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Abstract

Military personnel engaged in combat are vulnerable to Posttraumatic Stress Disorder (PTSD), following
traumatic experiences in the battlefield. Prior research has mostly employed fear-related paradigms to
unravel neural underpinnings of fear dysregulation in individuals with PTSD. The ability to acquire and
update fear responses depends critically on the individual’s ability to cope with uncertainty, yet the role of
individual uncertainty attitudes in the development of trauma-related psychopathology has hardly been
examined. Here, we investigated the association between PTSD-related alterations and the subjective
valuation of uncertain outcomes during decision-making. We used a monetary gambling paradigm inspired
by behavioral economics in conjunction with fMRI and explored neural markers of both vulnerability and
resilience to PTSD in a group of combat veterans. Behaviorally, PTSD symptom severity was associated
with increased aversion to uncertainty. Neurally, activity in the ventromedial prefrontal cortex (vimPFC)

during valuation of uncertain options was associated with PTSD symptoms, an effect which was specifically
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driven by numbing symptoms. Moreover, the neural encoding of the subjective value of those uncertain
options was markedly different in the brains of veterans diagnosed with PTSD, compared to veterans who
experienced trauma but did not develop PTSD. Most notably, veterans with PTSD exhibited enhanced
representations of the saliency of rewards and punishments in the neural valuation system, especially in
ventral striatum, compared with trauma-exposed controls. Our results point to a link between the function
of the valuation system under uncertainty and the development and maintenance of PTSD symptoms, and

stress the significance of studying reward processes in PTSD.

Introduction

Following a life-threatening experience, some individuals develop Posttraumatic Stress Disorder (PTSD)
symptoms, which can be emotionally, socially and vocationally disabling. These symptoms include re-
experiencing the traumatic event, avoidance of trauma reminders, and exaggerated arousal and reactivity,
as well as emotional numbing (losing interest in significant activities, having difficulty experiencing
happiness or love, and feeling distant from others (1)). While medications and psychotherapy help some
individuals, many people with PTSD remain symptomatic following treatment (2). A better understanding

of the neural basis of PTSD is crucial, as it can inform new approaches to individualized treatment.

Soldiers in combat face highly uncertain life-threatening events, which are uncontrollable (3), and that may
result in serious injury to themselves or death of teammates. An individual’s attitude towards uncertainty
and their capacity to handle uncertainty may therefore affect one’s ability to cope with potentially traumatic
events. The notion of uncertainty was incorporated in studies of fear-learning attempting to unravel the
behavioral and neural mechanisms of PTSD (4,5). Participants in these studies encountered probabilistic
deliveries of adverse outcomes (e.g. electric shocks), and their ability to predict these outcomes was
measured (e.g. by their skin conductance responses). In a separate line of work, using a behavioral economic
framework, our group showed increased aversion to ambiguity (an uncertain situation where outcome
probabilities are not known) in combat veterans with PTSD, compared to trauma-exposed veterans without
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PTSD, when choosing between potential monetary losses (6). This aversion to uncertainty demonstrated in
situations unrelated to the trauma, may also contribute to the exaggerated behavior in fear conditioning
paradigms, and to the development and maintenance of PTSD symptoms. Further understanding of this
aversion to uncertainty could provide evidence for targeting uncertainty in behavioral interventions, to

improve the daily decision-making and well-being of individuals with PTSD.

One possibility is that the increased aversion to uncertainty reflects alterations in the neural computations
of subjective value in the brains of individuals who developed PTSD following trauma exposure. In the
general population, a network of brain regions was implicated in valuation and decision making, including
the ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), posterior cingulate cortex
(PCC), dorsolateral prefrontal cortex (dIPFC), ventral striatum, amygdala, and thalamus (7,8).
Extensive evidence suggests that the subjective value of rewards is encoded in this network (9-11), and
there is also some (12-15), although less conclusive (16-20), evidence, for encoding of subjective value of
punishments in the same areas. Although there is some evidence for changes in the neural processing of
monetary outcomes in individuals with PTSD (21,22), we do not know how uncertain decision values are
encoded in the brains of these individuals. Moreover, as far as we know, the neural encoding of ambiguous

losses (as opposed to gains) has not been investigated even in the general population.

Here we combined a simple economic task with functional MRI and computational modeling to examine
the neural encoding of subjective value under risk and ambiguity, and the alterations in this encoding in
individuals exposed to trauma. We compared combat veterans with PTSD to those who did not develop
PTSD symptoms (trauma-exposed controls), and were thus able to investigate both the psychopathology of
PTSD and the resilience to PTSD. We find that veterans with PTSD encode the subjective values of
uncertain monetary gains and losses in a U-shape manner, with increased activation for both increased gains
and increased losses (compatible with saliency encoding). Conversely, trauma-exposed controls encode the
same type of subjective values monotonically, with increased activation for increased gains, and decreased

activation for increased losses (compatible with value encoding). Our results suggest that this shift from
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value-encoding to saliency-encoding, especially of ambiguous monetary losses, could be a neural marker

for PTSD symptom severity.

Results
In an fMRI experiment, combat veterans with current PTSD diagnosis and those who never developed

PTSD completed a gambling task under four decision conditions on two separate days. Participants chose
between a sure monetary outcome (either gaining or losing $5) and an uncertain outcome (either risky or
ambiguous gain or loss) (Fig 1B). Participants made decisions about gains and losses in separate blocks in
two scanning sessions (Fig 1A). We estimated the attitudes toward risk and ambiguity of each participant
through a behavioral model (see Methods) and aimed to understand the influence of PTSD symptom

severity on both the behavioral attitudes and the neural mechanisms of valuation.
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Figure 1. Study design

A. Study timeline B. Task design
Gain Loss
Screening Clinical interview:
Day SCID, CAPS, PCL-5, BDI, STAI, DES, CES, CTQ
X
2
(4
. . $120 fMRI scanning
Day1 il uElion & el Endow-  Task order: e.g. Gain-Gain-Loss-Loss
Average interval = 12.6 days
>
=
Day2  Reminder fMRI scanning KBIT and questionnaires: 3
of study Task order: e.g. Loss-Loss-Gain-Gain ~ P°gRoEPhe SRS .E
<
C. Lottery design o
Risk Ambiguity D.Trial timeline

25% 50% 75% 74% 50% 24%

Choice display
6000 ms Response cue
Lottery outocmes: b

<3500 ms
1$5, 6,7, 8,10, 12, 14, 16, Choice feedback
19, 23, 27, 31, 37, 44, 52, 500 ms Jittered ITI
4000 ~ 8000 ms
61, 73, 86, 101, and 120 + 3500 ms - RT

A: Timeline of the study. Participants went through a screening session and two scanning sessions on three
different days. The screening session determined participants’ eligibility based on PTSD diagnosis, combat
exposure, and exclusion of other neurological disorders. Eligible participants were scanned on two separate
days on a decision making task. Measure labels: SCID: Structured Clinical Interview for DSM-4, CAPS:
Clinician Administered PTSD Scale, PCL5: , PTSD Checklist for DSM-5 , BDI: Beck Depression Inventory,
STAI-1: State Anxiety, STAI-2: Trait Anxiety, DES: Dissociative Experiences Scale, CES: Combat Exposure
Scale, CTQ: Childhood Trauma Questionnaire, KBIT: Kaufman Brief Intelligence Test, BIS/BAS: Behavioral
Avoidance/Inhibition Scale, BIS-11: Barratt Impulsiveness Scale, DOSPERT: Domain-Specific Risk-Taking
Scale. B: Task design: participants chose between a lottery and a sure outcome under four conditions: risky
gains, ambiguous gains, risky losses, and ambiguous losses. Lotteries are shown as examples. Outcome

probability of the risky lottery was represented by the area of the red or blue rectangle and was fully known to
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99 the participant. Outcome probability of the ambiguous lottery was covered by a grey rectangle in the middle,
100 thus was partially known to the participant. C: Levels of risk (outcome probability, 0.25, 0.5, and 0.75),
101 ambiguity (grey area, 0.74, 0.5, and 0.24), and monetary outcomes (20 monetary gains and 20 monetary losses)
102 of the lottery. D: On each trial, participants had 6 seconds to view the options, and made a choice following a
103 green response cue. They had a time limit of 3.5 seconds to register the choice, after which they would
104 immediately see a confirmation with the yellow square representing the side they chose. The lottery was not
105 played out during the scan to avoid learning. The inter-trial-interval (ITI) was jittered among 4, 6, and 8
106 seconds, and the remaining time during the response window (3.5 seconds — response time) would be added to

107 the ITL.

108

109  Clinical symptom variation

110  Participants varied in their PTSD symptom severity (Fig 2A) assessed by the Clinician-Administered PTSD
111 Scale (CAPS) for DSM-4 (Diagnostic and Statistical Manual of Mental Disorders, 4" Edition) (23).
112 Veterans with PTSD had higher total CAPS score compared to controls (PTSD, N = 23: Mean =72.13, SD
113 =15.04; control, N = 34: Mean = 6.21, SD = 9.68; #34) = 18.58, p < 0.001). PTSD symptoms as captured
114 by the S5-factor model of CAPS (1) were highly correlated with symptoms of depression, anxiety and
115  dissociative experiences (Fig 2B, see Table S1 for descriptive statistics of all measures). In order to account
116  for the influence of clinical symptoms on the behavior and neural activity during the task, we conducted
117  principal component analysis (PCA) on these clinical symptoms. Since the severity of psychopathology
118  may be affected by the degree of stress exposure, we also included measures of combat exposure (CES)
119  and childhood trauma (CTQ) in the PCA. The first three components accounted for ~80% of the variance
120  in those data (Fig S1A). The first component was affected by all clinical symptoms (PTSD, depression,
121  anxiety, and dissociative experiences) and might reflect a general affective factor. This component was
122 highly consistent with PTSD symptom severity (correlation with CAPS Spearman’s p =0.94, n = 55, p <
123 0.001), and could be used to clearly classify PTSD diagnosis (Fig S1C). The second component was mostly

124  affected by re-experiencing, avoidance and anxious arousal clusters of CAPS, as well as the degree of
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125  combat exposure, potentially representing a fear learning-updating deficit or general hyperarousal. The
126  third component was affected by combat exposure and childhood trauma. Components 2 and 3 were not
127  strongly correlated with PTSD symptom severity (n= 55, Component 2: correlation with CAPS Spearman’s
128 p=0.11, p=0.43; Component 3: correlation with CAPS Spearman’s p = 0.029, p = 0.84).
129
130  Figure 2. Participants’ symptom severity
A. Distribution of PTSD Overall B. Correlations among Clinical Symptom Severities
Symptom Severity Lt LT 2T T T o
CAPS-ReExp 097108770831 0787 0757 0557 085 0s| 0| - Fo
20 CAPS-Avoid 3 0.86]0.83] 0757 069 059 056 | 0x2"| 047" us
2] CAPS-Numb o § o;}ﬁ 08*6*.A 0.6*9M 047*9*.A 0.6*9** 0_6*9** O.G’E)** 028* o8 Eﬁ
§15 CAPS-DysA = 158 %S 5, 07710807 0727 0727 056 | 0ar”| oz
S Bl Control, n = 34 ° 5 T w  w | w Eo
= CAPS-AnxA 0.65 | 0.61 | 0.65 | 040 0.47 w Fo
@ B PTSD,n=23 £
a10 BDI & & 074 0.80 | 067 | o3 | o
o o 3 0% |
< STAI-1 2 0.90] o046 | ow | o3 B
3 5 ° o ° *%q * I
8 STAI-2 8 3 0.58 018 027
| . DES « &o om:}o oo:o oo ;8
0 CES = ; oo 3 o &
30 60 90 ° e SEAED s E o
CAPS total cra i 5. B g 3ae | -
& 3 2 % 5 I 9 o
o & 2 8 8
131 s & § & 3o
132 A: Distribution of CAPS total score, colored by group (combat veterans with or without PTSD diagnoses). One
133 PTSD participant included in the analysis did not have complete CAPS data. B: PTSD, depression and anxiety
134 symptom severities were highly correlated. Numbers in the upper right panels indicate pair-wise Pearson
135 correlation coefficients. Significance levels: ***, p < 0.001; **, p < 0.01; *, p < 0.05. Lower left panels show
136 pairwise scatter plots and smoothed curves using locally weighted polynomial regression. Panels in the diagonal
137 show distributions and density curves for each measure. Labels of measures: CAPS-ReExp: re-experiencing,
138 CAPS-Avoid: avoidance, CAPS-Numb: numbing, CAPS-DysA: dysphoric arousal, CAPS-AnxA: anxious
139 arousal, BDI: Beck Depression Inventory, STAI-1: State Anxiety, STAI-2: Trait Anxiety, DES: Dissociative
140 Experiences Scale, CES: Combat Exposure Scale, CTQ: Childhood Trauma Questionnaire.
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141  PTSD symptom severity is associated with increased ambiguity aversion in the loss

142  domain, and increased risk aversion in the gain domain
143  For each participant, we estimated risk and ambiguity attitudes for gains and losses, using the combined

144  data from both scanning sessions (see equations 1 and 2 in Methods; see Fig S2A for an example from one
145  participant). We then investigated the associations between these attitudes and PTSD diagnosis status, as
146 well as PTSD symptom severity. All attitudes were transformed such that negative numbers indicate
147  aversion to risk or ambiguity, and positive numbers indicate seeking. Based on the previous behavioral
148  finding that PTSD symptom severity was associated with higher aversion to ambiguity in losses (6), we
149  first investigated ambiguity attitudes. At the group level, participants were not significantly averse to
150  ambiguity in the domain of losses (Fig 3A; PTSD: Mean = -0.25, #(23) =-1.81, p = 0.11; Control: Mean =
151  0.003, #33) = 0.040, p = 0.97), and were significantly averse to ambiguity in the domain of gains (Fig 3A;
152  PTSD: Mean = -0.35, #(23) = -3.45, p < 0.01; Control: Mean = -0.42, #(33) =-7.27, p <0.001 ). However,
153  a two-way ANOVA of ambiguity attitude with domain as the within-subject factor and group as the
154  between-subject factor showed a significant interaction between domain and group (F(1,56) = 4.34, p <
155  0.05, #° = 0.0279). Post-hoc comparisons showed that veterans with PTSD were marginally more averse
156  to ambiguity under losses (p = 0.081), but not under gains (p = 0.53). A dimensional analysis (Fig 3B) of
157  this symptom—behavior relationship, regardless of PTSD diagnosis, revealed a negative correlation between
158  ambiguity attitudes in the loss domain and CAPS total score (Spearman’s p with CAPS total score = -0.30,
159  p <0.05), indicating that higher symptom severity was related to higher aversion to ambiguity under losses.
160  Since many control participants had a CAPS score of zero, we also repeated the analysis using PCL-5 scores

161  instead of CAPS and overserved a similar effect (Fig S2B, Pearson’s » with PCL-5 =-0.31, p < 0.05).

162  Next, we examined risk attitudes. Both the PTSD and control groups exhibited risk aversion in the domain
163  of gains (PTSD: Mean = -0.54, #(23) = -13.34, p < 0.001; Control: Mean = -0.28, #33) = -4.80, p < 0.001).
164  In the domain of losses, veterans with PTSD exhibited risk seeking (Fig 3C; PTSD: Mean = 0.34, #(23) =
165  5.43, p < 0.001), while combat controls exhibited marginal risk seeking (Control: Mean = 0.20, #33) =

166  1.82, p = 0.078, FDR corrected for four comparisons). A two-way ANOVA of risk attitude with domain
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167  (gain or loss) as the within-subject factor and group as the between-subject factor revealed a significant
168 interaction between domain and group (F(1,56) = 6.29, p < 0.05, #° = 0.0521). Post-hoc comparisons
169  showed that veterans with PTSD were more averse to risk under gains (p < 0.01), but not under losses (p =
170  0.34), compared with combat controls. Examining this relationship further with a dimensional approach
171  (Fig 3D and Fig S2C), we observed a similar effect: PTSD symptom severity was negatively correlated
172 with risk attitudes in the gain domain (Spearman’s p with CAPS total = -0.39, p < 0.01; Pearson’s  with

173 PCL5 =-0.36, p < 0.01).

174  Veterans with PTSD and combat controls did not differ in the choice noise parameter y (a two-way

175  ANOVA of y with domain (gain or loss) as the within-subject factor and group as the between-subject
176  factor: no main effect of group, F(1,56) = 1.28, p = 0.262, ° = 0.0120; no domain by group interaction,
177  F(1,56)=1.63, p=0.207, * = 0.0136). However, model-fitting quality was in general better in the

178  control group than in the PTSD group (a two-way ANOVA of BIC with domain (gain or loss) as the

179  within-subject factor and group as the between-subject factor: a main effect of group, F(1,56) =4.75, p <

180  0.05, #° = 0.0587; no domain by group interaction, F(1,56) = 1.68, p = 0.200, #° = 0.00788).

181
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182  Figure 3. Uncertainty attitudes and PTSD symptom severity

A. Model-based Ambiguity Attitude B. Ambiguity Attitude in Losses and PTSD
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183

184 A: Group comparison of ambiguity attitudes in gains and losses between veterans with PTSD and combat
185 controls. B: PTSD symptom severity was negatively correlated with ambiguity attitude in losses. One
186 participant was not included in the analysis due to missing CAPS. C: Group comparison of risk attitudes in
187 gains and losses between veterans with PTSD and combat controls. D: PTSD symptom severity was negatively
188 correlated with risk attitude in gains. One participant was not included in the analysis due to missing CAPS.
189 In A and C, comparisons of each group’s attitudes with zero were FDR-corrected across all four comparisons
190 in each uncertainty type. Post-hoc comparisons between groups in A and C are FDR-corrected. Significance

191 level: *, p<0.05; **, p<0.01; ***, p<0.001.

10
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192  To control for differences in age, income, education and intelligence, we used a linear regression model to
193  explain uncertainty attitudes as a function of PTSD symptoms (CAPS total), while accounting for these
194  demographic factors. Because model-fitting quality was affected by PTSD symptoms, we also included the
195  BIC of the behavioral model as a predictor in the regression (see Supplementary Methods). For risk attitude
196 in the gain domain, the effect of CAPS total score remained significant (multi-factor ANOVA by
197  Generalized Linear Model: F(1,41) =12.5, p <0.01). BIC was the only other significant factor (F(1,41) =
198  17.7, p <0.001). Similarly for ambiguity attitude in losses, CAPS total score (multi-factor ANOVA, F(1,

199  41)=6.05, p <0.05) and BIC (£(1, 41) = 4.86, p < 0.05) were the only significant factors.

200 Because seven of the combat-control veterans in this study sample also participated in the previous
201  behavioral study, we also repeated the analysis excluding these returning participants, to yield a completely
202  independent dataset. The negative relationships between PTSD symptom severity and ambiguity attitude in
203  losses (Spearman’s p with CAPS total=-0.31, p <0.05, n = 50), and between PTSD symptom severity and
204  risk attitude in gains (Spearman’s p with CAPS total =-0.42, p <0.01, n = 50) still held in this independent

205  sample (Fig S3B, D).

206  We also assessed participants’ risk-taking attitudes through the Domain-Specific Risk-Taking (DOSPERT)
207 Scale self-report questionnaire, but none of the domains (Ethical, Financial, Health/Safety, Recreational,
208  and Social) was correlated with PTSD symptoms severity measured by CAPS total. Among the other self-
209  report measures, CAPS total was correlated with total score of Behavioral Inhibition Scale (BIS,
210  Spearman’s p = 0.37, p < 0.01, n = 57), and with total score of Barratt Impulsiveness Scale (BIS11,

211 Spearman’s p =0.47, p <0.001, n = 57).

212

213 PTSD symptom severity is associated with diminished neural response to decision making

214 under uncertainty
215  To investigate the neural mechanisms of the stronger aversion to uncertainty observed in veterans with

216  PTSD, we first examined the general neural activity during decision-making. Because the key process of

11
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217  our task was evaluating the subjective values of the uncertain options, we looked at the neural activity
218  during the 6-second period of options presentation on each trial (see descriptive statistics of participants
219  included in the neural analyses in Table S2). In a whole-brain analysis, we explored the relationship between
220 PTSD symptom severity and the general neural activity during this valuation process (compared to
221  baseline). Activity in a vmPFC - a central component of the valuation network - was negatively correlated
222 with CAPS total score (p < 0.001, cluster-based corrected, Fig 4A), during the second session of the task.
223 This negative relationship was not specific to a particular condition — rather, it was consistent across all
224 four decision contexts (Fig 4B; Pearson’s r(risky gains) = -0.50, r(ambiguous gains) =-0.51, r(risky losses)
225  =-0.51, r(ambiguous losses) = -0.40). Veterans with higher overall PTSD symptom severity showed more
226 vmPFC deactivation during valuation of uncertain options. This finding is consistent with our hypothesis
227  regarding the valuation system’s involvement in PTSD; next, we directly examined the neural correlates of

228 valuation in the task.

229
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231  Figure 4. Reduced vmPFC activity during valuation is related to PTSD symptom severity
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233 A: A whole-brain analysis revealed that activity in vmPFC during valuation was negatively correlated with
234 CAPS total score, regardless of decision condition. B: Visualization of this negative correlation between general

235 activity in the vinPFC and CAPS total score in each decision condition.
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237  PTSD symptom severity is associated with altered neural encoding of subjective value of

238  uncertain options
239  For each participant, we calculated the subjective value of the lottery presented on each trial, based on the

240  Dbehavioral model (see equation 1 in Methods), using the participant-specific risk and ambiguity attitudes
241  under gains and losses. We then included the subjective values (positive for gain lotteries, negative for loss
242 lotteries) in the GLM, separately for each of the four decision conditions. We focused our analysis on the
243  two decision conditions in which symptoms influenced behavior: ambiguous losses and risky gains. To
244  examine group differences between veterans with PTSD and combat controls, we directly contrasted their
245  neural representation of subjective value in a whole-brain analysis. Veterans with PTSD showed more
246  negative subjective-value signals for ambiguous losses in left inferior frontal regions (IFG) and bilateral
247  occipital regions, compared to controls (Fig 5A; for statistics of all regions, see Table S3). We then used a
248  leave-one-subject-out (LOSO) procedure to define regions of interest around the inferior frontal gyrus (IFG)
249  and sample activation in an unbiased manner (see Methods). The subjective-value signal of ambiguous
250  losses in IFG was negatively correlated with PTSD symptom severity (Fig 5B; Spearman’s p = -0.35, p <
251  0.05, n=48), such that higher symptom severity was associated with more negative subjective-value signal.
252 Veterans with PTSD showed more positive subjective-value signals for risky gains in right orbitofrontal
253  cortex (OFC) in a whole-brain analysis (Fig 5C), and PTSD symptoms severity was positively correlated
254  with subjective-value signal of risky gains in this OFC region (Fig 5D; Spearman’s p = 0.52, p < 0.001, n
255 = 48). For completion, we also looked at the other two conditions. Veterans with PTSD showed more
256  positive encoding of subjective value of ambiguous gains in the thalamus and right cerebellum (Fig S4),

257  and there was no group difference in the subjective-value encoding of risky losses.
258
259
260

261
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262  Figure 5. Neural representation of subjective value directly contrasting PTSD and control
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263

264 Whole-brain comparisons of neural subjective-value signals between veterans with PTSD and combat controls,
265 under A: ambiguous losses, and C: risky gains. All maps were corrected using cluster-based method controlling
266 family-wise error at 0.05, when thresholded at p < 0.001 at the voxel level. B: Neural subjective-value
267 representation of ambiguous losses in the left IFG was negatively correlated with PTSD symptom severity. D:
268 Neural subjective-value representation of risky gains in the right OFC was positively correlated with PTSD

269 symptom severity. ROIs in B and D were defined by a leave-one-subject-out (LOSQO) approach.

270

271  To further probe group and individual differences in value encoding, we examined the subjective-value
272 signals of each group in the classical value areas — the vimPFC and the ventral striatum — as defined in a
273  meta-analysis by Bartra and colleagues (14). We again focused on the conditions of ambiguous losses and
274  risky gains (Fig 6). In vimPFC, the subjective-value signal of risky gain lotteries was positively correlated
275  with PTSD symptom severity (Fig 6A, Spearman’s p with CAPS = 0.31, p < 0.05). In ventral striatum,

276  subjective-value signal of ambiguous loss lotteries was negatively correlated with PTSD symptom severity

15


https://doi.org/10.1101/2020.04.14.041467
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041467; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

277  (Fig 6B, Spearman’s p with CAPS = -0.35, p < 0.05). PTSD symptom severity was not significantly
278  associated with the subjective-value signal of ambiguous losses in vmPFC (Fig 6A, Spearman’s p with
279  CAPS =-0.18, p = 0.22), or with the subjective-value signal of risky gains in ventral striatum (Fig 6B,
280  Spearman’s p with CAPS = 0.22, p = 0.14; see Fig S5 A and B for correlations with PCL5). These
281  relationships could also be revealed in the group comparison (Fig 6 C and D). The subjective-value signal
282  of ambiguous losses was more negatively encoded in ventral striatum in veterans with PTSD compared
283  with combat controls (Fig 6D, t = -2.77, p < 0.01). Conversely, the subjective-value signal of risky gains
284  was marginally more positively encoded in vimPFC in veterans with PTSD than in combat controls (Fig

285  6C, 1= 1.97, p=0.054).

286  The relationships between subjective-value signals and PTSD symptom severity held after controlling for
287  age, income, education and intelligence (see Supplementary Methods). The subjective-value signal of
288  ambiguous losses in ventral striatum was affected by CAPS (multi-factor ANOVA by Generalized Linear
289  Model, F(1, 33) =6.01, p <0.05), and not by the four demographic factors. The subjective-value signal of
290  risky gain lotteries in vmPFC was marginally affected by CAPS (multi-factor ANOVA by Generalized

291  Linear Model: F(1, 33) =3.53, p = 0.069), and not by the four demographic factors.

292

293
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Figure 6. Neural subjective-value signals in external ROIs of vimPFC and ventral striatum were

related to PTSD symptom severity
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A: In vimPFC, correlations between subjective-value signals of ambiguous losses and risky gains and PTSD

symptom severity (CAPS total). B: In ventral striatum, correlations between subjective-value signals of

ambiguous losses and risky gains and PTSD symptom severity (CAPS total). C: In vmPFC, group comparison

of neural subjective-value signals between veterans with PTSD and combat controls. D: In ventral striatum,

group comparison of neural subjective-value signals between veterans with PTSD and combat controls. In

panels C and D, comparisons were post-hoc FDR-corrected after ANOVA within each figure. Significance level:

*, p<0.05; **, p<0.01; ***, p<0.001. ROIs of vmPFC and ventral striatum were taken from Bartra and

colleagues’ meta-analysis study (14).
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306 A shift from value-encoding to saliency-encoding of ambiguous losses in PTSD
307  Our results so far point to differences in the mechanisms of subjective-value encoding between veterans

308  with PTSD and combat controls. This difference is most notable for ambiguous losses: in combat controls,
309 ambiguous losses were encoded in a positive manner (decreased activity for increased losses) consistent
310  with a monotonic representation of value. Conversely, in the brains of veterans with PTSD, losses were
311  encoded negatively (increased activity for increased losses), consistent with a U-shaped saliency-encoding
312  mechanism. This difference in representation was particularly striking in the ventral striatum (Fig 6D). To
313 directly confirm this group difference, however, we need to examine gains and losses on the same scale.
314  To this end, we constructed a GLM with one predictor for the value of ambiguous gains and losses, and
315  another predictor for the saliency of the same gains and losses. Subjective values of the lotteries were used
316  for the value predictor, and saliency was computed as the absolute value of these subjective values (Fig 7A;
317  see Methods for fMRI GLM first-level analysis). While the ventral striatum in controls significantly
318  encoded value (one-sample t test GLM beta compared with 0, #(28) = 3.4, p < 0.01), but not saliency (#(28)
319 =-0.62, p=0.54), the opposite pattern was observed in veterans with PTSD: activity in the same brain area
320 in the PTSD group encoded saliency (#(18) = 2.7, p < 0.05), but not value ((2(18) = 0.99, p = 0.45; all p
321  values were FDR corrected for four comparisons). Furthermore, the saliency-encoding patterns were
322  significantly different between veterans with PTSD and combat controls (two-sample t test: #(39.3) = -2.5,

323 p<0.05).

324  Figure 7B presents a direct visualization of the shape of value- and saliency- encoding in the ventral striatum
325  inthe two groups of veterans. For each participant, and within each uncertainty domain (risk or ambiguity),
326  we grouped the trials into 6 bins across losses and gains, based on the subjective values of the lotteries. The
327 1% bin corresponded to the loss lotteries with the most negative subjective values, and the 6" bin
328  corresponded to the gain lotteries with the most positive subjective values (see Methods for details). As
329  expected, combat control veterans showed a monotonic representation of subjective value, whereas veterans

330  with PTSD showed a U-shaped representation (Fig 7B).
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Figure 7. Value and saliency encoding in the ventral striatum of PTSD and controls.

Neural Representation of Value vs. Saliency:
Comparing PTSD and Control
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A: In ventral striatum, value-encoding of subjective values was observed in combat controls but not in
veterans with PTSD; saliency-encoding of subjective values was observed in veterans with PTSD but not in
combat controls. Comparisons with zero for both PTSD and Control group were FDR-corrected across four
comparisons in the two figures. Significance level: *, p<0.05; **, p<0.01; ***, p<0.001. B: Direct visualization
of neural response to trials of ambiguous lotteries with different levels of subjective values in ventral
striatum. Bins were ordered monotonically based on participant-specific subjective values of the lotteries
across losses and gains. Bins 1-3 were loss lotteries, and bins 4-6 were gain lotteries. Consistent with panel A,

combat control veterans encoded subjective value in a monotonic value-pattern, and veterans with PTSD
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341 encoded subjective value in a U-shaped saliency-pattern. ROI of ventral striatum was taken from Bartra and

342 colleagues’ meta-analysis study (14). All error bars indicate standard errors.

343

344 Neural activity explains symptoms variation better than behavioral uncertainty attitudes
345 Having revealed both behavioral and neural alteration related to PTSD, we explored whether PTSD
346  symptom variation could be better explained by neural activation patterns, behavioral uncertainty attitudes,
347  or a combination of both. We constructed three linear models to predict PTSD symptom severity indicated
348 by CAPS total score, using (1) magnitudes of neural responses to the four decision conditions in vmPFC
349  (ROI from Fig 4); (2) behavioral risk and ambiguity attitudes under gains and losses; and (3) both neural
350 responses and behavioral attitudes. All models controlled for age and intelligence (KBIT) (see details in
351  Supplementary Methods). The model including only neural measures best explained the variation of PTSD
352  symptom severity (BIC(neural model) = 132.8, BIC(behavioral model) = 154.7, BIC(full model) = 143.8,

353 Fig S6).

354

355 Emotional numbing plays the key role in diminished vmPFC general neural activity

356  So far, we investigated the relationship between PTSD overall symptom severity and valuation under
357  uncertainty. We further looked at whether a specific symptom cluster was the main source of influence,
358  considering the multi-dimensional nature of PTSD. From the vmPFC ROI in which neural activity was
359  negatively correlated with CAPS total score in the whole-brain analysis (Fig 4A), we sampled general
360 neural activity during the valuation phase of the task (GLM beta) from each participant. We then
361  constructed a linear regression model to explain this region’s activity with all five clusters of CAPS,
362  including re-experiencing, avoidance, emotional numbing, dysphoric arousal, and anxious arousal,
363  accounting for age and intelligence. Only the emotional numbing cluster significantly contributed to the
364  negative correlation between vmPFC activity and PTSD symptom severity (standardized regression

365  coefficient, Beta =-0.72, t = -2.32, p < 0.05, Fig S7A). Age and intelligence (KBIT) did not significantly

20


https://doi.org/10.1101/2020.04.14.041467
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041467; this version posted December 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

366 influence vmPFC neural activity (standardized regression coefficient, Age: Beta=-0.14,t=-1.13, p=0.26;
367 intelligence: Beta = -0.044, t = 0.33, p = 0.75). Variable selection using exhaustive search also indicated
368  that including only the emotional numbing cluster out of all PTSD symptom clusters best explained the
369  relationship between vmPFC neural activity and PTSD symptom severities (Fig S7B, BIC = 112.8; see

370  details in Methods for fMRI GLM second-level analysis).

371

372  Influence of clinical symptoms beyond PTSD

373  Because our participants showed high levels of comorbidity with other clinical symptoms, especially
374  depression and anxiety (Fig 2B), we also investigated how the behavioral and neural mechanisms of
375  valuation were influenced by symptoms beyond PTSD. We examined the correlation between the first three
376  principal components of all clinical measures (Fig S1) and the behavioral uncertainty attitudes. Principal
377  component 1 (general affective symptom) was negatively correlated with risk attitude under gains
378  (Pearson’s r=-0.35, p <0.01) and ambiguity attitude under losses (Pearson’s r=-0.29, p <0.05), consistent
379  with the effect of the overall PTSD severity indicated by CAPS total score (Fig 3). We did not find any
380 relationship between uncertainty attitudes and the second (fear learning-updating) or the third (trauma

381  severity) principal components.

382 We also examined potential relationships between subjective-value signals and the three principal
383  components. In vimPFC, the first component (general affective symptom) was positively correlated with
384  encoding of subjective value of risky gains (Pearson’s » = 0.30, n =47, p <0.05), consistent with the effect
385  of PTSD symptom severity (CAPS total score). The third component (trauma severity) was negatively
386  correlated with encoding of subjective value of ambiguous losses (Pearson’s » =-0.29, n =47, p < 0.05), in
387  the same direction as the correlation between subjective value of ambiguous losses and PTSD symptom
388  severity. In ventral striatum, no correlation survived our statistical thresholds (see all correlations in Fig

389 S50).

390
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391 Discussion
392  In this study, we explored the neural basis of valuing uncertain monetary rewards and punishments, in

393  veterans exposed to combat trauma with a wide range of PTSD symptoms. Behaviorally, symptom severity
394  was associated with increased aversion to ambiguous losses, and increased aversion to risky gains. These
395  two conditions were also the ones in which PTSD symptom severity influenced the neural representations
396  of subjective value (Fig 7). Two main effects were observed: first, in both whole-brain and ROI analyses,
397  veterans with PTSD showed more negative neural representation of ambiguous losses, and more positive
398 neural representation of risky gains, than combat control veterans. Second, there was a qualitative group
399  difference in the neural representation of ambiguous lotteries in the ventral striatum. In veterans with PTSD,
400 this region encoded the saliency of the lotteries (with increased activity for both potential large gains and
401  potential large losses), whereas in combat control veterans it encoded the lottery value. Moreover, a direct
402  examination of the neural response to varying subjective values (Fig. 7B) suggests that the value pattern in
403  controls was weak compared to the saliency pattern in PTSD. An intriguing possibility is that the strong
404  neural tracking of saliency is a marker for vulnerability to PTSD, reflecting increased sensitivity to highly
405  salient stimuli. The value signal, on the other hand, may be a marker of resiliency to PTSD. Future research,
406  and in particular longitudinal studies that compare individuals exposed to trauma to those who never

407  experienced trauma, are needed to explore this possibility.

408

409 Using behavioral economics to identify markers of psychopathology

410  Our results add to a growing body of research, demonstrating the utility of behavioral economics in studying
411  psychopathology (24-28). Replicating the previous behavioral study (6), we found an association between
412  higher PTSD symptom severity and greater ambiguity aversion under losses, in an independent combat
413  veteran sample. It should be noted, however, that this effect is weak, and was not significant in the group
414  comparison. A larger sample is needed to further confirm the robust effect of the relationship. We also

415  identified greater aversion to risk under gains in veterans with PTSD, likely due to a task design with
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416  increased range and variance of monetary outcomes that provided higher sensitivity for capturing true
417  uncertainty attitudes. Our neural measure allowed us to also quantify individual and group differences in
418  neural sensitivity to rewards and punishments. Previous studies have shown alterations in the neural
419  processing of aversive outcomes in individuals with PTSD in various brain areas, including several medial
420  and lateral prefrontal regions. Many of these studies, however, used fear and trauma-related stimuli (29).
421  Here we show that activation in the same brain areas is affected by PTSD symptoms even in an economic
422  decision task, completely unrelated to the trauma. This raises the possibility of developing diagnostic
423  methods in the domain of decision making under uncertainty, which do not require patients to recall the
424  traumatic experience. Several previous studies have also reported altered reward processing in PTSD (30),
425  including reduced expectation of uncertain monetary outcomes (31,32) and decreased differentiation
426  between monetary gains and losses in the striatum (22). Our experimental approach allowed us to estimate
427  individual uncertainty attitudes during active decision making under four unique contexts. We applied a
428  well-established computational model to infer these behavioral individual differences from the observed
429  choice behavior (rather than estimating them through self-reports) and used the individual differences in
430  the analysis of the neural data. Interestingly, participants’ self-reported risk-taking on the DOSPERT
431  questionnaire was not strongly correlated with their PTSD symptom severity, suggesting that our method
432  for estimating uncertainty attitudes through a behavioral task may be more sensitive for capturing subtle
433  differences associated with clinical symptoms. An intriguing question remains to be answered is what
434  contributes to the context-specific differences associated with PTSD symptom severity. We found higher
435  behavioral aversion only to ambiguous losses and risky gains in PTSD, and the most striking neural
436  difference of subjective-value encoding was revealed in the context of ambiguous losses. Compared with
437  risky outcomes, of which both outcome magnitude and probability are known, ambiguous outcomes lack
438  the exact information of outcome probability. This additional level of uncertainty may be more relevant to
439  the nature of battlefield, making negative ambiguous outcomes more relatable to combat exposure. Our
440  task design separating decision contexts enabled us to pinpoint specific cognitive processes affected by
441  PTSD in combat veterans, but replication in larger samples is needed to confirm the results.
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442  Neural processing of rewards and punishments is associated with PTSD symptoms
443 By including both monetary gains and losses in the task design, we identified a shift from value-encoding

444  to saliency-encoding in the brains of individuals who developed PTSD following trauma exposure (Fig 7).
445  This shift could potentially imply an attention or arousal signal, that leads to avoidance of aversive
446  outcomes like uncertain monetary gains or losses. Several previous studies examined the neural processing
447  of value and saliency and revealed both distinct and overlapping regions for each type of encoding. Value
448  signals were found in ventral striatum, parietal cortex, OFC, rostral ACC, and saliency signals were found
449 in ventral striatum, rostral ACC, dorsal ACC, anterior insula by both univariate and multivariate analyses
450  (12,13,15-18,33,34). To our knowledge, our results are the first to recognize the influence of psychiatric
451  symptoms in humans on the value/saliency-encoding pattern. Interestingly, recent research in mice shows
452  asimilar flip in representation, where acute stress transforms reward responses in the lateral habenula into
453  punishment responses (35). Neurons in the nucleus accumbens of rats can also flexibly shift their
454  preferences between rewards and punishments, based on the emotional environment (36), suggesting that

455  what we observe here may reflect a stress coping mechanism.

456  PTSD is highly comorbid with symptoms of depression and anxiety. Through PCA, we were able to
457  disentangle three main symptom components, and showed that the component of general affective
458  symptoms was likely the main source of influence (Fig S5). In addition, we also found that the component
459  of trauma symptoms was related to the neural representation of subjective value of ambiguous losses in
460  vmPFC, raising the possibility that trauma exposure additionally influences sensitivity to aversive monetary
461  outcomes, independent from general affective symptoms. Trauma symptoms were assessed through combat
462  exposure and childhood trauma in our sample of veterans. Future research could investigate more
463  systematically how other types of trauma exposure could additionally influence the neural processing of

464 valuation of uncertain outcomes.

465  One concern in our investigation of neural representation of value is that the range of subjective values is

466  lower in the group of veterans of PTSD because of their higher aversion to uncertainty, which could
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467  influence the sensitivity of the neural response to value differences. It should be noted, however, that our
468  main conclusion is based on a difference in the direction of correlation (negative vs. positive), rather than
469  a difference in the magnitude of slope of the correlation (Figs 6 and 7). This represents a substantial
470  difference in the shape of subjective-value encoding and would not be affected by group difference in the

471  range of subjective values.

472

473  Neural markers of vulnerability and resilience to PTSD

474  Previous studies of PTSD often focused on the neural processing of fear and trauma, and identified both
475  functional and structural abnormalities in amygdala, hippocampus, and vimPFC (5,29,37-39). Other studies
476  have looked into more general cognitive processes and found blunted neural activation to monetary rewards
477  (21,22). In our study, using a more nuanced computational approach, PTSD symptoms were associated
478  with increased neural sensitivity to rewards and opposite direction of sensitivity to punishments. While the
479  sensitivity to rewards may seem at odds with the previous studies, it should be noted that in those studies
480 reward signals were defined as the difference in activation to gains and losses. A weaker contrast in
481  individuals with PTSD could stem from a weaker reward signal, but also from a stronger punishment signal,
482  consistent with a U-shaped saliency representation, as we report here, in which both highly salient positive
483  and highly salient negative outcomes elicit similar magnitude of neural activation. With this being said, in
484  the reward domain, we do find evidence of surprisingly stronger value sensitivity in PTSD (Fig 5 and 6).
485  Note that reduced activation to rewards in individuals with PTSD was previously observed in comparison
486  to controls who were not exposed to trauma (21). In our study, veterans with PTSD exhibited neural patterns
487  for potential rewards which were similar to what has been observed in the general population (9,14).
488 Combat controls, who were exposed to trauma, but did not develop PTSD, were the ones who differed from
489  the general population, suggesting that they have exhibited a resiliency marker. Other important
490 methodological details may contribute to the difference in results between the studies, including a focus on

491  outcome delivery, rather than decision value, female participants, and mixed types of trauma. These
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492  differences suggest interesting directions for future research. Of particular interest is the interaction between
493  uncertainty and combat trauma, as uncertainty is a central component of the battlefield experience.
494  Comparing behavior and neural mechanisms in individuals who experienced combat trauma and those who

495  did not, will help to shed light on the potential vulnerability and resiliency markers proposed here.

496  In line with the NIMH Research Domain Criteria (RDoC), we did not exclude veterans with history of
497  substance abuse, to allow for a diverse representative sample of trauma exposed symptomatology. We
498  controlled for substance abuse by conducting urine test and breathalyzer for anyone with substance abuse
499  history or if we suspected any intoxication, and excluded those with positive results. The severity for
500  substance abuse history in our sample was low and did not vary too much as measured by the Addiction
501 Severity Index (ASI-alcohol: median = 0.089, range = [0, 1.47]; ASI-drug: median = 0, range = [0, 0.092]).
502  Future research could better control for substance abuse history and medication, and potentially look into
503  the pharmacological effect involving the dopamine and serotonin systems, which are crucial for value-

504  based decision making (40,41).

505  Our study could not establish causal relationship between decision making under uncertainty and the
506  development of PTSD symptoms. Heightened aversion to uncertainty could possibly predispose individuals
507  to developing PTSD symptoms, and on the other hand, acquiring PTSD symptoms could result in altered
508 uncertainty attitudes. There is some evidence, however, that risk attitude is correlated with relatively stable
509  biomarkers including structural volume of right posterior parietal cortex (42), structural and functional
510  connectivity of the amygdala (43) and genetic variations (44). These pieces of evidence might indicate that
511  risk attitude is a personal trait, raising the possibility of its predisposing effect on the development of PTSD
512  symptoms. Less evidence exists for biomarkers of ambiguity attitude, although there is some evidence for
513  a genetic association among females (45). Further longitudinal studies comparing veterans pre- and post-
514  military service may disentangle the role of pre-existing uncertainty attitudes on the development of PTSD

515  from the subsequent impact of PTSD symptomatology on uncertainty attitudes.
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516  Variations in decision making under uncertainty, and especially under ambiguity, have also been reported
517  in other psychiatric disorders, including higher ambiguity aversion and choice inconsistency in individuals
518  with Obsessive Compulsive Disorder (25), and decreased ambiguity aversion in individuals with antisocial
519  personality disorder (26). Interestingly, a recent longitudinal study demonstrated transient increases in
520 tolerance to ambiguity before relapses in opioid users undergoing treatment (27). Overall, these efforts to
521  study psychiatric disorders using behavioral economics approaches could collectively lead to both early
522  identification of behavioral and biological risk factors for symptom development, and more effective

523 treatment.

524

525  Methods

526  Participants
527 68 male veterans (ages: 23.6-74.6; mean + standard deviation: 39.4 + 11.5), who had been deployed and

528  exposed to combat, were recruited through flyers and were screened by clinicians at West Haven Veterans
529  Affairs hospital. Due to the small proportion of female combat veterans (15% of female in Army 2019,
530 statistics from Department of Defense), we only included male participants. PTSD sympotms and diagnoses
531  were determined by the Structured Clinical Interview for DSM-4 (SCID) (46) and the Clinician
532 Administered PTSD Scale (CAPS) (23). Participants either had current diagnoses of PTSD at the time of
533  the study or were never diagnosed with PTSD (controls). We also collected the following measurements:
534  PTSD Checklist for DSM-5 (PCL-5) (47), Beck’s Depression Inventory (BDI) (48), State-Trait Anxiety
535 Inventory (STAI) (49), Dissociative Experiences Scale (DES) (50), Combat Exposure Scale (CES) (51),
536  and Childhood Trauma Questionnaire (CTQ) (52). Participants with psychosis, bipolar disorder, traumatic
537  brain injury, neurologic disorder, learning disability, and ADHD were excluded after screening. Participants
538 also completed other questionnaires including demographic information, Behavioral Avoidance/Inhibition

539  (BIS/BAS) Scales (53), the Barratt Impulsiveness Scale (BIS-11) (54), and Doman-Specific Risk-Taking
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540 (DOSPERT) Scale (55). Kaufman Brief Intelligence Test (KBIT) (56) was administered after scanning as

541  a measure of non-verbal intelligence.

542  Participants data was excluded based on behavioral quality check (see Supplementary Methods) and
543  excessive movement in the scanner. Behavioral data of 58 participants (ages: 23.6-67.0; mean + standard
544  deviation: 37.3 + 8.9) and neural results of 48 participants (ages: 23.6-67.0; mean + standard deviation:
545  37.4+9.2), were reported. The study was approved by the Yale University Human Investigating Committee
546  and the Human Subjects Subcommittee of the VA Connecticut Healthcare System, and compliance with all
547  relevant ethical regulations was ensured throughout the study. All participants gave informed consent and
548  were compensated with $100 for their participation, plus a variable bonus ($0-$240) based on choices they

549  made in the task (see Supplementary Methods).

550

551  Experimental design

552  The study was composed of three separate visits on three different days (Fig 1A). On the first day, recruited
553  participants went through clinical interviews for screening. Eligible participants continued to two fMRI
554  sessions, on two separate days. In the scanner, participants performed a task of decision making under
555  uncertainty, which is based on a previous neuroimaging study (57) and similar to the design of a previous
556  behavioral study in combat veterans (6). They made a series of decisions between a sure monetary outcome
557 and an uncertain monetary outcome with either known (risky) or unknown (ambiguous) outcome
558  probability, in scenarios of both gaining and losing money (Fig 1B). On each trial, participants viewed the
559  two options side-by-side for a fixed duration of 6 seconds, and then made a choice (Fig 1D). To prevent
560 learning, the outcome of the chosen option was not presented during the scan. At the end of the experiment,
561  one randomly selected trial was realized for bonus payment. The scans were conducted over two days in
562  order to limit the scanning time in each visit; task designs were identical for scanning Day1 and Day?2.
563  Participants were introduced to the task at the beginning on the Day and were reminded of the study on

564  Day2. Additional questionnaires and intelligence tests were administered at the end of Day?2.
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565 MRl scans
566  MRI data were collected with two scanners (due to scanner upgrade) at the Yale Magnetic Resonance

567  Research Center: Siemens 3T Trio (37 participants, 29 reported in imaging results) and 3T Prisma (31
568  participants, 19 reported in imaging results), using a 32-channel receiver array head coil. High resolution
569  structural images were acquired by Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) imaging (TR
570 =2.5s, TE=2.77 ms, TI = 1100 ms, flip angle = 7°, 176 sagittal slices, voxel size =1 x1 x 1 mm, 256 x
571 256 matrix in a 256 mm field-of- view, or FOV). Functional MRI scans were acquired while the participants
572  were performing the choice task, using a multi-band Echo-planar Imaging (EPI) sequence (TR= 1000 ms,
573 TE= 30ms, flip angle=60°, voxel size = 2 x 2x 2 mm, 60 2 mm-thick slices, in-plane resolution =2 x 2

574 mm, FOV=220mm).

575

576 Model-based risk and ambiguity attitudes estimation

577  We fitted each participant’s choice data separately into a behavioral economics model that was used in
578  previous studies (6,9). The model fitting was conducted separately for gain and loss trials. The model
579  separates the decision process into two steps: valuation and choice. In the valuation step, the subjective

580  value (SV) of each option is modelled by equation (1),
581 SV = [P—ﬁ(g)] x V@ (1)

582 where P is the outcome probability (0.25, 0.50, or 0.75 for risky lotteries, 0.5 for ambiguous lotteries, and
583 1 for the certain option); A is the ambiguity level (0.24, 0.5, or 0.74 for ambiguous lotteries; O for risky
584  lotteries and the certain amount); V is the non-zero outcome magnitude of the lottery or the amount of
585  money of the certain option. For choices in the loss domain, amounts are entered with a positive sign. Risk
586 attitude was modeled by discounting the objective outcome magnitude by a participant-specific parameter,
587 . In the gain domain, a participant is risk averse when a < 1, and is risk seeking when a > 1. Because we
588 fitted the choice data in the loss domain using positive outcome magnitudes, the participant is risk averse

589  when a > 1, and is risk seeking when a < 1. Ambiguity attitude was modeled by discounting the lottery
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590  probability linearly by the ambiguity level, weighted by a second participant-specific parameter, . A
591  participant is averse to ambiguity when > 0, and is ambiguity seeking when B < 0 in the gain domain. In

592  the loss domain, participant is averse to ambiguity when 3 <0, and ambiguity seeking when 8 > 0.

593  The choice process is modeled by a standard soft-max function (equation 2),

1

594 PV = —1+ey(SVL—SVC) (2)

595

596  where Pv is the probability of choosing the lottery option, SV¢c and SV are the subjective values of the
597  certain option and the lottery respectively, calculated by equation (1); v is a participant-specific noise
598  parameter. We fitted each participant’s choices combining data from two sessions and obtained four
599 attitudes: risk attitudes for gains and losses, ambiguity attitudes for gains and losses. For consistency, we
600 transformed all attitudes in the following way such that negative values indicate aversion and positive
601  values indicate seeking: risky gains: a — 1, risky losses: 1 — a, ambiguous gains: - 3, ambiguous losses: .
602  Since participants performed the task on two separate sessions, we also fitted each session’s choice data
603  separately. These fitted parameters from separate sessions were used to calculate trial-wise subjective
604  values of the lotteries for GLM neural analysis, because they could capture the subjective values more

605  accurately for searching neural activity change induced by variations of subjective values.

606

607 MRI data analysis

608  MRI data were preprocessed in BrainVoyager (Version 20.2.0.3065). Anatomical images were normalized
609  to the standard brain template in Talairach space for each participant. Preprocessing of functional data
610  included motion correction, slice scan time correction (cubic spline interpolation), temporal filtering (high-
611  pass frequency-space filter with cut-off cycle of 3), spatial smoothing (Gaussian filter with 8mm full-width
612  at half-maximum), co-registration with high-resolution standardized anatomical data, and normalization to

613  Talairach space. Scan data with movement of over 2 mm in any direction were excluded from analysis.
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614  Firstlevel GLM analysis was conducted in the Neuroelf toolbox (Version 1.0, https://neuroelf.net/) through
615 MATLAB (Version R2018b). The pre-processed fMRI signal time course was first converted to percent
616  signal change within each scanning block, and activity of each voxel was modeled by GLM predictors
617  convolved with a standard double-gamma hemodynamic response function. In the first GLM, we looked at
618  the general activity during decision making, by including four binary predictors for all four decision
619  conditions: ambiguous gains, risky gains, ambiguous losses, and risky losses. Each binary predictor was
620 modeled as a box-car function, with the duration of choice display (6TR). We modeled choice response of
621  all trials by another binary predictor with the duration of 1TR at the time of button press, and missing
622  responses were not modeled. We also included nuisance predictors of 6 motion correction parameters
623  (translation and rotation in the X, y, and z directions) in the GLM to account for influence of head motions
624  on the neural activity. In a second GLM, we modeled the neural response to the variation of trial-wise
625  subjective value of the lottery by including the subjective value as a parametric modulator for each of the
626  four decision-condition binary predictors. Subjective value of the lottery in each trial was calculated
627  uniquely for each participant by equation (1), by taking the fitted o and B for each participant under each
628  domain of either gains or losses. Because we fitted the choice data in the loss domain by inputting the
629  positive outcome value, we flipped the sign of the calculated subjective value back in the loss domain. We
630 calculated the subjective values taking a’s and ’s fitted from the two sessions separately, because it would
631  make the estimate of neural response to subjective value variation more accurate. Subjective values were
632  normalized within each scanning block before GLM fitting, so that the estimated effect reflected each
633  participant’s neural response to the variation of subjective value, rather than to its absolute magnitude.
634  Predictor of choice response and nuisance predictors of motion correction were included as in the first
635  GLM. In the third and fourth GLMs, we aimed to further investigate the shape of the neural representation
636  of subjective values. In both GLMs, we combined trials of gains and losses, and only separated trials by
637  uncertainty types. Thus, we included two binary predictors, ambiguous trials and risky trials, in both GLMs,
638 and modeled them as box-car functions with a duration of choice display (6TR). In the third GLM, we
639  included the subjective value itself as a parametric modulator to accompany each binary predictor, to look
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640  at the monotonic value-encoding of subjective values. In the fourth GLM, we included the absolute value
641  of subjective value as a parametric modulator to accompany each binary predictor, to look at the U-shaped
642  saliency-encoding of subjective values. The predictor of choice response and nuisance predictors of motion
643  correction were included as in the first GLM. In the fifth GLM to more directly visualize the subjective-
644  value encoding pattern, we made binary predictors based on the subjective value of the lottery. For each
645  participant, we first separated all trials into risky and ambiguous one. Within each uncertainty domain, we
646  then grouped loss trials into 3 bins, by comparing the subjective value of the lottery in each trial to the 1/3
647  and 2/3 quantile value of the subjective values of all the loss lotteries in this uncertainty domain. Similarly,
648  we grouped gain trials into 3 bins, by comparing the subjective value of the lottery in each trial to the 1/3
649  and 2/3 quantile value of the subjective values of all the gain lotteries in this uncertainty domain. We then
650  constructed a binary predictor for each bin as a box-car function with the duration of choice display (6TR).
651  Altogether this GLM included 12 predictors (2 uncertainty domains x 2 gain/loss domain X 3 bins)
652  representing the levels of subjective values. Within each uncertainty domain, there were 6 bins of trials,
653  and the 1% bin included the loss lotteries with the most negative subjective values, and the 6 bin included
654  the gain lotteries with the most positive subjective values. An additional predictor of response was modeled

655  as the same way as the other GLMs.

656  In the second-level analysis, random-effect group analysis was conducted to test whether the mean effect
657  of interest was significantly different from zero across participants, or significantly different between
658  groups by contrasting veterans with PTSD and combat controls. We also took a dimensional approach to
659  test whether the predictor effects were related to the severity of PTSD and other clinical symptoms. The
660  tests were conducted both in a whole-brain search and in ROIs. All whole-brain statistical maps were
661  thresholded at p < 0.001 per voxel, and corrected for multiple comparisons using cluster-extent correction
662  methods through Alphasim by AFNI (58) to control family-wise error (FWE) rate at 0.05. After identifying
663  regions from the whole-brain analysis, in which the neural representation of subjective values was

664  influenced by PTSD symptom severity, we took a leave-one-subject-out (LOSO) approach to define these
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665 ROIs in an un-biased way for each participant. For each left-out participant, we defined an ROI from a
666  whole-brain analysis using data from all other participants, so this ROI definition was not influenced by the
667 left-out participant. We then sampled neural signals of the left-out participant’s data from this ROI. We

668  repeated the process for all participants.

669
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