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Abstract 13 
Military personnel engaged in combat are vulnerable to Posttraumatic Stress Disorder (PTSD), following 14 

traumatic experiences in the battlefield. Prior research has mostly employed fear-related paradigms to 15 

unravel neural underpinnings of fear dysregulation in individuals with PTSD. The ability to acquire and 16 

update fear responses depends critically on the individual’s ability to cope with uncertainty, yet the role of 17 

individual uncertainty attitudes in the development of trauma-related psychopathology has hardly been 18 

examined. Here, we investigated the association between PTSD-related alterations and the subjective 19 

valuation of uncertain outcomes during decision-making. We used a monetary gambling paradigm inspired 20 

by behavioral economics in conjunction with fMRI and explored neural markers of both vulnerability and 21 

resilience to PTSD in a group of combat veterans. Behaviorally, PTSD symptom severity was associated 22 

with increased aversion to uncertainty. Neurally, activity in the ventromedial prefrontal cortex (vmPFC) 23 

during valuation of uncertain options was associated with PTSD symptoms, an effect which was specifically 24 
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driven by numbing symptoms. Moreover, the neural encoding of the subjective value of those uncertain 25 

options was markedly different in the brains of veterans diagnosed with PTSD, compared to veterans who 26 

experienced trauma but did not develop PTSD. Most notably, veterans with PTSD exhibited enhanced 27 

representations of the saliency of rewards and punishments in the neural valuation system, especially in 28 

ventral striatum, compared with trauma-exposed controls. Our results point to a link between the function 29 

of the valuation system under uncertainty and the development and maintenance of PTSD symptoms, and 30 

stress the significance of studying reward processes in PTSD. 31 

 32 

Introduction 33 
Following a life-threatening experience, some individuals develop Posttraumatic Stress Disorder (PTSD) 34 

symptoms, which can be emotionally, socially and vocationally disabling. These symptoms include re-35 

experiencing the traumatic event, avoidance of trauma reminders, and exaggerated arousal and reactivity, 36 

as well as emotional numbing (losing interest in significant activities, having difficulty experiencing 37 

happiness or love, and feeling distant from others (1)). While medications and psychotherapy help some 38 

individuals, many people with PTSD remain symptomatic following treatment (2). A better understanding 39 

of the neural basis of PTSD is crucial, as it can inform new approaches to individualized treatment. 40 

Soldiers in combat face highly uncertain life-threatening events, which are uncontrollable (3), and that may 41 

result in serious injury to themselves or death of teammates. An individual’s attitude towards uncertainty 42 

and their capacity to handle uncertainty may therefore affect one’s ability to cope with potentially traumatic 43 

events. The notion of uncertainty was incorporated in studies of fear-learning attempting to unravel the 44 

behavioral and neural mechanisms of PTSD (4,5). Participants in these studies encountered probabilistic 45 

deliveries of adverse outcomes (e.g. electric shocks), and their ability to predict these outcomes was 46 

measured (e.g. by their skin conductance responses). In a separate line of work, using a behavioral economic 47 

framework, our group showed increased aversion to ambiguity (an uncertain situation where outcome 48 

probabilities are not known) in combat veterans with PTSD, compared to trauma-exposed veterans without 49 
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PTSD, when choosing between potential monetary losses (6). This aversion to uncertainty demonstrated in 50 

situations unrelated to the trauma, may also contribute to the exaggerated behavior in fear conditioning 51 

paradigms, and to the development and maintenance of PTSD symptoms. Further understanding of this 52 

aversion to uncertainty could provide evidence for targeting uncertainty in behavioral interventions, to 53 

improve the daily decision-making and well-being of individuals with PTSD. 54 

One possibility is that the increased aversion to uncertainty reflects alterations in the neural computations 55 

of subjective value in the brains of individuals who developed PTSD following trauma exposure. In the 56 

general population, a network of brain regions was implicated in valuation and decision making, including 57 

the ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC), posterior cingulate cortex 58 

(PCC), dorsolateral prefrontal cortex (dlPFC), ventral striatum, amygdala, and thalamus (7,8).  59 

Extensive evidence suggests that the subjective value of rewards is encoded in this network (9–11), and 60 

there is also some (12–15), although less conclusive (16–20), evidence, for encoding of subjective value of 61 

punishments in the same areas. Although there is some evidence for changes in the neural processing of 62 

monetary outcomes in individuals with PTSD (21,22), we do not know how uncertain decision values are 63 

encoded in the brains of these individuals. Moreover, as far as we know, the neural encoding of ambiguous 64 

losses (as opposed to gains) has not been investigated even in the general population.  65 

 Here we combined a simple economic task with functional MRI and computational modeling to examine 66 

the neural encoding of subjective value under risk and ambiguity, and the alterations in this encoding in 67 

individuals exposed to trauma. We compared combat veterans with PTSD to those who did not develop 68 

PTSD symptoms (trauma-exposed controls), and were thus able to investigate both the psychopathology of 69 

PTSD and the resilience to PTSD. We find that veterans with PTSD encode the subjective values of 70 

uncertain monetary gains and losses in a U-shape manner, with increased activation for both increased gains 71 

and increased losses (compatible with saliency encoding). Conversely, trauma-exposed controls encode the 72 

same type of subjective values monotonically, with increased activation for increased gains, and decreased 73 

activation for increased losses (compatible with value encoding). Our results suggest that this shift from 74 
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value-encoding to saliency-encoding, especially of ambiguous monetary losses, could be a neural marker 75 

for PTSD symptom severity. 76 

 77 

Results 78 
In an fMRI experiment, combat veterans with current PTSD diagnosis and those who never developed 79 

PTSD completed a gambling task under four decision conditions on two separate days. Participants chose 80 

between a sure monetary outcome (either gaining or losing $5) and an uncertain outcome (either risky or 81 

ambiguous gain or loss) (Fig 1B). Participants made decisions about gains and losses in separate blocks in 82 

two scanning sessions (Fig 1A). We estimated the attitudes toward risk and ambiguity of each participant 83 

through a behavioral model (see Methods) and aimed to understand the influence of PTSD symptom 84 

severity on both the behavioral attitudes and the neural mechanisms of valuation.  85 
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Figure 1. Study design 86 

 87 

A: Timeline of the study. Participants went through a screening session and two scanning sessions on three 88 

different days. The screening session determined participants’ eligibility based on PTSD diagnosis, combat 89 

exposure, and exclusion of other neurological disorders. Eligible participants were scanned on two separate 90 

days on a decision making task. Measure labels: SCID: Structured Clinical Interview for DSM-4, CAPS: 91 

Clinician Administered PTSD Scale, PCL5: , PTSD Checklist for DSM-5 , BDI: Beck Depression Inventory, 92 

STAI-1: State Anxiety, STAI-2: Trait Anxiety, DES: Dissociative Experiences Scale, CES: Combat Exposure 93 

Scale, CTQ: Childhood Trauma Questionnaire, KBIT: Kaufman Brief Intelligence Test, BIS/BAS: Behavioral 94 

Avoidance/Inhibition Scale, BIS-11: Barratt Impulsiveness Scale, DOSPERT: Domain-Specific Risk-Taking 95 

Scale. B: Task design: participants chose between a lottery and a sure outcome under four conditions: risky 96 

gains, ambiguous gains, risky losses, and ambiguous losses. Lotteries are shown as examples. Outcome 97 

probability of the risky lottery was represented by the area of the red or blue rectangle and was fully known to 98 
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the participant. Outcome probability of the ambiguous lottery was covered by a grey rectangle in the middle, 99 

thus was partially known to the participant. C: Levels of risk (outcome probability, 0.25, 0.5, and 0.75), 100 

ambiguity (grey area, 0.74, 0.5, and 0.24), and monetary outcomes (20 monetary gains and 20 monetary losses) 101 

of the lottery. D: On each trial, participants had 6 seconds to view the options, and made a choice following a 102 

green response cue. They had a time limit of 3.5 seconds to register the choice, after which they would 103 

immediately see a confirmation with the yellow square representing the side they chose. The lottery was not 104 

played out during the scan to avoid learning. The inter-trial-interval (ITI) was jittered among 4, 6, and 8 105 

seconds, and the remaining time during the response window (3.5 seconds – response time) would be added to 106 

the ITI. 107 

 108 

Clinical symptom variation 109 
Participants varied in their PTSD symptom severity (Fig 2A) assessed by the Clinician-Administered PTSD 110 

Scale (CAPS) for DSM-4 (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition)  (23). 111 

Veterans with PTSD had higher total CAPS score compared to controls (PTSD, N = 23: Mean = 72.13, SD 112 

= 15.04; control, N = 34: Mean = 6.21, SD = 9.68; t(34) = 18.58, p < 0.001). PTSD symptoms as captured 113 

by the 5-factor model of CAPS (1) were highly correlated with symptoms of depression, anxiety and 114 

dissociative experiences (Fig 2B, see Table S1 for descriptive statistics of all measures). In order to account 115 

for the influence of clinical symptoms on the behavior and neural activity during the task, we conducted 116 

principal component analysis (PCA) on these clinical symptoms. Since the severity of psychopathology 117 

may be affected by the degree of stress exposure, we also included measures of combat exposure (CES) 118 

and childhood trauma (CTQ) in the PCA. The first three components accounted for ~80% of the variance 119 

in those data (Fig S1A).  The first component was affected by all clinical symptoms (PTSD, depression, 120 

anxiety, and dissociative experiences) and might reflect a general affective factor. This component was 121 

highly consistent with PTSD symptom severity (correlation with CAPS Spearman’s ρ = 0.94, n = 55, p < 122 

0.001), and could be used to clearly classify PTSD diagnosis (Fig S1C). The second component was mostly 123 

affected by re-experiencing, avoidance and anxious arousal clusters of CAPS, as well as the degree of 124 
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combat exposure, potentially representing a fear learning-updating deficit or general hyperarousal. The 125 

third component was affected by combat exposure and childhood trauma. Components 2 and 3 were not 126 

strongly correlated with PTSD symptom severity (n = 55, Component 2: correlation with CAPS Spearman’s 127 

ρ = 0.11, p = 0.43; Component 3: correlation with CAPS Spearman’s ρ = 0.029, p = 0.84).  128 

 129 

Figure 2. Participants’ symptom severity 130 

 131 

A: Distribution of CAPS total score, colored by group (combat veterans with or without PTSD diagnoses). One 132 

PTSD participant included in the analysis did not have complete CAPS data. B: PTSD, depression and anxiety 133 

symptom severities were highly correlated. Numbers in the upper right panels indicate pair-wise Pearson 134 

correlation coefficients. Significance levels: ***, p < 0.001; **, p < 0.01; *, p < 0.05. Lower left panels show 135 

pairwise scatter plots and smoothed curves using locally weighted polynomial regression. Panels in the diagonal 136 

show distributions and density curves for each measure. Labels of measures: CAPS-ReExp: re-experiencing, 137 

CAPS-Avoid: avoidance, CAPS-Numb: numbing, CAPS-DysA: dysphoric arousal, CAPS-AnxA: anxious 138 

arousal, BDI: Beck Depression Inventory, STAI-1: State Anxiety, STAI-2: Trait Anxiety, DES: Dissociative 139 

Experiences Scale, CES: Combat Exposure Scale, CTQ: Childhood Trauma Questionnaire. 140 
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PTSD symptom severity is associated with increased ambiguity aversion in the loss 141 
domain, and increased risk aversion in the gain domain 142 
For each participant, we estimated risk and ambiguity attitudes for gains and losses, using the combined 143 

data from both scanning sessions (see equations 1 and 2 in Methods; see Fig S2A for an example from one 144 

participant). We then investigated the associations between these attitudes and PTSD diagnosis status, as 145 

well as PTSD symptom severity. All attitudes were transformed such that negative numbers indicate 146 

aversion to risk or ambiguity, and positive numbers indicate seeking. Based on the previous behavioral 147 

finding that PTSD symptom severity was associated with higher aversion to ambiguity in losses (6), we 148 

first investigated ambiguity attitudes. At the group level, participants were not significantly averse to 149 

ambiguity in the domain of losses (Fig 3A; PTSD: Mean = -0.25, t(23) = -1.81, p = 0.11; Control: Mean = 150 

0.003, t(33) = 0.040, p = 0.97), and were significantly averse to ambiguity in the domain of gains (Fig 3A; 151 

PTSD: Mean = -0.35, t(23) = -3.45, p < 0.01; Control: Mean = -0.42, t(33) = -7.27, p < 0.001 ). However, 152 

a two-way ANOVA of ambiguity attitude with domain as the within-subject factor and group as the 153 

between-subject factor showed a significant interaction between domain and group (F(1,56) = 4.34, p < 154 

0.05, η2 =  0.0279). Post-hoc comparisons showed that veterans with PTSD were marginally more averse 155 

to ambiguity under losses (p = 0.081), but not under gains (p = 0.53). A dimensional analysis (Fig 3B) of 156 

this symptom–behavior relationship, regardless of PTSD diagnosis, revealed a negative correlation between 157 

ambiguity attitudes in the loss domain and CAPS total score (Spearman’s ρ with CAPS total score = -0.30, 158 

p < 0.05), indicating that higher symptom severity was related to higher aversion to ambiguity under losses. 159 

Since many control participants had a CAPS score of zero, we also repeated the analysis using PCL-5 scores 160 

instead of CAPS and overserved a similar effect (Fig S2B, Pearson’s r with PCL-5 = -0.31, p < 0.05).   161 

Next, we examined risk attitudes. Both the PTSD and control groups exhibited risk aversion in the domain 162 

of gains (PTSD: Mean = -0.54, t(23) = -13.34, p < 0.001; Control: Mean = -0.28, t(33) = -4.80, p < 0.001). 163 

In the domain of losses, veterans with PTSD exhibited risk seeking (Fig 3C; PTSD: Mean = 0.34, t(23) = 164 

5.43, p < 0.001), while combat controls exhibited marginal risk seeking (Control: Mean = 0.20, t(33) = 165 

1.82, p = 0.078, FDR corrected for four comparisons). A two-way ANOVA of risk attitude with domain 166 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.04.14.041467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041467
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

(gain or loss) as the within-subject factor and group as the between-subject factor revealed a significant 167 

interaction between domain and group (F(1,56) = 6.29, p < 0.05, η2 =  0.0521). Post-hoc comparisons 168 

showed that veterans with PTSD were more averse to risk under gains (p < 0.01), but not under losses (p = 169 

0.34), compared with combat controls. Examining this relationship further with a dimensional approach 170 

(Fig 3D and Fig S2C), we observed a similar effect:  PTSD symptom severity was negatively correlated 171 

with risk attitudes in the gain domain (Spearman’s ρ with CAPS total = -0.39, p < 0.01; Pearson’s r with 172 

PCL5 = -0.36, p < 0.01).  173 

Veterans with PTSD and combat controls did not differ in the choice noise parameter γ (a two-way 174 

ANOVA of γ with domain (gain or loss) as the within-subject factor and group as the between-subject 175 

factor: no main effect of group, F(1,56) = 1.28, p = 0.262, η2 =  0.0120; no domain by group interaction, 176 

F(1,56) = 1.63, p = 0.207, η2 =  0.0136). However, model-fitting quality was in general better in the 177 

control group than in the PTSD group (a two-way ANOVA of BIC with domain (gain or loss) as the 178 

within-subject factor and group as the between-subject factor: a main effect of group, F(1,56) = 4.75, p < 179 

0.05, η2 =  0.0587; no domain by group interaction, F(1,56) = 1.68, p = 0.200, η2 =  0.00788).  180 

  181 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.04.14.041467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041467
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Figure 3. Uncertainty attitudes and PTSD symptom severity 182 

 183 

A: Group comparison of ambiguity attitudes in gains and losses between veterans with PTSD and combat 184 

controls. B: PTSD symptom severity was negatively correlated with ambiguity attitude in losses. One 185 

participant was not included in the analysis due to missing CAPS. C: Group comparison of risk attitudes in 186 

gains and losses between veterans with PTSD and combat controls. D: PTSD symptom severity was negatively 187 

correlated with risk attitude in gains. One participant was not included in the analysis due to missing CAPS. 188 

In A and C, comparisons of each group’s attitudes with zero were FDR-corrected across all four comparisons 189 

in each uncertainty type. Post-hoc comparisons between groups in A and C are FDR-corrected. Significance 190 

level:  *, p<0.05; **, p<0.01; ***, p<0.001. 191 
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To control for differences in age, income, education and intelligence, we used a linear regression model to 192 

explain uncertainty attitudes as a function of PTSD symptoms (CAPS total), while accounting for these 193 

demographic factors. Because model-fitting quality was affected by PTSD symptoms, we also included the 194 

BIC of the behavioral model as a predictor in the regression (see Supplementary Methods). For risk attitude 195 

in the gain domain, the effect of CAPS total score remained significant (multi-factor ANOVA by 196 

Generalized Linear Model: F(1, 41) = 12.5, p < 0.01). BIC was the only other significant factor (F(1, 41) = 197 

17.7, p < 0.001).  Similarly for ambiguity attitude in losses, CAPS total score (multi-factor ANOVA, F(1, 198 

41) = 6.05, p < 0.05) and BIC (F(1, 41) = 4.86, p < 0.05) were the only significant factors.  199 

Because seven of the combat-control veterans in this study sample also participated in the previous 200 

behavioral study, we also repeated the analysis excluding these returning participants, to yield a completely 201 

independent dataset. The negative relationships between PTSD symptom severity and ambiguity attitude in 202 

losses (Spearman’s ρ with CAPS total= -0.31, p < 0.05, n = 50), and between PTSD symptom severity and 203 

risk attitude in gains (Spearman’s ρ with CAPS total = -0.42, p < 0.01, n = 50) still held in this independent 204 

sample (Fig S3B, D).  205 

We also assessed participants’ risk-taking attitudes through the Domain-Specific Risk-Taking (DOSPERT) 206 

Scale self-report questionnaire, but none of the domains (Ethical, Financial, Health/Safety, Recreational, 207 

and Social) was correlated with PTSD symptoms severity measured by CAPS total. Among the other self-208 

report measures, CAPS total was correlated with total score of Behavioral Inhibition Scale (BIS, 209 

Spearman’s ρ = 0.37, p < 0.01, n = 57), and with total score of Barratt Impulsiveness Scale (BIS11, 210 

Spearman’s ρ = 0.47, p < 0.001, n = 57). 211 

 212 

PTSD symptom severity is associated with diminished neural response to decision making 213 
under uncertainty 214 
To investigate the neural mechanisms of the stronger aversion to uncertainty observed in veterans with 215 

PTSD, we first examined the general neural activity during decision-making. Because the key process of 216 
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our task was evaluating the subjective values of the uncertain options, we looked at the neural activity 217 

during the 6-second period of options presentation on each trial (see descriptive statistics of participants 218 

included in the neural analyses in Table S2). In a whole-brain analysis, we explored the relationship between 219 

PTSD symptom severity and the general neural activity during this valuation process (compared to 220 

baseline). Activity in a vmPFC - a central component of the valuation network - was negatively correlated 221 

with CAPS total score (p < 0.001, cluster-based corrected, Fig 4A), during the second session of the task. 222 

This negative relationship was not specific to a particular condition – rather, it was consistent across all 223 

four decision contexts (Fig 4B; Pearson’s r(risky gains) = -0.50, r(ambiguous gains) = -0.51, r(risky losses) 224 

= -0.51, r(ambiguous losses) = -0.40). Veterans with higher overall PTSD symptom severity showed more 225 

vmPFC deactivation during valuation of uncertain options. This finding is consistent with our hypothesis 226 

regarding the valuation system’s involvement in PTSD; next, we directly examined the neural correlates of 227 

valuation in the task. 228 

 229 

  230 
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Figure 4. Reduced vmPFC activity during valuation is related to PTSD symptom severity 231 

 232 

A: A whole-brain analysis revealed that activity in vmPFC during valuation was negatively correlated with 233 

CAPS total score, regardless of decision condition. B: Visualization of this negative correlation between general 234 

activity in the vmPFC and CAPS total score in each decision condition. 235 

 236 
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PTSD symptom severity is associated with altered neural encoding of subjective value of 237 
uncertain options 238 
For each participant, we calculated the subjective value of the lottery presented on each trial, based on the 239 

behavioral model (see equation 1 in Methods), using the participant-specific risk and ambiguity attitudes 240 

under gains and losses. We then included the subjective values (positive for gain lotteries, negative for loss 241 

lotteries) in the GLM, separately for each of the four decision conditions. We focused our analysis on the 242 

two decision conditions in which symptoms influenced behavior: ambiguous losses and risky gains. To 243 

examine group differences between veterans with PTSD and combat controls, we directly contrasted their 244 

neural representation of subjective value in a whole-brain analysis. Veterans with PTSD showed more 245 

negative subjective-value signals for ambiguous losses in left inferior frontal regions (IFG) and bilateral 246 

occipital regions, compared to controls (Fig 5A; for statistics of all regions, see Table S3). We then used a 247 

leave-one-subject-out (LOSO) procedure to define regions of interest around the inferior frontal gyrus (IFG) 248 

and sample activation in an unbiased manner (see Methods). The subjective-value signal of ambiguous 249 

losses in IFG was negatively correlated with PTSD symptom severity (Fig 5B; Spearman’s ρ = -0.35, p < 250 

0.05, n = 48), such that higher symptom severity was associated with more negative subjective-value signal. 251 

Veterans with PTSD showed more positive subjective-value signals for risky gains in right orbitofrontal 252 

cortex (OFC) in a whole-brain analysis (Fig 5C), and PTSD symptoms severity was positively correlated 253 

with subjective-value signal of risky gains in this OFC region (Fig 5D; Spearman’s ρ = 0.52, p < 0.001, n 254 

= 48). For completion, we also looked at the other two conditions. Veterans with PTSD showed more 255 

positive encoding of subjective value of ambiguous gains in the thalamus and right cerebellum (Fig S4), 256 

and there was no group difference in the subjective-value encoding of risky losses. 257 

 258 

 259 

 260 

 261 
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Figure 5. Neural representation of subjective value directly contrasting PTSD and control 262 

 263 

Whole-brain comparisons of neural subjective-value signals between veterans with PTSD and combat controls, 264 

under A: ambiguous losses, and C: risky gains. All maps were corrected using cluster-based method controlling 265 

family-wise error at 0.05, when thresholded at p < 0.001 at the voxel level. B: Neural subjective-value 266 

representation of ambiguous losses in the left IFG was negatively correlated with PTSD symptom severity. D: 267 

Neural subjective-value representation of risky gains in the right OFC was positively correlated with PTSD 268 

symptom severity. ROIs in B and D were defined by a leave-one-subject-out (LOSO) approach. 269 

 270 

To further probe group and individual differences in value encoding, we examined the subjective-value 271 

signals of each group in the classical value areas – the vmPFC and the ventral striatum – as defined in a 272 

meta-analysis by Bartra and colleagues (14). We again focused on the conditions of ambiguous losses and 273 

risky gains (Fig 6). In vmPFC, the subjective-value signal of risky gain lotteries was positively correlated 274 

with PTSD symptom severity (Fig 6A, Spearman’s ρ with CAPS = 0.31, p < 0.05). In ventral striatum, 275 

subjective-value signal of ambiguous loss lotteries was negatively correlated with PTSD symptom severity 276 
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(Fig 6B, Spearman’s ρ with CAPS = -0.35, p < 0.05). PTSD symptom severity was not significantly 277 

associated with the subjective-value signal of ambiguous losses in vmPFC (Fig 6A, Spearman’s ρ with 278 

CAPS = -0.18, p = 0.22), or with the subjective-value signal of risky gains in ventral striatum (Fig 6B, 279 

Spearman’s ρ with CAPS = 0.22, p = 0.14; see Fig S5 A and B for correlations with PCL5). These 280 

relationships could also be revealed in the group comparison (Fig 6 C and D). The subjective-value signal 281 

of ambiguous losses was more negatively encoded in ventral striatum in veterans with PTSD compared 282 

with combat controls (Fig 6D, t = -2.77, p < 0.01). Conversely, the subjective-value signal of risky gains 283 

was marginally more positively encoded in vmPFC in veterans with PTSD than in combat controls (Fig 284 

6C, t = 1.97, p = 0.054). 285 

The relationships between subjective-value signals and PTSD symptom severity held after controlling for 286 

age, income, education and intelligence (see Supplementary Methods). The subjective-value signal of 287 

ambiguous losses in ventral striatum was affected by CAPS (multi-factor ANOVA by Generalized Linear 288 

Model, F(1, 33) = 6.01, p < 0.05), and not by the four demographic factors. The subjective-value signal of 289 

risky gain lotteries in vmPFC was marginally affected by CAPS (multi-factor ANOVA by Generalized 290 

Linear Model: F(1, 33) = 3.53, p = 0.069), and not by the four demographic factors. 291 

 292 

  293 
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Figure 6. Neural subjective-value signals in external ROIs of vmPFC and ventral striatum were 294 

related to PTSD symptom severity 295 

 296 

A: In vmPFC, correlations between subjective-value signals of ambiguous losses and risky gains and PTSD 297 

symptom severity (CAPS total). B: In ventral striatum, correlations between subjective-value signals of 298 

ambiguous losses and risky gains and PTSD symptom severity (CAPS total). C: In vmPFC, group comparison 299 

of neural subjective-value signals between veterans with PTSD and combat controls. D: In ventral striatum, 300 

group comparison of neural subjective-value signals between veterans with PTSD and combat controls. In 301 

panels C and D, comparisons were post-hoc FDR-corrected after ANOVA within each figure. Significance level:  302 

*, p<0.05; **, p<0.01; ***, p<0.001. ROIs of vmPFC and ventral striatum were taken from Bartra and 303 

colleagues’ meta-analysis study (14). 304 

 305 
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A shift from value-encoding to saliency-encoding of ambiguous losses in PTSD 306 
Our results so far point to differences in the mechanisms of subjective-value encoding between veterans 307 

with PTSD and combat controls. This difference is most notable for ambiguous losses: in combat controls, 308 

ambiguous losses were encoded in a positive manner (decreased activity for increased losses) consistent 309 

with a monotonic representation of value. Conversely, in the brains of veterans with PTSD, losses were 310 

encoded negatively (increased activity for increased losses), consistent with a U-shaped saliency-encoding 311 

mechanism. This difference in representation was particularly striking in the ventral striatum (Fig 6D). To 312 

directly confirm this group difference, however, we need to examine gains and losses on the same scale. 313 

To this end, we constructed a GLM with one predictor for the value of ambiguous gains and losses, and 314 

another predictor for the saliency of the same gains and losses. Subjective values of the lotteries were used 315 

for the value predictor, and saliency was computed as the absolute value of these subjective values (Fig 7A; 316 

see Methods for fMRI GLM first-level analysis). While the ventral striatum in controls significantly 317 

encoded value (one-sample t test GLM beta compared with 0, t(28) = 3.4, p < 0.01), but not saliency (t(28) 318 

= -0.62, p = 0.54), the opposite pattern was observed in veterans with PTSD: activity in the same brain area 319 

in the PTSD group encoded saliency (t(18) = 2.7, p < 0.05), but not value ((t(18) = 0.99, p = 0.45; all p 320 

values were FDR corrected for four comparisons). Furthermore, the saliency-encoding patterns were 321 

significantly different between veterans with PTSD and combat controls (two-sample t test: t(39.3) = -2.5, 322 

p < 0.05). 323 

Figure 7B presents a direct visualization of the shape of value- and saliency- encoding in the ventral striatum 324 

in the two groups of veterans. For each participant, and within each uncertainty domain (risk or ambiguity), 325 

we grouped the trials into 6 bins across losses and gains, based on the subjective values of the lotteries. The 326 

1st bin corresponded to the loss lotteries with the most negative subjective values, and the 6th bin 327 

corresponded to the gain lotteries with the most positive subjective values (see Methods for details). As 328 

expected, combat control veterans showed a monotonic representation of subjective value, whereas veterans 329 

with PTSD showed a U-shaped representation (Fig 7B). 330 
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Figure 7. Value and saliency encoding in the ventral striatum of PTSD and controls.  331 

 332 

A: In ventral striatum, value-encoding of subjective values was observed in combat controls but not in 333 

veterans with PTSD; saliency-encoding of subjective values was observed in veterans with PTSD but not in 334 

combat controls. Comparisons with zero for both PTSD and Control group were FDR-corrected across four 335 

comparisons in the two figures. Significance level:  *, p<0.05; **, p<0.01; ***, p<0.001. B: Direct visualization 336 

of neural response to trials of ambiguous lotteries with different levels of subjective values in ventral 337 

striatum. Bins were ordered monotonically based on participant-specific subjective values of the lotteries 338 

across losses and gains. Bins 1-3 were loss lotteries, and bins 4-6 were gain lotteries. Consistent with panel A, 339 

combat control veterans encoded subjective value in a monotonic value-pattern, and veterans with PTSD 340 
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encoded subjective value in a U-shaped saliency-pattern. ROI of ventral striatum was taken from Bartra and 341 

colleagues’ meta-analysis study (14). All error bars indicate standard errors. 342 

 343 

Neural activity explains symptoms variation better than behavioral uncertainty attitudes 344 
Having revealed both behavioral and neural alteration related to PTSD, we explored whether PTSD 345 

symptom variation could be better explained by neural activation patterns, behavioral uncertainty attitudes, 346 

or a combination of both. We constructed three linear models to predict PTSD symptom severity indicated 347 

by CAPS total score, using (1) magnitudes of neural responses to the four decision conditions in vmPFC 348 

(ROI from Fig 4); (2) behavioral risk and ambiguity attitudes under gains and losses; and (3) both neural 349 

responses and behavioral attitudes. All models controlled for age and intelligence (KBIT) (see details in 350 

Supplementary Methods). The model including only neural measures best explained the variation of PTSD 351 

symptom severity (BIC(neural model) = 132.8, BIC(behavioral model) = 154.7, BIC(full model) = 143.8, 352 

Fig S6).   353 

 354 

Emotional numbing plays the key role in diminished vmPFC general neural activity 355 
So far, we investigated the relationship between PTSD overall symptom severity and valuation under 356 

uncertainty. We further looked at whether a specific symptom cluster was the main source of influence, 357 

considering the multi-dimensional nature of PTSD. From the vmPFC ROI in which neural activity was 358 

negatively correlated with CAPS total score in the whole-brain analysis (Fig 4A), we sampled general 359 

neural activity during the valuation phase of the task (GLM beta) from each participant. We then 360 

constructed a linear regression model to explain this region’s activity with all five clusters of CAPS, 361 

including re-experiencing, avoidance, emotional numbing, dysphoric arousal, and anxious arousal, 362 

accounting for age and intelligence. Only the emotional numbing cluster significantly contributed to the 363 

negative correlation between vmPFC activity and PTSD symptom severity (standardized regression 364 

coefficient, Beta = -0.72, t = -2.32, p < 0.05, Fig S7A). Age and intelligence (KBIT) did not significantly 365 
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influence vmPFC neural activity (standardized regression coefficient, Age: Beta = -0.14, t = -1.13, p = 0.26; 366 

intelligence: Beta = -0.044, t = 0.33, p = 0.75). Variable selection using exhaustive search also indicated 367 

that including only the emotional numbing cluster out of all PTSD symptom clusters best explained the 368 

relationship between vmPFC neural activity and PTSD symptom severities (Fig S7B, BIC = 112.8; see 369 

details in Methods for fMRI GLM second-level analysis). 370 

 371 

Influence of clinical symptoms beyond PTSD 372 
Because our participants showed high levels of comorbidity with other clinical symptoms, especially 373 

depression and anxiety (Fig 2B), we also investigated how the behavioral and neural mechanisms of 374 

valuation were influenced by symptoms beyond PTSD. We examined the correlation between the first three 375 

principal components of all clinical measures (Fig S1) and the behavioral uncertainty attitudes. Principal 376 

component 1 (general affective symptom) was negatively correlated with risk attitude under gains 377 

(Pearson’s r = -0.35, p < 0.01) and ambiguity attitude under losses (Pearson’s r = -0.29, p < 0.05), consistent 378 

with the effect of the overall PTSD severity indicated by CAPS total score (Fig 3). We did not find any 379 

relationship between uncertainty attitudes and the second (fear learning-updating) or the third (trauma 380 

severity) principal components. 381 

We also examined potential relationships between subjective-value signals and the three principal 382 

components. In vmPFC, the first component (general affective symptom) was positively correlated with 383 

encoding of subjective value of risky gains (Pearson’s r = 0.30, n = 47, p < 0.05), consistent with the effect 384 

of PTSD symptom severity (CAPS total score). The third component (trauma severity) was negatively 385 

correlated with encoding of subjective value of ambiguous losses (Pearson’s r = -0.29, n = 47, p < 0.05), in 386 

the same direction as the correlation between subjective value of ambiguous losses and PTSD symptom 387 

severity. In ventral striatum, no correlation survived our statistical thresholds (see all correlations in Fig 388 

S5C). 389 

 390 
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Discussion 391 
In this study, we explored the neural basis of valuing uncertain monetary rewards and punishments, in 392 

veterans exposed to combat trauma with a wide range of PTSD symptoms. Behaviorally, symptom severity 393 

was associated with increased aversion to ambiguous losses, and increased aversion to risky gains. These 394 

two conditions were also the ones in which PTSD symptom severity influenced the neural representations 395 

of subjective value (Fig 7). Two main effects were observed: first, in both whole-brain and ROI analyses, 396 

veterans with PTSD showed more negative neural representation of ambiguous losses, and more positive 397 

neural representation of risky gains, than combat control veterans. Second, there was a qualitative group 398 

difference in the neural representation of ambiguous lotteries in the ventral striatum. In veterans with PTSD, 399 

this region encoded the saliency of the lotteries (with increased activity for both potential large gains and 400 

potential large losses), whereas in combat control veterans it encoded the lottery value. Moreover, a direct 401 

examination of the neural response to varying subjective values (Fig. 7B) suggests that the value pattern in 402 

controls was weak compared to the saliency pattern in PTSD.  An intriguing possibility is that the strong 403 

neural tracking of saliency is a marker for vulnerability to PTSD, reflecting increased sensitivity to highly 404 

salient stimuli. The value signal, on the other hand, may be a marker of resiliency to PTSD. Future research, 405 

and in particular longitudinal studies that compare individuals exposed to trauma to those who never 406 

experienced trauma, are needed to explore this possibility.  407 

 408 

Using behavioral economics to identify markers of psychopathology 409 
Our results add to a growing body of research, demonstrating the utility of behavioral economics in studying 410 

psychopathology (24–28). Replicating the previous behavioral study (6), we found an association between 411 

higher PTSD symptom severity and greater ambiguity aversion under losses, in an independent combat 412 

veteran sample. It should be noted, however, that this effect is weak, and was not significant in the group 413 

comparison. A larger sample is needed to further confirm the robust effect of the relationship. We also 414 

identified greater aversion to risk under gains in veterans with PTSD, likely due to a task design with 415 
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increased range and variance of monetary outcomes that provided higher sensitivity for capturing true 416 

uncertainty attitudes. Our neural measure allowed us to also quantify individual and group differences in 417 

neural sensitivity to rewards and punishments. Previous studies have shown alterations in the neural 418 

processing of aversive outcomes in individuals with PTSD in various brain areas, including several medial 419 

and lateral prefrontal regions. Many of these studies, however, used fear and trauma-related stimuli  (29). 420 

Here we show that activation in the same brain areas is affected by PTSD symptoms even in an economic 421 

decision task, completely unrelated to the trauma. This raises the possibility of developing diagnostic 422 

methods in the domain of decision making under uncertainty, which do not require patients to recall the 423 

traumatic experience. Several previous studies have also reported altered reward processing in PTSD  (30), 424 

including reduced expectation of uncertain monetary outcomes (31,32) and decreased differentiation 425 

between monetary gains and losses in the striatum (22). Our experimental approach allowed us to estimate 426 

individual uncertainty attitudes during active decision making under four unique contexts. We applied a 427 

well-established computational model to infer these behavioral individual differences from the observed 428 

choice behavior (rather than estimating them through self-reports) and used the individual differences in 429 

the analysis of the neural data. Interestingly, participants’ self-reported risk-taking on the DOSPERT 430 

questionnaire was not strongly correlated with their PTSD symptom severity, suggesting that our method 431 

for estimating uncertainty attitudes through a behavioral task may be more sensitive for capturing subtle 432 

differences associated with clinical symptoms. An intriguing question remains to be answered is what 433 

contributes to the context-specific differences associated with PTSD symptom severity. We found higher 434 

behavioral aversion only to ambiguous losses and risky gains in PTSD, and the most striking neural 435 

difference of subjective-value encoding was revealed in the context of ambiguous losses. Compared with 436 

risky outcomes, of which both outcome magnitude and probability are known, ambiguous outcomes lack 437 

the exact information of outcome probability. This additional level of uncertainty may be more relevant to 438 

the nature of battlefield, making negative ambiguous outcomes more relatable to combat exposure. Our 439 

task design separating decision contexts enabled us to pinpoint specific cognitive processes affected by 440 

PTSD in combat veterans, but replication in larger samples is needed to confirm the results.  441 
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Neural processing of rewards and punishments is associated with PTSD symptoms 442 
By including both monetary gains and losses in the task design, we identified a shift from value-encoding 443 

to saliency-encoding in the brains of individuals who developed PTSD following trauma exposure (Fig 7). 444 

This shift could potentially imply an attention or arousal signal, that leads to avoidance of aversive 445 

outcomes like uncertain monetary gains or losses. Several previous studies examined the neural processing 446 

of value and saliency and revealed both distinct and overlapping regions for each type of encoding. Value 447 

signals were found in ventral striatum, parietal cortex, OFC, rostral ACC, and saliency signals were found 448 

in ventral striatum, rostral ACC, dorsal ACC, anterior insula by both univariate and multivariate analyses 449 

(12,13,15–18,33,34). To our knowledge, our results are the first to recognize the influence of psychiatric 450 

symptoms in humans on the value/saliency-encoding pattern. Interestingly, recent research in mice shows 451 

a similar flip in representation, where acute stress transforms reward responses in the lateral habenula into 452 

punishment responses (35). Neurons in the nucleus accumbens of rats can also flexibly shift their 453 

preferences between rewards and punishments, based on the emotional environment (36), suggesting that 454 

what we observe here may reflect a stress coping mechanism. 455 

PTSD is highly comorbid with symptoms of depression and anxiety. Through PCA, we were able to 456 

disentangle three main symptom components, and showed that the component of general affective 457 

symptoms was likely the main source of influence (Fig S5). In addition, we also found that the component 458 

of trauma symptoms was related to the neural representation of subjective value of ambiguous losses in 459 

vmPFC, raising the possibility that trauma exposure additionally influences sensitivity to aversive monetary 460 

outcomes, independent from general affective symptoms. Trauma symptoms were assessed through combat 461 

exposure and childhood trauma in our sample of veterans. Future research could investigate more 462 

systematically how other types of trauma exposure could additionally influence the neural processing of 463 

valuation of uncertain outcomes. 464 

One concern in our investigation of neural representation of value is that the range of subjective values is 465 

lower in the group of veterans of PTSD because of their higher aversion to uncertainty, which could 466 
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influence the sensitivity of the neural response to value differences. It should be noted, however, that our 467 

main conclusion is based on a difference in the direction of correlation (negative vs. positive), rather than 468 

a difference in the magnitude of slope of the correlation (Figs 6 and 7). This represents a substantial 469 

difference in the shape of subjective-value encoding and would not be affected by group difference in the 470 

range of subjective values.  471 

 472 

Neural markers of vulnerability and resilience to PTSD 473 
Previous studies of PTSD often focused on the neural processing of fear and trauma, and identified both 474 

functional and structural abnormalities in amygdala, hippocampus, and vmPFC (5,29,37–39). Other studies 475 

have looked into more general cognitive processes and found blunted neural activation to monetary rewards 476 

(21,22). In our study, using a more nuanced computational approach, PTSD symptoms were associated 477 

with increased neural sensitivity to rewards and opposite direction of sensitivity to punishments. While the 478 

sensitivity to rewards may seem at odds with the previous studies, it should be noted that in those studies 479 

reward signals were defined as the difference in activation to gains and losses. A weaker contrast in 480 

individuals with PTSD could stem from a weaker reward signal, but also from a stronger punishment signal, 481 

consistent with a U-shaped saliency representation, as we report here, in which both highly salient positive 482 

and highly salient negative outcomes elicit similar magnitude of neural activation. With this being said, in 483 

the reward domain, we do find evidence of surprisingly stronger value sensitivity in PTSD (Fig 5 and 6). 484 

Note that reduced activation to rewards in individuals with PTSD was previously observed in comparison 485 

to controls who were not exposed to trauma (21). In our study, veterans with PTSD exhibited neural patterns 486 

for potential rewards which were similar to what has been observed in the general population (9,14). 487 

Combat controls, who were exposed to trauma, but did not develop PTSD, were the ones who differed from 488 

the general population, suggesting that they have exhibited a resiliency marker. Other important 489 

methodological details may contribute to the difference in results between the studies, including a focus on 490 

outcome delivery, rather than decision value, female participants, and mixed types of trauma. These 491 
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differences suggest interesting directions for future research. Of particular interest is the interaction between 492 

uncertainty and combat trauma, as uncertainty is a central component of the battlefield experience. 493 

Comparing behavior and neural mechanisms in individuals who experienced combat trauma and those who 494 

did not, will help to shed light on the potential vulnerability and resiliency markers proposed here. 495 

In line with the NIMH Research Domain Criteria (RDoC), we did not exclude veterans with history of 496 

substance abuse, to allow for a diverse representative sample of trauma exposed symptomatology. We 497 

controlled for substance abuse by conducting urine test and breathalyzer for anyone with substance abuse 498 

history or if we suspected any intoxication, and excluded those with positive results. The severity for 499 

substance abuse history in our sample was low and did not vary too much as measured by the Addiction 500 

Severity Index (ASI-alcohol: median = 0.089, range = [0, 1.47]; ASI-drug: median = 0, range = [0, 0.092]). 501 

Future research could better control for substance abuse history and medication, and potentially look into 502 

the pharmacological effect involving the dopamine and serotonin systems, which are crucial for value-503 

based decision making (40,41).  504 

Our study could not establish causal relationship between decision making under uncertainty and the 505 

development of PTSD symptoms. Heightened aversion to uncertainty could possibly predispose individuals 506 

to developing PTSD symptoms, and on the other hand, acquiring PTSD symptoms could result in altered 507 

uncertainty attitudes. There is some evidence, however, that risk attitude is correlated with relatively stable 508 

biomarkers including structural volume of right posterior parietal cortex (42), structural and functional 509 

connectivity of the amygdala (43) and genetic variations (44). These pieces of evidence might indicate that 510 

risk attitude is a personal trait, raising the possibility of its predisposing effect on the development of PTSD 511 

symptoms. Less evidence exists for biomarkers of ambiguity attitude, although there is some evidence for 512 

a genetic association among females (45). Further longitudinal studies comparing veterans pre- and post- 513 

military service may disentangle the role of pre-existing uncertainty attitudes on the development of PTSD 514 

from the subsequent impact of PTSD symptomatology on uncertainty attitudes. 515 
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Variations in decision making under uncertainty, and especially under ambiguity, have also been reported 516 

in  other psychiatric disorders, including higher ambiguity aversion and choice inconsistency in individuals 517 

with Obsessive Compulsive Disorder (25), and decreased ambiguity aversion in individuals with antisocial 518 

personality disorder (26). Interestingly, a recent longitudinal study demonstrated transient increases in 519 

tolerance to ambiguity before relapses in opioid users undergoing treatment (27). Overall, these efforts to 520 

study psychiatric disorders using behavioral economics approaches could collectively lead to both early 521 

identification of behavioral and biological risk factors for symptom development, and more effective 522 

treatment. 523 

 524 

Methods 525 

Participants 526 
68 male veterans (ages: 23.6-74.6; mean ± standard deviation: 39.4 ± 11.5), who had been deployed and 527 

exposed to combat, were recruited through flyers and were screened by clinicians at West Haven Veterans 528 

Affairs hospital. Due to the small proportion of female combat veterans (15% of female in Army 2019, 529 

statistics from Department of Defense), we only included male participants. PTSD sympotms and diagnoses 530 

were determined by the Structured Clinical Interview for DSM-4 (SCID) (46) and the Clinician 531 

Administered PTSD Scale (CAPS) (23). Participants either had current diagnoses of PTSD at the time of 532 

the study or were never diagnosed with PTSD (controls). We also collected the following measurements:  533 

PTSD Checklist for DSM-5 (PCL-5) (47), Beck’s Depression Inventory (BDI) (48), State-Trait Anxiety 534 

Inventory (STAI) (49), Dissociative Experiences Scale (DES) (50), Combat Exposure Scale (CES) (51), 535 

and Childhood Trauma Questionnaire (CTQ) (52). Participants with psychosis, bipolar disorder, traumatic 536 

brain injury, neurologic disorder, learning disability, and ADHD were excluded after screening. Participants 537 

also completed other questionnaires including demographic information, Behavioral Avoidance/Inhibition 538 

(BIS/BAS) Scales (53), the Barratt Impulsiveness Scale (BIS-11) (54), and Doman-Specific Risk-Taking 539 
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(DOSPERT) Scale (55). Kaufman Brief Intelligence Test (KBIT) (56) was administered after scanning as 540 

a measure of non-verbal intelligence. 541 

Participants data was excluded based on behavioral quality check (see Supplementary Methods) and 542 

excessive movement in the scanner. Behavioral data of 58 participants (ages: 23.6-67.0; mean ± standard 543 

deviation: 37.3 ± 8.9) and neural results of 48 participants (ages: 23.6-67.0; mean ± standard deviation: 544 

37.4 ± 9.2), were reported. The study was approved by the Yale University Human Investigating Committee 545 

and the Human Subjects Subcommittee of the VA Connecticut Healthcare System, and compliance with all 546 

relevant ethical regulations was ensured throughout the study. All participants gave informed consent and 547 

were compensated with $100 for their participation, plus a variable bonus ($0-$240) based on choices they 548 

made in the task (see Supplementary Methods).  549 

 550 

Experimental design 551 
The study was composed of three separate visits on three different days (Fig 1A). On the first day, recruited 552 

participants went through clinical interviews for screening. Eligible participants continued to two fMRI 553 

sessions, on two separate days. In the scanner, participants performed a task of decision making under 554 

uncertainty, which is based on a previous neuroimaging study (57) and similar to the design of a previous 555 

behavioral study in combat veterans (6). They made a series of decisions between a sure monetary outcome 556 

and an uncertain monetary outcome with either known (risky) or unknown (ambiguous) outcome 557 

probability, in scenarios of both gaining and losing money (Fig 1B). On each trial, participants viewed the 558 

two options side-by-side for a fixed duration of 6 seconds, and then made a choice (Fig 1D). To prevent 559 

learning, the outcome of the chosen option was not presented during the scan. At the end of the experiment, 560 

one randomly selected trial was realized for bonus payment. The scans were conducted over two days in 561 

order to limit the scanning time in each visit; task designs were identical for scanning Day1 and Day2. 562 

Participants were introduced to the task at the beginning on the Day and were reminded of the study on 563 

Day2. Additional questionnaires and intelligence tests were administered at the end of Day2.  564 
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MRI scans 565 
MRI data were collected with two scanners (due to scanner upgrade) at the Yale Magnetic Resonance 566 

Research Center: Siemens 3T Trio (37 participants, 29 reported in imaging results) and 3T Prisma (31 567 

participants, 19 reported in imaging results), using a 32-channel receiver array head coil. High resolution 568 

structural images were acquired by Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) imaging (TR 569 

= 2.5 s, TE = 2.77 ms, TI = 1100 ms, flip angle = 7°, 176 sagittal slices, voxel size = 1 ×1 × 1 mm, 256 × 570 

256 matrix in a 256 mm field-of- view, or FOV). Functional MRI scans were acquired while the participants 571 

were performing the choice task, using a multi-band Echo-planar Imaging (EPI) sequence (TR= 1000 ms, 572 

TE= 30ms, flip angle=60°, voxel size = 2 × 2× 2 mm, 60 2 mm-thick slices, in-plane resolution = 2 × 2 573 

mm, FOV= 220mm).  574 

 575 

Model-based risk and ambiguity attitudes estimation  576 
We fitted each participant’s choice data separately into a behavioral economics model that was used in 577 

previous studies (6,9). The model fitting was conducted separately for gain and loss trials. The model 578 

separates the decision process into two steps: valuation and choice. In the valuation step, the subjective 579 

value (SV) of each option is modelled by equation (1),  580 

𝑆𝑆𝑆𝑆 = �𝑃𝑃 − 𝛽𝛽 �𝐴𝐴
2
�� × 𝑉𝑉𝛼𝛼                                                 (1) 581 

where P is the outcome probability (0.25, 0.50, or 0.75 for risky lotteries, 0.5 for ambiguous lotteries, and 582 

1 for the certain option); A is the ambiguity level (0.24, 0.5, or 0.74 for ambiguous lotteries; 0 for risky 583 

lotteries and the certain amount); V is the non-zero outcome magnitude of the lottery or the amount of 584 

money of the certain option.  For choices in the loss domain, amounts are entered with a positive sign. Risk 585 

attitude was modeled by discounting the objective outcome magnitude by a participant-specific parameter, 586 

α. In the gain domain, a participant is risk averse when α < 1, and is risk seeking when α > 1. Because we 587 

fitted the choice data in the loss domain using positive outcome magnitudes, the participant is risk averse 588 

when α > 1, and is risk seeking when α < 1. Ambiguity attitude was modeled by discounting the lottery 589 
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probability linearly by the ambiguity level, weighted by a second participant-specific parameter, β. A 590 

participant is averse to ambiguity when β > 0, and is ambiguity seeking when β < 0 in the gain domain. In 591 

the loss domain, participant is averse to ambiguity when β < 0, and ambiguity seeking when β > 0. 592 

The choice process is modeled by a standard soft-max function (equation 2),  593 

𝑃𝑃V = 1
1+𝑒𝑒𝛾𝛾�𝑆𝑆𝑆𝑆L−𝑆𝑆𝑆𝑆C�

                                                     (2) 594 

 595 

where PV is the probability of choosing the lottery option, SVC and SVL are the subjective values of the 596 

certain option and the lottery respectively, calculated by equation (1); γ is a participant-specific noise 597 

parameter. We fitted each participant’s choices combining data from two sessions and obtained four 598 

attitudes: risk attitudes for gains and losses, ambiguity attitudes for gains and losses. For consistency, we 599 

transformed all attitudes in the following way such that negative values indicate aversion and positive 600 

values indicate seeking: risky gains: α – 1, risky losses: 1 – α, ambiguous gains: - β, ambiguous losses: β. 601 

Since participants performed the task on two separate sessions, we also fitted each session’s choice data 602 

separately. These fitted parameters from separate sessions were used to calculate trial-wise subjective 603 

values of the lotteries for GLM neural analysis, because they could capture the subjective values more 604 

accurately for searching neural activity change induced by variations of subjective values. 605 

 606 

MRI data analysis 607 
MRI data were preprocessed in BrainVoyager (Version 20.2.0.3065). Anatomical images were normalized 608 

to the standard brain template in Talairach space for each participant. Preprocessing of functional data 609 

included motion correction, slice scan time correction (cubic spline interpolation), temporal filtering (high-610 

pass frequency-space filter with cut-off cycle of 3), spatial smoothing (Gaussian filter with 8mm full-width 611 

at half-maximum), co-registration with high-resolution standardized anatomical data, and normalization to 612 

Talairach space. Scan data with movement of over 2 mm in any direction were excluded from analysis.  613 
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First level GLM analysis was conducted in the Neuroelf toolbox (Version 1.0, https://neuroelf.net/) through 614 

MATLAB (Version R2018b). The pre-processed fMRI signal time course was first converted to percent 615 

signal change within each scanning block, and activity of each voxel was modeled by GLM predictors 616 

convolved with a standard double-gamma hemodynamic response function. In the first GLM, we looked at 617 

the general activity during decision making, by including four binary predictors for all four decision 618 

conditions: ambiguous gains, risky gains, ambiguous losses, and risky losses. Each binary predictor was 619 

modeled as a box-car function, with the duration of choice display (6TR). We modeled choice response of 620 

all trials by another binary predictor with the duration of 1TR at the time of button press, and missing 621 

responses were not modeled. We also included nuisance predictors of 6 motion correction parameters 622 

(translation and rotation in the x, y, and z directions) in the GLM to account for influence of head motions 623 

on the neural activity. In a second GLM, we modeled the neural response to the variation of trial-wise 624 

subjective value of the lottery by including the subjective value as a parametric modulator for each of the 625 

four decision-condition binary predictors. Subjective value of the lottery in each trial was calculated 626 

uniquely for each participant by equation (1), by taking the fitted α and β for each participant under each 627 

domain of either gains or losses. Because we fitted the choice data in the loss domain by inputting the 628 

positive outcome value, we flipped the sign of the calculated subjective value back in the loss domain. We 629 

calculated the subjective values taking α’s and β’s fitted from the two sessions separately, because it would 630 

make the estimate of neural response to subjective value variation more accurate. Subjective values were 631 

normalized within each scanning block before GLM fitting, so that the estimated effect reflected each 632 

participant’s neural response to the variation of subjective value, rather than to its absolute magnitude. 633 

Predictor of choice response and nuisance predictors of motion correction were included as in the first 634 

GLM. In the third and fourth GLMs, we aimed to further investigate the shape of the neural representation 635 

of subjective values. In both GLMs, we combined trials of gains and losses, and only separated trials by 636 

uncertainty types. Thus, we included two binary predictors, ambiguous trials and risky trials, in both GLMs, 637 

and modeled them as box-car functions with a duration of choice display (6TR). In the third GLM, we 638 

included the subjective value itself as a parametric modulator to accompany each binary predictor, to look 639 
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at the monotonic value-encoding of subjective values. In the fourth GLM, we included the absolute value 640 

of subjective value as a parametric modulator to accompany each binary predictor, to look at the U-shaped 641 

saliency-encoding of subjective values. The predictor of choice response and nuisance predictors of motion 642 

correction were included as in the first GLM. In the fifth GLM to more directly visualize the subjective-643 

value encoding pattern, we made binary predictors based on the subjective value of the lottery. For each 644 

participant, we first separated all trials into risky and ambiguous one. Within each uncertainty domain, we 645 

then grouped loss trials into 3 bins, by comparing the subjective value of the lottery in each trial to the 1/3 646 

and 2/3 quantile value of the subjective values of all the loss lotteries in this uncertainty domain. Similarly, 647 

we grouped gain trials into 3 bins, by comparing the subjective value of the lottery in each trial to the 1/3 648 

and 2/3 quantile value of the subjective values of all the gain lotteries in this uncertainty domain. We then 649 

constructed a binary predictor for each bin as a box-car function with the duration of choice display (6TR). 650 

Altogether this GLM included 12 predictors (2 uncertainty domains × 2 gain/loss domain × 3 bins) 651 

representing the levels of subjective values. Within each uncertainty domain, there were 6 bins of trials, 652 

and the 1st bin included the loss lotteries with the most negative subjective values, and the 6th bin included 653 

the gain lotteries with the most positive subjective values. An additional predictor of response was modeled 654 

as the same way as the other GLMs. 655 

In the second-level analysis, random-effect group analysis was conducted to test whether the mean effect 656 

of interest was significantly different from zero across participants, or significantly different between 657 

groups by contrasting veterans with PTSD and combat controls. We also took a dimensional approach to 658 

test whether the predictor effects were related to the severity of PTSD and other clinical symptoms. The 659 

tests were conducted both in a whole-brain search and in ROIs. All whole-brain statistical maps were 660 

thresholded at p < 0.001 per voxel, and corrected for multiple comparisons using cluster-extent correction 661 

methods through Alphasim by AFNI (58) to control family-wise error (FWE) rate at 0.05. After identifying 662 

regions from the whole-brain analysis, in which the neural representation of subjective values was 663 

influenced by PTSD symptom severity, we took a leave-one-subject-out (LOSO) approach to define these 664 
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ROIs in an un-biased way for each participant. For each left-out participant, we defined an ROI from a 665 

whole-brain analysis using data from all other participants, so this ROI definition was not influenced by the 666 

left-out participant. We then sampled neural signals of the left-out participant’s data from this ROI. We 667 

repeated the process for all participants.  668 
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