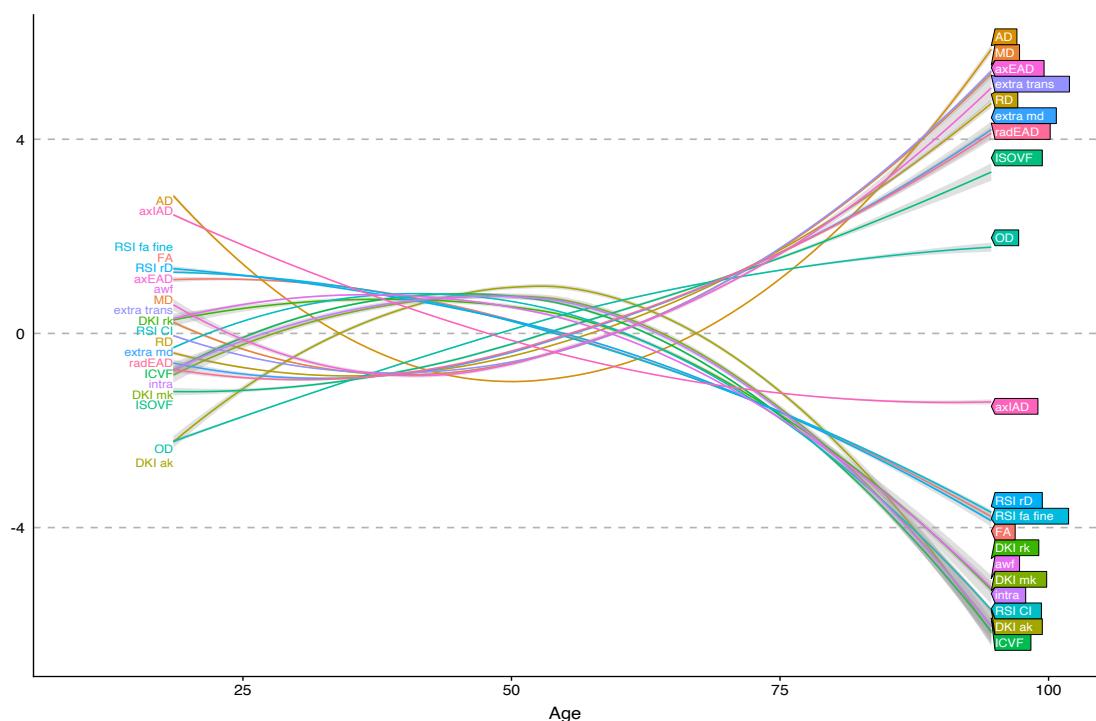


338

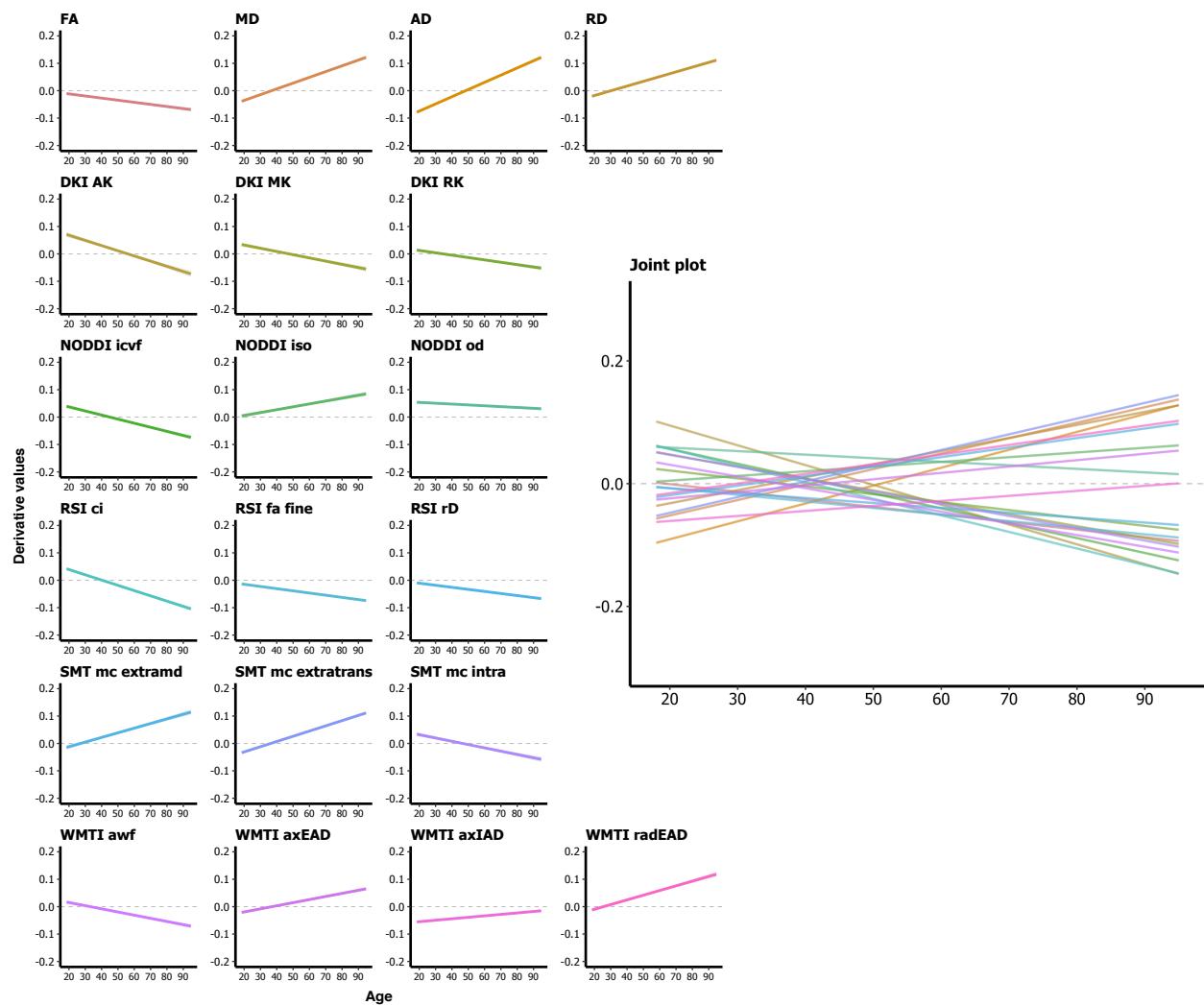
Age



339 **Figure 3.** Age curves where each diffusion metric's standardised (z-score) mean skeleton value (y-axis) is plotted
340 as a function of age (x-axis). Fitted lines made with lme-derived predicted values. Shaded areas represent 95% CI.
341 Points connected by lines represent longitudinal data where circle is TP1 and triangle is TP2. Male subjects are
342 represented by pink and female subjects by green.



359 **Figure 4.** Plot displaying all lme-model derived age curves from Figure 3 in standardised form.



378 **Figure 5.** The derivative for each diffusion model, providing the estimated rate of change at every point. The
379 point on the x-axis where the fitted line crosses 0 on the y-axis represents the turning point of the age trajectory
380 for each metric.

Table 2. Linear mixed effect model results for each metric, where variables are displayed with corresponding fixed effect estimates (β), (standard error), t-statistic, and FDR corrected P value.

	FA	MD	AD	RD	DKI ak	DKI mk	DKI rk	NODDI icvf	NODDI isovf	NODDI OD	RSI CI	RSI fa fine	RSI rD	SMT mc extramd	SMT mc extratrans	SMT mc intra	WMTI awf	WMTI axEAD	WMTI axIAD	WMTI radEAD	
Age	-0.66*** (0.03)	0.46*** (0.04)	0.03 (0.04)	0.59*** (0.03)	-0.12* (0.04)	-0.24*** (0.04)	-0.32*** (0.04)	-0.33*** (0.04)	0.48*** (0.04)	0.67*** (0.03)	-0.48*** (0.04)	-0.69*** (0.03)	-0.54*** (0.04)	0.50*** (0.04)	0.56*** (0.03)	-0.26*** (0.04)	-0.49*** (0.04)	0.15*** (0.04)	-0.58*** (0.04)	0.57*** (0.03)	
	-20.76	13.19	0.71	18.02	-3.21	-5.95	-8.09	-8.52	13.31	21.62	13.79	-21.97	-14.89	14.31	16.66	-6.68	-13.33	3.51	-16.43	17.11	
	4.96 x 10 ⁻⁴¹	3.92 x 10 ⁻²⁴	1	2.95 x 10 ⁻³⁵	0.01	2.56 x 10 ⁻⁰⁷	9.15 x 10 ⁻¹²	4.29 x 10 ⁻¹³	2.02 x 10 ⁻²⁴	9.16 x 10 ⁻⁴³	1.44 x 10 ⁻²⁵	1.87 x 10 ⁻⁴³	3.60 x 10 ⁻²⁸	8.41 x 10 ⁻²⁷	3.01 x 10 ⁻³²	7.14 x 10 ⁻⁰⁹	1.87 x 10 ⁻²⁴	6.16 x 10 ⁻⁰³	1.02 x 10 ⁻³¹	2.97 x 10 ⁻³³	
	-0.17*** (0.03)	0.34*** (0.03)	0.40*** (0.04)	0.29*** (0.03)	-0.44*** (0.04)	-0.26*** (0.04)	-0.18*** (0.04)	-0.33*** (0.04)	0.10* (0.03)	-0.08 (0.03)	-0.37*** (0.03)	-0.15*** (0.03)	-0.11* (0.03)	0.21*** (0.03)	0.35*** (0.03)	-0.27*** (0.04)	-0.26*** (0.03)	0.14*** (0.04)	0.11* (0.03)	0.21*** (0.03)	
Age ²	-5.57	10.30	10.63	9.37	-12.34	-7.15	-4.77	-9.04	3.11	-2.66	-11.04	-4.93	-3.16	6.46	10.99	-7.42	-7.51	3.63	3.36	6.91	
	1.48 x 10 ⁻⁰⁶	2.22 x 10 ⁻¹⁷	6.84 x 10 ⁻¹⁸	4.00 x 10 ⁻¹⁵	4.47 x 10 ⁻²²	1.26 x 10 ⁻⁰⁹	5.00 x 10 ⁻⁰⁵	5.00 x 10 ⁻¹⁴	0.02	0.09	3.46 x 10 ⁻¹⁹	2.60 x 10 ⁻⁰⁵	0.02	2.15 x 10 ⁻⁰⁸	4.59 x 10 ⁻¹⁹	3.12 x 10 ⁻¹⁰	9.88 x 10 ⁻¹¹	6.16 x 10 ⁻⁰³	0.01	2.17 x 10 ⁻⁰⁹	
	-0.09** (0.03)	0.06 (0.03)	0.03 (0.04)	0.07* (0.03)	0.14*** (0.04)	0.16*** (0.04)	0.13*** (0.04)	0.08 (0.03)	0.10* (0.03)	0.07 (0.03)	0.02 (0.03)	-0.05 (0.03)	0.08 (0.03)	0.10* (0.03)	-0.03 (0.03)	0.15*** (0.04)	0.07 (0.03)	0.06 (0.04)	-0.03 (0.03)	0.09* (0.03)	
	-3.12	1.75	0.78	2.16	4.00	4.19	3.48	2.20	2.90	2.48	0.62	-1.55	2.24	2.90	-1.07	4.10	1.88	1.56	-1.00	2.86	
Sex	1.52 x 10 ⁻⁰²	0.55	1	0.22	1.06 x 10 ⁻⁰³	3.54 x 10 ⁻⁰⁴	4.53 x 10 ⁻⁰³	0.19	0.03	0.10	1	0.82	0.18	0.03	1	4.91 x 10 ⁻⁰⁴	0.41	0.81	1	0.03	
	0.01	0.02	0.03	0.01	0.07	0.04	0.02	0.04	0.05	0.02	0.03	0.001	-0.01	0.06	-0.02	0.04	0.03	0.03	-0.02	0.05	
	(0.01)	(0.01)	(0.02)	(0.01)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.01)	(0.01)	(0.01)	(0.02)	(0.03)	(0.01)	(0.03)	(0.02)	(0.03)	(0.02)	(0.02)	
	0.88	1.55	1.72	1.02	2.36	1.21	0.64	1.62	1.64	1.33	1.95	0.05	-0.30	2.31	-1.44	1.32	1.41	1.03	-0.66	2.19	
Timepoint	1	0.62	0.89	1	0.10	1	1	0.57	0.52	0.93	0.35	1	1	0.11	1	0.95	0.80	1	1	0.15	
	Observations	702	702	702	702	702	702	702	702	702	702	702	702	702	702	702	702	702	702		
	Log Likelihood	-651.72	-741.08	-853.38	-671.25	-885.78	-941.80	-945.41	-885.92	-882.34	-678.79	-748.66	-662.96	-829.12	-832.39	-703.69	-932.36	-849.65	-965.60	-816.35	-795.04
	Akaike Inf. Crit.	1,317.44	1,496.15	1,720.76	1,356.50	1,785.56	1,897.60	1,904.81	1,785.84	1,778.69	1,371.58	1,511.33	1,339.91	1,672.24	1,678.79	1,421.39	1,878.73	1,713.30	1,945.20	1,646.69	1,604.09
Bayesian Inf. Crit.	1,349.27	1,527.98	1,752.59	1,388.33	1,817.39	1,929.43	1,936.64	1,817.67	1,810.52	1,403.40	1,543.15	1,371.74	1,704.06	1,710.62	1,453.21	1,910.55	1,745.13	1,977.02	1,678.52	1,635.92	

Note: Age² represents the orthogonalised polynomial quadratic age term (Eq. 1)

*p<0.05; **p<0.01; ***p<0.001

381 **3.4. Age sensitivity estimated using lme models**

382 Results from the lme models revealed significant main effects of age on the global mean
383 skeleton values for all diffusion metrics (see Table 2). An examination of the fixed effects
384 estimates (β) and t-statistics for the age term allows for interpretation of the extent and
385 direction of the linear association with age. Overall, the FA fine compartment of the RSI model
386 was most sensitive to age ($\beta(125) = -0.69$, $t = -21.97$, $p < 0.001$). NODDI OD was the second
387 most sensitive to age ($\beta(125) = 0.67$, $t = 21.62$, $p < 0.001$). The model least sensitive to age was
388 DTI AD ($\beta(125) = 0.03$, $t = 0.71$, $p = 1$). For conventional DTI metrics, FA was the most age
389 sensitive ($\beta(125) = -0.66$, $t = -20.76$, $p < 0.001$). No main effects of timepoint survived
390 correction for multiple comparisons.

391

392 **3.5. Age sensitivity estimated using Wilk's theorem**

393 Table 3 shows the strength of the overall age variation for each metric estimated by the
394 difference in likelihood values (described in Section 2.8). All metrics showed significant age
395 dependence, with RSI FA fine as the most age sensitive ($z = 18.79$), followed by NODDI OD
396 ($z = 18.55$) and DTI-based FA ($z = 18.12$). WMTI axEAD ($z = 4.65$) was the least age-
397 dependant metric.

398

Table 3 Likelihood values from the lme models without age terms (L_1) and with age terms (L_2). The significance of the age dependence is estimated by the difference in likelihood values using Wilk's theorem. FDR corrected p-values = p^{corr} .

Model		L_1	L_2	Difference (z)	$p\text{-value}$	p^{corr}
DTI	FA	-815.86	-651.72	18.12	5.22 x10 ⁻⁷²	1.04 x 10 ⁻⁷⁰
	MD	-848.36	-741.08	14.65	2.55 x 10 ⁻⁴⁷	5.10 x 10 ⁻⁴⁶
	AD	-900.66	-853.38	9.72	2.93 x 10 ⁻²¹	5.86 x10 ⁻²⁰
	RD	-820.44	-671.25	17.27	1.62 x 10 ⁻⁶⁵	3.24 x 10 ⁻⁶⁴
DKI	AK	-952.44	-885.78	11.55	1.12 x 10 ⁻²⁹	2.25 x 10 ⁻²⁸
	MK	-977.09	-941.80	8.40	4.71 x 10 ⁻¹⁶	9.42 x 10 ⁻¹⁵
	RK	-981.65	-945.41	8.51	1.83 x10 ⁻¹⁶	3.65 x 10 ⁻¹⁵
NODDI	ICVF	-948.54	-885.92	11.19	6.40 x 10 ⁻²⁸	1.28 x 10 ⁻²⁶
	ISOVF	-957.61	-882.34	12.27	2.06 x 10 ⁻³³	4.13 x 10 ⁻³²
	OD	-850.84	-678.79	18.55	1.90 x 10 ⁻⁷⁵	3.80 x 10 ⁻⁷⁴
RSI	CI	-866.73	-748.66	15.37	5.28 x 10 ⁻⁵²	1.06 x 10 ⁻⁵⁰
	FA fine	-839.53	-662.96	18.79	2.07 x 10 ⁻⁷⁷	4.15 x 10 ⁻⁷⁶
	rD	-922.24	-829.12	13.65	3.62 x 10 ⁻⁴¹	7.24 x 10 ⁻⁴⁰
SMT mc	Extra md	-929.01	-832.39	13.90	1.10 x 10 ⁻⁴²	2.20 x 10 ⁻⁴¹
	Extra trans	-848.79	-703.69	17.03	9.71 x 10 ⁻⁶⁴	1.94 x 10 ⁻⁶²
	Intra	-973.21	-932.36	9.04	1.82 x 10 ⁻¹⁸	3.64 x 10 ⁻¹⁷
WMTI	AWF	-942.66	-846.37	13.88	1.52 x 10 ⁻⁴³	3.04 x 10 ⁻⁴¹
	axEAD	-973.15	-962.32	4.65	1.98 x 10 ⁻⁰⁵	3.97 x 10 ⁻⁰⁴
	axIAD	-930.26	-816.35	15.09	3.38 x 10 ⁻⁵⁰	6.76 x 10 ⁻⁴⁹
	radEAD	-922.92	-795.04	15.99	2.91 x 10 ⁻⁵⁶	5.81 x 10 ⁻⁵⁵

399

400 **3.6. Age sensitivity estimated using brain age**

401 The model performances for the multimodal and model-specific brain age predictions are
402 shown in Table 4. SI Figures 8 and 9 show the associations between predicted age and
403 chronological age for each of the models. Figure 6 shows the pairwise correlations between
404 predicted age for each model. Pairwise differences in the age prediction accuracy of the models
405 are shown in Figures 7 and 8. SI Figure 1 shows the RMSE of the multimodal model prediction
406 compared to a null distribution obtained from calculating 1000 permutations.

Table 4. Number of MRI variables (corresponding to the sum of metric features), root mean square error (RMSE), mean absolute error (MAE), correlation between predicted and chronological age (Pearson's r), and R^2 for each of the models. CI = confidence interval.

Model	MRI variables	RMSE	MAE	r [95% CI]	R^2 [95% CI]
DTI	84	9.35	7.30	0.83 [0.80, 0.85]	0.68 [0.64, 0.72]
DKI	63	12.19	9.82	0.68 [0.64, 0.72]	0.46 [0.41, 0.52]
NODDI	63	9.15	7.31	0.83 [0.81, 0.86]	0.70 [0.65, 0.74]
RSI	63	9.84	7.68	0.81 [0.78, 0.83]	0.65 [0.61, 0.69]
SMT mc	63	11.30	9.01	0.73 [0.70, 0.76]	0.54 [0.50, 0.58]
WMTI	84	9.37	7.40	0.83 [0.80, 0.85]	0.68 [0.64, 0.72]
Multimodal	420	8.80	6.99	0.85 [0.83, 0.87]	0.72 [0.69, 0.76]

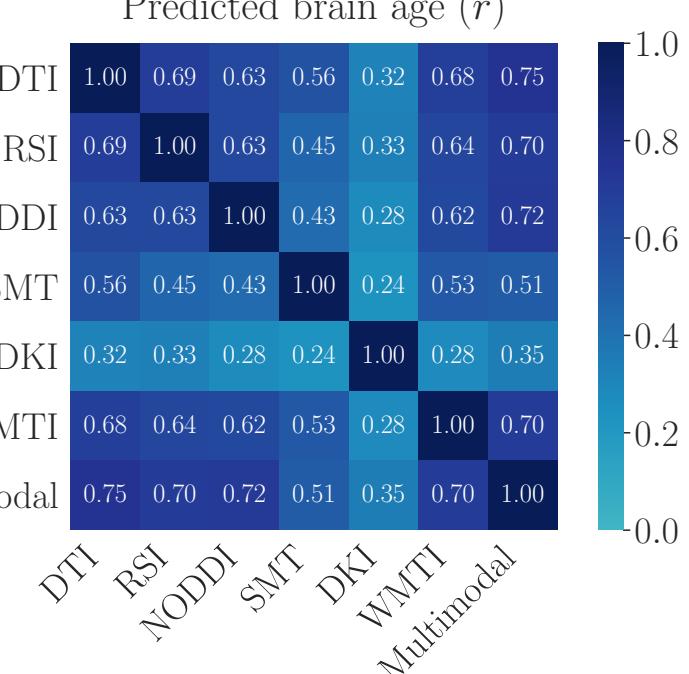
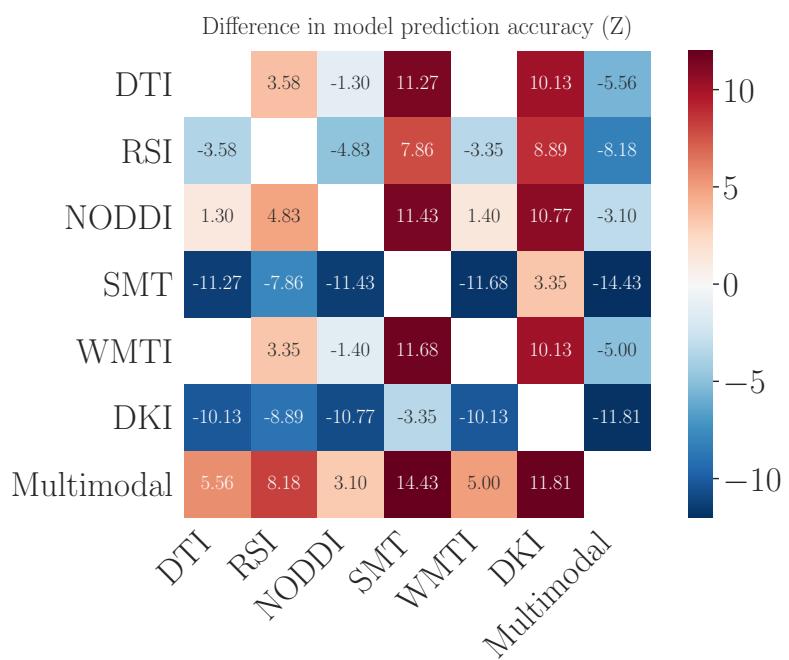


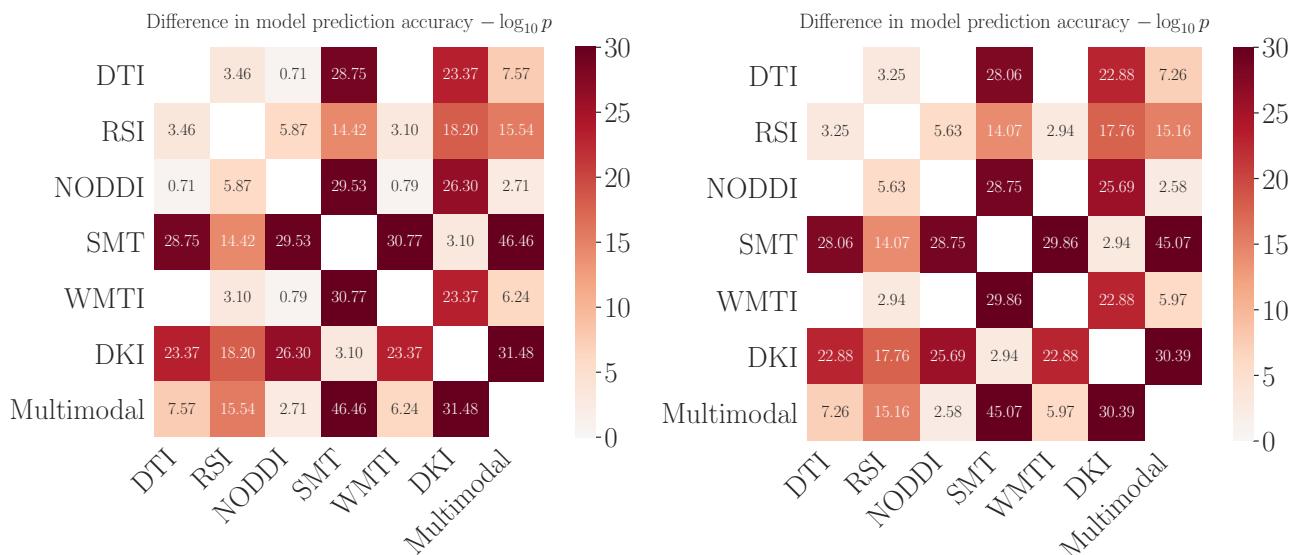
Figure 6. Correlation matrix for predicted brain age of each modality and the multimodal model. To account for age-bias (Le et al., 2018; S. M. Smith, Vidaurre, et al., 2019), the predicted age values were residualised for chronological age using linear models.

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442



443 **Figure 7.** Matrix showing pairwise differences between the model prediction accuracies (correlations between
444 predicted and chronological age), based on z tests for correlated samples.

445
446



447
448
449
450
451

452 As visible from Table 4, the multimodal model showed the most accurate age prediction ($r =$
453 $0.85, p < 0.001, 95\% \text{ CI} = [0.83, 0.87]$), while the DKI model performed the worst ($r = 0.68, p$
454 $< 0.001, 95\% \text{ CI} = [0.64, 0.72]$). As shown in Figures 7 and 8, the multimodal prediction
455 accuracy was significantly higher than the accuracy of each of the other models, with the
456 largest difference seen between the multimodal model and DKI. The differences in prediction

457 accuracy between DTI and RSI, and WMTI and NODDI did not survive correction for multiple
458 comparisons. Figure 6 showed correlation coefficients of mean $r = 0.59$ (Std = 0.09) between
459 the DTI, RSI, NODDI, SMT and WMTI predictions, while the DKI showed lower correlations
460 with the other model predictions (mean $r = 0.29$, Std = 0.04).

461 To evaluate the relative importance of each modality, we ran an additional multimodal
462 model including only mean-skeleton values to reduce the number of highly correlated features
463 in the regressor input. Table 5 shows the total gain and the proportion of weight contributed by
464 each modality to the total weight, indicating their relative contribution in the model training.
465 The results revealed that the machine favoured the NODDI model in the training.

466

Table 5. Feature importance evaluated using a reduced multimodal model that included only mean skeleton values for each modality. Number of MRI variables (corresponding to the sum of metric features), percentage contribution to the total weight, and total gain for each modality.

Model	MRI variables	% of total weight	Total gain
DTI	4	20.09	163473.25
DKI	3	5.13	41747.63
NODDI	3	45.48	370129.31
RSI	3	4.85	39463.11
SMT mc	3	11.74	95534.98
WMTI	4	12.72	103545.15

467

468

469 4. Discussion

470 Ageing confers a range of structural brain alterations, affecting micro- and macrostructural
471 properties of the neurocircuitry supporting cognitive and other complex brain functions. In the
472 current mixed cross-sectional and longitudinal study, we compared age sensitivity and brain
473 white matter age trajectories across the adult lifespan based on advanced and conventional
474 dMRI models. The results from our comprehensive analysis approach, including age-curve
475 trajectories, linear mixed effects models, Wilk's theorem analysis, and brain age prediction,
476 showed high age sensitivity for all diffusion metrics, with comparable sensitivity between the
477 highest performing advanced dMRI models and conventional DTI, and a moderate benefit of
478 including all metrics in the same model. The mixed effects analyses and corresponding
479 derivatives revealed variations in age trajectories between models, indicating that they may be
480 sensitive to different underlying aspects of white matter ageing.

481 Our results showed that FA plateaued around the third decade with a steady decline in
482 slope following the age of ~40, and an accelerated decrease in senescence (Figure 3). The other
483 DTI metrics of MD, AD, and RD revealed decreases in diffusivity up until the 40-50-year age

484 mark, where the trajectories subsequently increase following a steady period. While these
485 results to a large extent correspond with trajectories observed in previous studies (Cox et al.,
486 2016; Davis et al., 2009; Westlye et al., 2010), a more defined inverted U-shape (Westlye et
487 al., 2010) was less prominent in our study, likely due to a lack of younger participants below
488 the age of 20. Interestingly, FA based on the relatively simple DTI model utilising only single-
489 shell data offered one of the highest sensitivities to age, supporting that DTI provides sensitive
490 measures of gross white matter anatomy and neuropathological changes (A. L. Alexander et
491 al., 2008). The characteristic curvilinear trajectories of lifespan differences in conventional DTI
492 metrics (Westlye et al., 2010) have previously been suggested to reflect a combination of
493 protracted myelin-related maturation during childhood, adolescence and early adulthood (Lebel
494 et al., 2008; Tamnes et al., 2010) and subsequent myelin loss during adulthood and senescence
495 (Bartzokis et al., 2004). However, DTI metrics are unable to differentiate between intra- and
496 extra-axonal compartments, and, in addition to the idiosyncratic changes in myeloarchitecture,
497 they may be influenced by individual differences and changes in gross fiber architecture (e.g.
498 crossing fibres) and axonal packing and density (Paus, 2010; Simmonds et al., 2014). The
499 specific biological interpretation of DTI metrics essentially depends upon the local fiber
500 architecture, and signal changes from DTI require careful interpretation, as the exact
501 neurobiological underpinnings cannot be directly inferred. While speculative, utilising
502 advanced dMRI models in addition to conventional DTI may provide more specificity in the
503 interpretation of the results, and improve the descriptive precision of the tissue pathology by
504 disentangling the various biological sources that are happening concurrently.

505 While several of the advanced dMRI models showed comparable results to DTI in
506 terms of age sensitivity, they also showed visibly different age trajectories (Figure 3), including
507 variation in turning points (Figure 4), indicating the age at which anisotropy and diffusivity
508 measures change direction, and gradient of change (Figure 5), indicating rate of decline. The
509 variation in turning points and gradient of change calculated using the derivates of each model
510 informs us about the estimated rate of change at specific ages, in addition to the differential
511 sensitivity between different metrics during different life phases. Although diffusion imaging
512 cannot give direct access to neuronal processes on a cellular level, the varying estimated
513 trajectories in advanced dMRI models potentially reflect differential involvement of the
514 putative biological underpinnings during the different phases of brain ageing. Thus, metric-
515 specific differences may reflect age-related pathological changes behind each dMRI model,
516 helping us better pinpoint the age at which decline in white matter microstructure begins,
517 which has important implications for interventive strategies aimed at promoting healthy
518 ageing.

519 Although recent research has validated FA and RD metrics of DTI as being sensitive
520 markers to myelin (Lazari & Lipp, 2020), caution must be exerted in interpreting specific
521 underlying biology on the basis of DTI alone (Novikov et al., 2018). With this in mind,
522 combining tissue models such as NODDI, WMTI, RSI, and SMT mc may hold promise in
523 jointly reflecting measures more relatable to the neurobiological underpinnings of brain ageing.
524 The WMTI metrics for example have been validated for reflecting underlying biology both *in*
525 *vivo* (Jelescu et al., 2015, 2016) and *ex vivo* (Falangola et al., 2014; Kelm et al., 2016). WMTI
526 awf was found to relate to axonal density, whereas WMTI radEAD to some extent describes
527 the degree of myelination (Kelm et al., 2016) and relates to the extracellular environment filled
528 with interstitial fluid and circulating macromolecules, as well as blood vessels and perivascular
529 spaces (Nicholson & Hrabětová, 2017). The parameter maps from the NODDI model have
530 been claimed to exhibit a spatial pattern of tissue distribution consistent with the known brain
531 anatomy (Zhang et al., 2012), with existing maps showing the expected pattern of neurite
532 density (Jespersen et al., 2010), serving as an example of the feasibility provided by advanced
533 diffusion models to disentangle neurite density and orientation dispersion, two major factors
534 contributing to FA (Zhang et al., 2012). The RSI model diameter calculations have been shown
535 to correspond with the diameter of unmyelinated and myelinated axons in the rat brain (White
536 et al., 2013), suggesting a direct biological interpretation. Likewise, histological analyses have
537 shown that the SMT mc microscopic diffusion indices offer direct sensitivity to pathological
538 tissue alterations (Kaden et al. 2016). While not a tissue model, DKI provides a specific
539 measure of cellular compartments and membranes and is relatively unconfounded by
540 concentration of macromolecules, potentially providing a more specific indicator of tissue
541 properties than conventional DTI (Jensen et al., 2005).

542 In theory, the partly non-overlapping assumptions and biophysical properties of the
543 different diffusion MRI models offer a more comprehensive and complete view of the
544 manifold biological processes in brain development, ageing, and disorders when considered
545 jointly. In general, our findings of higher age prediction accuracy when combining different
546 models supports this view. However, not surprisingly, the relatively high correlations and
547 similar age-related trajectories of several of the different metrics also suggest a certain level of
548 redundancy. Further studies are needed to test the hypothesis that combining various diffusion
549 MRI models of brain macro- and microstructure increases the feasibility and precision of
550 multimodal data-driven brain phenotyping approaches (e.g. “fingerprinting”) towards more
551 specific clinical applications and prediction (Alnæs et al., 2018). With this in mind, including
552 the advanced models may not only improves specificity compared to conventional DTI, but
553 potentially provides additional information related to changes in myelination and axonal

554 rewiring, while specifically modelling microstructural features typically conflated by DTI, such
555 as neurite density, axonal diameter, and neurite orientation dispersion (D. C. Alexander et al.,
556 2019). Further research is needed to validate and develop dMRI models to better reflect the
557 different biological and geometrical properties of white matter. If assumptions of underlying
558 microstructure are valid, these advanced models represent a promising contribution to the
559 investigation of brain development and ageing, and aberrant brain biology in various clinical
560 conditions (D. C. Alexander et al., 2019).

561 While considering a range of diffusion models, it is important to note that each comes
562 with its respective limitations. NODDI has been particularly criticised in recent years, with
563 research suggesting the model assumptions are invalid (Lampinen et al., 2017). NODDI
564 provides estimates of geometric parameters only, with there being an absence of any direct
565 diffusivity estimation (Jelescu et al., 2015). DKI, like DTI, is limited in specificity as it can be
566 affected by different features of tissue microstructure. Thus, the biophysical model that relates
567 DKI parameters directly to white matter microstructure (WMTI, (Fieremans et al., 2011)) was
568 proposed. However, assumptions made in WMTI may be oversimplifying, which could lead to
569 bias in the estimated parameters in addition to reduced information about the microstructure.
570 WMTI parameter estimation accuracy is also said to progressively degrade with higher
571 orientation dispersion (Jelescu et al., 2015).

572 The SMT mc model overcomes limitations in WMTI (Fieremans et al., 2011) and
573 NODDI (Zhang et al., 2012) as it makes no assumptions about the neurite orientation
574 distribution (Kaden, Kelm, et al., 2016). However, it is limited by assuming that the effective
575 transverse diffusivity inside the neurites is zero, an approximation which may not hold for
576 unmyelinated axons and dendrites (Kaden, Kelm, et al., 2016), due to possible neurite
577 undulation on the microscopic scale (Nilsson et al., 2012). RSI, like most diffusion-based
578 techniques, suffers from low resolution and may best be utilised in supplement to high spatial
579 resolution sequences as part of a multimodal imaging protocol (Brunsing et al., 2017). For
580 example, the DTI model's limitation of being blind to crossing and bending fibres may be
581 resolved by the RSI model's multi-direction properties and ability to measure diffusion
582 orientation and length scale (White et al., 2013). Despite the limitations of each model, and
583 possible redundancy between them, assessing age-related white matter structural changes using
584 a combination of diffusion models can be advantageous in order to zero in on idiosyncratic
585 neuroanatomical and microstructural patterns (Alnæs et al., 2018). Biophysical models of
586 WMTI and SMT mc for example, adds the possibility for assessing the separate effect of
587 diffusion in intra- and extra-axonal space (Jelescu & Budde, 2017; Voldsbekk et al., 2020).

588 Some methodological limitations must also be addressed. One concern is that of
589 averaging over regions of interests and the entire white matter skeleton, which is complicated
590 by the direction and magnitude of age associations varying regionally. Recent findings
591 (Tønnesen et al., 2020) found that the global mean skeleton model outperformed region of
592 interest-based single-metric models, providing evidence for relevant information required for
593 brain age prediction is captured at a global level. Indeed, previous studies have suggested that
594 regional DTI-based indices of brain aging reflect relatively global processes (Penke et al.,
595 2010; Westlye et al., 2010), which is also supported by a genetically informed approach
596 demonstrating that a substantial proportion of the tract-wise heritability is accounted for by a
597 general genetic factor (Gustavson et al., 2019). Secondly, we used FA to generate white matter
598 skeletons. Future research should consider generating white matter skeletons based on
599 advanced diffusion maps that are more resistant to crossing fibres.

600 Other strengths of the study must also be addressed. TBSS offers robust non-linear
601 registration and skeletonization of individual FA maps, which allows both for subsequent
602 voxel-wise analysis and extraction of ROI based summary stats using a range of white matter
603 atlases. This approach is highly standardized, which promotes reproducibility and future meta-
604 analyses. The direct test of the reproducibility of the included dMRI metrics across different
605 acquisition schemes with a higher number of directions and *b*-values, supported the use of
606 advanced computational dMRI models for data obtained using a clinically feasible acquisition
607 protocol. The combination of advanced dMRI models based on multi-shell data is a key
608 strength, which potentially provides more detailed features of the cellular environment from
609 differential tissue responses elicited by the different *b*-values (Assaf & Basser, 2005; Clark et
610 al., 2002; Pines et al., 2020).

611 The study also included a relatively large sample and benefitted from all participants
612 having been scanned with the same MRI scanner. Additionally, with cross-sectional studies
613 being limited by between-subject variance and possible cohort effects (Schaie, 2005), the
614 current study profits from a mixed cross-sectional and longitudinal design, where participants
615 can be used as their own baseline (Sexton et al., 2014). However, the longitudinal aspect of our
616 study had some limitations, including the short interval duration, and the low sample size
617 compared to the cross-sectional sample. Consequently, the main results were largely driven by
618 cross sectional data despite the mixed cross-sectional and longitudinal nature of the design.
619 Future research should aim to adopt fully longitudinal designs over several time points in order
620 to evaluate individual differences in change over time, preferably over wide age ranges.

621 Although the advanced dMRI models offered new insight into age sensitivity (such as
622 the relatively high performance of RSI and NODDI for age prediction) and differences in age

623 trajectories, the biological interpretation of these metrics require further validation. Continued
624 development and validation of more optimal diffusion models that better reflect biological
625 properties of the brain is needed, and future research should take into account the impact of a
626 range of potential factors that may mediate brain and cognitive development (Alnæs et al.,
627 2020) and ageing (Lindenberger, 2014), such as pre- and perinatal events, socio-demographical
628 factors, education, lifestyle, cardiometabolic risk factors, and genetics.

629 In conclusion, characterising changes in white matter microstructure over the human
630 lifespan is critical for establishing robust models of normative neurodevelopment and ageing,
631 which in turn can help us to better understand deviations from healthy age trajectories. The
632 current study demonstrates that while advanced and conventional dMRI models show
633 comparable age-sensitivity, multi-shell diffusion acquisition and advanced dMRI models can
634 contribute to measuring multiple, complementary aspects of white matter characteristics.
635 Further developing dMRI models in terms of biological tissue specificity remains a challenging
636 yet important goal for understanding white matter development across the human lifespan.
637

638 **Acknowledgements and funding**

639 The study is supported by the Research Council of Norway (223273, 249795, 248238,
640 286838), the South-Eastern Norway Regional Health Authority (2014097, 2015044, 2015073,
641 2016083, 2018037, 2018076), the Norwegian ExtraFoundation for Health and Rehabilitation
642 (2015/FO5146), KG Jebsen Stiftelsen, ERA-Net Cofund through the ERA PerMed project
643 'IMPLEMENT', and the European Research Council under the European Union's Horizon
644 2020 research and Innovation program (ERC StG, Grant 802998).
645

646 **5. References**

647
648
649 Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2008). *Diffusion Tensor Imaging of the*
650 *Brain*. 26.

651 Alexander, D. C., Dyrby, T. B., Nilsson, M., & Zhang, H. (2019). Imaging brain
652 microstructure with diffusion MRI: Practicality and applications. *NMR in Biomedicine*,
653 32(4), e3841. <https://doi.org/10.1002/nbm.3841>

654 Alnæs, D., Kaufmann, T., Doan, N. T., Córdova-Palomera, A., Wang, Y., Bettella, F.,
655 Moberget, T., Andreassen, O. A., & Westlye, L. T. (2018). Association of Heritable

656 Cognitive Ability and Psychopathology With White Matter Properties in Children and
657 Adolescents. *JAMA Psychiatry*, 75(3), 287.
658 <https://doi.org/10.1001/jamapsychiatry.2017.4277>

659 Alnæs, D., Kaufmann, T., Marquand, A. F., Smith, S. M., & Westlye, L. T. (2020). Patterns of
660 sociocognitive stratification and perinatal risk in the child brain. *Proceedings of the
661 National Academy of Sciences*, 117(22), 12419–12427.
662 <https://doi.org/10.1073/pnas.2001517117>

663 Andersson, J. L. R., & Sotiropoulos, S. N. (2015). Non-parametric representation and
664 prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian
665 processes. *NeuroImage*, 122, 166–176.
666 <https://doi.org/10.1016/j.neuroimage.2015.07.067>

667 Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-
668 resonance effects and subject movement in diffusion MR imaging. *NeuroImage*, 125,
669 1063–1078. <https://doi.org/10.1016/j.neuroimage.2015.10.019>

670 Assaf, Y., & Basser, P. J. (2005). Composite hindered and restricted model of diffusion
671 (CHARMED) MR imaging of the human brain. *NeuroImage*, 27(1), 48–58.
672 <https://doi.org/10.1016/j.neuroimage.2005.03.042>

673 Barrick, T. R., Charlton, R. A., Clark, C. A., & Markus, H. S. (2010). White matter structural
674 decline in normal ageing: A prospective longitudinal study using tract-based spatial
675 statistics. *NeuroImage*, 51(2), 565–577.
676 <https://doi.org/10.1016/j.neuroimage.2010.02.033>

677 Bartzokis, G., Sultzer, D., Lu, P. H., Nuechterlein, K. H., Mintz, J., & Cummings, J. L. (2004).
678 Heterogeneous age-related breakdown of white matter structural integrity: Implications
679 for cortical “disconnection” in aging and Alzheimer’s disease. *Neurobiology of Aging*,
680 25(7), 843–851. <https://doi.org/10.1016/j.neurobiolaging.2003.09.005>

681 Bates, D. M., & Pinheiro, J. C. (1998). LINEAR AND NONLINEAR MIXED-EFFECTS
682 MODELS. *Conference on Applied Statistics in Agriculture*.
683 <https://doi.org/10.4148/2475-7772.1273>

684 Bender, A. R., & Raz, N. (2015). Normal-appearing cerebral white matter in healthy adults:
685 Mean change over 2 years and individual differences in change. *Neurobiology of Aging*,
686 36(5), 1834–1848. <https://doi.org/10.1016/j.neurobiolaging.2015.02.001>

687 Bender, A. R., Völkle, M. C., & Raz, N. (2016). Differential aging of cerebral white matter in
688 middle-aged and older adults: A seven-year follow-up. *NeuroImage*, 125, 74–83.
689 <https://doi.org/10.1016/j.neuroimage.2015.10.030>

690 Benitez, A., Jensen, J. H., Falangola, M. F., Nietert, P. J., & Helpern, J. A. (2018). Modeling
691 white matter tract integrity in aging with diffusional kurtosis imaging. *Neurobiology of
692 Aging*, 70, 265–275. <https://doi.org/10.1016/j.neurobiolaging.2018.07.006>

693 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and
694 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series
695 B (Methodological)*, 57(1), 289–300. <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>

697 Brunsing, R., Schenker-Ahmed, N. M., White, N. S., Parsons, J. K., Kane, C., Kuperman, J.,
698 Bartsch, H., Kader, A. K., Rakow-Penner, R., Seibert, T. M., Margolis, D., Raman, S.
699 S., McDonald, C. R., Farid, N., Kesari, S., Hansel, D., Shabaik, A., Dale, A. M., &
700 Karow, D. S. (2017). Restriction Spectrum Imaging: An evolving imaging biomarker in
701 prostate magnetic resonance imaging. *Journal of Magnetic Resonance Imaging : JMRI*,
702 45(2), 323–336. <https://doi.org/10.1002/jmri.25419>

703 Chung, S., Fieremans, E., Wang, X., Kucukboyaci, N. E., Morton, C. J., Babb, J., Amorapanth,
704 P., Foo, F.-Y. A., Novikov, D. S., Flanagan, S. R., Rath, J. F., & Lui, Y. W. (2018).
705 White Matter Tract Integrity: An Indicator of Axonal Pathology after Mild Traumatic

706 Brain Injury. *Journal of Neurotrauma*, 35(8), 1015–1020.

707 <https://doi.org/10.1089/neu.2017.5320>

708 Clark, C. A., Hedeius, M., & Moseley, M. E. (2002). In vivo mapping of the fast and slow

709 diffusion tensors in human brain. *Magnetic Resonance in Medicine*, 47(4), 623–628.

710 <https://doi.org/10.1002/mrm.10118>

711 Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernández, M. C. V., Maniega, S. M., Royle, N.,

712 Corley, J., Pattie, A., Harris, S. E., Zhang, Q., Wray, N. R., Redmond, P., Marioni, R.

713 E., Starr, J. M., Cox, S. R., Wardlaw, J. M., Sharp, D. J., & Deary, I. J. (2018). Brain

714 age predicts mortality. *Molecular Psychiatry*, 23(5), 1385–1392.

715 <https://doi.org/10.1038/mp.2017.62>

716 Cole, James H. (2019). *Multi-modality neuroimaging brain-age in UK Biobank: Relationship*

717 *to biomedical, lifestyle and cognitive factors* [Preprint]. Neuroscience.

718 <https://doi.org/10.1101/812982>

719 Cox, S. R., Ritchie, S. J., Tucker-Drob, E. M., Liewald, D. C., Hagenaars, S. P., Davies, G.,

720 Wardlaw, J. M., Gale, C. R., Bastin, M. E., & Deary, I. J. (2016). Ageing and brain

721 white matter structure in 3,513 UK Biobank participants. *Nature Communications*,

722 7(1), 13629. <https://doi.org/10.1038/ncomms13629>

723 Davis, S. W., Dennis, N. A., Buchler, N. G., White, L. E., Madden, D. J., & Cabeza, R. (2009).

724 Assessing the effects of age on long white matter tracts using diffusion tensor

725 tractography. *NeuroImage*, 46(2), 530–541.

726 <https://doi.org/10.1016/j.neuroimage.2009.01.068>

727 de Groot, M., Cremers, L. G. M., Ikram, M. A., Hofman, A., Krestin, G. P., van der Lugt, A.,

728 Niessen, W. J., & Vernooij, M. W. (2016). White Matter Degeneration with Aging:

729 Longitudinal Diffusion MR Imaging Analysis. *Radiology*, 279(2), 532–541.

730 <https://doi.org/10.1148/radiol.2015150103>

731 de Lange, A.-M., Barth, C., Kaufmann, T., Maximov, I. I., van der Meer, D., Agartz, I., &
732 Westlye, L. T. (2019). *Cumulative estrogen exposure, APOE genotype, and women's*
733 *brain aging—A population-based neuroimaging study* [Preprint]. Neuroscience.
734 <https://doi.org/10.1101/826123>

735 de Lange, A.-M. G., Kaufmann, T., van der Meer, D., Maglanoc, L. A., Alnæs, D., Moberget,
736 T., Douaud, G., Andreassen, O. A., & Westlye, L. T. (2019). Population-based
737 neuroimaging reveals traces of childbirth in the maternal brain. *Proceedings of the*
738 *National Academy of Sciences*, 116(44), 22341–22346.
739 <https://doi.org/10.1073/pnas.1910666116>

740 De Santis, S., Gabrielli, A., Palombo, M., Maraviglia, B., & Capuani, S. (2011). Non-Gaussian
741 diffusion imaging: A brief practical review. *Magnetic Resonance Imaging*, 29(10),
742 1410–1416. <https://doi.org/10.1016/j.mri.2011.04.006>

743 Falangola, M. F., Guilfoyle, D. N., Tabesh, A., Hui, E. S., Nie, X., Jensen, J. H., Gerum, S. V.,
744 Hu, C., LaFrancois, J., Collins, H. R., & Helpern, J. A. (2014). Histological correlation
745 of diffusional kurtosis and white matter modeling metrics in cuprizone-induced corpus
746 callosum demyelination: DK AND WMM IN THE CUPRIZONE-INDUCED MOUSE
747 BRAIN DEMYELINATION. *NMR in Biomedicine*, 27(8), 948–957.
748 <https://doi.org/10.1002/nbm.3140>

749 Falangola, M. F., Jensen, J. H., Babb, J. S., Hu, C., Castellanos, F. X., Di Martino, A., Ferris,
750 S. H., & Helpern, J. A. (2008). Age-related non-Gaussian diffusion patterns in the
751 prefrontal brain. *Journal of Magnetic Resonance Imaging*, 28(6), 1345–1350.
752 <https://doi.org/10.1002/jmri.21604>

753 Fieremans, E., Jensen, J. H., & Helpern, J. A. (2011). White matter characterization with
754 diffusional kurtosis imaging. *NeuroImage*, 58(1), 177–188.
755 <https://doi.org/10.1016/j.neuroimage.2011.06.006>

756 Franke, K., Ziegler, G., Klöppel, S., & Gaser, C. (2010). Estimating the age of healthy subjects
757 from T1-weighted MRI scans using kernel methods: Exploring the influence of various
758 parameters. *NeuroImage*, 50(3), 883–892.
759 <https://doi.org/10.1016/j.neuroimage.2010.01.005>

760 Glover, S., & Dixon, P. (2004). Likelihood ratios: A simple and flexible statistic for empirical
761 psychologists. *Psychonomic Bulletin & Review*, 11(5), 791–806.
762 <https://doi.org/10.3758/BF03196706>

763 Gustavson, D. E., Hatton, S. N., Elman, J. A., Panizzon, M. S., Franz, C. E., Hagler, D. J.,
764 Fennema-Notestine, C., Eyler, L. T., McEvoy, L. K., Neale, M. C., Gillespie, N., Dale,
765 A. M., Lyons, M. J., & Kremen, W. S. (2019). Predominantly global genetic influences
766 on individual white matter tract microstructure. *NeuroImage*, 184, 871–880.
767 <https://doi.org/10.1016/j.neuroimage.2018.10.016>

768 Hope, T. R., Selnes, P., Rektorová, I., Anderkova, L., Nemcova-Elfmarkova, N., Balážová, Z.,
769 Dale, A., Bjørnerud, A., & Fladby, T. (2019). Diffusion tensor and restriction spectrum
770 imaging reflect different aspects of neurodegeneration in Parkinson's disease. *PLOS
771 ONE*, 14(5), e0217922. <https://doi.org/10.1371/journal.pone.0217922>

772 Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D. S., Calabresi, P. A., Pekar, J. J.,
773 van Zijl, P. C. M., & Mori, S. (2008). Tract probability maps in stereotaxic spaces:
774 Analyses of white matter anatomy and tract-specific quantification. *NeuroImage*, 39(1),
775 336–347. <https://doi.org/10.1016/j.neuroimage.2007.07.053>

776 Jbabdi, S., Sotropoulos, S. N., Savio, A. M., Graña, M., & Behrens, T. E. J. (2012). Model-
777 based analysis of multishell diffusion MR data for tractography: How to get over fitting
778 problems. *Magnetic Resonance in Medicine*, 68(6), 1846–1855.
779 <https://doi.org/10.1002/mrm.24204>

780 Jelescu, I. O., & Budde, M. D. (2017). Design and Validation of Diffusion MRI Models of
781 White Matter. *Frontiers in Physics*, 5, 61. <https://doi.org/10.3389/fphy.2017.00061>

782 Jelescu, I. O., Veraart, J., Adisetiyo, V., Milla, S. S., Novikov, D. S., & Fieremans, E. (2015).
783 One diffusion acquisition and different white matter models: How does microstructure
784 change in human early development based on WMTI and NODDI? *NeuroImage*, 107,
785 242–256. <https://doi.org/10.1016/j.neuroimage.2014.12.009>

786 Jelescu, I. O., Veraart, J., Fieremans, E., & Novikov, D. S. (2016). Degeneracy in model
787 parameter estimation for multi-compartmental diffusion in neuronal tissue: Degeneracy
788 in Model Parameter Estimation of Diffusion in Neural Tissue. *NMR in Biomedicine*,
789 29(1), 33–47. <https://doi.org/10.1002/nbm.3450>

790 Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012).
791 FSL. *NeuroImage*, 62(2), 782–790. <https://doi.org/10.1016/j.neuroimage.2011.09.015>

792 Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., & Kaczynski, K. (2005). Diffusional kurtosis
793 imaging: The quantification of non-gaussian water diffusion by means of magnetic
794 resonance imaging. *Magnetic Resonance in Medicine*, 53(6), 1432–1440.
795 <https://doi.org/10.1002/mrm.20508>

796 Jespersen, S. N., Bjarkam, C. R., Nyengaard, J. R., Chakravarty, M. M., Hansen, B.,
797 Vosegaard, T., Østergaard, L., Yablonskiy, D., Nielsen, N. Chr., & Vestergaard-
798 Poulsen, P. (2010). Neurite density from magnetic resonance diffusion measurements at
799 ultrahigh field: Comparison with light microscopy and electron microscopy.
800 *NeuroImage*, 49(1), 205–216. <https://doi.org/10.1016/j.neuroimage.2009.08.053>

801 Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., & Alexander, D. C. (2016). Multi-
802 compartment microscopic diffusion imaging. *NeuroImage*, 139, 346–359.
803 <https://doi.org/10.1016/j.neuroimage.2016.06.002>

804 Kaden, E., Kruggel, F., & Alexander, D. C. (2016). Quantitative mapping of the per-axon
805 diffusion coefficients in brain white matter: Quantitative Mapping of the Per-Axon
806 Diffusion Coefficients. *Magnetic Resonance in Medicine*, 75(4), 1752–1763.
807 <https://doi.org/10.1002/mrm.25734>

808 Kaufmann, T., van der Meer, D., Doan, N. T., Schwarz, E., Lund, M. J., Agartz, I., Alnæs, D.,
809 Barch, D. M., Baur-Streubel, R., Bertolino, A., Bettella, F., Beyer, M. K., Bøen, E.,
810 Borgwardt, S., Brandt, C. L., Buitelaar, J., Celius, E. G., Cervenka, S., Conzelmann, A.,
811 ... Westlye, L. T. (2019). Common brain disorders are associated with heritable
812 patterns of apparent aging of the brain. *Nature Neuroscience*, 22(10), 1617–1623.
813 <https://doi.org/10.1038/s41593-019-0471-7>

814 Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs-ringing artifact removal
815 based on local subvoxel-shifts. *Magnetic Resonance in Medicine*, 76(5), 1574–1581.
816 <https://doi.org/10.1002/mrm.26054>

817 Kelm, N. D., West, K. L., Carson, R. P., Gochberg, D. F., Ess, K. C., & Does, M. D. (2016).
818 Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains.
819 *NeuroImage*, 124, 612–626. <https://doi.org/10.1016/j.neuroimage.2015.09.028>

820 Kodiweera, C., Alexander, A. L., Harezlak, J., McAllister, T. W., & Wu, Y.-C. (2016). Age
821 effects and sex differences in human brain white matter of young to middle-aged adults:
822 A DTI, NODDI, and q-space study. *NeuroImage*, 128, 180–192.
823 <https://doi.org/10.1016/j.neuroimage.2015.12.033>

824 Krogsrud, S. K., Fjell, A. M., Tamnes, C. K., Grydeland, H., Mork, L., Due-Tønnessen, P.,
825 Bjørnerud, A., Sampaio-Baptista, C., Andersson, J., Johansen-Berg, H., & Walhovd, K.
826 B. (2016). Changes in white matter microstructure in the developing brain—A
827 longitudinal diffusion tensor imaging study of children from 4 to 11 years of age.
828 *NeuroImage*, 124, 473–486. <https://doi.org/10.1016/j.neuroimage.2015.09.017>

829 Lampinen, B., Szczepankiewicz, F., Mårtensson, J., van Westen, D., Sundgren, P. C., &
830 Nilsson, M. (2017). Neurite density imaging versus imaging of microscopic anisotropy
831 in diffusion MRI: A model comparison using spherical tensor encoding. *NeuroImage*,
832 147, 517–531. <https://doi.org/10.1016/j.neuroimage.2016.11.053>

833 Lazari, A., & Lipp, I. (2020). *Can MRI measure myelin? Systematic review, qualitative*
834 *assessment, and meta-analysis of studies validating microstructural imaging with*
835 *myelin histology* [Preprint]. Neuroscience. <https://doi.org/10.1101/2020.09.08.286518>

836 Le, T. T., Kuplicki, R. T., McKinney, B. A., Yeh, H.-W., Thompson, W. K., Paulus, M. P., &
837 Tulsa 1000 Investigators. (2018). A Nonlinear Simulation Framework Supports
838 Adjusting for Age When Analyzing BrainAGE. *Frontiers in Aging Neuroscience*, 10,
839 317. <https://doi.org/10.3389/fnagi.2018.00317>

840 Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural
841 maturation of the human brain from childhood to adulthood. *NeuroImage*, 40(3), 1044–
842 1055. <https://doi.org/10.1016/j.neuroimage.2007.12.053>

843 Likitjaroen, Y., Meindl, T., Friese, U., Wagner, M., Buerger, K., Hampel, H., & Teipel, S. J.
844 (2012). Longitudinal changes of fractional anisotropy in Alzheimer's disease patients
845 treated with galantamine: A 12-month randomized, placebo-controlled, double-blinded
846 study. *European Archives of Psychiatry and Clinical Neuroscience*, 262(4), 341–350.
847 <https://doi.org/10.1007/s00406-011-0234-2>

848 Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune? *Science*, 346(6209),
849 572–578. <https://doi.org/10.1126/science.1254403>

850 Maximov, I. I., Alnæs, D., & Westlye, L. T. (2019). Towards an optimised processing pipeline
851 for diffusion magnetic resonance imaging data: Effects of artefact corrections on
852 diffusion metrics and their age associations in UK Biobank. *Human Brain Mapping*,
853 40(14), 4146–4162. <https://doi.org/10.1002/hbm.24691>

854 Maximov, I. I., Thönneßen, H., Konrad, K., Amort, L., Neuner, I., & Shah, N. J. (2015).
855 Statistical Instability of TBSS Analysis Based on DTI Fitting Algorithm: TBSS
856 analysis. *Journal of Neuroimaging*, 25(6), 883–891. <https://doi.org/10.1111/jon.12215>

857 Maximov, I. I., van der Meer, D., de Lange, A.-M., Kaufmann, T., Shadrin, A., Frei, O.,
858 Wolfers, T., & Westlye, L. T. (2020). *Fast qualit Y con Trol me T hod fo R der I ved*

859 *diffusion Metrics (YTTRIUM) in big data analysis: UK Biobank 18608 example*
860 [Preprint]. Neuroscience. <https://doi.org/10.1101/2020.02.17.952697>

861 Nicholson, C., & Hrabětová, S. (2017). Brain Extracellular Space: The Final Frontier of
862 Neuroscience. *Biophysical Journal*, 113(10), 2133–2142.
863 <https://doi.org/10.1016/j.bpj.2017.06.052>

864 Nilsson, M., Lätt, J., Ståhlberg, F., Westen, D., & Hagslätt, H. (2012). The importance of
865 axonal undulation in diffusion MR measurements: A Monte Carlo simulation study:
866 THE IMPORTANCE OF AXONAL UNDULATION IN DIFFUSION MR
867 MEASUREMENTS. *NMR in Biomedicine*, 25(5), 795–805.
868 <https://doi.org/10.1002/nbm.1795>

869 Novikov, D. S., Fieremans, E., Jespersen, S. N., & Kiselev, V. G. (2019). Quantifying brain
870 microstructure with diffusion MRI: Theory and parameter estimation. *NMR in
871 Biomedicine*, 32(4), e3998. <https://doi.org/10.1002/nbm.3998>

872 Novikov, D. S., Kiselev, V. G., & Jespersen, S. N. (2018). On modeling. *Magnetic Resonance
873 in Medicine*, 79(6), 3172–3193. <https://doi.org/10.1002/mrm.27101>

874 Paus, T. (2010). Growth of white matter in the adolescent brain: Myelin or axon? *Brain and
875 Cognition*, 72(1), 26–35. <https://doi.org/10.1016/j.bandc.2009.06.002>

876 Penke, L., Maniega, S. M., Murray, C., Gow, A. J., Valdes Hernandez, M. C., Clayden, J. D.,
877 Starr, J. M., Wardlaw, J. M., Bastin, M. E., & Deary, I. J. (2010). A General Factor of
878 Brain White Matter Integrity Predicts Information Processing Speed in Healthy Older
879 People. *Journal of Neuroscience*, 30(22), 7569–7574.
880 <https://doi.org/10.1523/JNEUROSCI.1553-10.2010>

881 Pines, A. R., Cieslak, M., Larsen, B., Baum, G. L., Cook, P. A., Adebimpe, A., Dávila, D. G.,
882 Elliott, M. A., Jirsaraie, R., Murtha, K., Oathes, D. J., Piiwaa, K., Rosen, A. F. G.,
883 Rush, S., Shinohara, R. T., Bassett, D. S., Roalf, D. R., & Satterthwaite, T. D. (2020).
884 Leveraging multi-shell diffusion for studies of brain development in youth and young

885 adulthood. *Developmental Cognitive Neuroscience*, 43, 100788.

886 <https://doi.org/10.1016/j.dcn.2020.100788>

887 Racine, A. M., Merluzzi, A. P., Adluru, N., Norton, D., Koscik, R. L., Clark, L. R., Berman, S.

888 E., Nicholas, C. R., Asthana, S., Alexander, A. L., Blennow, K., Zetterberg, H., Kim,

889 W. H., Singh, V., Carlsson, C. M., Bendlin, B. B., & Johnson, S. C. (2019). Association

890 of longitudinal white matter degeneration and cerebrospinal fluid biomarkers of

891 neurodegeneration, inflammation and Alzheimer's disease in late-middle-aged adults.

892 *Brain Imaging and Behavior*, 13(1), 41–52. <https://doi.org/10.1007/s11682-017-9732-9>

893 Reas, E. T., Hagler, D. J., White, N. S., Kuperman, J. M., Bartsch, H., Cross, K., Loi, R. Q.,

894 Balachandra, A. R., Meloy, M. J., Wierenga, C. E., Galasko, D., Brewer, J. B., Dale, A.

895 M., & McEvoy, L. K. (2017). Sensitivity of restriction spectrum imaging to memory

896 and neuropathology in Alzheimer's disease. *Alzheimer's Research & Therapy*, 9(1), 55.

897 <https://doi.org/10.1186/s13195-017-0281-7>

898 Richard, G., Kolskår, K., Sanders, A.-M., Kaufmann, T., Petersen, A., Doan, N. T., Monereo

899 Sánchez, J., Alnæs, D., Ulrichsen, K. M., Dørum, E. S., Andreassen, O. A., Nordvik, J.

900 E., & Westlye, L. T. (2018). Assessing distinct patterns of cognitive aging using tissue-

901 specific brain age prediction based on diffusion tensor imaging and brain morphometry.

902 *PeerJ*, 6, e5908. <https://doi.org/10.7717/peerj.5908>

903 Roalf, D. R., Quarmley, M., Elliott, M. A., Satterthwaite, T. D., Vandekar, S. N., Ruparel, K.,

904 Gennatas, E. D., Calkins, M. E., Moore, T. M., Hopson, R., Prabhakaran, K., Jackson,

905 C. T., Verma, R., Hakonarson, H., Gur, R. C., & Gur, R. E. (2016). The impact of

906 quality assurance assessment on diffusion tensor imaging outcomes in a large-scale

907 population-based cohort. *NeuroImage*, 125, 903–919.

908 <https://doi.org/10.1016/j.neuroimage.2015.10.068>

909 Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., & Hawkes, D. J. (1999).

910 Nonrigid registration using free-form deformations: Application to breast MR images.

911 *IEEE Transactions on Medical Imaging*, 18(8), 712–721.

912 <https://doi.org/10.1109/42.796284>

913 Schaie, K. W. (2005). What Can We Learn From Longitudinal Studies of Adult Development?

914 *Research in Human Development*, 2(3), 133–158.

915 https://doi.org/10.1207/s15427617rhd0203_4

916 Sexton, C. E., Walhovd, K. B., Storsve, A. B., Tamnes, C. K., Westlye, L. T., Johansen-Berg,

917 H., & Fjell, A. M. (2014). Accelerated Changes in White Matter Microstructure during

918 Aging: A Longitudinal Diffusion Tensor Imaging Study. *Journal of Neuroscience*,

919 34(46), 15425–15436. <https://doi.org/10.1523/JNEUROSCI.0203-14.2014>

920 Simmonds, D. J., Hallquist, M. N., Asato, M., & Luna, B. (2014). Developmental stages and

921 sex differences of white matter and behavioral development through adolescence: A

922 longitudinal diffusion tensor imaging (DTI) study. *NeuroImage*, 92, 356–368.

923 <https://doi.org/10.1016/j.neuroimage.2013.12.044>

924 Smith, S. M. (2002). Fast robust automated brain extraction. *Human Brain Mapping*, 17(3),

925 143–155. <https://doi.org/10.1002/hbm.10062>

926 Smith, S. M., Elliott, L. T., Alfaro-Almagro, F., McCarthy, P., Nichols, T. E., Douaud, G., &

927 Miller, K. L. (2019). *Brain aging comprises multiple modes of structural and functional*

928 *change with distinct genetic and biophysical associations* [Preprint]. Neuroscience.

929 <https://doi.org/10.1101/802686>

930 Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E.,

931 Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J.

932 (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion

933 data. *NeuroImage*, 31(4), 1487–1505.

934 <https://doi.org/10.1016/j.neuroimage.2006.02.024>

935 Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-

936 Berg, H., Bannister, P. R., De Luca, M., Drobniak, I., Flitney, D. E., Niazy, R. K.,

937 Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M.

938 (2004). Advances in functional and structural MR image analysis and implementation

939 as FSL. *NeuroImage*, 23, S208–S219.

940 <https://doi.org/10.1016/j.neuroimage.2004.07.051>

941 Smith, S. M., & Nichols, T. E. (2018). Statistical Challenges in “Big Data” Human

942 Neuroimaging. *Neuron*, 97(2), 263–268. <https://doi.org/10.1016/j.neuron.2017.12.018>

943 Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E., & Miller, K. L. (2019).

944 Estimation of brain age delta from brain imaging. *NeuroImage*, 200, 528–539.

945 <https://doi.org/10.1016/j.neuroimage.2019.06.017>

946 Smith, S., & Nichols, T. (2009). Threshold-free cluster enhancement: Addressing problems of

947 smoothing, threshold dependence and localisation in cluster inference. *NeuroImage*,

948 44(1), 83–98. <https://doi.org/10.1016/j.neuroimage.2008.03.061>

949 Storsve, A. B., Fjell, A. M., Yendiki, A., & Walhovd, K. B. (2016). Longitudinal Changes in

950 White Matter Tract Integrity across the Adult Lifespan and Its Relation to Cortical

951 Thinning. *PLOS ONE*, 11(6), e0156770. <https://doi.org/10.1371/journal.pone.0156770>

952 Tamnes, C. K., Østby, Y., Fjell, A. M., Westlye, L. T., Due-Tønnessen, P., & Walhovd, K. B.

953 (2010). Brain Maturation in Adolescence and Young Adulthood: Regional Age-Related

954 Changes in Cortical Thickness and White Matter Volume and Microstructure. *Cerebral*

955 *Cortex*, 20(3), 534–548. <https://doi.org/10.1093/cercor/bhp118>

956 Tamnes, C. K., Roalf, D. R., Goddings, A.-L., & Lebel, C. (2018). Diffusion MRI of white

957 matter microstructure development in childhood and adolescence: Methods, challenges

958 and progress. *Developmental Cognitive Neuroscience*, 33, 161–175.

959 <https://doi.org/10.1016/j.dcn.2017.12.002>

960 Teipel, S. J., Meindl, T., Wagner, M., Stieltjes, B., Reuter, S., Hauenstein, K.-H., Filippi, M.,

961 Ernemann, U., Reiser, M. F., & Hampel, H. (2010). Longitudinal Changes in Fiber

962 Tract Integrity in Healthy Aging and Mild Cognitive Impairment: A DTI Follow-Up

963 Study. *Journal of Alzheimer's Disease*, 22(2), 507–522. <https://doi.org/10.3233/JAD-2010-100234>

964

965 Tønnesen, S., Kaufmann, T., de Lange, A.-M. G., Richard, G., Doan, N. T., Alnæs, D., van der Meer, D., Rokicki, J., Moberget, T., Maximov, I. I., Agartz, I., Aminoff, S. R., Beck, D., Barch, D. M., Beresniewicz, J., Cervenka, S., Fatouros-Bergman, H., Craven, A. R., Flyckt, L., ... Sellgren, C. (2020). Brain Age Prediction Reveals Aberrant Brain White Matter in Schizophrenia and Bipolar Disorder: A Multisample Diffusion Tensor Imaging Study. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*, S2451902220301683. <https://doi.org/10.1016/j.bpsc.2020.06.014>

966

967

968

969

970

971

972 Tønnesen, S., Kaufmann, T., Doan, N. T., Alnæs, D., Córdova-Palomera, A., Meer, D. van der, Rokicki, J., Moberget, T., Gurholt, T. P., Haukvik, U. K., Ueland, T., Lagerberg, T. V., Agartz, I., Andreassen, O. A., & Westlye, L. T. (2018). White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging. *Scientific Reports*, 8(1), 14129.

973

974

975

976

977 <https://doi.org/10.1038/s41598-018-32355-9>

978 Veraart, J., Fieremans, E., & Novikov, D. S. (2016). Diffusion MRI noise mapping using

979 random matrix theory. *Magnetic Resonance in Medicine*, 76(5), 1582–1593.

980 <https://doi.org/10.1002/mrm.26059>

981 Voldsbekk, I., Maximov, I. I., Zak, N., Roelfs, D., Geier, O., Due-Tønnessen, P., Elvsåshagen,

982 T., Strømstad, M., Bjørnerud, A., & Groote, I. (2020). Evidence for wakefulness-related changes to extracellular space in human brain white matter from diffusion-weighted MRI. *NeuroImage*, 212, 116682.

983

984

985 <https://doi.org/10.1016/j.neuroimage.2020.116682>

986 Westlye, L. T., Walhovd, K. B., Dale, A. M., Bjørnerud, A., Due-Tønnessen, P., Engvig, A.,

987 Grydeland, H., Tamnes, C. K., Ostby, Y., & Fjell, A. M. (2010). Life-Span Changes of

988 the Human Brain White Matter: Diffusion Tensor Imaging (DTI) and Volumetry.

989 *Cerebral Cortex*, 20(9), 2055–2068. <https://doi.org/10.1093/cercor/bhp280>

990 White, N. S., Leergaard, T. B., D’Arceuil, H., Bjaalie, J. G., & Dale, A. M. (2013a). Probing

991 tissue microstructure with restriction spectrum imaging: Histological and theoretical

992 validation. *Human Brain Mapping*, 34(2), 327–346. <https://doi.org/10.1002/hbm.21454>

993 White, N. S., Leergaard, T. B., D’Arceuil, H., Bjaalie, J. G., & Dale, A. M. (2013b). Probing

994 tissue microstructure with restriction spectrum imaging: Histological and theoretical

995 validation. *Human Brain Mapping*, 34(2), 327–346. <https://doi.org/10.1002/hbm.21454>

996 Wilks, S. S. (1938). The Large-Sample Distribution of the Likelihood Ratio for Testing

997 Composite Hypotheses. *The Annals of Mathematical Statistics*, 9(1), 60–62.

998 <https://doi.org/10.1214/aoms/1177732360>

999 Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014).

1000 Permutation inference for the general linear model. *NeuroImage*, 92, 381–397.

1001 <https://doi.org/10.1016/j.neuroimage.2014.01.060>

1002 Yap, Q. J., Teh, I., Fusar-Poli, P., Sum, M. Y., Kuswanto, C., & Sim, K. (2013). Tracking

1003 cerebral white matter changes across the lifespan: Insights from diffusion tensor

1004 imaging studies. *Journal of Neural Transmission*, 120(9), 1369–1395.

1005 <https://doi.org/10.1007/s00702-013-0971-7>

1006 Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI:

1007 Practical in vivo neurite orientation dispersion and density imaging of the human brain.

1008 *NeuroImage*, 61(4), 1000–1016. <https://doi.org/10.1016/j.neuroimage.2012.03.072>

1009 Zimmerman, D. W. (n.d.). *Correcting Two-Sample z and t Tests for Correlation: An*

1010 *Alternative to One-Sample Tests on Difference Scores*. 28.

1011