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Abstract

The macro- and microstructural architecture of human brain white matter undergoes substantial
alterations throughout development and ageing. Most of our understanding of the spatial and
temporal characteristics of these lifespan adaptations come from magnetic resonance imaging
(MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of
brain white matter with unprecedented sensitivity and detail. However, with some notable
exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and
diffusion tensor imaging (DTI) based on conventional single-shell dAMRI. In this mixed cross-
sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dAMRI
datasets, we combined complementary dMRI models to investigate age trajectories in healthy
individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and
machine learning based brain age prediction, we assessed the age-dependence of diffusion
metrics, and compared the age prediction accuracy of six different diffusion models, including
diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density
imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-
compartment (SMT-mc), and white matter tract integrity (WMTTI). The results showed that the
age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD],
axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research,
and that the highest performing advanced dMRI models showed comparable age prediction
accuracy to conventional DTI. Linear mixed effects models and Wilk’s theorem analysis
showed that the ‘FA fine’ metric of the RSI model and ‘orientation dispersion’ (OD) metric of
the NODDI model showed the highest sensitivity to age. The results indicate that advanced
diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-
related microstructural changes of white matter in the brain that complement and extend the

contribution of conventional DTIL.

Key words: ageing, white matter, multi-shell, longitudinal, diffusion, brain age
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1. Introduction

The architecture of human brain white matter undergoes constant remodelling throughout life.
Age-related trajectories of white matter macro- and microstructure typically reflect increases in
anisotropy and decreases in diffusivity during childhood, adolescence and early adulthood
(Krogsrud et al., 2016; Tamnes et al., 2018; Westlye et al., 2010), and subsequent anisotropy
decreases and diffusivity increase in adulthood and senescence (Cox et al., 2016; Davis et al.,
2009). While the field has primarily been dominated by cross-sectional studies, which by
design lack information on individual trajectories (Schaie, 2005), longitudinal studies in the
last decade have shown corresponding white matter changes in both development and ageing
(Barrick et al., 2010; Bender et al., 2016; Bender & Raz, 2015; de Groot et al., 2016;
Likitjaroen et al., 2012; Racine et al., 2019; Sexton et al., 2014; Storsve et al., 2016; Teipel et
al., 2010). However, studies that have evaluated individual differences in change across a wide
age range are rare (Bender et al., 2016).

White matter properties have commonly been investigated using traditional diffusion
tensor imaging (DTI), and the DTI-based metrics fractional anisotropy (FA) as well as mean
(MD), axial (AD), and radial (RD) diffusivity are highly sensitive to age (Cox et al., 2016;
Sexton et al., 2014; Westlye et al., 2010; Yap et al., 2013). However, limitations of
conventional DTI metrics such as their inability to capture restricted non-Gaussian diffusion
and lack of specificity to different diffusion pools (Pines et al., 2020) have motivated continued
development of more advanced diffusion MRI (AMRI) models. These models include diffusion
kurtosis imaging (DKI) (Jensen et al., 2005), which was developed to address the restricted
diffusion or non-Gaussianity in the diffusion signal; neurite orientation dispersion and density
imaging (NODDI) (Zhang et al., 2012), which models three types of microstructural
environments: intra-cellular, extra-cellular, and an isotropic water pool responsible for the
space occupied by cerebrospinal fluid (CSF); white matter tract integrity (WMTI) (Chung et
al., 2018; Fieremans et al., 2011), which derives microstructural characteristics from intra- and
extra-axonal environments; restriction spectrum imaging (RSI) (White et al., 2013), which
applies linear mixture modelling to resolve a spectrum of length scales while simultaneously
acquiring geometric information; and spherical mean technique multi-compartment (SMT mc)
(Kaden, Kruggel, et al., 2016), a method for microscopic diffusion anisotropy imaging that is
unconfounded by effects of fibre crossings and orientation dispersion.

Usually based on multi-shell acquisitions with several diffusion weightings (Andersson
& Sotiropoulos, 2015; Jbabdi et al., 2012), these models can be broadly split into “signal” and
“tissue” models (D. C. Alexander et al., 2019). Signal representations, such as DTI and DKI,

describe the diffusion signal behaviour in a voxel without assumptions about underlying tissue,
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97  but as the estimated parameters lack specificity, their characterisation of tissue microstructure
98  remains indirect (Jelescu & Budde, 2017). Tissue models (NODDI, RSI, SMT-mc, and WMTI)
99  involve estimations of the geometry of underlying tissue (Novikov et al., 2019), which may
100  provide higher biological specificity and more precise measures of white matter microstructure
101  and architecture (Jelescu & Budde, 2017; Novikov et al., 2019; Pines et al., 2020). However,
102 despite tissue models being designed to increase specificity, they also require assumptions
103 about the underlying microstructure that may not be fully accurate.
104 Building on the opportunities from big data in neuroimaging (S. M. Smith & Nichols,
105  2018), age related brain changes have recently been investigated using machine learning
106  techniques such as brain age prediction; the estimation of the ‘biological’ age of a brain based
107  on neuroimaging data (J. H. Cole et al., 2018; de Lange et al., 2019; Kaufmann et al., 2019;
108  Franke et al., 2010; Richard et al., 2018). Predicting the age of a brain, and subsequently
109  looking at the disparity between predicted and chronological age, can identify important
110  individualised markers of brain integrity that may reveal risk of neurological and/or
111 neuropsychiatric disorders (Kaufmann et al., 2019). While brain age prediction has grown
112 more popular in recent years, most studies have used grey matter features for brain age
113 prediction, while only few have exclusively (Tennesen et al., 2020), or partly (James H Cole,
114  2019; Maximov et al., 2020; Richard et al., 2018; S. M. Smith, Elliott, et al., 2019; S. M.
115  Smith, Vidaurre, et al., 2019) utilised dMRI. However, the brain-age prediction accuracy of
116  advanced diffusion models such as RSI and NODDI are not known.
117 Including cross-sectional and longitudinal data obtained from 573 healthy individuals
118  (with 702 multi-shell AMRI datasets) aged 18-94 years, the primary aim of this study was to
119  offer a comprehensive description of normative age-related white matter trajectories in
120 adulthood by comparing relevant curve parameters such as key deflection points and rate of
121  change as well as age prediction accuracy of different dMRI metrics, with a particular focus on
122 relatively novel parameters based on advanced (DKI, NODDI, RSI, SMT mc, and WMTTI) and
123 conventional (DTI) diffusion models of white matter coherence and microstructure.
124 First, we estimated the trajectories of each of the diffusion metrics across the age range.
125  Secondly, we utilised three separate methods to compare the age-sensitivity of the diffusion
126  models: i) we used linear mixed effect (Ime) models including age, sex, and timepoint, ii) for
127  each model, we ran fits with and without age terms and compared the fit likelihood values
128  using Wilk's theorem (Wilks, 1938), iii) we used machine learning to predict age based on the
129  diffusion metrics, and compared the prediction accuracy of the models. Thirdly, we looked at
130  the derivatives of each function of the Ime models’ age curve to identify the point of change in

131  trajectory for each diffusion metric. Based on previous work characterising age differences and
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132 longitudinal changes with a range of diffusion MRI metrics (Benitez et al., 2018; Falangola et
133 al., 2008; Jelescu et al., 2015; Kodiweera et al., 2016; Reas et al., 2017; Westlye et al., 2010),
134 we expected the included metrics to show curvilinear relationships with age, with varying

135  trajectories and deflection points possibly reflecting differential involvement and rate of

136  change of the putative biological underpinnings during the different phases of brain ageing.
137

138 2. Methods and material

139  2.1. Description of sample

140  The initial sample included 754 multi-shell datasets of healthy participants from two integrated
141  studies; the Tematisk Omrade Psykoser (TOP) (Tonnesen et al., 2018) and StrokeMRI

142 (Richard et al., 2018). Following the removal of 52 datasets after quality checking (QC, see
143 section 2.4), the final sample comprised 702 scans from 573 individuals, including longitudinal
144  data (two time-points with 15.2 months interval) for 129 of the participants. Demographic

145  information is summarised in Table 1 and Figure 1.

146 Exclusion criteria included neurological and mental disorders, and previous head

147  trauma. Ethical guidelines followed those in line with the Declaration of Helsinki. The study
148  has been approved by the Regional Ethics Committee and all participants provided written

149  informed consent.

150

151 Table 1. Demographics of descriptive statistics pertaining to the study sample. N refers to datasets.

Age
Mean + SD Min Max
Full (mixed) sample (n = 702) 50.86 £16.61 18.52 94.67
Male (301, 42.88%) 49.45 +17.48 18.52 92.05
Female (401, 57.12%) 51.92 + 15.86 18.63 94.67
Cross-sectional sample (n = 444) 47.61 £16.59 18.52 94.67
Male (214, 48.20%) 46.75 £ 16.71 18.52 92.05
Female (230, 51.80%) 48.57 +£16.51 18.63 94.67
Longitudinal sample (n = 258) 56.60 +15.03 20.30 85.82
Male (44, 35.11%) 55.72+17.78 20.30 85.82
Female (85, 65.89%) 55.65+13.70 23.37 80.62

152
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154 Figure 1. Interval between timepoint 1 and timepoint 2 for complete longitudinal sample, n = 258 (129 subjects).

155 Histogram representing density of data points.
156

157  2.2. MRI acquisition
158  Imaging was performed at Oslo University Hospital on a General Electric Discovery MR750
159 3T scanner with a 32-channel head coil. AMRI data were acquired with a spin echo planar

160  imaging (EPI) sequence with the following parameters: TR/TE/flip angle: 8,150 ms/83.1

161  ms/90°, FOV: 256 x 256 mm, slice thickness: 2 mm, in-plane resolution: 2 mm. We obtained
162 10 volumes of 5=0 and diffusion weighted data along 60 (b=1000 s/mm?) and 30 (5=2000
163 s/mm?) diffusion weighted volumes. In addition, 7 b=0 volumes with reversed phase-encoding
164  direction were acquired for correction of susceptibility distortions.

165

166  2.3. Diffusion MRI processing

167  Processing steps followed a previously described pipeline (Maximov et al., 2019), including
168  noise correction (Veraart et al., 2016), Gibbs ringing correction (Kellner et al., 2016),

169  corrections for susceptibility induced distortions, head movements and eddy current induced
170  distortions using topup (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) and eddy

171  (http:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (Andersson & Sotiropoulos, 2016). Isotropic

172 smoothing was carried out with a Gaussian kernel of 1 mm? implemented in the FSL

173 function fslmaths. DTI was estimated using FSL tool dtifit and excluded the b=2000 shell from
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174 the fit. Employing the multi-shell data, DKI and WMTI metrics were estimated using Matlab
175  code (https://github.com/NYU-DiffusionMRI/DESIGNER), (Fieremans et al., 2011). NODDI
176  metrics were derived using AMICO in Matlab (https://github.com/daducci/AMICO). SMT mc

177  metrics were estimated with the original code (https://github.com/ekaden/smt). RSI metrics
178  were estimated using in-house Matlab tools.

179 We selected 20 scalar metrics from the six models (DTI, DKI, NODDI, RSI, SMT mc,
180  WMTI) based on recent studies (Benitez et al., 2018; De Santis et al., 2011; Hope et al., 2019;
181  Jelescu et al., 2015; Kaden, Kelm, et al., 2016; Maximov et al., 2019; Pines et al., 2020).

182  Models were also selected based on feasibility in relation to our acquisition protocol and

183  availability of open source scripts. Figure 2 shows each of the included metrics for one

184  participant, for illustrative purposes. All metrics and their corresponding abbreviations are
185  summarised in Supplementary table 1). Brain age prediction was performed for each model,

186  using all available metrics extracted from a range of regions-of-interest (see section 2.5).

187
188 Figure 2. Diffusion metrics from one participant. DTI: F4 (fractional anisotropy), MD (mean diffusivity), AD
189 (axial diffusivity), RD (radial diffusivity). DKI: AK (axial kurtosis), MK (mean kurtosis), RK (radial kurtosis).
190 NODDI: /CVF (intracellular volume fraction), ISOVF (isotropic volume fraction), OD (oriental dispersion). RSI:
191 CI (cellular index), Fine (FA fine scale/slow compartment), »D (restricted diffusivity coefficient). SMT mc:

192 exMD (extra cellular space), exTr (extra-cellular space transverse), Intra (intra axonal diffusivity). WMTI: Awf
193 (axonal water fraction), aEAD, alAD (axial extra and intra axonal diffusivity), 7EAD (radial extra axonal

194  diffusivity).
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195  2.4. Quality checking procedure

196  We implemented a rigorous QC procedure to ensure data quality was not contaminated by

197  motion, noise, or artefacts. Using a published approach (Roalf et al., 2016), we derived various
198  quality assurance (QA) metrics (see Supplementary material; SI table 2), including temporal-
199  signal-to-noise-ratio (TSNR). Outliers were manually checked and removed if deemed to have
200  unsatisfactory data quality. A total of 52 datasets were removed, leaving the dataset at n = 702
201  scans. This dataset was put through the same visual inspection. As an additional step, images
202  were manually inspected if TSNR Z scores deviated minus or plus 2.5 standard deviations from
203  the mean. Following this step, the final dataset remained at 702 scans from 573 individuals.
204

205  2.5. Tract-Based-Spatial-Statistics

206  Voxelwise statistical analysis of the FA data was carried out using Tract-Based Spatial

207  Statistics (TBSS) (S. M. Smith et al., 2006), as part of FSL (S. M. Smith et al., 2004). First, FA
208  images were brain-extracted using BET (S. M. Smith, 2002) and aligned into a common space
209 (FMRI58 FA template) using the nonlinear registration tool FNIRT (Andersson, Jenkinson, &
210  Smith., 2007; Jenkinson et al., 2012), which uses a b-spline representation of the registration
211 warp field (Rueckert et al., 1999). Next, the mean FA image of all subjects was created and
212 thinned to create a mean FA skeleton that represents the centres of all tracts common to the
213 group. Each subject's aligned FA data was then projected onto this skeleton. The mean FA

214  skeleton was thresholded at FA > 0.2. This procedure was repeated for all metrics. fs/meants
215  was used to extract the mean skeleton and 20 regions of interest (ROI) based on a probabilistic
216  white matter atlas (JHU) (Hua et al., 2008) for each metric. Including the mean skeleton

217  values, 420 features per individual were derived (20 metrics x 20+1 ROIs). Of these, 20

218  metrics were used for fitting of age curve trajectories, Ime analysis, and Wilk’s theorem

219  analysis, while all 420 MRI features were used for age prediction. Number of MRI features can
220  be found in Table 4. Additional voxelwise analysis were carried out on the 573 participants
221  (excluding longitudinal measures) using the FSL tool Randomise with permutation-based

222 statistics (Winkler et al., 2014) and threshold-free cluster enhancement method (TFCE; (S.
223 Smith & Nichols, 2009)). 5000 permutations were run, where each diffusion metric was tested
224 for its association with age. TBSS fill was used to create voxelwise statistical maps for each
225  metric, which can be found in SI Figure 10.

226

227  2.6. Diffusion metric reproducibility

228  The validity and sensitivity of the different diffusion models essentially rely on the richness,

229  quality and specific properties of the data used for model fitting. In order to assess the
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230  reproducibility of the included advanced metrics (Maximov et al., 2015), we estimated the
231  dMRI models using data obtained from different acquisition schemes varying the number of
232 directions and maximum b value in 23 healthy participants with mean age 35.77 years (SD =
233 8.37,56.5% women). This represented a sub-sample of the full sample. The following three
234  acquisition schemes were compared: i) b=[1000,2000] with [60,30] directions, which is

235  identical to the acquisition scheme used in the main analysis, ii1) b=[1000,2000] with [60,60]
236  directions and iii) b=[1000,2000,3000] with [60,60,60] directions. For each scheme we

237  processed the data using an identical pipeline (Maximov et al., 2019) as described above and
238  extracted the mean skeleton values for each metric. The comparisons between acquisition
239  protocols were performed using box plots (SI Figure 4), scatterplots with age as a function of
240  mean skeleton values (SI Figures 5), and Pearson’s correlation coefficient plots, where protocol
241 1 is factored by protocol 3 (SI Figures 6).

242

243 2.7. Statistical analysis

244  All statistical analyses were carried out using the statistical environment R, version 3.6.0

245  (www.r-project.org/) (R Core Team, 2012) and Python 3.7.0 (www.python.org/).

246

247  2.8. Linear mixed effects models (Ime)

248  To investigate the relationship between age and global mean skeleton values for each diffusion
249  metric, Ime analyses were performed using the /me function (Bates & Pinheiro, 1998) in R (R
250  Core Team, 2012). In fitting the model, we scaled (z normalised) each variable and entered
251  age, orthogonalised age?, sex, and timepoint (TP) as fixed effects. Subject ID was entered as a
252  random effect. For each diffusion metric M, we employed the following function:

253

254 M=A+BxAge+C x Age? + Sex + TP (1)

255

256  where A is the intercept, B is the age coefficient, and C is the coefficient of the orthogonalised
257  quadratic age term (expressed as poly(age,2)[,2] in R). Age curves were obtained with

258  predictions from the fitted model using the predict function in R and used for age curve

259  trajectory figures. Visual inspection of residual plots did not reveal any obvious deviations
260  from homoscedasticity or normality. The significance threshold was set at p < 0.05, and the
261  results were corrected for multiple comparisons using the false discovery rate (FDR)

262  adjustment (Benjamini & Hochberg, 1995).

263 To investigate the rate of change for each of the age curves at any point, we calculated

264  their derivatives using numerical differentiation with finite differences (Burden & Faires,
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265  2011). To compare the age-sensitivity of the models, we ran Ime fits with and without age
266  terms, and calculated the difference in likelihood ratios (Glover & Dixon, 2004). The

267  significance of the age dependence was calculated using Wilk's theorem (Wilks, 1938) as
268 m , Where L is the likelihood ratio obtained from the models with age terms, and
269 L is the likelihood ratio obtained from the models without age terms.

270

271  2.9. Brain-age prediction

272 The XGBoost regressor model was used to run the brain age prediction

273 (https://xgboost.readthedocs.io/en/latest/python/index.html), including a decision-tree-based

274  ensemble algorithm that has been used in recent large-scale brain age studies (A.-M. G. de
275 Lange et al., 2019; Kaufmann et al., 2019). Parameters were set to max depth = 3, number of
276  estimators = 100, and learning rate = 0.1 (defaults). For each diffusion model (DTI, DKI,
277  NODDI, RSI, SMT mc, WMTI), predicted age was estimated in a 10-fold cross validation,
278  assigning a model-specific brain age estimate to each individual, as well as a multimodal brain
279  age estimate based on all diffusion features. To investigate the prediction accuracy of each
280  model, correlation analyses were run for predicted versus chronological age, and model-

281  specific R?, root mean square error (RMSE) and mean absolute error (MAE) were calculated.
282  To statistically compare the prediction accuracy of the models, Z tests for correlated samples
283  (Zimmerman, 2012) were run on the model-specific correlations between predicted and

284  chronological age in a pairwise manner using

285

286 Z=(Pm — ﬁmz)/\[axil + 0,y = 2P0 0ma

287

288  where “m1” and “m2” represent model 1 and model 2, the 3 terms represent the beta value
289  from the regression fit, the o terms represent their errors, and p represents the correlation

290  between the two sets of associations. In order to assess the complementary value of the

291  different models, we computed the correlations between the brain age predictions (Figure 6).
292  The predictions were first corrected for age-bias using linear models (Le et al., 2018), and the
293  residuals were used in the correlation analysis.

294 To evaluate the importance of each diffusion modality in the multimodal model, we ran an
295  additional prediction model including only mean-skeleton values to reduce the number of

296  highly correlated features in the regressor input, and calculated a) the proportion of the total
297  weight contributed by each modality, where weight represents the number of times a feature is

298  used to split the data across all trees, and b) gain values, which represent the improvement in

10
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299  accuracy added by a feature to the branches it is on. To assess the significance of the general
300  model performance, average RMSE was calculated for the multimodal model using cross

301  validation with ten splits and ten repetitions and compared to a null distribution calculated

302 from 1000 permutations.

303

304 3. Results

305  3.1. Diffusion metric reproducibility

306  The reproducibility of the estimated diffusion metrics based on data obtained with different
307  acquisition schemes (described in 2.6) revealed overall high correlations between the mean
308  skeleton values for all the model metrics. Highest overall reproducibility was observed for
309 NODDI OD (#(22) =0.96, p <0.001) and RSI rD (#(22) = 0.97, p < 0.001). The lowest

310  reproducibility was observed for WMTI radEAD (#(22) = 0.44, p = 0.597). Supplementary
311  Table 4 and Supplementary Figures 4, 5, 6, and 7 show the results from the comparisons.

312

313 3.2. Age trajectories

314  Figure 3 shows the linear mixed effect model-derived age curves for each diffusion metric

315  plotted as a function of age, where age curves are fitted with the predicted values of the Ime
316  models. Figure 4 shows all Ime model-derived age curves from Figure 3 in standardised form
317  in one plot. Figure 5 shows the derivatives of the Ime fits, providing the estimated rate of

318 change at every point (of age), including the point of change in trajectory for each model curve
319  and the steepness of the turning point. Correlations between the metrics are available in the
320  supplementary material (SI Figures 2 and 3) for both raw and standardised values respectively.
321

322 3.3. Comparing age curves

323 Figure 3 shows the estimated age curves for all metrics. Briefly, FA decreased steadily after the
324  age of 30, with a steeper decline after the age of 50. MD, AD, and RD followed a reverse

325  profile, with decreases in diffusivity until the 40’s, whereby the trajectories subsequently

326  increased thereafter. DKI metrics revealed curvilinear trajectories, with NODDI ICVF, RSI CI,
327  SMT mc intra, and WMTI awf metrics following similar trajectories. RSI rD, NODDI ISOFV,
328  RSIFA fine, and WMTI axIAD metrics followed decreasing trajectories from the offset. SMT
329  mc extramd and extratrans, and WMTI radEAD followed similar trajectories to MD and RD.
330 NODDI OD revealed a steady increase until older age where the slope stabilised thereafter.
331  Lastly, WMTI axEAD showed u-trajectories.

332
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Figure 3. Age curves where each diffusion metric’s standardised (z-score) mean skeleton value (y-axis) is plotted

as a function of age (x-axis). Fitted lines made with Ime-derived predicted values. Shaded areas represent 95% CI.

Points connected by lines represent longitudinal data where circle is TP1 and triangle is TP2. Male subjects are

represented by pink and female subjects by green.
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Table 2. Linear mixed effect model results for each metric, where variables are displayed with corresponding fixed effect estimates (p), (standard error), t-statistic, and

FDR corrected P value.
NODDI NODDI NODDI RSI fa SMTme SMTmc SMT WMTI WMTI WMTI WMTI
FA MD AD RD DKIak DKImk DKIrk icvf isovf OD RSICI fine RSItD extramd extratrans mcintra awf axEAD axIAD radEAD
Age -0.66™" 046 0.03 0597 -0.12° -0.24™ -0.32"" -0.33"" 048" 0.677" -048" -0.69"" -0.54™" 050"  0.56™ -0.26"" -049™ 0.15™" 058" 057
(0.03)  (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.03) (0.04) (0.04)  (0.03)  (0.04) (0.04) (0.04) (0.04) (0.03)
-20.76  13.19  0.71 18.02 -321  -595 -809 -852 1331 21.62 1379 -21.97 -14.89 1431 16.66 -6.68 -13.33 351  -1643 17.11
496x  3.92x 1 295x o 256x  9.05x  429x  2.02x  9.16x 144x 187x 3.60x 84lx  30lx 7I4x 187x 616x 1.02x 297x
l 0-41 1 0-24 1 0-35 . 1 0-07 1 0-12 1 0-13 l 0-24 1 0-43 10-25 1 0-43 1 0-28 l 0-27 1 0-32 1 0-09 1 0-24 l 0-03 l 0-31 l 0-33
Age? 017" 0.34™  0.40™ 0297 -044™ -026™ -0.18 -0.33""  0.10° -0.08 -0.37"" -0.15"" -0.11" 021" 035"  -027" -026™ 0.14™  0.11" 021"
(0.03)  (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)  (0.03)  (0.04) (0.03) (0.04) (0.03) (0.03)
-5.57 1030  10.63 937 -1234  -7.15 477  -9.04 3.11 266 -11.04 493 316  6.46 10.99 742 751 3.63 3.36 6.91
148x  2.22x  684x 4.00x 447x 126x 500x  500x o, 009 346x 260x o 215x  459x  3.02x  988x  6.16x .. 217x
10-06 10-17 1018 10-15 10-22 10-09 10-05 10-14 . . 10-19 10-05 . 10-08 10-19 10-10 101 1 10-03 . 10-09
Sex -0.09"  0.06 0.03 0.07°  0.14™ 0.16™ 0.13™  0.08 0.10° 0.07 0.02 -0.05  0.08 0.10" -0.03 0.15™  0.07 0.06 -0.03  0.09°
(0.03)  (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)  (0.03)  (0.04) (0.03) (0.04) (0.03) (0.03)
312 1.75 0.78 2.16 4.00 4.19 3.48 2.20 2.90 2.48 0.62  -1.55 224 2.90 -1.07 4.10 1.88 1.56 -1.00 286
1.52x 1.06x 3.54x 4.53x 491 x
100 0.55 1 0.22 10 T jpws 0.19 0.03 0.10 1 0.82 0.18 0.03 1 oo 041 0.81 1 0.03
Timepoint 0.01 0.02 0.03 0.01 0.07 0.04 0.02 0.04 0.05 0.02 0.03  0.001 -0.01  0.06 -0.02 0.04 0.03 0.03 -0.02 0.05
0.01)  (0.01) (0.02) (0.01) (0.03) (0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.01) (0.02) (0.03)  (0.01)  (0.03) (0.02) (0.03) (0.02) (0.02)
0.88 1.55 1.72 1.02 2.36 1.21 0.64 1.62 1.64 1.33 1.95 0.05 -030 231 -1.44 1.32 1.41 1.03 -0.66  2.19
1 0.62 0.89 1 0.10 1 1 0.57 0.52 0.93 0.35 1 1 0.11 1 0.95 0.80 1 1 0.15
Observations 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702
Log Likelihood -651.72 -741.08 -853.38 -671.25 -885.78 -941.80 -945.41 -88592 -882.34 -678.79 -748.66 -662.96 -829.12 -832.39 -703.69 -932.36 -849.65 -965.60 -816.35 -795.04
éﬁ?‘ke fnf. 1,317.44 1,496.15 1,720.76 1,356.50 1,785.56 1,897.60 1,904.81 1,785.84 1,778.69 1,371.58 1,511.33 1,339.91 1,672.24 1,678.79 1,421.39 1,878.73 1,713.30 1,945.20 1,646.69 1’684'0
gzrii};esmn nf. 1,349.27 1,527.98 1,752.59 1,388.33 1,817.39 1,929.43 1,936.64 1,817.67 1,810.52 1,403.40 1,543.15 1,371.74 1,704.06 1,710.62 1,453.21 1,910.55 1,745.13 1,977.02 1,678.52 1’635'9

Note: Age’ represents the orthogonalised polynomial quadratic age term (Eq.

)

*p<0.05; *"p<0.01; *"p<0.001
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381  3.4. Age sensitivity estimated using Ime models

382  Results from the Ime models revealed significant main effects of age on the global mean

383  skeleton values for all diffusion metrics (see Table 2). An examination of the fixed effects

384  estimates (f) and t-statistics for the age term allows for interpretation of the extent and

385  direction of the linear association with age. Overall, the FA fine compartment of the RSI model
386  was most sensitive to age (£(125) =-0.69, t =-21.97, p <0.001). NODDI OD was the second
387  most sensitive to age (£#(125) = 0.67,t=21.62, p <0.001). The model least sensitive to age was
388 DTI AD (5(125) = 0.03,t=0.71, p = 1). For conventional DTI metrics, FA was the most age
389  sensitive (f(125) =-0.66, t =-20.76, p < 0.001). No main effects of timepoint survived

390  correction for multiple comparisons.

391

392 3.5. Age sensitivity estimated using Wilk’s theorem

393  Table 3 shows the strength of the overall age variation for each metric estimated by the

394  difference in likelihood values (described in Section 2.8). All metrics showed significant age
395  dependence, with RSI FA fine as the most age sensitive (z = 18.79), followed by NODDI OD
396 (z=18.55) and DTI-based FA (z = 18.12). WMTI axEAD (z = 4.65) was the least age-

397  dependant metric.

398
Table 3 Likelihood values from the Ime models without age terms (L1) and with age terms (L2). The
significance of the age dependence is estimated by the difference in likelihood values using Wilk's theorem.
FDR corrected p-values = p*"".
Model Ly L, Difference (z) p-value peorr
DTI FA -815.86 -651.72 18.12 5.22 x10°7? 1.04 x 1070
MD -848.36 -741.08 14.65 2.55x 1047 5.10 x 104
AD -900.66 -853.38 9.72 2.93x 10 5.86 x1020
RD -820.44 -671.25 17.27 1.62 x 109 3.24x10%
DKI AK -952.44 -885.78 11.55 1.12x 10 2.25x 1028
MK -977.09 -941.80 8.40 471x 1016 9.42x 1071
RK -981.65 -945.41 8.51 1.83 x10°1¢ 3.65x 10713
NODDI ICVF -948.54 -885.92 11.19 6.40 x 1028 1.28 x 10%°
ISOVF -957.61 -882.34 12.27 2.06 x 103 4.13x 10
OD -850.84 -678.79 18.55 1.90 x 1077 3.80x 1074
RSI CI -866.73 -748.66 15.37 5.28 x 102 1.06 x 10%°
FA fine -839.53 -662.96 18.79 2.07x 1077 4.15x 1076
D -922.24 -829.12 13.65 3.62x 104 7.24 x 1040
SMT mc Extra md -929.01 -832.39 13.90 1.10 x 102 2.20x 10
Extra trans -848.79 -703.69 17.03 9.71 x 10°% 1.94 x 1062
Intra -973.21 -932.36 9.04 1.82x 10718 3.64x 1077
WMTI AWF -942.66 -846.37 13.88 1.52x 10 3.04x 10
axEAD -973.15 -962.32 4.65 1.98 x 10 3.97 x 10°%
axIAD -930.26 -816.35 15.09 3.38x 10 6.76 x 10"
radEAD -922.92 -795.04 15.99 2.91x 10 5.81x 10
399
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3.6. Age sensitivity estimated using brain age

The model performances for the multimodal and model-specific brain age predictions are

shown in Table 4. SI Figures 8 and 9 show the associations between predicted age and

chronological age for each of the models. Figure 6 shows the pairwise correlations between

predicted age for each model. Pairwise differences in the age prediction accuracy of the models

are shown in Figures 7 and 8. SI Figure 1 shows the RMSE of the multimodal model prediction

compared to a null distribution obtained from calculating 1000 permutations.

Table 4. Number of MRI variables (corresponding to the sum of metric features), root mean square error

(RMSE), mean absolute error (MAE), correlation between predicted and chronological age (Pearson’s r), and

R? for each of the models. CI = confidence interval.

Model MRI variables RMSE MAE r [95% CI] R? [95% CI]

DTI 84 9.35 7.30 0.830.80, 0.85] 0.68 [0.64, 0.72]
DKI 63 12.19 9.82 0.68 [0.64, 0.72] 0.46 [0.41,0.52]
NODDI 63 9.15 7.31 0.83[0.81, 0.86] 0.70[0.65, 0.74]
RSI 63 9.84 7.68 0.81[0.78, 0.83] 0.65[0.61,0.69]
SMT mc 63 11.30 9.01 0.73[0.70, 0.76] 0.54 [0.50, 0.58]
WMTI 84 9.37 7.40 0.830.80, 0.85] 0.68 [0.64, 0.72]
Multimodal 420 8.80 6.99 0.85[0.83, 0.87] 0.72 [0.69, 0.76]

WMTI
Multimodal

Q

&

Predicted brain age ()

NN
QSOQQ§
©

1.0
0.8
0.6
0.4
0.2
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NN
O @
\;\@
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Figure 6. Correlation matrix for predicted brain age of each modality and the multimodal model. To account for

age-bias (Le et al., 2018; S. M. Smith, Vidaurre, et al., 2019), the predicted age values were residualised for

chronological age using linear models.

17


https://doi.org/10.1101/2020.04.21.053850
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.21.053850; this version posted September 24, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

428 Difference in model prediction accuracy (Z)
429
430 DTI 10
431 RSJ
e NODDI 0
433
434 SMT 0
2 WMTI
436 s
437 DK] EUEREE
8 Multimodal LN 5 43 8 10
o S S SIS SO
0 TP & O F ¥

O N S
441 < ©
442 RS

443  Figure 7. Matrix showing pairwise differences between the model prediction accuracies (correlations between

444  predicted and chronological age), based on z tests for correlated samples.
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448 Figure 8. Log10(p) values of the pairwise differences between the model prediction accuracies. Higher numbers
449  represent more significant differences. Left: uncorrected p-values. Right: P-values corrected for multiple

450  comparisons using FDR, with non-significant (> 0.05) values masked out.

451

452  As visible from Table 4, the multimodal model showed the most accurate age prediction (» =
453  0.85,p<0.001, 95% CI =[0.83, 0.87]), while the DKI model performed the worst (» = 0.68, p
454  <0.001, 95% CI=10.64, 0.72]). As shown in Figures 7 and 8, the multimodal prediction

455  accuracy was significantly higher than the accuracy of each of the other models, with the

456  largest difference seen between the multimodal model and DKI. The differences in prediction
18
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457  accuracy between DTI and RSI, and WMTI and NODDI did not survive correction for multiple
458  comparisons. Figure 6 showed correlation coefficients of mean » = 0.59 (Std = 0.09) between
459  the DTI, RSI, NODDI, SMT and WMTI predictions, while the DKI showed lower correlations
460  with the other model predictions (mean » = 0.29, Std = 0.04).

461 To evaluate the relative importance of each modality, we ran an additional multimodal
462  model including only mean-skeleton values to reduce the number of highly correlated features
463  in the regressor input. Table 5 shows the total gain and the proportion of weight contributed by
464  each modality to the total weight, indicating their relative contribution in the model training.
465  The results revealed that the machine favoured the NODDI model in the training.

466

Table 5. Feature importance evaluated using a reduced multimodal model that
included only mean skeleton values for each modality. Number of MRI variables
(corresponding to the sum of metric features), percentage contribution to the total

weight, and total gain for each modality.

Model MRI variables % of total weight Total gain
DTI 4 20.09 163473.25
DKI 3 5.13 41747.63
NODDI 3 45.48 370129.31
RSI 3 4.85 39463.11
SMT mc 3 11.74 95534.98
WMTI 4 12.72 103545.15

467

468

469 4. Discussion

470  Ageing confers a range of structural brain alterations, affecting micro- and macrostructural
471  properties of the neurocircuitry supporting cognitive and other complex brain functions. In the
472  current mixed cross-sectional and longitudinal study, we compared age sensitivity and brain
473  white matter age trajectories across the adult lifespan based on advanced and conventional
474  dMRI models. The results from our comprehensive analysis approach, including age-curve
475  trajectories, linear mixed effects models, Wilk’s theorem analysis, and brain age prediction,
476  showed high age sensitivity for all diffusion metrics, with comparable sensitivity between the
477  highest performing advanced dMRI models and conventional DTI, and a moderate benefit of
478  including all metrics in the same model. The mixed effects analyses and corresponding

479  derivatives revealed variations in age trajectories between models, indicating that they may be
480  sensitive to different underlying aspects of white matter ageing.

481 Our results showed that FA plateaued around the third decade with a steady decline in
482  slope following the age of ~40, and an accelerated decrease in senescence (Figure 3). The other

483  DTI metrics of MD, AD, and RD revealed decreases in diffusivity up until the 40-50-year age
19
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484  mark, where the trajectories subsequently increase following a steady period. While these

485  results to a large extent correspond with trajectories observed in previous studies (Cox et al.,
486  2016; Davis et al., 2009; Westlye et al., 2010), a more defined inverted U-shape (Westlye et
487  al., 2010) was less prominent in our study, likely due to a lack of younger participants below
488  the age of 20. Interestingly, FA based on the relatively simple DTI model utilising only single-
489  shell data offered one of the highest sensitivities to age, supporting that DTI provides sensitive
490  measures of gross white matter anatomy and neuropathological changes (A. L. Alexander et
491  al., 2008). The characteristic curvilinear trajectories of lifespan differences in conventional DTI
492  metrics (Westlye et al., 2010) have previously been suggested to reflect a combination of

493  protracted myelin-related maturation during childhood, adolescence and early adulthood (Lebel
494  etal., 2008; Tamnes et al., 2010) and subsequent myelin loss during adulthood and senescence
495  (Bartzokis et al., 2004). However, DTI metrics are unable to differentiate between intra- and
496  extra-axonal compartments, and, in addition to the idiosyncratic changes in myeloarchitecture,
497  they may be influenced by individual differences and changes in gross fiber architecture (e.g.
498  crossing fibres) and axonal packing and density (Paus, 2010; Simmonds et al., 2014). The

499  specific biological interpretation of DTI metrics essentially depends upon the local fiber

500 architecture, and signal changes from DTI require careful interpretation, as the exact

501  neurobiological underpinnings cannot be directly inferred. While speculative, utilising

502  advanced dMRI models in addition to conventional DTI may provide more specificity in the
503 interpretation of the results, and improve the descriptive precision of the tissue pathology by
504  disentangling the various biological sources that are happening concurrently.

505 While several of the advanced dMRI models showed comparable results to DTI in

506 terms of age sensitivity, they also showed visibly different age trajectories (Figure 3), including
507  variation in turning points (Figure 4), indicating the age at which anisotropy and diffusivity
508  measures change direction, and gradient of change (Figure 5), indicating rate of decline. The
509  variation in turning points and gradient of change calculated using the derivates of each model
510 informs us about the estimated rate of change at specific ages, in addition to the differential
511  sensitivity between different metrics during different life phases. Although diffusion imaging
512 cannot give direct access to neuronal processes on a cellular level, the varying estimated

513  trajectories in advanced dMRI models potentially reflect differential involvement of the

514  putative biological underpinnings during the different phases of brain ageing. Thus, metric-
515  specific differences may reflect age-related pathological changes behind each dMRI model,
516  helping us better pinpoint the age at which decline in white matter microstructure begins,

517  which has important implications for interventive strategies aimed at promoting healthy

518  ageing.
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519 Although recent research has validated FA and RD metrics of DTI as being sensitive
520  markers to myelin (Lazari & Lipp, 2020), caution must be exerted in interpreting specific

521  underlying biology on the basis of DTI alone (Novikov et al., 2018). With this in mind,

522 combining tissue models such as NODDI, WMTI, RSI, and SMT mc may hold promise in

523  jointly reflecting measures more relatable to the neurobiological underpinnings of brain ageing.
524 The WMTI metrics for example have been validated for reflecting underlying biology both in
525  wvivo (Jelescu et al., 2015, 2016) and ex vivo (Falangola et al., 2014; Kelm et al., 2016). WMTI
526  awf was found to relate to axonal density, whereas WMTI radEAD to some extent describes
527  the degree of myelination (Kelm et al., 2016) and relates to the extracellular environment filled
528  with interstitial fluid and circulating macromolecules, as well as blood vessels and perivascular
529  spaces (Nicholson & Hrabétova, 2017). The parameter maps from the NODDI model have

530  been claimed to exhibit a spatial pattern of tissue distribution consistent with the known brain
531 anatomy (Zhang et al., 2012), with existing maps showing the expected pattern of neurite

532 density (Jespersen et al., 2010), serving as an example of the feasibility provided by advanced
533  diffusion models to disentangle neurite density and orientation dispersion, two major factors
534  contributing to FA (Zhang et al., 2012). The RSI model diameter calculations have been shown
535  to correspond with the diameter of unmyelinated and myelinated axons in the rat brain (White
536  etal., 2013), suggesting a direct biological interpretation. Likewise, histological analyses have
537  shown that the SMT mc microscopic diffusion indices offer direct sensitivity to pathological
538 tissue alterations (Kaden et al. 2016). While not a tissue model, DKI provides a specific

539  measure of cellular compartments and membranes and is relatively unconfounded by

540  concentration of macromolecules, potentially providing a more specific indicator of tissue

541  properties than conventional DTI (Jensen et al., 2005).

542 In theory, the partly non-overlapping assumptions and biophysical properties of the

543  different diffusion MRI models offer a more comprehensive and complete view of the

544  manifold biological processes in brain development, ageing, and disorders when considered
545  jointly. In general, our findings of higher age prediction accuracy when combining different
546  models supports this view. However, not surprisingly, the relatively high correlations and

547  similar age-related trajectories of several of the different metrics also suggest a certain level of
548  redundancy. Further studies are needed to test the hypothesis that combining various diffusion
549  MRI models of brain macro- and microstructure increases the feasibility and precision of

550  multimodal data-driven brain phenotyping approaches (e.g. “fingerprinting”’) towards more
551  specific clinical applications and prediction (Alnzs et al., 2018). With this in mind, including
552 the advanced models may not only improves specificity compared to conventional DTI, but

553  potentially provides additional information related to changes in myelination and axonal
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554  rewiring, while specifically modelling microstructural features typically conflated by DTI, such
555  as neurite density, axonal diameter, and neurite orientation dispersion (D. C. Alexander et al.,
556  2019). Further research is needed to validate and develop dMRI models to better reflect the
557  different biological and geometrical properties of white matter. If assumptions of underlying
558  microstructure are valid, these advanced models represent a promising contribution to the

559  investigation of brain development and ageing, and aberrant brain biology in various clinical
560  conditions (D. C. Alexander et al., 2019).

561 While considering a range of diffusion models, it is important to note that each comes
562  with its respective limitations. NODDI has been particularly criticised in recent years, with
563  research suggesting the model assumptions are invalid (Lampinen et al., 2017). NODDI

564  provides estimates of geometric parameters only, with there being an absence of any direct
565  diffusivity estimation (Jelescu et al., 2015). DKI, like DTI, is limited in specificity as it can be
566  affected by different features of tissue microstructure. Thus, the biophysical model that relates
567  DKI parameters directly to white matter microstructure (WMTI, (Fieremans et al., 2011)) was
568  proposed. However, assumptions made in WMTI may be oversimplifying, which could lead to
569  bias in the estimated parameters in addition to reduced information about the microstructure.
570  WMTI parameter estimation accuracy is also said to progressively degrade with higher

571  orientation dispersion (Jelescu et al., 2015).

572 The SMT mc model overcomes limitations in WMTI (Fieremans et al., 2011) and

573  NODDI (Zhang et al., 2012) as it makes no assumptions about the neurite orientation

574  distribution (Kaden, Kelm, et al., 2016). However, it is limited by assuming that the effective
575  transverse diffusivity inside the neurites is zero, an approximation which may not hold for
576  unmyelinated axons and dendrites (Kaden, Kelm, et al., 2016), due to possible neurite

577  undulation on the microscopic scale (Nilsson et al., 2012). RSI, like most diffusion-based

578  techniques, suffers from low resolution and may best be utilised in supplement to high spatial
579  resolution sequences as part of a multimodal imaging protocol (Brunsing et al., 2017). For
580  example, the DTI model’s limitation of being blind to crossing and bending fibres may be

581  resolved by the RSI model’s multi-direction properties and ability to measure diffusion

582  orientation and length scale (White et al., 2013). Despite the limitations of each model, and
583  possible redundancy between them, assessing age-related white microstructural changes using
584  acombination of diffusion models can be advantageous in order to zero in on idiosyncratic
585  neuroanatomical and microstructural patterns (Alnes et al., 2018). Biophysical models of

586  WMTI and SMT mc for example, adds the possibility for assessing the separate effect of

587  diffusion in intra- and extra-axonal space (Jelescu & Budde, 2017; Voldsbekk et al., 2020).
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588 Some methodological limitations must also be addressed. One concern is that of

589  averaging over regions of interests and the entire white matter skeleton, which is complicated
590 by the direction and magnitude of age associations varying regionally. Recent findings

591  (Tennesen et al., 2020) found that the global mean skeleton model outperformed region of
592  interest-based single-metric models, providing evidence for relevant information required for
593  brain age prediction is captured at a global level. Indeed, previous studies have suggested that
594  regional DTI-based indices of brain aging reflect relatively global processes (Penke et al.,

595  2010; Westlye et al., 2010), which is also supported by a genetically informed approach

596  demonstrating that a substantial proportion of the tract-wise heritability is accounted for by a
597  general genetic factor (Gustavson et al., 2019). Secondly, we used FA to generate white matter
598  skeletons. Future research should consider generating white matter skeletons based on

599  advanced diffusion maps that are more resistant to crossing fibres.

600 Other strengths of the study must also be addressed. TBSS offers robust non-linear

601  registration and skeletonization of individual FA maps, which allows both for subsequent

602  voxel-wise analysis and extraction of ROI based summary stats using a range of white matter
603  atlases. This approach is highly standardized, which promotes reproducibility and future meta-
604  analyses. The direct test of the reproducibility of the included dMRI metrics across different
605  acquisition schemes with a higher number of directions and b-values, supported the use of
606  advanced computational dMRI models for data obtained using a clinically feasible acquisition
607  protocol. The combination of advanced dMRI models based on multi-shell data is a key

608  strength, which potentially provides more detailed features of the cellular environment from
609 differential tissue responses elicited by the different h-values (Assaf & Basser, 2005; Clark et
610 al., 2002; Pines et al., 2020).

611 The study also included a relatively large sample and benefitted from all participants
612  having been scanned with the same MRI scanner. Additionally, with cross-sectional studies
613  being limited by between-subject variance and possible cohort effects (Schaie, 2005), the

614  current study profits from a mixed cross-sectional and longitudinal design, where participants
615  can be used as their own baseline (Sexton et al., 2014). However, the longitudinal aspect of our
616  study had some limitations, including the short interval duration, and the low sample size

617  compared to the cross-sectional sample. Consequently, the main results were largely driven by
618  cross sectional data despite the mixed cross-sectional and longitudinal nature of the design.
619  Future research should aim to adopt fully longitudinal designs over several time points in order
620  to evaluate individual differences in change over time, preferably over wide age ranges.

621 Although the advanced dMRI models offered new insight into age sensitivity (such as
622  the relatively high performance of RSI and NODDI for age prediction) and differences in age
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623  trajectories, the biological interpretation of these metrics require further validation. Continued
624  development and validation of more optimal diffusion models that better reflect biological
625  properties of the brain is needed, and future research should take into account the impact of a
626  range of potential factors that may mediate brain and cognitive development (Alnzs et al.,
627  2020) and ageing (Lindenberger, 2014), such as pre- and perinatal events, socio-demographical
628  factors, education, lifestyle, cardiometabolic risk factors, and genetics.

629 In conclusion, characterising changes in white matter microstructure over the human
630 lifespan is critical for establishing robust models of normative neurodevelopment and ageing,
631  which in turn can help us to better understand deviations from healthy age trajectories. The
632  current study demonstrates that while advanced and conventional dMRI models show

633  comparable age-sensitivity, multi-shell diffusion acquisition and advanced dMRI models can
634  contribute to measuring multiple, complementary aspects of white matter characteristics.

635  Further developing dMRI models in terms of biological tissue specificity remains a challenging
636  yet important goal for understanding white matter development across the human lifespan.
637
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