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40 Abstract

41  We present the reliability of ultra-high field T,* MRI at 7T, as part of the UK7T Network’s
42  “Travelling Heads” study. T.*-weighted MRI images can be processed to produce quantitative
43  susceptibility maps (QSM) and R,* maps. These reflect iron and myelin concentrations, which
44 are altered in many pathophysiological processes. The relaxation parameters of human brain
45  tissue are such that Ry* mapping and QSM show particularly strong gains in contrast-to-noise
46  ratio at ultra-high field (7T) vs clinical field strengths (1.5 - 3T). We aimed to determine the
47  inter-subject and inter-site reproducibility of QSM and R,* mapping at 7T, in readiness for
48  future multi-site clinical studies.

49  Methods: Ten healthy volunteers were scanned with harmonised single- and multi-echo T,*-
50 weighted gradient echo pulse sequences. Participants were scanned five times at each “home”
51  site and once at each of four other sites. The five sites had 1x Philips, 2x Siemens Magnetom,
52  and 2x Siemens Terra scanners. QSM and R.* maps were computed with the Multi-Scale
53  Dipole Inversion (MSDI) algorithm (https://github.com/fil-physics/Publication-Code). Results
54 were assessed in relevant subcortical and cortical regions of interest (ROIs) defined manually
55  or by the MNI152 standard space.

56  Results and Discussion: Mean susceptibility (x) and Ry* values agreed broadly with literature
57  values in all ROIs. The inter-site within-subject standard deviation was 0.001 — 0.005 ppm ()
58  and 0.0005 — 0.001 ms™ (R,*). For y this is 2.1-4.8 fold better than 3T reports, and 1.1-3.4 fold
59 better for R,*. The median ICC from within- and cross-site R,* data was 0.98 and 0.91,
60 respectively. Multi-echo QSM had greater variability vs single-echo QSM especially in areas
61  with large By inhomogeneity such as the inferior frontal cortex. Across sites, R,* values were
62  more consistent than QSM in subcortical structures due to differences in Bp-shimming. On a
63 between-subject level, our measured x and R,* cross-site variance is comparable to within-site
64  variance in the literature, suggesting that it is reasonable to pool data across sites using our
65  harmonised protocol.

66  Conclusion: The harmonized UK7T protocol and pipeline delivers on average a 3-fold
67 improvement in the coefficient of reproducibility for QSM and R,* at 7T compared to previous
68  reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site
69 clinical studies at 7T.

70

71  Keywords

72 7 tesla; MRI; Quantitative Susceptibility Mapping; R,* mapping; Multi-centre;
73  Reproducibility.
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74 1. Introduction

75 Neurodegenerative diseases are a significant global health burden. In many instances,
76 neurodegeneration is associated with the deposition of iron in the brain.
77  Understanding the patterns of deposition and their association with other risk factors
78 is a key area of clinical research, but progress has been limited by the need to scale
79  over multi-centre trials (Moeller et al., 2019). The EUFIND (Diizel et al., 2019) is an
80 example of a network focused on advancements in neurodegenerative research by
81 running large-scale multi-centre imaging studies. Also, the UK7T network

82  (http://www.uk7t.org) has recently run a multi-site study with a dementia cohort to

83  assess feasibility in patient groups. Imaging as part of the C-MORE study (Capturing the
84  MultiORgan Effects of COVID-19) is also including harmonized multi-centre sequences
85  which might provide insights into the long-term impact in survivors of COVID-19. Yet,
86 in order to perform such multi-centre studies, it is necessary to first guarantee the

87  consistency and reproducibility of imaging markers.

88 A popularapproach to estimating iron concentration in the human brain uses gradient-
89  echo {GE) magnetic resonance imaging (MRI). In grey matter, iron is mainly found in
90 the protein ferritin which, due to its antiferromagnetic core and the presence of
91 uncompensated spins at the surface or in the core, exhibits a superparamagnetic
92  behaviour (Makhlof et al., 1997; Langkammer et al., 2012). This paramagnetic iron
93 interacts with the MRI scanner’s static magnetic field (Bo) causing local dipolar field
94  perturbations. These accentuate the rate of transverse signal decay causing T,*
95 relaxation in surrounding tissue, which is visible as decreasing signal amplitude with
96 increasing echo time in a series of GE images. This effect causes an increase in the rate
97  of transverse relaxation, R,*, which correlates well with non-heme iron concentrations
98 in grey matter (Gelman et al., 1999; Langkammer et al., 2010), and has been used to
99 investigate the distribution of iron in the healthy brain and in disease (Haacke et al.,

100 2005; Yao et al., 2009; Li et al., 2019).

101 The local presence of iron (and to a lesser extent myelin and calcium) also affects the
102 signal phase of GE images because of the effect of the field perturbation on the local

103  Larmor frequency (House et al., 2007; He et al., 2009; Lee et al., 2012). Quantitative
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104  Susceptibility Mapping (QSM) methods attempt to deconvolve these dipole phase
105 patterns to identify the sources of the magnetic field inhomogeneity. In other words,
106 QSM estimates quantitative maps of tissue magnetic susceptibility x from GE phase
107 data (Li and Leigh, 2004; Reichenbach, 2012; Wang and Liu, 2015). This approach has
108 shown sensitivity to several neurological conditions (Lotfipour et al., 2012; Acosta-
109 Cabronero et al., 2013; Blazejewska et al., 2015; Acosta-Cabronero et al., 2016) and
110 offers advantages over magnitude R,* such as having reduced blooming artifacts or
111  being able to distinguish between paramagnetic and diamagnetic substances (Eskreis-

112  Winkler et al., 2017).

113  R,* imaging and QSM have been shown to provide reproducible results in single-site
114  and cross-site studies at 1.5T and 3T (Hinoda et al., 2015; Cobzas et al., 2015; Deh et
115 al., 2015; Lin et al., 2015; Santin et al., 2017; Feng et al., 2018; Spincemaille et al.,
116  2019).

117 The dipole-inversion problem at the heart of QSM methods benefits from the
118 increased sensitivity to magnetic susceptibility variation and spatial resolution at ultra-
119 high fields (Bo =2 7 T) (Yacoub et al., 2001; Reichenbach et al., 2001; Tie-Qiang et al.,
120 2006; Duyn et al., 2007, Wharton and Bowtel, 2010). At 7T, close attention must be
121  paid to Bp shimming and gradient linearity to achieve accurate QSM and R;* mapping
122 (Yang et al.,, 2010). Head position is also an important factor that affects the

123  susceptibility anisotropy (Lancione et al., 2017; Li et al., 2017).

124 In this study, we introduce single-echo and multi-echo GE imaging protocols for QSM
125 and R,* mapping at 7T which were standardised on three different 7T MRI scanner
126  platforms, from two different vendors. We applied this standardised protocol in the
127  UK7T Network’s “Travelling Heads” study on 10 subjects scanned at 5 sites. We report
128  reproducibility for derived R,* and QSM maps and make recommendations for the

129  design of future multi-centre studies.

130

131
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132
. Gradient Installation Date | Software
#Site Vendor Scanner Model Performance {Month-Year) Version
1 Wellcome Centre for Integrative Siemens | Magnetom 7T 70 mTm* Dec-2011 VB17A
Neuroimaging (FMRIB), University 200mT m™" ms™
of Oxford
2 Cardiff University Brain Research Siemens | Magnetom 7T 70 mTm* Dec-2015 VB17A
Imaging Centre, Cardiff University 200 mT m™* ms™
3 Sir Peter Mansfield Imaging Philips Achieva 7T 40 mT m™ Sep-2005 R5.1.7.0
Centre, University of Nottingham 200 mT m™* ms™
4 Wolfson Brain Imaging Centre, Siemens | Magnetom Terra 80mTm* Dec-2016 VE11U
University of Cambridge 200 mT m™ ms™
5 Imaging Centre of Excellence, Siemens | Magnetom Terra 80 mT m™ Mar-2017 VE11U
University of Glasgow 200 mT m™ ms™

133 Table 1: Details of the scanners and hardware used for the UK7T Network’s Travelling
134  Heads study.
135

136 2. Methods

137  2.1. Measurement setup

138 Ten healthy volunteers (3 female, 7 male; age 32.0+5.9 years) were recruited:
139 comprising two subjects from each of the five 7T imaging sites in the UK7T Network
140  (described in Table 1). Each subject was scanned five times at their “home” site, and
141  once at the other sites, under local ethics approval for multi-site studies obtained at
142  Site-4 (HBREC.2017.08). Scans for each subject were completed within a period of
143  between 83 and 258 days. The five home-site scans were performed across different
144  sessions: the median time to acquire all five scans was 59 days (range: 3-71 days).

145

146 In every scan session, Bp shimming was performed using the vendors’ default second-
147  order (or third-order for Site-4 and Site-5) By-shimming routines. B;*-calibration was
148 performed initially using the vendor’'s default adjustment scans. A 3D DREAM
149 sequence (Nehrke et al., 2012; Ehses et al., 2019) was subsequently acquired and the
150 transmit voltage (or power attenuation) was then adjusted for all subsequent imaging
151 based on the mean flip-angle from the brain in an anatomically-specified axial slice of
152  the 3D DREAM flip angle map as described in Clarke et al. {2019). Single-echo 0.7mm
153 isotropic resolution T,*-weighted GE data were then acquired with: TE/TR=20/31ms;
154  FA=15° bandwidth=70Hz/px; in-plane acceleration-factor=4 (Sites-1/2/4/5) or 2x2
155  (Site-3); FOV=224x224x157mm>; scan-time=~9min. Multi-echo 1.4mm isotropic
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156 resolution T,*-weighted GE data were acquired with: TE;/TR=4/43ms; 8 echoes with
157 monopolar gradient readouts; echo-spacing=5ms; FA=15° bandwidth=260Hz/px;
158  acceleration-factor=4 (Sites-1/2/4/5) or 2x1.5 (Site-3); FOV=269x218x157mm?; scan-
159 time ~6min (Sites-1/2/4/5) and ~4min (Site-3). For Siemens data, coil combination was
160 performed using a custom implementation of Roemer’s algorithm, as previously
161  described (Clarke et al., 2019). Subject 6’s single-echo scan failed to reconstruct using
162 Roemer’s method on data from the 1% visit at Site-5 so a sum-of-squares (SoS)
163 algorithm was used for coil combination for that scan instead. A 0.7mm isotropic
164 MP2RAGE scan was used for within- and cross-site registration as previously described
165 (Mougin et al., 2019).

166

167 2.2.QSM and R,* data processing

168 QSM maps were generated from both the single-echo and multi-echo T,*-weighted
169 datasets using the Multi-Scale Dipole Inversion (MSDI) algorithm, as implemented in
170 QSMbox v2.0 (Acosta-Cabronero et al., 2018). Briefly: first the local field was estimated
171 by phase unwrapping (Abdul-Rahman et al.,, 2005) and magnitude-weighted least
172  squares phase echo fitting was performed on the multi-echo data. Then,
173  independently for both single-echo and multi-echo data, background field was
174  removed using the Laplacian Boundary Value (LBV) method followed by the variable
175  Spherical Mean Value (vSMV) algorithm with an initial kernel radius of 40mm (Zhou et
176 al., 2014; Acosta-Cabronero et al.,, 2018). MSDI inversion was estimated with two
177  scales: the self-optimised lambda method was used on the first scale with filtering
178 performed using a kernel with 1mm radius, and on the second scale the regularization
179  term was set to A=10"’ (the optimal value for in-vivo 7T datasets found in (Acosta-
180 Cabronero et al., 2018)) and filtering was done with a kernel radius set to 5mm. Brain
181 masks used in the analysis were obtained with FSL’'s Brain Extraction Tool (BET) with
182  fractional intensity threshold=0.2 for single-echo data (Smith, 2002). These were then
183  mapped to multi-echo data space.

184  On the multi-echo data, QSM was reconstructed seven more times: with only one echo
185 at 19 ms (matching the single echo data), with the two shortest echoes (i.e. TE/TE, =
186  4/9 ms), with the three shortest echoes (i.e. TE1/TE,/TEs = 4/9/14 ms), and so forth.
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187 On the multi-echo dataset, voxel-wise quantitative maps of R,* were obtained using
188 the Auto-Regression on Linear Operations (ARLO) algorithm for fast monoexponential
189 fitting (Pei et al., 2015). Ry* was also fitted five more times: with data from the first
190 three echoes (TE1/TE2/TE3=4/9/14 ms), then with the first four echoes
191  (TE1/TE2/TE3/TE4=4/9/14/19 ms), and so forth.

192

193  2.3. Data Registration

194  The neck was cropped from the magnitude data with FSL's “robustfov” command
195  (https://fsl.fmrib.ox.ac.uk/fsl/), applied to the single-echo data and the 4™ echo of the
196 multi-echo data. High-resolution single-echo and multi-echo templates were made
197 from this cropped data for each subject with
198 antsMultivariateTemplateConstruction2.sh from the Advanced Normalization Tools
199 (ANTs, http://stnava.github.io/ANTs/). Two approaches were compared:
200 transformations using rigid registration with mutual information similarity metric
201 (denoted as “Rigid” below) or using symmetric diffeomorphic image registration with
202  cross-correlation similarity metric (denoted “SyN” below). Other settings were kept the
203 same for both approaches: 4 steps with 0.1 gradient step size, maximum iterations per
204  step 1000, 500, 250 and 100, smoothing factors per step of 4, 3, 2, and 1 voxels, and
205  shrink factors per step of 12x, 8x, 4x, and 2x. The resulting registrations were then
206 applied to the QSM and R,* maps which were averaged to create single-echo and
207  multi-echo QSM and R,* templates for each subject.

208

209  2.4. Selection of Regions of Interest (ROIs)

210  Five regions of interest (Substantia Nigra, Red Nucleus, Caudate Nucleus, Putamen and
211 Globus Pallidus) were manually segmented based on the subject-specific QSM
212  templates of the single-echo data registered with the “SyN” approach. In order to
213  minimize the amount of segmentation variability, these ROls were then mapped to the
214  single-echo “Rigid”, and multi-echo “SyN” and multi-echo “Rigid” spaces with nearest
215 neighbour interpolation and via non-linear registrations obtained with the default
216  settings in the antsRegistrationSyN.sh command in ANTS.

217
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218 Magnitude data were first registered to the T;-weighted MP2RAGE scans (Rigid
219  transformations; MI similarity metric) and later to the standard T; “MNI152 brain”
220 (Montreal Neurological Institute 152) (using settings in antsRegistrationSyN.sh) applied
221  to the single-echo data and to the 1* echo of the multi-echo data. These registrations
222  were then used to map the 48 probabilistic cortical ROIs, “cortical ROIs”, from the
223  Harvard-Oxford Cortical Atlas and the 21 probabilistic subcortical ROIls, “subcortical
224 ROIs”, from the Harvard Oxford Subcortical Atlas to the QSM and R,* template spaces.
225 The T;-weighted MP2RAGE data was bias-field corrected, brain extracted, and
226  segmented into five tissues using SPM (https://www.fil.ion.ucl.ac.uk/spm/): the grey
227  matter (GM), white matter (WM) and cerebral-spinal fluid (CSF) volumes were mapped
228 into each subject-specific QSM template space. Then, using “fsimaths” from FSL
229  (https://fsl.fmrib.ox.ac.uk/fsl/), the mapped cortical ROIs were thresholded at 10% of
230 the “robust range” of non-zero voxels and multiplied by the GM tissue map in order to
231 obtain GM-specific cortical ROls. The mapped subcortical ROIls were thresholded at
232 50% of the “robust range” of non-zero voxels. From these, any CSF voxels were
233  excluded from the left and right Caudate Nucleus, Putamen and Globus Pallidus, and
234  the voxel sets from the left and right counterparts were merged together.

235  From the single-echo and multi-echo data, average x and R,* values were extracted
236 from the manual and Atlas-based ROIs for all volunteers and sessions in template
237  space (values given in Supplementary Material 1).

238 In order to estimate where the magnetic field is spatially more variable, field-maps
239  were first estimated from the multi-echo datasets. AB, was calculated from the
240  background field removal step of the QSM pipeline, and was defined, per-voxel, as the
241  average difference between the field in a voxel and its immediate nearest neighbors.
242  The average AB, was extracted for each of the cortical ROIs and averaged across all
243  subjects and sessions. Then the cortical ROIs were divided into two groups based on
244  the AB, values: wherever |ABy| > 0.005 Hz the ROl was grouped into “high AB,”
245  regions, otherwise it was grouped into “low AB,” regions. AB, was calculated from the
246  multi-echo pipeline only, as differences to values calculated using single-echo data
247  were minimal (Figure 1, Supplementary Material 2).

248 We explored three possible susceptibility reference regions for QSM processing. The

249  average QSM signal was extracted from:
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250 1. A whole brain mask, “wb”;

251 2. A whole-brain CSF mask eroded in two steps, “csf”;

252 3. A manually placed cylindrical ROl in the right ventricle, “cyl” (across all subjects
253 the ROI volume was 104+11 mm?).

254

255  2.5. Statistical Analysis

256  Statistical analysis was performed with R 3.5.3 (R Core Team, 2013). Cross-site analysis
257  used only the 1% scan at the “home” site along with the scans at the other four sites.
258 To obtain the within subject average, AV, the x and R,* values were averaged within

259  the same site and across the sites and then averaged across subjects:

iz =g xi5/1)

AV, = -

[1]

260 wherenis the number of sessions (n = 5 for within-site and cross-site) and m the
261 number of subjects. Relative reliability was measured using the intra-class correlation
262  coefficient (ICC) from within and cross-site data independently for each ROl (Weir,

263  2005):

- MS, + MS,,(n—1)

264  where MS, and MS,, are the between-subjects and within-subjects mean square from
265 arandom-effects, one-way analysis of variance (ANOVA) model. Intra-subject absolute
266  variability is assessed by measuring the within-subject standard-deviation (SD.)

267  calculated as (Santin et al., 2017):

m g2 ] e (eij—%)?
268 SEL L withg; = — [3]

269 wherex, = Z}leij/n is the replicate average for each subject. SD, was computed
270  using within-site data and cross-site data independently. Similarly, cross-subject

271  variability was calculated by measuring the between-subject standard-deviation (SDy):

12 1(x11 xavg)z

SD, =
b nxm-—1

[4]

272 where x4y = X1 X4 X5 /(n X m) is the measurement average across subjects and

273  sessions. Note that SDyis computed using data from all sites.
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274  Statistical testing on AV, SD,, and ICC values extracted from manual and template-
275 based ROIs was done by first fitting the data with normal, log-normal, gamma and
276 logistic distributions. The goodness-of-fit statistics for the parametric distributions
277  were calculated and the distribution which showed the lowest Akaikes Information
278  Criterion (AIC) was then used on a general linear model fitting. All models included as
279 fixed main effects ROl number and data type (within- and cross-site). When evaluating
280 the data registration type, the model also included registration type (“Rigid” and
281 “SyN”) as a fixed main effect. When testing for QSM reference, the model also
282  included reference region (“wb”, “csf”, and “cyl”) as a fixed main effect. On multi-echo
283 QSM data, a model was fitted which also included the number of echoes processed as
284  a fixed main effect. When comparing the manual and subcortical ROls, the ROI type
285 (manual vs. atlas-based) was also included as a fixed main effect. Finally, on the data
286  from the cortical ROIs, ROl number was replaced with “high AB; ” and “low AB,” ROI
287  type as covariate. A p-value less than 0.05 was considered significant.

288

289  2.6. Head orientation
290 We investigated the effect of head orientation on QSM variability. Since all our data
291 was acquired with transverse slice orientation, the slice normal vector in the acquired
292 images was parallel to Bo. We used the per-subject rotation matrices of the affine
293 transforms from this acquired transverse data to MNI space to estimate the z-axis
294  rotation 0 with respect to the By vector (0,0,1) (Figure 7 (A)):
295

0 = cos 1(Ms3)
296  where Ma; is the 3™ row, 3™ column of the affine transform matrix.
297 Two linear mixed effects models, ‘mod1’ and ‘mod?2’, were fitted on the within-site
298 and cross-site y data separately: both models included site, ROI, and session number
299 as fixed effects, and subject number as a random effect, while ‘mod2’ also included 8
300 as a fixed effect. For each model, the R* was evaluated and both models were
301 compared with a chi-squared test.
302  Finally, from ‘mod2’ the @ fit coefficients were used to estimate corrected y-values

303 based on a chosen standard @ for all of the measurements (6,,,m» = 0.52 radians).
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304 Then, new within-site and cross-site SD,, of the corrected were calculated based on

305 the same approach as in sub-section 2.5.

306

307

308

A. single-echo X B. multi-echo X C.R*
0.1
QSM X
(ppm)
-0.1
0.08
Ry

(ms 1)

309 0

310 Figure 1: Representative slices of single-echo  (A) multi-echo % (B) and R,* maps (C)
311 from an example subject templates. The right Caudate Nucleus (a), Putamen (b) and
312  Globus Pallidus (c) are shown in green. Multi-echo  maps calculated with data from all
313 8echoes.

314 3. Results

315  Figure 1 shows QSM and R;* maps for one example subject. Basal ganglia structures,
316 including Caudate Nucleus, Putamen and Globus Pallidus are clearly visible consistent
317  with previous findings (Langkammer et al., 2010; Wang et al., 2015; Betts et al., 2016;
318  Acosta-Cabronero et al.,, 2016). Figure 2, Supplementary Material 2 highlights the
319 difference in QSM data quality when using our chosen Roemer coil combination

320 method vs using sum-of-squares coil combination.
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321

322  Figure 2: Mean and standard deviation literature values of QSM (A) and R,* (B). The
323  mean and standard deviation results from this study are also plotted. For data with the
324  symbol ‘§’ the standard error of the mean was originally reported and has been
325 rescaled by reported N. Shaded regions correspond to literature data. Multi-echo -

326  maps were calculated with data from all eight echoes.
327

328 3.1.QSM and R,* results and literature

329  Figure 2 compares average y and R,* values calculated in this study in the five manual
330 ROIs and three corresponding atlas-based subcortical ROIs against literature ranges.
331 The single-echo x-values and multi-echo x-values from this study are consistent with
332 literature values at 1.5T, 3T and 7T. R;* values from this study also agree closely with

333 7T literature values.
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334
335  Figure 3. Boxplots from data obtained on the manual ROIs of within- and cross-site

336 AV, (A), SDy (B) and ICC (C) of single-echo and multi-echo QSM, and R,*. Data from
337 each ROl is shown with a different marker for each boxplot. Legend: SN=Substantia
338  Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus Pallidus. The
339 variability in AV,, reflects the natural variation of iron content in subcortical structures
340 in the healthy brain. Multi-echo x-maps were calculated with data from all eight
341 echoes.

342

343  3.2. Reproducibility of QSM and R,*

344  Figure 3 shows boxplots over ROIs of the within- and cross-site AV,, (A), SDy, (B) and ICC
345 (C) values for the manual ROls on the x and R,* maps. The AV,, from R,* maps
346  measured on the same site is systematically higher compared to the AV,, measured

347  across sites (p < 0.0001; e.g., on the Putamen ROI, AV, uithinsite = 0.0493 ms™ vs
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348  AVy crosssite = 0.0489 ms™). On this comparison, QSM data did not show significant
349 differences between within-site and cross-site groups for either single-echo data (p =
350 0.053) or multi-echo data (p = 0.65).

351 From all the data in the manual ROIs, the median SD,, of single-echo x-values was
352  approximately 29% lower than for multi-echo x-values (p = 0.0010). There was a
353 significantly larger SDy cross-site compared to within-site on single-echo x data (p <
354  0.0001; e.g., on the PN ROI, SDy, within-site = 0.00088 ppm VS SDy cross-site = 0.0014 ppm),
355  multi-echo x (p =0.033) and on R,* data (p < 0.0001).

356 The ICC values for within- and cross-site R,* data (median ICC was 0.98 and 0.91,
357 respectively) were found to be significantly higher than values for single-echo x
358 (median ICC was 0.89 and 0.64, respectively) or for multi-echo x {median was ICC 0.76
359 and 0.38, respectively) {(p = 0.00011). For all measurements, the ICC for cross-site data
360  was significantly lower than for within-site data (single-echo QSM: p < 0.0001; multi-
361 echo QSM: p =0.017; Ry*: p < 0.0001).

362  Similar statistics were obtained for AV,,, SD., and ICC measurements in the Altas-based
363  cortical ROIs (Table 2, Supplementary Material 2).

364
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365
366  Figure 4. Voxel-wise within- and cross-site standard deviation of an example subject

367 from single-echo and multi-echo QSM and R,* data with data registered with “Rigid”
368 (A) and “SyN” (B) transformations. Arrows point to regions where the SD,, decreased
369  with the “SyN” transformations (green) are compared to “Rigid” (white). The right
370  Caudate Nucleus (a), Putamen (b) and Globus Pallidus (c) are outlined in white. Multi-
371  echo x-maps were calculated with data from all eight echoes.

372

373 3.3 Registration

374  The within- and cross-site standard deviations for one axial slice from one example
375  subject using “Rigid” and “SyN” registration approaches are shown in Figure 4.
376  Generally, with both registration methods, within-site and cross-site SD,, increases in
377 veins, in the orbitofrontal regions and at the cortical surface (white and green arrows,
378  Figure 4). These are areas associated with large By inhomogeneities and gradient non-
379 linearity. However, there is a decrease in the cross-site standard deviation in the
380 orbitofrontal region and close to the edges of the cortex when using the “SyN”

381 compared to the “Rigid” method (green arrows, Figure 4).
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On the manual ROIs increased variability was observed for R,* on “Rigid” registered
data compared to “SyN” (SDy: p < 0.0001; ICC: p < 0.013) but not for single-echo or
multi-echo x: for example, the median cross-site R,* SD,, from all ROIs was 0.00066 ms’
! using “SyN” method and 0.00086 ms™ using the “Rigid” registration method. On the
atlas-based cortical ROIs, the same significant trend was observed for R,* and single-

echo x data (Table 2, Supplementary Material 2).
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Figure 5: Boxplots from data obtained on the manual ROIs of within- and cross-site SDy,
(red and green, respectively) of single-echo QSM (A) and multi-echo QSM (B) with a
whole-brain reference (wb), with a csf reference (csf), and with a cylinder reference
(cyl). Data from each ROI is shown with a different marker for each boxplot. Legend:
SN=Substantia Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus
Pallidus. Multi-echo x-maps were calculated with data from all eight echoes.

3.4 QSM referencing

To assess the optimal QSM susceptibility referencing, Figure 5 shows boxplots of the
SDw for single-echo and multi-echo yx using different referencing methods on the
manual ROls. On single-echo x data, compared to “wb” correction (chosen correction
for this study), the “csf” reference did not increase significantly the SD,, (p = 0.93) but
with “cyl” the median SD,, increased by approximately 14% (p < 0.0001).

multi-echo x data showed an increase in the median SD,, of, respectively, 11% (p =
0.00096) and 8% (p = 0.00064) when using “csf” and “cyl” methods for correction. The
effect of varying the referencing of QSM data was similar in within-site and cross-site

data, for all methods tested.
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Figure 6. Boxplots from data obtained on the manual ROIs of within- and cross-site SD,,
for multi-echo QSM (A) and R,* (B) calculated with different number of echoes.
Increasing trend on the median SD,, observed with increasing number of echoes was
observed on the QSM data (dotted green and red dotted lines in (A)). Legend:
SN=Substantia Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus
Pallidus.

3.5 Multi-echo QSM & R2*

On average across all the manual ROIs and compared to single echo data, multi-echo
data (using two or more echoes) showed a significant 14% increase of the SD,, (Figure
6) and 3% of the ICC (Table 1, Supplementary Material 2). This supports the single-echo
and multi-echo x comparison in Section 3.2. Similar behaviour was observed on the
atlas-based cortical ROIs (Table 2, Supplementary Material 2). On the manual ROls,
there is no significant difference in AV,, (p = 0.79) or in SD,, (p = 0.11) from x computed
from multiple echoes (i.e. 2 or more echoes in the QSM analysis). Yet, in the atlas-
based cortical ROIs, long echo times (i.e. using 6 or more echoes) showed an average
increase of 15.7% in SD,, (p < 0.0001) compared to using 2 to 5 echoes and a decrease
of 1.75% in ICC (p < 0.0001) (Table 2, Supplementary Material 2).

In the manual ROIs, R>* showed no significant change in variability across all ROIls
when different number of echoes were used in the fitting (SDy: p = 0.11; ICC: p = 0.95)
(Figure 6 (B)) or on AV,, (p = 0.97). In the atlas-based cortical ROIs, the number of
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430 echoes used influenced the average R,* value {AV,: p < 0.0001), weakly ICC (p =
431 0.021), but not SDy (p = 0.61). Table 1 and 2, Supplementary Material 2 display
432  individual statistics.

433

434 3.6 ROl selection

435 There is a small but significant higher average x from manually drawn ROIs compared
436 to the atlas-based subcortical ROIs in single-echo QSM data (p < 0.0001; e.g.
437  0.04240.009 ppm vs 0.03320.010 ppm in the caudate nucleus) and in multi-echo QSM
438 data (p < 0.0001; e.g. 0.048%+0.010 ppm vs 0.038+0.011 ppm in the caudate nucleus)
439  (Figure 2). Similarly, for Ro* (e.g. 0.041£0.004 ms™* vs 0.039+0.006 ms™ in the caudate
440 nucleus) this difference was significant (p < 0.0001). In addition, the SD,, was, on
441  average, approximately two times higher and the ICC lower in the atlas-based
442  subcortical ROIs compared to the manual ROIs in all datasets (SDy: single-echo QSM p
443 < 0.0001, multi-echo QSM p < 0.0001, R,* p < 0.0001; ICC: single-echo QSM p =
444 0.00021, multi-echo QSM p = 0.0023, R,* p = 0.012). So, ROI selection should be done
445  consistently in a study.

446

447 3.7 Spatial distribution of the magnetic field

448  On the altas-based cortical ROIs the SD,, increased by approximately 28% and 88% on
449  “high AB,” regions compared to “low AB,” regions on multi-echo x and R>* data,
450 respectively (p = 0.0011 and p < 0.0001) (Table 2, Supplementary Material 2). Similarly,
451  ICC values decreased significantly for single-echo and multi-echo y and R,* values.

452

453 3.8 QSM variability with head orientation

454  When analysing y in the manually-defined ROIs with respect to 8, a consistent
455  negative trend was observed for all subjects. Figure 7 {C and D) show an example for
456  the analysis in the Globus Pallidus ROI. Fitting a linear model on y, with 8 and ROI as
457  fixed variables, 8 showed a significant negative correlation with single-echo y (p <
458  0.0001) and multi-echo y (p = 0.015).

459 In addition, for 8 the within-site SDy was nearly half of the cross-site SD,, (0.011 and

460 0.028 radians, respectively), indicating that there was larger variability in head
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461 orientation across sites (subject-wise variability of 8, g; of equation [3], is plotted in
462  Figure 7 (B)).

463  Separately for within-site and cross-site y data, we assessed the goodness-of-fit of a
464  model containing @ as an explanatory variable. On single-echo within-site data, the
465  marginal R? increased from 0.71 with ‘mod1’ to 0.76 with ‘mod2’ (which includes 6)
466  (Chi-squared test, p = 0.041). The corresponding cross-site R’s were: 0.77 and 0.80
467  (Chi-squared test, p = 0.057). On multi-echo data, the marginal R? increased from 0.75
468  with ‘mod1’ to 0.79 with ‘mod2’ on within-site data (Chi-squared test, p = 0.041) and
469 maintained at 0.79 on both models for cross-site data (Chi-squared test, p = 0.14).

470  From the corrected y-values at 8,5, results show a slight decrease in the ratio of
471  within-site to cross-site SD,, (Table 2), but variability of y obtained from cross-site data
472  was still higher than from within-site (y with 8-correction, p=0.01; uncorrected y, p <
473  0.0001 (subsection 3.2)). For multi-echo data, the SD,, obtained from the corrected y-
474  values were similar on within-site compared to cross-site (y with 8-correction, p=0.11;

475  uncorrected y, p =0.033 (subsection 3.2)).
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478  Figure 7. In QSM, it is assumed that the macroscopic susceptibility in an imaging voxel
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479 is isotropic. However, it has been shown that this assumption is too simplistic for single
480 head orientation QSM methods, complicating the interpretation of the QSM results (Li
481 et al., 2017). We investigated the effect of head orientation on QSM estimation in our
482  data: (A) Considering that data was all acquired in the transverse plane with Bo
483  perpendicular to the imaging slice, subjects had a variable head rotation & with respect
484  to Bo. To estimate 8, we used MNI space as a common head orientation (zmn) across
485 all scans. From the affine registration matrix M converting acquired data into MNI
486 space, the angle of rotation from the rotated z-axis, z,, will be given by 8 =
487  cos™'(Ms3) where M is the 3™ row, 3™ column of the affine transform matrix. (B)
488  Subject-wise within-site and cross-site g; measurements on 6. (C) Single-echo and (D)
489  multi-echo scatter plots of y measurements according to 8 on the Globus Pallidus
490 manual ROI. For each subject a linear trend is also plotted and the fit coefficients are
491 given in the plot legend. Data from each site is displayed with a different symbol.
492  Multi-echo y-maps were calculated with data from all eight echoes.

493
494
Parameter within-site/cross-site within-site/cross-site
median SD, (no O - | median SD, (with @ -
correction) correction)
Single-echo y 0.82 0.67
Multi-echo y 0.91 0.82

495 Table 2: Within-site to Cross-site ratio of the median SD,, obtained from all five
496  manually-defined ROls on single-echo and multi-echo y without and with 8-correction.
497

498

499 4. Discussion

500 In this paper, the reproducibility of QSM % and R,* measurements in cortical and
501 subcortical regions of the brain was assessed for the first time in a multi-site study at
502 7T for two different protocols (a single-echo 0.7mm isotropic T,*-weighted scan and a
503 1.5mm isotropic multi-echo T,*-weighted scan), using three different scanner

504  platforms provided by two different vendors.

505  Previous studies at 1.5T and 3T have shown good reproducibility for x and R,* data
506 acquired on the same scanner or across sites (1.5T and 3T) (Hinoda et al., 2015; Cobzas
507 et al.,, 2015; Deh et al., 2015; Lin et al., 2015; Santin et al., 2017; Feng et al., 2018;
508 Spincemaille et al., 2019). In terms of QSM and depending on the subcortical region,
509 intra-scanner 3T repeatability studies report an SD,, of 0.002-0.005 ppm (Feng et al.,
510 2018) and 0.004-0.006 ppm (Santin et al., 2017), and the cross-site 3T study by Lin et
511  al. (2015) reported an average SDy of 0.006-0.010 ppm. We observed a within-site SD,,
512 range of 0.0009-0.004 ppm and cross-site SDy, range of 0.001-0.005 ppm at 7T.
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513 Compared to 3T studies, this is a 2.0-5.3 fold decrease in the within-site SD, and a 2.1-
514 4.8 decrease in the cross-site SDy,.

515  The range of within-site SD,, values for R,* was averaged 0.0003-0.001 ms™ in our
516 study and the cross-site SDy range was 0.0005-0.001 ms’. The cross-site values are
517  comparable to the same site reported at 3T: 0.0005-0.0009 ms™ (Feng et al., 2018),
518 0.0006-0.002 ms™ (Santin et al., 2017). Compared to the latter, our cross-site results
519 show a 1.1-3.4 improvement over the same brain regions in R2* variability.

520 The study from Hinoda et al. (2015) measured QSM reproducibility at 1.5T and 3T by
521 scanning subjects twice on each of the scanners. They showed there is a 1.1-2.1 fold
522  decrease in the upper and lower limits in Bland-Altman plots at 3 T compared to 1.5 T,
523  which is in line with the expected signal-to-noise ratio (SNR) increase between these
524  two field strengths (Edelstein et al., 1986; Wardlaw et al., 2012). Compared to 3T
525 reports, there is, on average, an improvement of approximately 3-fold in our QSM and
526  R,* 7T measurements of reproducibility. This is in line with the expected SNR increase
527  in brain imaging from 3T to 7T (Pohmann et al., 2015).

528  The higher values of cross-site SD,, compared to the within-site values in our study may
529 be attributed to the different gradient systems and automatic distortion corrections
530 used in the different scanner platforms and to the different approaches to shimming,
531 which lead to different geometrical distortions and dropout regions (Figure 3 and 4,
532  Supplementary Material 2) (Yang et al., 2010). In our study we verified that not only
533 regions in the cortex close to air-tissue interfaces show differences in Bo across
534  scanners, but also large subcortical regions such as the CN, the Pu and the GP ROls.
535 We also showed that the use of a non-linear registration method (here, “SyN” in ANTSs)
536  significantly reduced the inter-scanner variability of cortical QSM compared to rigid-
537  body registration, indicating that differences in geometric distortion across scanners
538 were present. The Ry* results for both cortical and subcortical structures also show
539 significantly lower inter-scanner variability when a non-linear registration was used.
540 For QSM, higher cross-site variability may also be attributed to the head orientation
541  with respect to By (Lancione et al., 2017; Li et al., 2017). Our results indicate head
542  orientation varied somewhat between scans and there was greater variation between
543  sites than intra-site; we also observed a consistent negative correlation between y and

544  head orientation (€). Using a linear model to attempt to regress-out the effects of
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545  head rotation improved the reproducibility of both within-site and cross-site data. It
546  also reduced the penalty for multi-site scanning vs single-site scanning, but not
547  completely.

548

549 In this study, the reproducibility of QSM using single-echo, high-resolution (0.7 mm
550 isotropic resolution; TE=20ms) and multi-echo standard-resolution (1.4 mm isotropic
551 resolution; TE=4, 9, 14, 19, 24, 29, 34 and 39 ms) protocols were compared, and the
552  results show that the multi-echo QSM data has a significantly higher variability than
553 single-echo QSM. Although multi-echo phase data has been combined with a
554  magnitude-weighted least squares regression of phase to echo time, it may carry
555  inconsistent phase accumulation across echoes that were inconsistently unwrapped.
556  This is also particularly relevant for regions of large field inhomogeneities, where
557  phase accumulation in late echoes could exceed *m between neighbouring voxels,
558  resulting in multiple phase wraps, which the unwrapping algorithm maybe unable to
559  correct (Cronin et al., 2017). This has also been verified on the analysis of QSM data
560 from the cortical ROIs reconstructed with different numbers of echoes: long echo
561 times increase significantly the test-retest variability. Alternative phase unwrapping
562 methods exist such as to perform temporal phase unwrapping across all echo times on
563  the multi-echo data (Liu et al., 2013; Schweser et al., 2013).

564 It has been shown that resolution influences QSM estimation. Haacke et al. {2015)
565 showed on phantom data that by decreasing slice thickness from 3 mm to 0.5 mm
566 partial volume effects are reduced, absolute susceptibility values decrease, and
567  accuracy improves up to 25%. Similar findings on in vivo brain data are reported in Sun
568 et al. (2017) (single-echo data) and Karsa et al. (2018) (multi-echo data). Our results
569 support the suggestion that a reduction of partial volume effects at higher-resolution
570 might play a role in decreasing both test-retest and cross-site variability on the single-

571 echo high-resolution data compared to the multi-echo low-resolution data.

572  R,* values show significantly lower variability, reflected in the higher ICC within and
573  across-sites compared to corresponding values for  in subcortical areas. This may be
574  because the y estimation is globally more sensitive to background field inhomogeneity

575 compared to magnitude data. However, in orbitofrontal and lower temporal regions
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576 large through-plane field variations from tissue-air interfaces dominate the field
577  changes and produce dropouts in the signal magnitude and increase the background
578 phase, affecting both QSM and R,* maps by increasing variability and decreasing ICC
579 across sites. In addition, because of large field variations, the estimated cortical R,*
580 increases significantly when late echo times are used for the fitting, but this effect is

581 not seen in subcortical areas.

582 QSM can only determine relative susceptibility differences (Cheng et al., 2009) and
583  most approaches to calculation of susceptibility from measured phase yield maps in
584  which the average value of susceptibility is zero over the masked imaging volume.
585 Issues related to referencing of QSM data have been investigated (Feng et al., 2018;
586  Straub et al.,, 2017), with aim of finding a reference region or tissue to which all
587  susceptibility values are referred that produces well-defined and reproducible values
588  of susceptibility. Here we investigated how the choice of reference affects the within-
589 site and cross-site variability of measured susceptibility at ultra-high-field. We tested
590 three accepted reference regions: total whole brain signal, “wb”, whole brain CSF
591 eroded in order to exclude any pial or skull surfaces, “csf”’, and a manually selected
592  cylindrical ROI in the right ventricle, “cyl”. We found that the “cyl” referencing
593 generally increased the variability of the cross-site and within-site susceptibility
594  measurements in cortical and subcortical ROIs compared to “wb” referencing. In the
595 case of the multi-echo acquisition the “csf” referencing also increased the variability
596 relative to “wb” data. This may be because of imprecision in systematically obtaining
597  average QSM signal from CSF regions. Referencing using a small ROl in the ventricles
598 might be prone to subjectivity given the natural variation in ventricle size in healthy
599  subjects and in disease. Furthermore, the ventricles do not contain pure CSF: they are
600 traversed by blood vessels with a different y (Sullivan et al., 2002). This makes whole-
601 brain referencing attractive in many situations. Yet, in patient cohorts where there is
602  substantial iron load in subcortical structures (Snyder and Connor, 2009), whole brain
603 referencing might not be an appropriate approach. In this case, the more appropriate
604  approach will be to choose a small reference region which shows no changes in the

605  particular disease to be “zero” susceptibility at a cost of a slight increase in SD.

606
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607 To eliminate operator-dependent bias in segmentation when determining brain
608  structures, we have analysed data using both manual and atlas-based segmentation.
609  From our results, manual ROIs showed significantly lower variability compared to atlas-
610 based methods. This happens because of imprecision in registration between MNI and
611 subject space as well as the empirical thresholding that was chosen to obtain the
612  subcortical ROIs. This resulted in larger ROIs being derived from the atlas-based
613 method compared to the manual method (Wilcoxon test, CN: p=0.014; Pu: p=0.00018;
614  GP: p=0.0010). Overestimation of the region (Figure 5, Supplementary Material 2)
615 meant including boundary voxels that, generally, have lower susceptibility (white-
616  matter, for example), lowering the average % and R,*. However, traditional manual
617 drawing of ROIs for cohort studies is difficult, time consuming and potentially
618 unsuitable as it biases results towards particular cohorts (Collins et al., 2003) so it may
619 not always be the most appropriate approach.

620

621 In this study, harmonized protocols were produced for all five scanners without any
622 significant sequence alterations, as a product 3D gradient echo (GE) sequence was
623 readily available on all systems (the product ‘gre’ sequence from Siemens and the
624  product ‘ffe’ from Philips). The protocols and an example dataset are provided in
625 (Clarke, 2018). Generally, we also relied on the vendors’ reconstruction. However, at
626 the end of the reconstruction pipeline of the Siemens systems we adopted a different
627  coil combination approach based on Roemer et al. (1990) and Walsh et al. {2000), to
628 match the SENSE approach implemented on Philips scanners (Pruessmann et al., 1999;
629 Robinson et al., 2017). This was required due to artifacts appearing on phase images in
630 Siemens data reconstructed with the vendor’s pipeline, such as open-ended fringe
631 lines or singularities (Chavez et al., 2002) (Figure 2, Supplementary Material 2). These
632 reduce the consistency of the QSM results (Santin et al., 2017). However, other coil
633 combination methods such as a selective channel combination approach (Vegh et al.,
634  2016) or the COMPOSER (COMbining Phase data using a Short Echo-time Reference
635 scan) method (Bollmann et al., 2018) have also been shown to reduce open-ended
636 fringe lines and noise in the signal phase. For future investigations, the raw k-space
637 data collected from all sites in this study has been stored and is available from the

638  authors upon request.
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639

640  On the QSM reconstruction, an imperfect background field filtering can influence the
641 reproducibility of QSM data. For this reason, we performed background removal in
642 two steps as implemented in QSMbox v2.0 and as described in {Acosta-Cabronero et
643 al.,, 2018): first with the LBV approach and then followed by the vSMV method.
644  Regularized field-to-susceptibility inversion strategies have been proposed to
645 overcome the ill-posed problem in QSM with data acquired at a single head orientation
646  (de Rochefort et al., 2010). We opted to use the MSDI implementation in QSMbox v2.0
647  (Acosta-Cabronero et al.,, 2018), as it ranked top-10 in all metrics of the 2016 QSM
648  Reconstruction Challenge (Langkammer et al., 2018), and also now includes a new self-
649  optimized local scale, which results in a better preservation of phase noise texture and
650 low susceptibility contrast features. On the second step, the regularization factor, A,
651  used for this study was set to 10%7, as recommended by Acosta-Cabronero et al. (2018)
652  based on an L-curve analysis (Hansen et al., 1993) with high-resolution 7T data.

653 The standard multi-echo GE protocol in this study was produced as a harmonised
654  sequence that could be performed at all sites, with a relatively short acquisition time
655 (approximately 5 minutes), which is acceptable for patient studies. Mid-brain
656  structures such as the basal ganglia are identifiable, yet small subcortical structures
657  will suffer from partial-volume effects, which could be a limitation of this harmonized
658  protocol for future ultra-high field multi-site studies.

659 At ultra-high field there can be variations in SNR in magnitude data caused by the
660 variable B;" across the brain (Abduljalil et al., 2003). As R,* is estimated voxel-wise,
661 and as there is always a reasonable SNR on the magnitude data, the coefficient in the
662 exponential fit that estimates R,* will not be strongly affected by variations in B;".
663 QSM maps are estimated from filtered phase data which is not strongly affected by
664  transmit B;variations. On our data, no correlations were found between QSM or R,*
665 maps and B; flip-angle maps collected in the same session (Figure 6, Supplementary
666 Material 2).

667
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668
669  Figure 8. lllustration of the feasibility of a 7T QSM clinical study. % (A) and R,* (B) for

670 four ROIs (Substantia Nigra, SN; Caudate Nucleus, CN; Putamen, Pu; Globus Pallidus,
671  GP) from healthy volunteer (HV) and synthetic “patient” (PT) data for which AVy; and
672  SDj: were obtained from Langkammer et al. (2016) and SD, were calculated from data
673  of the current study. AV|:values for R,* were linearly scaled to 7T according to Yao et
674  al. (2007). Blue bars show the AV|: = SDy:and green bars the AV)x £ SD,. Statistical
675 differences between HV and PT obtained from Langkammer et al. (2016) are also
676 shown. For each ROI, the sample size that would have been needed to give a
677  significant effect was calculated from the group means, AV, and the SD, per ROI and

678 is shown in circles. Multi-echo x-maps were calculated with data from all eight echoes.
679

680 To minimise confounding effects of age or pathology, we assessed test-retest reliability
681 and cross-site variability with ten healthy young subjects. The cross-site, between-
682  subject standard-deviation, SDy, measured in this study was evaluated together with
683  healthy and Parkinson’s disease data from (Langkammer et al., 2016). A power analysis
684 revealed a sample size that would have been required for a multi-site clinical study in
685 each ROl as shown in Figure 8. For all the significant ROIs the number of subjects that
686  would have been required per group was less or equal to 44. Since this is lower than

687 the sample size we have used in this study (90 healthy volunteer scans) and the

Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: results from the UK7T study Page 26


https://doi.org/10.1101/2020.04.22.055624
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055624; this version posted August 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

688 numbers in the Langkammer study (66 patients and 58 control subjects), it gives strong

689  confidence of feasibility for future 7T QSM clinical studies.

690
691 5. Conclusion

692 We investigated test-retest reliability and reproducibility of T,*-weighted imaging
693  protocols at ultra-high field MRI. Considering the increase in susceptibility effects at
694 7T, we found that variability of measurements of QSM % and R;* in the basal ganglia
695 are reduced compared to reports from lower field strengths, 1.5T and 3T. Scanner
696 hardware differences give more modest improvements for cortical measurements of
697 QSM x and R;*. Multi-echo protocols do not benefit from long echo times as these
698 increase the imprecision in the estimation of QSM. We suggest that 7T MRI is suitable

699 for multicentre quantitative analyses of brain iron, in health and disease.
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