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 2 

Abstract 27 

The macro- and microstructural architecture of human brain white matter undergoes substantial 28 

alterations throughout development and ageing. Most of our understanding of the spatial and 29 

temporal characteristics of these lifespan adaptations come from magnetic resonance imaging 30 

(MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of 31 

brain white matter with unprecedented sensitivity and detail. However, with some notable 32 

exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and 33 

diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-34 

sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI 35 

datasets, we combined complementary dMRI models to investigate age trajectories in healthy 36 

individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and 37 

machine learning based brain age prediction, we assessed the age-dependence of diffusion 38 

metrics, and compared the age prediction accuracy of six different diffusion models, including 39 

diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density 40 

imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-41 

compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the 42 

age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], 43 

axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, 44 

and that the highest performing advanced dMRI models showed comparable age prediction 45 

accuracy to conventional DTI. Linear mixed effects models and Wilk’s theorem analysis 46 

showed that the ‘FA fine’ metric of the RSI model and ‘orientation dispersion’ (OD) metric of 47 

the NODDI model showed the highest sensitivity to age. The results indicate that advanced 48 

diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-49 

related microstructural changes of white matter in the brain that complement and extend the 50 

contribution of conventional DTI. 51 

 52 
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1. Introduction 62 

The architecture of human brain white matter undergoes constant remodelling throughout life. 63 

Age-related trajectories of white matter macro- and microstructure typically reflect increases in 64 

anisotropy and decreases in diffusivity during childhood, adolescence and early adulthood 65 

(Krogsrud et al., 2016; Tamnes et al., 2018; Westlye et al., 2010), and subsequent anisotropy 66 

decreases and diffusivity increase in adulthood and senescence (Cox et al., 2016; Davis et al., 67 

2009). While the field has primarily been dominated by cross-sectional studies, which by 68 

design lack information on individual trajectories (Schaie, 2005), longitudinal studies in the 69 

last decade have shown corresponding white matter changes in both development and ageing 70 

(Barrick et al., 2010; Bender et al., 2016; Bender & Raz, 2015; de Groot et al., 2016; 71 

Likitjaroen et al., 2012; Racine et al., 2019; Sexton et al., 2014; Storsve et al., 2016; Teipel et 72 

al., 2010). However, studies that have evaluated individual differences in change across a wide 73 

age range are rare (Bender et al., 2016). 74 

White matter properties have commonly been investigated using traditional diffusion 75 

tensor imaging (DTI), and the DTI-based metrics fractional anisotropy (FA) as well as mean 76 

(MD), axial (AD), and radial (RD) diffusivity are highly sensitive to age (Cox et al., 2016; 77 

Sexton et al., 2014; Westlye et al., 2010; Yap et al., 2013). However, limitations of 78 

conventional DTI metrics such as their inability to capture restricted non-Gaussian diffusion 79 

and lack of specificity to different diffusion pools (Pines et al., 2020) have motivated continued 80 

development of more advanced diffusion MRI (dMRI) models. These models include diffusion 81 

kurtosis imaging (DKI) (Jensen et al., 2005), which was developed to address the restricted 82 

diffusion or non-Gaussianity in the diffusion signal; neurite orientation dispersion and density 83 

imaging (NODDI) (Zhang et al., 2012), which models three types of microstructural 84 

environments: intra-cellular, extra-cellular, and an isotropic water pool responsible for the 85 

space occupied by cerebrospinal fluid (CSF); white matter tract integrity (WMTI) (Chung et 86 

al., 2018; Fieremans et al., 2011), which derives microstructural characteristics from intra- and 87 

extra-axonal environments; restriction spectrum imaging (RSI) (White et al., 2013), which 88 

applies linear mixture modelling to resolve a spectrum of length scales while simultaneously 89 

acquiring geometric information; and spherical mean technique multi-compartment (SMT mc) 90 

(Kaden, Kruggel, et al., 2016), a method for microscopic diffusion anisotropy imaging that is 91 

unconfounded by effects of fibre crossings and orientation dispersion.  92 

Usually based on multi-shell acquisitions with several diffusion weightings (Andersson 93 

& Sotiropoulos, 2015; Jbabdi et al., 2012), these models can be broadly split into “signal” and 94 

“tissue” models (D. C. Alexander et al., 2019). Signal representations, such as DTI and DKI, 95 

describe the diffusion signal behaviour in a voxel without assumptions about underlying tissue, 96 
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but as the estimated parameters lack specificity, their characterisation of tissue microstructure 97 

remains indirect (Jelescu & Budde, 2017). Tissue models (NODDI, RSI, SMT-mc, and WMTI) 98 

involve estimations of the geometry of underlying tissue (Novikov et al., 2019), which may 99 

provide higher biological specificity and more precise measures of white matter microstructure 100 

and architecture (Jelescu & Budde, 2017; Novikov et al., 2019; Pines et al., 2020). However, 101 

despite tissue models being designed to increase specificity, they also require assumptions 102 

about the underlying microstructure that may not be fully accurate. 103 

Building on the opportunities from big data in neuroimaging (S. M. Smith & Nichols, 104 

2018), age related brain changes have recently been investigated using machine learning 105 

techniques such as brain age prediction; the estimation of the ‘biological’ age of a brain based 106 

on neuroimaging data (J. H. Cole et al., 2018; de Lange et al., 2019; Kaufmann et al., 2019; 107 

Franke et al., 2010;  Richard et al., 2018). Predicting the age of a brain, and subsequently 108 

looking at the disparity between predicted and chronological age, can identify important 109 

individualised markers of brain integrity that may reveal risk of neurological and/or 110 

neuropsychiatric disorders (Kaufmann et al., 2019). While brain age prediction has grown 111 

more popular in recent years, most studies have used grey matter features for brain age 112 

prediction, while only few have exclusively (Tønnesen et al., 2020), or partly (James H Cole, 113 

2019; Maximov et al., 2020; Richard et al., 2018; S. M. Smith, Elliott, et al., 2019; S. M. 114 

Smith, Vidaurre, et al., 2019) utilised dMRI. However, the brain-age prediction accuracy of 115 

advanced diffusion models such as RSI and NODDI are not known. 116 

 Including cross-sectional and longitudinal data obtained from 573 healthy individuals 117 

(with 702 multi-shell dMRI datasets) aged 18-94 years, the primary aim of this study was to 118 

offer a comprehensive description of normative age-related white matter trajectories in 119 

adulthood by comparing relevant curve parameters such as key deflection points and rate of 120 

change as well as age prediction accuracy of different dMRI metrics, with a particular focus on 121 

relatively novel parameters based on advanced (DKI, NODDI, RSI, SMT mc, and WMTI) and 122 

conventional (DTI) diffusion models of white matter coherence and microstructure.  123 

First, we estimated the trajectories of each of the diffusion metrics across the age range. 124 

Secondly, we utilised three separate methods to compare the age-sensitivity of the diffusion 125 

models: i) we used linear mixed effect (lme) models including age, sex, and timepoint, ii) for 126 

each model, we ran fits with and without age terms and compared the fit likelihood values 127 

using Wilk's theorem (Wilks, 1938), iii) we used machine learning to predict age based on the 128 

diffusion metrics, and compared the prediction accuracy of the models. Thirdly, we looked at 129 

the derivatives of each function of the lme models’ age curve to identify the point of change in 130 

trajectory for each diffusion metric. Based on previous work characterising age differences and 131 
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longitudinal changes with a range of diffusion MRI metrics (Benitez et al., 2018; Falangola et 132 

al., 2008; Jelescu et al., 2015; Kodiweera et al., 2016; Reas et al., 2017; Westlye et al., 2010), 133 

we expected the included metrics to show curvilinear relationships with age, with varying 134 

trajectories and deflection points possibly reflecting differential involvement and rate of 135 

change of the putative biological underpinnings during the different phases of brain ageing. 136 

 137 

2. Methods and material 138 

2.1. Description of sample 139 

The initial sample included 754 multi-shell datasets of healthy participants from two integrated 140 

studies; the Tematisk Område Psykoser (TOP) (Tønnesen et al., 2018) and StrokeMRI 141 

(Richard et al., 2018). Following the removal of 52 datasets after quality checking (QC, see 142 

section 2.4), the final sample comprised 702 scans from 573 individuals, including longitudinal 143 

data (two time-points with 15.2 months interval) for 129 of the participants. Demographic 144 

information is summarised in Table 1 and Figure 1. 145 

Exclusion criteria included neurological and mental disorders, and previous head 146 

trauma. Ethical guidelines followed those in line with the Declaration of Helsinki. The study 147 

has been approved by the Regional Ethics Committee and all participants provided written 148 

informed consent. 149 

 150 
Table 1. Demographics of descriptive statistics pertaining to the study sample. N refers to datasets. 151 

Age 

 Mean ± SD Min Max 
Full (mixed) sample (n = 702) 50.86 ± 16.61 18.52 94.67 
Male (301, 42.88%) 49.45 ± 17.48 18.52 92.05 
Female (401, 57.12%) 51.92 ± 15.86 18.63 94.67 
Cross-sectional sample (n = 444) 47.61 ± 16.59 18.52 94.67 
Male (214, 48.20%) 46.75 ± 16.71 18.52 92.05 
Female (230, 51.80%) 48.57 ± 16.51 18.63 94.67 
Longitudinal sample (n = 258) 56.60 ± 15.03 20.30 85.82 
Male (44, 35.11%) 55.72 ± 17.78 20.30 85.82 
Female (85, 65.89%) 55.65 ± 13.70 23.37 80.62 

 152 
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 153 
Figure 1. Interval between timepoint 1 and timepoint 2 for complete longitudinal sample, n = 258 (129 subjects). 154 
Histogram representing density of data points. 155 
 156 
2.2. MRI acquisition 157 

Imaging was performed at Oslo University Hospital on a General Electric Discovery MR750 158 

3T scanner with a 32-channel head coil. dMRI data were acquired with a spin echo planar 159 

imaging (EPI) sequence with the following parameters: TR/TE/flip angle: 8,150 ms/83.1 160 

ms/90◦, FOV: 256 × 256 mm, slice thickness: 2 mm, in-plane resolution: 2 mm. We obtained 161 

10 volumes of b=0 and diffusion weighted data along 60 (b=1000 s/mm2) and 30 (b=2000 162 

s/mm2) diffusion weighted volumes. In addition, 7 b=0 volumes with reversed phase-encoding 163 

direction were acquired for correction of susceptibility distortions. 164 

 165 

2.3. Diffusion MRI processing 166 

Processing steps followed a previously described pipeline (Maximov et al., 2019), including 167 

noise correction (Veraart et al., 2016), Gibbs ringing correction (Kellner et al., 2016), 168 

corrections for susceptibility induced distortions, head movements and eddy current induced 169 

distortions using topup (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) and eddy 170 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (Andersson & Sotiropoulos, 2016). Isotropic 171 

smoothing was carried out with a Gaussian kernel of 1 mm3 implemented in the FSL 172 

function fslmaths. DTI was estimated using FSL tool dtifit and excluded the b=2000 shell from 173 
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the fit. Employing the multi-shell data, DKI and WMTI metrics were estimated using Matlab 174 

code (https://github.com/NYU-DiffusionMRI/DESIGNER), (Fieremans et al., 2011). NODDI 175 

metrics were derived using AMICO in Matlab (https://github.com/daducci/AMICO). SMT mc 176 

metrics were estimated with the original code (https://github.com/ekaden/smt). RSI metrics 177 

were estimated using in-house Matlab tools. 178 

We selected 20 scalar metrics from the six models (DTI, DKI, NODDI, RSI, SMT mc, 179 

WMTI) based on recent studies (Benitez et al., 2018; De Santis et al., 2011; Hope et al., 2019; 180 

Jelescu et al., 2015; Kaden, Kelm, et al., 2016; Maximov et al., 2019; Pines et al., 2020). 181 

Models were also selected based on feasibility in relation to our acquisition protocol and 182 

availability of open source scripts. Figure 2 shows each of the included metrics for one 183 

participant, for illustrative purposes. All metrics and their corresponding abbreviations are 184 

summarised in Supplementary table 1). Brain age prediction was performed for each model, 185 

using all available metrics extracted from a range of regions-of-interest (see section 2.5). 186 

 187 
Figure 2. Diffusion metrics from  one participant. DTI: FA (fractional anisotropy), MD (mean diffusivity), AD 188 
(axial diffusivity), RD (radial diffusivity). DKI: AK (axial kurtosis), MK (mean kurtosis), RK (radial kurtosis). 189 
NODDI: ICVF (intracellular volume fraction), ISOVF (isotropic volume fraction), OD (oriental dispersion). RSI: 190 
CI (cellular index), Fine (FA fine scale/slow compartment), rD (restricted diffusivity coefficient). SMT mc: 191 
exMD (extra cellular space), exTr (extra-cellular space transverse), Intra (intra axonal diffusivity). WMTI: Awf 192 
(axonal water fraction), aEAD, aIAD (axial extra and intra axonal diffusivity), rEAD (radial extra axonal 193 
diffusivity). 194 
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2.4. Quality checking procedure 195 

We implemented a rigorous QC procedure to ensure data quality was not contaminated by 196 

motion, noise, or artefacts. Using a published approach (Roalf et al., 2016), we derived various 197 

quality assurance (QA) metrics (see Supplementary material; SI table 2), including temporal-198 

signal-to-noise-ratio (TSNR). Outliers were manually checked and removed if deemed to have 199 

unsatisfactory data quality. A total of 52 datasets were removed, leaving the dataset at n = 702 200 

scans. This dataset was put through the same visual inspection. As an additional step, images 201 

were manually inspected if TSNR Z scores deviated minus or plus 2.5 standard deviations from 202 

the mean. Following this step, the final dataset remained at 702 scans from 573 individuals. 203 

 204 

2.5. Tract-Based-Spatial-Statistics 205 

Voxelwise statistical analysis of the FA data was carried out using Tract-Based Spatial 206 

Statistics (TBSS) (S. M. Smith et al., 2006), as part of FSL (S. M. Smith et al., 2004). First, FA 207 

images were brain-extracted using BET (S. M. Smith, 2002) and aligned into a common space 208 

(FMRI58_FA template) using the nonlinear registration tool FNIRT (Andersson, Jenkinson, & 209 

Smith., 2007; Jenkinson et al., 2012), which uses a b-spline representation of the registration 210 

warp field (Rueckert et al., 1999). Next, the mean FA image of all subjects was created and 211 

thinned to create a mean FA skeleton that represents the centres of all tracts common to the 212 

group. Each subject's aligned FA data was then projected onto this skeleton. The mean FA 213 

skeleton was thresholded at FA > 0.2. This procedure was repeated for all metrics. fslmeants 214 

was used to extract the mean skeleton and 20 regions of interest (ROI) based on a probabilistic 215 

white matter atlas (JHU) (Hua et al., 2008) for each metric. Including the mean skeleton 216 

values, 420 features per individual were derived (20 metrics x 20+1 ROIs). Of these, 20 217 

metrics were used for fitting of age curve trajectories, lme analysis, and Wilk’s theorem 218 

analysis, while all 420 MRI features were used for age prediction. Number of MRI features can 219 

be found in Table 4. Additional voxelwise analysis were carried out on the 573 participants 220 

(excluding longitudinal measures) using the FSL tool Randomise with permutation-based 221 

statistics (Winkler et al., 2014) and  threshold-free cluster enhancement method (TFCE; (S. 222 

Smith & Nichols, 2009)). 5000 permutations were run, where each diffusion metric was tested 223 

for its association with age. TBSS fill was used to create voxelwise statistical maps for each 224 

metric, which can be found in SI Figure 10. 225 

 226 

2.6. Diffusion metric reproducibility 227 

The validity and sensitivity of the different diffusion models essentially rely on the richness, 228 

quality and specific properties of the data used for model fitting. In order to assess the 229 
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reproducibility of the included advanced metrics (Maximov et al., 2015), we estimated the 230 

dMRI models using data obtained from different acquisition schemes varying the number of 231 

directions and maximum b value in 23 healthy participants with mean age 35.77 years (SD = 232 

8.37, 56.5% women). This represented a sub-sample of the full sample. The following three 233 

acquisition schemes were compared: i) b=[1000,2000] with [60,30] directions, which is 234 

identical to the acquisition scheme used in the main analysis, ii) b=[1000,2000] with [60,60] 235 

directions and iii) b=[1000,2000,3000] with [60,60,60] directions. For each scheme we 236 

processed the data using an identical pipeline (Maximov et al., 2019) as described above and 237 

extracted the mean skeleton values for each metric. The comparisons between acquisition 238 

protocols were performed using box plots (SI Figure 4), scatterplots with age as a function of 239 

mean skeleton values (SI Figures 5), and Pearson’s correlation coefficient plots, where protocol 240 

1 is factored by protocol 3 (SI Figures 6). 241 

 242 

2.7. Statistical analysis 243 

All statistical analyses were carried out using the statistical environment R, version 3.6.0 244 

(www.r-project.org/) (R Core Team, 2012) and Python 3.7.0 (www.python.org/). 245 

 246 

2.8. Linear mixed effects models (lme) 247 

To investigate the relationship between age and global mean skeleton values for each diffusion 248 

metric, lme analyses were performed using the lme function (Bates & Pinheiro, 1998) in R (R 249 

Core Team, 2012). In fitting the model, we scaled (z normalised) each variable and entered 250 

age, orthogonalised age2, sex, and timepoint (TP) as fixed effects. Subject ID was entered as a 251 

random effect. For each diffusion metric M, we employed the following function: 252 

 253 

! = # + % × #'( + )	 ×	#'(! + +(, + -.  (1) 254 

 255 

where A is the intercept, B is the age coefficient, and C is the coefficient of the orthogonalised 256 

quadratic age term (expressed as poly(age,2)[,2] in R). Age curves were obtained with 257 

predictions from the fitted model using the predict function in R and used for age curve 258 

trajectory figures. Visual inspection of residual plots did not reveal any obvious deviations 259 

from homoscedasticity or normality. The significance threshold was set at p < 0.05, and the 260 

results were corrected for multiple comparisons using the false discovery rate (FDR) 261 

adjustment (Benjamini & Hochberg, 1995). 262 

To investigate the rate of change for each of the age curves at any point, we calculated 263 

their derivatives using numerical differentiation with finite differences (Burden & Faires, 264 
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2011). To compare the age-sensitivity of the models, we ran lme fits with and without age 265 

terms, and calculated the difference in likelihood ratios (Glover & Dixon, 2004). The 266 

significance of the age dependence was calculated using Wilk's theorem (Wilks, 1938) as 267 

/2(2! 	− 	2"), where L2 is the likelihood ratio obtained from the models with age terms, and 268 

L1  is the likelihood ratio obtained from the models without age terms. 269 

 270 

2.9. Brain-age prediction  271 

The XGBoost regressor model was used to run the brain age prediction 272 

(https://xgboost.readthedocs.io/en/latest/python/index.html), including a decision-tree-based 273 

ensemble algorithm that has been used in recent large-scale brain age studies (A.-M. G. de 274 

Lange et al., 2019; Kaufmann et al., 2019). Parameters were set to max depth = 3, number of 275 

estimators = 100, and learning rate = 0.1 (defaults). For each diffusion model (DTI, DKI, 276 

NODDI, RSI, SMT mc, WMTI), predicted age was estimated in a 10-fold cross validation, 277 

assigning a model-specific brain age estimate to each individual, as well as a multimodal brain 278 

age estimate based on all diffusion features. To investigate the prediction accuracy of each 279 

model, correlation analyses were run for predicted versus chronological age, and model-280 

specific R2, root mean square error (RMSE) and mean absolute error (MAE) were calculated. 281 

To statistically compare the prediction accuracy of the models, Z tests for correlated samples 282 

(Zimmerman, 2012) were run on the model-specific correlations between predicted and 283 

chronological age in a pairwise manner using 284 

 285 

5 = (6m1 − 6m2)/89m1! + 9m2! − 2:9m19m2	, 286 

 287 

where “m1” and “m2” represent model 1 and model 2, the b terms represent the beta value 288 

from the regression fit, the s terms represent their errors, and r represents the correlation 289 

between the two sets of associations. In order to assess the complementary value of the 290 

different models, we computed the correlations between the brain age predictions (Figure 6). 291 

The predictions were first corrected for age-bias using linear models (Le et al., 2018), and the 292 

residuals were used in the correlation analysis. 293 

To evaluate the importance of each diffusion modality in the multimodal model, we ran an 294 

additional prediction model including only mean-skeleton values to reduce the number of 295 

highly correlated features in the regressor input, and calculated a) the proportion of the total 296 

weight contributed by each modality, where weight represents the number of times a feature is 297 

used to split the data across all trees, and b) gain values, which represent the improvement in 298 
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accuracy added by a feature to the branches it is on. To assess the significance of the general 299 

model performance, average RMSE was calculated for the multimodal model using cross 300 

validation with ten splits and ten repetitions and compared to a null distribution calculated 301 

from 1000 permutations. 302 

 303 

3. Results 304 

3.1. Diffusion metric reproducibility 305 

The reproducibility of the estimated diffusion metrics based on data obtained with different 306 

acquisition schemes (described in 2.6) revealed overall high correlations between the mean 307 

skeleton values for all the model metrics. Highest overall reproducibility was observed for 308 

NODDI OD (r(22) = 0.96, p < 0.001) and RSI rD (r(22) = 0.97, p < 0.001). The lowest 309 

reproducibility was observed for WMTI radEAD (r(22) = 0.44, p = 0.597). Supplementary 310 

Table 4 and Supplementary Figures 4, 5, 6, and 7 show the results from the comparisons. 311 

 312 

3.2. Age trajectories 313 

Figure 3 shows the linear mixed effect model-derived age curves for each diffusion metric 314 

plotted as a function of age, where age curves are fitted with the predicted values of the lme 315 

models. Figure 4 shows all lme model-derived age curves from Figure 3 in standardised form 316 

in one plot. Figure 5 shows the derivatives of the lme fits, providing the estimated rate of 317 

change at every point (of age), including the point of change in trajectory for each model curve 318 

and the steepness of the turning point. Correlations between the metrics are available in the 319 

supplementary material (SI Figures 2 and 3) for both raw and standardised values respectively. 320 

 321 

3.3. Comparing age curves 322 

Figure 3 shows the estimated age curves for all metrics. Briefly, FA decreased steadily after the 323 

age of 30, with a steeper decline after the age of 50. MD, AD, and RD followed a reverse 324 

profile, with decreases in diffusivity until the 40’s, whereby the trajectories subsequently 325 

increased thereafter. DKI metrics revealed curvilinear trajectories, with NODDI ICVF, RSI CI, 326 

SMT mc intra, and WMTI awf metrics following similar trajectories. RSI rD, NODDI ISOFV, 327 

RSI FA fine, and WMTI axIAD metrics followed decreasing trajectories from the offset. SMT 328 

mc extramd and extratrans, and WMTI radEAD followed similar trajectories to MD and RD. 329 

NODDI OD revealed a steady increase until older age where the slope stabilised thereafter. 330 

Lastly, WMTI axEAD showed u-trajectories. 331 

 332 
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 336 

 337 

 338 
Figure 3. Age curves where each diffusion metric’s standardised (z-score) mean skeleton value (y-axis) is plotted 339 
as a function of age (x-axis). Fitted lines made with lme-derived predicted values. Shaded areas represent 95% CI. 340 
Points connected by lines represent longitudinal data where circle is TP1 and triangle is TP2. Male subjects are 341 
represented by pink and female subjects by green. 342 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.04.21.053850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.053850
http://creativecommons.org/licenses/by-nd/4.0/


 14 

 343 
 344 
 345 
 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 

Figure 4. Plot displaying all lme-model derived age curves from Figure 3 in standardised form. 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
 367 

 368 
 369 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
 377 

Figure 5. The derivative for each diffusion model, providing the estimated rate of change at every point. The 378 
point on the x-axis where the fitted line crosses 0 on the y-axis represents the turning point of the age trajectory 379 
for each metric.380 
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Table 2. Linear mixed effect model results for each metric, where variables are displayed with corresponding fixed effect estimates (β), (standard error), t-statistic, and 
FDR corrected P value. 

 FA MD AD RD DKI ak DKI mk DKI rk 
NODDI 

icvf 
NODDI 

isovf 
NODDI 

OD 
RSI CI 

RSI fa 
fine 

RSI rD 
SMT mc 
extramd 

SMT mc 
extratrans 

SMT 
mc intra 

WMTI 
awf 

WMTI 
axEAD 

WMTI 
axIAD 

WMTI 
radEAD 

Age -0.66*** 0.46*** 0.03 0.59*** -0.12* -0.24*** -0.32*** -0.33*** 0.48*** 0.67*** -0.48*** -0.69*** -0.54*** 0.50*** 0.56*** -0.26*** -0.49*** 0.15*** -0.58*** 0.57*** 
 (0.03) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.03) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) 
 -20.76 13.19 0.71 18.02 -3.21 -5.95 -8.09 -8.52 13.31 21.62 13.79 -21.97 -14.89 14.31 16.66 -6.68 -13.33 3.51 -16.43 17.11 

 
4.96 x  
10-41 

3.92 x  
10-24 

1 
2.95 x  
10-35 

0.01 
2.56 x 
10-07 

9.15 x 
10-12 

4.29 x 
10-13 

2.02 x  
10-24 

9.16 x  
10-43 

1.44 x  
10-25 

1.87 x 
10-43 

3.60 x  
10-28 

8.41 x 
10-27 

3.01 x  
10-32 

7.14 x  
10-09 

1.87 x 
10-24 

6.16 x 
10-03 

1.02 x  
10-31 

2.97 x 
10-33 

Age2 -0.17*** 0.34*** 0.40*** 0.29*** -0.44*** -0.26*** -0.18*** -0.33*** 0.10* -0.08 -0.37*** -0.15*** -0.11* 0.21*** 0.35*** -0.27*** -0.26*** 0.14*** 0.11* 0.21*** 
 (0.03) (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) 
 -5.57 10.30 10.63 9.37 -12.34 -7.15 -4.77 -9.04 3.11 -2.66 -11.04 -4.93 -3.16 6.46 10.99 -7.42 -7.51 3.63 3.36 6.91 

 
1.48 x  
10-06 

2.22 x  
10-17 

6.84 x  
10-18 

4.00 x  
10-15 

4.47 x  
10-22 

1.26 x 
10-09 

5.00 x 
10-05 

5.00 x 
10-14 

0.02 0.09 
3.46 x  
10-19 

2.60 x 
10-05 

0.02 
2.15 x  
10-08 

4.59 x 
10-19 

3.12 x 
10-10 

9.88 x 
10-11 

6.16 x 
10-03 

0.01 
2.17 x 
10-09 

Sex -0.09** 0.06 0.03 0.07* 0.14*** 0.16*** 0.13*** 0.08 0.10* 0.07 0.02 -0.05 0.08 0.10* -0.03 0.15*** 0.07 0.06 -0.03 0.09* 
 (0.03) (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.04) (0.03) (0.03) 
 -3.12 1.75 0.78 2.16 4.00 4.19 3.48 2.20 2.90 2.48 0.62 -1.55 2.24 2.90 -1.07 4.10 1.88 1.56 -1.00 2.86 

 
1.52 x  
10-02 

0.55 1 0.22 
1.06 x  
10-03 

3.54 x  
10-04 

4.53 x 
10-03 

0.19 0.03 0.10 1 0.82 0.18 0.03 1 
4.91 x  
10-04 

0.41 0.81 1 0.03 

Timepoint 0.01 0.02 0.03 0.01 0.07 0.04 0.02 0.04 0.05 0.02 0.03 0.001 -0.01 0.06 -0.02 0.04 0.03 0.03 -0.02 0.05 
 (0.01) (0.01) (0.02) (0.01) (0.03) (0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.01) (0.02) (0.03) (0.01) (0.03) (0.02) (0.03) (0.02) (0.02) 
 0.88 1.55 1.72 1.02 2.36 1.21 0.64 1.62 1.64 1.33 1.95 0.05 -0.30 2.31 -1.44 1.32 1.41 1.03 -0.66 2.19 

 1 0.62 0.89 1 0.10 1 1 0.57 0.52 0.93 0.35 1 1 0.11 1 0.95 0.80 1 1 0.15 

Observations 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 

Log Likelihood -651.72 -741.08 -853.38 -671.25 -885.78 -941.80 -945.41 -885.92 -882.34 -678.79 -748.66 -662.96 -829.12 -832.39 -703.69 -932.36 -849.65 -965.60 -816.35 -795.04 

Akaike Inf. 
Crit. 

1,317.44 1,496.15 1,720.76 1,356.50 1,785.56 1,897.60 1,904.81 1,785.84 1,778.69 1,371.58 1,511.33 1,339.91 1,672.24 1,678.79 1,421.39 1,878.73 1,713.30 1,945.20 1,646.69 
1,604.0

9 

Bayesian Inf. 
Crit. 

1,349.27 1,527.98 1,752.59 1,388.33 1,817.39 1,929.43 1,936.64 1,817.67 1,810.52 1,403.40 1,543.15 1,371.74 1,704.06 1,710.62 1,453.21 1,910.55 1,745.13 1,977.02 1,678.52 
1,635.9

2 

Note: Age2 represents the orthogonalised polynomial quadratic age term (Eq. 1)  *p<0.05; **p<0.01; ***p<0.001 
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3.4. Age sensitivity estimated using lme models 381 

Results from the lme models revealed significant main effects of age on the global mean 382 

skeleton values for all diffusion metrics (see Table 2). An examination of the fixed effects 383 

estimates (β) and t-statistics for the age term allows for interpretation of the extent and 384 

direction of the linear association with age. Overall, the FA fine compartment of the RSI model 385 

was most sensitive to age (β(125) = -0.69, t = -21.97, p < 0.001). NODDI OD was the second 386 

most sensitive to age (β(125) = 0.67, t = 21.62, p < 0.001). The model least sensitive to age was 387 

DTI AD (β(125) = 0.03, t = 0.71, p = 1). For conventional DTI metrics, FA was the most age 388 

sensitive (β(125) = -0.66, t = -20.76, p < 0.001). No main effects of timepoint survived 389 

correction for multiple comparisons. 390 

 391 

3.5. Age sensitivity estimated using Wilk’s theorem 392 

Table 3 shows the strength of the overall age variation for each metric estimated by the 393 

difference in likelihood values (described in Section 2.8). All metrics showed significant age 394 

dependence, with RSI FA fine as the most age sensitive (z = 18.79), followed by NODDI OD 395 

(z = 18.55) and DTI-based FA (z = 18.12). WMTI axEAD (z = 4.65) was the least age-396 

dependant metric. 397 

 398 

Table 3 Likelihood values from the lme models without age terms (L1) and with age terms (L2). The 
significance of the age dependence is estimated by the difference in likelihood values using Wilk's theorem. 
FDR corrected p-values = pcorr. 
 
Model L1 L2 Difference (z) p-value pcorr 
DTI                           FA -815.86 -651.72 18.12 5.22 x10-72 1.04 x 10-70 

MD 
AD 

-848.36 
-900.66 

-741.08 
-853.38 

14.65 
9.72 

2.55 x 10-47 

2.93 x 10-21 
5.10 x 10-46 

5.86 x10-20 
RD -820.44 -671.25 17.27 1.62 x 10-65 3.24 x 10-64 

DKI                          AK -952.44 -885.78 11.55 1.12 x 10-29 2.25 x 10-28 
MK -977.09 -941.80 8.40 4.71 x 10-16 9.42 x 10-15 
RK -981.65 -945.41 8.51 1.83 x10-16 3.65 x 10-15 

NODDI                 ICVF -948.54 -885.92 11.19 6.40 x 10-28 1.28 x 10-26 
ISOVF -957.61 -882.34 12.27 2.06 x 10-33 4.13 x 10-32 

OD -850.84 -678.79 18.55 1.90 x 10-75 3.80 x 10-74 
RSI                             CI -866.73 -748.66 15.37 5.28 x 10-52 1.06 x 10-50 

FA fine -839.53 -662.96 18.79 2.07 x 10-77 4.15 x 10-76 
rD -922.24 -829.12 13.65 3.62 x 10-41 7.24 x 10-40 

SMT mc          Extra md -929.01 -832.39 13.90 1.10 x 10-42 2.20 x 10-41 
Extra trans -848.79 -703.69 17.03 9.71 x 10-64 1.94 x 10-62 

Intra -973.21 -932.36 9.04 1.82 x 10-18 3.64 x 10-17 
WMTI                   AWF -942.66 -846.37 13.88 1.52 x 10-43 3.04 x 10-41 

axEAD -973.15 -962.32 4.65 1.98 x 10-05 3.97 x 10-04 
axIAD -930.26 -816.35 15.09 3.38 x 10-50 6.76 x 10-49 

radEAD -922.92 -795.04 15.99 2.91 x 10-56 5.81 x 10-55 

 399 
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3.6. Age sensitivity estimated using brain age  400 

The model performances for the multimodal and model-specific brain age predictions are 401 

shown in Table 4. SI Figures 8 and 9 show the associations between predicted age and 402 

chronological age for each of the models. Figure 6 shows the pairwise correlations between 403 

predicted age for each model. Pairwise differences in the age prediction accuracy of the models 404 

are shown in Figures 7 and 8. SI Figure 1 shows the RMSE of the multimodal model prediction 405 

compared to a null distribution obtained from calculating 1000 permutations. 406 

Table 4. Number of MRI variables (corresponding to the sum of metric features), root mean square error 

(RMSE), mean absolute error (MAE), correlation between predicted and chronological age (Pearson’s r), and 

R2 for each of the models. CI = confidence interval. 
Model MRI variables RMSE MAE r [95% CI] R2 [95% CI] 
DTI 84 9.35 7.30 0.83 [0.80, 0.85] 0.68 [0.64, 0.72] 
DKI 63 12.19 9.82 0.68 [0.64, 0.72] 0.46 [0.41,0.52] 
NODDI 63 9.15 7.31 0.83 [0.81, 0.86] 0.70 [0.65, 0.74] 
RSI 63 9.84 7.68 0.81 [0.78, 0.83] 0.65 [0.61,0.69] 
SMT mc 63 11.30 9.01 0.73 [0.70, 0.76] 0.54 [0.50, 0.58] 
WMTI 84 9.37 7.40 0.83 [0.80, 0.85] 0.68 [0.64, 0.72] 
Multimodal 420 8.80 6.99 0.85 [0.83, 0.87] 0.72 [0.69, 0.76] 

 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 
Figure 6. Correlation matrix for predicted brain age of each modality and the multimodal model. To account for 425 
age-bias (Le et al., 2018; S. M. Smith, Vidaurre, et al., 2019), the predicted age values were residualised for 426 
chronological age using linear models. 427 
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 428 
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 432 
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 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
Figure 7. Matrix showing pairwise differences between the model prediction accuracies (correlations between 443 
predicted and chronological age), based on z tests for correlated samples. 444 

 445 

 446 

 447 
Figure 8. Log10(p) values of the pairwise differences between the model prediction accuracies. Higher numbers 448 
represent more significant differences. Left: uncorrected p-values. Right: P-values corrected for multiple 449 
comparisons using FDR, with non-significant (> 0.05) values masked out. 450 
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As visible from Table 4, the multimodal model showed the most accurate age prediction (r = 452 

0.85, p < 0.001, 95% CI = [0.83, 0.87]), while the DKI model performed the worst (r = 0.68, p 453 

< 0.001, 95% CI = [0.64, 0.72]). As shown in Figures 7 and 8, the multimodal prediction 454 

accuracy was significantly higher than the accuracy of each of the other models, with the 455 

largest difference seen between the multimodal model and DKI. The differences in prediction 456 
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accuracy between DTI and RSI, and WMTI and NODDI did not survive correction for multiple 457 

comparisons. Figure 6 showed correlation coefficients of mean r = 0.59 (Std = 0.09) between 458 

the DTI, RSI, NODDI, SMT and WMTI predictions, while the DKI showed lower correlations 459 

with the other model predictions (mean r = 0.29, Std = 0.04). 460 

To evaluate the relative importance of each modality, we ran an additional multimodal 461 

model including only mean-skeleton values to reduce the number of highly correlated features 462 

in the regressor input. Table 5 shows the total gain and the proportion of weight contributed by 463 

each modality to the total weight, indicating their relative contribution in the model training. 464 

The results revealed that the machine favoured the NODDI model in the training. 465 

 466 

Table 5. Feature importance evaluated using a reduced multimodal model that 

included only mean skeleton values for each modality. Number of MRI variables 

(corresponding to the sum of metric features), percentage contribution to the total 

weight, and total gain for each modality. 

Model MRI variables % of total weight Total gain 
DTI 4 20.09 163473.25 
DKI 3 5.13 41747.63 
NODDI 3 45.48 370129.31 
RSI 3 4.85 39463.11 
SMT mc 3 11.74 95534.98 
WMTI 4 12.72 103545.15 

 467 

 468 

4. Discussion 469 

Ageing confers a range of structural brain alterations, affecting micro- and macrostructural 470 

properties of the neurocircuitry supporting cognitive and other complex brain functions. In the 471 

current mixed cross-sectional and longitudinal study, we compared age sensitivity and brain 472 

white matter age trajectories across the adult lifespan based on advanced and conventional 473 

dMRI models. The results from our comprehensive analysis approach, including age-curve 474 

trajectories, linear mixed effects models, Wilk’s theorem analysis, and brain age prediction, 475 

showed high age sensitivity for all diffusion metrics, with comparable sensitivity between the 476 

highest performing advanced dMRI models and conventional DTI, and a moderate benefit of 477 

including all metrics in the same model. The mixed effects analyses and corresponding 478 

derivatives revealed variations in age trajectories between models, indicating that they may be 479 

sensitive to different underlying aspects of white matter ageing. 480 

 Our results showed that FA plateaued around the third decade with a steady decline in 481 

slope following the age of ~40, and an accelerated decrease in senescence (Figure 3). The other 482 

DTI metrics of MD, AD, and RD revealed decreases in diffusivity up until the 40-50-year age 483 
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mark, where the trajectories subsequently increase following a steady period. While these 484 

results to a large extent correspond with trajectories observed in previous studies (Cox et al., 485 

2016; Davis et al., 2009; Westlye et al., 2010), a more defined inverted U-shape (Westlye et 486 

al., 2010) was less prominent in our study, likely due to a lack of younger participants below 487 

the age of 20. Interestingly, FA based on the relatively simple DTI model utilising only single-488 

shell data offered one of the highest sensitivities to age, supporting that DTI provides sensitive 489 

measures of gross white matter anatomy and neuropathological changes (A. L. Alexander et 490 

al., 2008). The characteristic curvilinear trajectories of lifespan differences in conventional DTI 491 

metrics (Westlye et al., 2010) have previously been suggested to reflect a combination of 492 

protracted myelin-related maturation during childhood, adolescence and early adulthood (Lebel 493 

et al., 2008; Tamnes et al., 2010) and subsequent myelin loss during adulthood and senescence 494 

(Bartzokis et al., 2004). However, DTI metrics are unable to differentiate between intra- and 495 

extra-axonal compartments, and, in addition to the idiosyncratic changes in myeloarchitecture, 496 

they may be influenced by individual differences and changes in gross fiber architecture (e.g. 497 

crossing fibres) and axonal packing and density (Paus, 2010; Simmonds et al., 2014). The 498 

specific biological interpretation of DTI metrics essentially depends upon the local fiber 499 

architecture, and signal changes from DTI require careful interpretation, as the exact 500 

neurobiological underpinnings cannot be directly inferred. While speculative, utilising 501 

advanced dMRI models in addition to conventional DTI may provide more specificity in the 502 

interpretation of the results, and improve the descriptive precision of the tissue pathology by 503 

disentangling the various biological sources that are happening concurrently.  504 

While several of the advanced dMRI models showed comparable results to DTI in 505 

terms of age sensitivity, they also showed visibly different age trajectories (Figure 3), including 506 

variation in turning points (Figure 4), indicating the age at which anisotropy and diffusivity 507 

measures change direction, and gradient of change (Figure 5), indicating rate of decline. The 508 

variation in turning points and gradient of change calculated using the derivates of each model 509 

informs us about the estimated rate of change at specific ages, in addition to the differential 510 

sensitivity between different metrics during different life phases. Although diffusion imaging 511 

cannot give direct access to neuronal processes on a cellular level, the varying estimated 512 

trajectories in advanced dMRI models potentially reflect differential involvement of the 513 

putative biological underpinnings during the different phases of brain ageing. Thus, metric-514 

specific differences may reflect age-related pathological changes behind each dMRI model, 515 

helping us better pinpoint the age at which decline in white matter microstructure begins, 516 

which has important implications for interventive strategies aimed at promoting healthy 517 

ageing. 518 
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Although recent research has validated FA and RD metrics of DTI as being sensitive 519 

markers to myelin (Lazari & Lipp, 2020), caution must be exerted in interpreting specific 520 

underlying biology on the basis of DTI alone (Novikov et al., 2018). With this in mind, 521 

combining tissue models such as NODDI, WMTI, RSI, and SMT mc may hold promise in 522 

jointly reflecting measures more relatable to the neurobiological underpinnings of brain ageing. 523 

The WMTI metrics for example have been validated for reflecting underlying biology both in 524 

vivo (Jelescu et al., 2015, 2016) and ex vivo (Falangola et al., 2014; Kelm et al., 2016). WMTI 525 

awf was found to relate to axonal density, whereas WMTI radEAD to some extent describes 526 

the degree of myelination (Kelm et al., 2016) and relates to the extracellular environment filled 527 

with interstitial fluid and circulating macromolecules, as well as blood vessels and perivascular 528 

spaces (Nicholson & Hrabětová, 2017). The parameter maps from the NODDI model have 529 

been claimed to exhibit a spatial pattern of tissue distribution consistent with the known brain 530 

anatomy (Zhang et al., 2012), with existing maps showing the expected pattern of neurite 531 

density (Jespersen et al., 2010), serving as an example of the feasibility provided by advanced 532 

diffusion models to disentangle neurite density and orientation dispersion, two major factors 533 

contributing to FA (Zhang et al., 2012). The RSI model diameter calculations have been shown 534 

to correspond with the diameter of unmyelinated and myelinated axons in the rat brain (White 535 

et al., 2013), suggesting a direct biological interpretation. Likewise, histological analyses have 536 

shown that the SMT mc microscopic diffusion indices offer direct sensitivity to pathological 537 

tissue alterations (Kaden et al. 2016). While not a tissue model, DKI provides a specific 538 

measure of cellular compartments and membranes and is relatively unconfounded by 539 

concentration of macromolecules, potentially providing a more specific indicator of tissue 540 

properties than conventional DTI (Jensen et al., 2005). 541 

In theory, the partly non-overlapping assumptions and biophysical properties of the 542 

different diffusion MRI models offer a more comprehensive and complete view of the 543 

manifold biological processes in brain development, ageing, and disorders when considered 544 

jointly. In general, our findings of higher age prediction accuracy when combining different 545 

models supports this view. However, not surprisingly, the relatively high correlations and 546 

similar age-related trajectories of several of the different metrics also suggest a certain level of 547 

redundancy. Further studies are needed to test the hypothesis that combining various diffusion 548 

MRI models of brain macro- and microstructure increases the feasibility and precision of 549 

multimodal data-driven brain phenotyping approaches (e.g. “fingerprinting”) towards more 550 

specific clinical applications and prediction (Alnæs et al., 2018). With this in mind, including 551 

the advanced models may not only improves specificity compared to conventional DTI, but 552 

potentially provides additional information related to changes in myelination and axonal 553 
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rewiring, while specifically modelling microstructural features typically conflated by DTI, such 554 

as neurite density, axonal diameter, and neurite orientation dispersion (D. C. Alexander et al., 555 

2019). Further research is needed to validate and develop dMRI models to better reflect the 556 

different biological and geometrical properties of white matter. If assumptions of underlying 557 

microstructure are valid, these advanced models represent a promising contribution to the 558 

investigation of brain development and ageing, and aberrant brain biology in various clinical 559 

conditions (D. C. Alexander et al., 2019).  560 

While considering a range of diffusion models, it is important to note that each comes 561 

with its respective limitations. NODDI has been particularly criticised in recent years, with 562 

research suggesting the model assumptions are invalid (Lampinen et al., 2017). NODDI 563 

provides estimates of geometric parameters only, with there being an absence of any direct 564 

diffusivity estimation (Jelescu et al., 2015). DKI, like DTI, is limited in specificity as it can be 565 

affected by different features of tissue microstructure. Thus, the biophysical model that relates 566 

DKI parameters directly to white matter microstructure (WMTI, (Fieremans et al., 2011)) was 567 

proposed. However, assumptions made in WMTI may be oversimplifying, which could lead to 568 

bias in the estimated parameters in addition to reduced information about the microstructure. 569 

WMTI parameter estimation accuracy is also said to progressively degrade with higher 570 

orientation dispersion (Jelescu et al., 2015). 571 

The SMT mc model overcomes limitations in WMTI (Fieremans et al., 2011) and 572 

NODDI (Zhang et al., 2012) as it makes no assumptions about the neurite orientation 573 

distribution (Kaden, Kelm, et al., 2016). However, it is limited by assuming that the effective 574 

transverse diffusivity inside the neurites is zero, an approximation which may not hold for 575 

unmyelinated axons and dendrites (Kaden, Kelm, et al., 2016), due to possible neurite 576 

undulation on the microscopic scale (Nilsson et al., 2012). RSI, like most diffusion-based 577 

techniques, suffers from low resolution and may best be utilised in supplement to high spatial 578 

resolution sequences as part of a multimodal imaging protocol (Brunsing et al., 2017). For 579 

example, the DTI model’s limitation of being blind to crossing and bending fibres may be 580 

resolved by the RSI model’s multi-direction properties and ability to measure diffusion 581 

orientation and length scale (White et al., 2013). Despite the limitations of each model, and 582 

possible redundancy between them, assessing age-related white microstructural changes using 583 

a combination of diffusion models can be advantageous in order to zero in on idiosyncratic 584 

neuroanatomical and microstructural patterns (Alnæs et al., 2018). Biophysical models of 585 

WMTI and SMT mc for example, adds the possibility for assessing the separate effect of 586 

diffusion in intra- and extra-axonal space (Jelescu & Budde, 2017; Voldsbekk et al., 2020). 587 
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Some methodological limitations must also be addressed. One concern is that of 588 

averaging over regions of interests and the entire white matter skeleton, which is complicated 589 

by the direction and magnitude of age associations varying regionally. Recent findings 590 

(Tønnesen et al., 2020) found that the global mean skeleton model outperformed region of 591 

interest-based single-metric models, providing evidence for relevant information required for 592 

brain age prediction is captured at a global level. Indeed, previous studies have suggested that 593 

regional DTI-based indices of brain aging reflect relatively global processes (Penke et al., 594 

2010; Westlye et al., 2010), which is also supported by a genetically informed approach 595 

demonstrating that a substantial proportion of the tract-wise heritability is accounted for by a 596 

general genetic factor (Gustavson et al., 2019). Secondly, we used FA to generate white matter 597 

skeletons. Future research should consider generating white matter skeletons based on 598 

advanced diffusion maps that are more resistant to crossing fibres. 599 

Other strengths of the study must also be addressed. TBSS offers robust non-linear 600 

registration and skeletonization of individual FA maps, which allows both for subsequent 601 

voxel-wise analysis and extraction of ROI based summary stats using a range of white matter 602 

atlases. This approach is highly standardized, which promotes reproducibility and future meta-603 

analyses. The direct test of the reproducibility of the included dMRI metrics across different 604 

acquisition schemes with a higher number of directions and b-values, supported the use of 605 

advanced computational dMRI models for data obtained using a clinically feasible acquisition 606 

protocol. The combination of advanced dMRI models based on multi-shell data is a key 607 

strength, which potentially provides more detailed features of the cellular environment from 608 

differential tissue responses elicited by the different b-values (Assaf & Basser, 2005; Clark et 609 

al., 2002; Pines et al., 2020). 610 

The study also included a relatively large sample and benefitted from all participants 611 

having been scanned with the same MRI scanner. Additionally, with cross-sectional studies 612 

being limited by between-subject variance and possible cohort effects (Schaie, 2005), the 613 

current study profits from a mixed cross-sectional and longitudinal design, where participants 614 

can be used as their own baseline (Sexton et al., 2014). However, the longitudinal aspect of our 615 

study had some limitations, including the short interval duration, and the low sample size 616 

compared to the cross-sectional sample. Consequently, the main results were largely driven by 617 

cross sectional data despite the mixed cross-sectional and longitudinal nature of the design. 618 

Future research should aim to adopt fully longitudinal designs over several time points in order 619 

to evaluate individual differences in change over time, preferably over wide age ranges. 620 

Although the advanced dMRI models offered new insight into age sensitivity (such as 621 

the relatively high performance of RSI and NODDI for age prediction) and differences in age 622 
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trajectories, the biological interpretation of these metrics require further validation. Continued 623 

development and validation of more optimal diffusion models that better reflect biological 624 

properties of the brain is needed, and future research should take into account the impact of a 625 

range of potential factors that may mediate brain and cognitive development (Alnæs et al., 626 

2020) and ageing (Lindenberger, 2014), such as pre- and perinatal events, socio-demographical 627 

factors, education, lifestyle, cardiometabolic risk factors, and genetics. 628 

In conclusion, characterising changes in white matter microstructure over the human 629 

lifespan is critical for establishing robust models of normative neurodevelopment and ageing, 630 

which in turn can help us to better understand deviations from healthy age trajectories. The 631 

current study demonstrates that while advanced and conventional dMRI models show 632 

comparable age-sensitivity, multi-shell diffusion acquisition and advanced dMRI models can 633 

contribute to measuring multiple, complementary aspects of white matter characteristics. 634 

Further developing dMRI models in terms of biological tissue specificity remains a challenging 635 

yet important goal for understanding white matter development across the human lifespan. 636 
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