

1 Multi-centre, multi-vendor reproducibility of 7T QSM and R₂* in 2 the human brain: results from the UK7T study

3 Catarina Rua^{a*}, William T Clarke^b, Ian D Driver^c, Olivier Mougin^d, Andrew T. Morgan^e, Stuart
4 Clare^b, Susan Francis^d, Keith Muir^e, Richard Wise^c, Adrian Carpenter^a, Guy Williams^a, James B
5 Rowe^{f,g}, Richard Bowtell^d, Christopher T Rodgers^a

6

7 a) Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of
8 Cambridge, Cambridge, United Kingdom.
9 (The Wolfson Brain Imaging Centre, Box 65, Cambridge Biomedical Campus, Cambridge,
10 UK, CB2 0QQ)

11 b) Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical
12 Neurosciences, University of Oxford, Oxford, United Kingdom.
13 (Wellcome Centre for Integrative Neuroimaging, FMRIB, Level 0, John Radcliffe Hospital,
14 Oxford, United Kingdom, OX3 9DU)

15 c) Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University,
16 Cardiff, United Kingdom.
17 (Cardiff University Brain Research Imaging Centre, Cardiff University, Maindy Road, Cardiff,
18 CF24 4HQ)

19 d) Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of
20 Nottingham, Nottingham, United Kingdom.
21 (Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park,
22 Nottingham, NG7 2RD)

23 e) Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
24 (Imaging Centre of Excellence, Queen Elizabeth University Hospital, Langlands Dr, Glasgow,
25 United Kingdom, G51 4LB)

26 f) Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust,
27 University of Cambridge, Cambridge, United Kingdom
28 (Department of Clinical Neurosciences, Herchel Smith Building, Cambridge Biomedical
29 Campus, Cambridge CB2 0SZ)

30 g) Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge,
31 Cambridge, United Kingdom.
32 (MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road,
33 Cambridge, CB27EF)

34

35

36 * To whom correspondence should be addressed

37

38

39

40 **Abstract**

41 We present the reliability of ultra-high field T_2^* MRI at 7T, as part of the UK7T Network's
42 "Travelling Heads" study. T_2^* -weighted MRI images can be processed to produce quantitative
43 susceptibility maps (QSM) and R_2^* maps. These reflect iron and myelin concentrations, which
44 are altered in many pathophysiological processes. The relaxation parameters of human brain
45 tissue are such that R_2^* mapping and QSM show particularly strong gains in contrast-to-noise
46 ratio at ultra-high field (7T) vs clinical field strengths (1.5 - 3T). We aimed to determine the
47 inter-subject and inter-site reproducibility of QSM and R_2^* mapping at 7T, in readiness for
48 future multi-site clinical studies.

49 Methods: Ten healthy volunteers were scanned with harmonised single- and multi-echo T_2^* -
50 weighted gradient echo pulse sequences. Participants were scanned five times at each "home"
51 site and once at each of four other sites. The five sites had 1x Philips, 2x Siemens Magnetom,
52 and 2x Siemens Terra scanners. QSM and R_2^* maps were computed with the Multi-Scale
53 Dipole Inversion (MSDI) algorithm (<https://github.com/fil-physics/Publication-Code>). Results
54 were assessed in relevant subcortical and cortical regions of interest (ROIs) defined manually
55 or by the MNI152 standard space.

56 Results and Discussion: Mean susceptibility (χ) and R_2^* values agreed broadly with literature
57 values in all ROIs. The inter-site within-subject standard deviation was 0.001 – 0.005 ppm (χ)
58 and 0.0005 – 0.001 ms⁻¹ (R_2^*). For χ this is 2.1-4.8 fold better than 3T reports, and 1.1-3.4 fold
59 better for R_2^* . The median ICC from within- and cross-site R_2^* data was 0.98 and 0.91,
60 respectively. Multi-echo QSM had greater variability vs single-echo QSM especially in areas
61 with large B_0 inhomogeneity such as the inferior frontal cortex. Across sites, R_2^* values were
62 more consistent than QSM in subcortical structures due to differences in B_0 -shimming. On a
63 between-subject level, our measured χ and R_2^* cross-site variance is comparable to within-site
64 variance in the literature, suggesting that it is reasonable to pool data across sites using our
65 harmonised protocol.

66 Conclusion: The harmonized UK7T protocol and pipeline delivers on average a 3-fold
67 improvement in the coefficient of reproducibility for QSM and R_2^* at 7T compared to previous
68 reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site
69 clinical studies at 7T.

70

71 **Keywords**

72 7 tesla; MRI; Quantitative Susceptibility Mapping; R_2^* mapping; Multi-centre;
73 Reproducibility.

74 **1. Introduction**

75 Neurodegenerative diseases are a significant global health burden. In many instances,
76 neurodegeneration is associated with the deposition of iron in the brain.
77 Understanding the patterns of deposition and their association with other risk factors
78 is a key area of clinical research, but progress has been limited by the need to scale
79 over multi-centre trials (Moeller et al., 2019). The EUFIND (Düzel et al., 2019) is an
80 example of a network focused on advancements in neurodegenerative research by
81 running large-scale multi-centre imaging studies. Also, the UK7T network
82 (<http://www.uk7t.org>) has recently run a multi-site study with a dementia cohort to
83 assess feasibility in patient groups. Imaging as part of the C-MORE study (Capturing the
84 MultiORgan Effects of COVID-19) is also including harmonized multi-centre sequences
85 which might provide insights into the long-term impact in survivors of COVID-19. Yet,
86 in order to perform such multi-centre studies, it is necessary to first guarantee the
87 consistency and reproducibility of imaging markers.

88 A popular approach to estimating iron concentration in the human brain uses gradient-
89 echo (GE) magnetic resonance imaging (MRI). In grey matter, iron is mainly found in
90 the protein ferritin which, due to its antiferromagnetic core and the presence of
91 uncompensated spins at the surface or in the core, exhibits a superparamagnetic
92 behaviour (Makhlof et al., 1997; Langkammer et al., 2012). This paramagnetic iron
93 interacts with the MRI scanner's static magnetic field (B_0) causing local dipolar field
94 perturbations. These accentuate the rate of transverse signal decay causing T_2^*
95 relaxation in surrounding tissue, which is visible as decreasing signal amplitude with
96 increasing echo time in a series of GE images. This effect causes an increase in the *rate*
97 of transverse relaxation, R_2^* , which correlates well with non-heme iron concentrations
98 in grey matter (Gelman et al., 1999; Langkammer et al., 2010), and has been used to
99 investigate the distribution of iron in the healthy brain and in disease (Haacke et al.,
100 2005; Yao et al., 2009; Li et al., 2019).

101 The local presence of iron (and to a lesser extent myelin and calcium) also affects the
102 signal phase of GE images because of the effect of the field perturbation on the local
103 Larmor frequency (House et al., 2007; He et al., 2009; Lee et al., 2012). Quantitative

104 Susceptibility Mapping (QSM) methods attempt to deconvolve these dipole phase
105 patterns to identify the sources of the magnetic field inhomogeneity. In other words,
106 QSM estimates quantitative maps of tissue magnetic susceptibility χ from GE phase
107 data (Li and Leigh, 2004; Reichenbach, 2012; Wang and Liu, 2015). This approach has
108 shown sensitivity to several neurological conditions (Lotfipour et al., 2012; Acosta-
109 Cabronero et al., 2013; Blazejewska et al., 2015; Acosta-Cabronero et al., 2016) and
110 offers advantages over magnitude R_2^* such as having reduced blooming artifacts or
111 being able to distinguish between paramagnetic and diamagnetic substances (Eskreis-
112 Winkler et al., 2017).

113 R_2^* imaging and QSM have been shown to provide reproducible results in single-site
114 and cross-site studies at 1.5T and 3T (Hinoda et al., 2015; Cobzas et al., 2015; Deh et
115 al., 2015; Lin et al., 2015; Santin et al., 2017; Feng et al., 2018; Spincemaille et al.,
116 2019).

117 The dipole-inversion problem at the heart of QSM methods benefits from the
118 increased sensitivity to magnetic susceptibility variation and spatial resolution at ultra-
119 high fields ($B_0 \geq 7$ T) (Yacoub et al., 2001; Reichenbach et al., 2001; Tie-Qiang et al.,
120 2006; Duyn et al., 2007; Wharton and Bowtell, 2010). At 7T, close attention must be
121 paid to B_0 shimming and gradient linearity to achieve accurate QSM and R_2^* mapping
122 (Yang et al., 2010). Head position is also an important factor that affects the
123 susceptibility anisotropy (Lancione et al., 2017; Li et al., 2017).

124 In this study, we introduce single-echo and multi-echo GE imaging protocols for QSM
125 and R_2^* mapping at 7T which were standardised on three different 7T MRI scanner
126 platforms, from two different vendors. We applied this standardised protocol in the
127 UK7T Network's "Travelling Heads" study on 10 subjects scanned at 5 sites. We report
128 reproducibility for derived R_2^* and QSM maps and make recommendations for the
129 design of future multi-centre studies.

130

131

132

#	Site	Vendor	Scanner Model	Gradient Performance	Installation Date (Month-Year)	Software Version
1	Wellcome Centre for Integrative Neuroimaging (FMRIB), University of Oxford	Siemens	Magnetom 7T	70 mT m ⁻¹ 200 mT m ⁻¹ ms ⁻¹	Dec-2011	VB17A
2	Cardiff University Brain Research Imaging Centre, Cardiff University	Siemens	Magnetom 7T	70 mT m ⁻¹ 200 mT m ⁻¹ ms ⁻¹	Dec-2015	VB17A
3	Sir Peter Mansfield Imaging Centre, University of Nottingham	Philips	Achieva 7T	40 mT m ⁻¹ 200 mT m ⁻¹ ms ⁻¹	Sep-2005	R5.1.7.0
4	Wolfson Brain Imaging Centre, University of Cambridge	Siemens	Magnetom Terra	80 mT m ⁻¹ 200 mT m ⁻¹ ms ⁻¹	Dec-2016	VE11U
5	Imaging Centre of Excellence, University of Glasgow	Siemens	Magnetom Terra	80 mT m ⁻¹ 200 mT m ⁻¹ ms ⁻¹	Mar-2017	VE11U

133 **Table 1:** Details of the scanners and hardware used for the UK7T Network's Travelling

134 Heads study.

135

136 2. Methods

137 2.1. Measurement setup

138 Ten healthy volunteers (3 female, 7 male; age 32.0±5.9 years) were recruited:
139 comprising two subjects from each of the five 7T imaging sites in the UK7T Network
140 (described in Table 1). Each subject was scanned five times at their “home” site, and
141 once at the other sites, under local ethics approval for multi-site studies obtained at
142 Site-4 (HBREC.2017.08). Scans for each subject were completed within a period of
143 between 83 and 258 days. The five home-site scans were performed across different
144 sessions: the median time to acquire all five scans was 59 days (range: 3-71 days).

145

146 In every scan session, B_0 shimming was performed using the vendors' default second-
147 order (or third-order for Site-4 and Site-5) B_0 -shimming routines. B_1^+ -calibration was
148 performed initially using the vendor's default adjustment scans. A 3D DREAM
149 sequence (Nehrke et al., 2012; Ehses et al., 2019) was subsequently acquired and the
150 transmit voltage (or power attenuation) was then adjusted for all subsequent imaging
151 based on the mean flip-angle from the brain in an anatomically-specified axial slice of
152 the 3D DREAM flip angle map as described in Clarke et al. (2019). Single-echo 0.7mm
153 isotropic resolution T_2^* -weighted GE data were then acquired with: TE/TR=20/31ms;
154 FA=15°; bandwidth=70Hz/px; in-plane acceleration-factor=4 (Sites-1/2/4/5) or 2x2
155 (Site-3); FOV=224x224x157mm³; scan-time=~9min. Multi-echo 1.4mm isotropic

156 resolution T_2^* -weighted GE data were acquired with: $TE_1/TR=4/43\text{ms}$; 8 echoes with
157 monopolar gradient readouts; echo-spacing=5ms; $FA=15^\circ$; bandwidth=260Hz/px;
158 acceleration-factor=4 (Sites-1/2/4/5) or 2x1.5 (Site-3); $FOV=269\times218\times157\text{mm}^3$; scan-
159 time $\sim 6\text{min}$ (Sites-1/2/4/5) and $\sim 4\text{min}$ (Site-3). For Siemens data, coil combination was
160 performed using a custom implementation of Roemer's algorithm, as previously
161 described (Clarke et al., 2019). Subject 6's single-echo scan failed to reconstruct using
162 Roemer's method on data from the 1st visit at Site-5 so a sum-of-squares (SoS)
163 algorithm was used for coil combination for that scan instead. A 0.7mm isotropic
164 MP2RAGE scan was used for within- and cross-site registration as previously described
165 (Mougin et al., 2019).

166

167 2.2. QSM and R_2^* data processing

168 QSM maps were generated from both the single-echo and multi-echo T_2^* -weighted
169 datasets using the Multi-Scale Dipole Inversion (MSDI) algorithm, as implemented in
170 QSMbox v2.0 (Acosta-Cabronero et al., 2018). Briefly: first the local field was estimated
171 by phase unwrapping (Abdul-Rahman et al., 2005) and magnitude-weighted least
172 squares phase echo fitting was performed on the multi-echo data. Then,
173 independently for both single-echo and multi-echo data, background field was
174 removed using the Laplacian Boundary Value (LBV) method followed by the variable
175 Spherical Mean Value (vSMV) algorithm with an initial kernel radius of 40mm (Zhou et
176 al., 2014; Acosta-Cabronero et al., 2018). MSDI inversion was estimated with two
177 scales: the self-optimised lambda method was used on the first scale with filtering
178 performed using a kernel with 1mm radius, and on the second scale the regularization
179 term was set to $\lambda=10^{2.7}$ (the optimal value for *in-vivo* 7T datasets found in (Acosta-
180 Cabronero et al., 2018)) and filtering was done with a kernel radius set to 5mm. Brain
181 masks used in the analysis were obtained with FSL's Brain Extraction Tool (BET) with
182 fractional intensity threshold=0.2 for single-echo data (Smith, 2002). These were then
183 mapped to multi-echo data space.

184 On the multi-echo data, QSM was reconstructed seven more times: with only one echo
185 at 19 ms (matching the single echo data), with the two shortest echoes (i.e. $TE_1/TE_2 =$
186 $4/9\text{ ms}$), with the three shortest echoes (i.e. $TE_1/TE_2/TE_3 = 4/9/14\text{ ms}$), and so forth.

187 On the multi-echo dataset, voxel-wise quantitative maps of R_2^* were obtained using
188 the Auto-Regression on Linear Operations (ARLO) algorithm for fast monoexponential
189 fitting (Pei et al., 2015). R_2^* was also fitted five more times: with data from the first
190 three echoes (TE1/TE2/TE3=4/9/14 ms), then with the first four echoes
191 (TE1/TE2/TE3/TE4=4/9/14/19 ms), and so forth.

192

193 2.3. Data Registration

194 The neck was cropped from the magnitude data with FSL's "robustfov" command
195 (<https://fsl.fmrib.ox.ac.uk/fsl/>), applied to the single-echo data and the 4th echo of the
196 multi-echo data. High-resolution single-echo and multi-echo templates were made
197 from this cropped data for each subject with
198 `antsMultivariateTemplateConstruction2.sh` from the Advanced Normalization Tools
199 (ANTs, <http://stnava.github.io/ANTs/>). Two approaches were compared:
200 transformations using rigid registration with mutual information similarity metric
201 (denoted as "Rigid" below) or using symmetric diffeomorphic image registration with
202 cross-correlation similarity metric (denoted "SyN" below). Other settings were kept the
203 same for both approaches: 4 steps with 0.1 gradient step size, maximum iterations per
204 step 1000, 500, 250 and 100, smoothing factors per step of 4, 3, 2, and 1 voxels, and
205 shrink factors per step of 12x, 8x, 4x, and 2x. The resulting registrations were then
206 applied to the QSM and R_2^* maps which were averaged to create single-echo and
207 multi-echo QSM and R_2^* templates for each subject.

208

209 2.4. Selection of Regions of Interest (ROIs)

210 Five regions of interest (Substantia Nigra, Red Nucleus, Caudate Nucleus, Putamen and
211 Globus Pallidus) were manually segmented based on the subject-specific QSM
212 templates of the single-echo data registered with the "SyN" approach. In order to
213 minimize the amount of segmentation variability, these ROIs were then mapped to the
214 single-echo "Rigid", and multi-echo "SyN" and multi-echo "Rigid" spaces with nearest
215 neighbour interpolation and via non-linear registrations obtained with the default
216 settings in the `antsRegistrationSyN.sh` command in ANTs.

217

218 Magnitude data were first registered to the T_1 -weighted MP2RAGE scans (Rigid
219 transformations; MI similarity metric) and later to the standard T_1 “MNI152 brain”
220 (Montreal Neurological Institute 152) (using settings in antsRegistrationSyN.sh) applied
221 to the single-echo data and to the 1st echo of the multi-echo data. These registrations
222 were then used to map the 48 probabilistic cortical ROIs, “cortical ROIs”, from the
223 Harvard-Oxford Cortical Atlas and the 21 probabilistic subcortical ROIs, “subcortical
224 ROIs”, from the Harvard Oxford Subcortical Atlas to the QSM and R_2^* template spaces.
225 The T_1 -weighted MP2RAGE data was bias-field corrected, brain extracted, and
226 segmented into five tissues using SPM (<https://www.fil.ion.ucl.ac.uk/spm/>): the grey
227 matter (GM), white matter (WM) and cerebral-spinal fluid (CSF) volumes were mapped
228 into each subject-specific QSM template space. Then, using “fslmaths” from FSL
229 (<https://fsl.fmrib.ox.ac.uk/fsl/>), the mapped cortical ROIs were thresholded at 10% of
230 the “robust range” of non-zero voxels and multiplied by the GM tissue map in order to
231 obtain GM-specific cortical ROIs. The mapped subcortical ROIs were thresholded at
232 50% of the “robust range” of non-zero voxels. From these, any CSF voxels were
233 excluded from the left and right Caudate Nucleus, Putamen and Globus Pallidus, and
234 the voxel sets from the left and right counterparts were merged together.
235 From the single-echo and multi-echo data, average χ and R_2^* values were extracted
236 from the manual and Atlas-based ROIs for all volunteers and sessions in template
237 space (values given in Supplementary Material 1).
238 In order to estimate where the magnetic field is spatially more variable, field-maps
239 were first estimated from the multi-echo datasets. ΔB_0 was calculated from the
240 background field removal step of the QSM pipeline, and was defined, per-voxel, as the
241 average difference between the field in a voxel and its immediate nearest neighbors.
242 The average ΔB_0 was extracted for each of the cortical ROIs and averaged across all
243 subjects and sessions. Then the cortical ROIs were divided into two groups based on
244 the ΔB_0 values: wherever $|\Delta B_0| > 0.005 \text{ Hz}$ the ROI was grouped into “high ΔB_0 ”
245 regions, otherwise it was grouped into “low ΔB_0 ” regions. ΔB_0 was calculated from the
246 multi-echo pipeline only, as differences to values calculated using single-echo data
247 were minimal (Figure 1, Supplementary Material 2).
248 We explored three possible susceptibility reference regions for QSM processing. The
249 average QSM signal was extracted from:

250 1. A whole brain mask, “wb”;
251 2. A whole-brain CSF mask eroded in two steps, “csf”;
252 3. A manually placed cylindrical ROI in the right ventricle, “cyl” (across all subjects
253 the ROI volume was $104 \pm 11 \text{ mm}^3$).

254

255 2.5. Statistical Analysis

256 Statistical analysis was performed with R 3.5.3 (R Core Team, 2013). Cross-site analysis
257 used only the 1st scan at the “home” site along with the scans at the other four sites.
258 To obtain the within subject average, AV_w , the χ and R_2^* values were averaged within
259 the same site and across the sites and then averaged across subjects:

$$AV_w = \frac{\sum_{i=1}^m (\sum_{j=1}^n x_{ij} / n)}{m} \quad [1]$$

260 where n is the number of sessions ($n = 5$ for within-site and cross-site) and m the
261 number of subjects. Relative reliability was measured using the intra-class correlation
262 coefficient (ICC) from within and cross-site data independently for each ROI (Weir,
263 2005):

$$ICC = \frac{MS_b - MS_w}{MS_b + MS_w(n - 1)} \quad [2]$$

264 where MS_b and MS_w are the between-subjects and within-subjects mean square from
265 a random-effects, one-way analysis of variance (ANOVA) model. Intra-subject absolute
266 variability is assessed by measuring the within-subject standard-deviation (SD_w)
267 calculated as (Santin et al., 2017):

$$SD_w = \sqrt{\frac{\sum_{i=1}^m \sigma_i^2}{m}} \text{ with } \sigma_i = \sqrt{\frac{\sum_{j=1}^n (x_{ij} - \bar{x}_i)^2}{n-1}} \quad [3]$$

268 where $\bar{x}_i = \sum_{j=1}^n x_{ij} / n$ is the replicate average for each subject. SD_w was computed
269 using within-site data and cross-site data independently. Similarly, cross-subject
270 variability was calculated by measuring the between-subject standard-deviation (SD_b):

$$SD_b = \sqrt{\frac{\sum_{i=1}^m \sum_{j=1}^n (x_{ij} - x_{avg})^2}{n \times m - 1}} \quad [4]$$

271 where $x_{avg} = \sum_{i=1}^m \sum_{j=1}^n x_{ij} / (n \times m)$ is the measurement average across subjects and
272 sessions. Note that SD_b is computed using data from all sites.

274 Statistical testing on AV_w , SD_w and ICC values extracted from manual and template-
275 based ROIs was done by first fitting the data with normal, log-normal, gamma and
276 logistic distributions. The goodness-of-fit statistics for the parametric distributions
277 were calculated and the distribution which showed the lowest Akaike's Information
278 Criterion (AIC) was then used on a general linear model fitting. All models included as
279 fixed main effects ROI number and data type (within- and cross-site). When evaluating
280 the data registration type, the model also included registration type ("Rigid" and
281 "SyN") as a fixed main effect. When testing for QSM reference, the model also
282 included reference region ("wb", "csf", and "cyl") as a fixed main effect. On multi-echo
283 QSM data, a model was fitted which also included the number of echoes processed as
284 a fixed main effect. When comparing the manual and subcortical ROIs, the ROI type
285 (manual vs. atlas-based) was also included as a fixed main effect. Finally, on the data
286 from the cortical ROIs, ROI number was replaced with "high ΔB_0 " and "low ΔB_0 " ROI
287 type as covariate. A p-value less than 0.05 was considered significant.

288

289 2.6. Head orientation

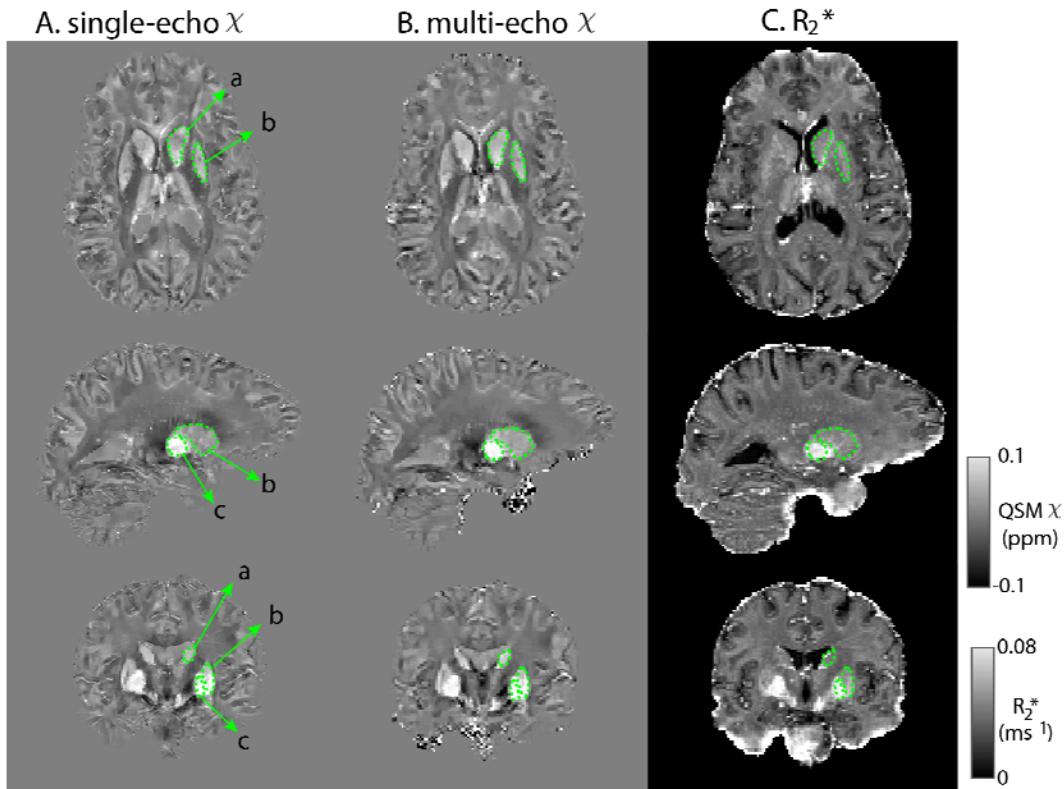
290 We investigated the effect of head orientation on QSM variability. Since all our data
291 was acquired with transverse slice orientation, the slice normal vector in the acquired
292 images was parallel to B_0 . We used the per-subject rotation matrices of the affine
293 transforms from this acquired transverse data to MNI space to estimate the z-axis
294 rotation θ with respect to the B_0 vector (0,0,1) (Figure 7 (A)):

295

$$\theta = \cos^{-1}(M_{33})$$

296 where M_{33} is the 3rd row, 3rd column of the affine transform matrix.

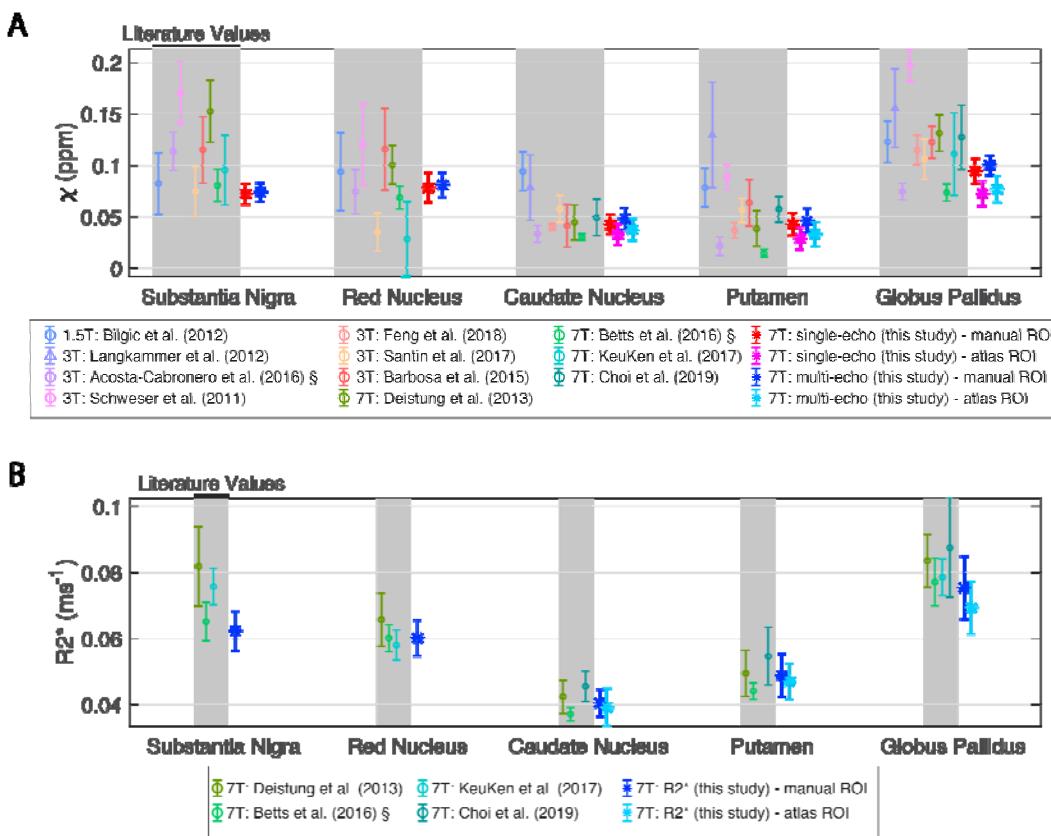
297 Two linear mixed effects models, 'mod1' and 'mod2', were fitted on the within-site
298 and cross-site χ data separately: both models included site, ROI, and session number
299 as fixed effects, and subject number as a random effect, while 'mod2' also included θ
300 as a fixed effect. For each model, the R^2 was evaluated and both models were
301 compared with a chi-squared test.


302 Finally, from 'mod2' the θ fit coefficients were used to estimate corrected χ -values
303 based on a chosen standard θ for all of the measurements ($\theta_{norm} = 0.52$ radians).

304 Then, new within-site and cross-site SD_w of the corrected were calculated based on
305 the same approach as in sub-section 2.5.

306

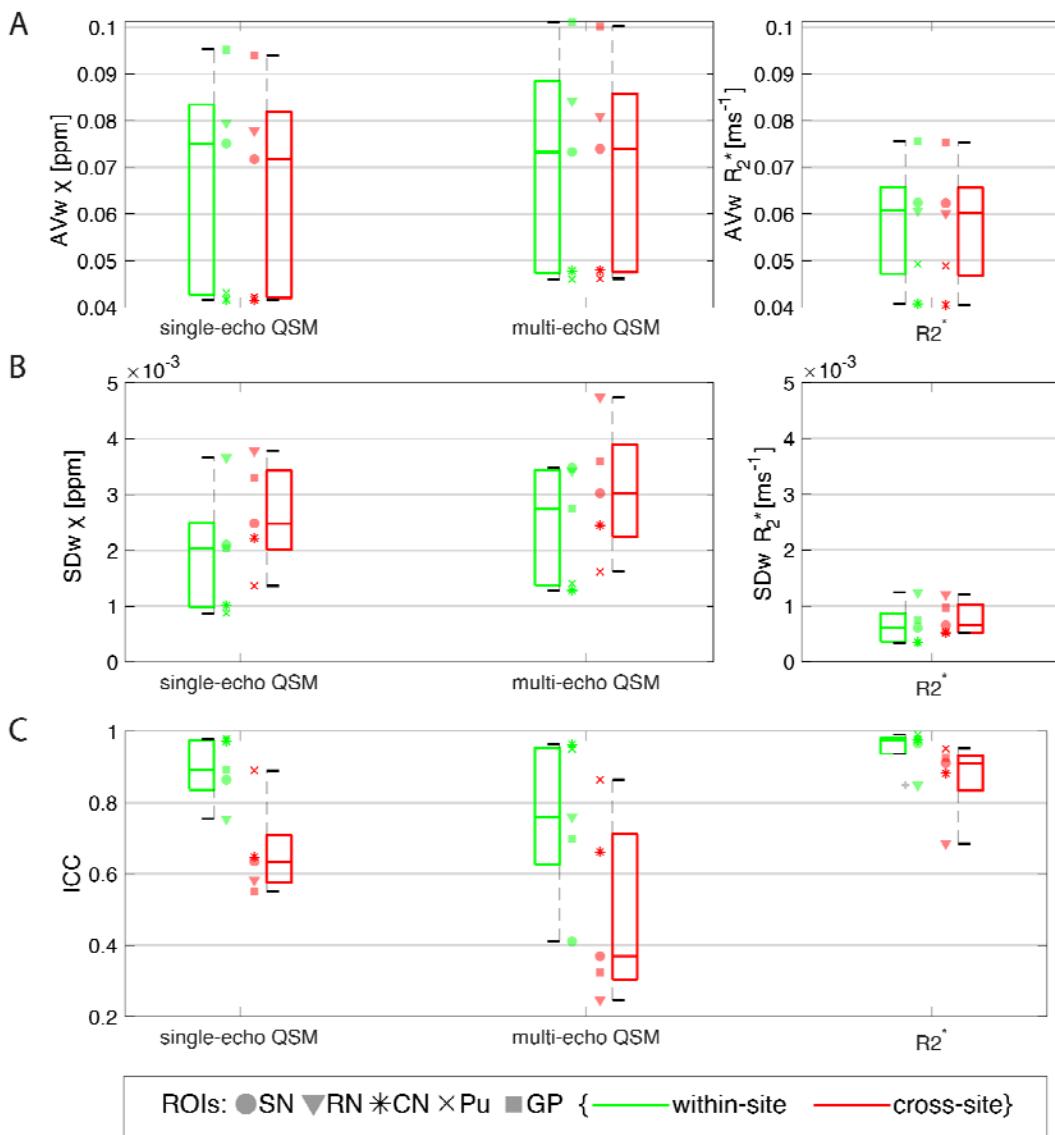
307


308

309
310 **Figure 1:** Representative slices of single-echo χ (A) multi-echo χ (B) and R_2^* maps (C)
311 from an example subject templates. The right Caudate Nucleus (a), Putamen (b) and
312 Globus Pallidus (c) are shown in green. Multi-echo χ maps calculated with data from all
313 8 echoes.

314 3. Results

315 Figure 1 shows QSM and R_2^* maps for one example subject. Basal ganglia structures,
316 including Caudate Nucleus, Putamen and Globus Pallidus are clearly visible consistent
317 with previous findings (Langkammer et al., 2010; Wang et al., 2015; Betts et al., 2016;
318 Acosta-Cabronero et al., 2016). Figure 2, Supplementary Material 2 highlights the
319 difference in QSM data quality when using our chosen Roemer coil combination
320 method vs using sum-of-squares coil combination.


321

322 **Figure 2:** Mean and standard deviation literature values of QSM (A) and $R2^*$ (B). The
323 mean and standard deviation results from this study are also plotted. For data with the
324 symbol '§' the standard error of the mean was originally reported and has been
325 rescaled by reported N. Shaded regions correspond to literature data. Multi-echo χ -
326 maps were calculated with data from all eight echoes.

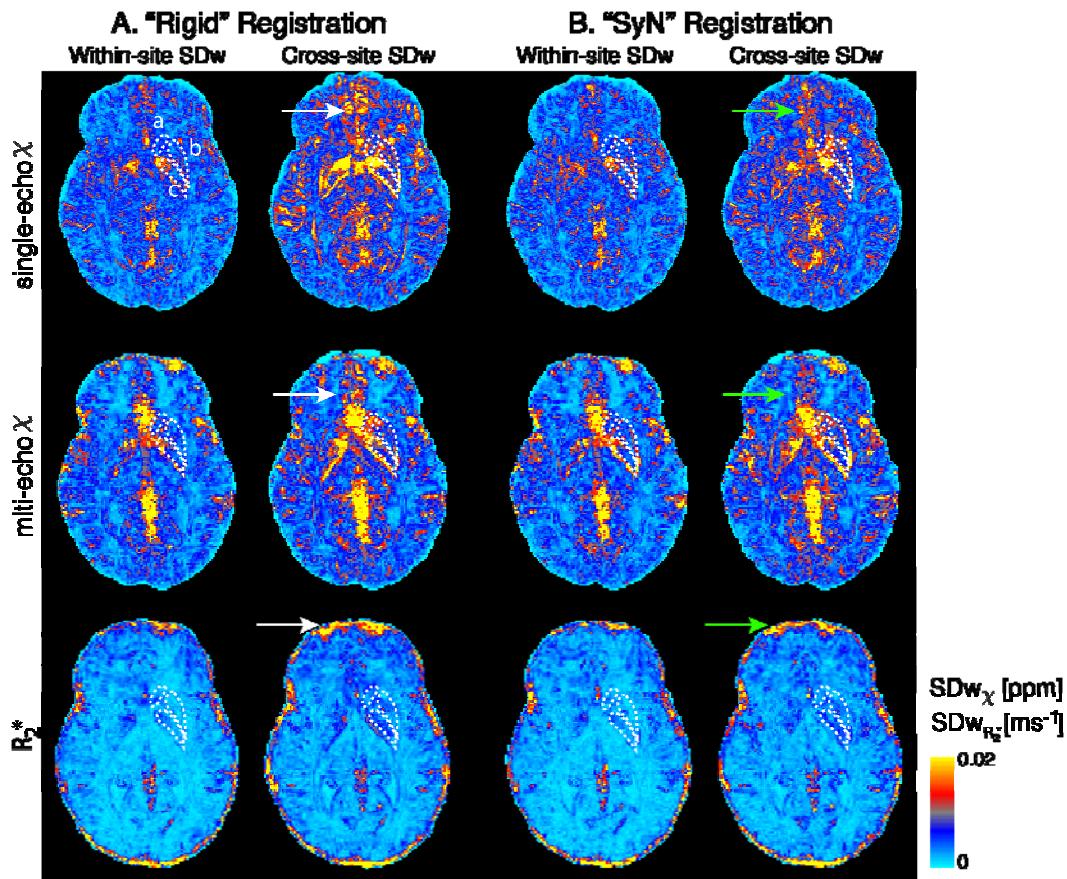
327

328 3.1. QSM and $R2^*$ results and literature

329 Figure 2 compares average χ and $R2^*$ values calculated in this study in the five manual
330 ROIs and three corresponding atlas-based subcortical ROIs against literature ranges.
331 The single-echo χ -values and multi-echo χ -values from this study are consistent with
332 literature values at 1.5T, 3T and 7T. $R2^*$ values from this study also agree closely with
333 7T literature values.

334

335

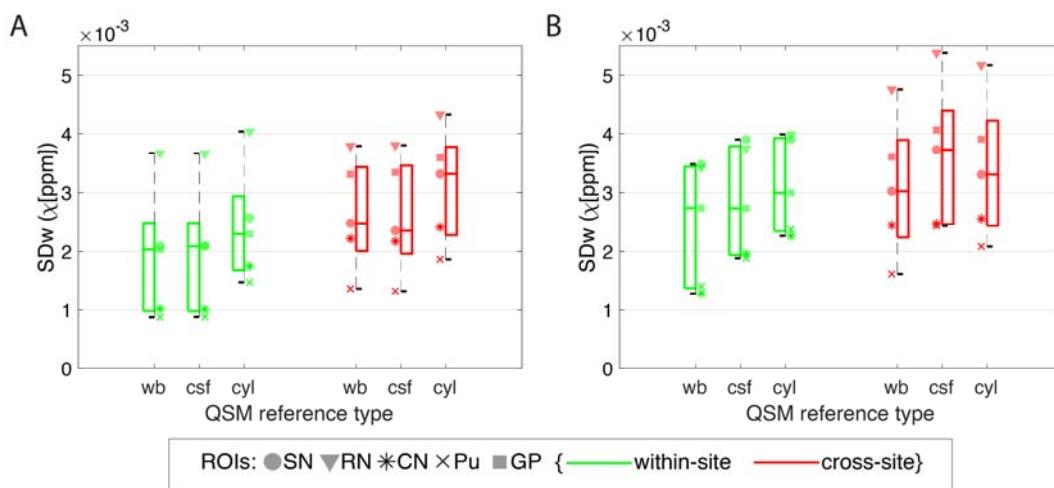

336 **Figure 3.** Boxplots from data obtained on the manual ROIs of within- and cross-site
337 AV_w (A), SD_w (B) and ICC (C) of single-echo and multi-echo QSM, and R_2^* . Data from
338 each ROI is shown with a different marker for each boxplot. Legend: SN=Substantia
339 Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus Pallidus. The
340 variability in AV_w reflects the natural variation of iron content in subcortical structures
341 in the healthy brain. Multi-echo χ -maps were calculated with data from all eight
342 echoes.

342

343 3.2. Reproducibility of QSM and R_2^*

344 Figure 3 shows boxplots over ROIs of the within- and cross-site AV_w (A), SD_w (B) and ICC
345 (C) values for the manual ROIs on the χ and R_2^* maps. The AV_w from R_2^* maps
346 measured on the same site is systematically higher compared to the AV_w measured
347 across sites ($p < 0.0001$; e.g., on the Putamen ROI, $AV_{w_within-site} = 0.0493 \text{ ms}^{-1}$ vs

348 $AV_{w_cross-site} = 0.0489 \text{ ms}^{-1}$). On this comparison, QSM data did not show significant
349 differences between within-site and cross-site groups for either single-echo data ($p =$
350 0.053) or multi-echo data ($p = 0.65$).
351 From all the data in the manual ROIs, the median SD_w of single-echo χ -values was
352 approximately 29% lower than for multi-echo χ -values ($p = 0.0010$). There was a
353 significantly larger SD_w cross-site compared to within-site on single-echo χ data ($p <$
354 0.0001; e.g., on the PN ROI, $SD_{w_within-site} = 0.00088 \text{ ppm}$ vs $SD_{w_cross-site} = 0.0014 \text{ ppm}$),
355 multi-echo χ ($p = 0.033$) and on R_2^* data ($p < 0.0001$).
356 The ICC values for within- and cross-site R_2^* data (median ICC was 0.98 and 0.91,
357 respectively) were found to be significantly higher than values for single-echo χ
358 (median ICC was 0.89 and 0.64, respectively) or for multi-echo χ (median was ICC 0.76
359 and 0.38, respectively) ($p = 0.00011$). For all measurements, the ICC for cross-site data
360 was significantly lower than for within-site data (single-echo QSM: $p < 0.0001$; multi-
361 echo QSM: $p = 0.017$; R_2^* : $p < 0.0001$).
362 Similar statistics were obtained for AV_w , SD_w and ICC measurements in the Altas-based
363 cortical ROIs (Table 2, Supplementary Material 2).
364

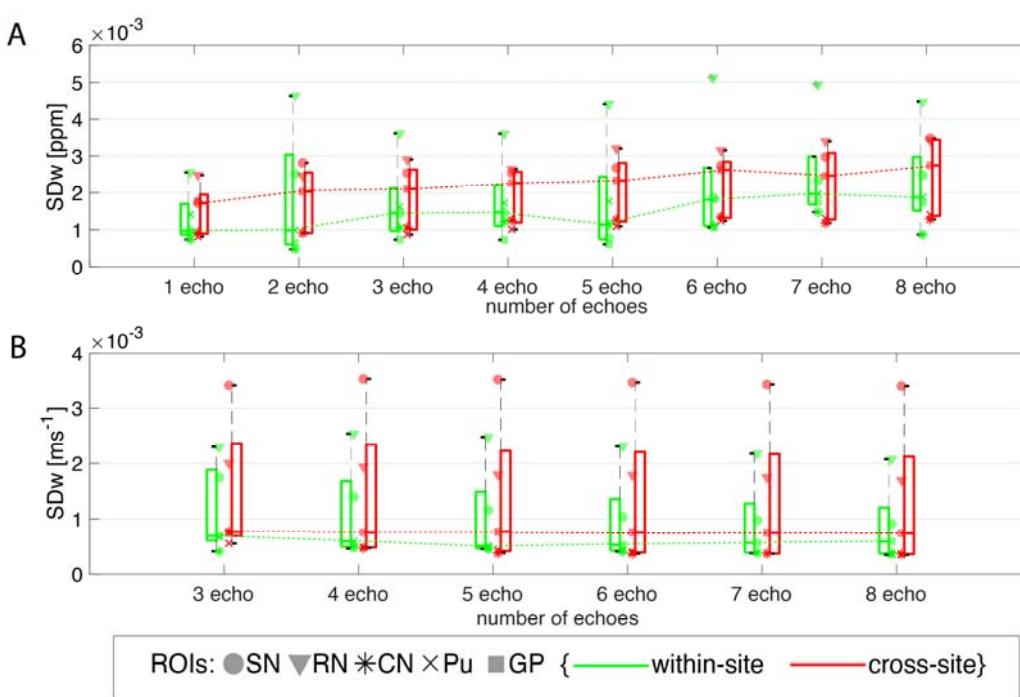

365
366 **Figure 4.** Voxel-wise within- and cross-site standard deviation of an example subject
367 from single-echo and multi-echo QSM and R_2^* data with data registered with "Rigid"
368 (A) and "SyN" (B) transformations. Arrows point to regions where the SD_w decreased
369 with the "SyN" transformations (green) are compared to "Rigid" (white). The right
370 Caudate Nucleus (a), Putamen (b) and Globus Pallidus (c) are outlined in white. Multi-
371 echo χ -maps were calculated with data from all eight echoes.
372

373 3.3 Registration

374 The within- and cross-site standard deviations for one axial slice from one example
375 subject using "Rigid" and "SyN" registration approaches are shown in Figure 4.
376 Generally, with both registration methods, within-site and cross-site SD_w increases in
377 veins, in the orbitofrontal regions and at the cortical surface (white and green arrows,
378 Figure 4). These are areas associated with large B_0 inhomogeneities and gradient non-
379 linearity. However, there is a decrease in the cross-site standard deviation in the
380 orbitofrontal region and close to the edges of the cortex when using the "SyN"
381 compared to the "Rigid" method (green arrows, Figure 4).

382 On the manual ROIs increased variability was observed for R_2^* on “Rigid” registered
383 data compared to “SyN” (SD_w : $p < 0.0001$; ICC: $p < 0.013$) but not for single-echo or
384 multi-echo χ : for example, the median cross-site R_2^* SD_w from all ROIs was 0.00066 ms^{-1}
385 using “SyN” method and 0.00086 ms^{-1} using the “Rigid” registration method. On the
386 atlas-based cortical ROIs, the same significant trend was observed for R_2^* and single-
387 echo χ data (Table 2, Supplementary Material 2).

388



389
390 **Figure 5:** Boxplots from data obtained on the manual ROIs of within- and cross-site SD_w
391 (red and green, respectively) of single-echo QSM (A) and multi-echo QSM (B) with a
392 whole-brain reference (wb), with a csf reference (csf), and with a cylinder reference
393 (cyl). Data from each ROI is shown with a different marker for each boxplot. Legend:
394 SN=Substantia Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus
395 Pallidus. Multi-echo χ -maps were calculated with data from all eight echoes.
396

397 3.4 QSM referencing

398 To assess the optimal QSM susceptibility referencing, Figure 5 shows boxplots of the
399 SD_w for single-echo and multi-echo χ using different referencing methods on the
400 manual ROIs. On single-echo χ data, compared to “wb” correction (chosen correction
401 for this study), the “csf” reference did not increase significantly the SD_w ($p = 0.93$) but
402 with “cyl” the median SD_w increased by approximately 14% ($p < 0.0001$).
403 multi-echo χ data showed an increase in the median SD_w of, respectively, 11% ($p =$
404 0.00096) and 8% ($p = 0.00064$) when using “csf” and “cyl” methods for correction. The
405 effect of varying the referencing of QSM data was similar in within-site and cross-site
406 data, for all methods tested.

407

408
409 **Figure 6.** Boxplots from data obtained on the manual ROIs of within- and cross-site SD_w
410 for multi-echo QSM (A) and R₂* (B) calculated with different number of echoes.
411 Increasing trend on the median SD_w observed with increasing number of echoes was
412 observed on the QSM data (dotted green and red dotted lines in (A)). Legend:
413 SN=Substantia Nigra; RN: Red Nucleus; CN: Caudate Nucleus; Pu: Putamen; GP: Globus
414 Pallidus.
415

416 3.5 Multi-echo QSM & R2*

417 On average across all the manual ROIs and compared to single echo data, multi-echo
418 data (using two or more echoes) showed a significant 14% increase of the SD_w (Figure
419 6) and 3% of the ICC (Table 1, Supplementary Material 2). This supports the single-echo
420 and multi-echo χ comparison in Section 3.2. Similar behaviour was observed on the
421 atlas-based cortical ROIs (Table 2, Supplementary Material 2). On the manual ROIs,
422 there is no significant difference in AV_w ($p = 0.79$) or in SD_w ($p = 0.11$) from χ computed
423 from multiple echoes (i.e. 2 or more echoes in the QSM analysis). Yet, in the atlas-
424 based cortical ROIs, long echo times (i.e. using 6 or more echoes) showed an average
425 increase of 15.7% in SD_w ($p < 0.0001$) compared to using 2 to 5 echoes and a decrease
426 of 1.75% in ICC ($p < 0.0001$) (Table 2, Supplementary Material 2).

427 In the manual ROIs, R₂* showed no significant change in variability across all ROIs
428 when different number of echoes were used in the fitting (SD_w: $p = 0.11$; ICC: $p = 0.95$)
429 (Figure 6 (B)) or on AV_w ($p = 0.97$). In the atlas-based cortical ROIs, the number of

430 echoes used influenced the average R_2^* value (AV_w : $p < 0.0001$), weakly ICC ($p =$
431 0.021), but not SD_w ($p = 0.61$). Table 1 and 2, Supplementary Material 2 display
432 individual statistics.

433

434 3.6 ROI selection

435 There is a small but significant higher average χ from manually drawn ROIs compared
436 to the atlas-based subcortical ROIs in single-echo QSM data ($p < 0.0001$; e.g.
437 0.042 ± 0.009 ppm vs 0.033 ± 0.010 ppm in the caudate nucleus) and in multi-echo QSM
438 data ($p < 0.0001$; e.g. 0.048 ± 0.010 ppm vs 0.038 ± 0.011 ppm in the caudate nucleus)
439 (Figure 2). Similarly, for R_2^* (e.g. 0.041 ± 0.004 ms^{-1} vs 0.039 ± 0.006 ms^{-1} in the caudate
440 nucleus) this difference was significant ($p < 0.0001$). In addition, the SD_w was, on
441 average, approximately two times higher and the ICC lower in the atlas-based
442 subcortical ROIs compared to the manual ROIs in all datasets (SD_w : single-echo QSM p
443 < 0.0001 , multi-echo QSM $p < 0.0001$, R_2^* $p < 0.0001$; ICC: single-echo QSM $p =$
444 0.00021 , multi-echo QSM $p = 0.0023$, R_2^* $p = 0.012$). So, ROI selection should be done
445 consistently in a study.

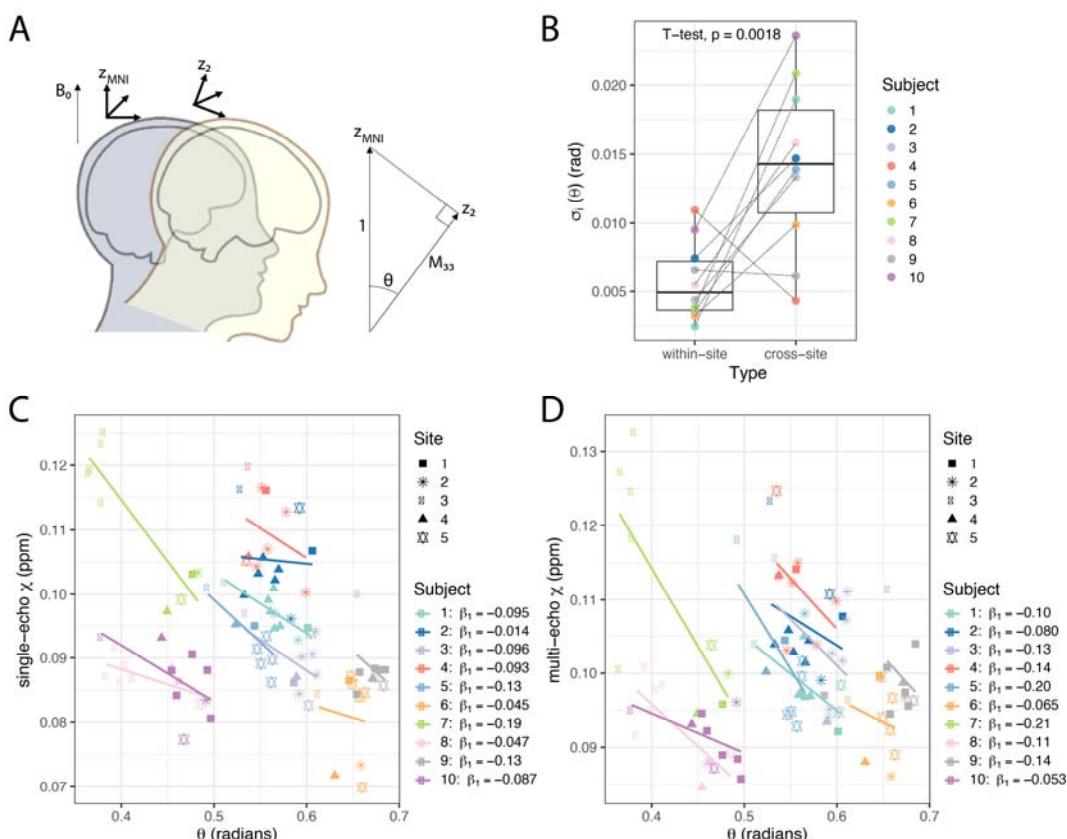
446

447 3.7 Spatial distribution of the magnetic field

448 On the altas-based cortical ROIs the SD_w increased by approximately 28% and 88% on
449 “high ΔB_0 ” regions compared to “low ΔB_0 ” regions on multi-echo χ and R_2^* data,
450 respectively ($p = 0.0011$ and $p < 0.0001$) (Table 2, Supplementary Material 2). Similarly,
451 ICC values decreased significantly for single-echo and multi-echo χ and R_2^* values.

452

453 3.8 QSM variability with head orientation


454 When analysing χ in the manually-defined ROIs with respect to θ , a consistent
455 negative trend was observed for all subjects. Figure 7 (C and D) show an example for
456 the analysis in the Globus Pallidus ROI. Fitting a linear model on χ , with θ and ROI as
457 fixed variables, θ showed a significant negative correlation with single-echo χ ($p <$
458 0.0001) and multi-echo χ ($p = 0.015$).

459 In addition, for θ the within-site SD_w was nearly half of the cross-site SD_w (0.011 and
460 0.028 radians, respectively), indicating that there was larger variability in head

461 orientation across sites (subject-wise variability of θ , σ_i of equation [3], is plotted in
 462 Figure 7 (B)).

463 Separately for within-site and cross-site χ data, we assessed the goodness-of-fit of a
 464 model containing θ as an explanatory variable. On single-echo within-site data, the
 465 marginal R^2 increased from 0.71 with 'mod1' to 0.76 with 'mod2' (which includes θ)
 466 (Chi-squared test, $p = 0.041$). The corresponding cross-site R^2 's were: 0.77 and 0.80
 467 (Chi-squared test, $p = 0.057$). On multi-echo data, the marginal R^2 increased from 0.75
 468 with 'mod1' to 0.79 with 'mod2' on within-site data (Chi-squared test, $p = 0.041$) and
 469 maintained at 0.79 on both models for cross-site data (Chi-squared test, $p = 0.14$).
 470 From the corrected χ -values at θ_{norm} , results show a slight decrease in the ratio of
 471 within-site to cross-site SD_w (Table 2), but variability of χ obtained from cross-site data
 472 was still higher than from within-site (χ with θ -correction, $p=0.01$; uncorrected χ , $p <$
 473 0.0001 (subsection 3.2)). For multi-echo data, the SD_w obtained from the corrected χ -
 474 values were similar on within-site compared to cross-site (χ with θ -correction, $p=0.11$;
 475 uncorrected χ , $p = 0.033$ (subsection 3.2)).

476

477
 478 **Figure 7.** In QSM, it is assumed that the macroscopic susceptibility in an imaging voxel

479 is isotropic. However, it has been shown that this assumption is too simplistic for single
480 head orientation QSM methods, complicating the interpretation of the QSM results (Li
481 et al., 2017). We investigated the effect of head orientation on QSM estimation in our
482 data: (A) Considering that data was all acquired in the transverse plane with B_0
483 perpendicular to the imaging slice, subjects had a variable head rotation θ with respect
484 to B_0 . To estimate θ , we used MNI space as a common head orientation (z_{MNI}) across
485 all scans. From the affine registration matrix M converting acquired data into MNI
486 space, the angle of rotation from the rotated z-axis, z_2 , will be given by $\theta = \cos^{-1}(M_{33})$ where M_{33} is the 3rd row, 3rd column of the affine transform matrix. (B)
487 Subject-wise within-site and cross-site σ_i measurements on θ . (C) Single-echo and (D)
488 multi-echo scatter plots of χ measurements according to θ on the Globus Pallidus
489 manual ROI. For each subject a linear trend is also plotted and the fit coefficients are
490 given in the plot legend. Data from each site is displayed with a different symbol.
491 Multi-echo χ -maps were calculated with data from all eight echoes.
492
493
494

Parameter	within-site/cross-site median SD_w (no θ - correction)	within-site/cross-site median SD_w (with θ - correction)
Single-echo χ	0.82	0.67
Multi-echo χ	0.91	0.82

495 **Table 2:** Within-site to Cross-site ratio of the median SD_w obtained from all five
496 manually-defined ROIs on single-echo and multi-echo χ without and with θ -correction.
497

498

499 4. Discussion

500 In this paper, the reproducibility of QSM χ and R_2^* measurements in cortical and
501 subcortical regions of the brain was assessed for the first time in a multi-site study at
502 7T for two different protocols (a single-echo 0.7mm isotropic T_2^* -weighted scan and a
503 1.5mm isotropic multi-echo T_2^* -weighted scan), using three different scanner
504 platforms provided by two different vendors.

505 Previous studies at 1.5T and 3T have shown good reproducibility for χ and R_2^* data
506 acquired on the same scanner or across sites (1.5T and 3T) (Hinoda et al., 2015; Cobzas
507 et al., 2015; Deh et al., 2015; Lin et al., 2015; Santin et al., 2017; Feng et al., 2018;
508 Spincemaille et al., 2019). In terms of QSM and depending on the subcortical region,
509 intra-scanner 3T repeatability studies report an SD_w of 0.002-0.005 ppm (Feng et al.,
510 2018) and 0.004-0.006 ppm (Santin et al., 2017), and the cross-site 3T study by Lin et
511 al. (2015) reported an average SD_w of 0.006-0.010 ppm. We observed a within-site SD_w
512 range of 0.0009-0.004 ppm and cross-site SD_w range of 0.001-0.005 ppm at 7T.

513 Compared to 3T studies, this is a 2.0-5.3 fold decrease in the within-site SD_w , and a 2.1-
514 4.8 decrease in the cross-site SD_w .
515 The range of within-site SD_w values for R_2^* was averaged 0.0003 - 0.001 ms^{-1} in our
516 study and the cross-site SD_w range was 0.0005 - 0.001 ms^{-1} . The cross-site values are
517 comparable to the *same site* reported at 3T: 0.0005 - 0.0009 ms^{-1} (Feng et al., 2018),
518 0.0006 - 0.002 ms^{-1} (Santin et al., 2017). Compared to the latter, our cross-site results
519 show a 1.1-3.4 improvement over the same brain regions in R_2^* variability.
520 The study from Hinoda et al. (2015) measured QSM reproducibility at 1.5T and 3T by
521 scanning subjects twice on each of the scanners. They showed there is a 1.1-2.1 fold
522 decrease in the upper and lower limits in Bland-Altman plots at 3 T compared to 1.5 T,
523 which is in line with the expected signal-to-noise ratio (SNR) increase between these
524 two field strengths (Edelstein et al., 1986; Wardlaw et al., 2012). Compared to 3T
525 reports, there is, on average, an improvement of approximately 3-fold in our QSM and
526 R_2^* 7T measurements of reproducibility. This is in line with the expected SNR increase
527 in brain imaging from 3T to 7T (Pohmann et al., 2015).
528 The higher values of cross-site SD_w compared to the within-site values in our study may
529 be attributed to the different gradient systems and automatic distortion corrections
530 used in the different scanner platforms and to the different approaches to shimming,
531 which lead to different geometrical distortions and dropout regions (Figure 3 and 4,
532 Supplementary Material 2) (Yang et al., 2010). In our study we verified that not only
533 regions in the cortex close to air-tissue interfaces show differences in B_0 across
534 scanners, but also large subcortical regions such as the CN, the Pu and the GP ROIs.
535 We also showed that the use of a non-linear registration method (here, “SyN” in ANTs)
536 significantly reduced the inter-scanner variability of cortical QSM compared to rigid-
537 body registration, indicating that differences in geometric distortion across scanners
538 were present. The R_2^* results for both cortical and subcortical structures also show
539 significantly lower inter-scanner variability when a non-linear registration was used.
540 For QSM, higher cross-site variability may also be attributed to the head orientation
541 with respect to B_0 (Lancione et al., 2017; Li et al., 2017). Our results indicate head
542 orientation varied somewhat between scans and there was greater variation between
543 sites than intra-site; we also observed a consistent negative correlation between χ and
544 head orientation (θ). Using a linear model to attempt to regress-out the effects of

545 head rotation improved the reproducibility of both within-site and cross-site data. It
546 also reduced the penalty for multi-site scanning vs single-site scanning, but not
547 completely.

548

549 In this study, the reproducibility of QSM using single-echo, high-resolution (0.7 mm
550 isotropic resolution; TE=20ms) and multi-echo standard-resolution (1.4 mm isotropic
551 resolution; TE=4, 9, 14, 19, 24, 29, 34 and 39 ms) protocols were compared, and the
552 results show that the multi-echo QSM data has a significantly higher variability than
553 single-echo QSM. Although multi-echo phase data has been combined with a
554 magnitude-weighted least squares regression of phase to echo time, it may carry
555 inconsistent phase accumulation across echoes that were inconsistently unwrapped.
556 This is also particularly relevant for regions of large field inhomogeneities, where
557 phase accumulation in late echoes could exceed $\pm\pi$ between neighbouring voxels,
558 resulting in multiple phase wraps, which the unwrapping algorithm maybe unable to
559 correct (Cronin et al., 2017). This has also been verified on the analysis of QSM data
560 from the cortical ROIs reconstructed with different numbers of echoes: long echo
561 times increase significantly the test-retest variability. Alternative phase unwrapping
562 methods exist such as to perform temporal phase unwrapping across all echo times on
563 the multi-echo data (Liu et al., 2013; Schweser et al., 2013).

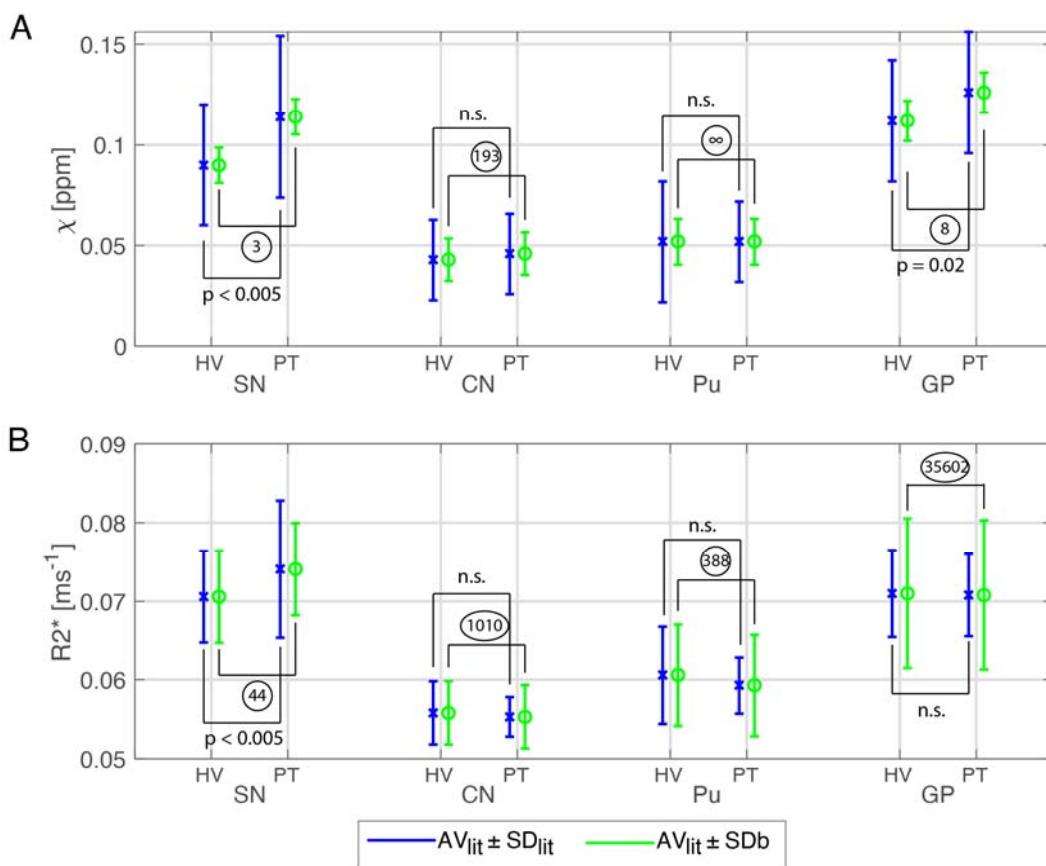
564 It has been shown that resolution influences QSM estimation. Haacke et al. (2015)
565 showed on phantom data that by decreasing slice thickness from 3 mm to 0.5 mm
566 partial volume effects are reduced, absolute susceptibility values decrease, and
567 accuracy improves up to 25%. Similar findings on in vivo brain data are reported in Sun
568 et al. (2017) (single-echo data) and Karsa et al. (2018) (multi-echo data). Our results
569 support the suggestion that a reduction of partial volume effects at higher-resolution
570 might play a role in decreasing both test-retest and cross-site variability on the single-
571 echo high-resolution data compared to the multi-echo low-resolution data.

572 R_2^* values show significantly lower variability, reflected in the higher ICC within and
573 across-sites compared to corresponding values for χ in subcortical areas. This may be
574 because the χ estimation is globally more sensitive to background field inhomogeneity
575 compared to magnitude data. However, in orbitofrontal and lower temporal regions

576 large through-plane field variations from tissue-air interfaces dominate the field
577 changes and produce dropouts in the signal magnitude and increase the background
578 phase, affecting both QSM and R_2^* maps by increasing variability and decreasing ICC
579 across sites. In addition, because of large field variations, the estimated cortical R_2^*
580 increases significantly when late echo times are used for the fitting, but this effect is
581 not seen in subcortical areas.

582 QSM can only determine relative susceptibility differences (Cheng et al., 2009) and
583 most approaches to calculation of susceptibility from measured phase yield maps in
584 which the average value of susceptibility is zero over the masked imaging volume.
585 Issues related to referencing of QSM data have been investigated (Feng et al., 2018;
586 Straub et al., 2017), with aim of finding a reference region or tissue to which all
587 susceptibility values are referred that produces well-defined and reproducible values
588 of susceptibility. Here we investigated how the choice of reference affects the within-
589 site and cross-site variability of measured susceptibility at ultra-high-field. We tested
590 three accepted reference regions: total whole brain signal, “wb”, whole brain CSF
591 eroded in order to exclude any pial or skull surfaces, “csf”, and a manually selected
592 cylindrical ROI in the right ventricle, “cyl”. We found that the “cyl” referencing
593 generally increased the variability of the cross-site and within-site susceptibility
594 measurements in cortical and subcortical ROIs compared to “wb” referencing. In the
595 case of the multi-echo acquisition the “csf” referencing also increased the variability
596 relative to “wb” data. This may be because of imprecision in systematically obtaining
597 average QSM signal from CSF regions. Referencing using a small ROI in the ventricles
598 might be prone to subjectivity given the natural variation in ventricle size in healthy
599 subjects and in disease. Furthermore, the ventricles do not contain pure CSF: they are
600 traversed by blood vessels with a different χ (Sullivan et al., 2002). This makes whole-
601 brain referencing attractive in many situations. Yet, in patient cohorts where there is
602 substantial iron load in subcortical structures (Snyder and Connor, 2009), whole brain
603 referencing might not be an appropriate approach. In this case, the more appropriate
604 approach will be to choose a small reference region which shows no changes in the
605 particular disease to be “zero” susceptibility at a cost of a slight increase in SD.

606


607 To eliminate operator-dependent bias in segmentation when determining brain
608 structures, we have analysed data using both manual and atlas-based segmentation.
609 From our results, manual ROIs showed significantly lower variability compared to atlas-
610 based methods. This happens because of imprecision in registration between MNI and
611 subject space as well as the empirical thresholding that was chosen to obtain the
612 subcortical ROIs. This resulted in larger ROIs being derived from the atlas-based
613 method compared to the manual method (Wilcoxon test, CN: $p=0.014$; Pu: $p=0.00018$;
614 GP: $p=0.0010$). Overestimation of the region (Figure 5, Supplementary Material 2)
615 meant including boundary voxels that, generally, have lower susceptibility (white-
616 matter, for example), lowering the average χ and R_2^* . However, traditional manual
617 drawing of ROIs for cohort studies is difficult, time consuming and potentially
618 unsuitable as it biases results towards particular cohorts (Collins et al., 2003) so it may
619 not always be the most appropriate approach.

620

621 In this study, harmonized protocols were produced for all five scanners without any
622 significant sequence alterations, as a product 3D gradient echo (GE) sequence was
623 readily available on all systems (the product 'gre' sequence from Siemens and the
624 product 'ffe' from Philips). The protocols and an example dataset are provided in
625 (Clarke, 2018). Generally, we also relied on the vendors' reconstruction. However, at
626 the end of the reconstruction pipeline of the Siemens systems we adopted a different
627 coil combination approach based on Roemer et al. (1990) and Walsh et al. (2000), to
628 match the SENSE approach implemented on Philips scanners (Pruessmann et al., 1999;
629 Robinson et al., 2017). This was required due to artifacts appearing on phase images in
630 Siemens data reconstructed with the vendor's pipeline, such as open-ended fringe
631 lines or singularities (Chavez et al., 2002) (Figure 2, Supplementary Material 2). These
632 reduce the consistency of the QSM results (Santin et al., 2017). However, other coil
633 combination methods such as a selective channel combination approach (Vegh et al.,
634 2016) or the COMPOSER (COMBining Phase data using a Short Echo-time Reference
635 scan) method (Bollmann et al., 2018) have also been shown to reduce open-ended
636 fringe lines and noise in the signal phase. For future investigations, the raw k-space
637 data collected from all sites in this study has been stored and is available from the
638 authors upon request.

639

640 On the QSM reconstruction, an imperfect background field filtering can influence the
641 reproducibility of QSM data. For this reason, we performed background removal in
642 two steps as implemented in QSMbox v2.0 and as described in (Acosta-Cabronero et
643 al., 2018): first with the LBV approach and then followed by the vSMV method.
644 Regularized field-to-susceptibility inversion strategies have been proposed to
645 overcome the ill-posed problem in QSM with data acquired at a single head orientation
646 (de Rochefort et al., 2010). We opted to use the MSDI implementation in QSMbox v2.0
647 (Acosta-Cabronero et al., 2018), as it ranked top-10 in all metrics of the 2016 QSM
648 Reconstruction Challenge (Langkammer et al., 2018), and also now includes a new self-
649 optimized local scale, which results in a better preservation of phase noise texture and
650 low susceptibility contrast features. On the second step, the regularization factor, λ ,
651 used for this study was set to $10^{2.7}$, as recommended by Acosta-Cabronero et al. (2018)
652 based on an L-curve analysis (Hansen et al., 1993) with high-resolution 7T data.
653 The standard multi-echo GE protocol in this study was produced as a harmonised
654 sequence that could be performed at all sites, with a relatively short acquisition time
655 (approximately 5 minutes), which is acceptable for patient studies. Mid-brain
656 structures such as the basal ganglia are identifiable, yet small subcortical structures
657 will suffer from partial-volume effects, which could be a limitation of this harmonized
658 protocol for future ultra-high field multi-site studies.
659 At ultra-high field there can be variations in SNR in magnitude data caused by the
660 variable B_1^+ across the brain (Abduljalil et al., 2003). As R_2^* is estimated voxel-wise,
661 and as there is always a reasonable SNR on the magnitude data, the coefficient in the
662 exponential fit that estimates R_2^* will not be strongly affected by variations in B_1^+ .
663 QSM maps are estimated from filtered phase data which is not strongly affected by
664 transmit B_1 variations. On our data, no correlations were found between QSM or R_2^*
665 maps and B_1 flip-angle maps collected in the same session (Figure 6, Supplementary
666 Material 2).
667

668

669 **Figure 8.** Illustration of the feasibility of a 7T QSM clinical study. χ (A) and R_2^* (B) for
670 four ROIs (Substantia Nigra, SN; Caudate Nucleus, CN; Putamen, Pu; Globus Pallidus,
671 GP) from healthy volunteer (HV) and synthetic “patient” (PT) data for which AV_{lit} and
672 SD_{lit} were obtained from Langkammer et al. (2016) and SD_b were calculated from data
673 of the current study. AV_{lit} values for R_2^* were linearly scaled to 7T according to Yao et
674 al. (2007). Blue bars show the $AV_{lit} \pm SD_{lit}$ and green bars the $AV_{lit} \pm SD_b$. Statistical
675 differences between HV and PT obtained from Langkammer et al. (2016) are also
676 shown. For each ROI, the sample size that would have been needed to give a
677 significant effect was calculated from the group means, AV_{lit} , and the SD_b per ROI and
678 is shown in circles. Multi-echo χ -maps were calculated with data from all eight echoes.
679

680

681 To minimise confounding effects of age or pathology, we assessed test-retest reliability
682 and cross-site variability with ten healthy young subjects. The cross-site, between-
683 subject standard-deviation, SD_b , measured in this study was evaluated together with
684 healthy and Parkinson’s disease data from (Langkammer et al., 2016). A power analysis
685 revealed a sample size that would have been required for a multi-site clinical study in
686 each ROI as shown in Figure 8. For all the significant ROIs the number of subjects that
687 would have been required per group was less or equal to 44. Since this is lower than
688 the sample size we have used in this study (90 healthy volunteer scans) and the

688 numbers in the Langkammer study (66 patients and 58 control subjects), it gives strong
689 confidence of feasibility for future 7T QSM clinical studies.

690

691 **5. Conclusion**

692 We investigated test-retest reliability and reproducibility of T_2^* -weighted imaging
693 protocols at ultra-high field MRI. Considering the increase in susceptibility effects at
694 7T, we found that variability of measurements of QSM χ and R_2^* in the basal ganglia
695 are reduced compared to reports from lower field strengths, 1.5T and 3T. Scanner
696 hardware differences give more modest improvements for cortical measurements of
697 QSM χ and R_2^* . Multi-echo protocols do not benefit from long echo times as these
698 increase the imprecision in the estimation of QSM. We suggest that 7T MRI is suitable
699 for multicentre quantitative analyses of brain iron, in health and disease.

700 **6. Acknowledgements**

701 The UK7T Network and this work was funded by the UK's Medical Research Council
702 (MRC) [MR/N008537/1]. We thank Dr. Julio Acosta-Cabronero for making the QSMbox
703 publically available and Prof. David Porter for the support in the UK7T network.

704

705 **7. Centre funding**

706 The Wellcome Centre for Integrative Neuroimaging is supported by core funding from
707 the Wellcome Trust (203139/Z/16/Z).

708 Cardiff University Brain Research Imaging Centre is supported by the UK Medical
709 Research Council (MR/M008932/1) and the Wellcome Trust (WT104943).

710 This research was co-funded by the NIHR Cambridge Biomedical Research Centre. The
711 views expressed are those of the author(s) and not necessarily those of the NHS, the
712 NIHR or the Department of Health and Social Care. The Cambridge 7T MRI facility is co-
713 funded by the University of Cambridge and the Medical Research Council
714 (MR/M008983/1).

715

716 **8. Individual funding**

717 CTR is funded by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal
718 Society [098436/Z/12/B]. JBR is supported by the Wellcome Trust (WT103838).

719

720 **9. References**

721 Abdul-Rahman, H., Gdeisat, M., Burton, D., Michael, L., 2005. Fast three-dimensional phase-
722 unwrapping algorithm based on sorting by reliability following a non-continuous path. *App.*
723 *Optic.* 46, 6623-6635. doi: 10.1117/12.611415

724 Abduljalil, A.M., Schmalbrock, P., Novak, V., Chakeres, D.W. 2003. Enhanced gray and white
725 matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance
726 imaging. *Journal of Magnetic Resonance Imaging: An Official Journal of the International*
727 *Society for Magnetic Resonance in Medicine.* 18(3), 284-90. doi: 10.1002/jmri.10362

728 Acosta-Cabronero, J., Milovic, C., Mattern, H., Tejos, C., Speck, O., Callaghan, M.F., 2018. A
729 robust multi-scale approach to quantitative susceptibility mapping. *NeuroImage* 183, 7-24. doi:
730 10.1016/j.neuroimage.2018.07.065

731 Acosta-Cabronero, J., Betts, M.J., Cardenas-Blanco, A., Yang, S., Nestor, P.J., 2016. In Vivo MRI
732 mapping of brain iron deposition across the adult lifespan. *J. Neurosci.* 36, 364–374. doi:
733 10.1523/JNEUROSCI.1907-15.2016

734 Acosta-Cabronero, J., Williams, G.B., Cardenas-Blanco, A., Arnold, R.J., Lupson, V., Nestor, P.J.,
735 2013. In vivo quantitative susceptibility mapping (QSM) in Alzheimer's disease. *PLoS One* 8,
736 e81093. doi: 10.1371/journal.pone.0081093

737 Barbosa, J.H.O., Santos, A.C., Salmon, C.E.G., 2015. Susceptibility weighted imaging:
738 differentiating between calcification and hemosiderin. *Radiologia brasileira* 48(2), 93-100. doi:
739 10.1590/0100-3984.2014.0010

740 Betts, M.J., Acosta-Cabronero, J., Cardenas-Blanco, A., Nestor, P.J., Dützel, E., 2016. High-
741 resolution characterisation of the aging brain using simultaneous quantitative susceptibility
742 mapping (QSM) and R2* measurements at 7 T. *Neuroimage* 138, pp.43-63. doi:
743 10.1016/j.neuroimage.2016.05.024

744 Bilgic, B., Pfefferbaum, A., Rohlfing, T., Sullivan, E.V., Adalsteinsson, E., 2012. MRI estimates of
745 brain iron concentration in normal aging using quantitative susceptibility
746 mapping. *Neuroimage* 59(3), 2625-2635. doi: 10.1016/j.neuroimage.2011.08.077

747 Blazejewska, A.I., Al-Radaideh, A.M., Wharton, S., Lim, S.Y., Bowtell, R.W., Constantinescu, C.S.,
748 Gowland, P.A., 2015. Increase in the iron content of the substantia nigra and red nucleus in
749 multiple sclerosis and clinically isolated syndrome: a 7 Tesla MRI study. *J. Magn. Reson.*
750 *Imaging* 41, 1065-1070. doi: 10.1002/jmri.24644

751 Bollmann, S., Robinson, S.D., O'Brien, K., Vegh, V., Janke, A., Marstaller, L., Reutens, D., Barth,
752 M., 2018. The challenge of bias-free coil combination for quantitative susceptibility mapping at
753 ultra-high field. *Magn. Reson. Med.* 79(1), 97-107. doi: 10.1002/mrm.26644

754 Chavez, S., Xiang, Q., Li, A., 2002. Understanding phase maps in MRI: a new cutline phase
755 unwrapping method. *IEEE Trans Med Imaging* 21, 966–977. doi: 10.1109/TMI.2002.803106

756 Cheng, Y.-C.N., Neelavalli, J., Haacke, E.M., 2009. Limitations of calculating field distributions
757 and magnetic susceptibilities in MRI using a Fourier based method. *Phys. Med. Biol.* 54(5),
758 1169–1189. doi: 10.1088/0031-9155/54/5/005

759 Choi, S., Li, X., Harrison, D.M., 2019. The impact of coregistration of gradient recalled echo
760 images on quantitative susceptibility and R2* mapping at 7T. *bioRxiv*. doi: 10.1101/529891

761 Clarke, W.T., 2018. UK7T Network harmonized neuroimaging protocols.
762 <https://ora.ox.ac.uk/objects/uuid:55ca977f-62df-4cbf-b300-2dc893e36647>.

763 Clarke, W.T., Mougin, O., Driver, I.D., Rua, C., Morgan, A., Asghar, M., Clare, S., Francis, S.,
764 Wise, R., Rodgers, C.T., Carpenter, T.A., Muir, K., Bowtell, R., 2019. Multi-site harmonization of
765 7 Tesla MRI neuroimaging protocols. *NeuroImage* 206, 116335. doi:
766 10.1016/j.neuroimage.2019.116335

767 Cobzas, D., Sun, H.F., Walsh, A.J., Lebel, R.M., Blevins, G., Wilman, A.H., 2015. Subcortical gray
768 matter segmentation and voxel-based analysis using transverse relaxation and quantitative
769 susceptibility mapping with application to multiple sclerosis. *J. Magn. Reson. Imaging* 42(6),
770 1601–1610. doi: 10.1002/jmri.24951

771 Collins, D.L., Zijdenbos, A.P., Paus, T., Evans, A.C., 2003. Use of registration for cohort studies.
772 Medical image registration.

773 de Rochemont, L., Liu, T., Kressler, B., Liu, J., Spincemaille, P., Lebon, V., Wu, J., Wang, Y., 2010.
774 Quantitative susceptibility map reconstruction from MR phase data using Bayesian
775 regularization: validation and application to brain imaging. *Magn. Reson. Med.* 63, 194–206.
776 doi: 10.1002/mrm.22187

777 Deh, K., Nguyen, T.D., Eskreis-Winkler, S., Prince, M.R., Spincemaille, P., Gauthier, S.,
778 Kovanlikaya, I., Zhang, Y., Wang, Y., 2015. Reproducibility of quantitative susceptibility
779 mapping in the brain at two field strengths from two vendors. *J. Magn. Reson. Imaging* 42,
780 1592–1600. doi: 10.1002/jmri.24943

781 Deistung, A., Schäfer, A., Schweser, F., Biedermann, U., Güllmar, D., Trampel, R., Turner, R.,
782 Reichenbach, J.R., 2013. High-resolution MR imaging of the human brainstem in vivo at 7
783 Tesla. *Frontiers in human neuroscience* 7, 710. doi: 10.3389/fnhum.2013.00710

784 Düzel, E., Acosta-Cabronero, J., Berron, D., Biessels, G.J., Björkman-Burtscher, I., Bottlaender,
785 M., Bowtell, R., Buchem, M.V., Cardenas-Blanco, A., Boumezbeur, F., Chan, D., 2019. European
786 Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND). *Alzheimer's &*
787 *Dementia: Diagnosis, Assessment & Disease Monitoring*, 11(1),538-549. doi:
788 10.1016/j.dadm.2019.04.010

789

790 Duyn, J.H., van Gelderen, P., Li, T.Q., de Zwart, J.A., Koretsky, A.P., Fukunaga, M., 2007. High-
791 field MRI of brain cortical substructure based on signal phase. *Proceedings of the National
792 Academy of Sciences*, 104(28),11796-11801. doi: 10.1073/pnas.0610821104

793 Edelstein, W.A., Glover, G.H., Hardy, C.J., Redington, R.W., 1986. The intrinsic signal-to-noise
794 ratio in NMR imaging. *Magnetic resonance in medicine*, 3(4),604-618. doi:
795 10.1002/mrm.1910030413

796 Ehses, P., Brenner, D., Stirnberg, R., Pracht, E.D., Stöcker, T., 2019. Whole-brain B1-mapping
797 using three-dimensional DREAM. *Magn. Reson. Med.* 82(3), 924-934. doi: 10.1002/mrm.27773

798 Eskreis-Winkler, S., Zhang, Y., Zhang, J., Liu, Z., Dimov, A., Gupta, A., Wang, Y., 2017. The
799 clinical utility of QSM: disease diagnosis, medical management, and surgical planning. *NMR in*
800 *Biomedicine* 30(4), p.e3668. doi: 10.1002/nbm.3668

801 Feng, X., Deistung, A., Reichenbach, J.R., 2018. Quantitative susceptibility mapping (QSM) and
802 R2* in the human brain at 3 T: Evaluation of intra-scanner repeatability. *Z. Med. Phys.* 28, 36–
803 48. doi: 10.1016/j.zemedi.2017.05.003

804 Gelman, N., Gorell, J.M., Barker, P.B., Savage, R.M., Spickler, E.M., Windham, J.P., Knight, R.A.,
805 1999. MR imaging of human brain at 3.0 T: preliminary report on transverse re-laxation rates
806 and relation to estimated iron content. *Radiology* 210, 759–767. doi:
807 10.1148/radiology.210.3.r99fe41759

808 Haacke, E.M., Cheng, N., House, M.J., Liu, Q., Neelavalli, J., Ogg, R.J., Khan, A., Ayaz, M., Kirsch,
809 W., Obenhaus, A., 2005. Imaging iron stores in the brain using magnetic resonance imaging.
810 *Magn. Reson. Imag.* 23, 1-25. doi: 10.1016/j.mri.2004.10.001

811 Haacke, E.M., Liu, S., Buch, S., Zheng, W., Wu, D., Ye, Y., 2015. Quantitative susceptibility
812 mapping: current status and future directions. *Magnetic resonance imaging*, 33(1),1-25. doi:
813 [10.1016/j.mri.2014.09.004](https://doi.org/10.1016/j.mri.2014.09.004)

814 Hansen, P.C., O'Leary, D.P., 1993. The use of the l-curve in the regularization of discrete ill-
815 posed problems. *SIAM J Sci Comput* 14(6), 1487-1503. doi: 10.1137/0914086

816 He, X., Yablonskiy, D.A., 2009. Biophysical mechanisms of phase contrast in gradient echo MRI.
817 *Proc. Natl. Acad. Sci. U.S.A.* 106, 13558–13563. <https://doi.org/10.1073/pnas.0904899106>

818 Hinoda, T., Fushimi, Y., Okada, T., Fujimoto, K., Liu, C., Yamamoto, A., Okada, T., Kido, A.,
819 Togashi, K., 2015. Quantitative susceptibility mapping at 3 T and 1.5 T: evaluation of
820 consistency and reproducibility. *Invest. Radiol.* 50, 522-530. doi:
821 10.1097/RLI.0000000000000159

822 House, M.J., Pierre, T.G.S., Kowdley, K.V., Montine, T., Connor, J., Beard, J., Berger, J., Siddaiah,
823 N., Shankland, E., Jin, L.W., 2007. Correlation of proton transverse relaxation rates (R2) with
824 iron concentrations in postmortem brain tissue from Alzheimer's disease patients. *Magn.*
825 *Reson. Med.* 57, 172–180. doi: 10.1002/mrm.21118

826 Karsa, A., Punwani, S., Shmueli, K., 2019. The effect of low resolution and coverage on the
827 accuracy of susceptibility mapping. *Magnetic resonance in medicine*, 81(3),1833-1848. doi:
828 10.1002/mrm.27542

829 Keuken, M.C., Bazin, P.L., Backhouse, K., Beekhuizen, S., Himmer, L., Kandola, A., Lafeber, J.J.,
830 Prochazkova, L., Trutti, A., Schäfer, A., Turner, R., 2017. Effects of aging on T1, T2*, and QSM
831 MRI values in the subcortex. *Brain Structure and Function* 222(6), 2487-2505. doi:
832 10.1007/s00429-016-1352-4

833 Lancione, M., Tosetti, M., Donatelli, G., Cosottini, M., Costagli, M., 2017. The impact of white
834 matter fiber orientation in single-acquisition quantitative susceptibility mapping. *NMR Biomed.*
835 30, e3798. doi: 10.1002/nbm.3798

836 Langkammer, C., Schweser, F., Shmueli, K., Kames, C., Li, X., Guo, L., Milovic, C., Kim, J., Wei, H.,
837 Bredies, K., Buch, S., 2018. Quantitative susceptibility mapping: report from the 2016
838 reconstruction challenge. *Magn. Reson. Med.* 79(3), 1661-73. doi: 10.1002/mrm.26830

839 Langkammer, C., Pirpamer, L., Seiler, S., Deistung, A., Schweser, F., Franthal, S., Homayoon, N.,
840 Katschnig-Winter, P., Koegl-Wallner, M., Pendl, T., Stoegerer, E.M., 2016. Quantitative
841 susceptibility mapping in Parkinson's disease. *PLoS One*, 11(9), e0162460. doi:
842 10.1371/journal.pone.0162460

843 Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer, E., Sommer, K.,
844 Reishofer, G., Yen, K., Fazekas, F., Ropele, S., Reichenbach, J.R., 2012. Quantitative
845 susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation
846 study. *Neuroimage* 62(3), 1593-1599. doi: 10.1016/j.neuroimage.2012.05.049

847 Langkammer, C., Krebs, N., Goessler, W., Scheurer, E., Ebner, F., Yen, K., Fazekas, F., Ropele, S.,
848 2010. Quantitative MR imaging of brain iron: a postmortem validation study. *Radiology* 257(2),
849 455-462. doi: 10.1148/radiol.10100495

850 Lee, J., Shmueli, K., Kang, B.T., Yao, B., Fukunaga, M., van Gelderen, P., Palumbo, S., Bosetti, F.,
851 Silva, A.C., Duyn, J.H., 2012. The contribution of myelin to magnetic susceptibility-weighted
852 contrasts in high-field MRI of the brain. *Neuroimage* 59, 3967-3975. doi:
853 10.1016/j.neuroimage.2011.10.076

854 Li, G., Zhai, G., Zhao, X., An, H., Spincemaille, P., Gillen, K.M., Ku, Y., Wang, Y., Huang, D., Li, J.,
855 2019. 3D texture analysis within substantia nigra of Parkinson's disease patients on
856 quantitative susceptibility maps and R2* maps. *NeuroImage* 188, 465-472. doi:
857 10.1016/j.neuroimage.2018.12.041

858 Li, L., Leigh, J.S., 2004. Quantifying arbitrary magnetic susceptibility distributions with MR.
859 *Magn. Reson. Med.* 51, 1077-1082. doi: 10.1002/mrm.20054

860 Li, W., Liu, C., Duong, T.Q., van Zijl, P.C., Li, X., 2017. Susceptibility tensor imaging (STI) of the
861 brain. *NMR Biomed.* 30(4), p.e3540. doi: 10.1002/nbm.3540

862 Lin, P.Y., Chao, T.C., Wu, M.L., 2015. Quantitative susceptibility mapping of human brain at 3T:
863 a multisite reproducibility study. *AJNR Am J. Neuroradiol.* 36, 467-474. doi:
864 10.3174/ajnr.A4137

865 Liu, T., Wisniew, C., Lou, M., Chen, W., Spincemaille, P., Wang, Y., 2013. Nonlinear formulation
866 of the magnetic field to source relationship for robust quantitative susceptibility mapping.
867 *Magn Reson Med.* 69(2),467-76. doi: 10.1002/mrm.24272

868 Lotfipour, A.K., Wharton, S., Schwarz, S.T., Gontu, V., Schaefer, A., Peters, A.M., Bowtell, R.W.,
869 Auer, D.P., Gowland, P.A., Bajaj, P.S., 2012. High resolution magnetic susceptibility mapping of
870 the substantia nigra in Parkinson's disease. *J. Magn. Reson. Imag.* 35, 48-55. doi:
871 10.1002/jmri.22752

872 Makhlouf, S.A., Parker, F.T., Berkowitz, A.E., 1997. Magnetic hysteresis anomalies in
873 ferritin. *Physical Review B*, 55(22), R14 717-R14 720. doi: 10.1103/PhysRevB.55.R14717

874 Moeller, H.E., Bossoni, L., Connor, J.R., Crichton, R.R., Does, M.D., Ward, R.J., Zecca, L., Zucca,
875 F.A., Ronen, I., 2019. Iron, myelin, and the brain: Neuroimaging meets neurobiology. *Trends in*
876 *neurosciences*, 42(6), 384-401. doi: [10.1016/j.tins.2019.03.009](https://doi.org/10.1016/j.tins.2019.03.009)

877 Mougin, O., Clarke, W., Driver, I., Rua, C., Morgan, A.T., Francis, S., Muir, K., Carpenter, A.,
878 Rodgers, C., Wise, R., Porter, D., Clare, S., Bowtell, R., 2019. Robustness of PSIR segmentation
879 and R1 mapping at 7T: a travelling head study. *Proc. Intr. Soc. Mag. Reson. Med.* 27, 237.

880 Nehrke, K., Bornert, P., 2012. DREAM--a novel approach for robust, ultrafast, multislice B(1)
881 mapping. *Magn. Reson. Med.* 68(5), 1517-1526. doi: 10.1002/mrm.24158

882 Pei, M., Nguyen, T.D., Thimmappa, N.D., Salustri, C., Dong, F., Cooper, M.A., Li, J., Prince, M.R.,
883 Wang, Y., 2015. Algorithm for fast monoexponential fitting based on auto-regression on linear
884 operations (ARLO) of data. *Magn. Reson. Med.* 73, 843-850. doi: 10.1002/mrm.25137

885 Pohmann, R., Speck, O., Scheffler, K., 2016. Signal-to-noise ratio and MR tissue parameters in
886 human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. *Magnetic*
887 *resonance in medicine*, 75(2), 801-809. doi: 10.1002/mrm.25677

888

889 Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., 1999. SENSE: sensitivity
890 encoding for fast MRI. *Magn. Reson. Med.* 42(5), 952-962. doi: 10.1002/(SICI)1522-
891 2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S

892 R Core team, 2013. R: A language and environment for statistical computing. R Foundation for
893 Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.

894 Reichenbach, J.R., 2012. The future of susceptibility contrast for assessment of anatomy and
895 function. *Neuroimage* 62, 1311-1315. doi: 10.1016/j.neuroimage.2012.01.004

896 Reichenbach, J.R., Jonetz-Mentzel, L., Fitzek, C., Haacke, E.M., Kido, D.K., Lee, B.C., Kaiser,
897 W.A., 2001. High-resolution blood oxygen-level dependent MR venography (HRBV): a new
898 technique. *Neuroradiology* 43, 364-369. doi: 10.1007/s002340000503

899 Robinson, S.D., Bredies, K., Khabiova, D., Dymerska, B., Marques, J.P., Schweser, F., 2017. An
900 illustrated comparison of processing methods for MR phase imaging and QSM: combining
901 array coil signals and phase unwrapping. *NMR Biomed.* 30, e3601. doi: 10.1002/nbm.3601

902 Roemer, P.B., Edelstein, W.A., Hayes, C.E., Souza, S.P., Mueller, O.M., 1990. The NMR phased
903 array. *Magn. Reson. Med.* 16(2), 192-225. doi: 10.1002/mrm.1910160203

904 Santin, M.D., Didier, M., Valabregue, R., Yahia Cherif, L., García-Lorenzo, D., Loureiro de Sousa,
905 P., Bardinet, E., Lehéricy, S., 2017. Reproducibility of R2* and quantitative susceptibility
906 mapping (QSM) reconstruction methods in the basal ganglia of healthy subjects. *NMR Biomed.*
907 30(4), e3491. doi: 10.1002/nbm.3491

908 Schweser, F., Deistung, A., Lehr, B.W., Reichenbach, J.R., 2011. Quantitative imaging of intrinsic
909 magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron
910 metabolism?. *Neuroimage* 54(4), 2789-2807. doi: 10.1016/j.neuroimage.2010.10.070

911 Schweser, F., Deistung, A., Sommer, K., Reichenbach, J.R., 2013. Toward online reconstruction
912 of quantitative susceptibility maps: superfast dipole inversion.
913 *Magn Reson Med.* 69(6), 1582-94. doi: 10.1002/mrm.24405

914 Smith, S.M., 2002. Fast robust automated brain extraction. *Human Brain Mapping* 17(3), 143-
915 155. doi: 10.1002/hbm.10062

916 Snyder A.M., Connor J.R., 2009. Iron, the substantia nigra and related neurological disorders.
917 *Biochimica et Biophysica Acta* 1790, 606-614. doi: 10.1016/j.bbagen.2008.08.005

918 Spincemaille, P., Liu, Z., Zhang, S., Kovanlikaya, I., Ippoliti, M., Makowski, M., Watts, R., de
919 Rochefort, L., Venkatraman, V., Desmond, P., Santin, M.D., 2019. Clinical integration of
920 automated processing for brain quantitative susceptibility mapping: multi-site reproducibility
921 and single-site robustness. *Journal of Neuroimaging* 29(6),689-698. doi: 10.1111/jon.12658

922 Straub, S., Schneider, T.M., Emmerich, J., Freitag, M.T., Ziener, C.H., Schlemmer, H.P., Ladd,
923 M.E., Laun, F.B., 2017. Suitable reference tissues for quantitative susceptibility mapping of the
924 brain. *Magn. Reson. Med.* 78, 204-214. doi: 10.1002/mrm.26369

925 Sullivan, E.V., Pfefferbaum, A., Adalsteinsson, E., Swan, G.E., Carmelli, D., 2002. Differential
926 rates of regional brain change in callosal and ventricular size: a 4-year longitudinal MRI study
927 of elderly men. *Cereb. Cortex* 12(4), 438-45. doi: 10.1093/cercor/12.4.438

928 Sun, H., Seres, P., Wilman, A.H., 2017. Structural and functional quantitative susceptibility
929 mapping from standard fMRI studies. *NMR in Biomedicine*, 30(4), e3619. doi:
930 10.1002/nbm.3619

931 Tie-Qiang, T., Gelderen, P., Merkle, H., Talagala, L., Koretsky, A.P., Duyn, J., 2006. Extensive
932 heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human
933 brain at 7.0 T. *NeuroImage* 32, 1032-1040. doi: 10.1016/j.neuroimage.2006.05.053

934 Vegh, V., O'Brien, K., Barth, M., Reutens, D.C., 2016. Selective channel combination of MRI
935 signal phase. *Magn. Reson. Med.* 76(5), 1469-1477. doi: 10.1002/mrm.26057

936 Walsh, D.O., Gmitro, A.F., Marcellin, M.W., 2000. Adaptive reconstruction of phased array MR
937 imagery. *Magn. Reson. Med.* 43(5), 682-690. doi: 10.1002/(SICI)1522-
938 2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G

939 Wang, Y., Liu, T., 2015. Quantitative susceptibility mapping (QSM): decoding MRI data for a
940 tissue magnetic biomarker. *Magn. Reson. Med.* 7, 82-101. doi: 10.1002/mrm.25358

941 Wardlaw, J.M., Brindle, W., Casado, A.M., Shuler, K., Henderson, M., Thomas, B., Macfarlane,
942 J., Maniega, S.M., Lymer, K., Morris, Z., Pernet, C., 2012. A systematic review of the utility of
943 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and
944 research. *European radiology*, 22(11),2295-2303. doi: 10.1007/s00330-012-2500-8

945 Weir, J. P., 2005. Quantifying test-retest reliability using the intraclass correlation coefficient
946 and the SEM. *J. Strength Cond. Res.* 19(1), 231-240.

947 Wharton, S., Bowtell, R., 2010. Whole-brain susceptibility mapping at high field: a comparison
948 of multiple-and single-orientation methods. *NeuroImage* 53(2), 515-525. doi:
949 10.1016/j.neuroimage.2010.06.070

950 Yacoub, E., Shmuel, A., Pfeuffer, J., Van de Moortele, P.F., Adriany, G., Andersen, P., Vaughan,
951 J.T., Merkle, H., Ugurbil, K., Hu, X., 2001. Imaging brain function in humans at 7 Tesla. *Magn.*
952 *Reson. Med.* 45, 588-594. doi: 10.1002/mrm.1080

953 Yang, X., Sammet, S., Schmalbrock, P., Knopp, M. V., 2010. Postprocessing correction for
954 distortions in T2* decay caused by quadratic cross-slice b0 inhomogeneity. *Magn. Reson. Med.*
955 63(1): 1258-1268. doi: 10.1002/mrm.22316

956 Yao, B., Li, T., van Gelderen, P., Shmueli, K., De Zwart, J.A., Duyn, J.H., 2009. Neuro image
957 susceptibility contrast in high field MRI of human brain as a function of tissue iron content.
958 *Neuroimage* 44(4), 1259-66. doi: 10.1016/j.neuroimage.2008.10.029

959 Yao, B., van Gelderen, P., de Zwart, J.A., Duyn, J.H., 2007. Brain iron in MR imaging: R2* and
960 phase shift at different field strengths. *Proc. Intr. Soc. Mag. Reson. Med.* 15, 2165.

961 Zhou, D., Liu, T., Spincemaille, P., Wang, Y., 2014. Background field removal by solving the
962 Laplacian boundary value problem. *NMR Biomed.* 27(3), 312-319. doi: 10.1002/nbm.3064