

1 Unified neural pathways that gate affective pain and 2 multisensory innate threat signals to the amygdala

3

4

5 Sukjae Joshua Kang^{1,5}, Shijia Liu^{1,2,5}, Mao Ye^{1,5}, Dong-Il Kim¹, Jong-Hyun Kim¹, Tae Gyu Oh³, Jiahang
6 Peng^{1,2}, Ronald M. Evans³, Kuo-Fen Lee¹, Martyn Goulding⁴, Sung Han^{1,2} *

7

8 ¹ Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA

9 ² Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla,
10 CA 92093, USA

11 ³ Howard Hughes Medical Institute, Gene Expression Laboratories, The Salk Institute for Biological
12 Studies, La Jolla, CA 92037, USA

13 ⁴ Molecular Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA

14 ⁵ These authors contributed equally

15

16

17

18

19 *Correspondence to:

20 Sung Han, Ph.D.

21 Peptide Biology Laboratories,

22 Salk Institute for Biological Studies

23 10010 N. Torrey Pines Rd.

24 La Jolla, CA 92037, USA

25 Email: sunghan@salk.edu

26 Phone: (858) 453-4100, x1856

27

28 **Abstract**

29 Perception of aversive sensory stimuli such as pain and innate threat cues is essential for animal survival.
30 The amygdala is critical for aversive sensory perception, and it has been suggested that multiple parallel
31 pathways independently relay aversive cues from each sensory modality to the amygdala. However, a
32 convergent pathway that relays multisensory aversive cues to the amygdala has not been identified. Here,
33 we report that neurons expressing calcitonin gene-related peptide (CGRP) in the parvocellular
34 subparafascicular thalamic nucleus (SPFp) are necessary and sufficient for affective-motivational pain
35 perception by forming a spino-thalamo-amygdaloid pain pathway. In addition, we find that this thalamic
36 CGRP pain pathway, together with well-known parabrachio-amygdaloid CGRP pain pathway, is critical
37 for the perception of multisensory innate threat cues. The discovery of unified pathways that collectively
38 gate aversive sensory stimuli from all sensory modalities may provide critical circuit-based insights for
39 developing therapeutic interventions for affective pain- and innate fear-related disorders.

40 **Introduction**

41 Pain is a complex sensory and emotional experience caused by tissue-damaging noxious stimuli that
42 produce immediate avoidance behavior, as well as long-lasting aversive memories so that future damage
43 can be avoided (Julius and Basbaum, 2001; Melzack and Casey, 1968). Therefore, the perception of pain
44 results in behavioral outcomes similar to those associated with the perception of threats. Indeed, most
45 research on Pavlovian threat learning has used electric foot shock, a painful noxious stimulus, as a threat
46 cue. It has also been suggested that pain and threat perceptions interact with each other (Elman and Borsook,
47 2018). Individuals with pain asymbolia, who have deficits in perceiving affective-motivational aspects of
48 pain due to damage to limbic structures, show compromised perception of threats (Berthier et al., 1988;
49 Rubins and Friedman, 1948). Alternatively, people with affective pain disorders, such as migraine and
50 fibromyalgia, are often hypersensitive to sensory inputs and perceive normal sensory signals as aversive
51 (Bar-Shalita et al., 2019; López-Solà et al., 2017). Therefore, it is likely that there are unified neural circuits
52 and brain areas that process both pain-causing noxious stimuli and threat-producing aversive sensory cues
53 (Price, 1999).

54

55 The amygdala is a key limbic structure that integrates sensory stimuli with an internal state to generate
56 appropriate emotional responses (Janak and Tye, 2015; LeDoux, 2012, 2000). It is activated by aversive
57 sensory stimuli, including noxious stimuli (Ren and Neugebauer, 2010; Simons et al., 2014; Veinante et al.,
58 2013), and lesioning the amygdala greatly attenuates the perception of multimodal sensory threats (Bach et
59 al., 2015; Blanchard and Blanchard, 1972; Dal Monte et al., 2015) and pain (Gao et al., 2004; Helmstetter,
60 1992; Manning and Mayer, 1995; Tanimoto et al., 2003). Therefore, the amygdala may serve as a pivotal
61 node in integrating and unifying all threat cues from different sensory modalities, including pain-causing
62 noxious stimuli. Recent studies suggest that aversive sensory stimuli from each sensory modality relay
63 threat cues to the distinct brain areas including the hypothalamus and amygdala through parallel non-
64 overlapping pathways. These include somatosensory (Barsy et al., 2020; Choi et al., 2020; Han et al., 2015;
65 Sato et al., 2015), visual (Salay et al., 2018; Wei et al., 2015; Zhou et al., 2019), auditory (Barsy et al.,
66 2020), gustatory (Carter et al., 2013; Kim et al., 2017; Wang et al., 2018) and olfactory (Rosen et al., 2015;
67 Tong et al., 2020). However, little is known about the convergent neural circuits that relay and integrate
68 multimodal aversive sensory signals, including nociceptive stimuli, to the amygdala.

69

70 Noxious stimuli from the periphery are relayed to the brain through two ascending pain pathways, the spino-
71 parabrachial pathway and the spino-thalamic pathway (Bushnell et al., 2013). It is a well-established idea
72 that the spino-thalamic pathway is involved in sensory and discriminative pain perception and that the
73 spino-parabrachial pathway is involved in the perception of affective and motivational pain. This is because
74 the former projects to the somatosensory cortex and the latter projects to the amygdala (Basbaum et al.,
75 2009). Among multiple areas of the amygdala, the capsular subdivision of the central nucleus of the
76 amygdala (CeC) is known as the nociceptive amygdala since it is activated by nociceptive stimuli and
77 receives direct input from the parabrachial nucleus (PBN) through the spino-parabrachial pathway (Gauriau
78 and Bernard, 2002; Neugebauer, 2015). Nevertheless, it remains unclear how the nociceptive information
79 is relayed to other areas of the amygdala involved in pain processing, such as the amygdala-striatum
80 transition area (AStr) (Xiu et al., 2014) and the lateral nucleus of the amygdala (LA) (Bernard et al., 1992;
81 Thompson and Neugebauer, 2017). In particular, the LA is critically involved in pain-induced aversive
82 learning (LeDoux, 2007; Ressler and Maren, 2019), but the detailed pain pathway that relays nociceptive
83 information to the LA has not been fully understood.

84

85 Although the thalamus has been implicated in sensory and discriminative pain (Dado et al., 1994; Zhang
86 and Giesler, 2005), some thalamic nuclei, such as the ventromedial posterior thalamus (VMpo) in primates,
87 or the triangular subdivision of the posterior thalamus (PoT) in rodents, are thought to be involved in
88 affective and motivational pain perception by relaying nociceptive signals to the limbic areas (Craig et al.,
89 1994, 2000; Gauriau and Bernard, 2004a; Price, 2002). However, the involvement of these nuclei in
90 affective and motivational pain perception is still inconclusive (Willis et al., 2002), mainly because the
91 thalamus has many small, functionally distinct nuclei without clear anatomical boundaries. Therefore, to
92 understand the roles of the thalamus in affective pain processing, it is critical to identify genetically defined
93 populations of thalamic neurons that directly convey spinal nociceptive input to the limbic areas, such as
94 the amygdala.

95

96 Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide produced by peripheral neurons
97 and mediates vasodilation and nociception (Russell et al., 2014; Russo, 2015). It is also produced in the
98 brain and plays an essential role in aversive learning and pain perception (Palmiter, 2018; Shinohara et al.,
99 2017; Yu et al., 2009). CGRP-expressing neurons are highly clustered in two brain areas: the external lateral
100 subdivision of the PBN (PBel) and the parvocellular subparafascicular nucleus (SPFp) (D'Hanis et al., 2007;
101 Dobolyi et al., 2005); (Experiment 79587715, Allen Brain Atlas). Previous studies have shown that CGRP
102 neurons in the PBel ($\text{CGRP}^{\text{PBel}}$) are critically involved in transmitting affective pain signals during aversive
103 learning (Han et al., 2015) and in transmitting visceral aversive signals to the CeA (Chen et al., 2018). On
104 the other hand, the latter is a relatively unexplored area. The SPFp is an elongated structure that extends
105 from the anteromedial to posterolateral thalamus (D'Hanis et al., 2007). It has been speculated that CGRP
106 neurons in the medial part of the SPFp ($\text{CGRP}^{\text{SPFp}}$) may play a role in sexual behaviors (Coolen et al., 2003a,
107 2003b), whereas those in the posterolateral part of the $\text{CGRP}^{\text{SPFp}}$ may be involved in emotional behaviors,
108 based on anatomical projections to the amygdala (D'Hanis et al., 2007; LeDoux et al., 1985; Yasui et al.,
109 1991). The neighboring thalamic nucleus, such as the posterior intralaminar nucleus (PIL), or medial
110 subdivision of medial geniculate nucleus (MGm) have been implicated to relay noxious stimuli to the
111 amygdala during aversive learning (Barsy et al., 2020; Shi and Davis, 1999). However, it has not been
112 tested whether the $\text{CGRP}^{\text{SPFp}}$ neurons are involved in conveying pain signals to the amygdala during
113 affective-motivational pain perception. Furthermore, it is unknown to what extent $\text{CGRP}^{\text{PBel}}$ and $\text{CGRP}^{\text{SPFp}}$
114 neurons play similar roles in conveying aversive sensory information to the amygdala.

115

116 Here, we report that $\text{CGRP}^{\text{SPFp}}$ neurons receive direct monosynaptic inputs from projection neurons within
117 the dorsal horn of the spinal cord and project their axons to multiple regions within the amygdala (namely
118 (the AStr and the LA) and to the posterior insular cortex, but not to the somatosensory cortex. These neurons
119 are activated by multimodal nociceptive stimuli. Silencing these neurons substantially attenuates affective
120 and motivational pain perception, and activating these neurons induces aversion and aversive memory.
121 Furthermore, $\text{CGRP}^{\text{SPFp}}$ neurons, together with $\text{CGRP}^{\text{PBel}}$ neurons, are collectively activated by aversive
122 sensory stimuli from all sensory modalities (visual, auditory, somatosensory, gustatory, and olfactory), and
123 silencing these neurons attenuates the perception of all aversive sensory stimuli. Taken together, CGRP
124 neurons within the SPFp and PBel not only form two affective pain pathways, namely the spino-thalamo-
125 amygdaloid and the spino-parabrachio-amygdaloid pathways, but they also convey aversive sensory signals
126 from all sensory modalities to the amygdala during threat perception.

127

128 **Results**

129 **CGRP^{SPFp} and CGRP^{PBel} neurons connect multiple sensory relay areas to the amygdala**

130 The amygdala is critically involved in the affective-motivational pain perception. However, it is not fully
131 understood by which the nociceptive information is conveyed to the amygdala. The spinal dorsal horn
132 projection neurons relay nociceptive signals to the brain (Basbaum et al., 2009; Todd, 2010). One example
133 is *Tacrl*-expressing neurons in the spinal dorsal horn (Barik et al., 2020; Chiang et al., 2020; Choi et al.,
134 2020; Deng et al., 2020). To identify direct spino-recipient areas in the brain, we genetically labeled only
135 the spinal *Tacrl* neurons with tdTomato fluorescent protein by the triple crossing of *Tacrl*^{Cre}, *Cdx2*^{FloO}, and
136 *Ai65* (Rosa-CAG-FrtSTOPFrt-LoxSTOPLox-tdTomato; *dsTomato*) mice as described previously (Bourane
137 et al., 2015) (Figure S1A). The tdTomato-expressing cell bodies were only observed in the spinal dorsal
138 horn (Figure S1A). Fluorescently labeled axonal terminals were observed in multiple brain areas, including
139 the PBN, SPFp, the posterior complex of the thalamus (Po), the ventral posterolateral nucleus of the
140 thalamus (VPL), superior colliculus (SC), periaqueductal gray (PAG), dorsal column nuclei (DCN), and
141 ventrolateral medulla (VLM) (Figure S1B). We then asked which of these areas project to the amygdala.
142 By searching through the Allen Mouse Connectivity Atlas (<http://connectivity.brain-map.org/>), we found
143 that the SPFp and PBel project to the LA and CeA, respectively. Interestingly, CGRP neurons are found in
144 both the SPFp and PBel, and CGRP^{PBel} neurons are known to play a role in affective pain perception (Han
145 et al., 2015). Therefore, we sought to dissect and compare the roles of these CGRP circuits in processing
146 nociceptive sensory information and relaying this information to the amygdala.

147 To identify regions that lie downstream of CGRP neurons in the SPFp and PBel, we injected Cre-
148 dependent AAVs encoding EYFP or mCherry into the SPFp and PBel of the same *Calca*^{Cre} mouse that
149 expresses Cre-recombinase in the CGRP-expressing neurons (*Calca* gene encodes CGRP), respectively
150 (Figure 1A). Coronal slices around AP -1.1 showed an intermingled green and red expression pattern in the
151 CeA and LA (Figure S2A). However, posterior slices (AP -1.5) revealed distinct patterns of EYFP and
152 mCherry in the amygdala. While the CGRP^{SPFp} synaptic terminals were found in the AStr, LA, and medial
153 amygdala (MEA), the CGRP^{PBel} terminals were most abundant in the CeA, and basomedial amygdala
154 (BMA) (Figure 1B). CGRP^{SPFp} neurons did not project to the somatosensory cortex, instead they projected
155 to the auditory cortex and the dorsal regions of the posterior insular cortex (pIC), whereas CGRP^{PBel} neurons
156 projected to the bed nuclei of the stria terminalis (BNST), ventral posteromedial nucleus of the thalamus
157 parvicellular part (VPMpc), parasubthalamic nucleus (PSTN), and the ventral portion of the pIC (Figure
158 S2B).

159 To identify upstream brain regions that directly project their axons to the CGRP^{SPFp}, or CGRP^{PBel} neurons,
160 we performed cell-type-specific monosynaptic retrograde tracing using pseudotyped rabies virus (Kim et
161 al., 2016). We injected AAV8-hSyn-FLEX-TVA-P2A-GFP-2A-oG into the SPFp or PBel of *Calca*^{Cre} mice
162 and then waited three weeks before injecting EnvA-ΔG-rabies-mCherry into the same region (Figure 1C).
163 Five days after the rabies injection, mice were sacrificed to detect starter cells in both regions (Figure 1D)
164 and mCherry-labeled direct upstream neurons in the brain and spinal cord (Figure 1E). Histological analyses
165 revealed that CGRP^{SPFp} neurons received inputs from superficial and deep layers of the spinal dorsal horn
166 in multiple spinal cord segments, but most abundantly from the cervical segment (Figures 1F-1H). By
167 contrast, fewer neurons in the spinal cord project to the CGRP^{PBel} neurons compared to those projecting to
168 the CGRP^{SPFp} neurons (Figures 1I-1K). Other than the spinal cord, CGRP^{SPFp} neurons received inputs from
169 sensory relay areas including the SC, inferior colliculus (IC), vestibular nucleus (VN), and trigeminal spinal
170 nucleus (SpV), as well as other regions such as the hypothalamus and cortex (Figures S3A, S3C, and S3E).
171 CGRP^{PBel} neurons also received projections from sensory relay areas, including the SC, IC, VN, SpV, and

172 the nucleus tractus solitarius (NTS), as well as other areas such as the amygdala (in particular the CeA) and
173 the hypothalamus including the lateral hypothalamus (LHA), zona inserta (ZI), and PSTN (Figures S3B,
174 S3D, and S3F). Thus, these two populations of CGRP neurons may receive multimodal sensory inputs.

175 Our results show that both CGRP^{SPFp} and CGRP^{PBel} neurons receive monosynaptic inputs from the spinal
176 dorsal horn, other sensory-related regions, hypothalamus, and amygdala (CGRP^{PBel} neurons in particular).
177 However, in terms of output patterns, CGRP^{SPFp} neurons project to the LA and AStr, while CGRP^{PBel}
178 neurons project to the CeA, thereby forming complementary parallel sensory pathways to the amygdala.
179

180 **CGRP^{SPFp} and CGRP^{PBel} neurons are activated by multimodal nociceptive stimuli**

181 Next, we investigated the response of CGRP^{SPFp} and CGRP^{PBel} neurons to multimodal nociceptive stimuli,
182 such as mechanical, thermal, and inflammatory stimuli using the fiber photometry *in vivo* calcium imaging
183 (Figure 2A). AAV-DIO-GCaMP6m was injected into the SPFp or PBel of *Calca*^{Cre} mice, and an optic fiber
184 (400 μ m, 0.37 NA) was implanted above the injection site (Figures 2B and 2C). Previous *in vivo*
185 electrophysiology studies have shown that nociceptive signals can be conveyed from the spinal cord to the
186 brain under anesthesia (Gauriau and Bernard, 2004b; Peschanski et al., 1981). Therefore, we performed the
187 fiber photometry experiments under light anesthesia to remove other emotional and movement artifacts.

188 Various intensities of mechanical stimuli (0, 50, 100, 200, and 300 g of pressure delivered by a pressure
189 meter, not von Frey hairs) were applied for 5 seconds to the ipsi- or contra-lateral paws or tail, resulting in
190 intensity-dependent increases in calcium signals (Area under curve analysis; A.U.C.) in both CGRP^{SPFp}
191 (Figures 2D-2F) and CGRP^{PBel} neurons (Figures 2G-2I), but there was a significantly decreased calcium
192 response in the CGRP^{PBel} neurons by 300 g stimulation which created the inverted U-shaped intensity
193 response curve. Nevertheless, CGRP^{SPFp} and CGRP^{PBel} neurons display different dynamics to noxious
194 stimuli. CGRP^{PBel} neurons reached maximum response at lower stimulation intensity compared to the
195 CGRP^{SPFp} neurons (Figures S4A and S4B), but the latter responded faster to the stimuli, which was observed
196 by greater initial rise slope of calcium peak in the CGRP^{SPFp} neurons compared to the CGRP^{PBel} neurons
197 (Figure S4C). Although contralateral stimulation evoked greater responses than the ipsilateral stimulation,
198 both the CGRP^{SPFp} and CGRP^{PBel} neurons were robustly activated by noxious stimuli from both sides,
199 contrary to the conventional lateralized ascending sensory pain pathways. (Figures S4D-S4G).

200 Heat stimuli (25, 35, 45, and 55°C) also induced intensity-dependent calcium increases in both CGRP^{SPFp}
201 (Figure 2J-2L) and CGRP^{PBel} neurons (Figure 2M-2O). The maximum calcium peak values were higher
202 overall in CGRP^{PBel} neurons than in CGRP^{SPFp} neurons, both for contralateral (Figure S4H) and ipsilateral
203 stimulations (Figure S4I). However, the CGRP^{SPFp} neurons again responded faster to 55 °C stimuli than
204 CGRP^{PBel} neurons (Figure S4J). Although the difference between ipsilateral and contralateral stimulation
205 was observed in CGRP^{SPFp} neurons, these neurons were robustly activated by thermal noxious stimuli from
206 both sides (Figures S4K-S4N). Interestingly, calcium responses induced by mechanical stimuli were much
207 stronger than those induced by thermal stimuli in CGRP^{SPFp} neurons; the opposite was observed for
208 CGRP^{PBel} neurons. These results indicate that the CGRP^{SPFp} and CGRP^{PBel} neurons may play different roles
209 in conveying mechanical and thermal pain.

210 To assess the effects of inflammatory pain, we injected 10 μ l of 4% formalin into the contralateral
211 forepaw, and calcium activity was recorded with fiber photometry under light anesthesia (Figures 2P-2U).
212 We observed increases in activity during both the initial acute pain phase (5–10 min; Figures 2Q and 2T)
213 and the inflammatory phase (15–45 min; Figures 2R and 2U). Activation of these neurons by formalin was
214 confirmed by Fos immunostaining, which again showed that bilateral CGRP^{SPFp} and CGRP^{PBel} neurons

215 were activated by unilateral formalin injection with slightly higher response in the contralateral neurons
216 (Figures S5A-S5G).

217 Our data indicate that multimodal nociceptive stimuli bilaterally activate CGRP^{SPFp} and CGRP^{PBel}
218 neurons and that these two populations differentially respond to nociceptive inputs of distinct modalities.
219 Moreover, there is a potential feedback inhibitory circuit in the CGRP^{PBel} neurons, as we observed activity
220 decreases in response to 300 g of mechanical pain and during the acute phase of the formalin test.

221
222 **Pain-induced synaptic plasticity change in CGRP^{SPFp} and CGRP^{PBel} neurons**

223 As we observed that noxious stimuli activate CGRP^{SPFp} and CGRP^{PBel} neurons, we hypothesized that pain
224 might alter the glutamatergic synaptic strength of these neurons. We performed *ex vivo* electrophysiology
225 to test pain-induced synaptic plasticity changes. To induce pain, we injected 50 μ l of 5% formalin into the
226 upper lip. Twenty-four hours after the injection, we prepared acute brain slices that contained the SPFp
227 (Figure 3A) or PBel (Figure 3I). We then measured the AMPA/NMDA ratio, an index of glutamatergic
228 synaptic strength, for both CGRP^{SPFp} and CGRP^{PBel} neurons using the whole-cell patch-clamp recording.
229 For both CGRP^{SPFp} (Figures 3B and 3C) and CGRP^{PBel} neurons (Figures 3J and 3K), the AMPA/NMDA
230 ratio increased (indicating long-term potentiation) in mice treated with formalin compared to controls. No
231 differences were observed in the paired-pulse ratio (which indicates a presynaptic mechanism) for
232 CGRP^{SPFp} neurons (Figures 3D and 3E), but an increase in this ratio was found for CGRP^{PBel} neurons
233 (Figures 3L and 3M). To determine whether the AMPA current was affected, we recorded AMPA-mediated
234 mini EPSCs (Figures 3F and 3N). mEPSC amplitude (Figure 3G), but not frequency (Figure 3H), increased
235 in CGRP^{SPFp} neurons of mice subjected to pain compared with controls. For CGRP^{PBel} neurons, the pain did
236 not affect mEPSC amplitude (Figure 3O) but decreased frequency (Figure 3P).

237 These data together suggest that CGRP^{SPFp} and CGRP^{PBel} neuronal synapses differentially increase the
238 strength of glutamatergic signaling in response to pain.

239
240 **The transcriptome profiling of CGRP^{SPFp} and CGRP^{PBel} neurons**

241 To further investigate whether CGRP^{SPFp} and CGRP^{PBel} neurons exhibit specific transcriptomic profiles
242 associated with the affective pain perception, we conducted cell-type-specific transcriptomic profiling of
243 CGRP neurons in the SPFp and PBel regions. The *Calca*^{CreER} mouse line was crossed with the RiboTag
244 mouse line (Sanz et al., 2009) that has a floxed allele of hemagglutinin (HA)-tagged *Rpl22* gene. As a
245 result, the HA-tagged ribosomal protein, RPL22 is Cre-dependently expressed in the CGRP-expressing
246 neurons. After fresh brain tissues containing the SPFp or PBel region were collected and homogenized, the
247 ribosome-associated transcriptome was captured by immunoprecipitation with anti-HA antibody-
248 conjugated magnetic beads. Precipitated / unprecipitated total RNAs were sequenced to profile active
249 transcriptome enriched / deenriched in CGRP^{SPFp} and CGRP^{PBel} neurons. RNA sequencing results revealed
250 that the *Calca* gene that encodes CGRP is highly enriched in both CGRP^{SPFp} and CGRP^{PBel}-specific
251 transcriptome, which served as a positive control. Moreover, genes encoding neuropeptide were specifically
252 enriched in CGRP^{PBel} neurons (Figure 4D), and genes encoding markers for inhibitory neurons or glia were
253 de-enriched in both regions (Figure 4E), confirming that these neurons are glutamatergic neurons. Notably,
254 several pain-related genes, in particular those encoding membrane proteins, were enriched in both
255 populations (Figures 4A-4C). Interestingly, genes associated with affective pain disorders, such as *Scn9a*,
256 and *Faah* for congenital insensitivity to pain (CIP), and *Cacna1a* for migraine (Nassar et al., 2004; van den
257 Maagdenberg et al., 2004; Cravatt and Lichtman, 2004) are highly enriched in these neurons (Figures 4A-
258 4C). Expression of the proteins encoded by these genes (Nav1.7, Cav2.1, and FAAH) in the SPFp and PBel

259 was confirmed via immunohistochemistry (Figures 4F-4H). These data indicate that both $\text{CGRP}^{\text{SPFp}}$ and
260 $\text{CGRP}^{\text{PBel}}$ neurons express genes involved in pain perception, further supporting our results that these
261 neurons form ascending pain pathways.

262

263 **$\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons are activated by multisensory innate threat stimuli**

264 Our retrograde tracing results indicate that both $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons receive inputs from areas
265 conveying sensory information from multiple sensory modalities, such as visual stimulus via the SC,
266 auditory stimulus via the IC, gustatory stimulus via NTS, and nociceptive stimuli via the SC and SpV. We,
267 therefore, examined whether they are also activated by multisensory innate threat stimuli. We used the fiber
268 photometry system to measure neural activity in response to five different aversive sensory stimuli. AAV-
269 DIO-GCaMP7s was injected into the SPFp or PBel of *Calca*^{Cre} mice, and an optic fiber (400 μm , 0.37 NA)
270 was implanted above the injection site to measure calcium activity of $\text{CGRP}^{\text{SPFp}}$ or $\text{CGRP}^{\text{PBel}}$ neurons
271 (Figures 5A and 5B). A somatosensory stimulus was first tested by applying a foot shock in a cued fear
272 conditioning test (Figure 5C). We associated a non-aversive low-volume tone (70 dB) with the shock to
273 minimize the tone's aversive effect (Figure S6A). For both $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons, immediate
274 increases in neural activity were detected in response to the 2-s foot shock, but not during habituation or
275 during the cue test (when the tone was on; Figures 5D–5E). Freezing was observed during the cue test,
276 indicating that fear memory was formed (Figures S6B and S6C). To assess the auditory threat, an intense
277 sound (85 dB) was delivered for 2 s (Figure 5F). Time-locked calcium responses were detected at the onset
278 of an 85-dB intense sound, but not a 70-dB sound for both $\text{CGRP}^{\text{SPFp}}$ (Figure 5G) and $\text{CGRP}^{\text{PBel}}$ neurons
279 (Figure 5H). For an innate visual stimulus, a 2-s looming stimulus was given three times with 10-s intervals.
280 Both $\text{CGRP}^{\text{SPFp}}$ (Figure 5J) and $\text{CGRP}^{\text{PBel}}$ neurons (Figure 5K) displayed an increase of activity in response
281 to the looming (large disk) compared to the control (small disk) stimulus. As an innate olfactory stimulus
282 test, we exposed mice to a cotton swab soaked with trimethylthiazoline (TMT; Figure 5L). $\text{CGRP}^{\text{SPFp}}$
283 neurons did not respond to TMT (Figure 5M), whereas $\text{CGRP}^{\text{PBel}}$ neurons exhibited a slight increase in
284 activity (Figure 5N). Finally, a gustatory stimulus was administered by exposing mice to quinine (vs. water;
285 Figure 5O). When overnight water restricted mice licked quinine solution (0.5 mM), $\text{CGRP}^{\text{SPFp}}$ neurons did
286 not respond, compared with water controls (Figure 5P), but $\text{CGRP}^{\text{PBel}}$ neurons exhibited an increase in
287 calcium activity (Figure 5Q). The calcium peak amplitude analysis shows that the calcium responses
288 between the $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons were not significantly different by somatosensory and
289 auditory stimuli (Figures S7A and S7B). However, the $\text{CGRP}^{\text{SPFp}}$ neurons showed a greater response to the
290 visual stimulus compared to the $\text{CGRP}^{\text{PBel}}$ neurons (Figure S7C). In contrast, the $\text{CGRP}^{\text{PBel}}$ neurons showed
291 greater responses to the olfactory and gustatory stimuli compared to the $\text{CGRP}^{\text{SPFp}}$ neurons (Figures S7D
292 and S7E).

293 Our results indicate that the $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons are both involved in the perception of
294 innate multisensory threat but respond differently to inputs from distinct modalities. $\text{CGRP}^{\text{PBel}}$ neurons were
295 activated by all five aversive sensory stimuli, whereas the $\text{CGRP}^{\text{SPFp}}$ neurons were only activated by
296 somatosensory, auditory, and visual aversive stimuli.

297

298 **Silencing CGRP neurons attenuates responses to multimodal threat stimuli**

299 Our rabies tracing and fiber photometry results imply that $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons are critically
300 involved in innate threat perception. Thus, we next tested whether these neurons are necessary for innate
301 threat perception. We silenced these neurons by bilateral injection of AAV-DIO-TetTox::GFP into the
302 SPFp or PBel of *Calca*^{Cre} mice and measured behavioral responses to pain stimuli, and multimodal aversive

303 threat stimuli (Figure 6A). We first performed the formalin assay to test the affective pain perception
304 (Figure 6B). Following injection of 4% formalin into the forepaw, mice in which $\text{CGRP}^{\text{SPFp}}$ or $\text{CGRP}^{\text{PBel}}$
305 neurons were silenced spent less time licking the injected paw (Figure 6C). In addition, the $\text{CGRP}^{\text{SPFp}}$
306 silenced group exhibited decreased thermal sensitivity in the 55 °C hot plate test (Figure S8A and S8B),
307 decreased mechanical sensitivity in the electronic von Frey test (Figures S8C and S8D), and decreased
308 freezing in response to the contextual fear conditioning test (Figures S8E and S8F). Interestingly, previous
309 results with $\text{CGRP}^{\text{PBel}}$ -silenced mice by TetTox exhibited no changes in thermal or mechanical thresholds
310 but decreased freezing in the fear conditioning test (Han et al., 2015), suggesting that both $\text{CGRP}^{\text{SPFp}}$ and
311 $\text{CGRP}^{\text{PBel}}$ neurons are necessary for affective pain perception. However, $\text{CGRP}^{\text{SPFp}}$ neurons, not $\text{CGRP}^{\text{PBel}}$
312 neurons, are also necessary for sensory pain perception. The elevated plus maze (EPM) test shows that
313 silencing the $\text{CGRP}^{\text{SPFp}}$ or $\text{CGRP}^{\text{PBel}}$ neurons decreased anxiety-like behaviors in mice (Figures S8G and
314 S8H).

315 To test the role of these neurons in multisensory threat perception, the same group of mice were subjected
316 to multiple aversive sensory threat cues, as described in Figure 5. Levels of immediate freezing in response
317 to the aversive somatosensory stimulus (2-s, 0.6 mA electric foot shock) were significantly reduced in both
318 the $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ TetTox groups compared to the EYFP control groups (Figure 6D). In the
319 auditory threat test with 85-dB intense sound, EYFP control mice displayed freezing behavior, but freezing
320 levels were reduced in both the $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ TetTox groups (Figure 6E). Defensive behaviors
321 (freezing) were also attenuated in response to a looming visual stimulus in the $\text{CGRP}^{\text{SPFp}}$ TetTox group
322 compared with controls, but no difference in freezing was observed between the $\text{CGRP}^{\text{PBel}}$ TetTox group
323 and controls (Figure 6F). Interestingly, $\text{CGRP}^{\text{PBel}}$ neurons were activated by looming (Figure 5K), but their
324 silencing was not enough to attenuate the animals' response to a visual threat, indicating that they play a
325 less significant role in transmitting aversive visual stimulus to the amygdala compared to the $\text{CGRP}^{\text{SPFp}}$
326 neurons. The aversive olfactory test was performed using a two-chamber system, with one chamber
327 containing water-soaked cotton and the other containing TMT-soaked cotton. Silencing the $\text{CGRP}^{\text{SPFp}}$
328 neurons did not affect the perception of the aversive olfactory cue, as these mice and EYFP controls both
329 avoided the TMT chamber, while the $\text{CGRP}^{\text{PBel}}$ TetTox group exhibited no aversion to TMT, spending
330 equal amounts of time in the water and TMT chambers (Figure 6G). The gustatory test was performed as a
331 two-bottle choice test between water and quinine solution. The $\text{CGRP}^{\text{SPFp}}$ TetTox group consumed minimal
332 quinine solution (0.5 mM), like controls, whereas the $\text{CGRP}^{\text{PBel}}$ TetTox group showed much less aversion
333 to quinine (Figure 6H).

334 These results indicate that both the $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons are necessary for the perception of
335 innate sensory threat cues, as well as affective pain.

336

337 **Activating $\text{CGRP}^{\text{SPFp}}/\text{CGRP}^{\text{PBel}}$ to amygdala pathways induces negative valence**

338 Next, we performed optogenetic gain-of-function experiments to test whether activation of these neurons
339 is sufficient to induce negative affect in mice. We bilaterally injected AAV-DIO-ChR2 into the SPFp of
340 *Calca*^{Cre} mice and implanted optic fibers (200 μm , NA 0.22) above the injection site (Figure 7A). 20-Hz
341 photo-stimulation of $\text{CGRP}^{\text{SPFp}}$ neurons did not change responses in the hot plate thermal sensitivity test
342 and the electronic von Frey mechanical threshold test for sensory and discriminative pain perception
343 (Figures S8I-S8L). To test whether these neurons encode negative valence, we performed the real-time
344 place aversion (RTPA) test. Optogenetic stimulation is delivered only when the test mouse stays on one
345 side of a two-chamber apparatus (Stamatakis and Stuber, 2012; Figure 7B). Optogenetic activation of the
346 $\text{CGRP}^{\text{SPFp}}$ neurons induced aversion to the photo-stimulated chamber, suggesting that these neurons play a

347 role in negative emotion or affective-motivational pain (Figures 7B and 7C). Next, we replaced the foot
348 shock with photo-stimulation (20 Hz) as the unconditioned stimulus (US) in the context and cued fear
349 conditioning test. This was to assess whether activation of CGRP^{SPFp} neurons was sufficient to induce fear
350 behaviors. Context-dependent optogenetic conditioning was achieved by 10 mins of photo-stimulation in
351 an open field arena; freezing behavior was then assessed in the same context 24 h after the conditioning
352 (Figure S8M). The ChR2 group exhibited more freezing than the control group, suggesting that CGRP^{SPFp}
353 activation can act as the US (Figure S8N). For cue-dependent optogenetic conditioning, photo-stimulation
354 was associated with a tone as a non-noxious conditioned stimulus (CS+) in a fear conditioning chamber
355 (Figure S8O). Both context and cue tests were performed after the conditioning. The ChR2 group exhibited
356 more freezing in both context (Figure S8P) and cue tests (Figure S8Q). Together with the optogenetic
357 conditioning results of CGRP^{PBel} neurons in the previous result (Han et al., 2015), these results indicate that
358 activation of both CGRP^{SPFp} and CGRP^{PBel} neurons is sufficient to induce negative valence associated with
359 affective-motivational pain perception.

360 We then sought to characterize the functional downstream of the CGRP^{SPFp} neurons. To examine the
361 functional connectivity of anatomical downstream regions from the CGRP^{SPFp} neurons, we performed *ex*
362 *vivo* electrophysiology recording. AAV-DIO-ChR2-EYFP was injected into the SPFp of *Calca*^{Cre} mice
363 (Figure S9A). After four weeks of ChR2 expression, we performed whole-cell recordings of neurons from
364 AStr, LA, and pIC to measure optogenetically-evoked excitatory/inhibitory postsynaptic currents
365 (EPSC/IPSC; Figure S9B). We found that CGRP^{SPFp} neurons form functional glutamatergic synapses with
366 neurons within AStr, LA (Figure S9C), and pIC (data not shown). Moreover, the onset of IPSCs lagged 4–
367 5 ms compared to the onset of EPSCs, indicating a feed-forward inhibition circuit. The number of cells that
368 had both EPSCs and IPSCs, EPSCs only, IPSCs only, and non-responsive were also counted (Figures S9D–
369 S9L). To investigate whether these connections form functional circuits that encode negative valence, we
370 optogenetically stimulated axonal terminals from the CGRP^{SPFp} neurons and performed behavioral tests.
371 AAV-DIO-ChR2-EYFP was injected into the SPFp of the *Calca*^{Cre} mice, and optical fibers were implanted
372 into the postsynaptic areas of CGRP^{SPFp} neurons, namely the LA, AStr, and pIC (Figure 7D). Optogenetic
373 activation of each of these three projections induced aversion in the RTPA experiment (Figures 7E and
374 S9M), as observed in direct photo-stimulation of CGRP^{SPFp} cell bodies (Figure 7C). Cue-dependent
375 optogenetic conditioning of the downstream circuits was then performed and only the CGRP^{SPFp→LA} circuit
376 caused significant freezing in the context test (Figure 7F). The other two projections only showed a trend
377 (Figure S9N). Increased freezing was observed in the cue test for all three projections (Figures 7G and S9O),
378 but the most prominent effect was observed with the CGRP^{SPFp→LA} circuit.
379 The same behavioral experiments were performed as above with the CGRP^{PBel} neurons to compare their
380 role in encoding negative valence with the CGRP^{SPFp} neurons. First, photo-stimulation of the CGRP^{PBel}
381 neuronal cell body (Figure 7H) induced aversion during the RTPA test (Figures 7I and 7J). Then, we
382 investigated the CGRP^{PBel→CeA} circuit as in Figure 7D–7H by optogenetic terminal stimulation (Figure 7K).
383 Photo-stimulation of CGRP^{PBel→CeA} terminals induced aversion in the RTPA test (Figure 7L), and freezing
384 in the optogenetic conditioning context, and cue tests (Figures 7M and 7N).

385 These results satisfy the idea that CGRP^{SPFp→LA} and CGRP^{PBel→CeA} circuits induce negative valence
386 associated with either affective pain or innate sensory threat cues.

387 **Discussion**

388 We report a genetically defined population of neurons that express the neuropeptide CGRP in the SPFp and
389 PBel mediate perception of affective pain and innate sensory threat cues by relaying aversive sensory
390 signals from the spinal cord and other sensory relay areas to the amygdala. These analyses provide the first
391 evidence of convergent innate threat pathways that relay multisensory aversive sensory cues to the
392 amygdala.

393

394 **CGRP neurons convey affective pain signals to the amygdala**

395 Perception of pain protects us from physical harm by locating the source of a harmful stimulus. Painful
396 experiences also elicit emotional and motivational responses, which help us remember these events and
397 avoid similar stimuli in the future (Yeh et al., 2018). Thus, pain is not just a simple sensory process but also
398 a complex cognitive process that generates sensory and emotional responses. This unique aspect of pain
399 gives rise to the concept of two aspects of pain: sensory-discriminative and affective-motivational (Auvray
400 et al., 2010; Melzack and Casey, 1968). It is thought that the sensory-discriminative aspect of pain is
401 processed within the sensory cortex via the spino-thalamic tract (STT), and the affective-motivational
402 aspect of pain is processed within the amygdala via the spino-parabrachial tract (SPT). Indeed, previous
403 studies have shown that the PBN-to-CeA circuit is critical for affective-motivational pain perception (Han
404 et al., 2015; Sato et al., 2015). However, it has also been suggested that the thalamus is actively involved
405 in affective-motivational pain perception (Craig, 2003; Willis et al., 2002). Importantly, posterior regions
406 of the thalamus (e.g., the VMpo in primates and humans, as well as the SPFp and PoT in rodents) are
407 anatomically connected to limbic areas (Craig, 1998; Gauriau and Bernard, 2004a) and activated by noxious
408 stimuli (Craig et al., 1994; Peschanski et al., 1981). Therefore, the thalamus likely also plays a critical role
409 in affective-motivational pain perception. Our results demonstrate that a genetically defined population of
410 neurons expressing the neuropeptide CGRP within the SPFp receives monosynaptic inputs from projection
411 neurons within the spinal dorsal horn. They then project to specific nuclei within the amygdala, namely the
412 AStr and LA (Figure 1). Multimodal nociceptive stimuli activate these neurons in an intensity-dependent
413 manner in anesthetized mice (Figure 2). Inactivating these neurons attenuates the perception of affective-
414 motivational pain, and pain signals induces the changes in synaptic plasticity of these neurons (Figure 3).
415 These data indicate that CGRP^{SPFp} neurons create the spino-thalamo-amygdaloid affective pain pathway.

416

417 Unlike the STT, the SPT has been well-characterized as an affective-motivational pain pathway. Recent
418 studies have shown that the lateral PBN receives direct nociceptive inputs from projection neurons within
419 the spinal dorsal horn (Barik et al., 2020; Chiang et al., 2020; Choi et al., 2020; Deng et al., 2020). The
420 dorsolateral PBN (PBdl) predominantly receives nociceptive inputs from the spinal cord and then projects
421 to multiple limbic structures, such as the PAG, VMH, and ILN, thereby producing emotional and
422 physiological changes in response to pain signals (Chiang et al., 2020; Deng et al., 2020). Although the
423 PBdl does not directly project to the amygdala, it indirectly sends pain signals to the CeA through the PBel
424 (Deng et al., 2020). In particular, CGRP^{PBel} neurons are critical for relaying aversive unconditioned stimuli
425 to the CeA during aversive fear learning (Han et al., 2015). It has been shown that the dynorphin neurons
426 in the PBdl project to the PBel (Chiang et al., 2020), and a recent study has shown that spinal projection
427 neurons that express GPR83 directly innervate CGRP^{PBel} neurons to relay noxious signals (Choi et al., 2020).
428 Therefore, it is clear that CGRP^{PBel} neurons relay nociceptive information from the PBdl and the spinal cord
429 to the CeA. Our retrograde tracing results show that CGRP^{PBel} neurons receive less direct inputs from the
430 spinal cord than the CGRP^{SPFp} neurons (Figure 1), and these neurons are activated slower than the CGRP^{SPFp}

431 neurons (Figure S4C and S4J), implying that the CGRP^{PBel} neurons may receive nociceptive inputs more
432 predominantly through the PBdl than through directly from the spinal cord. The CGRP^{PBel} neurons also
433 exhibit intensity-dependent activation by multimodal nociceptive stimuli in anesthetized mice (Figure 2)
434 and induce changes in synaptic plasticity by pain signals (Figure 3). Therefore, together with previous
435 studies, our results reaffirm that CGRP^{PBel} neurons comprise the spino-parabrachio-amygdaloid pain
436 pathway.

437

438 Comparing the CGRP^{SPFp} and CGRP^{PBel} neuronal activity in response to multimodal nociceptive stimuli at
439 various intensities in anesthetized mice provides us with novel insights into understanding central affective
440 pain pathways. First, unlike sensory pain signals that are conveyed to the contralateral side of the
441 somatosensory cortex, these neurons are activated by both contralateral and ipsilateral noxious stimuli
442 indicating that the affective pain pathway may not be strictly lateralized (Figure S4). Second, the CGRP^{SPFp}
443 neurons more robustly respond to the mechanical stimulus, whereas the CGRP^{PBel} neurons respond more
444 robustly to the thermal stimulus suggesting that these two parallel pathways may convey different
445 modalities of nociceptive information (Figure 2). Lastly, the CGRP^{PBel} neurons are activated at lower
446 stimulus intensity but respond slowly to nociceptive signals compared with the CGRP^{SPFp} neurons (Figures
447 2 and S4). Therefore, our results demonstrate that CGRP-expressing neurons in two brain areas (the SPFp
448 and PBel) play complementary roles in relaying multimodal nociceptive signals from the spinal cord to the
449 amygdala through two parallel ascending pain pathways, which are critical for affective-motivational pain
450 perception.

451

452 **CGRP neurons convey multisensory innate threat cues to the amygdala**

453 Both pain and innate sensory threats motivate animals to execute immediate avoidance behaviors to escape
454 the threatening or tissue-damaging situation and produce long-lasting aversive memories. Indeed,
455 Pavlovian threat conditioning uses noxious electric foot shock, an acute painful stimulus that motivates the
456 animals to create aversive memory (LeDoux, 2012; Maren, 2001). However, the neural circuit mechanisms
457 by which noxious information is conveyed to the amygdala during aversive learning is not fully understood.
458 Recent advances in the neural circuit-based understanding of innate predator threat perception suggest that
459 innate threat cues from each sensory modality are conveyed to discrete brain areas, such as the amygdala
460 and hypothalamus through parallel pathways (Canteras, 2002; Gross and Canteras, 2012; Kunwar et al.,
461 2015; Silva et al., 2013), which do not overlap with the unconditioned stimulus (affective pain) pathway in
462 Pavlovian threat learning (Silva et al., 2016). However, it is beneficial for animals to use unified neural
463 circuits that encode multimodal aversive sensory signals including pain because animals search for and
464 detect imminent threats using multiple sensory modalities simultaneously. Moreover, previous clinical and
465 animal studies have shown that pain and threat perceptions interact with each other (Berthier et al., 1988;
466 Crook et al., 2014; Elman and Borsook, 2018; Lister et al., 2020). Therefore, it is plausible that there is a
467 unified mechanism that conveys multisensory threat cues from multiple sensory modalities to the amygdala.
468 Our results demonstrate that CGRP-expressing neurons in the PBel and the SPFp not only relay nociceptive
469 stimuli to the amygdala during aversive learning, but also convey innate sensory threat cues from various
470 sensory modalities (Figures 5 and 6). The CGRP^{SPFp} neurons relay aversive sensory cues from the
471 somatosensory, visual, and auditory modalities to the LA, AStr, and pIC. By contrast, CGRP^{PBel} neurons
472 relay aversive cues from all sensory modalities (somatosensory, visual, auditory, olfactory, and gustatory)
473 (Figures 5, 6, and S3). In addition, previous studies have shown that CGRP^{PBel} neurons are activated by
474 hypercapnic conditions (high CO₂ levels) (Kaur et al., 2017; Yokota et al., 2015), and aversive visceral

475 cues, such as lithium chloride and lipopolysaccharide (Carter et al., 2013; Paues et al., 2001). Therefore, it
476 is tempting to speculate that CGRP^{SPFp} neurons relay exteroceptive threat signals, whereas CGRP^{PBel}
477 neurons relay both exteroceptive and interoceptive threat cues to the amygdala.

478 Consistent with a previous report (Han et al., 2015), our data provide strong evidence that the CGRP^{PBel}
479 neurons mediate aversive learning via their projection to the CeA (Figure 7K-7N). Our results seem to be
480 contradictory to a recent study by Bowen et al., (2020), which argued that optogenetic stimulation of
481 CGRP^{PBel} axon terminals in the VPMpc, instead of the CeA, evokes strong aversive memory. This
482 discrepancy can be explained by the differences in optogenetic stimulation protocols. Whereas we used a
483 40 Hz light stimulation for 10 s as described (Han et al., 2015), Bowen et al. used a 30 Hz light train for
484 only 2 s. Moreover, it is worth noting that axonal bundles from all glutamatergic neurons in the PBel that
485 project to forebrain regions, including the CeA, BNST, and PSTN pass through the VPMpc (Huang et al.,
486 2020), which suggests that optogenetic stimulation within the VPMpc activates both CGRP^{PBel} axonal
487 terminals and axon bundles passing through this area. Therefore, an alternative explanation of their
488 observation is that concurrent stimulation of all downstream areas produces stronger aversive memory than
489 stimulating CeA alone.

490

491 Together, our results demonstrate that the US pathways for relaying electric foot shock cues during the
492 Pavlovian fear learning also collectively relay innate threat cues from multiple sensory modalities.

493

494

495 **Pain-threat interactions in affective pain disorders**

496 Our results show that the affective-motivational pain and multisensory threat stimuli arrive in the amygdala
497 via the same neural pathways. Interestingly, pain-threat interactions have been reported in many human
498 clinical cases. People with pain asymbolia, caused by damage to limbic brain areas, have the normal sensory
499 perception of noxious stimuli, but they have impaired affective pain perception (Berthier et al., 1988;
500 Rubins and Friedman, 1948). Interestingly, pain asymbolia patients often display deficits in perceiving
501 general threats (Klein, 2015; Price, 2000), indicating that the perception of affective pain and other sensory
502 threat cues share the same neural substrate. People with congenital insensitivity to pain (CIP) are insensitive
503 to all sensory and affective components of pain, but they also display profound deficits in general threat
504 perception, which is the primary cause of their short life expectancy (McMurray, 1955; Nagasako et al.,
505 2003). CIP is caused by loss-of-function mutations in genes critical for pain transmission, such as *Scn9a*
506 (Dabby, 2012; Fischer and Waxman, 2010; Lampert et al., 2010) and *Faah* (Drissi et al., 2020). *Scn9a*
507 encodes voltage-gated sodium channel type 7 (Nav1.7), and *Faah* encodes fatty acid amide hydrolase, both
508 of which are critical for pain transmission in the spinal cord (Cajanus et al., 2016; Kim et al., 2006;
509 Nantermet and Henze, 2011; Nassar et al., 2004). However, the functional loss of these genes in the spinal
510 neurons cannot explain the insensitivity to general threats exhibited by CIP patients. Surprisingly, our cell
511 type-specific transcriptome analysis revealed that *Scn9a* and *Faah* transcripts are highly enriched in both
512 CGRP^{PBel} and CGRP^{SPFp} neurons (Figure 4). Thus, mutations in these genes may prevent these neurons
513 from relaying sensory threat signals to the amygdala, thereby causing insensitivity to general threats in CIP.
514 This speculation should be addressed by testing the causal relationship between mutations in these genes
515 in CGRP neurons and threat perception.

516

517 Opposite clinical cases also exist. People with affective pain disorders, such as migraine, and fibromyalgia
518 experience chronic pain and suffer from hypersensitivity to normal sensory stimuli (Demarquay and

519 Mauguieré, 2016; Harriott and Schwedt, 2014; Harte et al., 2016; López-Solà et al., 2017). Further, normal
520 sensory stimuli often trigger or aggravate their pain symptoms (Bar-Shalita and Cermak, 2020; Bar-Shalita
521 et al., 2019). Surprisingly, the gene *Cacna1a*, which has been linked to migraines, is highly enriched in
522 both CGRP^{PBel} and CGRP^{SPFp} neurons (Figure 4). Further studies should address the causal relationship
523 between loss of *Cacna1a* function in CGRP neurons and sensory hypersensitivity in migraine. In addition,
524 CGRP signaling is a proven therapeutic target for treating migraine (Ashina, 2020). Therefore, we speculate
525 that the CGRP-expressing neurons characterized in this study may serve as the functional substrate for
526 sensory hypersensitivity in migraine. Identifying membrane proteins commonly expressed in both the
527 CGRP^{PBel} and CGRP^{SPFp} neurons (Figure 4C) may provide potential candidates of therapeutic targets for
528 treating affective pain-, and innate threat-related disorders, such as migraine, fibromyalgia, phobias, panic
529 disorder, and post-traumatic stress disorder. Indeed, the CGRP receptor antagonists or neutralizing
530 monoclonal antibodies are promising drugs for treating migraine, but they may also serve as potential
531 therapeutic interventions for treating the disorders mentioned above.

532

533 Conclusion

534 Our findings demonstrate that the CGRP^{SPFp} neurons create a novel spino-thalamo-amygdaloid affective
535 pain pathway and, together with the previously characterized CGRP^{PBel} neurons, serve as complementary
536 parallel pathways for conveying the unconditioned stimulus during Pavlovian threat learning, as well as
537 multisensory innate threat cues from all sensory modalities to the amygdala (Figure S10). The discovery of
538 a unified threat perception system that conveys multimodal interoceptive and exteroceptive aversive
539 sensory stimuli greatly enhances our understanding of the neural mechanisms of innate threat perception.
540 These insights also provide opportunities to discover novel targets for developing therapeutic interventions
541 against affective pain- and innate threat-related disorders.

542

543 **Acknowledgments**

544 We thank Dr. D. O'Keefe, Ms. C. Jia, and Han lab members for critical discussions during manuscript
545 preparation. S.H. is supported by 1R01MH116203 from NIMH and the Bridge to Independence award from
546 the Simons Foundation Autism Research Initiative (SFARI #388708). S.L. is supported by the Salk Women
547 & Science Special Award, the Mary K. Chapman Foundation, and the Jesse & Caryl Philips Foundation.

548

549

550

551 **Author Contributions**

552 S.H. conceived of the idea and secured funding. S.H., S.J.K., S.L., and M.Y. designed and performed the
553 experiments. S.H. and S.J.K. wrote the manuscript. S.J.K. performed most of the CGRP^{SPF_p} experiments.
554 S.L., and S.J.K. performed CGRP^{P_Bel} experiments. M.Y. performed electrophysiology and CGRP^{P_Bel} RTPA.
555 D.I.K., and J.H.K. performed RiboTag experiments, and T.G.O. analyzed it. R.M.E. provided resources for
556 Ribotag analysis. J.P. performed spinal projection histology experiments. M.G. provided *Cdx2*^{Flp_O} mouse
557 line. K.F.L. provided resources for microscopy.

558

559 **Declaration of Interests**

560 The authors declare no competing interests.

561

562 **References**

563 Ashina, M. (2020). Migraine. *N. Engl. J. Med.* *383*, 1866–1876.

564 Auvray, M., Myin, E., and Spence, C. (2010). The sensory-discriminative and affective-
565 motivational aspects of pain. *Neurosci. Biobehav. Rev.* *34*, 214–223.

566 Bach, D.R., Hurlemann, R., and Dolan, R.J. (2015). Impaired threat prioritisation after selective
567 bilateral amygdala lesions. *Cortex* *63*, 206–213.

568 Barik, A., Sathyamurthy, A., Thompson, J., Seltzer, M., Levine, A., and Chesler, A. (2020). A
569 spinoparabrachial circuit defined by Tacr1 expression drives pain. *BioRxiv* *2020.07.15.205484*.

570 Bar-Shalita, T., and Cermak, S.A. (2020). Multi-sensory Responsiveness and Personality Traits
571 Predict Daily Pain Sensitivity. *Front. Integr. Neurosci.* *13*, 77.

572 Bar-Shalita, T., Granovsky, Y., Parush, S., and Weissman-Fogel, I. (2019). Sensory Modulation
573 Disorder (SMD) and Pain: A New Perspective. *Front. Integr. Neurosci.* *13*.

574 Barsy, B., Kocsis, K., Magyar, A., Babiczky, Á., Szabó, M., Veres, J.M., Hillier, D., Ulbert, I.,
575 Yizhar, O., and Mátyás, F. (2020). Associative and plastic thalamic signaling to the lateral
576 amygdala controls fear behavior. *Nat. Neurosci.* *23*, 625–637.

577 Basbaum, A.I., Bautista, D.M., Scherrer, G., and Julius, D. (2009). Cellular and Molecular
578 Mechanisms of Pain. *Cell* *139*, 267–284.

579 Bernard, J.F., Huang, G.F., and Besson, J.M. (1992). Nucleus centralis of the amygdala and the
580 globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. *J.*
581 *Neurophysiol.* *68*, 551–569.

582 Berthier, M., Starkstein, S., and Leiguarda, R. (1988). Asymbolia for pain: A sensory-limbic
583 disconnection syndrome. *Ann. Neurol.* *24*, 41–49.

584 Blanchard, D.C., and Blanchard, R.J. (1972). Innate and conditioned reactions to threat in rats with
585 amygdaloid lesions. *J. Comp. Physiol. Psychol.* *81*, 281–290.

586 Bourane, S., Grossmann, K.S., Britz, O., Dalet, A., Del Barrio, M.G., Stam, F.J., Garcia-
587 Campmany, L., Koch, S., and Goulding, M. (2015). Identification of a Spinal Circuit for Light
588 Touch and Fine Motor Control. *Cell* *160*, 503–515.

589 Bowen, A.J., Chen, J.Y., Huang, Y.W., Baertsch, N.A., Park, S., and Palmiter, R.D. (2020).
590 Dissociable control of unconditioned responses and associative fear learning by parabrachial
591 CGRP neurons. *ELife* *9*, e59799.

592 Bushnell, M.C., Čeko, M., and Low, L.A. (2013). Cognitive and emotional control of pain and its
593 disruption in chronic pain. *Nat. Rev. Neurosci.* *14*, 502–511.

594 Cajanus, K., Holmström, E.J., Wessman, M., Anttila, V., Kaunisto, M.A., and Kalso, E. (2016).
595 Effect of endocannabinoid degradation on pain: role of: FAAH: polymorphisms in experimental
596 and postoperative pain in women treated for breast cancer. *PAIN* *157*, 361–369.

597 Canteras, N.S. (2002). The medial hypothalamic defensive system: Hodological organization and
598 functional implications. *Pharmacol. Biochem. Behav.* *71*, 481–491.

599 Carter, M.E., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. (2013). Genetic identification of a
600 neural circuit that suppresses appetite. *Nature advance online publication*.

601 Chen, J.Y., Campos, C.A., Jarvie, B.C., and Palmiter, R.D. (2018). Parabrachial CGRP Neurons
602 Establish and Sustain Aversive Taste Memories. *Neuron* *100*, 891–899.e5.

603 Chiang, M.C., Nguyen, E.K., Canto-Bustos, M., Papale, A.E., Oswald, A.-M.M., and Ross, S.E.
604 (2020). Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate
605 Distinct Components of the Pain Response. *Neuron* *106*, 927–939.e5.

606 Choi, S., Hachisuka, J., and Ginty, D. (2020). Parallel ascending spinal pathways for affective
607 touch and pain. *Nature In press*.

608 Coolen, L.M., Veening, J.G., Wells, A.B., and Shipley, M.T. (2003a). Afferent connections of the
609 parvocellular subparafascicular thalamic nucleus in the rat: Evidence for functional subdivisions.
610 *J. Comp. Neurol.* *463*, 132–156.

611 Coolen, L.M., Veening, J.G., Petersen, D.W., and Shipley, M.T. (2003b). Parvocellular
612 subparafascicular thalamic nucleus in the rat: Anatomical and functional compartmentalization. *J.*
613 *Comp. Neurol.* *463*, 117–131.

614 Craig, A.D. (1998). A new version of the thalamic disinhibition hypothesis of central pain. *Pain*
615 *Forum* *7*, 1–14.

616 Craig, A.D. (Bud) (2003). PAIN MECHANISMS: Labeled Lines Versus Convergence in Central
617 Processing. *Annu. Rev. Neurosci.* *26*, 1–30.

618 Craig, A.D., Bushnell, M.C., Zhang, E.-T., and Blomqvist, A. (1994). A thalamic nucleus specific
619 for pain and temperature sensation. *Nature* *372*, 770–773.

620 Craig, A.D., Chen, K., Bandy, D., and Reiman, E.M. (2000). Thermosensory activation of insular
621 cortex. *Nat. Neurosci.* *3*, 184–190.

622 Cravatt, B.F., and Lichtman, A.H. (2004). The endogenous cannabinoid system and its role in
623 nociceptive behavior. *J. Neurobiol.* *61*, 149–160.

624 Crook, R.J., Dickson, K., Hanlon, R.T., and Walters, E.T. (2014). Nociceptive Sensitization
625 Reduces Predation Risk. *Curr. Biol.* *24*, 1121–1125.

626 Dabby, R. (2012). Pain Disorders and Erythromelalgia Caused by Voltage-Gated Sodium Channel
627 Mutations. *Curr. Neurol. Neurosci. Rep.* *12*, 76–83.

628 Dado, R.J., Katter, J.T., and Giesler, G.J. (1994). Spinothalamic and spinohypothalamic tract
629 neurons in the cervical enlargement of rats. II. Responses to innocuous and noxious mechanical
630 and thermal stimuli. *J. Neurophysiol.* *71*, 981–1002.

631 Dal Monte, O., Costa, V.D., Noble, P.L., Murray, E.A., and Averbeck, B.B. (2015). Amygdala
632 lesions in rhesus macaques decrease attention to threat. *Nat. Commun.* *6*, 10161.

633 Demarquay, G., and Mauguie, F. (2016). Central Nervous System Underpinnings of Sensory
634 Hypersensitivity in Migraine: Insights from Neuroimaging and Electrophysiological Studies.
635 *Headache J. Head Face Pain* *56*, 1418–1438.

636 Deng, J., Zhou, H., Lin, J.-K., Shen, Z.-X., Chen, W.-Z., Wang, L.-H., Li, Q., Mu, D., Wei, Y.-C.,
637 Xu, X.-H., et al. (2020). The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals
638 to the Intralaminar Thalamic Nuclei, but Not the Amygdala. *Neuron* *107*, 923.

639 D'Hanis, W., Linke, R., and Yilmazer-Hanke, D. m. (2007). Topography of thalamic and
640 parabrachial calcitonin gene-related peptide (CGRP) immunoreactive neurons projecting to
641 subnuclei of the amygdala and extended amygdala. *J. Comp. Neurol.* *505*, 268–291.

642 Dobolyi, A., Irwin, S., Makara, G., Usdin, T.B., and Palkovits, M. (2005). Calcitonin gene-related
643 peptide-containing pathways in the rat forebrain. *J. Comp. Neurol.* *489*, 92–119.

644 Drissi, I., Woods, W.A., and Woods, C.G. (2020). Understanding the genetic basis of congenital
645 insensitivity to pain. *Br. Med. Bull.* *133*, 65–78.

646 Elman, I., and Borsook, D. (2018). Threat Response System: Parallel Brain Processes in Pain vis-
647 à-vis Fear and Anxiety. *Front. Psychiatry* *9*.

648 Fischer, T.Z., and Waxman, S.G. (2010). Familial pain syndromes from mutations of the Nav1.7
649 sodium channel. *Ann. N. Y. Acad. Sci.* *1184*, 196–207.

650 Gao, Y.-J., Ren, W.-H., Zhang, Y.-Q., and Zhao, Z.-Q. (2004). Contributions of the anterior
651 cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats: *Pain* *110*,
652 343–353.

653 Gauriau, C., and Bernard, J.-F. (2002). Pain pathways and parabrachial circuits in the rat. *Exp.*
654 *Physiol.* *87*, 251–258.

655 Gauriau, C., and Bernard, J.-F. (2004a). Posterior Triangular Thalamic Neurons Convey
656 Nociceptive Messages to the Secondary Somatosensory and Insular Cortices in the Rat. *J. Neurosci.*
657 *24*, 752–761.

658 Gauriau, C., and Bernard, J.-F. (2004b). A comparative reappraisal of projections from the
659 superficial laminae of the dorsal horn in the rat: The forebrain. *J. Comp. Neurol.* *468*, 24–56.

660 Gross, C.T., and Canteras, N.S. (2012). The many paths to fear. *Nat. Rev. Neurosci.* *13*, 651–658.

661 Han, S., Soleiman, M.T., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. (2015). Elucidating an
662 Affective Pain Circuit that Creates a Threat Memory. *Cell* *162*, 363–374.

663 Harriott, A.M., and Schwedt, T.J. (2014). Migraine is Associated With Altered Processing of
664 Sensory Stimuli. *Curr. Pain Headache Rep.* *18*, 458.

665 Harte, S.E., Ichesco, E., Hampson, J.P., Peltier, S.J., Schmidt-Wilcke, T., Clauw, D.J., and Harris,
666 R.E. (2016). Pharmacologic attenuation of cross-modal sensory augmentation within the chronic
667 pain insula: *PAIN* *157*, 1933–1945.

668 Helmstetter, F.J. (1992). The Amygdala Is Essential for the Expression of Conditional Hypoalgesia.
669 *Behav. Neurosci.* *106*, 518–528.

670 Huang, D., Grady, F.S., Peltekian, L., and Geerling, J.C. (2020). Efferent projections of VGLUT2 ,
671 FoxP2 , and PDYN parabrachial neurons in mice. *J. Comp. Neurol.* *cne.24975*.

672 Janak, P.H., and Tye, K.M. (2015). From circuits to behaviour in the amygdala. *Nature* *517*, 284–
673 292.

674 Julius, D., and Basbaum, A.I. (2001). Molecular mechanisms of nociception. *Nature* *413*, 203–
675 210.

676 Kaur, S., Wang, J.L., Ferrari, L., Thankachan, S., Kroeger, D., Venner, A., Lazarus, M., Wellman,
677 A., Arrigoni, E., Fuller, P.M., et al. (2017). A Genetically Defined Circuit for Arousal from Sleep
678 during Hypercapnia. *Neuron* *96*, 1153-1167.e5.

679 Kim, E.J., Jacobs, M.W., Ito-Cole, T., and Callaway, E.M. (2016). Improved Monosynaptic Neural
680 Circuit Tracing Using Engineered Rabies Virus Glycoproteins. *Cell Rep.* *15*, 692–699.

681 Kim, H., Mittal, D.P., Iadarola, M.J., and Dionne, R.A. (2006). Genetic predictors for acute
682 experimental cold and heat pain sensitivity in humans. *J. Med. Genet.* *43*, e40–e40.

683 Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S.A., and Tonegawa, S. (2017). Basolateral to Central
684 Amygdala Neural Circuits for Appetitive Behaviors. *Neuron* *93*, 1464-1479.e5.

685 Klein, C. (2015). What Pain Asymbolia Really Shows. *Mind* *124*, 493–516.

686 Kunwar, P.S., Zelikowsky, M., Remedios, R., Cai, H., Yilmaz, M., Meister, M., and Anderson,
687 D.J. (2015). Ventromedial hypothalamic neurons control a defensive emotion state. *ELife* *4*,
688 e06633.

689 Lampert, A., O'Reilly, A.O., Reeh, P., and Leffler, A. (2010). Sodium channelopathies and pain.
690 *Pflüg. Arch. - Eur. J. Physiol.* *460*, 249–263.

691 LeDoux, J. (2007). The amygdala. *Curr. Biol.* *17*, R868–R874.

692 LeDoux, J. (2012). Rethinking the Emotional Brain. *Neuron* *73*, 653–676.

693 LeDoux, J.E. (2000). Emotion Circuits in the Brain. *Annu. Rev. Neurosci.* *23*, 155–184.

694 LeDoux, J.E., Ruggiero, D.A., and Reis, D.J. (1985). Projections to the subcortical forebrain from
695 anatomically defined regions of the medial geniculate body in the rat. *J. Comp. Neurol.* **242**, 182–
696 213.

697 Lister, K.C., Bouchard, S.M., Markova, T., Aternali, A., Denecli, P., Pimentel, S.D., Majeed, M.,
698 Austin, J.-S., de C. Williams, A.C., and Mogil, J.S. (2020). Chronic pain produces hypervigilance
699 to predator odor in mice. *Curr. Biol.* **30**, R866–R867.

700 López-Solà, M., Woo, C.-W., Pujol, J., Deus, J., Harrison, B.J., Monfort, J., and Wager, T.D.
701 (2017). Towards a neurophysiological signature for fibromyalgia. *PAIN* **158**, 34–47.

702 Manning, B.H., and Mayer, D.J. (1995). The central nucleus of the amygdala contributes to the
703 production of morphine antinociception in the formalin test. *PAIN®* **63**, 141–152.

704 Maren, S. (2001). Neurobiology of Pavlovian Fear Conditioning. *Annu. Rev. Neurosci.* **24**, 897–
705 931.

706 McMurray, G.A. (1955). Congenital insensitivity to pain and its implications for motivational
707 theory. *Can. J. Psychol. Can. Psychol.* **9**, 121–131.

708 Melzack, R., and Casey, K. (1968). Sensory, Motivational, and Central Control Determinants of
709 Pain. In *Skin Senses*, pp. 423–439.

710 Nagasako, E.M., Oaklander, A.L., and Dworkin, R.H. (2003). Congenital insensitivity to pain: an
711 update. *PAIN* **101**, 213–219.

712 Nantermet, P.G., and Henze, D.A. (2011). Recent Advances Toward Pain Therapeutics. In *Annual
713 Reports in Medicinal Chemistry*, (Elsevier), pp. 19–32.

714 Nassar, M.A., Stirling, L.C., Forlani, G., Baker, M.D., Matthews, E.A., Dickenson, A.H., and
715 Wood, J.N. (2004). Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in
716 acute and inflammatory pain. *Proc. Natl. Acad. Sci.* **101**, 12706–12711.

717 Neugebauer, V. (2015). Amygdala Pain Mechanisms. In *Pain Control*, (Springer, Berlin,
718 Heidelberg), pp. 261–284.

719 Palmiter, R.D. (2018). The Parabrachial Nucleus: CGRP Neurons Function as a General Alarm.
720 *Trends Neurosci.* **41**, 280–293.

721 Paues, J., Engblom, D., Mackerlova, L., Ericsson-Dahlstrand, A., and Blomqvist, A. (2001).
722 Feeding-related immune responsive brain stem neurons: association with CGRP. *NeuroReport* **12**,
723 2399–2403.

724 Peschanski, M., Guilbaud, G., and Gautron, M. (1981). Posterior intralaminar region in rat:
725 Neuronal responses to noxious and nonnoxious cutaneous stimuli. *Exp. Neurol.* **72**, 226–238.

726 Price, D.D. (1999). Multisensory integration in pain and consciousness. *Pain Forum* **8**, 130–132.

727 Price, D.D. (2000). Psychological and Neural Mechanisms of the Affective Dimension of Pain.
728 Science 288, 1769–1772.

729 Price, D.D. (2002). Central Neural Mechanisms that Interrelate Sensory and Affective Dimensions
730 of Pain. Mol. Interv. 2, 392.

731 Ren, W., and Neugebauer, V. (2010). Pain-related increase of excitatory transmission and decrease
732 of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1. Mol.
733 Pain 6, 93.

734 Ressler, R.L., and Maren, S. (2019). Synaptic encoding of fear memories in the amygdala. Curr.
735 Opin. Neurobiol. 54, 54–59.

736 Rosen, J.B., Asok, A., and Chakraborty, T. (2015). The smell of fear: innate threat of 2,5-dihydro-
737 2,4,5-trimethylthiazoline, a single molecule component of a predator odor. Front. Neurosci. 9.

738 Rubins, J.L., and Friedman, E.D. (1948). ASYMBOLIA FOR PAIN. Arch. Neurol. Psychiatry 60,
739 554–573.

740 Russell, F.A., King, R., Smillie, S.-J., Kodji, X., and Brain, S.D. (2014). Calcitonin Gene-Related
741 Peptide: Physiology and Pathophysiology. Physiol. Rev. 94, 1099–1142.

742 Russo, A.F. (2015). Calcitonin Gene-Related Peptide (CGRP): A New Target for Migraine. Annu.
743 Rev. Pharmacol. Toxicol. 55, 533–552.

744 Salay, L.D., Ishiko, N., and Huberman, A.D. (2018). A midline thalamic circuit determines
745 reactions to visual threat. Nature 557, 183.

746 Sanz, E., Yang, L., Su, T., Morris, D.R., McKnight, G.S., and Amieux, P.S. (2009). Cell-type-
747 specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. 106,
748 13939–13944.

749 Sato, M., Ito, M., Nagase, M., Sugimura, Y.K., Takahashi, Y., Watabe, A.M., and Kato, F. (2015).
750 The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice.
751 Mol. Brain 8, 22.

752 Shi, C., and Davis, M. (1999). Pain Pathways Involved in Fear Conditioning Measured with Fear-
753 Potentiated Startle: Lesion Studies. J. Neurosci. 19, 420–430.

754 Shinohara, K., Watabe, A.M., Nagase, M., Okutsu, Y., Takahashi, Y., Kurihara, H., and Kato, F.
755 (2017). Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity
756 in the central amygdala. Eur. J. Neurosci. 46, 2149–2160.

757 Silva, B.A., Mattucci, C., Krzywkowski, P., Murana, E., Illarionova, A., Grinevich, V., Canteras,
758 N.S., Ragozzino, D., and Gross, C.T. (2013). Independent hypothalamic circuits for social and
759 predator fear. Nat. Neurosci. 16, 1731–1733.

760 Silva, B.A., Gross, C.T., and Gräff, J. (2016). The neural circuits of innate fear: detection,
761 integration, action, and memorization. *Learn. Mem.* *23*, 544–555.

762 Simons, L.E., Moulton, E.A., Linnman, C., Carpino, E., Becerra, L., and Borsook, D. (2014). The
763 human amygdala and pain: Evidence from neuroimaging. *Hum. Brain Mapp.* *35*, 527–538.

764 Stamatakis, A.M., and Stuber, G.D. (2012). Activation of lateral habenula inputs to the ventral
765 midbrain promotes behavioral avoidance. *Nat. Neurosci.* *15*, 1105–1107.

766 Tanimoto, S., Nakagawa, T., Yamauchi, Y., Minami, M., and Satoh, M. (2003). Differential
767 contributions of the basolateral and central nuclei of the amygdala in the negative affective
768 component of chemical somatic and visceral pains in rats. *Eur. J. Neurosci.* *18*, 2343–2350.

769 Thompson, J.M., and Neugebauer, V. (2017). Amygdala Plasticity and Pain. *Pain Res. Manag.*
770 *2017*.

771 Todd, A.J. (2010). Neuronal circuitry for pain processing in the dorsal horn. *Nat. Rev. Neurosci.*
772 *11*, 823–836.

773 Tong, W.H., Abdulai-Saiku, S., and Vyas, A. (2020). Medial Amygdala Arginine Vasopressin
774 Neurons Regulate Innate Aversion to Cat Odors in Male Mice. *Neuroendocrinology*.

775 Veinante, P., Yalcin, I., and Barrot, M. (2013). The amygdala between sensation and affect: a role
776 in pain. *J. Mol. Psychiatry* *1*.

777 Wang, L., Gillis-Smith, S., Peng, Y., Zhang, J., Chen, X., Salzman, C.D., Ryba, N.J.P., and Zuker,
778 C.S. (2018). The coding of valence and identity in the mammalian taste system. *Nature* *558*, 127–
779 131.

780 Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., Wu, B., Zhou, Z., Liu, Y., Li, J., et al. (2015).
781 Processing of visually evoked innate fear by a non-canonical thalamic pathway. *Nat. Commun.* *6*,
782 6756.

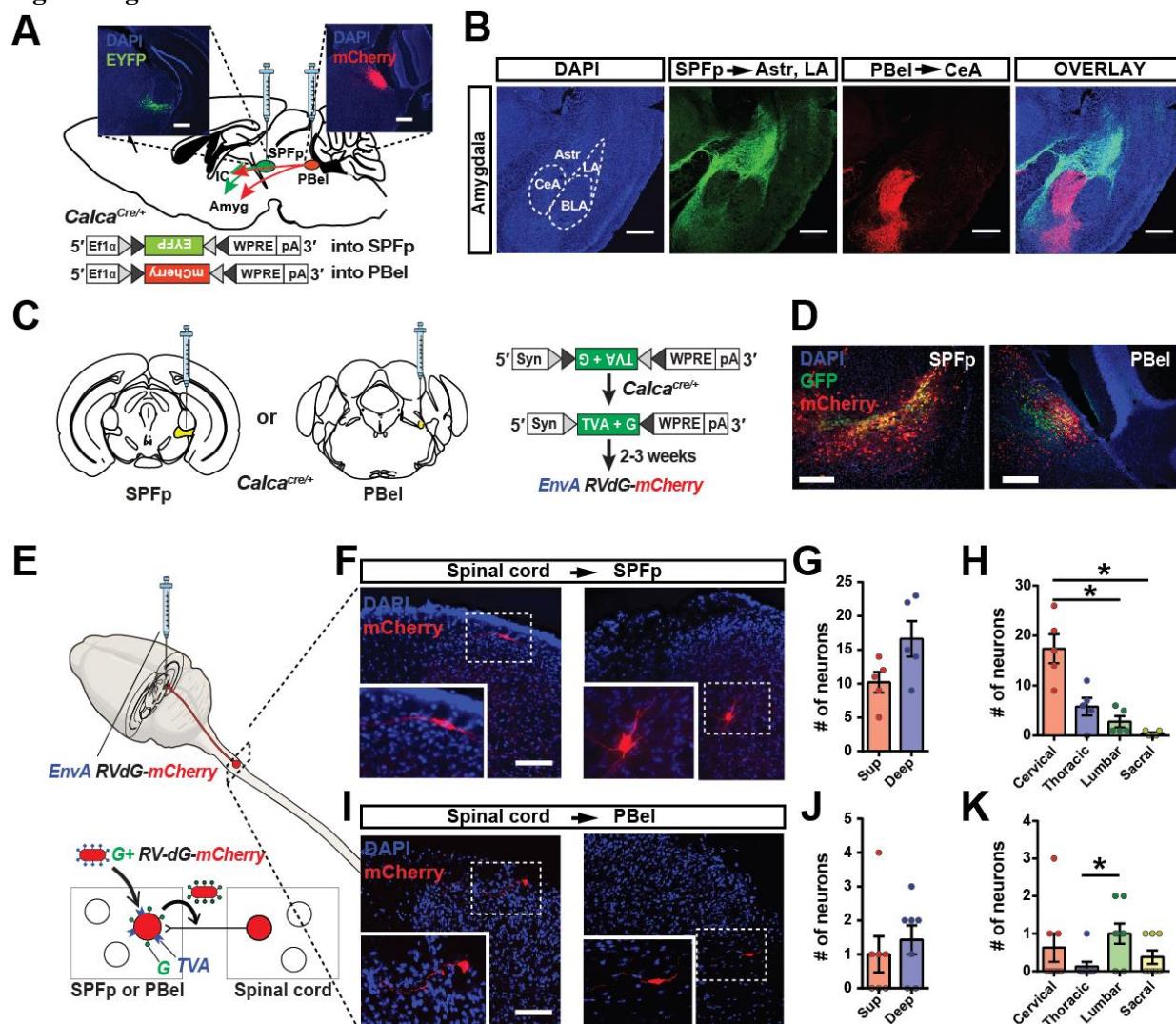
783 Willis, W.D., Zhang, X., Honda, C.N., and Giesler, G.J. (2002). A critical review of the role of the
784 proposed VMpo nucleus in pain. *J. Pain* *3*, 79–94.

785 Xiu, J., Zhang, Q., Zhou, T., Zhou, T., Chen, Y., and Hu, H. (2014). Visualizing an emotional
786 valence map in the limbic forebrain by TAI-FISH. *Nat. Neurosci.* *17*, 1552–1559.

787 Yasui, Y., Saper, C.B., and Cechetto, D.F. (1991). Calcitonin gene-related peptide (CGRP)
788 immunoreactive projections from the thalamus to the striatum and amygdala in the rat. *J. Comp.*
789 *Neurol.* *308*, 293–310.

790 Yeh, L.-F., Watanabe, M., Sulkes-Cuevas, J., and Johansen, J.P. (2018). Dysregulation of aversive
791 signaling pathways: a novel circuit endophenotype for pain and anxiety disorders. *Curr. Opin.*
792 *Neurobiol.* *48*, 37–44.

793 Yokota, S., Kaur, S., VanderHorst, V.G., Saper, C.B., and Chamberlin, N.L. (2015). Respiratory-
794 related outputs of glutamatergic, hypercapnia-responsive parabrachial neurons in mice. *J. Comp.*
795 *Neurol.* 523, 907–920.


796 Yu, L.-C., Hou, J.-F., Fu, F.-H., and Zhang, Y.-X. (2009). Roles of calcitonin gene-related peptide
797 and its receptors in pain-related behavioral responses in the central nervous system. *Neurosci.*
798 *Biobehav. Rev.* 33, 1185–1191.

799 Zhang, X., and Giesler, G.J. (2005). Response Characteristics of Spinothalamic Tract Neurons That
800 Project to the Posterior Thalamus in Rats. *J. Neurophysiol.* 93, 2552–2564.

801 Zhou, Z., Liu, X., Chen, S., Zhang, Z., Liu, Y., Montardy, Q., Tang, Y., Wei, P., Liu, N., Li, L., et
802 al. (2019). A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive
803 Responses. *Neuron* 103, 473-488.e6.

804

805 **Figure Legends**

806

807 **Figure 1. CGRP^{SPFP} and CGRP^{PBel} neurons form spino-thalamo-amygdaloid and spino-parabrachio-
808 amygdaloid pathways.**

809 (A) Schematic and representative images of Cre-dependent expression of EYFP in the SPFP and mCherry
810 in the PBel of a *Calca*^{Cre} mouse. Scale bars, 200 μm.

811 (B) The axonal projections from the CGRP^{SPFP} and CGRP^{PBel} neurons are mutually exclusive in the
812 amygdala sub-regions. Scale bars, 500 μm.

813 (C) Schematic diagrams and images of Cre-dependent expression of TVA and G in SPFP or PBel neurons
814 of *Calca*^{Cre} mice for the rabies tracing.

815 (D) Representative images of the SPFP and PBel five days after EnvA-RVdG-mCherry injection. Yellow
816 indicates the starter cells. Scale bars, 200 μm.

817 (E) A schematic diagram of identifying presynaptic neurons by monosynaptic rabies tracing.

818 (F) Representative images of superficial and deep layer dorsal horn neurons that project to CGRP^{SPFP}
819 neurons.

820 (G) The number of spinal dorsal horn neurons in the superficial (Sup) and deep (Deep) layers project to the
821 CGRP^{SPFP} neurons.

822 (H) The number of spinal cord neurons in different spinal segments that project to the CGRP^{SPFp} neurons.
823 (I) Representative images of the superficial dorsal horn and lateral spinal nucleus neurons project to
824 CGRP^{PBel} neurons.

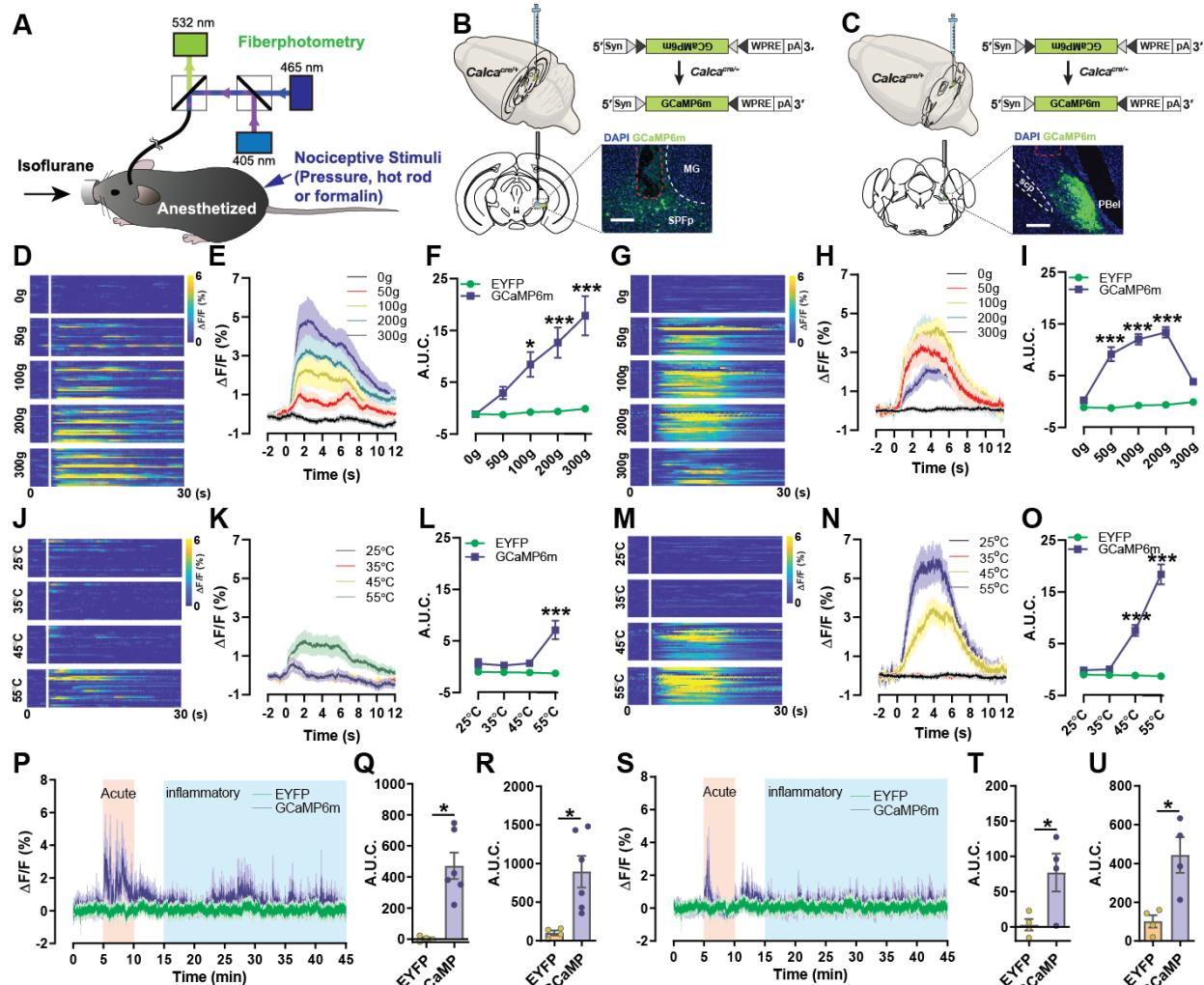
825 (J) The number of spinal dorsal horn neurons in the superficial (Sup) and deep (deep) layers project to the
826 CGRP^{PBel} neurons.

827 (K) The number of spinal cord neurons in different spinal segments that project to the CGRP^{PBel} neurons.

828

829

830 **Statistics**


831 (G) Superficial: 10.20 ± 1.53 , Deep: 16.60 ± 2.62 (n = 5). Paired t-test (two-tailed), p = 0.0723.

832 (H) Cervical: 17.40 ± 2.91 , Thoracic: 5.80 ± 2.91 , Lumbar: 2.80 ± 1.11 , Sacral: 0.40 ± 0.24 (n = 5). Repeated
833 measure one-way ANOVA, p = 0.0017. Cervical group was significantly different with lumbar (p < 0.05)
834 and sacral (p < 0.05, Tukey's multiple comparisons).

835 (J) Superficial: 1.00 ± 0.53 , Deep: 1.43 ± 0.43 (n = 8). Paired t-test (two-tailed), p = 0.6286.

836 (K) Cervical: 0.63 ± 0.38 , Thoracic: 0.13 ± 0.13 , Lumbar: 1.00 ± 0.27 , Sacral: 0.38 ± 0.18 (n = 8). Repeated
837 measure one-way ANOVA, p = 0.1615. Thoracic group was significantly different with lumbar (p < 0.05,
838 Tukey's multiple comparisons).

839

840

841 **Figure 2. CGRP^{SPFp} and CGRP^{PBel} neurons are activated by multimodal nociceptive stimuli.**

842 (A) A diagram of the fiber photometry calcium imaging experiment in an anesthetized mouse.

843 (B and C) A schematic and representative image of the Cre-dependent expression of GCaMP6m in the
844 *Calca*^{Cre} mice with an optical fiber implanted (red dashed line in the overlay image indicates fiber track)
845 above the SPFp and PBel. Scale bars, 200 μ m.

846 (D-F) Intensity-dependent calcium activity increase in CGRP^{SPFp} neurons in response to a pressure meter
847 (0, 50, 100, 200, and 300 g).

848 (G-I) Intensity-dependent calcium activity increase in CGRP^{PBel} neurons to a pressure meter.

849 (J-L) Intensity-dependent calcium increase in CGRP^{SPFp} neurons in response to a temperature-controlled
850 rod (25, 35, 45, or 55 °C).

851 (M-O) Intensity-dependent calcium activity increase in CGRP^{PBel} neurons in response to a temperature-
852 controlled rod.

853 (P) Calcium signal increases in CGRP^{SPFp} neurons following subcutaneous injection of formalin (4%) into
854 the paw.

855 (Q) Area under curve (A.U.C.) quantification of the CGRP^{SPFp} neuronal activity during the acute phase (5–
856 10 min) of formalin response.

857 (R) A.U.C. quantification of the CGRP^{SPEp} neuronal activity during the inflammatory phase (15–45 min)
858 of formalin injection.
859 (S) Calcium signal increases in CGRP^{PBel} neurons in response to subcutaneous injection of formalin (4%)
860 into the paw.
861 (T) A.U.C. quantification of the CGRP^{PBel} neuronal activity during the acute phase (5–10 min) of formalin
862 response.
863 (U) A.U.C. quantification of the CGRP^{PBel} neuronal activity during the inflammatory phase (15–45 min) of
864 formalin response.

865

866

867 Statistics

868 (F) Repeated measure two-way ANOVA showed significance in interaction ($F(4, 152) = 9.838, p < 0.0001$),
869 intensity ($F(4, 152) = 12.28, p < 0.0001$) and group ($F(1, 38) = 16.01, p = 0.0003$). 100 ($p < 0.05$), 200 (p
870 < 0.0001) and 300 g ($p < 0.0001$) points were significantly different between EYFP and GCaMP6m with
871 Sidak's multiple comparisons test.

872 (I) Repeated measure two-way ANOVA showed significance in interaction ($F(4, 248) = 15.08, p < 0.0001$),
873 intensity ($F(4, 248) = 15.17, p < 0.0001$) and group ($F(1, 62) = 64.40, p < 0.0001$). 50 ($p < 0.0001$), 100
874 ($p < 0.0001$) and 200 g ($p < 0.0001$) points were significantly different between EYFP and GCaMP6m with
875 Sidak's multiple comparisons test.

876 (L) Repeated measure two-way ANOVA showed significance in interaction ($F(3, 114) = 10.97, p < 0.0001$),
877 intensity ($F(3, 114) = 9.61, p < 0.0001$) and group ($F(1, 38) = 11.12, p = 0.0019$). 55°C ($p < 0.0001$) was
878 significantly different between EYFP and GCaMP6m with Sidak's multiple comparisons test.

879 (M) Repeated measure two-way ANOVA showed significance in interaction ($F(3, 186) = 23.96, p <$
880 0.0001), intensity ($F(3, 186) = 22.67, p < 0.0001$) and group ($F(1, 62) = 46.05, p < 0.0001$). 45 and 55°C
881 (both $p < 0.0001$) points were significantly different between EYFP and GCaMP6m with Sidak's multiple
882 comparisons test.

883 (Q) EYFP: 2.86 ± 8.00 ($n = 4$ mice), GCaMP6m: 471.9 ± 85.53 ($n = 6$ mice). Unpaired t-test (two-tailed),
884 $p = 0.0024$.

885 (R) EYFP: 100.60 ± 31.89 ($n = 4$), GCaMP6m: 894.80 ± 203.40 ($n = 6$). Unpaired t-test (two-tailed), $p =$
886 0.0145 .

887 (K) EYFP: 6.18 ± 4.05 ($n = 4$), GCaMP6m: 77.00 ± 26.83 ($n = 4$). Unpaired t-test (two-tailed), $p = 0.0381$.

888 (L) EYFP: 100.60 ± 31.89 ($n = 4$), GCaMP6m: 443.50 ± 92.46 ($n = 4$). Unpaired t-test (two-tailed), $p =$
889 0.0127 .

890

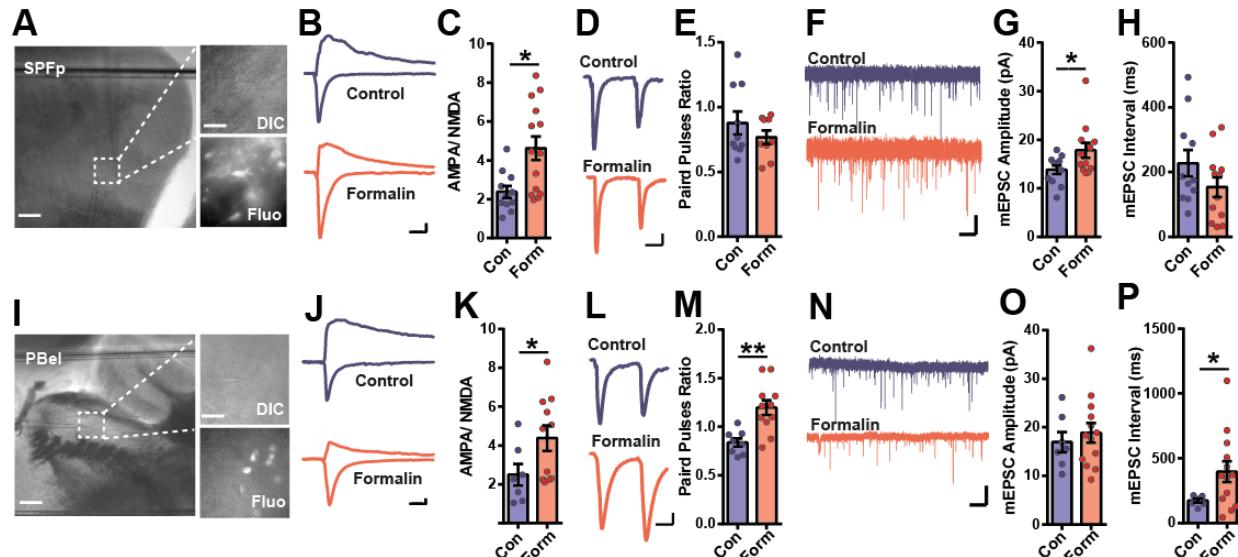


Figure 3. Pain-induced synaptic plasticity changes in CGRP^{SPFp} and CGRP^{PBel} neurons.

(A) A representative image of a brain slice including SPFp used for the whole-cell patch-clamp experiment. Enlarged images show the fluorescence from Cre:GFP-expressing CGRP neurons. Scale bars, 100 μ m in left images, and 10 μ m in enlarged images.

(B) Example traces of AMPA and NMDA EPSCs in control (blue) and formalin (red) injected groups. Scale bars, 20 ms, and 50 pA.

(C) The AMPA/NMDA ratio was increased in the formalin injected group compared with the control group.

(D and E) No significant differences in the paired-pulse ratio were observed between the formalin-injected group and the control group. Scale bars, 20 ms, and 50 pA.

(F) Example traces of mEPSCs in the control (blue) and formalin (red) injected group. Scale bars, 1 s, and 20 pA.

(G) mEPSC amplitude was increased in the formalin injected group compared with the control group.

(H) mEPSC interval was not changed in the formalin injected group compared with the control group.

(I) A representative image of a brain slice including PBel for the whole-cell patch-clamp experiment. Enlarged images are the PBel cells with and without fluorescence. Cells with fluorescence are CGRP neurons. Scale bars, 100 μ m in left images, and 10 μ m in enlarged images.

(J) Example traces of AMPA and NMDA EPSCs in control (blue) and formalin (red) injected groups. Scale bars, 20 ms, and 20 pA.

(K) The AMPA/NMDA ratio was increased in the formalin injected group compared with the control group.

(L and M) The formalin injected group display an increased paired-pulse ratio compared to the control group. Scale bars, 20 ms, and 50 pA.

(N) Example traces of mEPSCs in the control (blue) and formalin (red) injected group. Scale bars, 1 s and 50 pA.

(O) mEPSC amplitude was not changed in the formalin injected group compared with the control group.

(P) mEPSC interval increased in the formalin injected group compared with the control group.

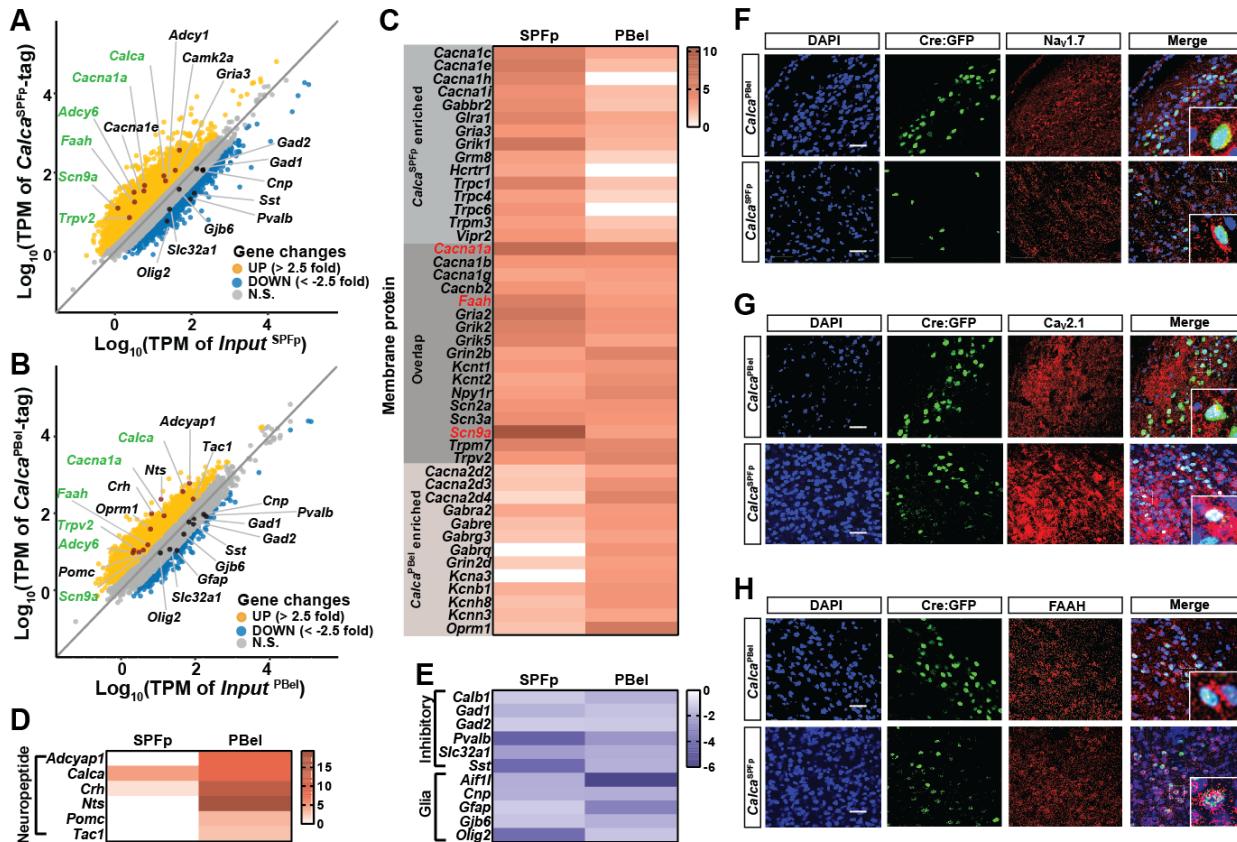
921 **Statistics**

922 (C) SPFp; Control: 2.38 ± 0.31 (n = 11 cells), formalin: 4.62 ± 0.61 (n = 14 cells). Unpaired t test (two-tailed), p = 0.0063.

924 (E) SPFp; Control: 0.88 ± 0.09 (n = 10 cells), formalin: 0.77 ± 0.05 (n = 9 cells). Unpaired t test (two-tailed), p = 0.2957.

926 (G) SPFp; Control: 13.81 ± 0.90 (n = 11 cells), formalin: 17.83 ± 1.56 (n = 12 cells). Unpaired t test (two-tailed), p = 0.0390.

928 (H) SPFp; Control: 227.4 ± 40.90 (n = 11 cells), formalin: 154.2 ± 30.80 (n = 12 cells). Unpaired t test (two-tailed), p = 0.1687.


930 (K) PBel; Control: 2.49 ± 0.56 (n = 7 cells), formalin: 4.38 ± 0.65 (n = 11 cells). Unpaired t test (two-tailed), p = 0.0437.

932 (M) PBel; Control: 0.84 ± 0.04 (n = 8 cells), formalin: 1.20 ± 0.77 (n = 11 cells). Unpaired t test (two-tailed), p = 0.001.

934 (O) PBel; Control: 16.93 ± 2.08 (n = 7 cells), formalin: 18.85 ± 2.04 (n = 13 cells). Unpaired t test (two-tailed), p = 0.5196.

936 (P) PBel; Control: 173.2 ± 13.89 (n = 7 cells), formalin: 396.5 ± 80.66 (n = 13 cells). Unpaired t test (two-tailed), p = 0.0175.

938

939

940

Figure 4. Active transcriptome profiling of CGRP^{SPFp} and CGRP^{PBel} neurons.

941 (A) Correlation plot showing expression (transcript per million, TPM in log 10 scale) of genes enriched in
942 CGRP^{SPFp} neurons compared with the total SPFp inputs using RiboTag transcriptome profiling. Up and
943 down-regulated genes were separated based on 2.5 or -2.5-fold enrichment.


944 (B) Correlation plot of the transcriptome profiles of CGRP^{PBel} neurons versus total PBel inputs.

945 (C) Heatmaps showing fold changes of genes in the SPFp and PBel that encode membrane proteins.

946 (D) Heatmaps showing fold changes of genes in the SPFp and PBel that encode neuropeptides,

947 (E) Heatmaps showing fold changes of genes in the SPFp and PBel that encode markers of inhibitory neuron
948 or glia.

949 (F-H) Co-expression of Nav1.7 (F), Cav2.1 (G), or FAAH (H) with CGRP by double IHC. Scale bars, 50
950 μm .

Figure 5. CGRP^{SPFp} and CGRP^{PBel} neurons are activated by multimodal sensory threat stimuli.

(A and B) A schematic and representative images of Cre-dependent expression of GCaMP7s in the CGRP^{SPFp} (A) and CGRP^{PBel} (B) neurons for fiber photometry. Scale bars, 200 μ m.

(C) Cued fear conditioning test with low volume tone (72 dB) was performed to examine the responses of CGPR neurons to the somatosensory aversive stimulus (2-s, 0.6 mA electric foot shock).

(D and E) CGRP^{SPFp} (D) and CGRP^{PBel} (E) neurons were activated by the electric foot shock during the conditioning period, but not habituation, nor the cued retrieval period. Left, averaged calcium traces. Right, A.U.C. quantification.

(F) Intense sound (85 dB) was used as an aversive auditory stimulus, with a 70-dB low-intensity sound as a control.

(G and H) CGRP^{SPFp} (G) and CGRP^{PBel} (H) neurons were activated by the intense sound. Left, averaged calcium traces. Right, A.U.C. quantification.

(I) A large looming disk was used as an aversive visual stimulus, with a small disk as a control.

(J and K) CGRP^{SPFp} (J) and CGRP^{PBel} (K) neurons were activated by the large looming disk. Left, averaged calcium traces. Right, A.U.C. quantification.

(L) TMT-soaked cotton was used as an aversive olfactory stimulus, with water as a control.

(M) There was no activity change in CGRP^{SPFp} neurons when the animal approached the TMT-soaked cotton. Left, averaged calcium traces. Right, A.U.C. quantification.

(N) CGRP^{PBel} neurons were activated when the animal approached the TMT-soaked cotton. Left, averaged calcium traces. Right, A.U.C. quantification.

(O) Quinine solution (0.5 mM) was introduced as an aversive gustatory stimulus (water was the control).

(P) Quinine did not affect CGRP^{SPFp} neurons. Left, averaged calcium traces. Right, A.U.C. quantification.

(Q) CGRP^{PBel} neurons were activated by quinine solution (0.5 mM). Left, averaged calcium traces. Right, A.U.C. quantification.

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

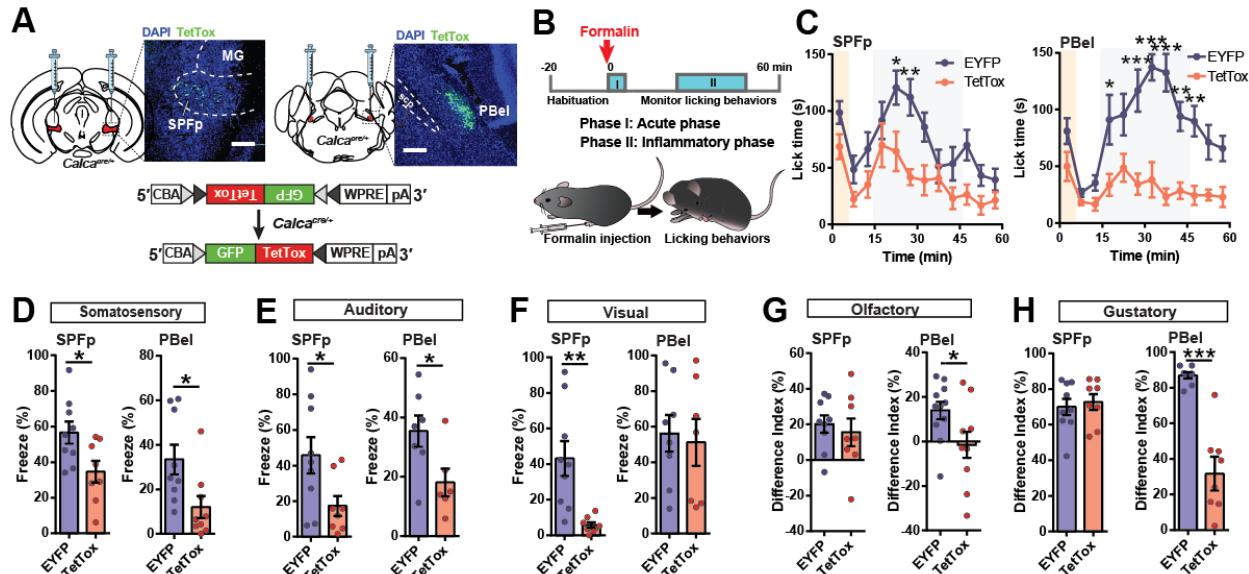
969

970

971

972

973


974

975

976

977 **Statistics**

978 (D) SPFp; Habituation: 3.63 ± 4.45 , conditioning: 37.31 ± 7.18 , cue test: -0.92 ± 2.57 (n = 6). Repeated
979 measure one-way ANOVA, p = 0.0029. Conditioning was significantly different with habituation (p < 0.05)
980 and cue test (p < 0.01, Tukey's multiple comparisons).
981 (E) PBel; SPFp; Habituation: 1.85 ± 1.33 , conditioning: 20.73 ± 4.25 , cue test: 1.49 ± 1.35 (n = 6). Repeated
982 measure one-way ANOVA, p = 0.0022. Conditioning was significantly different with habituation (p < 0.05)
983 and cue test (p < 0.01, Tukey's multiple comparisons).
984 (G) SPFp; 70 dB: 1.226 ± 1.27 , 85 dB: 17.14 ± 2.38 (n = 6). Paired t test (two-tailed), p = 0.0018.
985 (H) PBel; 70 dB: 0.78 ± 1.46 , 85 dB: 14.06 ± 5.86 (n = 7). Paired t test (two-tailed), p = 0.0437.
986 (J) SPFp; Small disk: 4.41 ± 1.11 , large disk: 29.30 ± 5.81 (n = 6). Paired t test (two-tailed), p = 0.0091.
987 (K) PBel; Small disk: 1.08 ± 0.69 , large disk: 6.93 ± 2.23 (n = 7). Paired t test (two-tailed), p = 0.0357.
988 (M) SPFp; Water: 1.93 ± 4.88 , TMT: -1.82 ± 3.78 (n = 6). Paired t test (two-tailed), p = 0.4411.
989 (N) PBel; Water: -2.72 ± 2.84 , TMT: 8.28 ± 3.57 (n = 6). Paired t test (two-tailed), p = 0.0145.
990 (P) SPFp; Water: 1.10 ± 3.09 , quinine: -0.01 ± 1.22 (n = 6). Paired t test (two-tailed), p = 0.7707.
991 (Q) PBel; Water: 0.2209 ± 0.83 , quinine: 4.96 ± 2.01 (n = 7). Paired t test (two-tailed), p = 0.0377.
992

Figure 6. Silencing CGRP^{SPFp} or CGRP^{PBel} neuronal activities attenuates perception of affective pain and multisensory threat stimuli.

(A) Schematics and representative images of Cre-dependent TetTox expression targeting CGRP^{SPFp} or CGRP^{PBel} neurons. Scale bars, 200 μ m.

(B) A schematic diagram of the Formalin assay to test inflammatory pain responses.

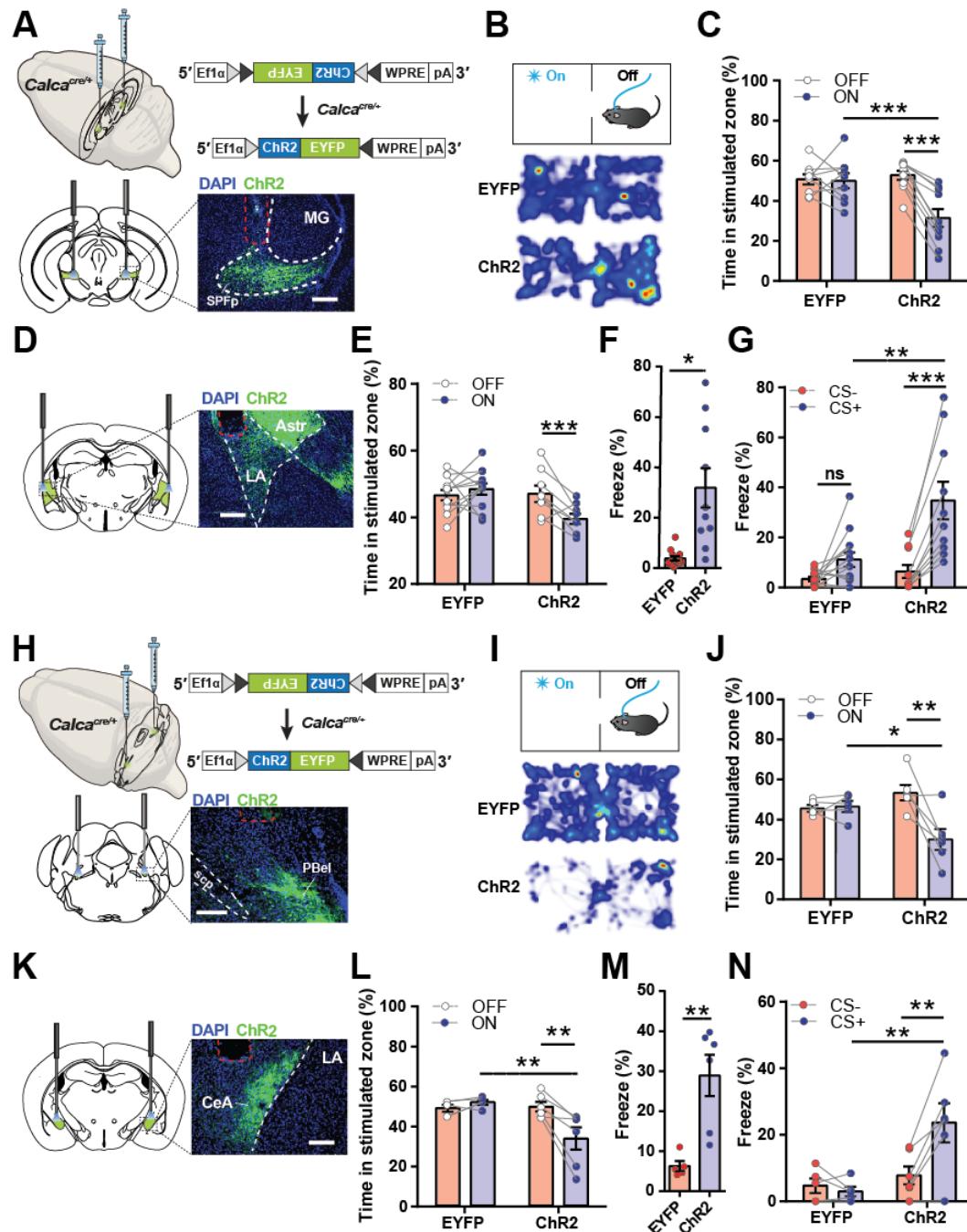
(C) The CGRP^{SPFp} and CGRP^{PBel} silenced groups displayed significantly alleviated inflammatory pain responses.

(D) Both the CGRP^{SPFp} and CGRP^{PBel} silenced groups froze less in response to electric foot shock (2-s, 0.6 mA) compared to controls.

(E) Both the CGRP^{SPFp} and CGRP^{PBel} silenced groups froze less in response to 85-dB intense sound compared with controls.

(F) In response to a looming aversive visual stimulus, the CGRP^{SPFp} silenced group showed less freezing, whereas there was no difference between EYFP and CGRP^{PBel} silenced groups.

(G) A two-chamber choice test with TMT- and water-soaked cotton placed at each corner of the chamber was used to test animals' responses to aversive olfactory stimulus. The CGRP^{SPFp} silenced group, and EYFP controls both avoided the TMT chamber, while the CGRP^{PBel} TetTox group exhibited less aversion to TMT, spending equal amounts of time in the water and TMT chambers.


(H) A quinine-water choice test was performed to test the animals' responses to the aversive gustatory stimulus (0.5 mM quinine solution). There was no change in water preference in the CGRP^{SPFp} silenced group, but the CGRP^{PBel} silenced group showed a lower difference index than the control group.

Statistics

(C) SPFp: Repeated measure two-way ANOVA showed no significance in interaction ($F(11, 187) = 1.32$, $p = 0.2148$), but in time ($F(11, 187) = 9.05$, $p < 0.0001$) and group ($F(1, 17) = 9.57$, $p = 0.0066$). 20-25 ($p < 0.05$) and 25-30 ($p < 0.01$) min point were significantly different between EYFP and TetTox with Sidak's multiple comparisons test.

PBel: Repeated measure two-way ANOVA showed significance in interaction ($F(11, 187) = 3.45$, $p = 0.0002$), time ($F(11, 187) = 5.97$, $p < 0.0001$) and group ($F(1, 17) = 53.24$, $p < 0.0001$). 15-20 ($p < 0.05$),

1023 25-30 ($p < 0.0001$), 30-35 ($p < 0.0001$), 35-40 ($p < 0.0001$), 40-45 ($p < 0.01$), 45-50 ($p < 0.01$) min point
1024 were significantly different between EYFP and TetTox with Sidak's multiple comparisons test.
1025 (D) SPFp; EYFP: $56.62 \pm 6.21\%$ ($n = 9$), TetTox: $34.65 \pm 6.11\%$ ($n = 8$). Unpaired t test (two-tailed), $p =$
1026 0.0240.
1027 PBel; EYFP: $33.43 \pm 6.66\%$ ($n = 9$), TetTox: $12.04 \pm 4.88\%$ ($n = 9$). Unpaired t test (two-tailed), $p =$
1028 0.0197.
1029 (E) SPFp; EYFP: $45.74 \pm 10.26\%$ ($n = 9$), TetTox: $17.32 \pm 5.58\%$ ($n = 8$). Unpaired t test (two-tailed), $p =$
1030 0.0332.
1031 PBel; EYFP: $35.39 \pm 5.29\%$ ($n = 7$), TetTox: $18.14 \pm 4.66\%$ ($n = 6$). Unpaired t test (two-tailed), $p =$
1032 0.0350.
1033 (F) SPFp; EYFP: $43.12 \pm 9.82\%$ ($n = 9$), TetTox: $5.73 \pm 1.57\%$ ($n = 8$). Unpaired t test (two-tailed), $p =$
1034 0.0029.
1035 PBel; EYFP: $56.20 \pm 10.33\%$ ($n = 8$), TetTox: $51.22 \pm 13.21\%$ ($n = 7$). Unpaired t test (two-tailed), $p =$
1036 0.0029.
1037 (G) SPFp; EYFP: $20.12 \pm 4.91\%$ ($n = 9$), TetTox: $15.55 \pm 7.75\%$ ($n = 8$). Unpaired t test (two-tailed), $p =$
1038 0.6175.
1039 PBel; EYFP: $13.87 \pm 3.94\%$ ($n = 11$), TetTox: $-1.53 \pm 5.89\%$ ($n = 10$). Unpaired t test (two-tailed), $p =$
1040 0.0396.
1041 (H) SPFp; EYFP: $69.96 \pm 4.64\%$ ($n = 9$), TetTox: $72.66 \pm 4.48\%$ ($n = 8$). Unpaired t test (two-tailed), $p =$
1042 0.6823.
1043 PBel; EYFP: $86.87 \pm 1.77\%$ ($n = 8$), TetTox: $31.66 \pm 9.45\%$ ($n = 7$). Unpaired t test (two-tailed), $p <$
1044 0.0001.
1045

1046

1047

Figure 7. Activating the CGRP^{SPfp→LA} or CGRP^{PBel→CeA} pathways encodes negative valence.

1048

1049

(A) Schematics and representative image of Cre-dependent expression of ChR2 in the SPfp of *Calca*^{Cre} mice and optic fiber placement (red dotted line).

1050

1051

(B) A schematic diagram and heatmap of the real-time place aversion (RTPA) test with CGRP^{SPfp} cell body stimulation.

1052

1053

(C) Time spent in the stimulated zone during the RTPA test.

1054

1055

(D) Representative image of optic fiber placement in the LA for terminal stimulation (red dotted line).

(E) Time spent in the stimulated zone during the RTPA test with CGRP^{SPfp→LA} terminal stimulation.

1056 (G) Time spent freezing during cue test after pairing optic stimulation and tone for cued fear conditioning.
1057 (H) Schematic and representative image of Cre-dependent expression of ChR2 in the PBel of *Calca*^{Cre} mice
1058 and optic fiber placement (red dotted line).
1059 (I) Schematic diagram and heatmap of real-time place aversion (RTPA) test with CGRP^{PBel} cell body
1060 stimulation.
1061 (J) Time spent in the stimulated zone during the RTPA test with CGRP^{PBel} cell body stimulation.
1062 (K) Representative image of optic fiber placement in the CeA (red dot).
1063 (L) Time spent in the stimulated zone during the RTPA test with CGRP^{PBel→CeA} terminal stimulation.
1064 (M) Time spent freezing during the context test.
1065 (N) Time spent freezing during cue test after pairing optogenetic stimulation and tone for cued fear
1066 conditioning. Scale bars indicate 200 μ m.

1067
1068

1069 Statistics

1070 (C) Repeated measure two-way ANOVA showed significance in laser x group interaction ($F(1, 17) = 17.69$,
1071 $p = 0.0006$) and laser ($F(1, 17) = 20.19$, $p = 0.0003$) but not group ($F(1, 17) = 4.03$, $p = 0.0608$). Laser ON
1072 and OFF in ChR2 ($p < 0.0001$), and EYFP and ChR2 during ON ($p < 0.001$) had statistically significant
1073 difference with Sidak's multiple comparisons test.
1074 (E) Repeated measure two-way ANOVA showed significance in only laser x group interaction ($F(1, 18) =$
1075 8.718 , $p = 0.0085$) but not laser ($F(1, 18) = 3.159$ $p = 0.0924$) and group ($F(1, 18) = 4.343$, $p = 0.0517$).
1076 Laser ON vs OFF in ChR2 ($p < 0.05$), and EYFP vs ChR2 during ON ($p < 0.01$) have statistically significant
1077 difference with Sidak's multiple comparisons test.
1078 (F) EYFP: 3.842 ± 0.89 ($n = 13$), ChR2: 31.92 ± 7.806 ($n = 10$). Unpaired t test (two-tailed), $p = 0.0005$.
1079 (G) Repeated measure two-way ANOVA showed significance in CS x group interaction ($F(1, 21) = 12.41$,
1080 $p = 0.0020$), CS ($F(1, 21) = 38.26$, $p < 0.0001$) and group ($F(1, 21) = 8.392$, $p = 0.0086$). CS- vs CS+ in
1081 ChR2 ($p < 0.0001$), and EYFP vs ChR2 during CS+ ($p < 0.001$) have statistically significant difference
1082 with Sidak's multiple comparisons test.
1083 (J) Repeated measure two-way ANOVA showed significance in laser x group interaction ($F(1, 9) = 10.49$,
1084 $p = 0.0102$) and laser ($F(1, 9) = 8.959$, $p = 0.0151$) but not group ($F(1, 9) = 1.159$, $p = 0.3096$). Laser ON
1085 and OFF in ChR2 ($p < 0.01$), and EYFP and ChR2 during ON ($p < 0.05$) had statistically significant
1086 difference with Sidak's multiple comparisons test.
1087 (L) Repeated measure two-way ANOVA showed significance in laser x group interaction ($F(1, 9) = 12.91$,
1088 $p = 0.0058$) and laser ($F(1, 9) = 6.094$, $p = 0.0357$) but not in group ($F(1, 9) = 4.405$, $p = 0.0652$). Laser
1089 ON and OFF in ChR2 ($p < 0.01$), and EYFP and ChR2 during ON ($p < 0.01$) had statistically significant
1090 difference with Sidak's multiple comparisons test.
1091 (M) EYFP: 6.278 ± 1.244 ($n = 5$), ChR2: 28.93 ± 5.133 ($n = 6$). Unpaired t test (two-tailed), $p = 0.0035$.
1092 (N) Repeated measure two-way ANOVA showed significance in CS x group interaction ($F(1, 9) = 12.67$,
1093 $p = 0.0061$), CS ($F(1, 9) = 8.226$, $p = 0.0185$) and group ($F(1, 9) = 6.314$, $p = 0.0332$). CS- vs CS+ in
1094 ChR2 ($p < 0.01$), and EYFP vs ChR2 during CS+ ($p < 0.01$) have statistically significant difference with
1095 Sidak's multiple comparisons test.

1096

1097 **Supplementary Information**

1098

1099 **Materials and methods**

1100 **Animals**

1101 All protocols for animal experiments were approved by the IACUC of the Salk Institute for Biological
1102 Studies according to NIH guidelines for animal experimentation. The *Calca*^{Cre}, and *Tacr1*^{Cre} transgenic
1103 mouse lines used in this study were generated from the Richard Palmiter's laboratory (Han et al., 2015 or
1104 Carter et al., 2013) *Cdx2*^{FlpO} line was generated from the Martyn Goulding's laboratory. *Calca*^{CreER} mouse
1105 line was generated from the Pao-Tien Chuang's laboratory. RiboTag *Rpl22*^{HA/HA} (Stock No. 011029) and
1106 Ai65 (Stock No: 021875) mouse line was obtained from the Jackson Laboratory. All mouse lines are
1107 backcrossed with C57Bl/6J for > 6 generations. Male and female mice were used in all studies. Animals
1108 were randomized to experimental groups and no sex differences were noted. Mice were maintained on a
1109 normal 12 hours light/dark cycle and provided with food and water *ad libitum*.

1110

1111 **Stereotaxic surgery for virus injection and optic fiber implantation**

1112 Mice were anesthetized by isoflurane gas anesthesia (induction at 3.5%, and maintenance at 1.5-2%, the
1113 Dräger Vapor® 2000; Draeger, Inc., USA). Mice were then placed on a stereotaxic frame (David Kopf
1114 Instruments, USA). Holes were drilled with a micromotor handpiece drill (Foredom, USA) after the
1115 exposure of the skull. The virus was injected using a syringe (65458-01, Hamilton, USA) connected to an
1116 ultra-micropump (UMP-3, World Precision Instruments, USA). Unilateral (right side) and bilateral
1117 injections were made for the following target regions: SPFp (antero-posterior (AP), -3.1 mm; medio-lateral
1118 (ML), 2.0 mm; dorso-ventral (DV) -3.6 mm from bregma) or PBel (AP, -5.1 mm; ML, 1.35 mm; DV, -3.5
1119 mm). Viruses were injected at a rate of 0.08 µl/min (total volume of 0.75 µl for optogenetic projection
1120 studies and 0.5 µl for all the others) and the syringe needle was slowly removed from the injection site
1121 seven-minute after injection. To determine the inputs to CGRP^{SPFp} and CGRP^{PBel} neurons, 0.5 µl of AAV8-
1122 hSyn-FLEX-TVA-P2A-GFP-2A-oG (Salk Institute viral vector core, USA) was injected into the SPFp or
1123 PBel of *Calca*^{Cre} transgenic mice. After three weeks, 0.5 µl of EnvA-ΔG-rabies-mCherry (Salk Institute
1124 viral vector core, USA) was injected, and the mice were sacrificed five days after the injection. To silence
1125 the CGRP^{SPFp} and CGRP^{PBel} neurons, 0.5 µl of AAV-DIO-TetTox-GFP or AAV-DIO-EYFP was injected
1126 into the SPFp or PBel of *Calca*^{Cre} transgenic mice, and experiments were performed two weeks after
1127 injection. For fiber photometry experiments, mice were injected with 0.5 µl of either AAV-DIO-GCaMP6m,
1128 AAV-DIO-GCaMP7s or AAV-DIO-EYFP into the SPFp or PBel of *Calca*^{Cre} mice. Stainless-steel mono
1129 fiberoptic cannulas (400 um diameter, 0.37 NA, Doric Lenses) were implanted above the SPFp or PBel.
1130 For electrophysiology, mice were injected with 0.5 or 0.75 µl of AAV1-DIO-ChR2-EYFP into the SPFp or
1131 PBel of *Calca*^{Cre} mice. Experiments were performed two weeks after viral injection for recording SPFp and
1132 PBel neurons or four weeks after injection for recording cells in terminal regions. For optogenetics, mice
1133 were injected with 0.5 or 0.75 µl of AAV1-DIO-ChR2-EYFP or AAV-DIO-EYFP into the SPFp or PBel
1134 of *Calca*^{Cre} mice and custom made mono fiberoptic cannula (200 um diameter, 0.22 NA) were implanted
1135 above SPFp (0.5 mm above the injection site), PBel (0.5 mm above the injection site), ASTR (AP, -1.8 mm;
1136 ML, 3.3 mm, DV, -3.8 mm from bregma), lateral amygdala (LA; AP, -1.8 mm; ML, 3.6 mm, DV, -4.0 mm
1137 from bregma), pIC (AP, -1.5 mm; ML, 4.6 mm, DV, -3.0 mm from bregma) or central amygdala (CeA; AP,
1138 1.2 mm; ML, 2.7 mm; DV, -4.2 mm from bregma). Experiments were executed two weeks after injection
1139 to manipulate SPFp neurons or four weeks later for terminal stimulations.

1140

1141 ***Histology and quantification of rabies tracing experiment***

1142 Mice were intracardially perfused with 4% paraformaldehyde in PBS 5 days after the rabies virus injection.
1143 Spinal cords were post-fixed at 4°C for 1 h and dehydrated with 30% sucrose at 4°C overnight. 40 μ m
1144 transverse sections were obtained with a cryostat (CM 1950, Leica, USA) throughout the spinal cord. Spinal
1145 cord slices were directly dry mounted on superfrost plus microscope slide glasses (12-550-15, Fisher
1146 Scientific, USA). The labeled neurons were counted manually by dividing the transverse spinal sections
1147 into four groups (cervical, thoracic, lumbar, and sacral) or different dorsal horn layers. Brains were kept in
1148 4% PFA overnight for post-fixation and dehydrated in 30% sucrose for 1-2 days before sectioning. Frozen
1149 brains were cut into 50 μ m coronal slices with a cryostat and stored in Phosphate buffered saline before
1150 mounting. Both spinal cord and brain tissues were mounted on a slide glass with a DAPI containing
1151 mounting solution (0100-20, SouthernBiotech, USA).

1152

1153 ***Fiber photometry***

1154 Bulk calcium signals from the CGRP^{SPFp} and CGRP^{PBel} neurons were monitored using a custom-built fiber
1155 photometry system based on the open-source pyPhotometry platform
1156 (<https://pyphotometry.readthedocs.io/en/latest/>). 465 nm LED was used to induce Ca^{2+} dependent
1157 fluorescence signals, and 405 nm LED was used for Ca^{2+} independent (isosbestic) fluorescence signals.
1158 Motion corrected $\Delta\text{F/F}$ was calculated by a post-hoc analysis ($\Delta\text{F/F} = \text{F}_{465} - \text{F}_{405\text{fit}} / \text{F}_{405\text{fit}}$). The least-squares
1159 polynomial function was used to calculate $\text{F}_{405\text{fit}}$, and the area under the curve was used to analyze the data.
1160

1161 ***Multi-modal aversive stimuli experiments***

1162 *Mechanical and thermal stimuli*

1163 Mechanical and thermal stimuli were applied to mice forepaw, hind paw, or tail. Mechanical pressure was
1164 applied using a dial tension gauge (ATG-300-1, Vetus Instruments, USA) with stimulus strength 0, 50, 100,
1165 200 g. The thermal stimulus was applied using a custom-made temperature-controlled hot-rod (TA4-
1166 SNR+K, Mypin, China) at 25, 35, 45, and 55°C. A stable baseline was recorded first for 10 s, and stimuli
1167 were applied immediately after 5 seconds.

1168 *Formalin test*

1169 For fiber photometry, lightly anesthetized mice were placed in the stereotaxic frame head fixed to minimize
1170 movement. 10 μ l of 4% formalin (1.6% Paraformaldehyde, 19210, Electron Microscopy Sciences, USA)
1171 was injected subcutaneously on the contralateral forepaw after at least 5 min of stable baseline. Calcium
1172 transients were recorded for 45 min. For the loss of function experiment, 10 μ l of 4 % formalin was injected
1173 subcutaneously on one side of the forepaw. Mice were then placed in a Plexiglas chamber (10 x 10 x 13
1174 cm) with a mirror placed behind. Behaviors were recorded for an hour, and licking behaviors were manually
1175 counted throughout the experiment.

1176 *Auditory and visual stimuli*

1177 For both auditory and visual stimuli experiments, mice were placed in a cylinder-shaped arena (11 cm
1178 diameter with 15 cm height) with homecage bedding and were habituated for 30-120 min. For auditory
1179 experiments, after a stable 10s baseline, an intense sound (85 dB, 2 s) or a control sound (70 dB) was played.
1180 For the loss-of-function experiments, mice were placed inside an open field chamber and were habituated
1181 for 10 min. After 1 min baseline, an intense sound (85 dB, 2 s) was delivered three times with an inter-
1182 stimulus interval of 28 s. All the trials were recorded by a USB camera (DFK 33GX236, Imagine Source,
1183 Germany) attached to a computer, and freezing behavior was analyzed using video-tracking software
1184 (Ethovision XT, Noldus, Netherlands). For visual looming experiments, after a stable 10 s baseline, an

1185 expanding looming stimulus (2 s) was delivered three times with 10 s inter-stimulus interval with a LED
1186 screen facing the arena from above. For the loss-of-function experiment, mice were placed in a cage with
1187 bedding and were positioned under the same LED screen. Mice were habituated for 20-30 min. When mice
1188 were in the center, the expanding looming stimulus (2 s) was delivered three times with 10 s inter-stimulus
1189 interval. All the trials were recorded by a USB camera (DFK 33GX236, Imagine Source, Germany)
1190 attached to a computer, and freezing behavior was analyzed using video-tracking software (Ethovision XT,
1191 Noldus, Netherlands) with manual counting for the duration of tail rattling behaviors.

1192 *Gustatory stimulus*

1193 For fiber photometry, mice were placed in the same arena for auditory and visual stimulus experiments with
1194 an additional 2 cm drilled hole. The water bottle spout was inserted into the hole, and the calcium signal
1195 was measured when the mice were licking. The bottle was filled with water or quinine (0.5 mM, QU109,
1196 Spectrum Chemical, USA). For the loss-of-function experiment, mice were water-deprived overnight. The
1197 next day, mice were placed in a homecage with a water-, and 0.5 mM quinine-containing bottle inserted
1198 into the water valve slot. Mice were allowed to drink for 10 min without habituation. All the trials were
1199 recorded by a USB camera (DFK 33GX236, Imagine Source, Germany) attached to a computer, and the
1200 licking behaviors were counted manually.

1201 *Olfactory stimulus*

1202 For fiber photometry, mice were placed in the same arena for gustatory stimulus experiments. Water- or
1203 Trimethylthiazoline (TMT, 97%, 5 μ l, 1G-TMT-97, BioSRQ, USA)-soaked cotton swap was introduced
1204 into the hole. Calcium signals were measured when mice smelled the cotton swap. For the loss-of-function
1205 experiment, mice movement was tracked in a two-chamber arena (30 x 60 x 30 cm) with a USB camera
1206 (DFK 33GX236, Imagine Source, Germany) using video-tracking software (EthoVision XT 12, Noldus,
1207 Netherlands). Two Petri dishes with small holes were placed in each chamber (one at the corner of the left
1208 chamber, and the other to the corner of the right chamber). On day 1, mice were able to habituate and
1209 explore the arena for 10 min. The next day, a water-soaked cotton swap, or TMT-soaked cotton swap were
1210 placed in each dish. Mice were first placed at the center and monitored for 10 minutes as they interreacted
1211 with the two dishes.

1212 *Foot shock*

1213 A fear-conditioning chamber (26 x 30 x 33 cm, ENV-007CT, MED Associates INC, USA) with a metal
1214 grid floor (ENV-005, MED Associates INC, USA) connected to a standalone aversive electric shock
1215 stimulator (ENV-414S, MED Associates INC, USA) was used for foot shock delivery. A USB camera
1216 (DFK 33GX236, Imagine Source, Germany) was connected to a computer, and the video tracking software
1217 (Ethovision XT, Noldus, Netherlands) was used for shock delivery and behavioral analysis. The chamber
1218 was enclosed in a light- and sound-attenuating cubicle (ENV-018MD, MED Associates INC, USA). The
1219 chamber was cleaned with 70% ethanol and double distilled water between each trial.

1220 For fiber photometry and the loss-of-function experiment, mice were placed inside the chamber without
1221 habituation. After 2 min of baseline, an electric shock (2 s, 0.6 mA) was delivered, and the behavior was
1222 recorded for an extra 2 min. Freezing behavior was monitored before (habituation), after (conditioning),
1223 and one day after (post-test) the shock.

1224 *Elevated plus maze test*

1225 A custom-built elevated plus maze with two transparent closed arms (77 x 7 x 30 cm) and two open arms
1226 (77 x 7 x 2 cm) was used to monitor the anxiety-like behaviors of test mice. This maze was elevated 70 cm
1227 above ground for all tests. Mice were placed to the tip of the open arm by facing towards the center of the
1228 maze. The behavior was video recorded for 10 min and tracked with a video-tracking software (EthoVision

1229 XT 12, Noldus, Netherlands). Both 70% ethanol solution and deionized water were used to clean the maze
1230 immediately after each trial.

1231 *Hot plate test*

1232 Mice were placed into a cylinder-shaped transparent Plexiglas chamber (11 cm diameter with 15 cm length)
1233 on a heated hot plate (48 or 55°C, PE34, IITC Life Science, USA). The latency of various pain responses
1234 (hind paw shake, lick, or jump) was measured manually.

1235 *Electronic von Frey test*

1236 A Dynamic Plantar Aesthesiometer (37450, Ugo Basile, Italy) was used to measure the mechanical pain
1237 thresholds. Mice were placed inside a Plexiglas chamber (10 x 10 x 13 cm) on a metal mesh floor and were
1238 habituated for 30 min. The max force of the system was set to reach 50 g at 20 s. The blunt metal rod of the
1239 aesthesiometer was placed under the hind paw and gradually protruded as the mice were immobile but
1240 awake. The latency and force delivered were automatically recorded as the mouse withdraw hind paw from
1241 the metal rod. The measurement was performed 5 times with 5-10 min intervals in between trials and
1242 averaged for a final mechanical threshold value.

1243

1244 *Optogenetics*

1245 A 470 nm laser (LRD-0470-PFFD-00100-05, LaserGlow Tech., Canada) was used for all optogenetic
1246 experiments in this study. Optic fibers were bilaterally connected to pre-implanted optic ferrules on the
1247 mice. All mice were optogenetically stimulated 90 min before sacrifice for cFos immunohistochemistry.

1248 *Hot plate test*

1249 The experiments were performed as described in the '*Hot plate test*' section above with minor modification
1250 for optogenetic stimulation. The order of laser ON or OFF was counterbalanced, and the interval time
1251 between each experiment was more than 30 min.

1252 *Electronic von Frey test*

1253 The experiments were performed as described above in the '*Electronic von Frey test*' with minor
1254 modification for optogenetic stimulation. The laser was on immediately before the metal rod touched the
1255 paw pad and turned off right after paw withdrawal.

1256 *Real-time place aversion (RTPA)*

1257 A two-chamber arena (30 x 60 x 30) was used for the RTPA test. The behavior was tracked with a USB
1258 camera (DFK 33GX236, Imagine Source, Germany) using video-tracking software (EthoVision XT 12,
1259 Noldus, Netherlands). After connecting the optic fiber, mice were placed in one side of the chamber. No
1260 stimulation was given for 10 min baseline. Afterward, one side of the chamber was randomly selected, and
1261 the mouse was photostimulated (20 Hz for cell body stimulation, and 40 Hz for terminal stimulation, 8-9
1262 mW) for 20 min. The stimulated side was counterbalanced between animals. Mice showing over 15%
1263 preference to one side during baseline were excluded.

1264 *Context-dependent optogenetic conditioning*

1265 An open field arena (40 x 40 x 30 cm) was used for context-dependent threat conditioning. After 10-min
1266 habituation to head-attached optic fibers in the home cage, mice were placed in the novel open field area
1267 and received photostimulation (20 Hz, and 8-9 mW) throughout the experiment. After 24 h, the mouse was
1268 re-introduced in the same context to test whether the photo-stimulation produced aversive memory. All the
1269 trials were recorded by a USB camera (DFK 33GX236, Imagine Source, Germany) attached to a computer,
1270 and freezing behavior was analyzed by a video-tracking software (EthoVision XT 12, Noldus, Netherlands).

1271 *Auditory cue dependent optogenetic conditioning*

1272 The same fear-conditioning chamber and the settings as described in the '*Foot shock*' section above were
1273 used. Two speakers (AX210, Dell, USA) were placed beside the chamber for CS. On day 1, the test mouse
1274 was habituated with the conditioning chamber, which was cleaned with 70% ethanol and DW immediately
1275 after each test. During habituation, optic fibers were connected bilaterally to the optic ferrules on the
1276 mouse's head, and the CS+ (30 s, 3 kHz pure tone, 75 dB) was delivered to the test mouse six times with
1277 random inter-event intervals. On day 2, the test mouse was returned to the same context with optic fibers
1278 connected and received 10-s photostimulation (20 Hz frequency for cell body and 40Hz for terminal
1279 stimulation, 8-9 mW intensity) as the US, which was co-terminated with CS+ six times with random inter-
1280 event intervals. On day 3, the conditioned mouse without the optic fiber connected was returned to the same
1281 context for 2 min. On day 4, a conditioned mouse without the optic fiber connected was introduced to a
1282 new context (a glass cylinder wrapped with a non-transparent material), and the CS+ was delivered without
1283 the US. All the trials were recorded by a USB camera (DFK 33GX236, Imagine Source, Germany) attached
1284 to the computer, and freezing behavior was analyzed by a video-tracking software (EthoVision XT 12,
1285 Noldus, Netherlands).

1286

1287 **Immunohistochemistry**

1288 Mice were perfused intracardially with % PFA solution in PBS, and the brain was extracted. The brain was
1289 kept in 4% PFA overnight for post-fixation and dehydrated in 30 % sucrose for 1-2 days before sectioning.
1290 Frozen brains were cut into 40 μ m coronal slices with a cryostat (CM 1950, Leica, USA) and washed with
1291 PBST (Phosphate buffered saline with 0.1% Tween-20 (BP337-500, Fisher BioReagents, USA)). Initial
1292 blocking was performed by 1hr incubation with 3% normal donkey serum (NDS, 017-000-121, Jackson
1293 ImmunoResearch Laboratories, Inc., USA). After another round of washing with PBST, the slices were
1294 incubated with anti-GFP (diluted 1:100 in 3% NDS, GFP-1020, Aves, USA), anti-fos (1:10000, rabbit
1295 polyclonal), anti-Nav1.7 (1:200, ASC-008, Alomone), anti-Cav2.1 (1:100, ACC-001, Alomone, Isreal), or
1296 anti-FAAH (1:250, 101600, Cayman, USA) antibody at 4 °C overnight. The next day, brain tissues were
1297 rinsed with PBST, then incubated with anti-rabbit Alexa Fluor® 647-secondary antibody (1:500, 711-605-
1298 152, Jackson ImmunoResearch Laboratories, Inc., USA), and / or anti-chicken Alexa Fluor® 488-secondary
1299 antibody (1:500, Jackson ImmunoResearch Laboratories) for 1 h. After washing these brain slices with PBS,
1300 they were mounted on slide glass (12-550-143, Fisher Scientific, USA) with DAPI containing mounting
1301 solution.

1302

1303 **Preparation of acute brain slices and electrophysiology**

1304 Mice were anesthetized with isoflurane and perfused via the vascular system using ice-cold cutting solution
1305 (110.0 mM choline chloride, 25.0 mM NaHCO₃, 1.25 mM NaH₂PO₄, 2.5 mM KCl, 0.5 mM CaCl₂, 7.0 mM
1306 MgCl₂, 25.0 mM glucose, 5.0 mM ascorbic acid and 3.0 mM pyruvic acid, bubbled with 95% O₂ and %
1307 CO₂). After decapitation, brains were quickly removed and chilled in an ice-cold cutting solution. Coronal
1308 slices containing the SPFp, PBel (250 μ m) or the amygdaloid complex (300 μ m) were cut by using a Leica
1309 VT 1200S Vibratome (Leica Biosystems Inc.), and subsequently transferred to a storage chamber
1310 containing artificial cerebrospinal fluid (aCSF; 124 mM NaCl, 2.5 mM KCl, 26.2 mM NaHCO₃, 1.2 mM
1311 NaH₂PO₄, 13 mM glucose, 2 mM MgSO₄ and 2 mM CaCl₂, at 32 °C, pH 7.4, bubbled with 95% O₂ and 5%
1312 CO₂). After at least 30 min recovery time, slices were transferred to room temperature (22–24°C) for at
1313 least 60 min before use. Slices were transferred into the recording chamber, perfused with aCSF (flow rate
1314 around 2 ml/ min). The temperature of aACSF was held constant at 32°C by TC-324C temperature
1315 controller (Warner Instruments). Since CGRP-positive neurons express EGFP under the *Calca* promoter,

1316 they were visualized under Scientifica Microscope equipped with epifluorescence illumination at 490 nm
1317 LED. The Astr, LA, and IC neurons were visualized under trans-illumination. Whole-Cell patch clamp was
1318 performed with Multiclamp 700B amplifiers (Molecular Devices). Signals were digitized at 10 kHz with
1319 Digidata 1550B (Molecular Devices). For evoked EPSCs, synaptic responses were evoked with a broken
1320 glass pipette positioned 100 μ m away from the recording glass electrode (3.0~5.0 M Ω , back filled with
1321 internal solution: CsMeSO₃ 130 mM, CsCl 5, HEPES 10 mM, MgCl₂ 2.5 mM, EGTA 0.6 mM, Sodium
1322 phosphocreatine 10 mM, Na₂ATP 4 mM and Na₃GTP 0.4 mM, pH 7.23, 285 Osm). The stimulus was given
1323 at 0.1 Hz. AMPA EPSC was recorded holding at -70 mV for 10 to 30 sweeps to get a stable response.
1324 NMDA EPSC was recorded at +40 mV for 10 – 15 sweeps. To ensure that the EPSCs were stable, the
1325 holding potential was set to -70 mV to check the AMPA EPSC change after NMDA EPSC recording.
1326 Evoked EPSCs were recorded with picrotoxin (100 μ M) in the aCSF. mEPSCs were recorded in the
1327 presence of tetrodotoxin (1 μ M) and picrotoxin (100 μ M). To record optogenetically evoked EPSC and
1328 IPSC, slices were harvested from the AAV-DIO-ChR2-EYFP injected *Calca*^{Cre} mice brain. 2-ms 470 nm
1329 LED light (TTL from Clampex to Cool Led pE-300) was illuminated through 40X NA 0.8 objective lens
1330 at 0.1 Hz to evoke optogenetically evoked postsynaptic current. The internal solution was calculated to
1331 make chloride reversal potential at -70 mV. EPSCs were recorded at -70 mV, and IPSCs were recorded at
1332 0mV. CNQX (10 μ M) was perfused to check the glutamatergic synapse. EPSCs and IPSCs were analyzed
1333 using pCLAMP 10 software (Molecular Devices). NMDA EPSCs were defined as signals 100 ms apart
1334 from stimulus artifacts. mEPSCs were analyzed using Mini Analysis Program (Synaptosoft).

1335

1336 **Imaging**

1337 The images were taken with an automatic fluorescence microscope (BZ-X710, Keyence, USA) using
1338 included imaging software (BZ-X viewer, Keyence, USA) or with a scanning confocal microscope (FV
1339 1000, Olympus, Japan) using with Fluoview software (Olympus, Japan). For quantification purposes,
1340 images were processed with the same gain, offset, and exposure time. Cell counting for retrograde tracing
1341 was done manually.

1342

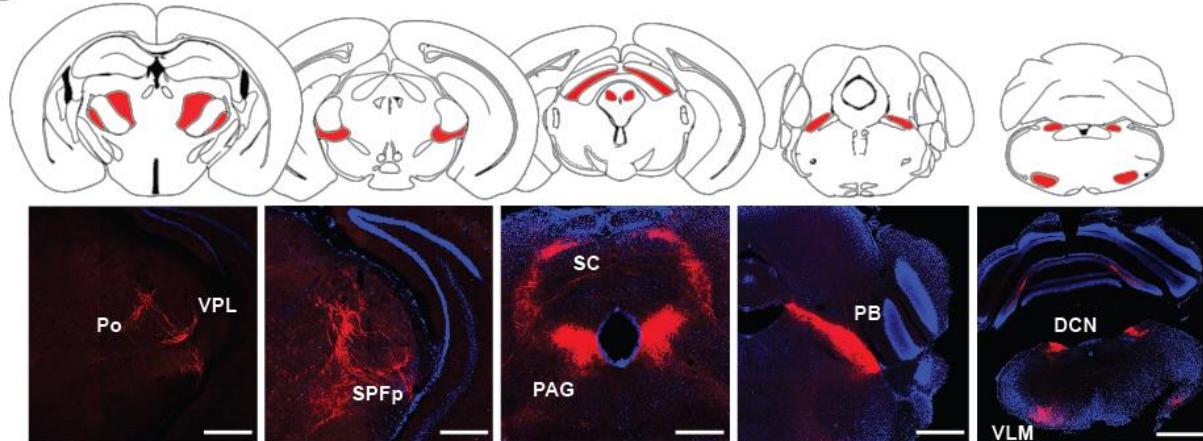
1343 **RiboTag Transcriptomic Profiling**

1344 To label the active transcriptome of CGRP^{SPFp} and CGRP^{PBel} neurons, we crossed *Calca*^{CreER} with RiboTag
1345 *Rpl22*^{HA/HA} mice. To induce gene expression, 200 μ l of tamoxifen freshly prepared with 20 mg/ml in corn
1346 oil and dissolved overnight with continuous agitation was administered intraperitoneally for five
1347 consecutive days in each mouse. Experiments were performed two weeks after the final tamoxifen injection.
1348 250 μ m thick slices containing the PBel and the SPFp were obtained using a VT 1200S Vibratome (Leica,
1349 Germany). The region of interest was further dissected using surgical scissors under the stereoscope.
1350 Tissues of interest from four *Calca*^{CreER}; RiboTag crossed mice (10-12 weeks old) were collected into 1.5
1351 mL microcentrifuge tubes containing homogenization buffer and were mechanically dissociated and lysed
1352 using pellet pestles (Cat.no.7495211500-DS, DWK Life Sciences LLC, USA). Total RNA was extracted
1353 from 15% of cleared lysate for input samples. The remaining lysate was incubated with mouse anti-HA
1354 antibody (Cat.no.MMS-101R, Biolegend, USA) and was rocked for 4 hours at 4 °C. Afterward, magnetic
1355 beads (Cat.no.88803, Thermo Fisher Scientific, USA) were added, and the solution was incubated overnight,
1356 rocking at 4 °C. The beads were washed three times in high salt solution. The bound ribosomes and RNA
1357 were separated from the beads by 30 s of vortexing in RLT lysis buffer as IP. All RNA samples were
1358 purified from the IP and corresponding input samples (Qiagen RNeasy Mini Kit, cat.no. 74104), then
1359 quantified with the Qubit RNA Assay Kit (Invitrogen, USA) and analyzed with the RNA 6000 Pico Kit

1360 (Agilent, USA). Isolated RNA was prepared using the Trio RNA-Seq (Cat. No. 0507-08; NuGEN, USA).
1361 Briefly, cDNA was synthesized from the total RNA using reverse transcriptase with oligo dT and
1362 resynthesized to produce double-stranded cDNA. After amplifying double-stranded cDNA, cDNA was
1363 purified with AMPure XP Beads (Cat. No. A63881; Beckman Coulter, USA), fragmented to the library,
1364 and classified using a barcoded adaptor. All libraries were quantified by qPCR and analyzed with the RNA
1365 6000 Pico Kit. RNA library quality was checked using the 2100 Bioanalyzer (Agilent, USA). Barcoded
1366 samples were pooled and sequenced on the NextSeq500 (Illumina, USA) with the 75 bp read length single-
1367 end. Image analysis and base calling were conducted using the Illumina CASAVA-1.8.2 software. The
1368 FastQC package was utilized to evaluate the sequencing read quality. Fastq reads were then aligned to the
1369 reference genome (GRCm38.p6) using the STAR tool (version 2.7.2) in a pair-end mode. The quantification
1370 package RSEM (version 1.2.28) was employed to calculate gene expression from BAM files using the
1371 default setting changed to pair-end mode. In doing so, estimated count and TPM (Transcripts Per Million)
1372 were generated. Fold changes were calculated from TPM values (estimated counts, > 20) between HA-tag
1373 and HA negative controls., The ggplot2 package from R was utilized to visualize fold changes. UP (> 2.5-
1374 fold change) and DOWN (< - 2.5-fold change) were highlighted with orange and blue colors, respectively.
1375

1376 *Statistical analysis*

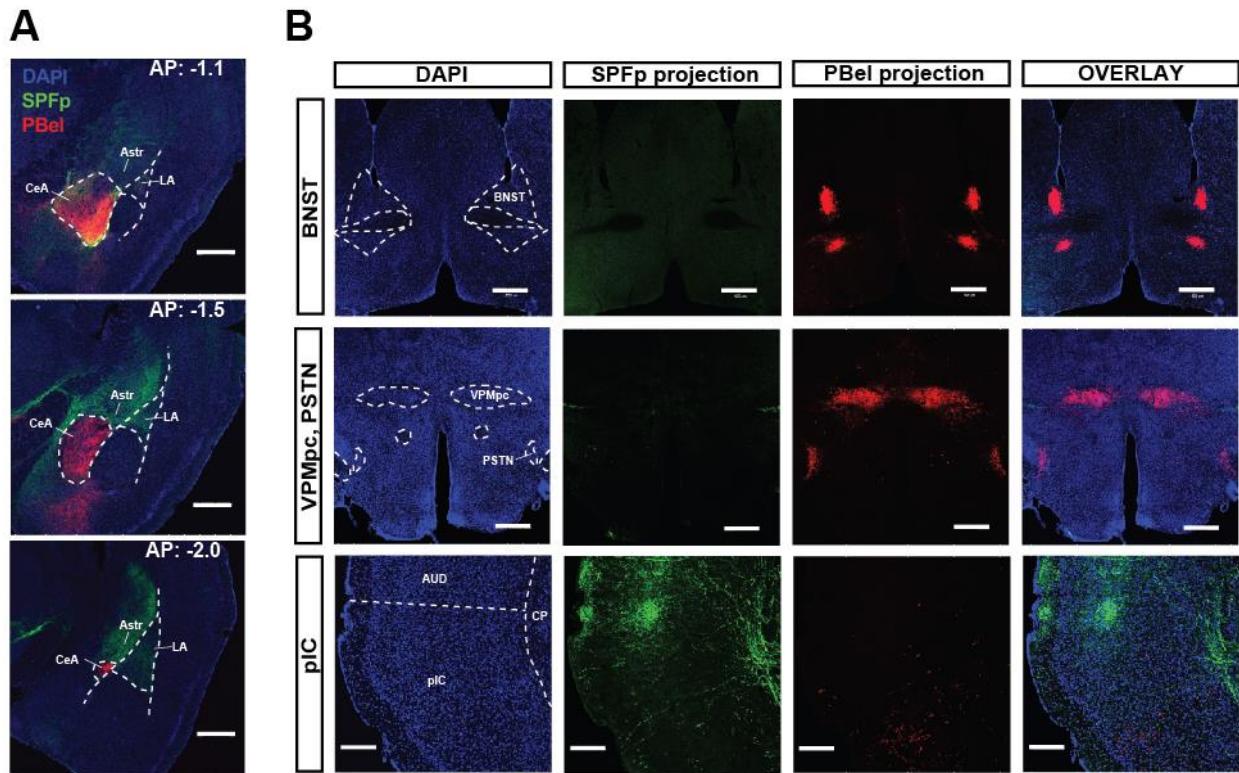
1377 All data are shown as mean \pm s.e.m. and analyzed using Student's t-test, one-way ANOVA with Tukey's
1378 post hoc comparison, and two-way ANOVA with Sidak's post hoc comparison. All the statistical analyses
1379 were done using Prism 6 (GraphPad Software Inc., USA). NS p>0.05, * p < 0.05, ** p < 0.01, *** p <
1380 0.001


1381

1382 **Supplementary Figure Legends**

A

B

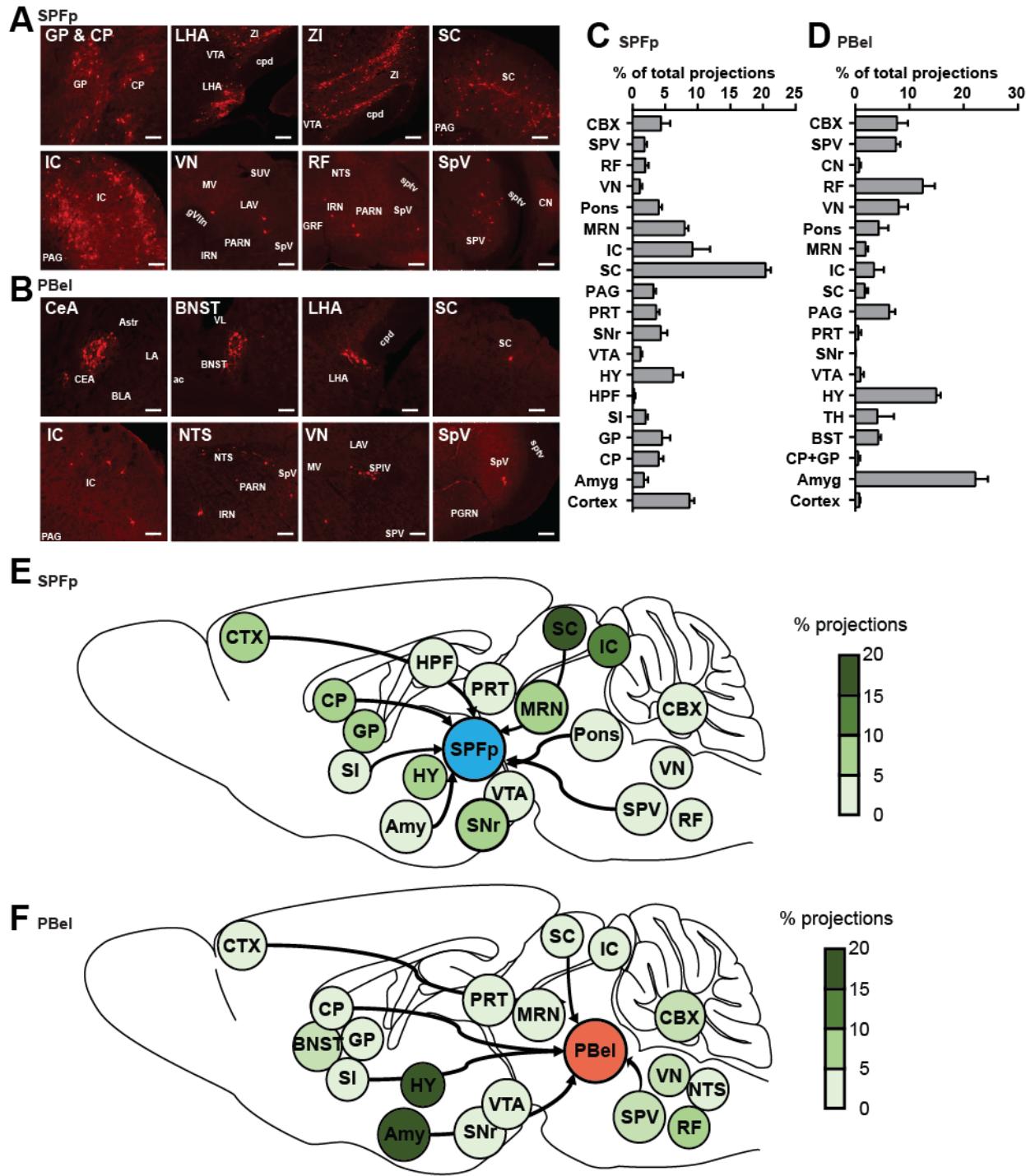

1383

1384 **Figure S1. Identification of direct spino-recipient areas in the brain by specific genetic labeling of**
1385 ***Tacr1*-expressing spinal projection neurons.**

1386 (A) Schematics of the triple cross strategy to specifically label *Tacr1*-expressing neurons in the spinal dorsal
1387 horn. Scale bar indicates 200 μ m.

1388 (B) Spinal *Tacr1*-expressing neurons send projections to the posterior complex of the thalamus (PO),
1389 ventral posterolateral nucleus of the thalamus (VPL), the ventral posteromedial nucleus of the thalamus
1390 (VPM), SPFp, superior colliculus (SC), periaqueductal gray (PAG), PB, dorsal column nuclei (DCN) and
1391 ventrolateral medulla (VLM). Scale bar indicates 500 μ m.

1392



1393
1394
1395
1396
1397
1398
1399
1400
1401

Figure S2. Projections from CGRP^{SPFp} and CGRP^{PBel} neurons.

(A) Additional images from Figure 1A, B. Projections are prominent in the amygdala regions and have distinct patterns along the anterior-posterior axis; AP: -1.1, -1.5 and -2.0 mm from bregma. Scale bar indicates 500 μ m.

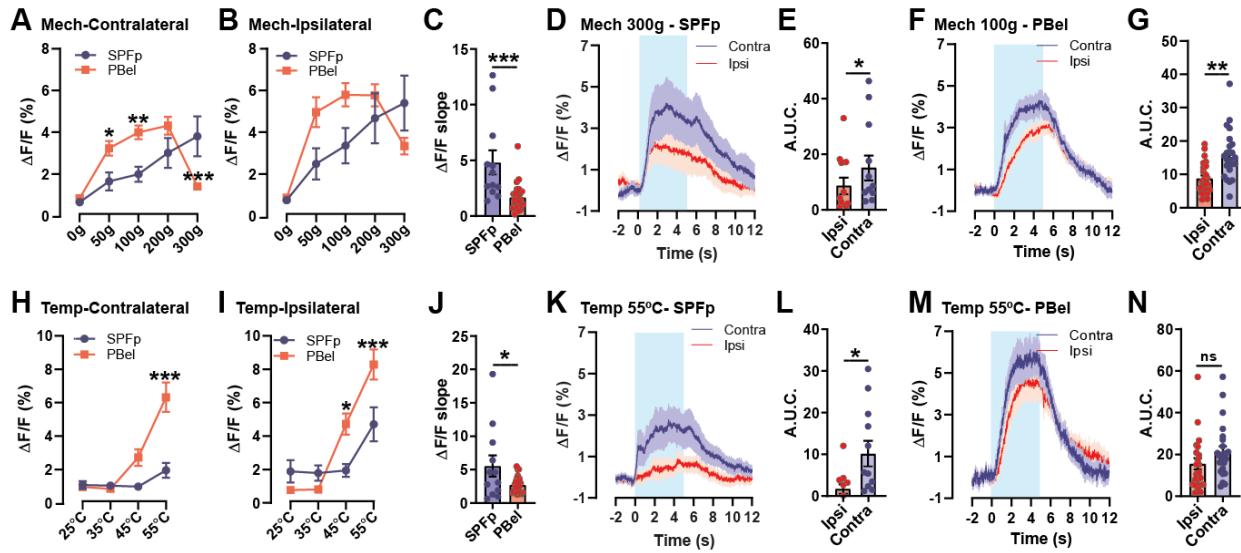
(B) The CGRP^{PBel} neurons also project to BNST, VPMpc, PSTN, and ventral pIC. The CGRP^{SPFp} neurons project to the auditory cortex, and dorsal pIC. Scale bars indicate 500 μ m for BNST, and VPMpc; 200 μ m for pIC.

1402

1403 **Figure S3. Retrograde tracing from CGRP $^{\text{SPFp}}$ and CGRP $^{\text{PBel}}$ neurons.**

1404 (A and B) Example schematic of brain regions that send inputs to CGRP $^{\text{SPFp}}$ (A) and CGRP $^{\text{PBel}}$ neurons (B).

1405 Scale bars indicate 100 μm .


1406 (C) Percentage of total projections from brain regions to CGRP $^{\text{SPFp}}$ neurons.

1407 (D) Percentage of total projections from brain regions to CGRP $^{\text{PBel}}$ neurons.

1408 (E and F) Diagram of the projection (%) from other brain regions to CGRP $^{\text{SPFp}}$ (E) and CGRP $^{\text{PBel}}$ neurons

1409 (F).

1410 CTX: cortex, Amy: amygdala, CP: striatum, GP: globus pallidus, BNST: bed nuclei of the stria terminalis,
1411 SI: substantia innominate, HPF: hippocampus, HY: hypothalamus, TH: thalamus, VTA: ventral tegmental
1412 area, SNr: substantia nigra, PRT: pretectal region, PAG: periaqueductal gray, SC: superior colliculus, IC:
1413 inferior colliculus, MRN: midbrain reticular nucleus, Pons: including the nucleus of the lateral lemniscus,
1414 pontine central gray, PBN, pontine reticular nucleus, VN: vestibular nucleus, NTS: nucleus tractus solitarius,
1415 SpV: trigeminal spinal nucleus, CBX: cerebellum.
1416

Figure S4. CGRP^{SPFP} and CGRP^{PBel} neurons are bilaterally stimulated by noxious stimuli.

(A and B) Maximum calcium responses of the CGRP^{SPFP} and CGRP^{PBel} neurons to ipsilateral (A) and contralateral (B) mechanical stimulation.

(C) CGRP^{SPFP} displayed faster increase of the calcium responses (bigger initial slope) to the contralateral mechanical stimulation (300 g for CGRP^{SPFP} and 100 g for CGRP^{PBel} neurons).

(D-G) Calcium responses of CGRP^{SPFP} (D and E) neurons by ipsilateral or contralateral 300 g stimulation and CGRP^{PBel} (F and G) neurons by 100 g stimulation.

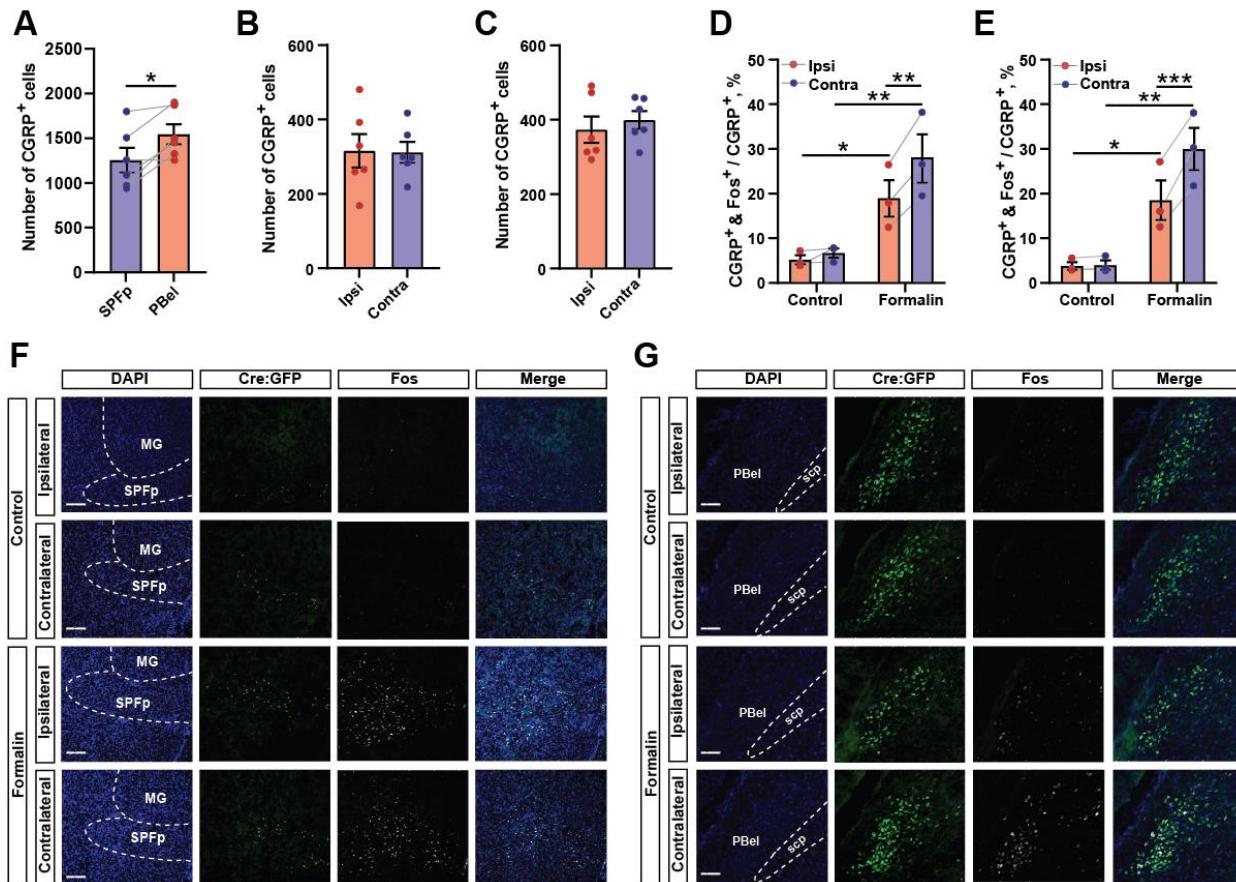
(H and I) Maximum calcium responses of the CGRP^{SPFP} and CGRP^{PBel} neurons to ipsilateral (H) and contralateral (I) thermal stimulation.

(J) Comparison of the initial slope of both neurons to contralateral 55°C stimulation.

(K-N) Calcium responses of CGRP^{SPFP} (K and L) neurons and CGRP^{PBel} (M and N) neurons by ipsilateral or contralateral 55°C stimulation.

Statistics

(A) Repeated measure two-way ANOVA showed significance in intensity X region interaction ($F(4, 136) = 11.80, p < 0.0001$), intensity ($F(4, 136) = 17.66, p < 0.0001$), but not in region ($F(1, 34) = 2.075, p = 0.1589$). SPFP and PBel were significantly different in 50 ($p < 0.05$), 100 ($p < 0.01$) and 300 g ($p < 0.001$) with Sidak's multiple comparisons test.


(B) Repeated measure two-way ANOVA showed significance in intensity X region interaction ($F(4, 136) = 5.468, p = 0.0004$), intensity ($F(4, 136) = 18.46, p < 0.0001$), but not in region ($F(1, 34) = 1.528, p = 0.2249$).

(C) SPFP: 4.82 ± 1.08 (n = 6 mice, 12 trial), PBel: 1.68 ± 0.26 (n = 6 mice, 24 trial). Unpaired t test (two-tailed), $p = 0.0007$.

(E) SPFP; Ipsi: 8.51 ± 3.00 (n = 6 mice, 12 trial), Contra: 15.06 ± 4.51 (n = 6 mice, 12 trial). Paired t-test (two-tailed), $p = 0.0498$.

(G) PBel; Ipsi: 8.79 ± 0.95 (n = 6 mice, 24 trial), Contra: 15.26 ± 1.61 (n = 6 mice, 24 trial). Paired t-test (two-tailed), $p = 0.0012$.

1446 (H) Repeated measure two-way ANOVA showed significance in intensity X region interaction ($F(3, 102)$
1447 $= 8.995$, $p < 0.0001$), intensity ($F(3, 102) = 17.79$, $p < 0.0001$), and region ($F(1, 34) = 11.19$, $p = 0.002$).
1448 SPFp and PBel were significantly different in 55°C ($p < 0.0001$) with Sidak's multiple comparisons test.
1449 (I) Repeated measure two-way ANOVA showed significance in intensity X region interaction ($F(3, 102) =$
1450 10.16 , $p < 0.0001$), intensity ($F(3, 102) = 40.99$, $p < 0.0001$), but not in region ($F(1, 34) = 2.885$, $p = 0.0986$).
1451 SPFp and PBel were significantly different in 45 ($p < 0.05$) and 55°C ($p < 0.0001$) with Sidak's multiple
1452 comparisons test.
1453 (J) SPFp: 5.55 ± 1.59 ($n = 6$ mice, 12 trial), PBel: 2.72 ± 0.26 ($n = 6$ mice, 24 trial). Unpaired t test (two-
1454 tailed), $p = 0.0210$.
1455 (L) SPFp; Ipsi: 1.74 ± 1.12 ($n = 6$ mice, 12 trial), Contra: 10.15 ± 3.08 ($n = 6$ mice, 12 trial). Paired t-test
1456 (two-tailed), $p = 0.0146$.
1457 (N) PBel; Ipsi: 15.55 ± 2.71 ($n = 6$ mice, 24 trial), Contra: 21.24 ± 2.63 ($n = 6$ mice, 24 trial). Paired t-test
1458 (two-tailed), $p = 0.1385$.
1459

Figure S5. Bilateral activation of CGRP^{SPFp} and CGRP^{PBel} neurons by unilateral formalin injection in the same animal.

(A) Number of CGRP positive cells in the SPFp and PBel.

(B and C) The number of CGRP positive cells in each side of the SPFp (B) and PBel (C).

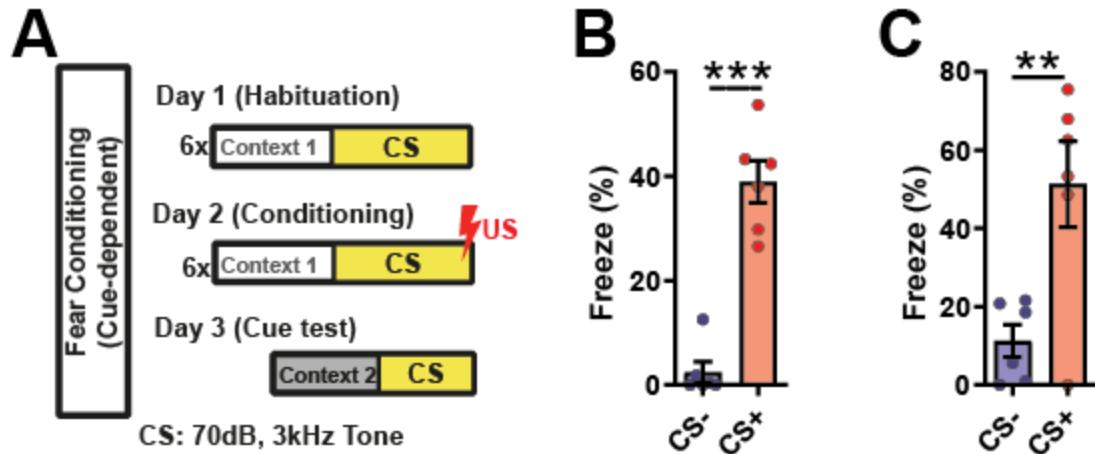
(D and E) The percentage of CGRP neurons co-expressing c-Fos in the SPFp (D) and PBel (E).

(F and G) Representative images of the SPFp (F) and PBel (G). Scale bars indicate 200 μ m.

Statistics

(A) SPFp: 1255 ± 137.5 , PBel 1545 ± 112.2 (n = 6 mice). Paired t-test (two-tailed), p = 0.0188.

(B) SPFp; Ipsi: 315.5 ± 44.94 , Contra: 311.8 ± 27.85 (n = 6 mice). Paired t-test (two-tailed), p = 0.9057.


(C) PBel; Ipsi: 373.0 ± 35.34 , Contra 399.3 ± 24.06 (n = 6 mice). Paired t-test (two-tailed), p = 0.2958.

(D) SPFp; Repeated measure two-way ANOVA showed significance in treatment X side interaction ($F(1, 4) = 17.42$, p = 0.0140), treatment ($F(1, 4) = 13.28$, p = 0.0219), and side ($F(1, 4) = 33.97$, p = 0.0043).

Ipsi vs contra was significant in formalin group (p < 0.01). Control vs formalin was significantly different in both ipsi (p < 0.05) and contra (p < 0.01) with Sidak's multiple comparisons test.

(E) PBel; Repeated measure two-way ANOVA showed significance in treatment X side interaction ($F(1, 4) = 55.27$, p = 0.0017), treatment ($F(1, 4) = 19.57$, p = 0.0115), and side ($F(1, 4) = 58.66$, p = 0.0016).

Ipsi vs contra was significant in formalin group (p < 0.001). Control vs formalin was significantly different in both ipsi (p < 0.05) and contra (p < 0.01) with Sidak's multiple comparisons test.

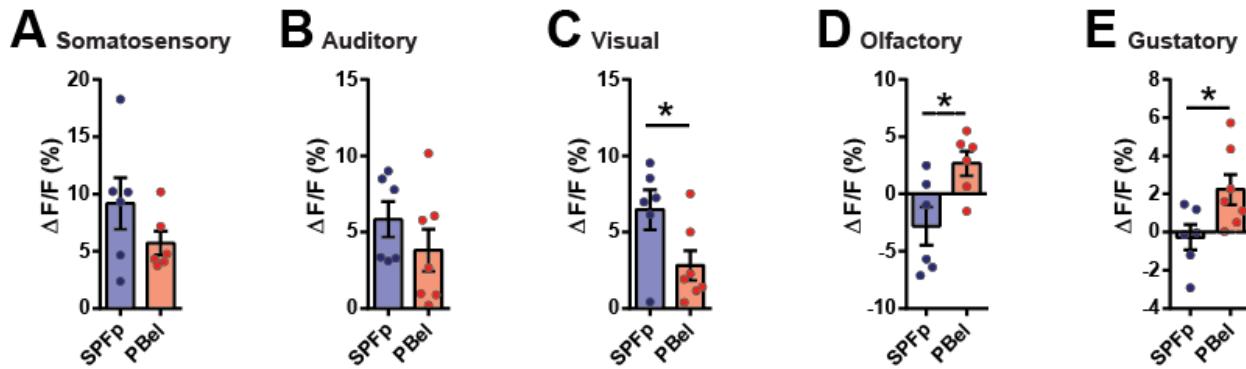
1482

1483 **Figure S6. Cued fear conditioning with mice for CGRP^{SPFp} and CGRP^{PBel} fiber photometry.**

1484 (A) Behavioral scheme for cued fear conditioning. Low intensity (70 dB, 3kHz) tone was used as CS in
1485 order not to induce calcium activity by sound.

1486 (B and C) Freezing was induced in both CGRP^{SPFp} (B) and CGRP^{PBel} (C) group.

1487


1488

1489 **Statistics**

1490 (B) SPFp; CS-: $2.47 \pm 2.04\%$, CS+: $38.96 \pm 4.02\%$ (n = 6). Paired t test (two-tailed), p < 0.0001.

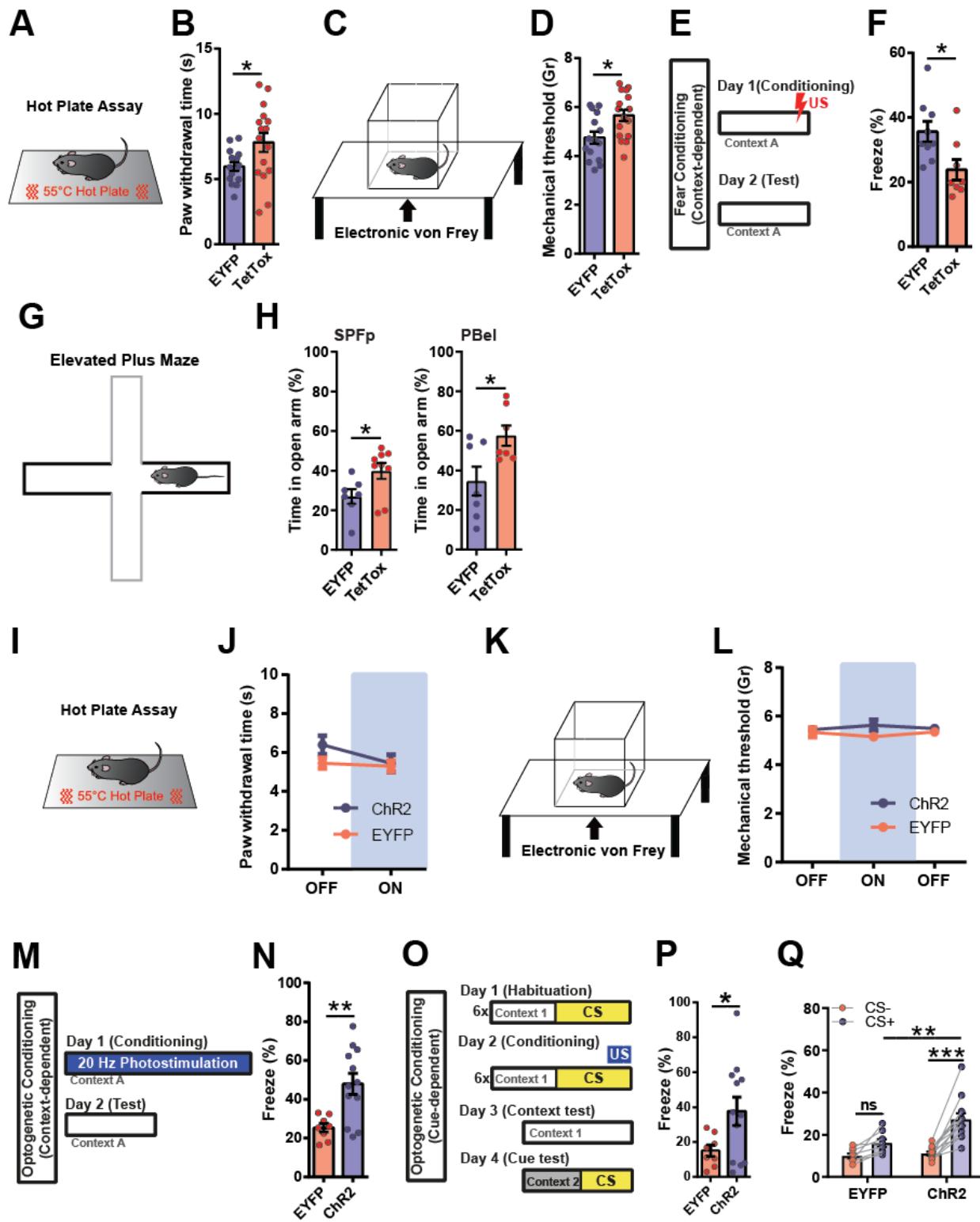
1491 (C) PBel; CS-: $11.27 \pm 4.14\%$, CS+ $51.31 \pm 11.00\%$ (n = 6). Paired t test (two-tailed), p = 0.01.

1492

Figure S7. The $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons are differentially activated by multiple sensory threat cues.

(A-E) Calcium response (peak amplitude) in the $\text{CGRP}^{\text{SPFp}}$ and $\text{CGRP}^{\text{PBel}}$ neurons by 2-s electric foot shock (0.6 mA) (A), 85-dB intense sound (B), rapidly expanding looming disk (C), TMT (D), and 0.5 mM quinine solution (E).

Statistics


(A) $\text{SPFp}: 9.17 \pm 2.25\% (n = 6)$, $\text{PBel}: 5.70 \pm 1.03\% (n = 6)$. Unpaired t test (two-tailed), $p = 0.1917$.

(B) $\text{SPFp}: 5.84 \pm 1.17\% (n = 6)$, $\text{PBel}: 3.82 \pm 1.39\% (n = 7)$. Unpaired t test (two-tailed), $p = 0.2987$.

(C) $\text{SPFp}: 6.48 \pm 1.31\% (n = 6)$, $\text{PBel}: 2.81 \pm 0.96\% (n = 7)$. Unpaired t test (two-tailed), $p = 0.0418$.

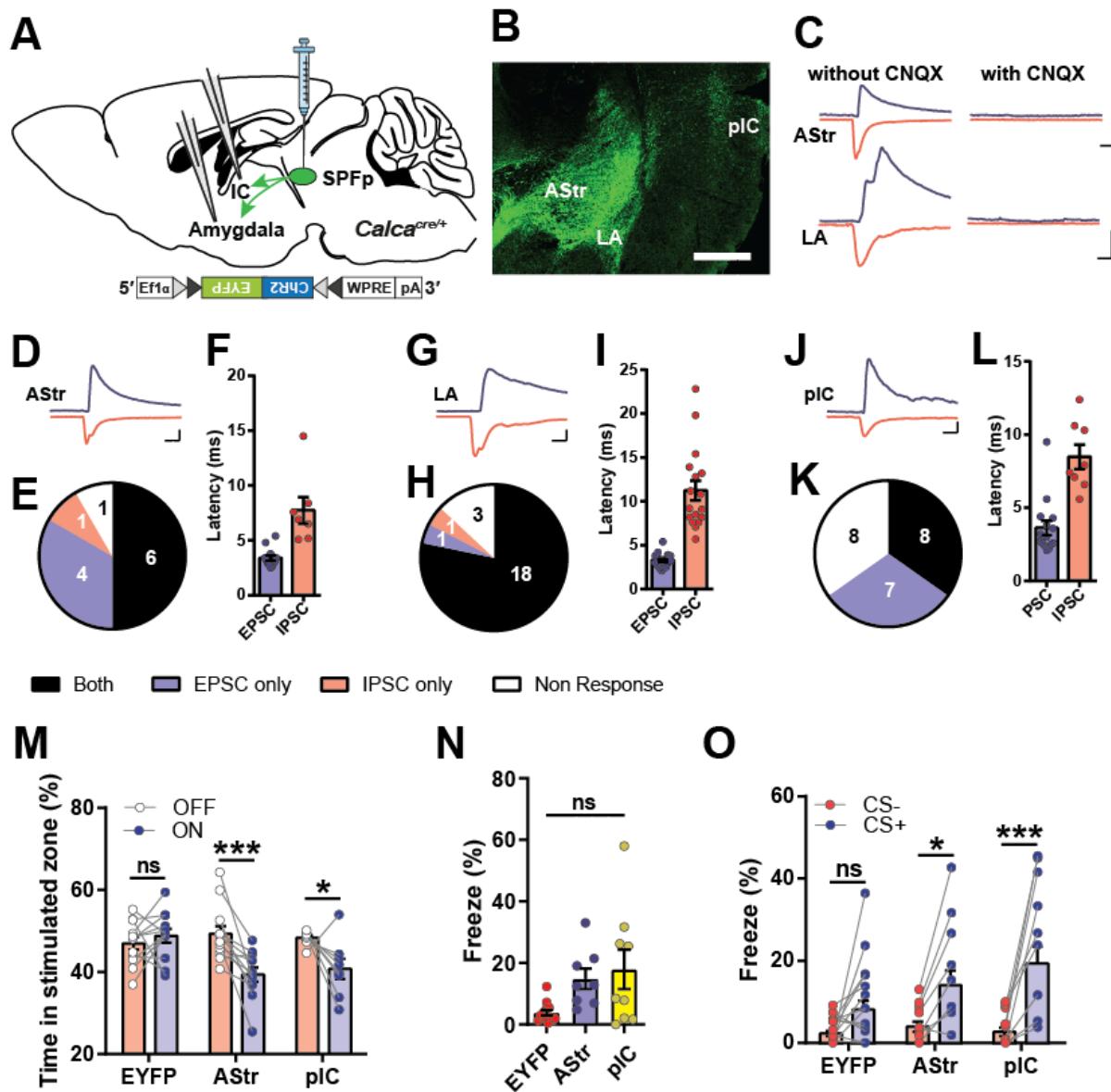
(D) $\text{SPFp}: -2.80 \pm 1.68\% (n = 6)$, $\text{PBel}: 2.68 \pm 1.07\% (n = 6)$. Unpaired t test (two-tailed), $p = 0.0206$.

(E) $\text{SPFp}: -0.27 \pm 0.66\% (n = 6)$, $\text{PBel}: 2.24 \pm 0.79\% (n = 7)$. Unpaired t test (two-tailed), $p = 0.0363$.

1507

1508 **Figure S8. Manipulation of CGRP^{SPFp} neurons in behavior assays.**

1509 (A, and B) Hot plate assay (55°C) with CGRP^{SPFp} silenced mice.


1510 (C, and D) Automatic von Frey assay with CGRP^{SPFp} silenced mice.

1511 (E) Experimental design for contextual fear conditioning.

1512 (F) Quantification of freezing 24 hr after contextual fear conditioning.
1513 (G) Schematic diagram of the elevated plus maze (EPM) test.
1514 (H) The EPM tests in CGRP^{SPFp} (left panel)- or CGRP^{PBel} neurons (right panel)-silenced mice.
1515 (I, and J) Optogenetic stimulation during hot plate assay (55°C).
1516 (K, and L) Optogenetic stimulation during electric von Frey assay.
1517 (M) Schematic diagram of optogenetic fear conditioning (photostimulation was used instead of foot shock).
1518 (N) Quantified freezing level 24 hr after optogenetic conditioning.
1519 (O) Schematic diagram of optogenetic cue-dependent fear conditioning (photostimulation paired with 3
1520 kHz tone).
1521 (P) Context-dependent freezing 24 hr after optogenetic conditioning.
1522 (Q) Cue-dependent freezing 24 hr after optogenetic conditioning.
1523
1524

1525 Statistics

1526 (B) EYFP: 5.95 ± 0.33 s (n = 15), TetTox: 7.82 ± 0.73 s (n = 16). Unpaired t test (two-tailed), p = 0.0306
1527 (D) EYFP: 4.75 ± 0.24 g (n = 15), TetTox: 5.66 ± 0.33 g (n = 16). Unpaired t test (two-tailed), p = 0.0113
1528 (F) EYFP: 35.61 ± 3.18 % (n = 9), TetTox: 23.84 ± 3.17 % (n = 8). Unpaired t test (two-tailed), p = 0.0196
1529 (H) SPFp; EYFP: 26.96 ± 3.66 % (n = 7), TetTox: 39.83 ± 4.05 % (n = 9). Unpaired t test (two-tailed), p =
1530 0.0383.
1531 PBel; EYFP: 34.56 ± 7.37 % (n = 7), TetTox: 57.58 ± 5.15 % (n = 7). Unpaired t test (two-tailed), p =
1532 0.0250.
1533 (I) Repeated measure two-way ANOVA showed no significance in interaction ($F(1, 16) = 1.79$, p = 0.2002),
1534 Laser ($F(1, 16) = 3.36$, p = 0.0857) and group ($F(1, 16) = 1.49$, p = 0.2393).
1535 (L) Repeated measure two-way ANOVA showed no significance in interaction ($F(2, 36) = 1.72$, p = 0.1938),
1536 Laser ($F(2, 36) = 0.06$, p = 0.9465) and group ($F(1, 18) = 1.26$, p = 0.2768).
1537 (N) EYFP: 25.31 ± 2.18 % (n = 8), ChR2: 47.95 ± 5.42 % (n = 12). Unpaired t test (two-tailed), p = 0.0042.
1538 (P) EYFP: 15.06 ± 3.20 (n = 8), ChR2: 37.55 ± 8.13 (n = 12). Unpaired t test (two-tailed), p = 0.044.
1539 (Q) Repeated measure two-way ANOVA showed significance in CS x group interaction ($F(1, 18) = 8.072$,
1540 p = 0.0108), CS ($F(1, 18) = 39.57$, p < 0.0001) and group ($F(1, 18) = 6.827$, p = 0.0176). Freezing at CS-
1541 and CS+ in ChR2 group (p < 0.0001) and CS+ in EYFP and ChR2 (p < 0.01) were significantly different
1542 with Sidak's multiple comparisons test.

Figure S9. Mapping the functional downstream of CGRP^{SPFP} projection.

1543
1544 (A) Schematics of the experiment.
1545 (B) Representative image of the projection regions from CGRP^{SPFP} neurons. Scale bar indicates 500 μm.
1546 (C) Example traces of an optically induced EPSC (blue) and IPSC (red) of AStr and LA without or with
1547 CNQX to confirm glutamatergic synapse. Scale bars indicate 10 ms and 50 pA.
1548 (D) Examples of AStr EPSC (blue) and IPSC (red) traces by optogenetic terminal activation. Scale bars
1549 indicate 10 ms and 50 pA.
1550 (E) Proportion of AStr cells with 'Both' EPSC and IPSC, 'EPSC only', 'IPSC only', or 'No-Response'.
1551 (F) Onset of each AStr EPSC and IPSC to optogenetic stimulation.
1552 (G-L) Results of the same experiments with LA (G-I) and pIC (J-L) neurons. Scale bars indicate 10 ms
1553 and 50 pA.
1554 (M) Result of RTPA with terminal photo-stimulation.
1555 (N) Context-dependent freezing at 24 h after terminal photo-stimulation conditioning.
1556 (O) Cue-dependent freezing at 24 h after terminal photo-stimulation conditioning.

1558 **Statistics**

1559 (F) Astr; EPSC: 3.40 ± 0.25 ms (n = 12 cells), Astr IPSC: 7.74 ± 1.21 ms (n = 7 cells). Unpaired t test (two-tailed), p = 0.0003.

1560 (I) LA; EPSC: 3.30 ± 0.16 ms (n = 21 cells), LA IPSC: 11.24 ± 1.13 ms (n = 17 cells). Unpaired t test (two-tailed), p < 0.0001.

1561 (L) pIC; EPSC: 3.63 ± 0.49 ms (n = 15 cells), IC IPSC: 8.49 ± 0.83 ms (n = 8 cells). Unpaired t test (two-tailed), p < 0.0001.

1562 (M) Repeated measure two-way ANOVA showed significance in laser X group interaction ($F(2, 29) = 7.215$, p = 0.0029) and laser ($F(1, 29) = 13.24$, p = 0.0011, but not group ($F(2, 29) = 2.607$, p = 0.0910). Laser ON and was significantly larger than OFF in AStr (p < 0.001) and pIC (p < 0.05). Additionally, difference between EYFP vs Astr (p < 0.01) and EYFP vs pIC (p < 0.05) during ON period were significant.

1563 (N) EYFP: 3.842 ± 0.89 (n = 13), AStr: 14.82 ± 3.32 (n = 8), pIC: 17.94 ± 6.40 % (n = 9). One-way ANOVA showed significant (p = 0.0161). EYFP vs IC was significantly different (p < 0.05) with Tukey's multiple comparison test.

1564 (O) Repeated measure two-way ANOVA showed significance in CS X group interaction ($F(2, 27) = 3.647$, p = 0.0396) and CS ($F(1, 27) = 39.74$, p < 0.0001) but not in group ($F(2, 27) = 2.948$, p = 0.0695). CS+ was significantly larger than CS- in AStr (p < 0.05) and pIC (p < 0.0001). Moreover, difference between EYFP and pIC in CS+ was significant (p < 0.01) with Sidak's multiple comparison test.

1565

1566

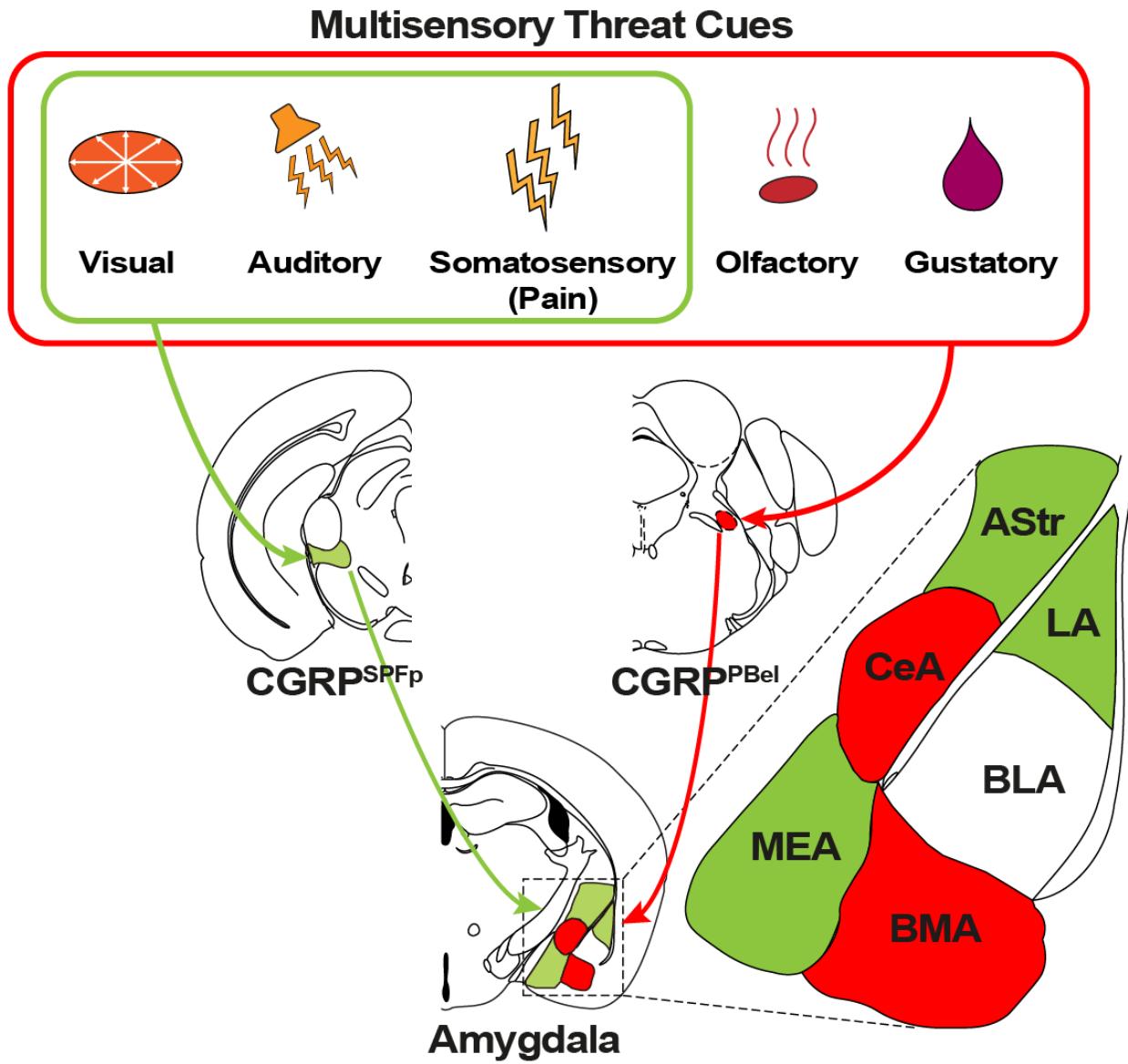
1567

1568

1569

1570

1571


1572

1573

1574

1575

1576

1577

1578

Figure S10. Summary illustration

1579