
CHARACTERIZATION OF SPATIAL DYNAMICS OF FMRI DATA IN WHITE MATTER
USING DIFFUSION-INFORMED WHITE MATTER HARMONICS

Hamid Behjat
⇤1,2,3

, Iman Aganj
2,4

, David Abramian
5,6

, Anders Eklund
5,6,7

, Carl-Fredrik Westin
1

1 Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
2 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA

3 Department of Biomedical Engineering, Lund University, Lund, Sweden
4 Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA

5 Department of Biomedical Engineering, Linköping University, Linköping, Sweden
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ABSTRACT
In this work, we leverage the Laplacian eigenbasis of voxel-
wise white matter (WM) graphs derived from diffusion-
weighted MRI data, dubbed WM harmonics, to characterize
the spatial structure of WM fMRI data. Our motivation for
such a characterization is based on studies that show WM
fMRI data exhibit a spatial correlational anisotropy that co-
incides with underlying fiber patterns. By quantifying the
energy content of WM fMRI data associated with subsets
of WM harmonics across multiple spectral bands, we show
that the data exhibits notable subtle spatial modulations under
functional load that are not manifested during rest. WM har-
monics provide a novel means to study the spatial dynamics
of WM fMRI data, in such way that the analysis is informed
by the underlying anatomical structure.

Index Terms— white matter, functional MRI, diffusion
MRI, graph signal processing.

1. INTRODUCTION

Despite past controversies in relation to the source of the
blood-oxygen-level-dependent (BOLD) signal in white mat-
ter (WM) [1], reports of fMRI activation [2, 3] and functional
connectivity [4, 5] in WM continue to increase. The BOLD
signal in WM has been shown to exhibit a spatial correlational
anisotropy that coincides with underlying fiber patterns [6],
which is manifested both at rest and under varying functional
loads [7]. In addition, it has been shown that the dynam-
ics in WM are concomitant with those observed in cortical
regions connected through fiber bundles [7, 8]. The unique
spatial structure of the BOLD signal in WM warrants a revis-
iting of conventional methods used for spatial processing of
fMRI data, in particular, the use of isotropic (often Gaussian)
smoothing kernels to preprocess the data [9]. Given the body
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of recent reports on the anisotropic spatial structure of WM
fMRI data, the implicit assumption on the isotropy of the
BOLD contrast that justifies use of isotropic filters may not
hold in WM.

Recent work implementing spatial smoothing on diffusion-
informed WM graphs has shown the benefit of using anisotropic
filters that adapt to the underlying diffusion structure in WM
[10, 11]. Such WM graphs have also been found benefi-
cial in showing the collective mediation of WM pathways
based on functional activity in gray matter [12]. The present
work builds on the benefits of subject-specific, voxel-wise
WM graphs, showing that their Laplacian eigenbasis, dubbed
WM harmonics, can provide a novel means for quantifying
the spatial structure in WM fMRI data. In particular, using
principles from the recently emerged field of graph signal pro-
cessing (GSP) [13, 14], we decompose WM fMRI data using
a systems of spectral kernels that covers fine-scale as well as
coarse-scale bands across the spectrum. We then quantify the
spectral energy (SE) content of WM fMRI data at different
spectral bands across the graph spectra, and show that under
functional load, spatial patterns correspond to more spatially
varying WM harmonics that encode subtle anisotropic spatial
patterns confined by the underlying diffusion structure arise.
In contrast, we show that the observed temporal modulation
under functional load is not present during rest.

2. METHODS

2.1. Dataset

We studied data from the “100 Unrelated Subjects” group
(54% female, mean age = 29.11± 3.67, age range = 22-36)
of the Human Connectome Project (HCP) dataset [15], which
we denote as HCP100. Five of the subjects were excluded
due to incomplete WM coverage of the diffusion MRI data,
leaving a total of 95 subjects. We used the minimally pre-
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processed structural MRI, diffusion MRI, task fMRI and
resting-state fMRI data of all subjects; the functional data
were resampled to the resolution of the diffusion data, 1.25
mm isotropic. For the task data, we studied the “Social”
task, which consists of two experimental conditions: mental

and random. During the mental-condition blocks, partici-
pants were presented with short video clips (20 seconds) of
objects (circles, squares, triangles) that interacted in some
way, whereas during the random-condition blocks the ob-
jects moved randomly on the screen. The paradigm consisted
of 3 mental-condition and 2 random-condition trials. The
proposed analysis scheme relies on accurate co-registration
between structural, diffusion, and functional data, which is
meticulously performed on the preprocessed HCP data. A
thorough description of the image acquisition parameters and
preprocessing steps can be found in [16].

2.2. Graph signal processing fundamentals

Consider an undirected, weighted graph consisting of N
vertices in which the edges and their weights are given by
an N ⇥ N adjacency matrix, with elements ai,j > 0 if
an edge connects vertices i and j, and ai,j = 0 otherwise.
The graph’s normalized Laplacian matrix L is defined as
L = I � D� 1

2AD� 1
2 , where D denotes the graph’s degree

matrix, with its diagonal elements given as di,i =
P

j ai,j ,
and I denotes the identity matrix. The eigendecomposition of
L gives L = U⇤U⇤, where ⇤ is a diagonal matrix with the
eigenvalues 0 = �1  �2 . . .  �N  2 on its diagonal—
which define the graph’s spectrum [17], and U is a matrix
of eigenvectors, wherein each column uk is the eigenvector
associated to �k. Hereon, we refer to the eigenvectors as
the eigenmodes as conventionally used by the neuroimaging
community. The eigen-basis of L entails a notion of spatial
variability. That is, a given eigenmode uk is linked to its as-
sociated eigenvalue as uk

TLuk = �k, which shows that �k is
a measure of total variability of uk. As such, eigenmodes as-
sociated to larger eigenvalues entail a greater extent of spatial
variability than those associated to smaller eigenvalues.

Let f 2 RN denote a graph signal, where f [i] is the value
of the signal at vertex i, and let f̂ = U⇤f 2 RN denote its
spectral representation, which satisfies the Parseval energy
conservation relation, i.e., ||f ||22 = ||f̂ ||22. Given a continu-
ous kernel defined on the spectral range of the graph, denoted
k(·) : [0,�N ] ! R, a graph signal f can be filtered using k(·),
denoted k(L)f 2 RN , as [13]

k(L)f = Uk(⇤)U⇤f = Uk(⇤)f̂ . (1)

To avoid explicit computation of ⇤ and U, i.e., diagonaliza-
tion of L, filtering can be alternatively done in a computation-
ally efficient way using a polynomial approximation of k(·),
denoted kp(·) : [0,�N ] ! R, as

k(L)f
(1)
= Uk(⇤)U⇤f ⇡ Ukp(⇤)U⇤f = kp(L)f , (2)

that is, computing a set of matrix operations on L and apply-
ing the resulting matrix to f .

2.3. Diffusion-informed WM graph design

To characterize the underlying domain of WM fMRI data,
we leveraged diffusion-weighted MRI data to construct voxel-
resolution graphs based on the method proposed in [11]. In
particular, for each subject, and each hemisphere, we con-
structed a graph, wherein each WM voxel is represented as
a graph vertex, and the relation between neighboring voxels
is defined based the extent of coherence between their asso-
ciated diffusion ODFs: two vertices whose associated voxels
are adjacent are connected through an edge with a high weight
if their associated ODFs are well aligned with the edge con-
necting them, and vice versa. For further details on the design
we refer to [11]. We refer to the Laplacian eigenmodes of the
resulting WM graphs as WM harmonics.

2.4. Spectral characterization of WM fMRI data

We represent fMRI volumes as graph signals. In particular,
given a 4-D fMRI time series dataset of a given subject s, we
represented the fMRI volume associated to each time instance
t as a graph signal, denoted fs,t 2 RN , through extracting
functional values at voxels corresponding to the graph ver-
tices, i.e., voxels within WM. The signal was then de-meaned
and normalized as:

f̃s,t = (fs,t � u⇤
1fs,tu1)/||fs,t � u⇤

1fs,tu1||2. (3)

Given the sheer size of voxel-wise WM graphs, diagonal-
izing the associated L is impractical, and therefore, compu-
tation of the signal’s spectral representation, i.e., ˆ̃fs,t, is in-
feasible. Instead, to obtain an overall estimate of the spectral
energy (SE) content of fMRI data on WM graphs at fine-scale
spectral bands (FSB), we decomposed the signals using the
system of 57 spectral kernels presented in [18], see Fig. 1(a),
denoted K = {kj(�)}57j=1, which form a Parseval frame, i.e.,
8� 2 [0,�N ], P (�) :=

P57
j=1 |kj(�)|

2 = 1, a property that
ensures energy conservation between the vertex and spectral
representations of the signal, i.e.,

P57
j=1 ||kj(L)f ||

2
2 = ||f ||22

[19]. Specifically, we leveraged tailored Chebyshev polyno-
mial approximations of K, with kernel-specific polynomial
orders of mean 300 ± 200, to filter signals as in (2).

The decomposition of fs,t using each kernel kj(�) 2 K

results in SE value, es,t,j = ||kj(L)f̃s,t||22, which satisfyP
j es,t,j = 1, thanks to the normalization performed in (3)

and the Parseval property of K. Using this measure, we char-
acterize the ensemble distribution of energy, across T time
frames, for a given subject as

C(j) =
1

T

TX

t=1

jX

i=1

es,t,i, j = 1, . . . , 57. (4)
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(b) System of corase-scale spectral kernels for studying changes in SE

(a) System of fine-scale spectral kernels for estimating overall distribution of SE
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CSB 5CSB 4CSB 2CSB 1 CSB 3

Fig. 1: System of spectral kernels forming tight Parseval
frames. In (a), kernels within the spectral range [0, 0.1] are
designed to have narrower bands as the majority of the fMRI
signal energy falls in that range. In (b), values shown within
the kernels represent the fraction of total SE captured within
each sub-band, on average across subjects; see also Fig. 3(a).

In order to reduce the dimensionality of the spectral represen-
tation, we studied variations in the SE content using a coarser
set of five spectral kernels as shown in Fig. 1(b), denoted
H = {hj(�)}5j=1, which also form a Parseval frame. Using
H, we obtained five SE values for each signal f̃s,t as

cs,t,j = ||hj(L)f̃s,t||
2
2, j = 1, · · · , 5, (5)

which satisfy
P

j cs,t,j = 1. The span of the coarse-scale
spectral bands (CSB) was determined as follows. The first
CSB was set to cover approximately the lower 5% of the spec-
trum, i.e., � 2 [0, 0.1], to be consistent with previous results
on spectral characterization of fMRI data on cortical graphs
[18]. The fifth subband was defined to cover the upper ap-
proximately 1% of the ensemble SE. The mid spectral range
was split into three subbands, each of which captured an ap-
proximately equal amount of SE for WM fMRI graph signals
as given by (4), based on the idea presented in [20].

3. RESULTS

Figure 2 shows representative WM harmonics of a repre-
sentative subject. The first harmonic reflects a measure of
the degree at each vertex, whereas the second harmonic—the
Fiedler vector [21], splits the studied hemisphere in two. WM
harmonics associated to larger eigenvalues encode more vary-
ing spatial patterns relative to those associated with smaller
eigenvalues. In particular, the representative WM harmonics
associated with CSBs 2 and 3, � = 0.2 and 0.5, manifest
spatial structures that are reminiscent of fiber bundles ori-
entations, whereas that associated with CSB 4, exhibits a

highly variable structure. The harmonics associated to CSB
5 exhibit spatial structures that are highly variable and local-
ized, in contrast to the lower harmonics which manifest more
delocalized patterns.

Figure 3(a) shows the distribution of SE along the spec-
trum, across subjects; each subject curve represents the en-
semble SE aggregated across all functional frames of the So-
cial task. More than half of the total SE is captured by WM
harmonics associated to eigenvalues within the spectral range
[0, 0.1], whereas less than 1% is captured by WM harmon-
ics associated to the upper-end spectral range [1.4, 2]. Over-
all, more than 90% of the ensemble signal energy is captured
by eigenvectors associated to the lower half of the spectrum.
WM fMRI graph signals associated to functional volumes
along the five trials of the Social task were decomposed as in
(5), resulting in five SE time series per CSB, per subject. The
SE time series were then processed as follows: 1) smoothed
with a moving average filter of length five frames (3.8 sec-
onds), 2) de-meaned to have zero mean, 3) normalized to have
a 0 onset, 4) fitted to a polynomial of order four—the choice
of 4th degree was to enable fitting a curve that potentially
mimics the WM HRF response, in particular, an undershoot
and an overshoot, and 5) averaged across the trials for the con-
dition, resulting in a single ensemble polynomial. A global
ensemble curve was then obtained for each CSB by averaging
the subject-specific ensemble curves across the 95 subjects.

Fig. 3(b) compares changes in the ensemble SE content
across the CSBs in the two experimental conditions of the
Social task. The SE content in CSB 1 drops during the course
of the task, whereas it shows an overall increasing pattern in
CSBs 2 to 4 and shows negligible variation in CSB 5. The
interplay between the SE contents across the CSBs manifest
subtle variations between the two experimental conditions,
with the mental-condition showing a greater drop at CSB 1
relative to the random-condition, suggesting the greater en-
gagement of more finely resolved spatial patterns during the
former condition, and thus, reflecting WM spatial dynamics
of varying nature underlying the two conditions. Moreover,
the extent of change in the spectral content across the CSBs
notably increases 10 seconds post stimulus, an observation
that can be potentially linked to the delayed manifestation of
HRF peaks in WM, which have also been shown to appear 10
seconds post stimulus in multiple WM fiber bundles [22, 7].

Given the low amplitudes of modulation, we performed
two validations to verify the reliability of the observed pat-
terns in Fig. 3(b). Firstly, we performed bootstrapping to
see how replicable each observed pattern is, by randomly
selecting 20 subjects out of the pool of 95 subjects and com-
puting an ensemble curve, repeated 50 times; results shown
in Fig. 3(c). The resulting curves reflect the replicability of
the observed ensemble patterns in Fig. 3(b), which are repli-
cated in Fig. 3(c) as black curves. Secondly, to verify that
the observed patterns are related to the underlying functional
task, ensemble curves over 95 subjects were computed on
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Fig. 2: WM harmonics of a
representative subject, asso-
ciated with the five small-
est eigenvalues (top), and
eigenvalues close to the cen-
ter of the five CSBs shown
in Fig. 1(b). Note that
the harmonics are defined in
3-D whereas a 2-D cross-
section of them is displayed.
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Fig. 3: Characterization of spectral energy content of WM
fMRI data using diffusion-informed WM harmonics.

random segments of the subjects’ two resting-state acqui-
sitions. Resting-state ensemble curves show substantially
lower-amplitude variations compared to task curves, and fur-
thermore, do not manifest a clear decrease/increase in SE
across time, reflecting the greater stability of the underlying
spatial patterns in the resting-state data relative to task data.

4. CONCLUSIONS AND OUTLOOK

From a broad perspective, our results show how the spatial
dynamics of WM fMRI data alter under functional load-

ing, demonstrating an interplay between contributions from
slowly varying and highly varying WM harmonic, corroborat-
ing similar findings on region-based gray matter fMRI graph
signals defined on the connectome [23, 24]. Methods pre-
sented in this work can find application in multiple scenarios.
The quantification of changes in WM BOLD signal has been
suggested as a marker for detecting cognitive decline [25],
but given the low amplitudes of WM HRF [22], we anticipate
changes in SE at different CSBs to be found as an alterna-
tive, more sensitive, identifier of subtle changes in the signal.
Moreover, the manifestation of a clear modulation of SE at
the different CSBs suggest the potential benefit of deriving
white matter functional connectivity matrices [26] from fMRI
data that are spatially filtered to retain contributions from a
given CSB—suppressing contributions from the other CSBs,
rather than smoothing the data using isotropic Gaussian fil-
ters, which deteriorate the inherent diffusion-dependent spa-
tial structure in the data. Lastly, the decomposition of WM
fMRI data at multiple CSBs can be leveraged, for example,
to implement multi-scale spatial denoising of the data [27], to
derive WM signatures of consciousness [28, 29], or to train
models for predicting disease [30].
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