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Abstract1

Markerless 3D pose estimation has become an indispensable tool for kinematic studies of2

laboratory animals. Most current methods recover 3D pose by multi-view triangulation of deep3

network-based 2D pose estimates. However, triangulation requires multiple, synchronized cam-4

eras and elaborate calibration protocols that hinder its widespread adoption in laboratory studies.5

Here, we describe LiftPose3D, a deep network-based method that overcomes these barriers by6

reconstructing 3D poses from a single 2D camera view. We illustrate LiftPose3D’s versatility by7

applying it to multiple experimental systems using flies, mice, rats, and macaque monkeys and in8

circumstances where 3D triangulation is impractical or impossible. Our framework achieves ac-9

curate lifting for stereotyped and non-stereotyped behaviors from different camera angles. Thus,10

LiftPose3D permits high-quality 3D pose estimation in the absence of complex camera arrays,11

tedious calibration procedures, and despite occluded body parts in freely behaving animals.12

1 Introduction13

To identify how actions arise from neural circuit dynamics, one must first make accurate measurements14

of behavior in laboratory experiments. Paired with new methods for recording neuronal populations in15

behaving animals [1–4], recent innovations in 3-dimensional (3D) pose estimation promise to accelerate16

the discovery of fundamental neural control principles. 3D pose estimation is typically accomplished17

by triangulating 2-dimensional (2D) poses acquired using multiple camera views and deep network-18

based markerless pose tracking algorithms [5–13]. Notably, triangulation requires that every tracked19

keypoint, be it a joint or other body feature, be visible from at least two synchronized cameras [14]20

and that each camera be calibrated. This can be done by hand [15, 16] or, by solving a non-convex21

optimization problem [7]. These expectations are high and often difficult to meet, particularly in22

space-constrained experimental systems that also house sensory stimulation devices [1, 2, 17]. When23

untethered and freely behaving animals, such as fur-covered rodents [18], are observed under these24

conditions, some limb keypoints are often intermittently occluded in some camera views, meaning25

that 3D triangulation may be impossible for these keypoints.26

Because of this, most animal studies have favored simple and higher throughput 2D pose esti-27

mation approaches using only one camera [5, 6, 10, 19–21]. Nevertheless, 3D poses are still desirable,28

among other reasons because they eliminate the otherwise present camera-angle dependence of be-29

havioral analyses based on 2D poses [7]. Computer vision research on human pose estimation has30

long been interested in “lifting” 2D poses, that is, recovering 3D poses by regression to a ground31

truth dataset of 3D poses [22–25] but only recently have deep learning-based methods achieved high32

accuracy [26–38]. However, these techniques have not yet been adapted to laboratory animal studies33

due to the above mentioned challenges of acquiring large and diverse training datasets of behaving34

∗corresponding authors: adam.gosztolai@epfl.ch; semih.gunel@epfl.ch; pavan.ramdya@epfl.ch
†equal contribution

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2021. ; https://doi.org/10.1101/2020.09.18.292680doi: bioRxiv preprint 

mailto:adam.gosztolai@epfl.ch
mailto:semih.gunel@epfl.ch
mailto:pavan.ramdya@epfl.ch
https://doi.org/10.1101/2020.09.18.292680
http://creativecommons.org/licenses/by-nc-nd/4.0/


animals. Additionally, in some experiments, 3D ground truth data is completely missing. This pro-35

hibits training a lifting network and creates the need to generalize pre-trained lifting networks across36

experimental systems.37

Here, we introduce LiftPose3D, a deep learning-based tool for frame-by-frame 3D pose estimation38

of tethered and freely behaving laboratory animals from a single camera view. Our method relies on39

a neural network architecture initially designed to lift human poses [34]. Due to its simplicity, this40

network does not require temporal information or a skeletal graph. Hence, it generalizes easily. We41

develop data transformations and network training augmentation methods that enable accurate 3D42

pose estimation across a wide range of animals, camera angles, experimental systems, and complex43

behaviors using relatively little data. Our findings are as follows:44

1. We show that a library of 3D poses can be used to train a network to lift 3D poses from a45

single camera’s annotated 2D poses. We impose minimal constraints on the camera hardware46

and do not require a priori knowledge about camera position. Consequently, our method does47

not require prior camera calibration.48

2. We demonstrate that alignment of animal poses into the same reference frame allows the network49

to learn relationships between pose keypoints. We use this to (i) predict complete 3D poses in50

freely behaving animals despite occlusions and to (ii) correct outliers in ground truth data.51

3. By varying the bone lengths of pose skeletons during training, our method gains robustness to52

large variations in animal body proportions.53

4. We find that pose differences between experimental domains are mostly linear and that pre-54

trained LiftPose3D networks can be adapted to generalize using a linear domain adaptation55

technique.56

We illustrate these findings in several experimental scenarios. First, for tethered adult Drosophila [7]57

and freely behaving macaque monkeys [8], we use LiftPose3D to reduce the number of cameras re-58

quired for 3D pose estimation, often to a single camera, and relax constraints on camera placement.59

We make these pretrained networks and our code publicly available to be used for new experiments60

in other laboratories. Second, for freely behaving Drosophila, mice [18], and rats [39], LiftPose3D61

can obtain 3D poses despite occlusions. Finally, using linear domain adaptation, pretrained Lift-62

Pose3D networks can be used to predict realistic 3D poses from different experimental systems viewing63

Drosophila behaviors ventrally with a single camera. This technique allows us to effectively resurrect64

old data for new kinds of kinematic analyses [20]. To reduce the entry barrier for users interested in65

obtaining 3D pose data in this manner, we explain how to construct a cheap and reliable hardware66

system that we call a Drosophila “LiftPose3D station.”67

2 Results68

2.1 Theoretical basis for LiftPose3D69

If a keypoint j of interest is visible from at least two cameras, with corresponding 2D coordinates xc,j70

in camera c and camera parameters (extrinsic and intrinsic matrices, see Materials and Methods for71

details), then its 3D coordinates Xj in a global world reference frame can be obtained by triangulation.72

Here we use triangulated 3D positions as ground truth with which to assess the accuracy of LiftPose3D,73

a method that focuses on lifting 3D poses from a single camera. Rather than considering keypoints74

independently, our goal is to predict the coordinates of n keypoints X = (X1, . . . ,Xn)—the 3D pose—75

from their respective 2D coordinates xc = (xc,1, . . . ,xc,n) viewed from a camera c. By considering76

all keypoints simultaneously, our method hinges upon learning spatial relationships between them in77

the context of animal poses. Moreover, we seek to impose minimal constraints on camera c meaning78

that its parameters need not be known (e.g., see Figure 1A, illustrating six fixed cameras).79

The basis of LiftPose3D is to estimate the 3D pose by learning a nonlinear mapping between80

triangulated ground truth 3D poses and corresponding 2D poses. Formally, this operation is encoded81

in a lifting function f mapping a 2D pose from any camera c to their corresponding 3D pose in82

camera-centered coordinates, Yc = f(xc), and a camera transformation φc, encoding a rotation and83

translation operation (see Eq. (2) in the Materials and Methods), mapping from camera-centered84

coordinates to world coordinates X = φ−1c (Yc). The lifting function f can be approximated by a85
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deep neural network F (xc; Θ), where Θ represents the network weights controlling the behavior of F .86

In a specific application, Θ are trained by minimizing the discrepancy between 3D poses predicted87

by lifting from any camera and ground truth 3D poses,88

J1(Θ) :=
∑
c

n∑
j=1

χVc
(j)||(F (xc; Θ))j −Yc,j ||22 , (1)89

where χVc(j) is an indicator function of the set Vc of visible points from camera c. For F (xc; Θ), we90

adapt a network architecture from [34] composed of fully connected layers regularized by batch-norm91

and dropout [40] and linked with skip connections (Figure 1B). This network has been previously92

developed for human-pose estimation to be trained on approximately 106 fully annotated 2D-3D93

human pose pairs for many different behaviors. By constrast, we will demonstrate that training94

augmentation methods allow this network to (i) work with a vastly smaller training dataset (between95

103-104 poses acquired automatically using 2D pose estimation approaches [6, 7]), (ii) predict 3D96

poses from a single camera view at arbitrary angles, (iii) be trained with only partially annotated97

ground truth 3D poses suffering from occlusions, and (iv) generalize a single pretrained network across98

experimental systems and domains through linear domain adaptation.99

Note that our setup in Eq. (1) implicitly assumes that the network learns two operations: lifting100

the 2D pose xc to camera-centered 3D coordinates Yc by predicting the depth component of the101

pose, and learning perspective effects encoded in the animal-to-camera distance and the intrinsic102

camera matrix (see Eqs. (2)–(5) in Materials and Methods). Notably, the intrinsic camera matrix103

is camera-specific, suggesting that a trained network can only lift poses from cameras used during104

training and that application to new settings with strong perspective effects (short focal lengths)105

may require camera calibration. We will show that this is not necessarily the case and that one106

can generalize pre-trained networks to new settings by weakening the perspective effects. This can107

be accomplished by either using a large focal length camera, or by increasing the animal-to-camera108

distance and normalizing the scale of 2D poses [41] (see Materials and Methods). We will demonstrate109

that a weak perspective assumption can, in many practical scenarios, enable lifting 2D poses from110

different cameras without calibration. As well illustrate next, these contributions enable 3D pose111

estimation in otherwise inaccessible experimental scenarios.112

2.2 Predicting 3D pose with fewer cameras, flexible positioning, and di-138

verse camera hardware139

To illustrate how LiftPose3D can simplify 3D pose acquisition, we considered a previously published140

tethered adult Drosophila dataset [7]. This dataset is representative of current laboratory practice of141

obtaining 3D poses by triangulation of multiple, synchronized camera views per keypoint [7,16]. Here,142

15 keypoints on each lateral side of the animal (Figure 1A) were annotated by DeepFly3D [7] and143

triangulated from three camera views. Using LiftPose3D, we aimed to reduce the number of cameras144

needed for 3D pose estimation to two, i.e., one camera per keypoint, where triangulation is not145

possible (Figure 1B). Furthermore, the requirement to know the cameras’ positions for calibration146

purposes can be eliminated for long focal length cameras.147

We envisioned that, using this tethered Drosophila dataset [7] as a 3D pose library, we might train148

a LiftPose3D network to be directly applied to other experiments. To achieve this goal, we needed149

to ensure that the output of LiftPose3D would be independent of any translations of input 2D poses,150

perspective effects, and the placement of the camera. First, to achieve translation invariance, we151

predicted the keypoints of the respective legs relative to a set of six “root” keypoints, which we chose152

to be the immobile thorax-coxa joints (green circles, Figure 1B). Second, to factor out perspective153

effects, we assumed that the focal length of the camera and the animal-to-camera distance are either154

known or that one of them is large enough to assume weak perspective effects. In the latter case,155

we normalized 2D input poses by their Frobenius norm at both training and test times. Third, to156

obtain camera-angle invariance, we parametrized the possible camera orientations by Euler angles157

ψz, ψy, ψx representing ordered rotations around the z, y and x axes of a coordinate system centered158

around the fly (Figure 1D). During training, we took as outputs ∼ 2.5×104 3D poses obtained from159

three-camera triangulation and obtained input 2D poses by randomly projecting to virtual camera160

planes within specified Euler angle ranges. We trained a “narrow angle-range” network with Euler161

angles around a known camera location (ψz = ±10◦, ψy = ±5◦, ψx = ±5◦), or a “wide angle-range”162
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Figure 1: LiftPose3D predicts 3D pose with fewer cameras and flexible camera positioning A Ground truth

3D poses of tethered Drosophila are triangulated using six camera views (3 cameras per keypoint). LiftPose3D predicts

3D poses using only two cameras (red and blue, 1 camera per keypoint). B As inputs, LiftPose3D takes deep network-

derived 2D poses for 15 joints per camera (red and blue). The coordinates of the 2D poses are considered relative to a

set of root joints (green). The inputs are scaled to 1024 dimensions by an affine layer, passed twice through the main

processing unit (gray rectangle). The main processing unit consists of two fully-connected layers of 1024 dimensions

wrapped by a skip connection, consisting of batch norm, dropout and ReLU. C The output of the network are 3D

poses for the left (blue) and right (red) body halves, which are compared with the ground truth 3D poses obtained from

triangulation. Limbs are labeled according to left/right and front (1), mid(2), or hind (3) position. D Permitted camera

placements. By making virtual camera projections of the 3D pose within angles ψz , ψy , ψx (representing ordered yaw,

roll, pitch rotations) LiftPose3D can be be trained to lift from cameras placed at any angle. E Error of lifted 3D

poses relative to triangulation using three cameras per keypoint. Violin plots show the triangulation error using the

theoretical minimum of 2 cameras per keypoint (white), test error for a network trained with known camera parameters

(orange) and two angle-invariant networks with narrow (green) and wide ranges (red). F Error of lifted 3D poses at

different virtual camera orientations of the wide-range angle-invariant lifter network and a network with known camera

parameters. Blue dots represent lifting errors for a given projected 2D pose. Orange circles represent averages over

the test dataset from a given camera. G Error of estimated 3D poses for a LiftPose3D network trained and tested

on different combinations of data containing flies performing optogenetically-induced backward walking (MDN, left),

antennal grooming (aDN, middle), or spontaneous (unstimulated) behaviors (PR, right). H Two representative images

from the OpenMonkeyStudio dataset. 2D poses are superimposed (black). I 3D poses obtained by triangulating up to

62 cameras (red lines) or using a single camera and LiftPose3D (dashed black lines). J Distribution of absolute errors

for different body parts with respect to total body length. Violin plots represent Gaussian kernel density estimates

with bandwidth 0.5, truncated at the 99th percentile and superimposed with the median (gray dot), 25th, and 50th

percentiles (black line).
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network covering all camera locations around the meridian (ψz = ±180◦, ψy = ±5◦, ψx = ±5◦).163

Importantly, beyond weak perspective, no assumption was made about the camera positioning and164

lens focal lengths during training. As a baseline scenario where the camera parameters are known, we165

also trained a network using 3D poses as outputs and 2D poses obtained from DeepFly3D-annotated166

images as inputs. We tested each LiftPose3D network by predicting ∼ 3.6×103 triangulated 3D poses167

from two independent animals and software-annotated 2D poses from side camera images (Figure 1B;168

cameras 2 and 5). We evaluted the networks’ predictions relative to the triangulated ground truth by169

computing the mean absolute error (MAE), etej , for each joint j as well as the MAE across all joints170

ete = (1/n)
∑
j e

te
j .171

We found that LiftPose3D could predict 3D poses using only one camera per side (Figure 1C).172

When we trained and tested the network using poses from the same set of cameras, the accuracy was173

at least as good as from triangulation using two cameras per keypoint (Figure 1E, white). More174

surprisingly, the accuracy did not suffer for the narrow angle-range network (Figure 1E, green),175

which was trained using virtual 2D projections (rather than true 2D pose estimates), and for which176

the intrinsic camera parameters were unknown. For the wide angle-range network spanning the full177

360◦(Figure 1E, red), the accuracy remained excellent. This is illustrated in videos of lifted 2D178

poses from animals that were optogenetically induced to walk backwards (Video 1) or groom their179

antennae (Video 2). It was also true for animals generating spontaneous, irregular limb movements,180

demonstrating that that lifting can be performed as well for complex, non-stereotyped movements181

(Video 3). Although accuracy was high for all keypoints, the MAE progressively increased from182

the proximal to distal joints. This is expected because the network predicts joint coordinates with183

respect to the thorax-coxa root joints and nearby, proximal joints move within a smaller kinematic184

volume. By contrast, triangulation obtains the 3D coordinates for each keypoint independently185

and, consequently, its error depends only on the accuracy of underlying 2D annotations. Next, to186

assess the camera-angle dependence of the test error for the wide angle-range network, we either187

generated virtual projections on the meridian of the unit sphere, or lifted 2D poses from each of188

the six known cameras (Figure 1F). The MAE was low (< 0.05 mm) for all camera arrangements189

with no clear camera-angle dependence. Since our angle-invariant lifter networks are trained using190

virtual projections, they make no assumptions about camera hardware or positioning. These results191

imply that our pretrained networks can provide a simple yet accurate means of obtaining 3D poses192

for tethered Drosophila systems in other laboratories.193

We predicted that lifting accuracy would also depend on the degree of overlap between behaviors194

found in the training and test datasets. This is an important dimension to explore, given the rela-195

tively small amounts of data available from laboratory experiments. The tethered Drosophila dataset196

contained optogenetically-induced behaviors like antennal grooming (aDN ), and backward walking197

(MDN ), as well as spontaneously-generated behaviors like forward walking. We trained LiftPose3D198

using poses from only one of these behaviors (eliminating frames where the animal was resting),199

while keeping the amount of training data (2.5× 104 poses) fixed, and evaluated the network perfor-200

mance on all three behaviors. As expected, the MAE was higher when test data included untrained201

optogenetically-induced and spontaneously-generated control behaviors (PR) than for test data with202

the same behaviors as in the training data (Figure 1G). Furthermore, a network trained on all three203

behaviors showed comparable or lower MAE (Figure 1E, orange) than networks trained and tested204

on the same specific behavior (Figure 1G). Thus, a behaviorally diverse training dataset can be205

expected to lift 3D poses with more accuracy than a dataset with fewer behaviors.206

Having accurate 3D poses confers several advantages, including eliminating artifactual camera207

angle-dependencies in downstream analyses such as behavioral clustering [7]. To further illustrate208

the added benefit of 3D poses over 2D poses, we illustrate joint angles during forward walking from209

lifted 3D poses (α, β, γ, ω, Figure S1, red), from 3D triangulated ground truth poses (Figure S1,210

blue), and from 2D poses obtained by projecting ground truth 3D poses in the ventral x-y plane211

(α′, β′, γ′, ω′, Figure S1, green). Due to the uncertainty of 3D pose estimation, we aimed to provide212

upper and lower confidence bounds. Therefore, we assumed that the keypoint coordinates would be213

Gaussian distributed around the estimated 3D coordinate. As a proxy for the variance we took the214

variation of bone lengths because they are expected to remain approximately constant owing to the215

low mechanical compliance of the fly’s exoskeleton (with the exception of the flexible tarsal segments).216

This allowed us to predict 3D joint angles by Monte Carlo sampling (see Materials and Methods).217

We found that joint angles derived from lifted and triangulated 3D poses were in close agreement218

(Figure S1, red and blue). The errors are also low when comparing angle estimate variances to219

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2021. ; https://doi.org/10.1101/2020.09.18.292680doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.292680
http://creativecommons.org/licenses/by-nc-nd/4.0/


the amount of joint rotation during locomotor cycles. This shows that our network learned and220

preserved body proportions—a remarkable fact given the absence of any skeletal constraints, or221

temporal information. Furthermore, when comparing the joint angles derived from 3D and 2D poses,222

we found that the predicted coxa-femur 3D joint angles, β, in the front and hindlegs were of larger223

amplitude than their projected 2D counterparts, β′. This is expected since the action of these joints224

has a large out-of-plane component relative to the projected x-y plane during walking. Second, in the225

front leg, the predicted tibia-tarsus 3D joint angles, ω, were of smaller amplitude than their projected226

2D counterparts, ω′. Indeed, rotations upstream in the kinematic chain (proximal joints) cause the227

movement of the whole leg, which can introduce spurious variations in the angles of distal joints when228

viewed from a projected plane. These results illustrate how 3D poses predicted by LiftPose3D can help229

to decouple the underlying physical degrees-of-freedom and avoid spurious correlations introduced by230

2D projected joint angles.231

Because LiftPose3D maintained prediction accuracy irrespective of viewing angle (Figure 1F),232

we next asked how it would perform when predicting 3D poses in freely behaving animals, where the233

effective camera angle dynamically changes. We were also interested in considering animals without234

exoskeletons where nearby keypoint movements are less constrained. We addressed this question235

by training LiftPose3D to predict 3D poses for freely behaving macaque monkeys recorded in the236

OpenMonkeyStudio dataset [8]. These data consist of 3D poses obtained by triangulating markerless237

2D pose estimates [42] from 62 calibrated, synchronized, and distributed cameras (Figure 1H).238

After training the network with only 6’571 3D poses, we could lift 3D poses from test images—239

including macaques walking as well as taking up diverse poses (Video 4)—from any of the 62 cameras240

(Figure 1I), and with a relatively small body length-normalized MAE (Figure 1J).241

Taken together, these results demonstrate that LiftPose3D can reduce the number of cameras242

required to perform full and accurate 3D pose estimation with simple data preprocessing and a243

relatively small but diverse training dataset.244

2.3 Predicting 3D pose with occluded keypoints in freely behaving animals245

In freely behaving animals, keypoints are often missing from certain camera angles due to self-268

occlusions and, therefore, only partial ground truth 3D annotations can be obtained by triangulation.269

We asked how the global nature of lifting—all keypoints are lifted simultaneously—might be leveraged270

to reconstruct information lost by occlusions and to predict full 3D poses.271

To address this question, we built an experimental system consisting of a transparent enclosure272

physically coupled to a right-angle prism mirror, similar to previous recording systems used for flies273

and mice [18, 43, 44]. We used a single camera beneath the platform to record the ventral and side274

views of a freely behaving fly (Figure 2A) and trained two DeepLabCut models [6] to obtain 2D275

joint coordinates from each of these views (Figure 2A). Having only two views meant that keypoints276

closer to the prism were simultaneously visible in both views and could therefore be triangulated,277

while those occluded from the side view had only ventral 2D information, which is insufficient for278

triangulation. With this partial 3D ground truth, it was thus a priori unclear if a LiftPose3D network279

could be trained to lift 3D poses using only ventral 2D poses (Figure 2A, green box).280

Since the ventral and side views enclose right angles (i.e., are orthographic projections of the281

true 3D pose), and because long focal length cameras have negligible perspective effects, we used 2D282

poses from the ventral view to estimate the z-axis depth of occluded keypoints in the unseen side283

view. Because all keypoints were simultaneously visible from the ventral view, this allowed us to284

align flies in the same reference frame (Figure 2B), and transform lifting to the regression problem285

in Eq. (1) where the indicator function χVc
(·) now represents the visible keypoints from the side286

camera (Figure 2C). As a result, keypoints with incomplete 3D information were not penalized287

during training. Taking the ventral view as an input, where we all keypoints were present, but288

penalizing only those with complete 3D information allowed the network to implicitly regress the289

unseen coordinates during training. We found that LiftPose3D could also predict 3D positions for290

every joint at test time, including those occluded in the prism’s side view (Figure 2D and Video291

5). Notably, the accuracy, based on available triangulation-derived 3D positions (Figure 2E) was292

better than that obtained for tethered flies by triangulation with four cameras (Figure 1E). Thus,293

LiftPose3D can estimate 3D poses from 2D images in cases where keypoints are occluded and cannot294

be triangulated.295

These results suggested an opportunity to apply lifting to identify and potentially correct in-296
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Figure 2: LiftPose3D performs 3D pose estimation on freely behaving animals with occluded keypoints.

A Drosophila behaving freely within a narrow, transparent enclosure. Using one camera and a right-angle prism mirror,

both ventral (top) and side (bottom) views are visible. 2D poses are tracked using two separately trained deep networks

for each view (colored lines). Ventral 2D poses (green box) are used for lifting the 3D pose. B Keypoints near the prism

mirror (red and blue) can be tracked in both views and triangulated. The remaining keypoints (gray) are only visible

in the ventral view and thus have no 3D triangulated ground truth. To obtain triangulated ground truth examples

for both sides of the bilaterally symmetric fly, we register the ventral images to align the orientation and position of

all animals. C Training data thus consists of a set of full ventral view 2D poses and their corresponding partially

triangulated 3D poses. D Following training with these aligned 2D-3D ground truth poses, LiftPose3D can be used

to predict 3D poses for new ventral view 2D pose data. E Joint-wise and overall absolute errors of the network’s 3D

pose predictions for freely behaving Drosophila. F A similar data preprocessing approach can be used to lift ventral

view 2D poses of mice (green boxes) walking within a narrow enclosure and tracked using the LocoMouse software.

LocoMouse ground truth (blue and red) and LiftPose3D (orange) pose trajectories are shown for the right forepaw

(top) and hindpaw (bottom) for one walking epoch. Arrowheads indicate where LiftPose3D lifting of the ventral

view can be used to correct LocoMouse side view tracking errors (red). Asterisks indicate where inaccuracies in the

LocoMouse ventral view ground truth (red) disrupt LiftPose3D’s side view predictions (orange). G Absolute errors of

LiftPose3D and LocoMouse side view predictions for six keypoints with respect to a manually-annotated ground truth.

H LiftPose3D can be trained to lift 3D poses of a freely moving rat with occluded keypoints. I Large animal-to-animal

skeleton variation illustrated by histograms of the measured lengths of the spinal segment for two animals. J Camera

image from the CAPTURE dataset superimposed with the annotated 2D pose (left). LiftPose3D uses this 2D pose to

recover the full 3D pose (right). K Error distribution over all keypoints for the CAPTURE dataset.
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accurate 3D poses obtained with other approaches. We considered a previously published dataset297

consisting of freely behaving mice traversing a narrow corridor [18] tracked by the LocoMouse software298

from both ventral and side views [18]. Using these, we triangulated incomplete 3D ground truth poses299

(due to side view occlusions) and, as in the Drosophila prism mirror dataset, placed them in the same300

reference frame by registering the ventral poses. We then trained a LiftPose3D network to lift the ven-301

tral 2D poses (Figure 2F, green boxes). Predictions were in good agreement with the LocoMouse’s302

side view tracking (Figure 2E and Video 6) and could recover expected cycloid-like kinematics303

between strides (Figure 2F). Remarkably, LiftPose3D predictions could also correct side-view poses304

that were incorrectly labeled or missing in the ground truth dataset (Figure 2F, bottom, white305

arrowheads). However, lifting accuracy depended on the fidelity of input 2D poses: incorrect ventral306

2D poses generated false side view predictions (Figure 2F, bottom, white asterisks). These errors307

were always restricted to the joint-of-interest and were relatively infrequent. Overall, LiftPose3D308

performed as well as LocoMouse, when compared with manual human annotation (Figure 2G).309

These results demonstrate that LiftPose3D can be used to correct other tracking methods, but also310

highlights the importance of quantifying the confidence of input 2D poses to avoid lifting keypoints311

incorrectly.312

The above examples demonstrate that LiftPose3D learns spatial relationships between keypoints313

when they are presented in the same reference frame. We therefore asked how well this feature gener-314

alizes to animals generating more complex behaviors and with large variations in body proportions.315

As an example, we considered a recently published CAPTURE dataset that used six fixed cameras to316

record freely moving rats within a circular naturalistic arena [39] (Figure 2H, left). The keypoints317

were visual markers placed on the fur of the animals. These were intermittently self-occluded during318

motion (Figure 2I). Moreover, these animals performed a variety of complex behaviors including319

walking, reaching, rearing, and turning. During these movements, 2D pose skeletons underwent large320

deformations. This is illustrated by the broad distribution of keypoint distances conveying spine321

lengths (Figure 2J). Despite these challenges we aimed to train a lifting network for these data,322

thus requiring a series of further innovations. First, to overcome the variations in body propor-323

tions both within and across animals, we first constructed a template skeleton with bone lengths324

that followed independent normal distributions with means and standard deviations representative325

of expected bone lengths across the population of recorded animals. During training, we randomly326

sampled from these distributions to rescale each ground truth 3D pose while preserving joint angles.327

Then, we obtained a corresponding 2D pose via projection. Second, although the animal-to-camera328

angle changed continuously during animal behaviors, we augmented the training data by generating329

virtual 2D projections within the Euler angle range of ±10◦ about all three axes. Third, although330

the depth-wise motion of animals caused substantial variation in their distance to the camera, we331

assumed that it remained large enough for the weak perspective condition to hold, and normalized332

2D poses by their Frobenius norm, as before (see Materials and Methods). By doing so, the camera333

parameters at test time no longer needed to be known, making our network directly applicable to334

other rat movement studies. To illustrate this, we trained our network on two experiments from the335

CAPTURE data (consisting of two animals and two camera arrangements) and then tested it on336

a third experiment with a different animal and camera arrangement (i.e., different focal length and337

orientation). In each case, we presented zeros to the network in place of missing data points and338

found that LiftPose3D could accurately predict the nonzero coordinates (Figure 2H, right and339

K, Video 7). This shows that erroneous 2D point coordinates, which would otherwise confound340

lifting performance (Figure 2F), can be dealt with by presenting zeros in place of low confidence341

points. Additionally, our methods could largely compensate for the challenges associated with lifting342

3D poses for freely behaving animals having large variations in body proportions.343

2.4 Using domain adaptation to lift diverse experimental data when tri-344

angulation is impossible345

Our angle-invariant lifter networks for tethered flies (Figure 1D-F) and for freely behaving rats366

(Figure 2H-K) can be directly used in similar experimental systems without having to collect addi-367

tional 3D pose training data. However, small variations in new experimental systems resulting from368

camera distortion or postural differences may limit the accuracy of lifted 3D poses. Therefore, the369

possibility of domain adaptation–using pretrained networks to lift poses in new experimental scenarios370

with small postural variations–could enable extending the value of LiftPose3D to a vast and diverse371
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346

Figure 3: A pretrained LiftPose3D network predicts 3D poses for diverse data and when triangulation

is impossible. A Linear domain adaptation between domain A (fly on a spherical treadmill) and domain B (fly on a

flat surface). 2D poses in B are mapped to A by a linear transformation d2 then lifted with a network trained only on

domain A poses. After lifting, the 3D poses are mapped back to B by another linear transformation d3. B A typical 2D

pose in domain B mapped into domain A by the best-fit linear transformation d2 between poses in B and their nearest

neighbors in A. C Error between mapped pose and nearest neighbor poses for d2, d3 against the number of poses used

to train them. The number of nearest neighbors used was k = 1 fof d2 and k = 2 for d3. D Lifted 3D pose following

domain adapation of a ventral domain B 2D pose and lifting with a network trained on domain A data. The prediction

is superimposed with the imcomplete ground truth 3D pose in domain B. E Lifting error following domain adaptation

of domain B poses compared with lifting error in the domain A with no domain adaptation. F Freely behaving flies

recorded from below using a low-resolution camera. Following body tracking, the region-of-interest containing the fly

is cropped and registered. 2D pose estimation is then performed for the 24 visible joints. G 2D poses are adapted

to the prism-mirror domain. These are then lifted to 3D poses with pre-trained network using prism-mirror data and

coarse-grained to match the lower resolution 2D images in the new experimental system. H These 3D poses permit

the analysis of claw movements in the otherwise unobserved x− z plane (bottom). I Published data from [20] showing

a freely behaving fly recorded from below using one high-resolution camera. 2D pose estimation was performed for all

30 joints. Following tracking, a region-of-interest containing the fly was cropped and registered. The same LiftPose3D

network trained in panel B—but without coarse-graining—was used to predict J 3D poses and K unobserved claw

movements in the x− z plane (bottom).
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user group who have only a single-camera for acquiring 2D poses and no means to obtain a ground372

truth library of 3D poses.373

We assessed the possibility of domain adaptation by training a network in domain A—tethered374

flies on a spherical treadmill—and predicting 3D poses in domain B—freely-moving flies on a flat375

surface (Figure 3A). We chose this pair of experiments due to the availability of ground truth data376

in both domains, which we could use to measure accuracy. Before performing domain adaptation, we377

first derived poses from 2D ventral images in domain B, as before. This allowed us to circumvent the378

difficulties arising from differences in appearance and illumination that are present in the more general379

image domain adaptation problem [45,46]. Thus, adapting poses became a purely geometric problem380

of adjusting proportions and postural differences across domains. Figure 3A depicts the three-step381

process to lift a 2D pose in domain B. First, we used a linear transformation d2 to transform the 2D382

pose into the source domain A. Second, we lifted this 2D pose into a 3D pose using a LiftPose3D383

network pre-trained only on 3D poses from domain A. Third, we transformed the lifted 3D poses from384

domain A back to domain B using another linear transformation d3. To find d2 and d3, we identified,385

for every pose in a training dataset B’, k nearest neighbors A’ in domain A (Figure 3A,B), and386

used these to find the best-fit linear transformations between domains (see Materials and Methods for387

details). These linear transformations are expected to generalize as long as the poses in domain A are388

rich enough to cover the pose repertoire in domain B and are sufficiently similar between domains.389

We tested this by 10-fold cross-validation (with k = 1 for d2 and k = 2 for d3) and found that the390

error associated with the transformations converged after less than 500 poses (Figure 3C). The final391

lifted poses were also in good agreement with the triangulated poses in domain B (Figure 3D).392

The accuracy was slightly worse but remarkably comparable with that of a network lifting purely in393

domain A (Figure 3E, compare dark with light gray).394

To demonstrate the full potential of domain adaptation, we next focused on lifting Drosophila 2D395

poses recorded from a single ventral camera. This approach is the most widely used free behavior396

paradigm in laboratory settings due to its simplicity, low-cost, and increased throughput. It has been397

applied to study many organisms including C. elegans [47], larval zebrafish [48], larval Drosophila [49],398

adult Drosophila [50], and mice [51]. Although these recordings can be augmented with depth sen-399

sors [52,53], such sensors cannot resolve small laboratory animals, or reconstruct full 3D poses. Thus,400

3D pose estimation of laboratory animals from a single 2D view remains an unsolved and highly desir-401

able goal, with the potential to substantially enrich behavioral datasets and to improve downstream402

analysis.403

First, we developed a new experimental system consisting of a square-shaped arena in which404

multiple freely-behaving flies could be recorded ventrally using a single camera (Figure 3F, left). In405

addition to being a different experimental system from our prism mirror setup and using a different406

camera, here the images had four-fold lower spatial resolution (26 px mm−1). Hence, we could407

only label 24 visible keypoints using DeepLabCut (Figure 3F, right). We then pretrained a network408

using prism-mirror training data—using only the keypoints present in both datasets—and augmented409

these data using a Gaussian noise term with standard deviation of ∼ 4 (see Materials and Methods).410

Before lifting, we domain-adapted the annotated 2D poses into the network’s domain, as before411

(Figure 3B). Because ventrally-viewed leg configurations during swing and stance phases are difficult412

to distinguish, particularly at lower resolution, to reconstruct realistic joint movements our network413

would have to first learn the postural relationships between each leg. Remarkably, we found that414

the network could predict physiologically realistic 3D poses in this new dataset using only ventral415

2D poses (Figure 3G and Video 8). During walking, 2D tracking of the tarsal claws traced out416

stereotypical trajectories in the x-y plane (Figure 3H, top) [54] and circular movements in the417

unmeasured x-z plane (Figure 3H, bottom) whose amplitudes were consistent with real kinematic418

measurements during forward walking [55].419

The ability to adapt training data from one domain to another also raises the exciting possibility420

that LiftPose3D could be used to ’resurrect’ previously published 2D pose data for new 3D kinematic421

analysis. To test this, we applied our prism mirror-based training data to lift previously published422

high-resolution (203 px mm−1) video data of a fly walking freely through a capsule-shaped arena [20]423

(Figure 3I). Using a similar data processing pipeline as for the previous case (Figure 3B,F,G),424

including registration and domain adaptation but not noise perturbations (the target data were of425

similarly high resolution as the training data), the LiftPose3D network could effectively predict 3D426

poses from this previously published dataset (Figure 3J). We again observed physiologically realistic427

cyclical movements of the pretarsi during forward walking (Figure 3K, bottom; Video 9). Thus,428
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thanks to the adaptation of pretrained networks to new domains, LiftPose3D can be an effective tool429

for performing 3D pose estimation on previously published 2D video data for which 3D triangulation430

would be otherwise impossible.431

2.5 Drosophila LiftPose3D station432

These domain adaptation results opened up the possibility to make 3D pose acquisition consider-433

ably cheaper and more accessible across laboratories. To explore this possibility, we developed and434

constructed a “Drosophila LiftPose3D station” consisting of an inexpensive (∼$150) open-source435

hardware system including a 3D printed rig supporting a rectangular arena recorded by a Raspberry436

Pi camera and illuminated using LEDs (see Figure S3 and Materials and Methods). A common437

hardware solution like this one eliminates compounding variables introduced across different experi-438

mental setups (e.g., camera distortion and perspective effects) and allowed us to provide pre-trained439

DeepLabCut and LiftPose3D networks that permit straightforward 3D pose measurements by other440

laboratories for Drosophila behavioral studies (Video 10). We envision that such an approach—441

a common behavioral arena, camera and illumination hardware, and pretrained pose estimation442

networks—might, in the future, also facilitate cross-laboratory lifting of mouse 2D poses using a443

single camera.444

3 Discussion445

Here we have introduced LiftPose3D, a deep neural network-based tool that dramatically simplifies446

and enables 3D pose estimation for a wide variety of laboratory contexts. Our approach uses the447

network architecture of [34], originally designed for human-pose estimation, and introduces a series448

of innovations to input data preprocessing, training augmentation and domain adaptation. These449

contributions enable network training with several orders of magnitude less training data and when450

ground truth 3D poses are incomplete due to occlusions or corrupted by inaccurate labelling. We451

have also developed data augmentation methods that make LiftPose3D networks invariant to camera452

hardware and positioning, allowing them to generalize across arbitrary setups. Furthermore, we453

provide a comprehensive software pipeline for data preprocessing, network training, 3D predictions,454

and visualization. A single intuitive Python notebook interfaces all the tools needed to obtain the455

results shown here.456

We illustrate how LiftPose3D reduces the number of cameras required for 3D pose estimation;457

from three to one on each side of a tethered fly, and from 62 to one in freely behaving macaques.458

In the case of flies, we also describe the training of a camera hardware-invariant network that can459

take inputs from any low-distortion camera positioned at an arbitrary orientation relative to the460

target animal. We also provide two pre-trained networks—one for a side-view camera placed at any461

orientation and one for a ventral camera—that can be readily used for new experimental systems. In462

all cases, high accuracy comparable to triangulation was achieved for a range of both stereotypic and463

irregular spontaneous behaviors. For freely behaving flies, mice and rats, we have demonstrated that464

LiftPose3D can estimate 3D poses despite self-occlusions and that it can identify and correct keypoints465

that have been mislabeled by other keypoint tracking approaches. Finally, we have demonstrated that466

linear domain adaptation can be used to account for variations due to camera distortion or animal467

poses in new datasets. We used this approach to predict 3D poses for flies moving freely on a flat468

surface with a LiftPose3D network pre-trained with data of tethered flies on a spherical treadmill.469

Domain adaptation also opens up the possibility to acquire 3D pose data in situations where 3D470

ground truth is impossible to obtain by multi-camera triangulation, including lifting 3D poses from a471

large corpus of previously published 2D video data for further kinematic analysis. Using our domain472

adaptation methodology, networks with the largest and most diverse training data, like that for the473

tethered fly—may already be sufficiently robust to accurately lift 2D to 3D pose in other laboratories.474

To capitalize on this, we developed and demonstrate how this can be applied with an inexpensive475

open hardware platform, the LiftPose3D station. Setups like this will dramatically lower the barrier476

for 3D pose estimation in other laboratories around the world.477

The LiftPose3D framework is general and can be applied with very few changes to study differ-478

ent laboratory animals in new experimental systems and with diverse data acquisition rates, image479

resolutions, and 2D pose input sources including—as we demonstrate in this study—the stacked480
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hourglass network of DeepFly3D [7] and DeepLabCut [6]. Nevertheless, several factors must be481

taken into consideration when optimizing LiftPose3D for new experimental systems. First, because482

predicting depth from a 2D projection depends on comparing the projected lengths of body parts,483

input poses must be sufficiently well-resolved to discriminate between 3D poses that have similar 2D484

projections. Second, prediction accuracy depends on the diversity of training data—i.e., measured485

behaviors. We caution that previously untrained behaviors may not be as accurately lifted using a486

pretrained network. In the future, we envision that robust lifting networks might be generated by487

a communal, inter-laboratory aggregation of 3D pose ground truth datasets that include a variety488

of spontaneously generated and experimentally-induced behaviors. Third, although our aim was to489

develop a general tool with minimal experiment or animal-specific features, further work can improve490

LiftPose3D predictions for specific applications by bootstrapping to 3D body priors, thereby con-491

straining the space of possible 3D poses [56–60]. Finally, lifting might also be improved by using a492

network that incorporates temporal information for data acquired at a constant frame rate [35].493

We anticipate that LiftPose3D can already accelerate the successful adoption of 3D pose estimation494

in laboratory research by reducing the need for complex and expensive synchronized multi-camera495

systems, and arduous calibration procedures. This, in turn, will improve the fidelity and quality496

of behavioral kinematic data needed to understand how actions emerge from multi-scale biological497

processes ranging from gene expression to neural dynamics and biomechanics.498

4 Materials and Methods499

4.1 Obtaining 3D pose ground truth data by triangulation500

To obtain the 3D ground truth coordinates Xj ∈ R3 for joints j = 1, . . . , n from a set of 2D keypoints501

xc,j ∈ R2 in images acquired by the cameras c = 1, . . . , N we followed the procedure described in [7].502

Let us express Xj = (x1j , x
2
j , x

3
j ) in homogeneous coordinates as X̂j = (x1j , x

2
j , x

3
j , 1). The projection503

from the 3D points in the global coordinate system to 2D points in a local coordinate system centered504

on camera c is performed by the function πc : R4 → R3 defined as x̂c,j = πc(X̂j). This function can505

be expressed as a composition πc = proj1,2 ◦ φc of an affine transformation φc : R4 → R4 from506

global coordinates to camera-centered coordinates and a projection proj1,2 : R4 → R3 to the first two507

coordinates. Both functions can be parametrized using the pinhole camera model [14]. On the one508

hand, we have509

φc(Xj) := CcX̂
T
j = Ŷc,j , (2)510

where Cc is the extrinsic camera matrix corresponding to the φc and can be written as511

Cc =

(
Rc Tc

0 1

)
(3)512

where Rc ∈ R3×3 is a matrix corresponding to rotation around the origin and Tc ∈ R3 is a translation513

vector representing the distance of the origin of the world coordinate system and the camera center.514

Likewise, the projection function can be expressed as515

proj1,2Ŷc,j := KŶc,j = x̂c,j , (4)516

where K is the intrinsic camera transformation517

K =

fx 0 cx 0
0 fy cy 0
0 0 1 0

 , (5)518

where fx, fy denote the focal lengths and cx, cy denote the image center. The coordinates pro-519

jected to the camera plane can be obtained by converting back to Euclidean coordinates xc,j =520

(x̂1
c,j/x̂

3
c,j , x̂

2
c,j/x̂

3
c,j).521

Triangulation of the coordinate Xj of joint j with respect to πc is obtained by minimizing the522

reprojection error, that is, the discrepancy between the 2D camera coordinate, xc,j , and the 3D523

coordinate projected to the camera frame, πc(Xj). Let Vc be the set of visible joints from camera c.524

The reprojection error for joint j is taken to be525

eRP (j; {πc}) =
∑
c

χVc(j) ||xc,j − πc(Xj)||22 , (6)526
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where χVc
(·) is the indicator function of set Vc of visible keypoints from camera c. The camera527

projection functions πc are initially unknown. To avoid having to use a calibtration grid, we jointly528

minimize with respect to the 3D location of all joints and to the camera parameters, a procedure529

known as bundle adjustment [14]. Given a set of 2D observations, we seek530

min
πc, Xj

∑
j

eRP (j; {πc}) . (7)531

using a second-order optimization method. For further details, we refer the interested reader to [7].532

4.2 LiftPose3D network architecture and optimization533

The core LiftPose3D network architecture is similar to the one of [34] and is depicted by Figure 1B.534

Its main module includes two linear layers of dimension 1024 rectified linear units (ReLU, [61]),535

dropout [40] and residual connections [62]. The inputs and outputs of each block are connected536

during each forward pass using a skip connection. The model contains 4× 106 trainable parameters,537

which are optimized by stochastic gradient descent using the Adam optimizer [63]. We also perform538

batch normalization [64].539

In all cases, the parameters were set using Kaiming initialization [62] and the optimizer was540

run until convergence—typically within 30 epochs—with the following training hyperparameters:541

Batch-size of 64 and an initial learning rate of 10−3 that was dropped by 4% every 5000 steps. We542

implemented our network in PyTorch on a desktop workstation running on an Intel Core i9-7900X543

CPU with 32 GB of DDR4 RAM, and a GeForce RTX 2080 Ti Dual O11G GPU. Training time was544

less than 10 minutes for all cases studied.545

4.3 Camera-angle augmentation546

The object-to-camera orientation is encoded by the extrinsic matrix Cc of Eq. 3. When it is unavail-547

able, one can still use our framework by taking 3D poses from the ground truth library and, during548

training, performing virtual 2D projections around the approximate camera location or for all possible549

angles. To this end, we assume that the rotation matrix R is unknown, but that the intrinsic matrix550

K and the object-to-camera distance d are known such that we may take T = (0, 0, d)T . When K or551

d are also unknown, or dynamically changing, one can make the weak-perspective assumption as in552

described in the next section. Then, instead of training the LiftPose3D network with pairs of 3D poses553

and 2D poses at fixed angles, we perform random 2D projections of the 3D pose to obtain virtual554

camera planes whose centers cx, cy lie on the sphere of radius d. To define the projections we require555

a parametric representation of the rotations. Rotating a point in 3D space can be achieved using556

three consecutive rotations around the three Cartesian coordinate axes x, y, z commonly referred to557

as Euler angles and denoted by ψx,ψy, and ψy. The rotation matrix can then be written as558

R = Rxyz = Rx(ψx)Ry(ψy)Rz(ψz)559

=

1 0 0
0 cosψx − sinψx
0 sinψx cosψx

 cosψy 0 sinψy
0 1 0

− sinψy 0 cosψy

cosψz − sinψz 0
sinψz cosψz 0

0 0 1

 . (8)560

561

Given Eq. (2)–(5) we may then define a random projection x̂j on the sphere of radius d of a keypoint562

with homogeneous coordinate X̂j as563

x̂j = K

(
Rxyz T

0 1

)
X̂j (9)564

, where T = (0, 0, d)T . Likewise, the 3D pose in camera coordinates can be expressed as565

Ŷj =

(
Rxyz T

0 1

)
X̂j . (10)566

Before training, we fix d, fx, fy, cy, cy and define intervals for the Euler angle rotations. We then567

obtain the mean and standard deviation in each dimension both for 2D and 3D poses in the training568

data set by performing random projections within these angle ranges. The obtained means and569

standard deviations are used to normalize both the training and test datasets.570
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4.4 Weak perspective augmentation571

To project 2D pose from 3D pose, one needs to know the camera transformation φc (Eq. (2)), encoded572

by the extrinsic matix Cc (Eq. (3)) and the projection function proj1,2 (Eq. (4)), encoded by the573

intrinsic matrix K (Eq. (5)). In the previous section, we described how to deal with the case when574

Cc is unknown. In addition, K may also be unknown a priori at test time. Alternatively, one may575

want to use one of our pre-trained networks on a novel dataset without having to match the camera576

positioning (focal length, camera-to-animal distance) used to collect the training data. In this case,577

one may still be able to predict the 3D pose in a fixed camera-centered coordinate frame by assuming578

that either the camera-to-animal distance or the focal length are large enough to neglect perspective579

effects and by normalizing the scale of 2D poses. Following Ref. [41], we choose the Frobenius norm580

to perform normalization on the input 2D poses xc,j/||xc,j ||F , which is the diagonal distance of the581

smallest bounding box around the 2D pose. Note, that if the 2D poses are obtained via projections,582

one may use the unit intrinsic matrix Eq. (5) with fx = fy and cx = cy = 0 before performing583

normalization. Here, using cx = cy = 0 assumes that the 2D poses are centered, which in each584

of our examples is achieved by considering coordinates relative to root joints placed at the origin.585

Importantly, the 2D poses must be normalized both during training and test times.586

4.5 Linear domain adaptation587

Here we describe the process of adapting a network trained on data from experiment A to lift 2D588

poses in experiment B. Domain adaptation is also useful if the camera parameters or the distance589

from the camera are not known and the weak perspective assumption cannot be invoked.590

Here, the basis for domain adaptation is to first find a function d2 : B|2 → A|2, where A|2 and591

B|2 are restrictions of 3D poses in the two domains to the corresponding 2n-dimensional spaces of592

2D poses. This function maps poses in domain B to domain A and makes them compatible inputs593

for the network trained on poses in domain A. In the scenario that 3D data is available in domain594

B, we can also find a function d3 : B → A where A and B are 3n-dimensional spaces of 3D poses in595

the two experimental domains. After 3D poses have been obtained in domain A, we map back these596

poses to domain B by inverting this function.597

We now describe how to obtain the functions d2 and d3, which we denote collectively as d. To find598

d, we assume that poses in domain B can be obtained by small perturbations of poses in domain A.599

This allows us to set up a matching between the two domains by finding nearest neighbor 2D poses600

in domain A for each 2D pose in domain B, xBi = (xBi,1, . . . ,x
B
i,n). We use 2D rather than 3D poses to601

find a match because 3D poses may not always be available in domain B. Moreover, the nearest poses602

in 3D space will necessarily be among the nearest poses in 2D space. Specifically, for each xBi , we find603

a set of k nearest poses in domain A, {N (xBi )j}kj=1 such that ||N (xBi )j−xBi ||2 < ||N (xBi )j+1−xBi ||2.604

We then use these poses to learn a linear mapping WBA ∈ R2n×2n from domain B to A, where n605

is the number of keypoints, as before. We can find this linear mapping by first defining a set of p606

training poses in domain B, xBtr = xB1 , . . .x
B
p and writing WBAxBtr = xAtr , where xBtr ∈ Rdn×kp and607

xAtr ∈ Rdn×kp with d = 2 or 3 are matrices defined according to608

WBA

(
xB1 · · · xB1︸ ︷︷ ︸

k

· · · xBp · · · xBp︸ ︷︷ ︸
k

)
=609

(
N
(
xB1
)
1
· · · N

(
xB1
)
k︸ ︷︷ ︸

k

· · · N
(
xBp
)
1
· · · N

(
xBp
)
k︸ ︷︷ ︸

k

)
. (11)610

611

Transposing this linear equation yields the linear problem (xBtr )
TWT

BA = (xAtr )
T . Given that the p612

training poses are different, xBtr has linearly independent columns and this problem is overdetermined613

as long as kp > dn. Thus, by least-squares minimization, we obtain WT
BA = ((xBtr )

TxBtr )
−1(xBtr )

T (xAtr )
T .614
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4.6 Experimental systems and conditions615

All adult Drosophila melanogaster experiments were performed on female flies raised at 25◦C on a 12 h616

light/dark cycle at 2-3 days post-eclosion (dpe). Before each experiment, wild-type (PR) animals were617

anaesthetized using CO2 or in ice-cooled vials and left to acclimate for 10 min. DeepFly3D tethered618

fly data were taken from [7]. OpenMonkeyStudio macaque data were taken from [8]. LocoMouse619

mouse data were taken from [18]. CAPTURE rat data were taken from [39]. FlyLimbTracker freely-620

behaving fly data were taken from [20]. See these publications for detailed experimental procedures.621

For more information on the datasets including the number of keypoints, poses, animals, resolution,622

framerate we refer the reader to Table 1.623

4.6.1 Freely behaving Drosophila recorded from two high-resolution views using one624

camera and a right-angle prism mirror625

We constructed a transparent arena coupled to a right-angle prism mirror [43,44]. The enclosed arena626

consists of three vertically stacked layers of 1/16” thick acrylic sheets laser-cut to be 15 mm long, 3627

mm wide, and 1.6 mm high. The arena ceiling and walls were coated with Sigmacote (Sigma-Aldrich,628

Merck, Darmstadt, Germany) to discourage animals from climbing onto the walls and ceilings. One629

side of the enclosure was physically coupled to a right-angled prism (Thorlabs PS915). The arena630

and prism were placed on a kinematic mounting platform (Thorlabs KM100B/M), permitting their631

3D adjustment with respect to a camera (Basler acA1920-150um) outfitted with a lens (Computar632

MLM3X-MP, Cary, NC USA). The camera was oriented vertically upwards below the arena to provide633

two views of the fly: a direct ventral view, and an indirect, prism mirror-reflected side view. The arena634

was illuminated by four Infrared LEDs (Thorlabs, fibre-coupled LED M850F2 with driver LEDD1B635

T-Cube and collimator F810SMA-780): two from above and two from below. To elicit locomotor636

activity, the platform was acoustically and mechanically stimulated using a mobile phone speaker.637

Flies were then allowed to behave freely, without optogenetic stimulation.638

4.6.2 Freely behaving Drosophila recorded from one ventral view at low-resolution639

We constructed a square arena consisting of three vertically stacked layers of 1/16” thick acrylic sheets640

laser-cut to be 30 mm long, 30 mm wide, and 1.6 mm high. This arena can house multiple flies at once,641

increasing throughput at the expense of spatial resolution (26 px mm−1). Before each experiment642

the arena ceiling was coated with 10 uL Sigmacote (Sigma-Aldrich, Merck, Darmstadt, Germany)643

to discourage animals from climbing onto the ceiling. A camera (pco.panda 4.2 M-USB-PCO, Gloor644

Instruments, Switzerland, with a Milvus 2/100M ZF.2 lens, Zeiss, Switzerland) was oriented with645

respect to a 45 degree mirror below the arena to capture a ventral view of the fly. An 850 nm infrared646

LED ring light (CCS Inc. LDR2-74IR2-850-LA) was placed above the arena to provide illumination.647

Although the experiment contained optogenetically elicited behaviors interspersed with periods of648

spontaneous behavior, here we focused only on spontaneously generated forward walking.649

The positions and orientations of individual flies were tracked using custom software including a650

modified version of Tracktor [65]. Using these data, a 138× 138 px image was cropped around each651

fly and registered for subsequent analyses.652

4.6.3 Drosophila LiftPose3D station653

The LiftPose3D station is an easily constructed and used system designed to capture 2D poses of654

freely behaving Drosophila melanogaster. The station is powered by a Raspberry Pi Zero board and655

uses a high quality camera with a 6 mm wide-angle lens to obtain images at 800x800 pixel resolution.656

The camera’s exposure time was set to 2 ms and its framerate to 80 fps. Images are first stored657

as jpeg files in the micro SD card of the Raspberry Pi Zero, and then transfered to a workstation658

for further processing. Each image file size is about 25 kb. Therefore we are able to store up to659

3 hrs of data using our current configuration. We refer the reader to the Supplementary Notes for660

a detailed description of the design and assembly. Table 2 provides a full list of components with661

links to retailers from whom they can be purchased, or computer-aided designs (CAD) of custom662

manufactured pieces.663
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4.7 2D pose estimation664

DeepFly3D 2D poses were taken from [7]. OpenMonkeyStudio 2D poses were taken from [8]. CAP-665

TURE 2D poses were taken from [39]. LocoMouse 2D poses were taken from [18]. See these publica-666

tions for detailed 2D pose estimation procedures.667

4.7.1 2D pose estimation of freely behaving flies recorded in two views using a right-668

angle prism mirror669

Data acquired from a single camera were split into ventral and side view images. We hand-annotated670

the location of all 30 leg joints (five joints per leg) on 640 images with a ventral view and up to 15671

visible unilateral joints on 640 images of the side view. We used these manual annotations to train672

two separate DeepLabCut [6] 2D pose estimation networks (root-mean-squared errors for training673

and testing were 0.02 mm and 0.04 mm for ventral and side views, respectively). Whereas ventral674

view images could be used to predict 2D pose for all 30 leg joints, from the side view at most 15675

joints were visible when the fly was parallel to the prism. Typically fewer keypoints were visible due676

to rotations of the fly within the enclosure. We removed images in which DeepLabCut incorrectly677

annotated keypoints as well as images in which flies were climbing the enclosure walls (thus exhibiting678

large yaw and roll orientation angles). To exclude these images, we ignored those with a confidence679

threshold below 0.95, and those for which the x-coordinate between the lateral and ventral views680

differed by more than 10 px.681

4.7.2 2D pose estimation of freely behaving flies recorded in one ventral view using a682

single camera683

FlyLimbTracker data [20] was manually annotated because training a network to track only 100684

frames would have been impractical. For newly acquired low-resolution ventral view single camera685

data, we trained a DeepLabCut [6] 2D pose estimation network. Due to the low resolution of images,686

the coxa-femur joints were not distinguishable, therefore, we treated the thorax-coxa and coxa-femur687

joints as a single entity. We manually annotated 160 images with the locations of four landmarks per688

leg: the thorax-coxa-femur entity, the femur-tibia joint, the tibia-tarsus joint, and the claw. We then689

trained a DeepLabCut network to predict the 2D coordinates of the 24 landmarks in the legs from690

the ventral view.691

4.8 Training the LiftPose3D network692

An important step in constructing LiftPose3D training data is to choose r root joints (see the specific693

use cases below for how these root joints were selected), and a target set corresponding to each694

root joint. The location of joints in the target set are predicted relative to the root joint to ensure695

translation invariance of the 2D poses.696

The training dataset consisted of input-output pose pairs (xtr
c , Xtr) with dimensionality equal to697

the number of keypoints visible from a given camera c minus the number of root joints r, namely698

xtr
c ∈ R2(|Vc|−r) and Xtr ∈ R3(|Vc|−r). Then, the training data was standardized with respect to the699

mean and standard deviation of a given keypoint across all poses.700

4.8.1 Tethered Drosophila melanogaster701

Of the 38 original keypoints in [7], here we focused on the 30 leg joints. Specifically, for each leg we702

estimated 3D position for the thorax-coxa, coxa-femur, femur-tibia, and tibia-tarsus joints and the703

tarsal tips (claws). Thus, the training data consisted of input-output coordinate pairs (xtr
c + ε, Xtr)704

for 24 joints (30 minus six thorax-coxa root joints) from all cameras. Here xtr
c ∈ R2n are 2D input705

joint keypoints acquired from camera c and Xtr ∈ R3n are 3D ground truth coordinates obtained from706

DeepFly3D by triangulating 2D coordinates from all six cameras. Furthermore, ε ∈ R48 is a small707

additive noise term, each with zero-mean Gaussian components. We found that the additive noise708

term stabilizes the network’s convergence during training (Figure S2A) and reduces uncertainty in709

lifted 3D joint positions. To maintain consistency for calculations of absolute error, triangulation was710

performed using the same set of 2D poses that were used to train the LiftPose3D network.711
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4.8.2 Freely behaving macaque monkeys712

The OpenMonkeyStudio dataset [8] consists of images of freely behaving monkeys inside a 2.45 ×713

2.45× 2.75 m arena in which 62 cameras are equidistant horizontally at two heights along the arena714

perimeter. We extracted all five available experiments (7, 9, 9a, 9b and 11) for training and testing.715

Since 2D pose annotations were not available for all cameras, we augmented this dataset during716

training by projecting triangulated 3D poses onto cameras lacking 2D annotation using the provided717

camera matrix. For the available 2D annotations, we removed the fisheye lens-related distortions718

of 2D poses using the provided radial distortion parameters. We normalized each 2D pose to unit719

length, by dividing it by its Euclidean norm as well as the 3D pose with respect to bone lengths to720

reduce the large scale variability of the OpenMonkeyStudio annotations (animals ranged between 5.5721

and 12 kg). Following the OpenMonkeyStudio convention, we set the neck joint as the root joint722

during training. We compare our absolute errors to the total body length, calculated as the sum of723

the mean lengths of the nose-neck, neck-hip, hip-knee, knee-foot joints pairs. Over multiple epochs,724

we observed rapid convergence of our trained network (Figure S2B).725

4.8.3 Freely behaving mice and Drosophila recorded from two views using a right-angle726

mirror727

Freely behaving mouse data [18] consisted of recordings of animals traversing a 66.5 cm long, 4.5 cm728

wide, and 20 cm high glass corridor. A 45◦ mirror was used to obtain both ventral and side views729

with a single camera beneath the corridor. 2D keypoint positions were previously tracked using the730

LocoMouse software [18]. We considered six major keypoints—the four paws, the proximal tail, and731

the nose. Keypoint positions were taken relative to a virtual “root” keypoint placed on the ground732

midway between the nose and the tail.733

For both the Drosophila and mouse datasets, side view keypoints distal to the camera were734

intermittently occluded by the animal’s body. Thus, taking a simplistic approach, after training with735

this unilateral ground truth data, lifting from the ventral view would only recover keypoints on the736

proximal half of the animal. We significantly modified data preprocessing to enable lifting across737

both the proximal and the occluded, distal side of the animal. Specifically, we registered all animals738

along the horizontal axis in the ventral view to generate ground truth data for all leg joints across739

time frames. Thus, although there is still only partial 3D pose ground truth for each image (for the740

proximal, fully visible half of the animal) we forced the lifting function f to predict the entire pose.741

This is possible because the realignment step masks from the network which data, among all of the742

input to f , are visible and contain 3D ground truth annotations.743

Combining the proposed alignment and partial 3D pose supervision, the training dataset includes744

coordinate pairs (xtr
ventral + ε, ztrside), with ε as before, xtr

ventral = { (xj , yj) : j ∈ Vside} ∈ R2|Vside| are the745

coordinates of DeepLabCut annotated 2D keypoints from the ventral viewpoint and ztrside = {zj : j ∈746

Vside} ∈ R|Vside| are the corresponding z-axis depth coordinates, for joints visible from the side view747

for a given frame. The networks for Drosophila and mouse training data converged within 30 and 10748

training epochs (Figure S2C,D).749

4.8.4 Freely behaving rat in a naturalistic environment750

The CAPTURE dataset contains recordings of freely behaving rats in a 2-foot diameter cylindrical751

arena tracked by six cameras. Motion capture markers on the animal are tracked using a commercial752

motion capture acquisition program [39] to obtain 2D poses. Out of 20 possible joints, we limited753

our scope to the 15 joints that were not redundant and provided most of the information about the754

animal pose. The dataset includes 4 experiments recording 3 rats from two different camera setups.755

Before using LiftPose3D, we removed the distortion from 2D poses using radial distortion parameters756

provided by the authors. The CAPTURE dataset has many missing 3D pose instances which we757

handle by not computing the loss corresponding to these keypoints during back-propagation. We758

selected the neck joint as the single root joint and predicted all of the other joints with respect to759

this root joint. We observed that LiftPose3D converged within 15 training epochs (Figure S2E).760
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4.8.5 Freely behaving adult Drosophila melanogaster recorded from one ventral camera761

view762

For both the newly acquired low-resolution and previously published high-resolution [20] images of763

freely behaving flies taken using one ventral view camera, we trained a LiftPose3D network on partial764

ground truth data acquired from the prism mirror system. For the high-resolution data, we considered765

the thorax-coxa joints as roots. For the low resolution data coxa-femur joints were imperceptible,766

allowing only 24 keypoints to be annotated. Hence, the thorax-coxa joints were selected as roots767

and we focused on predicting the relative location of the remaining mobile joints (18 keypoints) with768

respect to their associated root joints. The training dataset consisted of coordinate pairs (xtr
ventral +769

ε + η, ztrside) where xtr
ventral, ε, ztrside were chosen to represent the annotated ventral coordinates, joint-770

dependent noise and z-axis depth for the visible joints, as before. Meanwhile, η was a novel noise771

term, which we describe below.772

The training and test data were augmented to accomplish domain adaptation: lifting new data773

with the prism system training data. First, for the low-resolution dataset, a zero-mean Gaussian noise774

term with a joint-independent standard deviation of 4 px, η, was added during training. The role of775

this noise term was to account for the keypoint position degeneracy inherent in the transformation776

from high-resolution prism training data to lower-resolution testing data. This term effectively coarse-777

grained the network’s spatial resolution, accounting for the 4-fold lower resolution of the low-resolution778

single camera ventral view system compared with the right-angle prism mirror system. For the high779

resolution dataset this noise term was set to zero.780

Second, following training, we preprocessed the test data 2D poses derived from both the low-781

and high-resolution images by matching their data distributions to that of the prism-mirror dataset.782

To achieve this, we performed procrustes analysis to find the optimal affine transformation (rotation,783

translation and scaling) that maps the average root joint positions across poses in the test dataset to784

those in the prism-mirror dataset.785

4.9 Deriving joint angles and performing error estimates786

Consider three consecutive joints in the kinematic chain of one leg with coordinates u, v, w. Then,787

vectors s1 = u− v and s2 = u−w describe adjacent bones and their enclosed angle is found by the788

cosine rule, cos−1( s1 · s2/(||s1|| ||s2||) ).789

With the exception of the tarsus, the fly’s exoskeleton moves in a rigid manner. This permits790

the estimation of errors in the lifted joint angles based on fluctuations of predicted bone lengths.791

We assumed that u, v, w are drawn from independent Gaussian distributions centered around the792

estimated coordinate with standard deviation equal to the variation of the bone lengths ||s1|| and793

||s2||. The distribution of joint angles for any given pose was estimated by Monte Carlo sampling794

(using 5 × 103 samples) drawing one sample from each three distributions and then computing the795

corresponding joint angle by the cosine rule.796

4.10 Code and data availability797

The code can be installed as a pip package, see https://pypi.org/project/liftpose/, or down-798

loaded at https://github.com/NeLy-EPFL/LiftPose3D.799

The experimental data collected for this study can be downloaded at:800

https://drive.google.com/drive/folders/1qi8_c1YnlOzh7eWYXAG369iLtAS4iu1H?usp=sharing801
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5 Supplementary Notes802

5.1 Drosophila LiftPose3D Station803

Design and assembly The LiftPose3D station’s main body was 3D printed using a Form2 printer804

and standard black resin (Formlabs, United States). A Raspberry Pi Zero W was fixed upside down805

onto the main body using a custom coupler and four screws. Two angled headers should be soldered806

to the Raspberry Pi ground (gnd) and 5V pins before placing the board onto the station. For the807

Raspberry Pi high-quality camera, the C-CS adapter was removed and the back focus adjustment ring808

was fully closed. Then, the 6 mm wide-angle lens was installed onto the camera. The camera and lens809

were screwed to a lasercut acrylic coupler with the cable connection facing the open side of the base,810

a flex cable was used to connect the camera to the Raspberry Pi board. We designed an illumination811

system consisting of four white LEDs, a switch to turn them on and off, and a potentiometer to812

control the light intensity. The circuit for controlling the LEDs was built on a prototyping board with813

prefabricated copper connections and we added extra connections with wires as shown in Figure S3.814

However, we also provide the files to manufacture a printed circuit board (PCB). The illumination815

module was screwed to the middle level of the base and two jumper wires were connected from the816

Raspberry Pi angled pins to the circuit pins considering the correct polarization, i.e., 5V to 5V and817

gnd to gnd. Finally, we used a square arena with three vertically stacked layers of 1/16” acrylic to818

hold behaving adult flies. The arena is 12 mm per side with rounded corners. These acrylic layers819

are fixed with the pillars on top of the base.820

Raspberry Pi-Computer connection We decided to establish a USB-Ethernet gadget mode con-821

nection to simplify the communication between our Raspberry Pi Zero and computer. This connection822

mode allowed us to power the Raspberry Pi, establish an SSH connection, and share the computer823

internet using one standard USB cable. However, any other connection mode can be used, including824

SSH through WiFi, or direct connection with a monitor, keyboard, and mouse to the Raspberry Pi825

board, as explained in the official Raspberry website.826

We tested the USB-Ethernet gadget mode with a computer running Ubuntu 20.04, but different827

tutorials exist for running such a connection in iOS or Windows operating systems (OS). It is very828

important to use a standard USB cable and not an USB-OTG cable. First, a Raspberry Pi OS should829

be installed in a micro SD card using the Raspberry Pi Imager. We used the Raspberry Pi OS Lite830

version (Buster) with the Linux kernel 5.4.83.831

After installing the OS, the SD card should be unplugged and plugged again into the PC. Now832

the card is mounted and we can acces the boot partition where some changes should be made.833

First, the following lines should be appended to config.txt file to enable the OTG libraries on834

boot:835

# Enable USB OTG like ethernet836

dtoverlay=dwc2837

Then, an empty file called ssh (without any extension) should be created using, e.g., vim, vi, or838

touch. Finally, modify the cmdline.txt file by adding the following line after the word “rootwait”839

(add a space at the beginning and the end of the added text):840

modules-load=dwc2,g_ether841

Now that the initial configuration is completed, the SD card should be ejected from the computer842

and inserted into the Raspberry board. Then, connect the USB cable to the USB port labeled “USB”,843

not the one labeled “PWR”. Booting the first time lasts around 60-90 s, afterwards it will be faster.844

The Raspberry Pi will be recognized by Ubuntu as a new Ethernet network connection. However,845

to enable the connection, it has to be edited to set the connection method to “Link-Local Only” in846

the IPv4 tab. The ssh tunneling is established and the Raspberry can be accessed using:847

ssh pi@raspberrypi.local848

By default the ssh password is “raspberry”, however, it can be easily changed. To share the inter-849

net connection from the Ubuntu computer, the ethernet connection should be disconnected in the850

networks manager (do not disconnect the USB cable) and the connection method should be changed851
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to “Shared to other computers”. Establish again the ethernet connection and now the Raspberry Pi852

will have internet after you ssh onto it.853

For now the Raspberry Pi will choose a random ID and MAC-address after every restart/reboot.854

To fix that, edit again the cmdline.txt file on the boot partition by adding the following line at the855

end:856

g_ether.host_addr=xx:xx:xx:xx:xx:xx857

The host address should be taken from the Ubuntu computer and can be obtained by running the858

command ifconfig in a terminal. The last thing to do is to assign a static IP address to the859

Raspberry. To do that, add the following lines to the file “/etc/dhcpcd.conf”:860

interface usb0861

static ip_address=10.xx.xx.xx862

static routers=10.xx.xx.xx863

The static IP address and routers are then obtained from the Raspberry and the Ubuntu computer,864

respectively, by running the command ifconfig. The whole configuration above should be done just865

once. At this point the connection between the Raspberry and the computer will be established866

automatically every time the USB cable is used.867

Image acquisition To set up the acquisition software in the LiftPose3D station, first python 3 and868

pip3 should be installed on the Raspberry Pi Zero:869

$ sudo apt-get update870

$ sudo apt-get upgrade871

$ sudo apt-get install python3-dev872

$ wget https://bootstrap.pypa.io/get-pip.py873

$ sudo python3 get-pip.py874

Then the Raspberry Pi camera should be enabled by running $ sudo raspi-config, and selecting875

the corresponding option. The Raspberry should be rebooted after enabling the camera module.876

Finally, the package piCamera should be installed by running the command:877

$ pip install "picamera[array]".878

The script capture fast.py should be copied in the Raspberry Pi and it can be run with the879

command:880

$ python3 capture_fast.py imgsFolder881

The script is a customized version of an example (Advance recipe 4.7) found in the piCamera882

package documentation. It will capture images for 30 s by default at 80 fps with an exposure time883

fixed at 2 ms. These images will be stored in a directory named imgsFolder. The recording du-884

ration, framerate, and exposure time can be modified directly in the program, however, it is not885

recommended to change either the framerate or the exposure time since it would change the illumi-886

nation and sharpness of the images.887

888

Image preprocessing When the images are captured they are stored onto the Raspberry SD card,889

however, we strongly recommend moving them to another computer with larger capacity as soon as890

they are taken. A preprocessing stage should be completed before lifting the fly’s pose. This procedure891

consists of cropping the fly from every frame and registering these crops along the experiment aligning892

the fly facing up. This processing is performed by the program crop flies.py, using the following893

pseudocode:894

1. Read frames.895

2. Segment fly’s body based on color.896

3. Binarize image.897

4. Fit ellipse around the fly’s body.898
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5. Get crop of 290x290 pixels around the ellipse centroid.899

6. Rotate crop based on the ellipse orientation to register images.900

7. Check for head or wings at the top of the crop.901

8. Rotate crops if wings detected on top in more than 50% of the frames.902

9. Write video with cropped fly.903

6 Supplementary Tables904

Table 1: List of datasets used

Dataset # Views
# Lifted
keypoints

# 3D poses
(train/test)

Resolution
(px/mm)

Framerate
(Hz)

# Animals
(train/test)

Source

DeepFly3D (spherical treadmill) 6 24 3.56× 105/1.98× 104 117 100 6/2 [7]
OpenMonkeyStudio 62 12 6’581/710 0.15 30 5/1 [8]
Fly in a prism-mirror setup 2 24 8’362/3’416 112 100 3/1 this paper
LocoMouse 2 6 28’840/10’814 2.5 400 30/4 [18]
CAPTURE 6 20 1.58× 105/5.17× 104 1 300 3/1 [39]
Fly on a flat surface 1 18 n.a. 26 80 n.a./1 this paper
Published fly on a flat surface 1 18 n.a. 203 200 n.a./1 [20]
Drosophila LiftPose3D station 1 18 n.a. 56 80 n.a./1 this paper

Table 2: List of components composing the LiftPose3D station

Quantity Component
Company/
Manufacturing method

Type (Alternative)/
Material (CAD)

1 Raspberry Pi Raspberry Pi Zero W
1 Raspberry Pi Camera Raspberry Pi High Quality Camera
1 Raspberry Pi CS-mount lens CGL 6 mm wide-angle
1 Raspberry Pi Zero Flex Cable Sertronics RPIZ-FLEX-15
1 Micro SD memory Sandisk Extreme Pro 32Gb
1 USB cable RND Components Micro B to USB A
1 Station base 3D printed Black resin
1 Raspberry coupler Laser cut Acrylic 4mm
2 Arena’s outer layers Laser cut Acrylic 1/16”
1 Arena’s inner layer Laser cut Acrylic 1/16”
1 Prototyping board/PCB Rademacher 710-5
1 Miniature Slide Switch RND Components 210-00585
1 Trimmer Potentiometer Bourns 500 Ohms
1 Resistor RND Components 56 Ohms
2 Female-Female jumper wire RND Components BBFF-10-Q3RD
4 White LEDs RND Components 135-00164
4 PCB pins angled Prostar RS-1X36-T1-7/3MM
7 Screws M2.5x12mm Bossard BN-610
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7 Supplementary Figures905

906

Figure S1: Joint angles resulting from lifting compared with 3D triangulated ground truth and 2D

projections. Joint angles α, β, γ, and ω for the front, mid, and hind left legs during forward walking. Shown are angles

computed from 3D triangulation using DeepFly3D (blue), LiftPose3D predictions (red), and ventral 2D projections

α′, β′, γ, and ω (green). The mean (solid lines) and standard deviation of joint error distributions (transparency) are

shown. Joint angles were computed by Monte Carlo sampling and errors were computed by taking the fluctuation in

bone lengths.

907

908

909

910

911

912

913

Figure S2: Training and test loss convergence of the LiftPose3D network applied to a variety of datasets.

Shown are the absolute test errors of LiftPose3D for all joints as a function of optimization epoch. Note that the test

error is sometimes lower than the training error because we do not apply dropout at test time. A Two-camera

data of Drosophila on a spherical treadmill (each color denotes a different pair of diametrically opposed cameras). B

OpenMonkeyStudio dataset (each color denotes a different training run). C Single-camera data of Drosophila behaving

freely in the right-angle prism mirror system, D LocoMouse dataset. E CAPTURE dataset.

914

915

916

917

918
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920

Figure S3: Drosophila LiftPose3D station A CAD drawing of the LiftPose3D station indicating major components

(color-coded). B Electronic connections included in a prefabricated prototyping board for the illumination module. C

Photo of the LiftPose3D station.

921

922

923

8 Supplementary Videos924

Video 1: 3D pose lifting for backwards walking in tethered Drosophila obtained from925

two side cameras. Videos obtained from cameras 2 (top-left) and 5 (bottom-left). DeepFly3D-926

derived 2D poses are superimposed. Orange circle indicates that the optogenetic stimulation LED927

light is on, activating MDNs to elicit backward walking. (right) 3D poses obtained by triangulating928

six camera views using DeepFly3D (solid lines), or lifting two camera views using LiftPose3D (dashed929

lines).930

https://www.dropbox.com/s/e1dpxqf23epxtg2/video_1.mp4?dl=0931

Video 2: 3D pose lifting for antennal grooming in tethered Drosophila obtained from932

two side cameras. Videos obtained from cameras 2 (top-left) and 5 (bottom-left). DeepFly3D-933

derived 2D poses are superimposed. Orange circle indicates that the optogenetic stimulation LED934

light is on, activating aDNs to elicit antennal grooming. (right) 3D poses obtained by triangulating935

six camera views using DeepFly3D (solid lines), or lifting two camera views using LiftPose3D (dashed936

lines).937

https://www.dropbox.com/s/fzvru50z43a9t9t/video_2.mp4?dl=0938

Video 3: 3D pose lifting for irregular spontaneous limb movements in tethered Drosophila939

obtained from two side cameras. Videos obtained from cameras 2 (top-left) and 5 (bottom-940

left). DeepFly3D-derived 2D poses are superimposed. (right) 3D poses obtained by triangulating941

six camera views using DeepFly3D (solid lines), or lifting two camera views using LiftPose3D (dashed942

lines).943

https://www.dropbox.com/s/5qbdiq9fdtlkgdo/video_3.mp4?dl=0944

Video 4: 3D pose lifting of previously published OpenMonkeyStudio dataset of a freely945

moving macaque [8] (left) Single image drawn randomly from one of 62 cameras. (middle)946

Ground truth 3D poses based on triangulation of 2D poses from up to 62 cameras (solid lines), or947

lifting from a single camera view using LiftPose3D (dashed lines). (right) Error distribution across948

the 62 cameras for a given pose. Camera locations (circles) are color-coded by error. Gray circles949

denote cameras for which an image was not available. Green circle denotes the camera from which950

the image was used.951

https://www.dropbox.com/s/mfe32jnen9oo6w8/video_4.mp4?dl=0952

Video 5: 3D pose lifting of freely behaving Drosophila when triangulation is only par-953

tially possible. Single camera images of the ventral (top-left) and side (bottom-left) views.954

DeepLabCut-derived 2D poses are superimposed. (right) 3D poses obtained by triangulating par-955

tially available multi-view 2D poses (solid lines), or by lifting the ventral 2D pose using LiftPose3D956

(dashed lines).957

https://www.dropbox.com/s/1cd36l55kda89pq/video_5.mp4?dl=0958
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Video 6: 3D pose lifting of freely behaving mice when triangulation is only partially959

possible. Side (top-left) and ventral (bottom-left) views of a freely walking mouse. Superimposed960

are keypoints on the paws, mouth, and proximal tail tracked using the LocoMouse software (blue961

circles). Using only the ventral view 2D pose, a trained LiftPose3D network can accurately track962

keypoints in the side view (orange circles).963

https://www.dropbox.com/s/jh2xaqfmf2wmd8p/video_6.mp4?dl=0964

Video 7: 3D pose lifting for freely behaving rats in a naturalistic arena (left) Ground truth965

3D poses triangulated from six cameras (solid lines) superimposed with LiftPose3D’s predictions using966

2D poses from one camera (dashed lines). (right) Images from one camera with 2D poses acquired967

using CAPTURE are superimposed.968

https://www.dropbox.com/s/1awphk5gfc2u9pc/video_7.mp4?dl=0969

Video 8: 3D pose lifting for low-resolution videos of freely behaving flies when trian-970

gulation is impossible. (top) Three freely behaving Drosophila in a rounded square arena and971

recorded ventrally using a single low-resolution camera. Of these, fly 0 is tracked, cropped, and972

rotated leftward. Superimposed are 2D poses for 24 visible joints. (bottom) 3D poses lifted from973

ventral view 2D poses (x − y plane) permit analysis of leg kinematics in the otherwise unobserved974

x− z plane.975

https://www.dropbox.com/s/7we9lcp2n74c838/video_8.mp4?dl=0976

Video 9: 3D pose lifting of previously published ventral view videos of freely behaving977

flies when triangulation is impossible. (top) Video from [20] of a freely behaving fly within978

a pill-shaped arena and recorded ventrally using a single high-resolution camera. (bottom-left)979

Following tracking, a region-of-interest containing the fly was cropped and rotated to maintain a980

leftward orientation. Superimposed are 2D poses estimated for 24 visible joints. (bottom-middle)981

3D poses obtained by lifting ventral view 2D poses. (bottom-right) 3D poses lifted from ventral view982

2D poses (top) permit analysis of leg kinematics in the otherwise unobserved x− z plane (bottom).983

https://www.dropbox.com/s/2tylyqcnqgdq4qc/video_9.mp4?dl=0984

Video 10: 3D pose lifting of data from the Drosophila LiftPose3D station (left) Video of985

a freely behaving fly in the LiftPose3D station arena. (middle) Cropped video around the centroid986

of the tracked fly, superimposed with 2D pose predictions. (right) Lifted 3D poses obtained using987

ventral 2D poses.988

https://www.dropbox.com/s/esnwx0we5itteb6/video_10.mp4?dl=0989
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