bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.292680; this version posted April 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

LiftPose3D, a deep learning-based approach for transforming
2D to 3D pose in laboratory animals

Adam Gosztolai*™', Semih Giinel*'2, Victor Lobato Rios!', Marco Pietro Abrate!,
Daniel Morales®, Helge Rhodin?, Pascal Fua?, and Pavan Ramdya*!

'Neuroengineering Laboratory, Brain Mind Institute & Interfaculty Institute of
Bioengineering, EPFL, Lausanne, Switzerland
2Computer Vision Laboratory, EPFL, Lausanne, Switzerland
3Department of Computer Science, UBC, Vancouver, Canada

1 Abstract

2 Markerless 3D pose estimation has become an indispensable tool for kinematic studies of
3 laboratory animals. Most current methods recover 3D pose by multi-view triangulation of deep
4 network-based 2D pose estimates. However, triangulation requires multiple, synchronized cam-
5 eras and elaborate calibration protocols that hinder its widespread adoption in laboratory studies.
6 Here, we describe LiftPose3D, a deep network-based method that overcomes these barriers by
7 reconstructing 3D poses from a single 2D camera view. We illustrate LiftPose3D’s versatility by
8 applying it to multiple experimental systems using flies, mice, rats, and macaque monkeys and in
9 circumstances where 3D triangulation is impractical or impossible. Our framework achieves ac-

10 curate lifting for stereotyped and non-stereotyped behaviors from different camera angles. Thus,
11 LiftPose3D permits high-quality 3D pose estimation in the absence of complex camera arrays,
12 tedious calibration procedures, and despite occluded body parts in freely behaving animals.

s 1 Introduction

1 To identify how actions arise from neural circuit dynamics, one must first make accurate measurements
15 of behavior in laboratory experiments. Paired with new methods for recording neuronal populations in
16 behaving animals [1-4], recent innovations in 3-dimensional (3D) pose estimation promise to accelerate
17 the discovery of fundamental neural control principles. 3D pose estimation is typically accomplished
18 by triangulating 2-dimensional (2D) poses acquired using multiple camera views and deep network-
v based markerless pose tracking algorithms [5-13]. Notably, triangulation requires that every tracked
x  keypoint, be it a joint or other body feature, be visible from at least two synchronized cameras [14]
2 and that each camera be calibrated. This can be done by hand [15,16] or, by solving a non-convex
» optimization problem [7]. These expectations are high and often difficult to meet, particularly in
2 space-constrained experimental systems that also house sensory stimulation devices [1,2,17]. When
2+ untethered and freely behaving animals, such as fur-covered rodents [18], are observed under these
» conditions, some limb keypoints are often intermittently occluded in some camera views, meaning
»% that 3D triangulation may be impossible for these keypoints.

27 Because of this, most animal studies have favored simple and higher throughput 2D pose esti-
s mation approaches using only one camera [5,6,10,19-21]. Nevertheless, 3D poses are still desirable,
2 among other reasons because they eliminate the otherwise present camera-angle dependence of be-
s havioral analyses based on 2D poses [7]. Computer vision research on human pose estimation has
a1 long been interested in “lifting” 2D poses, that is, recovering 3D poses by regression to a ground
2 truth dataset of 3D poses [22-25] but only recently have deep learning-based methods achieved high
1 accuracy [26-38]. However, these techniques have not yet been adapted to laboratory animal studies
u due to the above mentioned challenges of acquiring large and diverse training datasets of behaving
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3 animals. Additionally, in some experiments, 3D ground truth data is completely missing. This pro-
3 hibits training a lifting network and creates the need to generalize pre-trained lifting networks across
37 experimental systems.

38 Here, we introduce LiftPose3D, a deep learning-based tool for frame-by-frame 3D pose estimation
s of tethered and freely behaving laboratory animals from a single camera view. Our method relies on
w0 a neural network architecture initially designed to lift human poses [34]. Due to its simplicity, this
a network does not require temporal information or a skeletal graph. Hence, it generalizes easily. We
« develop data transformations and network training augmentation methods that enable accurate 3D
13 pose estimation across a wide range of animals, camera angles, experimental systems, and complex
a  behaviors using relatively little data. Our findings are as follows:

s 1. We show that a library of 3D poses can be used to train a network to lift 3D poses from a
46 single camera’s annotated 2D poses. We impose minimal constraints on the camera hardware
a and do not require a priori knowledge about camera position. Consequently, our method does
a8 not require prior camera calibration.

49 2. We demonstrate that alignment of animal poses into the same reference frame allows the network
50 to learn relationships between pose keypoints. We use this to (i) predict complete 3D poses in
51 freely behaving animals despite occlusions and to (ii) correct outliers in ground truth data.

52 3. By varying the bone lengths of pose skeletons during training, our method gains robustness to
53 large variations in animal body proportions.

54 4. We find that pose differences between experimental domains are mostly linear and that pre-
55 trained LiftPose3D networks can be adapted to generalize using a linear domain adaptation
56 technique.

s We illustrate these findings in several experimental scenarios. First, for tethered adult Drosophila [7]
ss and freely behaving macaque monkeys [8], we use LiftPose3D to reduce the number of cameras re-
s quired for 3D pose estimation, often to a single camera, and relax constraints on camera placement.
s We make these pretrained networks and our code publicly available to be used for new experiments
s in other laboratories. Second, for freely behaving Drosophila, mice [18], and rats [39], LiftPose3D
62 can obtain 3D poses despite occlusions. Finally, using linear domain adaptation, pretrained Lift-
63 Pose3D networks can be used to predict realistic 3D poses from different experimental systems viewing
6 Drosophila behaviors ventrally with a single camera. This technique allows us to effectively resurrect
s old data for new kinds of kinematic analyses [20]. To reduce the entry barrier for users interested in
6 obtaining 3D pose data in this manner, we explain how to construct a cheap and reliable hardware
e system that we call a Drosophila “LiftPose3D station.”

s 2 Results

o 2.1 Theoretical basis for LiftPose3D

o If a keypoint j of interest is visible from at least two cameras, with corresponding 2D coordinates x. ;
7 in camera ¢ and camera parameters (extrinsic and intrinsic matrices, see Materials and Methods for
2 details), then its 3D coordinates X; in a global world reference frame can be obtained by triangulation.
7z Here we use triangulated 3D positions as ground truth with which to assess the accuracy of LiftPose3D,
7 a method that focuses on lifting 3D poses from a single camera. Rather than considering keypoints
» independently, our goal is to predict the coordinates of n keypoints X = (X4, ..., X,,)—the 3D pose—
7 from their respective 2D coordinates x. = (Xc1,-..,X¢,n) viewed from a camera c¢. By considering
77 all keypoints simultaneously, our method hinges upon learning spatial relationships between them in
7 the context of animal poses. Moreover, we seek to impose minimal constraints on camera ¢ meaning
7o that its parameters need not be known (e.g., see Figure 1A, illustrating six fixed cameras).

80 The basis of LiftPose3D is to estimate the 3D pose by learning a nonlinear mapping between
a1 triangulated ground truth 3D poses and corresponding 2D poses. Formally, this operation is encoded
& in a lifting function f mapping a 2D pose from any camera c to their corresponding 3D pose in
e camera-centered coordinates, Y. = f(x.), and a camera transformation ¢., encoding a rotation and
s translation operation (see Eq. (2) in the Materials and Methods), mapping from camera-centered
ss coordinates to world coordinates X = ¢ (Y.). The lifting function f can be approximated by a
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s deep neural network F'(x.; ©), where © represents the network weights controlling the behavior of F'.
e In a specific application, © are trained by minimizing the discrepancy between 3D poses predicted
s by lifting from any camera and ground truth 3D poses,

8 J10) =" xv.()II(F(xe: ©)); = Y3, (1)

c j=1

o where xv, () is an indicator function of the set V of visible points from camera c. For F(x.; ©), we
o adapt a network architecture from [34] composed of fully connected layers regularized by batch-norm
o and dropout [40] and linked with skip connections (Figure 1B). This network has been previously
s developed for human-pose estimation to be trained on approximately 10¢ fully annotated 2D-3D
o« human pose pairs for many different behaviors. By constrast, we will demonstrate that training
s augmentation methods allow this network to (i) work with a vastly smaller training dataset (between
o 103-10* poses acquired automatically using 2D pose estimation approaches [6,7]), (ii) predict 3D
o poses from a single camera view at arbitrary angles, (iii) be trained with only partially annotated
e ground truth 3D poses suffering from occlusions, and (iv) generalize a single pretrained network across
o experimental systems and domains through linear domain adaptation.

100 Note that our setup in Eq. (1) implicitly assumes that the network learns two operations: lifting
1w the 2D pose x. to camera-centered 3D coordinates Y. by predicting the depth component of the
102 pose, and learning perspective effects encoded in the animal-to-camera distance and the intrinsic
03 camera matrix (see Egs. (2)—(5) in Materials and Methods). Notably, the intrinsic camera matrix
14 1S camera-specific, suggesting that a trained network can only lift poses from cameras used during
s training and that application to new settings with strong perspective effects (short focal lengths)
s may require camera calibration. We will show that this is not necessarily the case and that one
w7 can generalize pre-trained networks to new settings by weakening the perspective effects. This can
108 be accomplished by either using a large focal length camera, or by increasing the animal-to-camera
o distance and normalizing the scale of 2D poses [41] (see Materials and Methods). We will demonstrate
no  that a weak perspective assumption can, in many practical scenarios, enable lifting 2D poses from
m  different cameras without calibration. As well illustrate next, these contributions enable 3D pose
12 estimation in otherwise inaccessible experimental scenarios.

s 2.2 Predicting 3D pose with fewer cameras, flexible positioning, and di-
150 verse camera hardware

1o To illustrate how LiftPose3D can simplify 3D pose acquisition, we considered a previously published
w1 tethered adult Drosophila dataset [7]. This dataset is representative of current laboratory practice of
12 obtaining 3D poses by triangulation of multiple, synchronized camera views per keypoint [7,16]. Here,
13 15 keypoints on each lateral side of the animal (Figure 1A) were annotated by DeepFly3D [7] and
s triangulated from three camera views. Using LiftPose3D, we aimed to reduce the number of cameras
us  needed for 3D pose estimation to two, i.e., one camera per keypoint, where triangulation is not
us possible (Figure 1B). Furthermore, the requirement to know the cameras’ positions for calibration
w7 purposes can be eliminated for long focal length cameras.

148 We envisioned that, using this tethered Drosophila dataset [7] as a 3D pose library, we might train
1w a LiftPose3D network to be directly applied to other experiments. To achieve this goal, we needed
10 to ensure that the output of LiftPose3D would be independent of any translations of input 2D poses,
11 perspective effects, and the placement of the camera. First, to achieve translation invariance, we
12 predicted the keypoints of the respective legs relative to a set of six “root” keypoints, which we chose
153 to be the immobile thorax-coxa joints (green circles, Figure 1B). Second, to factor out perspective
1« effects, we assumed that the focal length of the camera and the animal-to-camera distance are either
155 known or that one of them is large enough to assume weak perspective effects. In the latter case,
156 we normalized 2D input poses by their Frobenius norm at both training and test times. Third, to
157 obtain camera-angle invariance, we parametrized the possible camera orientations by Euler angles
18 5,1y, 1, Tepresenting ordered rotations around the z,y and x axes of a coordinate system centered
5o around the fly (Figure 1D). During training, we took as outputs ~ 2.5 x 10* 3D poses obtained from
10 three-camera triangulation and obtained input 2D poses by randomly projecting to virtual camera
11 planes within specified Euler angle ranges. We trained a “narrow angle-range” network with Euler
1z angles around a known camera location (¢, = £10°, ¥, = £5°, ¢, = £5°), or a “wide angle-range”
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Figure 1: LiftPose3D predicts 3D pose with fewer cameras and flexible camera positioning A Ground truth
3D poses of tethered Drosophila are triangulated using six camera views (3 cameras per keypoint). LiftPose3D predicts
3D poses using only two cameras (red and blue, 1 camera per keypoint). B As inputs, LiftPose3D takes deep network-
derived 2D poses for 15 joints per camera (red and blue). The coordinates of the 2D poses are considered relative to a
set of root joints (green). The inputs are scaled to 1024 dimensions by an affine layer, passed twice through the main
processing unit (gray rectangle). The main processing unit consists of two fully-connected layers of 1024 dimensions
wrapped by a skip connection, consisting of batch norm, dropout and ReLLU. C The output of the network are 3D
poses for the left (blue) and right (red) body halves, which are compared with the ground truth 3D poses obtained from
triangulation. Limbs are labeled according to left /right and front (1), mid(2), or hind (3) position. D Permitted camera
placements. By making virtual camera projections of the 3D pose within angles ¢, 1y, ¥z (representing ordered yaw,
E Error of lifted 3D

poses relative to triangulation using three cameras per keypoint. Violin plots show the triangulation error using the

roll, pitch rotations) LiftPose3D can be be trained to lift from cameras placed at any angle.

theoretical minimum of 2 cameras per keypoint (white), test error for a network trained with known camera parameters
F Error of lifted 3D poses at

different virtual camera orientations of the wide-range angle-invariant lifter network and a network with known camera

(orange) and two angle-invariant networks with narrow (green) and wide ranges (red).
parameters. Blue dots represent lifting errors for a given projected 2D pose. Orange circles represent averages over
the test dataset from a given camera. G Error of estimated 3D poses for a LiftPose3D network trained and tested
on different combinations of data containing flies performing optogenetically-induced backward walking (MDN, left),
antennal grooming (aDN, middle), or spontaneous (unstimulated) behaviors (PR, right). H Two representative images
from the OpenMonkeyStudio dataset. 2D poses are superimposed (black). I 3D poses obtained by triangulating up to
62 cameras (red lines) or using a single camera and LiftPose3D (dashed black lines). J Distribution of absolute errors
for different body parts with respect to total body length. Violin plots represent Gaussian kernel density estimates
with bandwidth 0.5, truncated at the 99th percentile and superimposed with the median (gray dot), 25th, and 50th

percentiles (black line).


https://doi.org/10.1101/2020.09.18.292680
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.292680; this version posted April 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

63 network covering all camera locations around the meridian (¢, = £180°, 1, = £5°, ¢, = £5°).
1« Importantly, beyond weak perspective, no assumption was made about the camera positioning and
165 lens focal lengths during training. As a baseline scenario where the camera parameters are known, we
166 also trained a network using 3D poses as outputs and 2D poses obtained from DeepFly3D-annotated
7 images as inputs. We tested each LiftPose3D network by predicting ~ 3.6 x 10? triangulated 3D poses
s from two independent animals and software-annotated 2D poses from side camera images (Figure 1B;
160 cameras 2 and 5). We evaluted the networks’ predictions relative to the triangulated ground truth by
w computing the mean absolute error (MAE), e;-e, for each joint j as well as the MAE across all joints
171 ete = (1/71) Zj e;-e.

172 We found that LiftPose3D could predict 3D poses using only one camera per side (Figure 1C).
i3 When we trained and tested the network using poses from the same set of cameras, the accuracy was
e  at least as good as from triangulation using two cameras per keypoint (Figure 1E, white). More
ws  surprisingly, the accuracy did not suffer for the narrow angle-range network (Figure 1E, green),
we which was trained using virtual 2D projections (rather than true 2D pose estimates), and for which
177 the intrinsic camera parameters were unknown. For the wide angle-range network spanning the full
ws  360°(Figure 1E, red), the accuracy remained excellent. This is illustrated in videos of lifted 2D
w  poses from animals that were optogenetically induced to walk backwards (Video 1) or groom their
o antennae (Video 2). It was also true for animals generating spontaneous, irregular limb movements,
11 demonstrating that that lifting can be performed as well for complex, non-stereotyped movements
12 (Video 3). Although accuracy was high for all keypoints, the MAE progressively increased from
13 the proximal to distal joints. This is expected because the network predicts joint coordinates with
s respect to the thorax-coxa root joints and nearby, proximal joints move within a smaller kinematic
15 volume. By contrast, triangulation obtains the 3D coordinates for each keypoint independently
16 and, consequently, its error depends only on the accuracy of underlying 2D annotations. Next, to
17 assess the camera-angle dependence of the test error for the wide angle-range network, we either
18 generated virtual projections on the meridian of the unit sphere, or lifted 2D poses from each of
1o the six known cameras (Figure 1F). The MAE was low (< 0.05 mm) for all camera arrangements
10 with no clear camera-angle dependence. Since our angle-invariant lifter networks are trained using
1w virtual projections, they make no assumptions about camera hardware or positioning. These results
12 imply that our pretrained networks can provide a simple yet accurate means of obtaining 3D poses
13 for tethered Drosophila systems in other laboratories.

194 We predicted that lifting accuracy would also depend on the degree of overlap between behaviors
15 found in the training and test datasets. This is an important dimension to explore, given the rela-
106 tively small amounts of data available from laboratory experiments. The tethered Drosophila dataset
107 contained optogenetically-induced behaviors like antennal grooming (aDN), and backward walking
s (MDN), as well as spontaneously-generated behaviors like forward walking. We trained LiftPose3D
190 using poses from only one of these behaviors (eliminating frames where the animal was resting),
20 while keeping the amount of training data (2.5 x 10* poses) fixed, and evaluated the network perfor-
20 mance on all three behaviors. As expected, the MAE was higher when test data included untrained
22 optogenetically-induced and spontaneously-generated control behaviors (PR) than for test data with
23 the same behaviors as in the training data (Figure 1G). Furthermore, a network trained on all three
20 behaviors showed comparable or lower MAE (Figure 1E, orange) than networks trained and tested
25 on the same specific behavior (Figure 1G). Thus, a behaviorally diverse training dataset can be
206 expected to lift 3D poses with more accuracy than a dataset with fewer behaviors.

207 Having accurate 3D poses confers several advantages, including eliminating artifactual camera
28 angle-dependencies in downstream analyses such as behavioral clustering [7]. To further illustrate
200 the added benefit of 3D poses over 2D poses, we illustrate joint angles during forward walking from
a0 lifted 3D poses (a, 8,7,w, Figure S1, red), from 3D triangulated ground truth poses (Figure S1,
au blue), and from 2D poses obtained by projecting ground truth 3D poses in the ventral x-y plane
a (o, f,9,0, Figure S1, green). Due to the uncertainty of 3D pose estimation, we aimed to provide
a3 upper and lower confidence bounds. Therefore, we assumed that the keypoint coordinates would be
as - Gaussian distributed around the estimated 3D coordinate. As a proxy for the variance we took the
215 variation of bone lengths because they are expected to remain approximately constant owing to the
26 low mechanical compliance of the fly’s exoskeleton (with the exception of the flexible tarsal segments).
2z This allowed us to predict 3D joint angles by Monte Carlo sampling (see Materials and Methods).
218 We found that joint angles derived from lifted and triangulated 3D poses were in close agreement
a0 (Figure S1, red and blue). The errors are also low when comparing angle estimate variances to
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20 the amount of joint rotation during locomotor cycles. This shows that our network learned and
a1 preserved body proportions—a remarkable fact given the absence of any skeletal constraints, or
2 temporal information. Furthermore, when comparing the joint angles derived from 3D and 2D poses,
»3 we found that the predicted coxa-femur 3D joint angles, 8, in the front and hindlegs were of larger
24 amplitude than their projected 2D counterparts, 3’. This is expected since the action of these joints
»s has a large out-of-plane component relative to the projected x-y plane during walking. Second, in the
26 front leg, the predicted tibia-tarsus 3D joint angles, w, were of smaller amplitude than their projected
27 2D counterparts, w’. Indeed, rotations upstream in the kinematic chain (proximal joints) cause the
2 movement of the whole leg, which can introduce spurious variations in the angles of distal joints when
29 viewed from a projected plane. These results illustrate how 3D poses predicted by LiftPose3D can help
20 to decouple the underlying physical degrees-of-freedom and avoid spurious correlations introduced by
21 2D projected joint angles.

23 Because LiftPose3D maintained prediction accuracy irrespective of viewing angle (Figure 1F),
23 we next asked how it would perform when predicting 3D poses in freely behaving animals, where the
2 effective camera angle dynamically changes. We were also interested in considering animals without
25 exoskeletons where nearby keypoint movements are less constrained. We addressed this question
23 by training LiftPose3D to predict 3D poses for freely behaving macaque monkeys recorded in the
2 OpenMonkeyStudio dataset [8]. These data consist of 3D poses obtained by triangulating markerless
28 2D pose estimates [42] from 62 calibrated, synchronized, and distributed cameras (Figure 1H).
29 After training the network with only 6’571 3D poses, we could lift 3D poses from test images—
20 including macaques walking as well as taking up diverse poses (Video 4)—from any of the 62 cameras
21 (Figure 1I), and with a relatively small body length-normalized MAE (Figure 1J).

22 Taken together, these results demonstrate that LiftPose3D can reduce the number of cameras
23 required to perform full and accurate 3D pose estimation with simple data preprocessing and a
a4 relatively small but diverse training dataset.

s 2.3 Predicting 3D pose with occluded keypoints in freely behaving animals

xs In freely behaving animals, keypoints are often missing from certain camera angles due to self-
x%0  occlusions and, therefore, only partial ground truth 3D annotations can be obtained by triangulation.
a0 We asked how the global nature of lifting—all keypoints are lifted simultaneously—might be leveraged
on - to reconstruct information lost by occlusions and to predict full 3D poses.

2 To address this question, we built an experimental system consisting of a transparent enclosure
13 physically coupled to a right-angle prism mirror, similar to previous recording systems used for flies
2e  and mice [18,43,44]. We used a single camera beneath the platform to record the ventral and side
a5 views of a freely behaving fly (Figure 2A) and trained two DeepLabCut models [6] to obtain 2D
x6  joint coordinates from each of these views (Figure 2A). Having only two views meant that keypoints
a7 closer to the prism were simultaneously visible in both views and could therefore be triangulated,
s while those occluded from the side view had only ventral 2D information, which is insufficient for
29 triangulation. With this partial 3D ground truth, it was thus a priori unclear if a LiftPose3D network
20 could be trained to lift 3D poses using only ventral 2D poses (Figure 2A, green box).

281 Since the ventral and side views enclose right angles (i.e., are orthographic projections of the
2 true 3D pose), and because long focal length cameras have negligible perspective effects, we used 2D
23 poses from the ventral view to estimate the z-axis depth of occluded keypoints in the unseen side
2 view. Because all keypoints were simultaneously visible from the ventral view, this allowed us to
25 align flies in the same reference frame (Figure 2B), and transform lifting to the regression problem
26 in Eq. (1) where the indicator function xy,(-) now represents the visible keypoints from the side
27 camera (Figure 2C). As a result, keypoints with incomplete 3D information were not penalized
2s  during training. Taking the ventral view as an input, where we all keypoints were present, but
20 penalizing only those with complete 3D information allowed the network to implicitly regress the
200 unseen coordinates during training. We found that LiftPose3D could also predict 3D positions for
21 every joint at test time, including those occluded in the prism’s side view (Figure 2D and Video
22 5). Notably, the accuracy, based on available triangulation-derived 3D positions (Figure 2E) was
203 better than that obtained for tethered flies by triangulation with four cameras (Figure 1E). Thus,
24 LiftPose3D can estimate 3D poses from 2D images in cases where keypoints are occluded and cannot
205 be triangulated.

206 These results suggested an opportunity to apply lifting to identify and potentially correct in-
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u7  Figure 2: LiftPose3D performs 3D pose estimation on freely behaving animals with occluded keypoints.
28 A Drosophila behaving freely within a narrow, transparent enclosure. Using one camera and a right-angle prism mirror,
249 both ventral (top) and side (bottom) views are visible. 2D poses are tracked using two separately trained deep networks
250  for each view (colored lines). Ventral 2D poses (green box) are used for lifting the 3D pose. B Keypoints near the prism
251 mirror (red and blue) can be tracked in both views and triangulated. The remaining keypoints (gray) are only visible
252 in the ventral view and thus have no 3D triangulated ground truth. To obtain triangulated ground truth examples
253 for both sides of the bilaterally symmetric fly, we register the ventral images to align the orientation and position of
254 all animals. C Training data thus consists of a set of full ventral view 2D poses and their corresponding partially
255 triangulated 3D poses. D Following training with these aligned 2D-3D ground truth poses, LiftPose3D can be used
256 to predict 3D poses for new ventral view 2D pose data. E Joint-wise and overall absolute errors of the network’s 3D
257 pose predictions for freely behaving Drosophila. F A similar data preprocessing approach can be used to lift ventral
258 view 2D poses of mice (green boxes) walking within a narrow enclosure and tracked using the LocoMouse software.
250 LocoMouse ground truth (blue and red) and LiftPose3D (orange) pose trajectories are shown for the right forepaw
260 (top) and hindpaw (bottom) for one walking epoch. Arrowheads indicate where LiftPose3D lifting of the ventral
261 view can be used to correct LocoMouse side view tracking errors (red). Asterisks indicate where inaccuracies in the
262 LocoMouse ventral view ground truth (red) disrupt LiftPose3D’s side view predictions (orange). G Absolute errors of
263 LiftPose3D and LocoMouse side view predictions for six keypoints with respect to a manually-annotated ground truth.
264 H LiftPose3D can be trained to lift 3D poses of a freely moving rat with occluded keypoints. I Large animal-to-animal
265 skeleton variation illustrated by histograms of the measured lengths of the spinal segment for two animals. J Camera
266 image from the CAPTURE dataset superimposed with the annotated 2D pose (left). LiftPose3D uses this 2D pose to
267 recover the full 3D pose (right). K Error distribution over all keypoints for the CAPTURE dataset.
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27 accurate 3D poses obtained with other approaches. We considered a previously published dataset
28 consisting of freely behaving mice traversing a narrow corridor [18] tracked by the LocoMouse software
20 from both ventral and side views [18]. Using these, we triangulated incomplete 3D ground truth poses
20 (due to side view occlusions) and, as in the Drosophila prism mirror dataset, placed them in the same
sn  reference frame by registering the ventral poses. We then trained a LiftPose3D network to lift the ven-
s2  tral 2D poses (Figure 2F, green boxes). Predictions were in good agreement with the LocoMouse’s
w03 side view tracking (Figure 2E and Video 6) and could recover expected cycloid-like kinematics
3¢ between strides (Figure 2F). Remarkably, LiftPose3D predictions could also correct side-view poses
w5 that were incorrectly labeled or missing in the ground truth dataset (Figure 2F, bottom, white
w5 arrowheads). However, lifting accuracy depended on the fidelity of input 2D poses: incorrect ventral
sr 2D poses generated false side view predictions (Figure 2F, bottom, white asterisks). These errors
s were always restricted to the joint-of-interest and were relatively infrequent. Overall, LiftPose3D
w0 performed as well as LocoMouse, when compared with manual human annotation (Figure 2G).
a0 These results demonstrate that LiftPose3D can be used to correct other tracking methods, but also
s highlights the importance of quantifying the confidence of input 2D poses to avoid lifting keypoints
312 incorrectly.

313 The above examples demonstrate that LiftPose3D learns spatial relationships between keypoints
s when they are presented in the same reference frame. We therefore asked how well this feature gener-
a5 alizes to animals generating more complex behaviors and with large variations in body proportions.
a6 As an example, we considered a recently published CAPTURE dataset that used six fixed cameras to
s record freely moving rats within a circular naturalistic arena [39] (Figure 2H, left). The keypoints
sis were visual markers placed on the fur of the animals. These were intermittently self-occluded during
a0 motion (Figure 2I). Moreover, these animals performed a variety of complex behaviors including
20 walking, reaching, rearing, and turning. During these movements, 2D pose skeletons underwent large
a1 deformations. This is illustrated by the broad distribution of keypoint distances conveying spine
a2 lengths (Figure 2J). Despite these challenges we aimed to train a lifting network for these data,
33 thus requiring a series of further innovations. First, to overcome the variations in body propor-
324 tions both within and across animals, we first constructed a template skeleton with bone lengths
s that followed independent normal distributions with means and standard deviations representative
26 of expected bone lengths across the population of recorded animals. During training, we randomly
27 sampled from these distributions to rescale each ground truth 3D pose while preserving joint angles.
28 Then, we obtained a corresponding 2D pose via projection. Second, although the animal-to-camera
30 angle changed continuously during animal behaviors, we augmented the training data by generating
a0 virtual 2D projections within the Euler angle range of +10° about all three axes. Third, although
s the depth-wise motion of animals caused substantial variation in their distance to the camera, we
s assumed that it remained large enough for the weak perspective condition to hold, and normalized
a3 2D poses by their Frobenius norm, as before (see Materials and Methods). By doing so, the camera
3 parameters at test time no longer needed to be known, making our network directly applicable to
35 other rat movement studies. To illustrate this, we trained our network on two experiments from the
1 CAPTURE data (consisting of two animals and two camera arrangements) and then tested it on
sz a third experiment with a different animal and camera arrangement (i.e., different focal length and
138 orientation). In each case, we presented zeros to the network in place of missing data points and
a9 found that LiftPose3D could accurately predict the nonzero coordinates (Figure 2H, right and
uw K, Video 7). This shows that erroneous 2D point coordinates, which would otherwise confound
s lifting performance (Figure 2F), can be dealt with by presenting zeros in place of low confidence
w  points. Additionally, our methods could largely compensate for the challenges associated with lifting
us 3D poses for freely behaving animals having large variations in body proportions.

w 2.4 Using domain adaptation to lift diverse experimental data when tri-
215 angulation is impossible

w6 Our angle-invariant lifter networks for tethered flies (Figure 1D-F) and for freely behaving rats
s (Figure 2H-K) can be directly used in similar experimental systems without having to collect addi-
s tional 3D pose training data. However, small variations in new experimental systems resulting from
0 camera distortion or postural differences may limit the accuracy of lifted 3D poses. Therefore, the
s possibility of domain adaptation—using pretrained networks to lift poses in new experimental scenarios
sn with small postural variations—could enable extending the value of LiftPose3D to a vast and diverse
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w7 Figure 3: A pretrained LiftPose3D network predicts 3D poses for diverse data and when triangulation

346

s is impossible. A Linear domain adaptation between domain A (fly on a spherical treadmill) and domain B (fly on a
349 flat surface). 2D poses in B are mapped to A by a linear transformation da then lifted with a network trained only on
350 domain A poses. After lifting, the 3D poses are mapped back to B by another linear transformation d3. B A typical 2D
351 pose in domain B mapped into domain A by the best-fit linear transformation d2 between poses in B and their nearest
352 neighbors in A. C Error between mapped pose and nearest neighbor poses for dg, d3 against the number of poses used
353 to train them. The number of nearest neighbors used was k = 1 fof d2 and k = 2 for d3. D Lifted 3D pose following
354 domain adapation of a ventral domain B 2D pose and lifting with a network trained on domain A data. The prediction
355 is superimposed with the imcomplete ground truth 3D pose in domain B. E Lifting error following domain adaptation
356 of domain B poses compared with lifting error in the domain A with no domain adaptation. F Freely behaving flies
357 recorded from below using a low-resolution camera. Following body tracking, the region-of-interest containing the fly
38 is cropped and registered. 2D pose estimation is then performed for the 24 visible joints. G 2D poses are adapted
359 to the prism-mirror domain. These are then lifted to 3D poses with pre-trained network using prism-mirror data and
360 coarse-grained to match the lower resolution 2D images in the new experimental system. H These 3D poses permit
361 the analysis of claw movements in the otherwise unobserved = — z plane (bottom). I Published data from [20] showing
362 a freely behaving fly recorded from below using one high-resolution camera. 2D pose estimation was performed for all
363 30 joints. Following tracking, a region-of-interest containing the fly was cropped and registered. The same LiftPose3D
364 network trained in panel B—but without coarse-graining—was used to predict J 3D poses and K unobserved claw

35 movements in the z — z plane (bottom).
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sz user group who have only a single-camera for acquiring 2D poses and no means to obtain a ground
si3 truth library of 3D poses.

374 We assessed the possibility of domain adaptation by training a network in domain A—tethered
a5 flies on a spherical treadmill—and predicting 3D poses in domain B—freely-moving flies on a flat
ss  surface (Figure 3A). We chose this pair of experiments due to the availability of ground truth data
sz in both domains, which we could use to measure accuracy. Before performing domain adaptation, we
s first derived poses from 2D ventral images in domain B, as before. This allowed us to circumvent the
s difficulties arising from differences in appearance and illumination that are present in the more general
s0 image domain adaptation problem [45,46]. Thus, adapting poses became a purely geometric problem
s of adjusting proportions and postural differences across domains. Figure 3A depicts the three-step
s process to lift a 2D pose in domain B. First, we used a linear transformation ds to transform the 2D
3 pose into the source domain A. Second, we lifted this 2D pose into a 3D pose using a LiftPose3D
s network pre-trained only on 3D poses from domain A. Third, we transformed the lifted 3D poses from
s domain A back to domain B using another linear transformation ds. To find dy and ds, we identified,
16 for every pose in a training dataset B’, k nearest neighbors A’ in domain A (Figure 3A,B), and
ser - used these to find the best-fit linear transformations between domains (see Materials and Methods for
s details). These linear transformations are expected to generalize as long as the poses in domain 4 are
0 rich enough to cover the pose repertoire in domain B and are sufficiently similar between domains.
0 We tested this by 10-fold cross-validation (with k& = 1 for dy and k = 2 for d3) and found that the
;1 error associated with the transformations converged after less than 500 poses (Figure 3C). The final
s lifted poses were also in good agreement with the triangulated poses in domain B (Figure 3D).
33 The accuracy was slightly worse but remarkably comparable with that of a network lifting purely in
s domain A (Figure 3E, compare dark with light gray).

305 To demonstrate the full potential of domain adaptation, we next focused on lifting Drosophila 2D
s poses recorded from a single ventral camera. This approach is the most widely used free behavior
37 paradigm in laboratory settings due to its simplicity, low-cost, and increased throughput. It has been
58 applied to study many organisms including C. elegans [47], larval zebrafish [48], larval Drosophila [49],
300 adult Drosophila [50], and mice [51]. Although these recordings can be augmented with depth sen-
w0 sors [52,53], such sensors cannot resolve small laboratory animals, or reconstruct full 3D poses. Thus,
s 3D pose estimation of laboratory animals from a single 2D view remains an unsolved and highly desir-
w2 able goal, with the potential to substantially enrich behavioral datasets and to improve downstream
w03 analysis.

204 First, we developed a new experimental system consisting of a square-shaped arena in which
ws multiple freely-behaving flies could be recorded ventrally using a single camera (Figure 3F, left). In
ws addition to being a different experimental system from our prism mirror setup and using a different
w7 camera, here the images had four-fold lower spatial resolution (26 px mm~!). Hence, we could
ws only label 24 visible keypoints using DeepLabCut (Figure 3F, right). We then pretrained a network
w0 uSing prism-mirror training data—using only the keypoints present in both datasets—and augmented
a0 these data using a Gaussian noise term with standard deviation of ~ 4 (see Materials and Methods).
a1 Before lifting, we domain-adapted the annotated 2D poses into the network’s domain, as before
a2 (Figure 3B). Because ventrally-viewed leg configurations during swing and stance phases are difficult
a3 to distinguish, particularly at lower resolution, to reconstruct realistic joint movements our network
as would have to first learn the postural relationships between each leg. Remarkably, we found that
a5 the network could predict physiologically realistic 3D poses in this new dataset using only ventral
a6 2D poses (Figure 3G and Video 8). During walking, 2D tracking of the tarsal claws traced out
a7 stereotypical trajectories in the x-y plane (Figure 3H, top) [54] and circular movements in the
as  unmeasured x-z plane (Figure 3H, bottom) whose amplitudes were consistent with real kinematic
no  measurements during forward walking [55].

420 The ability to adapt training data from one domain to another also raises the exciting possibility
a1 that LiftPose3D could be used to 'resurrect’ previously published 2D pose data for new 3D kinematic
a2 analysis. To test this, we applied our prism mirror-based training data to lift previously published
23 high-resolution (203 px mm™1) video data of a fly walking freely through a capsule-shaped arena [20]
2 (Figure 3I). Using a similar data processing pipeline as for the previous case (Figure 3B,F,G),
#s including registration and domain adaptation but not noise perturbations (the target data were of
«s similarly high resolution as the training data), the LiftPose3D network could effectively predict 3D
«r  poses from this previously published dataset (Figure 3J). We again observed physiologically realistic
w8 cyclical movements of the pretarsi during forward walking (Figure 3K, bottom; Video 9). Thus,
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w9 thanks to the adaptation of pretrained networks to new domains, LiftPose3D can be an effective tool
a0 for performing 3D pose estimation on previously published 2D video data for which 3D triangulation
w1 would be otherwise impossible.

w 2.5 Drosophila LiftPose3D station

a3 These domain adaptation results opened up the possibility to make 3D pose acquisition consider-
s ably cheaper and more accessible across laboratories. To explore this possibility, we developed and
w5 constructed a “Drosophila LiftPose3D station” consisting of an inexpensive (~$150) open-source
a6 hardware system including a 3D printed rig supporting a rectangular arena recorded by a Raspberry
s Pi camera and illuminated using LEDs (see Figure S3 and Materials and Methods). A common
as  hardware solution like this one eliminates compounding variables introduced across different experi-
10 mental setups (e.g., camera distortion and perspective effects) and allowed us to provide pre-trained
wmo DeepLabCut and LiftPose3D networks that permit straightforward 3D pose measurements by other
w1 laboratories for Drosophila behavioral studies (Video 10). We envision that such an approach—
w2 a common behavioral arena, camera and illumination hardware, and pretrained pose estimation
w3 networks—might, in the future, also facilitate cross-laboratory lifting of mouse 2D poses using a
ws  single camera.

« 3 Discussion

us  Here we have introduced LiftPose3D, a deep neural network-based tool that dramatically simplifies
w7 and enables 3D pose estimation for a wide variety of laboratory contexts. Our approach uses the
ws  network architecture of [34], originally designed for human-pose estimation, and introduces a series
wo of innovations to input data preprocessing, training augmentation and domain adaptation. These
w0 contributions enable network training with several orders of magnitude less training data and when
1 ground truth 3D poses are incomplete due to occlusions or corrupted by inaccurate labelling. We
ss2  have also developed data augmentation methods that make LiftPose3D networks invariant to camera
3 hardware and positioning, allowing them to generalize across arbitrary setups. Furthermore, we
4 provide a comprehensive software pipeline for data preprocessing, network training, 3D predictions,
»ss  and visualization. A single intuitive Python notebook interfaces all the tools needed to obtain the
w6 results shown here.

as7 We illustrate how LiftPose3D reduces the number of cameras required for 3D pose estimation;
s from three to one on each side of a tethered fly, and from 62 to one in freely behaving macaques.
o In the case of flies, we also describe the training of a camera hardware-invariant network that can
wo take inputs from any low-distortion camera positioned at an arbitrary orientation relative to the
w1 target animal. We also provide two pre-trained networks—one for a side-view camera placed at any
w2 orientation and one for a ventral camera—that can be readily used for new experimental systems. In
w3 all cases, high accuracy comparable to triangulation was achieved for a range of both stereotypic and
ws  irregular spontaneous behaviors. For freely behaving flies, mice and rats, we have demonstrated that
w5 LiftPose3D can estimate 3D poses despite self-occlusions and that it can identify and correct keypoints
ws  that have been mislabeled by other keypoint tracking approaches. Finally, we have demonstrated that
w7 linear domain adaptation can be used to account for variations due to camera distortion or animal
s poses in new datasets. We used this approach to predict 3D poses for flies moving freely on a flat
wo  surface with a LiftPose3D network pre-trained with data of tethered flies on a spherical treadmill.
o Domain adaptation also opens up the possibility to acquire 3D pose data in situations where 3D
an ground truth is impossible to obtain by multi-camera triangulation, including lifting 3D poses from a
a2 large corpus of previously published 2D video data for further kinematic analysis. Using our domain
a3 adaptation methodology, networks with the largest and most diverse training data, like that for the
an tethered fly—may already be sufficiently robust to accurately lift 2D to 3D pose in other laboratories.
a5 To capitalize on this, we developed and demonstrate how this can be applied with an inexpensive
as  open hardware platform, the LiftPose3D station. Setups like this will dramatically lower the barrier
a7 for 3D pose estimation in other laboratories around the world.

a18 The LiftPose3D framework is general and can be applied with very few changes to study differ-
av  ent laboratory animals in new experimental systems and with diverse data acquisition rates, image
a0 resolutions, and 2D pose input sources including—as we demonstrate in this study—the stacked
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s hourglass network of DeepFly3D [7] and DeepLabCut [6]. Nevertheless, several factors must be
w2 taken into consideration when optimizing LiftPose3D for new experimental systems. First, because
w3 predicting depth from a 2D projection depends on comparing the projected lengths of body parts,
ss  input poses must be sufficiently well-resolved to discriminate between 3D poses that have similar 2D
w5 projections. Second, prediction accuracy depends on the diversity of training data—i.e., measured
s behaviors. We caution that previously untrained behaviors may not be as accurately lifted using a
w7 pretrained network. In the future, we envision that robust lifting networks might be generated by
s a communal, inter-laboratory aggregation of 3D pose ground truth datasets that include a variety
w9 of spontaneously generated and experimentally-induced behaviors. Third, although our aim was to
w0 develop a general tool with minimal experiment or animal-specific features, further work can improve
s LiftPose3D predictions for specific applications by bootstrapping to 3D body priors, thereby con-
w2 straining the space of possible 3D poses [56-60]. Finally, lifting might also be improved by using a
w3 network that incorporates temporal information for data acquired at a constant frame rate [35].

a0 We anticipate that LiftPose3D can already accelerate the successful adoption of 3D pose estimation
ws in laboratory research by reducing the need for complex and expensive synchronized multi-camera
w6 systems, and arduous calibration procedures. This, in turn, will improve the fidelity and quality
w7 of behavioral kinematic data needed to understand how actions emerge from multi-scale biological
w8 processes ranging from gene expression to neural dynamics and biomechanics.

«~ 4 Materials and Methods

0 4.1 Obtaining 3D pose ground truth data by triangulation
so. To obtain the 3D ground truth coordinates X; € R? for joints j = 1,...,n from a set of 2D keypoints

s Xcj € R? in images acquired by the cameras ¢ = 1, ..., N we followed the procedure described in [7].
ss  Let us express X; (x;, x?, 2 ) in homogeneous coordmates as X = (:rjl, xz x 1). The projection

s from the 3D points in the global coordinate system to 2D points in a local coorglnate system centered
ss on camera c is performed by the function 7. : R* — R? defined as X, ; = m.(X;). This function can
s be expressed as a composition m. = proj; , o @ of an affine transformation ¢. : R* — R* from
sor  global coordinates to camera-centered coordinates and a projection proj; o : :R* — R3 to the first two
ss coordinates. Both functions can be parametrized using the pinhole camera model [14]. On the one
so0 hand, we have

510 $e(X;) :=CcX] =Y, , (2)
su  where C, is the extrinsic camera matrix corresponding to the ¢. and can be written as

R.|T
512 CC = OC lc (3)

s3 where R, € R¥*3 is a matrix corresponding to rotation around the origin and T, € R? is a translation
siu vector representing the distance of the origin of the world coordinate system and the camera center.
sis  Likewise, the projection function can be expressed as

516 projl’QYC’j = KYc’j = )/Ec,j s (4)
57 where K is the intrinsic camera transformation
fz 0 ¢ O
518 K = 0 fy Cy 0 s (5)
0O 0 1 0

sw where f;, f, denote the focal lengths and c;,c, denote the image center. The coordinates pro-
s0 jected to the camera plane can be obtained by converting back to Euclidean coordinates x.; =
521 (ﬁi]/s&g]7§3]/§2])

522 Triangulation of the coordinate X; of joint j with respect to m. is obtained by minimizing the
s23  Treprojection error, that is, the discrepancy between the 2D camera coordinate, x.;, and the 3D
s2  coordinate projected to the camera frame, 7.(X;). Let V. be the set of visible joints from camera c.
s The reprojection error for joint j is taken to be

s2s erp (J; {me}) = ZXV ) lIxe.j = me(X)II3 (6)

12


https://doi.org/10.1101/2020.09.18.292680
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.292680; this version posted April 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

s where xy, () is the indicator function of set V. of visible keypoints from camera c¢. The camera
ss  projection functions 7. are initially unknown. To avoid having to use a calibtration grid, we jointly
s minimize with respect to the 3D location of all joints and to the camera parameters, a procedure
s0  known as bundle adjustment [14]. Given a set of 2D observations, we seek

531 minj Z erp (J; {mc}) - (7)

Te, X

52 using a second-order optimization method. For further details, we refer the interested reader to [7].

s 4.2 LiftPose3D network architecture and optimization

s The core LiftPose3D network architecture is similar to the one of [34] and is depicted by Figure 1B.
s Its main module includes two linear layers of dimension 1024 rectified linear units (ReLU, [61]),
s dropout [40] and residual connections [62]. The inputs and outputs of each block are connected
s7  during each forward pass using a skip connection. The model contains 4 x 10° trainable parameters,
s33  which are optimized by stochastic gradient descent using the Adam optimizer [63]. We also perform
s batch normalization [64].

540 In all cases, the parameters were set using Kaiming initialization [62] and the optimizer was
see run until convergence—typically within 30 epochs—with the following training hyperparameters:
s Batch-size of 64 and an initial learning rate of 10~3 that was dropped by 4% every 5000 steps. We
ses implemented our network in PyTorch on a desktop workstation running on an Intel Core i9-7900X
sea - CPU with 32 GB of DDR4 RAM, and a GeForce RTX 2080 Ti Dual O11G GPU. Training time was
sis less than 10 minutes for all cases studied.

s 4.3 Camera-angle augmentation

se7 - The object-to-camera orientation is encoded by the extrinsic matrix C. of Eq. 3. When it is unavail-
ss - able, one can still use our framework by taking 3D poses from the ground truth library and, during
se0  training, performing virtual 2D projections around the approximate camera location or for all possible
sso  angles. To this end, we assume that the rotation matrix R is unknown, but that the intrinsic matrix
s K and the object-to-camera distance d are known such that we may take T = (0,0,d)”. When K or
ss2  d are also unknown, or dynamically changing, one can make the weak-perspective assumption as in
553 described in the next section. Then, instead of training the LiftPose3D network with pairs of 3D poses
ssa  and 2D poses at fixed angles, we perform random 2D projections of the 3D pose to obtain virtual
s5 - camera planes whose centers c,, ¢, lie on the sphere of radius d. To define the projections we require
sss  a parametric representation of the rotations. Rotating a point in 3D space can be achieved using
ss7 three consecutive rotations around the three Cartesian coordinate axes x,y, z commonly referred to
sss - as Euler angles and denoted by 1,1, and 1,. The rotation matrix can then be written as

559 R = Ray. = Ru(¥2)Ry (vy )R (¥2)

1 0 0 cosp, 0 sinyy cosy, —siny, 0
560 =10 cosy, —siny, 0 1 0 siny, cosv, 0. (8)
w1 0 sinvy, cosy, —sintyy 0 costy, 0 0 1

s Given Eq. (2)—(5) we may then define a random projection X; on the sphere of radius d of a keypoint
ss  with homogeneous coordinate X; as

~ R.,. | T\ o
564 Xj =K Oy 1 Xj (9)
ss , where T = (0,0,d)?. Likewise, the 3D pose in camera coordinates can be expressed as

~ R,. | T\ o
566 ] = Oy 1 X]. (10)
567 Before training, we fix d, fs, fy, ¢y, ¢y and define intervals for the Euler angle rotations. We then

s obtain the mean and standard deviation in each dimension both for 2D and 3D poses in the training
s0  data set by performing random projections within these angle ranges. The obtained means and
s standard deviations are used to normalize both the training and test datasets.
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n 4.4 Weak perspective augmentation

sz To project 2D pose from 3D pose, one needs to know the camera transformation ¢, (Eq. (2)), encoded
s by the extrinsic matix C. (Eq. (3)) and the projection function proj; » (Eq. (4)), encoded by the
s intrinsic matrix K (Eq. (5)). In the previous section, we described how to deal with the case when
s C, is unknown. In addition, K may also be unknown a priori at test time. Alternatively, one may
st want to use one of our pre-trained networks on a novel dataset without having to match the camera
s positioning (focal length, camera-to-animal distance) used to collect the training data. In this case,
ss - one may still be able to predict the 3D pose in a fixed camera-centered coordinate frame by assuming
5o that either the camera-to-animal distance or the focal length are large enough to neglect perspective
s effects and by normalizing the scale of 2D poses. Following Ref. [41], we choose the Frobenius norm
st to perform normalization on the input 2D poses X, ;/||%Xc ;|| r, which is the diagonal distance of the
s smallest bounding box around the 2D pose. Note, that if the 2D poses are obtained via projections,
s one may use the unit intrinsic matrix Eq. (5) with f, = f, and ¢; = ¢, = 0 before performing
s« normalization. Here, using ¢, = ¢, = 0 assumes that the 2D poses are centered, which in each
sss  Of our examples is achieved by considering coordinates relative to root joints placed at the origin.
s Importantly, the 2D poses must be normalized both during training and test times.

= 4.5 Linear domain adaptation

sss  Here we describe the process of adapting a network trained on data from experiment A to lift 2D
s poses in experiment B. Domain adaptation is also useful if the camera parameters or the distance
s0 from the camera are not known and the weak perspective assumption cannot be invoked.

501 Here, the basis for domain adaptation is to first find a function ds : Bla — A|s, where Als and
5o B|y are restrictions of 3D poses in the two domains to the corresponding 2n-dimensional spaces of
s 2D poses. This function maps poses in domain B to domain A and makes them compatible inputs
sa  for the network trained on poses in domain A. In the scenario that 3D data is available in domain
ss B, we can also find a function d3 : B — A where A and B are 3n-dimensional spaces of 3D poses in
sos  the two experimental domains. After 3D poses have been obtained in domain A, we map back these
sv  poses to domain B by inverting this function.

508 We now describe how to obtain the functions ds and ds, which we denote collectively as d. To find
s0  d, we assume that poses in domain B can be obtained by small perturbations of poses in domain A.
so This allows us to set up a matching between the two domains by finding nearest neighbor 2D poses
s in domain A for each 2D pose in domain B, xZ = (xf17 e ,xfn). We use 2D rather than 3D poses to
e2 find a match because 3D poses may not always be available in domain B. Moreover, the nearest poses
s0s in 3D space will necessarily be among the nearest poses in 2D space. Specifically, for each xZ, we find
s aset of k nearest poses in domain A, {NV(x);}5_, such that [[N'(xP); —xP|ls < [IN(xP);11—xP|2.
s We then use these poses to learn a linear mapping W4 € R?"*2" from domain B to A, where n
e 1s the number of keypoints, as before. We can find this linear mapping by first defining a set of p

B B

er training poses in domain B, xZ = x! ;... X, and writing WpaxP = x{l, where xB € R¥*kP and

o8 X € RI"¥FP with d = 2 or 3 are matrices defined according to

\ \ \ \
609 VVBA<X{3 X{B XE XZI?) -
\ k \ \ . \
\ \ \ \
610 <N(X]19)1 o N(xP), o NP, - J\f(xf)k). (11)
\ k \ \ k \

2 Transposing this linear equation yields the linear problem (xF)TWZEL, = (x{})7. Given that the p

s training poses are different, x2 has linearly independent columns and this problem is overdetermined
e aslong as kp > dn. Thus, by least-squares minimization, we obtain W5 , = ((xZ)TxE)~1(xE)T (x)7.

6.

2
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as 4.6 Experimental systems and conditions

ais  All adult Drosophila melanogaster experiments were performed on female flies raised at 25°C on a 12 h
s light/dark cycle at 2-3 days post-eclosion (dpe). Before each experiment, wild-type (PR) animals were
sis  anaesthetized using COq or in ice-cooled vials and left to acclimate for 10 min. DeepFly3D tethered
a0 fly data were taken from [7]. OpenMonkeyStudio macaque data were taken from [8]. LocoMouse
s0 mouse data were taken from [18]. CAPTURE rat data were taken from [39]. FlyLimbTracker freely-
sz behaving fly data were taken from [20]. See these publications for detailed experimental procedures.
62 For more information on the datasets including the number of keypoints, poses, animals, resolution,
63 framerate we refer the reader to Table 1.

62 4.6.1 Freely behaving Drosophila recorded from two high-resolution views using one
625 camera and a right-angle prism mirror

s26  We constructed a transparent arena coupled to a right-angle prism mirror [43,44]. The enclosed arena
s consists of three vertically stacked layers of 1/16” thick acrylic sheets laser-cut to be 15 mm long, 3
s2s mm wide, and 1.6 mm high. The arena ceiling and walls were coated with Sigmacote (Sigma-Aldrich,
s0  Merck, Darmstadt, Germany) to discourage animals from climbing onto the walls and ceilings. One
s0 side of the enclosure was physically coupled to a right-angled prism (Thorlabs PS915). The arena
sn and prism were placed on a kinematic mounting platform (Thorlabs KM100B/M), permitting their
s2 3D adjustment with respect to a camera (Basler acA1920-150um) outfitted with a lens (Computar
s3 - MLM3X-MP, Cary, NC USA). The camera was oriented vertically upwards below the arena to provide
e two views of the fly: a direct ventral view, and an indirect, prism mirror-reflected side view. The arena
o35 was illuminated by four Infrared LEDs (Thorlabs, fibre-coupled LED M850F2 with driver LEDD1B
s T-Cube and collimator F810SMA-780): two from above and two from below. To elicit locomotor
e activity, the platform was acoustically and mechanically stimulated using a mobile phone speaker.
s Flies were then allowed to behave freely, without optogenetic stimulation.

6 4.6.2 Freely behaving Drosophila recorded from one ventral view at low-resolution

s0  We constructed a square arena consisting of three vertically stacked layers of 1/16” thick acrylic sheets
61 laser-cut to be 30 mm long, 30 mm wide, and 1.6 mm high. This arena can house multiple flies at once,
s increasing throughput at the expense of spatial resolution (26 px mm~!). Before each experiment
s3 the arena ceiling was coated with 10 uL. Sigmacote (Sigma-Aldrich, Merck, Darmstadt, Germany)
s to discourage animals from climbing onto the ceiling. A camera (pco.panda 4.2 M-USB-PCO, Gloor
o5 Instruments, Switzerland, with a Milvus 2/100M ZF.2 lens, Zeiss, Switzerland) was oriented with
as respect to a 45 degree mirror below the arena to capture a ventral view of the fly. An 850 nm infrared
sr  LED ring light (CCS Inc. LDR2-74IR2-850-LA) was placed above the arena to provide illumination.
ss  Although the experiment contained optogenetically elicited behaviors interspersed with periods of
e9  spontaneous behavior, here we focused only on spontaneously generated forward walking.

650 The positions and orientations of individual flies were tracked using custom software including a
s modified version of Tracktor [65]. Using these data, a 138 x 138 px image was cropped around each
e2 fly and registered for subsequent analyses.

63 4.6.3 Drosophila LiftPose3D station

64 The LiftPose3D station is an easily constructed and used system designed to capture 2D poses of
es freely behaving Drosophila melanogaster. The station is powered by a Raspberry Pi Zero board and
66 uses a high quality camera with a 6 mm wide-angle lens to obtain images at 800x800 pixel resolution.
67 The camera’s exposure time was set to 2 ms and its framerate to 80 fps. Images are first stored
es as jpeg files in the micro SD card of the Raspberry Pi Zero, and then transfered to a workstation
eo for further processing. Each image file size is about 25 kb. Therefore we are able to store up to
so 3 hrs of data using our current configuration. We refer the reader to the Supplementary Notes for
e1 a detailed description of the design and assembly. Table 2 provides a full list of components with
s> links to retailers from whom they can be purchased, or computer-aided designs (CAD) of custom
e manufactured pieces.

15


https://doi.org/10.1101/2020.09.18.292680
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.292680; this version posted April 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

e 4.7 2D pose estimation

s DeepFly3D 2D poses were taken from [7]. OpenMonkeyStudio 2D poses were taken from [8]. CAP-
s6s TURE 2D poses were taken from [39]. LocoMouse 2D poses were taken from [18]. See these publica-
e7 tions for detailed 2D pose estimation procedures.

s 4.7.1 2D pose estimation of freely behaving flies recorded in two views using a right-
669 angle prism mirror

e Data acquired from a single camera were split into ventral and side view images. We hand-annotated
s the location of all 30 leg joints (five joints per leg) on 640 images with a ventral view and up to 15
o2 visible unilateral joints on 640 images of the side view. We used these manual annotations to train
o3 two separate DeepLabCut [6] 2D pose estimation networks (root-mean-squared errors for training
o and testing were 0.02 mm and 0.04 mm for ventral and side views, respectively). Whereas ventral
o5 view images could be used to predict 2D pose for all 30 leg joints, from the side view at most 15
o6 joints were visible when the fly was parallel to the prism. Typically fewer keypoints were visible due
o7 to rotations of the fly within the enclosure. We removed images in which DeepLabCut incorrectly
es annotated keypoints as well as images in which flies were climbing the enclosure walls (thus exhibiting
oo large yaw and roll orientation angles). To exclude these images, we ignored those with a confidence
e0 threshold below 0.95, and those for which the z-coordinate between the lateral and ventral views
e differed by more than 10 px.

62 4.7.2 2D pose estimation of freely behaving flies recorded in one ventral view using a
683 single camera

¢ FlyLimbTracker data [20] was manually annotated because training a network to track only 100
es frames would have been impractical. For newly acquired low-resolution ventral view single camera
s data, we trained a DeepLabCut [6] 2D pose estimation network. Due to the low resolution of images,
67 the coxa-femur joints were not distinguishable, therefore, we treated the thorax-coxa and coxa-femur
es joints as a single entity. We manually annotated 160 images with the locations of four landmarks per
60 leg: the thorax-coxa-femur entity, the femur-tibia joint, the tibia-tarsus joint, and the claw. We then
e0 trained a DeepLabCut network to predict the 2D coordinates of the 24 landmarks in the legs from
s the ventral view.

o 4.8 Training the LiftPose3D network

%03 An important step in constructing LiftPose3D training data is to choose r root joints (see the specific
s0¢ use cases below for how these root joints were selected), and a target set corresponding to each
es root joint. The location of joints in the target set are predicted relative to the root joint to ensure
es translation invariance of the 2D poses.

697 The training dataset consisted of input-output pose pairs (x&, X") with dimensionality equal to
es the number of keypoints visible from a given camera ¢ minus the number of root joints r, namely
w0 XU € R2(Vel=7) and Xt € R3(Vel=") Then, the training data was standardized with respect to the
0 mean and standard deviation of a given keypoint across all poses.

m  4.8.1 Tethered Drosophila melanogaster

w2 Of the 38 original keypoints in [7], here we focused on the 30 leg joints. Specifically, for each leg we
703 estimated 3D position for the thorax-coxa, coxa-femur, femur-tibia, and tibia-tarsus joints and the
e tarsal tips (claws). Thus, the training data consisted of input-output coordinate pairs (x + ¢, X")
s for 24 joints (30 minus six thorax-coxa root joints) from all cameras. Here xI € R?" are 2D input
16 joint keypoints acquired from camera ¢ and X' € R3” are 3D ground truth coordinates obtained from
27 DeepFly3D by triangulating 2D coordinates from all six cameras. Furthermore, ¢ € R*® is a small
s additive noise term, each with zero-mean Gaussian components. We found that the additive noise
0 term stabilizes the network’s convergence during training (Figure S2A) and reduces uncertainty in
no  lifted 3D joint positions. To maintain consistency for calculations of absolute error, triangulation was
m  performed using the same set of 2D poses that were used to train the LiftPose3D network.
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n2 4.8.2 Freely behaving macaque monkeys

ns The OpenMonkeyStudio dataset [8] consists of images of freely behaving monkeys inside a 2.45 x
na 2.45 X 2.75 m arena in which 62 cameras are equidistant horizontally at two heights along the arena
ns  perimeter. We extracted all five available experiments (7, 9, 9a, 9b and 11) for training and testing.
ne  Since 2D pose annotations were not available for all cameras, we augmented this dataset during
n7  training by projecting triangulated 3D poses onto cameras lacking 2D annotation using the provided
ns camera matrix. For the available 2D annotations, we removed the fisheye lens-related distortions
7o of 2D poses using the provided radial distortion parameters. We normalized each 2D pose to unit
=0 length, by dividing it by its Euclidean norm as well as the 3D pose with respect to bone lengths to
= reduce the large scale variability of the OpenMonkeyStudio annotations (animals ranged between 5.5
22 and 12 kg). Following the OpenMonkeyStudio convention, we set the neck joint as the root joint
73 during training. We compare our absolute errors to the total body length, calculated as the sum of
724 the mean lengths of the nose-neck, neck-hip, hip-knee, knee-foot joints pairs. Over multiple epochs,
25 we observed rapid convergence of our trained network (Figure S2B).

2 4.8.3 Freely behaving mice and Drosophila recorded from two views using a right-angle
727 mirror

s Freely behaving mouse data [18] consisted of recordings of animals traversing a 66.5 cm long, 4.5 cm
=9 wide, and 20 cm high glass corridor. A 45° mirror was used to obtain both ventral and side views
70 with a single camera beneath the corridor. 2D keypoint positions were previously tracked using the
= LocoMouse software [18]. We considered six major keypoints—the four paws, the proximal tail, and
72 the nose. Keypoint positions were taken relative to a virtual “root” keypoint placed on the ground
73 midway between the nose and the tail.

73 For both the Drosophila and mouse datasets, side view keypoints distal to the camera were
75 intermittently occluded by the animal’s body. Thus, taking a simplistic approach, after training with
76 this unilateral ground truth data, lifting from the ventral view would only recover keypoints on the
75 proximal half of the animal. We significantly modified data preprocessing to enable lifting across
s both the proximal and the occluded, distal side of the animal. Specifically, we registered all animals
70 along the horizontal axis in the ventral view to generate ground truth data for all leg joints across
0 time frames. Thus, although there is still only partial 3D pose ground truth for each image (for the
m  proximal, fully visible half of the animal) we forced the lifting function f to predict the entire pose.
n2  This is possible because the realignment step masks from the network which data, among all of the
n3  input to f, are visible and contain 3D ground truth annotations.

o Combining the proposed alignment and partial 3D pose supervision, the training dataset includes
us  coordinate pairs (x4 ¢, zll,.), with € as before, x' = {(zj, y;) : j € Veae} € R?IVsel are the
16 coordinates of DeepLabCut annotated 2D keypoints from the ventral viewpoint and zXf,, = {z; : j €

w Vide} € RIVsel are the corresponding z-axis depth coordinates, for joints visible from the side view
ns  for a given frame. The networks for Drosophila and mouse training data converged within 30 and 10
o training epochs (Figure S2C,D).

w0 4.8.4 Freely behaving rat in a naturalistic environment

s The CAPTURE dataset contains recordings of freely behaving rats in a 2-foot diameter cylindrical
7 arena tracked by six cameras. Motion capture markers on the animal are tracked using a commercial
73 motion capture acquisition program [39] to obtain 2D poses. Out of 20 possible joints, we limited
s our scope to the 15 joints that were not redundant and provided most of the information about the
s animal pose. The dataset includes 4 experiments recording 3 rats from two different camera setups.
76 Before using LiftPose3D, we removed the distortion from 2D poses using radial distortion parameters
7 provided by the authors. The CAPTURE dataset has many missing 3D pose instances which we
s handle by not computing the loss corresponding to these keypoints during back-propagation. We
o selected the neck joint as the single root joint and predicted all of the other joints with respect to
w0 this root joint. We observed that LiftPose3D converged within 15 training epochs (Figure S2E).
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w  4.8.5 Freely behaving adult Drosophila melanogaster recorded from one ventral camera
762 view

3 For both the newly acquired low-resolution and previously published high-resolution [20] images of
s freely behaving flies taken using one ventral view camera, we trained a LiftPose3D network on partial
s ground truth data acquired from the prism mirror system. For the high-resolution data, we considered
w6 the thorax-coxa joints as roots. For the low resolution data coxa-femur joints were imperceptible,
w7 allowing only 24 keypoints to be annotated. Hence, the thorax-coxa joints were selected as roots
s and we focused on predicting the relative location of the remaining mobile joints (18 keypoints) with
70 respect to their associated root joints. The training dataset consisted of coordinate pairs (XL, .. +
m €+, ziy,) where x{t 1, €,z were chosen to represent the annotated ventral coordinates, joint-
m dependent noise and z-axis depth for the visible joints, as before. Meanwhile,  was a novel noise
72 term, which we describe below.

3 The training and test data were augmented to accomplish domain adaptation: lifting new data
s with the prism system training data. First, for the low-resolution dataset, a zero-mean Gaussian noise
75 term with a joint-independent standard deviation of 4 px, n, was added during training. The role of
76 this noise term was to account for the keypoint position degeneracy inherent in the transformation
77 from high-resolution prism training data to lower-resolution testing data. This term effectively coarse-
7 grained the network’s spatial resolution, accounting for the 4-fold lower resolution of the low-resolution
9 single camera ventral view system compared with the right-angle prism mirror system. For the high
7m0 resolution dataset this noise term was set to zero.

781 Second, following training, we preprocessed the test data 2D poses derived from both the low-
2 and high-resolution images by matching their data distributions to that of the prism-mirror dataset.
73 To achieve this, we performed procrustes analysis to find the optimal affine transformation (rotation,
¢ translation and scaling) that maps the average root joint positions across poses in the test dataset to
75 those in the prism-mirror dataset.

= 4.9 Deriving joint angles and performing error estimates

7r  Consider three consecutive joints in the kinematic chain of one leg with coordinates u, v, w. Then,
s vectors s; = u— v and s; = u — w describe adjacent bones and their enclosed angle is found by the
7o cosine rule, cos™1(s1 - so/(|[s1]][[sz2]]))-

790 With the exception of the tarsus, the fly’s exoskeleton moves in a rigid manner. This permits
1 the estimation of errors in the lifted joint angles based on fluctuations of predicted bone lengths.
2 We assumed that u, v, w are drawn from independent Gaussian distributions centered around the
703 estimated coordinate with standard deviation equal to the variation of the bone lengths ||s;|| and
194 ||s2||. The distribution of joint angles for any given pose was estimated by Monte Carlo sampling
75 (using 5 x 103 samples) drawing one sample from each three distributions and then computing the
6 corresponding joint angle by the cosine rule.

= 4.10 Code and data availability

e The code can be installed as a pip package, see https://pypi.org/project/liftpose/, or down-
0 loaded at https://github.com/NeLy-EPFL/LiftPose3D.

a0 The experimental data collected for this study can be downloaded at:

sn  https://drive.google.com/drive/folders/1qi8_c1Ynl0zh7eWYXAG369iLtAS4iulH?usp=sharing
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« O Supplementary Notes

sz 9.1 Drosophila LiftPose3D Station

s Design and assembly The LiftPose3D station’s main body was 3D printed using a Form2 printer
ss and standard black resin (Formlabs, United States). A Raspberry Pi Zero W was fixed upside down
ss onto the main body using a custom coupler and four screws. Two angled headers should be soldered
sor  to the Raspberry Pi ground (gnd) and 5V pins before placing the board onto the station. For the
ws Raspberry Pi high-quality camera, the C-CS adapter was removed and the back focus adjustment ring
so  was fully closed. Then, the 6 mm wide-angle lens was installed onto the camera. The camera and lens
a0 were screwed to a lasercut acrylic coupler with the cable connection facing the open side of the base,
s a flex cable was used to connect the camera to the Raspberry Pi board. We designed an illumination
g2 System consisting of four white LEDs, a switch to turn them on and off, and a potentiometer to
sz control the light intensity. The circuit for controlling the LEDs was built on a prototyping board with
s prefabricated copper connections and we added extra connections with wires as shown in Figure S3.
as  However, we also provide the files to manufacture a printed circuit board (PCB). The illumination
a1 module was screwed to the middle level of the base and two jumper wires were connected from the
a1z Raspberry Pi angled pins to the circuit pins considering the correct polarization, i.e., 5V to 5V and
ss  gnd to gnd. Finally, we used a square arena with three vertically stacked layers of 1/16” acrylic to
a0 hold behaving adult flies. The arena is 12 mm per side with rounded corners. These acrylic layers
s0 are fixed with the pillars on top of the base.

21  Raspberry Pi-Computer connection We decided to establish a USB-Ethernet gadget mode con-
a2 nection to simplify the communication between our Raspberry Pi Zero and computer. This connection
#23  mode allowed us to power the Raspberry Pi, establish an SSH connection, and share the computer
@24 internet using one standard USB cable. However, any other connection mode can be used, including
e SSH through WiFi, or direct connection with a monitor, keyboard, and mouse to the Raspberry Pi
a6 board, as explained in the official Raspberry website.

827 We tested the USB-Ethernet gadget mode with a computer running Ubuntu 20.04, but different
ws  tutorials exist for running such a connection in iOS or Windows operating systems (OS). It is very
@9 important to use a standard USB cable and not an USB-OTG cable. First, a Raspberry Pi OS should
s be installed in a micro SD card using the Raspberry Pi Imager. We used the Raspberry Pi OS Lite
en  version (Buster) with the Linux kernel 5.4.83.

832 After installing the OS, the SD card should be unplugged and plugged again into the PC. Now
a3 the card is mounted and we can acces the boot partition where some changes should be made.

834 First, the following lines should be appended to config.txt file to enable the OTG libraries on
85 boot:

g3 # Enable USB OTG like ethernet
s7  dtoverlay=dwc2

838 Then, an empty file called ssh (without any extension) should be created using, e.g., vim, vi, or
g0 touch. Finally, modify the cmdline.txt file by adding the following line after the word “rootwait”
so  (add a space at the beginning and the end of the added text):

s modules-load=dwc2,g_ether

842 Now that the initial configuration is completed, the SD card should be ejected from the computer
a3 and inserted into the Raspberry board. Then, connect the USB cable to the USB port labeled “USB”,
saa 1ot the one labeled “PWR”. Booting the first time lasts around 60-90 s, afterwards it will be faster.
845 The Raspberry Pi will be recognized by Ubuntu as a new Ethernet network connection. However,
ws  to enable the connection, it has to be edited to set the connection method to “Link-Local Only” in
s the IPv4 tab. The ssh tunneling is established and the Raspberry can be accessed using:

ss  Ssh pi@raspberrypi.local

s By default the ssh password is “raspberry”, however, it can be easily changed. To share the inter-
g0 net connection from the Ubuntu computer, the ethernet connection should be disconnected in the
ss1 networks manager (do not disconnect the USB cable) and the connection method should be changed
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sz to “Shared to other computers”. Establish again the ethernet connection and now the Raspberry Pi
53 will have internet after you ssh onto it.

854 For now the Raspberry Pi will choose a random ID and MAC-address after every restart/reboot.
ss Lo fix that, edit again the cmdline.txt file on the boot partition by adding the following line at the
g6 end:

87 g_ether.host_addr=xx:XX:XX:XX:XX:!XX

ss ' The host address should be taken from the Ubuntu computer and can be obtained by running the
so  command ifconfig in a terminal. The last thing to do is to assign a static IP address to the
so Raspberry. To do that, add the following lines to the file “/etc/dheped.conf”:

1 interface usbO
s2 static ip_address=10.xx.xx.xX
83 static routers=10.xx.XX.XX

864 The static IP address and routers are then obtained from the Raspberry and the Ubuntu computer,
ss respectively, by running the command ifconfig. The whole configuration above should be done just
ss once. At this point the connection between the Raspberry and the computer will be established
s7  automatically every time the USB cable is used.

s lmage acquisition To set up the acquisition software in the LiftPose3D station, first python 3 and
so  pip3 should be installed on the Raspberry Pi Zero:

870 sudo apt-get update

sudo apt-get upgrade

sudo apt-get install python3-dev

wget https://bootstrap.pypa.io/get-pip.py

sudo python3 get-pip.py

871

872

873

874

P hH P P &P

875 Then the Raspberry Pi camera should be enabled by running $ sudo raspi-config, and selecting
ers  the corresponding option. The Raspberry should be rebooted after enabling the camera module.
ez Finally, the package piCamera should be installed by running the command:

es $ pip install "picameralarray]".

879 The script capture_fast.py should be copied in the Raspberry Pi and it can be run with the
g0 command:

s $ python3 capture_fast.py imgsFolder

882 The script is a customized version of an example (Advance recipe 4.7) found in the piCamera
ss  package documentation. It will capture images for 30 s by default at 80 fps with an exposure time
sss  fixed at 2 ms. These images will be stored in a directory named imgsFolder. The recording du-
ss  ration, framerate, and exposure time can be modified directly in the program, however, it is not
s recommended to change either the framerate or the exposure time since it would change the illumi-
es7 nation and sharpness of the images.

888

s0  Image preprocessing When the images are captured they are stored onto the Raspberry SD card,
a0 however, we strongly recommend moving them to another computer with larger capacity as soon as
s they are taken. A preprocessing stage should be completed before lifting the fly’s pose. This procedure
g2 consists of cropping the fly from every frame and registering these crops along the experiment aligning
ss  the fly facing up. This processing is performed by the program crop_flies.py, using the following
s« pseudocode:

895 1. Read frames.
896 2. Segment fly’s body based on color.

897 3. Binarize image.

S

898

. Fit ellipse around the fly’s body.
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899 5. Get crop of 290x290 pixels around the ellipse centroid.

900 6. Rotate crop based on the ellipse orientation to register images.

901 7. Check for head or wings at the top of the crop.

902 8. Rotate crops if wings detected on top in more than 50% of the frames.

903 9. Write video with cropped fly.

« 6 Supplementary Tables

Table 1: List of datasets used
. # Lifted # 3D poses Resolution | Framerate | # Animals

Dataset # Views keypoints (train/test) (px/mm) (Hz) (train/test) Source
DeepFly3D (spherical treadmill) 6 24 3.56 x 10°/1.98 x 10% 117 100 6/2 7]
OpenMonkeyStudio 62 12 6’581/710 0.15 30 5/1 8]
Fly in a prism-mirror setup 2 24 8’362/3'416 112 100 3/1 this paper
LocoMouse 2 6 28'840/10°814 2.5 400 30/4 18]
CAPTURE 6 20 1.58 x 10°/5.17 x 10* 1 300 3/1 [39]
Fly on a flat surface 1 18 n.a. 26 80 n.a./1 this paper
Published fly on a flat surface 1 18 n.a. 203 200 n.a./1 [20]
Drosophila LiftPose3D station 1 18 n.a. 56 80 n.a./1 this paper

Table 2: List of components composing the LiftPose3D station

. Compan, Type (Alternative
Quantity | Component Mamrl)fac)t,l/lring method 1\/Iya[’;er(ial (CAD) /
1 | Raspberry Pi Raspberry Pi Zero W
1 | Raspberry Pi Camera Raspberry Pi High Quality Camera
1 | Raspberry Pi CS-mount lens CGL 6 mm wide-angle
1 | Raspberry Pi Zero Flex Cable | Sertronics RPIZ-FLEX-15
1 | Micro SD memory Sandisk Extreme Pro 32Gb
1 | USB cable RND Components Micro B to USB A
1 | Station base 3D printed Black resin
1 | Raspberry coupler Laser cut Acrylic 4mm
2 | Arena’s outer layers Laser cut Acrylic 1/16”
1 | Arena’s inner layer Laser cut Acrylic 1/16”
1 | Prototyping board/PCB Rademacher 710-5
1 | Miniature Slide Switch RND Components 210-00585
1 | Trimmer Potentiometer Bourns 500 Ohms
1 | Resistor RND Components 56 Ohms
2 | Female-Female jumper wire RND Components BBFF-10-Q3RD
4 | White LEDs RND Components 135-00164
4 | PCB pins angled Prostar RS-1X36-T1-7/3MM
7 | Screws M2.5x12mm Bossard BN-610
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https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
https://www.digitec.ch/en/s1/product/raspberry-pi-camera-camera-electronics-modules-13191781
https://www.digitec.ch/en/s1/product/sertronics-raspberry-pi-zero-flex-cable-various-electronics-modules-7195413
https://www.digitec.ch/en/s1/product/sandisk-extremepro-microsd-a1-microsdhc-32gb-u3-uhs-i-memory-card-6613018
https://www.distrelec.ch/en/usb-plug-to-usb-micro-plug-cable-500mm-black-rnd-connect-rnd-765-00053/p/30125761
https://drive.google.com/drive/folders/1yuByFi3-VOtQayGqFfTdknzkkSuC-uoD?usp=sharing
https://drive.google.com/drive/folders/1yuByFi3-VOtQayGqFfTdknzkkSuC-uoD?usp=sharing
https://drive.google.com/drive/folders/1yuByFi3-VOtQayGqFfTdknzkkSuC-uoD?usp=sharing
https://drive.google.com/drive/folders/1yuByFi3-VOtQayGqFfTdknzkkSuC-uoD?usp=sharing
https://www.distrelec.ch/en/laboratory-card-phenol-hard-paper-fr2-rademacher-710/p/14832979
https://www.distrelec.ch/en/miniature-slide-switch-1co-on-off-on-pcb-pins-rnd-components-rnd-210-00585/p/30152609
https://www.distrelec.ch/en/trimmer-potentiometer-500ohm-500mw-bourns-3386h-501lf/p/16434368
https://www.distrelec.ch/en/metal-film-fixed-through-hole-resistor-56ohm-600mw-rnd-components-rnd-155m207f56r0tkrtb5k0/p/30155422
https://www.distrelec.ch/en/jumper-wire-female-to-female-pack-of-10-pieces-150-mm-multicoloured-rnd-components-bbff-10-q3rd/p/30115109
https://www.distrelec.ch/en/tht-led-5mm-round-white-23cd-rnd-components-rnd-135-00164/p/30132255
https://www.distrelec.ch/en/rs-right-angle-male-pcb-header-through-hole-rows-36-contacts-54mm-pitch-prostar-rs-1x36-t1-3mm/p/14370342
https://www.distrelec.ch/en/screw-socket-cap-hex-mm-m2-12mm-pack-of-100-pieces-bossard-bn-610-m2-5x12/p/30071955
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« 7 Supplementary Figures
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906
o7 Figure S1: Joint angles resulting from lifting compared with 3D triangulated ground truth and 2D
08 projections. Joint angles o, 3,7, and w for the front, mid, and hind left legs during forward walking. Shown are angles
909 computed from 3D triangulation using DeepFly3D (blue), LiftPose3D predictions (red), and ventral 2D projections
9.0 o, B’,7, and w (green). The mean (solid lines) and standard deviation of joint error distributions (transparency) are
o11  shown. Joint angles were computed by Monte Carlo sampling and errors were computed by taking the fluctuation in

912 bone lengths.
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Figure S2: Training and test loss convergence of the LiftPose3D network applied to a variety of datasets.

915 Shown are the absolute test errors of LiftPose3D for all joints as a function of optimization epoch. Note that the test

916 error is sometimes lower than the training error because we do not apply dropout at test time. A Two-camera

917 data of Drosophila on a spherical treadmill (each color denotes a different pair of diametrically opposed cameras). B
918  OpenMonkeyStudio dataset (each color denotes a different training run). C Single-camera data of Drosophila behaving

o190 freely in the right-angle prism mirror system, D LocoMouse dataset. E CAPTURE dataset.
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o1 Figure S3: Drosophila LiftPose3D station A CAD drawing of the LiftPose3D station indicating major components
922 (color-coded). B Electronic connections included in a prefabricated prototyping board for the illumination module. C
23 Photo of the LiftPose3D station.

2 8 Supplementary Videos

s  Video 1: 3D pose lifting for backwards walking in tethered Drosophila obtained from
o6 two side cameras. Videos obtained from cameras 2 (top-left) and 5 (bottom-left). DeepFly3D-
o7 derived 2D poses are superimposed. Orange circle indicates that the optogenetic stimulation LED
ws light is on, activating MDNs to elicit backward walking. (right) 3D poses obtained by triangulating
a0  six camera views using DeepFly3D (solid lines), or lifting two camera views using LiftPose3D (dashed
930 lines).

o1 https://www.dropbox.com/s/eldpxqf23epxtg2/video_1.mp47d1=0

o2 Video 2: 3D pose lifting for antennal grooming in tethered Drosophila obtained from
s two side cameras. Videos obtained from cameras 2 (top-left) and 5 (bottom-left). DeepFly3D-
o derived 2D poses are superimposed. Orange circle indicates that the optogenetic stimulation LED
o5 light is on, activating aDNs to elicit antennal grooming. (right) 3D poses obtained by triangulating
a6 six camera views using DeepFly3D (solid lines), or lifting two camera views using LiftPose3D (dashed
o7 lines).

98 https://www.dropbox.com/s/fzvru50z43a9t9t/video_2.mp47d1=0

0 Video 3: 3D pose lifting for irregular spontaneous limb movements in tethered Drosophila
s obtained from two side cameras. Videos obtained from cameras 2 (top-left) and 5 (bottom-
w1 left). DeepFly3D-derived 2D poses are superimposed. (right) 3D poses obtained by triangulating
w2 six camera views using DeepFly3D (solid lines), or lifting two camera views using LiftPose3D (dashed
943 lines).

osa  https://www.dropbox.com/s/5qbdiq9fdtlkgdo/video_3.mp47d1=0

ws  Video 4: 3D pose lifting of previously published OpenMonkeyStudio dataset of a freely
s moving macaque [8] (left) Single image drawn randomly from one of 62 cameras. (middle)
wr  Ground truth 3D poses based on triangulation of 2D poses from up to 62 cameras (solid lines), or
ws  lifting from a single camera view using LiftPose3D (dashed lines). (right) Error distribution across
w9 the 62 cameras for a given pose. Camera locations (circles) are color-coded by error. Gray circles
oo denote cameras for which an image was not available. Green circle denotes the camera from which
o1 the image was used.

o2 https://www.dropbox.com/s/mfe32jnen9006w8/video_4.mp47d1=0

o3 Video 5: 3D pose lifting of freely behaving Drosophila when triangulation is only par-
ose tially possible. Single camera images of the ventral (top-left) and side (bottom-left) views.
o5 DeepLabCut-derived 2D poses are superimposed. (right) 3D poses obtained by triangulating par-
ess  tially available multi-view 2D poses (solid lines), or by lifting the ventral 2D pose using LiftPose3D
957 (dashed lines).

oss  https://www.dropbox.com/s/1cd36155kda89pq/video_5.mp47d1=0
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o Video 6: 3D pose lifting of freely behaving mice when triangulation is only partially
wo possible. Side (top-left) and ventral (bottom-left) views of a freely walking mouse. Superimposed
w1 are keypoints on the paws, mouth, and proximal tail tracked using the LocoMouse software (blue
w2 circles). Using only the ventral view 2D pose, a trained LiftPose3D network can accurately track
w3 keypoints in the side view (orange circles).

os  https://www.dropbox.com/s/jh2xaqfmf2wmd8p/video_6.mp47d1=0

ws Video 7: 3D pose lifting for freely behaving rats in a naturalistic arena (left) Ground truth
ws 3D poses triangulated from six cameras (solid lines) superimposed with LiftPose3D’s predictions using
w7 2D poses from one camera (dashed lines). (right) Images from one camera with 2D poses acquired
os using CAPTURE are superimposed.

o9 https://www.dropbox.com/s/lawphkbgfc2u9pc/video_7.mp47d1=0

o0 Video 8: 3D pose lifting for low-resolution videos of freely behaving flies when trian-
o1 gulation is impossible. (top) Three freely behaving Drosophila in a rounded square arena and
oz recorded ventrally using a single low-resolution camera. Of these, fly 0 is tracked, cropped, and
a3 rotated leftward. Superimposed are 2D poses for 24 visible joints. (bottom) 3D poses lifted from
os  ventral view 2D poses (z — y plane) permit analysis of leg kinematics in the otherwise unobserved
o5 T — z plane.

o6 https://www.dropbox.com/s/7we9lcp2n74c838/video_8.mp47d1=0

o7 Video 9: 3D pose lifting of previously published ventral view videos of freely behaving
os flies when triangulation is impossible. (top) Video from [20] of a freely behaving fly within
oo a pill-shaped arena and recorded ventrally using a single high-resolution camera. (bottom-left)
oo Following tracking, a region-of-interest containing the fly was cropped and rotated to maintain a
w1 leftward orientation. Superimposed are 2D poses estimated for 24 visible joints. (bottom-middle)
2 3D poses obtained by lifting ventral view 2D poses. (bottom-right) 3D poses lifted from ventral view
se3 2D poses (top) permit analysis of leg kinematics in the otherwise unobserved z — z plane (bottom).
oa  https://www.dropbox.com/s/2tylyqcnggdgqéqc/video_9.mp47d1=0

s Video 10: 3D pose lifting of data from the Drosophila LiftPose3D station (left) Video of
w5 a freely behaving fly in the LiftPose3D station arena. (middle) Cropped video around the centroid
wer  of the tracked fly, superimposed with 2D pose predictions. (right) Lifted 3D poses obtained using
o3  ventral 2D poses.

9 https://www.dropbox.com/s/esnwxOwebitteb6/video_10.mp47d1=0
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