

1 **Fragmentation of extracellular ribosomes and tRNAs shapes the extracellular RNAome**
2

3 Juan Pablo Tosar^{1,2,3*}; Mercedes Segovia⁴; Fabiana Gámbaro^{2,5}; Yasutoshi Akiyama³, Pablo Fagúndez^{1,2},
4 Bruno Costa^{1,2}, Tania Possi², Marcelo Hill⁴, Pavel Ivanov^{3,6}, Alfonso Cayota^{2,7*}.

5 ¹Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la Repùblica, Uruguay. ²Functional
6 Genomics Unit, Institut Pasteur de Montevideo, Uruguay. ³Division of Rheumatology, Immunology and Allergy, Brigham and
7 Women's Hospital, Boston, MA, USA. Department of Medicine, Harvard Medical School, Boston, MA, USA. ⁴Laboratory of
8 Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Uruguay. Immunobiology Department, Faculty of
9 Medicine, Universidad de la Repùblica, Uruguay. ⁵Molecular Virology Laboratory, Nuclear Research Center. Faculty of Science.
10 Universidad de la Repùblica, Uruguay. ⁶The Broad Institute of Harvard and M.I.T., Cambridge, MA, USA. ⁷Department of
11 Medicine, University Hospital, Universidad de la Repùblica, Uruguay.

12 *To whom correspondence should be addressed. Email: jptosar@pasteur.edu.uy; cayota@pasteur.edu.uy

13 **ABSTRACT**

14 A major proportion of extracellular RNAs (exRNAs) do not co-isolate with extracellular vesicles (EVs)
15 and remain in ultracentrifugation supernatants of cell-conditioned medium or mammalian blood serum.
16 However, little is known about exRNAs beyond EVs. We have previously shown that the composition of
17 the nonvesicular exRNA fraction is highly biased toward specific tRNA-derived fragments capable of
18 forming RNase-protecting dimers. To solve the problem of stability in exRNA analysis, we developed RI-
19 SEC-seq: a method based on sequencing the size exclusion chromatography (SEC) fractions of
20 nonvesicular extracellular samples treated with RNase inhibitors (RI). This method revealed dramatic
21 compositional changes in exRNA population when enzymatic RNA degradation was inhibited. We
22 demonstrated the presence of ribosomes and full-length tRNAs in cell-conditioned medium of a variety of
23 mammalian cell lines. Their fragmentation generates some small RNAs that are highly resistant to
24 degradation. The extracellular biogenesis of some of the most abundant exRNAs demonstrates that
25 extracellular abundance is not a reliable input to estimate RNA secretion rates. Finally, we showed that
26 chromatographic fractions containing extracellular ribosomes can be sensed by dendritic cells.
27 Extracellular ribosomes and/or tRNAs could therefore be decoded as damage-associated molecular
28 patterns.

29
30
31
32
33
34 **Keywords:** tRNA, exosomes, intercellular communication, exRNA, extracellular vesicles, RNPs.

35
36
37
38
39
40
41
42

43

44

45 INTRODUCTION

46

47 Extracellular RNA (exRNA) profiling in biofluids such as urine, plasma or serum is a promising approach
48 for early disease detection and monitoring in minimally invasive liquid biopsies ¹. Although plasma cell-
49 free DNA analysis has proven powerful to detect cancer-associated mutations ² or altered DNA
50 methylation events ³, exRNA analysis has the potential to inform about transcript expression, post-
51 transcriptional modifications and splicing variants ⁴. Additionally, cells use exRNAs to communicate and
52 reciprocally regulate their gene expression, even in other tissues ⁵⁻⁷.

53

54 Because RNA is less stable than DNA in biofluids such as plasma due to the high RNase activity of these
55 samples ⁸, exRNAs are typically studied in the context of lipid membrane-containing extracellular
56 vesicles (EVs) ^{7,9,10} or lipoprotein particles (LPPs) ^{11,12}. Alternatively, exRNAs can achieve high
57 extracellular stability by their association with proteins^{13,14}. However, extracellular soluble
58 ribonucleoproteins remain the least studied exRNA carriers ¹⁵, with most attention thus far placed at the
59 level of EVs. A new extracellular nanoparticle was recently discovered ^{16,17}, but the exact identity and
60 RNA content of these complexes termed “exomers” needs further characterization.

61

62 The well documented involvement of EVs ¹⁸, and EV-encapsulated RNAs ^{5,6,19} in intercellular
63 communication explains part of the bias toward these exRNA carriers. Extracellular vesicles are actively
64 released by living cells by mechanisms which can be experimentally manipulated ^{20,21} and contain
65 surface proteins that can confer tropism for specific cell types or tissues ²². Moreover, nucleic acid loaded
66 ²³ or unmodified ²⁴ EVs have shown therapeutic potential and are moving toward clinical use. On the
67 contrary, the origin of extracellular ribonucleoproteins is controversial ²⁵ and it is still unclear whether
68 they are released actively from cells ²⁶ or they constitute stable intracellular complexes passively released
69 by distressed, damaged or dying cells ¹⁴.

70

71 It is widely accepted that most of the cell-free DNA found in human blood plasma is originated
72 from apoptotic hematopoietic cells ^{27,28}. However, the contribution of dead cells to exRNA profiles is
73 unclear. Although identification of RNAs actively and selectively released to the extracellular space can
74 help to understand physiological communication circuits between nonadjacent cells, nonselective RNA
75 release (derived from either live or dead cells) can provide cell- or tissue-specific extracellular signatures
76 which can be identified, at least in theory, by deconvolution analysis ²⁹. However, it is reasonable to
77 expect that those exRNAs that are not contained inside EVs would be rapidly degraded by extracellular

78 RNases. This is probably the main reason why nonvesicular exRNAs have not attracted much attention
79 until very recently^{16,26}.

80
81 Strikingly, a major proportion of extracellular small RNAs are found outside EVs^{13,30}. Furthermore,
82 nonvesicular exRNA profiles are highly biased toward glycine and glutamic acid 5' tRNA halves. This
83 has been extensively documented both in cell culture media^{30,31} and in biofluids such as urine, blood
84 serum, saliva or cerebrospinal fluid³²⁻³⁵. The abundance of these species in the extracellular, nonvesicular
85 fraction^{30,34,35} challenges the widespread belief that exRNAs are unstable when not present inside EVs and
86 raise the question on the origin of their remarkable extracellular stability. A possible answer comes from
87 our recent report that glycine and glutamic acid 5' tRNA halves can form homo- or heterodimeric
88 hybrids which render these structures resistant to single-stranded RNases³⁶. The RNAs with predicted
89 dimer-forming capacity are slightly shorter (30 – 31 nt) than the 5' tRNA halves generated by
90 endonucleolytic cleavage of the anticodon loop during the stress response (typically 34 – 35 nt)³⁷⁻³⁹.
91 Interestingly, nonvesicular extracellular fractions are usually enriched in glycine and glutamic acid tRNA
92 halves of precisely 30 – 31 nt^{30,32}, suggesting a causal link between extracellular stability and abundance
93³².

94
95 We hypothesized that extracellular RNA degradation is a major force shifting what cells release to the
96 extracellular space toward those species with higher extracellular stability. Consequently, we reasoned
97 that conventional exRNA profiling fails to capture the complete set of RNAs released from cells to the
98 extracellular space, frustrating attempts to infer RNA secretion mechanisms from comparisons between
99 intracellular and extracellular RNA profiles. To study this, we compared exRNA profiles in cell-
100 conditioned media obtained with or without addition of recombinant ribonuclease inhibitor (RI).
101 Surprisingly, addition of RI greatly increased the complexity of exRNA profiles, providing evidence for
102 the presence of extracellular ribosomes and tRNAs and for their rapid decay to rRNA- and tRNA-derived
103 fragments. Some of these fragments are highly stable and can accumulate in RNase-rich samples such as
104 serum, even when present outside EVs. Overall, we provide a dynamic and comprehensive
105 characterization of the nonvesicular RNAome which can impact biomarker discovery in biofluids.
106 Because our data is consistent with a significant fraction of nonvesicular RNAs being released from
107 distressed, damaged or dying cells, we also provide evidence supporting an immunomodulatory role for
108 some of these extracellular ribonucleoprotein particles.

109

110

111

112

113 METHODS

114 Reagents

115 A full list of reagents including antibodies, primers and probes used in this study are reported in *SI*
116 *Materials and Methods*.

117 Preparation of cell-conditioned medium

118 Cells were cultured in DMEM + 10% fetal bovine serum (FBS; Gibco) at 37°C and 5% CO₂. Conditioned
119 medium was typically derived from one 75 cm² flask for chromatographic analysis or from one 150 cm²
120 flask for electrophoresis. Cells were plated at a density which was adjusted to obtain a confluence of 80%
121 at the endpoint of the experiment. Recombinant ribonuclease inhibitor, murine (RI; New England
122 Biolabs) was added in selected experiments at a final concentration of 4-8U / mL, either at the time of
123 medium renewal or following collection of cell-conditioned media.

124 Preparation of serum-containing conditioned medium (adherent cells; protocol 1): cells were grown in
125 DMEM + 10% FBS (“S+” medium). They were washed with S+ medium, and incubated in S+ for
126 variable periods of time which ranged from 1 to 48 hours.

127 Preparation of serum-free conditioned medium (adherent cells; protocol 2): cells were plated on day zero
128 and grown in S+ for 24 hours. Later, they were washed with PBS, grown in Mammary Epithelial Growth
129 Medium without antibiotics and without bovine pituitary extract (MEGM, Lonza) for 48 hours, washed
130 again with PBS, and grown in MEGM for additional 48 hours.

131 Preparation of serum-free conditioned medium (adherent cells; protocol 3): cells were grown in S+,
132 washed with DMEM and incubated with DMEM + 1x Insulin-Transferrin-Selenium solution (“ITS”
133 medium) for one hour.

134 ExRNA analysis after short washes in PBS or Hank’s Balanced Salt Solution (HBSS) (adherent cells;
135 protocol 4): cells were grown in S+ medium until 80% confluent, washed three times with warm buffer (5
136 seconds per wash), and washed a forth time for 30 seconds with 5 mL (in T75 flasks) or 10 mL (in T150
137 flasks) of warm buffer plus 20 – 40 U RI (respectively). Buffers could correspond to PBS, PBS plus
138 divalent cations (PBS+), HBSS or HBSS plus divalent cations (HBSS+) depending on the experiment.
139 Flasks were gently tilted from side to side during washes.

140 For protocols 1-4: conditioned media or conditioned-buffers were centrifuged at 800 x g at room
141 temperature to remove detached cells and then spinned twice at 4°C and 2,000 x g. The supernatants were

142 either processed immediately or stored at -20°C for later use. If frozen, media was spinned again at 4°C
143 and 2,000 x g upon thaw.

144 ExRNA analysis after short washes in PBS (suspension cells; protocol 5): cells were grown in S+ medium
145 until the desired cell density, spinned down at 300 x g for 5 min at room temperature, resuspended in
146 DMEM and immediately spinned down again. The cell pellet was then resuspended in PBS (+RI) and
147 immediately spinned down at 300 x g for 5 min. The supernatant (“cell-conditioned PBS”) was
148 centrifuged four times at 2,000 x g and 4°C to remove any remaining cell and used immediately or stored
149 at -20°C.

150

151 **Preparation of the nonvesicular extracellular fraction by ultracentrifugation**

152 The cell-conditioned medium already spinned at 2,000 x g was centrifuged for 2.5 h at 100,000 x g and
153 4°C in a Beckman Coulter Optima XPN-90 ultracentrifuge using a SW40 Ti rotor. The supernatant was
154 concentrated to ~250 µl with 10,000 MWCO ultrafiltration units (Vivaspin 20, Sartorius Stedim
155 Biotech) and subjected to size-exclusion chromatography or RNA extraction with TRIzol (according to
156 manufacturer’s instructions).

157

158 **Size exclusion chromatography**

159 The 100,000 x g supernatants of the cell-conditioned medium were concentrated by ultrafiltration by
160 successive dilutions with PBS to remove phenol red and small molecules. Concentrated non-EV fractions
161 (500 µl) were injected in a Superdex S200 10/300 column (Amersham, GE) and size exlusion
162 chromatography (SEC) was performed at 0.9 ml/min in 0.22 µm-filtered 1x PBS with an Äkta Pure (GE
163 healthcare) FPLC system. All samples were centrifuged at 16,000 × g for 10 min at 4°C before injection
164 in the columns. Fractions of 0.25 mL were collected while monitoring the absorbance at 260 nm and 280
165 nm. Chromatograms were deconvoluted *in silico* using empirically determined 260/280 ratios from pure
166 bovine serum albumin (BSA) and synthetic tRNA^{Gly}_{GCC} 5' halves (of 30 nt).

167

168 **Sequencing of small RNAs**

169 RNA was purified from selected chromatographic peaks using TRIzol LS and following manufacturer’s
170 instructions. The obtained RNA was diluted in 8 µl of ultra-pure RNase-free water, and 7 µl were used as
171 input for NGS library preparation using the NEBNext Small RNA Library Prep Set for Illumina (New
172 England Biolabs). Sequencing was performed in a MiSeq benchtop sequencer for 200 cycles. The
173 analysis was performed as previously described³⁶ and depicted in *SI Materials and Methods*.

174

175

176 **Proteomic analysis**

177 Fractions corresponding to selected chromatographic peaks were treated with RNase A and later with
178 sequencing grade modified Trypsin (Promega). Peptides were then purified using a C18 ZipTip (Merck
179 Millipore). Eluted peptides were dried in a SpeedVac and resuspended in 10 μ L of 0.1 % formic acid.
180 Each sample was injected into a nano-HPLC system (EASY-nLC 1000, Thermo Scientific) fitted with a
181 reverse-phase column (EASY-Spray column, C18, Thermo Scientific). Peptide analysis was carried out in
182 a LTQ Velos nano-ESI linear ion trap instrument (Thermo Scientific). Protein identification was
183 performed with the software PatternLab for Proteomics. Detailed protocols and specifications are
184 provided in *SI Materials and Methods*. Sample processing and analysis was performed at the Analytical
185 Biochemistry and Proteomic Unit (UByPA) of the Institut Pasteur de Montevideo.

186

187 **Northern blotting**

188 RNA samples were run on 10% TBE-urea polyacrylamide gels (ThermoFisher Scientific) and transferred
189 to positively charged nylon membranes (Roche). The membranes were cross-linked by UV irradiation.
190 After cross-linking, the membranes were hybridized overnight at 40°C with digoxigenin (DIG)-labeled
191 DNA probes in DIG Easy Hyb solution (Roche). After low and high stringency washes, the membranes
192 were blocked, probed with alkaline phosphatase-labeled anti-digoxigenin antibody (Roche) and washed
193 with 1x TBS-T. Signals were visualized with CDP-Star ready-to-use (Roche) and detected using
194 ChemiDoc imaging system (BioRad). A detailed protocol and probe sequences are provided in *SI*
195 *Materials and Methods*.

196

197 **Density gradient separations**

198 For separation of ribosomal subunits and ribosomes, a linear gradient composed of 10 – 40 % RNase-free
199 sucrose was used. The gradients were prepared in 20 mM Tris-Cl buffer (pH = 7.4), 4 mM MgCl₂, 50 mM
200 KCl and 1mM DTT (added fresh). Layers of 40%, 30% 20% and 10% sucrose were added sequentially to
201 a 12 mL polypropylene tube and frozen at -80°C in between. The whole gradient was thawed overnight in
202 the cold-room and used the next day. Extracellular samples were obtained from U2-OS cells using
203 protocol 4 and washing with HBSS+ in the presence of RI. Washes four and five were pooled,
204 concentrated by ultrafiltration and stored at -80°C until use. Concentrated extracellular fractions (0.5 mL)
205 were thawed, layered gently on top of the gradient, and centrifuged at 186,000 x g for 3 hours at 4°C
206 using a SW 40 Ti rotor (acceleration: max; break: min). A density gradient analyzer and fractionator
207 equipped with a Teledyne ISCO UA-6 UV/Vis detector was used to collect fractions of 0.5 mL, starting

208 from the top of the gradient. Collected fractions were treated with 0.5 mL TRIzol to purify both RNA and
209 proteins according to the manufacturer's instructions.

210
211 To separate extracellular vesicles from ribonucleoproteins (RNPs) or other high-density components of
212 the non-EV fraction, high-resolution (12 – 36 %) iodixanol gradients were used following the protocol
213 described in ²⁶. Briefly, samples were layered on the bottom of a 12 mL polypropylene tube, and layers of
214 ice-cold 36%, 30%, 24%, 18% and 12% iodixanol (prepared in PBS) were added sequentially on top. The
215 gradients were centrifuged for 15 h at 120,000 x g and 4°C, using a SW40 Ti rotor. Twelve fractions of 1
216 mL were obtained from the top of the gradient and transferred to new tubes. One half of each fraction was
217 treated with an equal volume of TRIzol and used for RNA and protein purification following
218 manufacturer's instructions. The other half was twice precipitated with cold (-20°C) 60% acetone, and the
219 pellets were resuspended in 1x loading buffer for Western blot analysis. Loading buffer contained
220 reducing agents or not depending on the primary antibodies intended to use.

221
222 **Differentiation of dendritic cells and flow-cytometry.**
223 Adherent mouse bone marrow-derived dendritic cells (BMDC) were prepared as described in ⁴⁰. Briefly,
224 bone marrow cells were obtained from the leg bones of C57BL/6 mice and differentiated in culture for
225 eight days in the presence of 0.4 ng / mL GM-CSF. Selected chromatographic fractions or synthetic
226 RNAs were concentrated or diluted to 100 µL (respectively), filter-sterilized, and added to 1 x 10⁶
227 BMDCs grown in 900 µL of complete medium containing 10% FBS and antibiotics. At t = 24 hs, cells
228 were harvested and analyzed by flow cytometry using a CyAn ADP Analyzer (Dako). A detailed protocol
229 is provided in *SI Materials and Methods*. Levels of IL-1β in the media were measured using a commercial
230 ELISA kit from Biolegend.

231
232

233 **RESULTS**

234
235 **Addition of RNase A-family inhibitor reshapes nonvesicular exRNA profiles**
236 Chromatographic analysis of the non-EV fraction of MCF-7 cell-conditioned medium (CCM) consistently
237 showed two peaks with Abs 260 > Abs 280 which we termed P1 (V_e = 15.0 mL) and P2 (V_e = 16.5
238 mL) (**Figure 1 A; top**). The elution volume of P1 corresponds to that obtained when injecting yeast full-
239 length tRNA^{Phe} or synthetic dsRNAs of 30 nt (**Supplementary Fig. 1, A** and ³⁶). In contrast, synthetic
240 ssRNAs of 30 nt elute in the same volume as P2. Treatment of the CCM with RNase A prior to size-
241 exclusion chromatography (SEC) depleted the P1 peak and degradation products were evident with V_e ≥

242 19 mL (**Figure 1, A; middle**). However, absorbance in the P2 region was
243 only modestly affected. Addition of the recombinant Angiogenin/RNase A-family inhibitor (RI) to
244 the CCM precluded the formation of P2 (**Figure 1, A; bottom**), demonstrating that the P2 peak also
245 contains RNA. In this situation, the P1 peak was still prominent, but quantitatively similar amounts of
246 nucleic acids eluted in the exclusion volume of the column ($V_e = 7.5$ mL; apparent MW ≥ 800 kDa). For
247 simplicity, we will term this new peak “P0”.

248

249 The high MW RNA-containing complex in P0 was mutually exclusive with the P2 peak (**Figure 1, B**).
250 The earlier the RI was introduced in our purification protocol, the higher the P0/P2 and the P1/P2 ratios.
251 Furthermore, RNase A treatment of the purified P0 fraction generated partial degradation products which
252 eluted in P2 (**Figure 1, C**). Taken together, these results suggest that P2 contains a small RNA population
253 formed by partial fragmentation of high molecular weight RNAs within P0. For some reason, fragments
254 from P2 seem to be highly resistant to the action of RNase A.

255

256 The dramatic effects on exRNA profiles induced by early RI addition highlight an often-
257 underappreciated fact in exRNA studies. When differential extracellular stabilities exist (**Figure 1, D**),
258 extracellular abundances are not informative of relative RNA secretion rates. Our results also suggest that
259 MCF-7 cells grown under serum-free conditions mostly release RNA complexes that elute as P0 and P1.
260 Extracellular RNases modify this profile and generate a scenario where P1 and P2 are the main RNA
261 populations, but RNAs in P2 do not seem to be directly released despite being highly abundant in the
262 untreated CCM.

263

264 **RI-SEC-seq enables detection of extracellular nonvesicular tRNAs and rRNAs**

265 Small RNA sequencing of P1 obtained with or without addition of RI was previously published by our
266 group ³⁶ and showed a predominance of 5' tRNA halves derived from tRNA^{Gly}_{GCC} and tRNA^{Glu}_{CUC}.
267 However, tRNA-derived fragments in the “+RI” library tended to be longer than in “-RI” (33-35 vs 30-
268 31). When RI was present, there was a predominance of 5' tRNA^{Glu}, and when RI was not present the
269 predominance shifted toward 5' tRNA^{Gly} (**Figure 1, E-F and Supplementary Fig. 1, B**). These same
270 species were the most abundant small RNAs in the total nonvesicular fraction of MCF-7 CCM ³⁰ and are
271 frequently detected in human biofluids ³². The ability of these fragments to form RNase-resistant homo
272 and heterodimers ³⁶ is consistent with their detection in the absence of RI and their elution in the P1 peak.
273 However, addition of RI recovered a higher diversity of small RNAs in the P1 peak, including fragments
274 of rRNA and full-length snoRNAs. Interestingly, the most frequently detected 28S rRNA fragment
275 corresponds to the region which is hybridized by the most frequently detected snoRNA during ribosomal

276 RNA maturation (**Supplementary Fig. 1, C-D**). This strongly suggests the presence of additional
277 extracellular RNA hybrids, albeit with lower extracellular stabilities than dimers of 5' tRNA halves.

278

279 Sequencing of full-length mature tRNAs is challenging due to the abundance of modified ribonucleotides
280 and their strong self-complementarity. Therefore, specific protocols for tRNA sequencing and
281 analysis have been developed in recent years ⁴¹⁻⁴⁴. Despite using conventional ligation-based library
282 preparation methods, we obtained a low but nonnegligible number of reads corresponding to two full-
283 length tRNA^{Glu} isoacceptors (**Supplementary Fig. 1, E**). These sequences were exclusively detected in
284 the “P1 + RI” library in an almost complete form except from the initial 12 nucleotides and contained the
285 3' terminal nontemplated CCA addition indicative of mature tRNAs. Analysis of the P1 + RI fraction in a
286 denaturing RNA gel showed that, indeed, most RNAs migrated like full length tRNAs (**Figure 1, G**). In
287 contrast, the majority of RNAs in “P1 –RI” were < 33 nt. Altogether, these results suggest that exRNA
288 profiles are biased toward the most stable RNAs by the action of extracellular ribonucleases and they do
289 not necessarily reflect the composition of RNAs actually released by cells. Although the P1 peak was
290 detectable with or without RI addition, the RNAs eluting at that volume shifted from a predominance of
291 full-length tRNAs to the highly stable tRNA^{Gly}_{GCC} 5' tRNA halves of 30 - 31 nt.

292

293 The P0 peak contains mostly high-MW RNA, as evidenced by denaturing gel electrophoresis (**Figure 1,**
294 **G**) and because reinjection of the purified RNA from the P0 peak still eluted in the void volume (**Figure**
295 **1, C**). Small RNA sequencing showed the same tRNA-derived fragments found in P1, but
296 overwhelmingly higher levels of rRNA fragments (**Figure 1H-I**). The majority of these were 28S rRNA
297 5' fragments of 20-40 nucleotides. Our size-selected libraries were too short (< 200 nt) to capture the
298 complete 28S (5070 nt) or 18S (1869 nt) rRNAs, although sequences spanning the entire 28S rRNA were
299 detectable (**Supplementary Fig. 1, F**). Nevertheless, the entire 5.8S rRNA could be read (156 nt; 3,108
300 RPM). Fragments of 72-75 nt corresponding to 5.8S rRNA 3' halves were also robustly detected (44,991
301 RPM).

302

303 To demonstrate the presence of full-length rRNAs in P0 we performed random-primed reverse
304 transcription and qPCR amplification with primers spanning different regions of 28S, 18S and 5.8S
305 rRNAs (**Figure 1, J**). All primer sets amplified comparably and exclusively in P0, while tRNA^{Gly}_{GCC} 5'
306 tRNA halves peaked in P1 and P2 as expected. This evidence, together with sequencing of the entire 5.8S
307 rRNA, strongly suggests the release of intact rRNAs from both ribosomal subunits to the extracellular
308 space and outside EVs.

309

310 **Release of rRNAs and tRNAs occurs promptly after 30 seconds of medium renewal**

311 Cell-conditioned medium contains a variety of RNAs that could be released a few seconds, minutes,
312 hours or days before collection. To clearly differentiate between RNAs directly released from cells and
313 fragments generated by extracellular processing of longer precursors, we combined RI treatment with
314 exRNA profiling shortly after medium renewal. To do this, we performed four subsequent washes of cells
315 with PBS and analyzed the RNA content in the cell-conditioned PBS, with a conditioning time as short as
316 30 seconds (**Figure 2, A**). Strikingly, both the rRNA-associated P0 and the tRNA-associated P1 peaks
317 were detected in the four washes with very little variation between them (**Figure 2, B**). Similar results
318 were obtained when washing with serum-free chemically defined growth medium (MEGM;
319 **Supplementary Fig. 2, A**), albeit with a higher wash-to-wash variability. Thus, detection of rRNAs and
320 tRNAs in the 4th PBS or MEGM wash was not a consequence of carry-over from previously longer
321 incubations. Instead, fast release of these RNAs occurred every time the cells were washed. Increasing
322 incubation time from 30 seconds to 10 minutes did not increase extracellular RNA levels (**Figure 2, C-**
323 **D**).

324

325 To study whether this phenomenon is generalizable, we repeated the same experiments in human
326 malignant cell lines derived from a variety of tissues (MCF-7, U2-OS, HepG2), in normal human dermal
327 fibroblasts cultured at low passage (BJ), and in cell lines derived from mice (LL/2) or nonhuman primates
328 (Vero). Even though cell-normalized RNA quantities varied in each case, the presence of the P0 and P1
329 peaks in the 4th PBS wash was highly reproducible (**Figure 2, E and Supplementary Fig. 2, B**).
330

331 Quantitatively, RNA levels in each wash were 0.1 – 0.5 % of the total RNA present in the culture
332 (estimated by multiplying cell number by average RNA contents per cell). Mechanistically, this can be
333 achieved by either 0.5% of dead cells releasing 100% of their cytoplasmic content, or 100% of cells
334 secreting 0.5% of their transcriptome. In this respect, it is tempting to speculate that the presence of high
335 MW ribonucleoproteins in the extracellular medium of cell lines should be the consequence of damaged
336 or dying cells, as some of these cells were observed even after short washes with serum-free media or
337 buffers (**Figure 2, F-G**). As expected, the vast majority of cells were not affected by the washing process
338 and retained their anchorage (**Supplementary Fig. 2, C**). Intracellular levels of phospho-eIF2 α (**Figure 2,**
339 **H**) were only slightly higher than in nontreated cells (fold change = 1.3 vs. 4.1 in the positive control),
340 even after washing cells with PBS. Because eIF2 α phosphorylation is a hub of various stress response
341 programs⁴⁵, a rapid reprogramming of intracellular RNA levels is not expected as a considerable outcome
342 of our washing protocol, which does not induce stress. Furthermore, cold (4°C) HBSS+ washes did not

343 impaired exRNA detection (data not shown) arguing against an active ATP-dependent
344 secretion mechanism.

345

346 **Extracellular nonEV RNAs mirror the intracellular transcriptome**

347 To distinguish between selective and nonselective release of cytoplasmic contents, we scaled up our
348 cultures in an attempt to detect less abundant nonvesicular exRNAs. Surprisingly, denaturing PAGE
349 analysis of TRIzol-purified RNA from intracellular and extracellular fractions showed virtually identical
350 results in U2-OS cells (**Figure 2, I**) and other adherent cell lines. These include, among others, the
351 DU145 cell line which is deficient in ATG5 and therefore in autophagy⁴⁶, but still showed extracellular
352 rRNAs, 7SL RNAs and tRNAs when incubated in serum-free media supplemented with growth factors
353 for just one hour (**Figure 2, J**). As a consequence, the release mechanism operating herein seems to be
354 unrelated to the autophagy-dependent (presumably ATG5-mediated) secretion of cytoplasmic nucleic
355 acids described in²⁶. All major intracellular RNA classes were detectable in the extracellular space and
356 the relative abundance between classes was also conserved. Selectivity within a given RNA class (e.g.,
357 tRNAs) will be studied in later sections of this work.

358

359 In order to extend our analysis to cells in suspension, slight modifications in our washing protocol were
360 introduced. Despite these modifications, the chromatograms of the RI-treated cell-conditioned PBS from
361 the human THP-1 (**Supplementary Fig. 3, A**) and the murine EG.7-OVA cell lines showed the
362 characteristic P0 and P1 peaks. The washing protocol itself did not induce apoptosis. On the contrary,
363 there was a significant reduction in the percentage of Annexin V-positive, propidium iodide-positive late
364 apoptotic cells recovered after the washes (**Supplementary Fig. 3, B-C**), suggesting that not all apoptotic
365 cells could be collected by low speed centrifugation and at least some cells released their contents into the
366 medium. Consistent with this, and in contrast to what was previously observed in adherent cell lines, the
367 P0 peak clearly contained fragmented DNA (**Figure 2, K**). Proteomic analysis showed that histones were
368 the most abundant identifiable proteins in the P0 peak, and their association with this peak was not
369 affected by RNase A treatment of the sample before SEC (**Figure 2, L-M**). In contrast, ribosomal
370 proteins were almost completely depleted from the P0 peak when the medium was treated with RNase
371 A (**Figure 2, M-N**). Detection of most ribosomal proteins in a high molecular weight complex with an
372 RNA scaffold strongly suggests the elution of ribosomes or ribosomal subunits in the P0 peak from these
373 suspension cells.

374

375 In summary, even after washing cells to remove RNAs released to the medium after prolonged
376 incubations, the most abundant intracellular nucleic acids and their associated proteins could be detected

377 in the extracellular space. For cells in suspension, the fragmentation pattern of exDNA suggests that
378 apoptotic cells are a main source of extracellular nucleic acids, despite these cells being lowly represented
379 in the culture. In adherent cells, the apparent lack of detectable exDNA could be explained by the
380 induction of a form of cell damage which preserves nuclear membrane integrity in a limited number of
381 cells exposed to serum-free media (**Figure 2, F-G**).

382

383

384 **Identification of ribosomes and oligoribosomes in the extracellular space**

385 Proteomic analysis of the P0 peak from EG.7-OVA cells strongly suggested the presence of both
386 nucleosomes and ribosomes (**Figure 2, K-N**) which were presumably derived from apoptotic cells.
387 Because DNA was absent from the P0 peak of adherent cell lines exposed to a series of brief washes with
388 buffers or serum-free media, the mechanisms responsible for RNA release in adherent and suspension
389 cells seemed to be essentially different. However, we could identify features with size and morphology
390 reminiscent of ribosomes by negative-stain transmission electron microscopy of the concentrated P0 peak
391 purified from adherent Hep G2 cells (**Supplementary Fig. 3, D**).

392

393 To confirm the presence of extracellular ribosomes in other adherent cell lines, we resort to study
394 concentrated extracellular fractions by velocity sedimentation in sucrose gradients optimized for
395 polyosome preparations (**Figure 3, A**). Analysis of the velocity gradients showed three clearly defined
396 254 nm peaks in the region corresponding to ribosomal subunits or ribosomes (**Figure 3, B**). These peaks
397 corresponded to the small ribosomal subunit 40S (low levels of 28S, 5.8S and 5S rRNA, high levels of
398 18S rRNA, low levels of RPL7a, high levels of RPS6), 80S monosomes (all rRNAs and all ribosomal
399 proteins detectable with the expected stoichiometry), and, considering a lack of detectable ribosomal
400 proteins in fraction #10 and their reappearance in fraction #11, two ribosomes (2x). Interestingly, a small
401 254 nm peak in fraction #14 was accompanied by a faint but detectable band for RPL7a and RPS6 and
402 was indicative of oligoribosomes or polysomes. These were further stabilized by treating cells with the
403 translation elongation blocker cycloheximide (but not with the premature terminator puromycin) straight
404 before HBSS+ washes (**Figure 3, C**).

405

406 Detection of 80S particles in puromycin-treated cells can be explained by the tendency of ribosomal
407 subunits to re-associate *in vitro* in the presence of tRNAs⁴⁷. However, this cannot explain higher order
408 aggregates which were detected deeper in the gradient. Because polysomes are formed by ribosomes
409 sitting on messenger RNAs, we wondered whether the extracellular fractions also contained mRNAs. A
410 reanalysis of our small RNA sequencing in the P0 peak from MCF-7 cells revealed a variety of reads

411 unambiguously mapping to coding sequences. Once again, their extracellular representation was strongly
412 correlated ($r = 0.416$, $p < 0.0001$) to their expected intracellular levels, and included mRNAs transcribed
413 from the mitochondrial genome (**Figure 3, D**). To demonstrate the presence of complete, nondegraded
414 mRNAs, RT-PCR was done using the P0 peak as input material and an oligo dT reverse transcription
415 primer. The PCR primers were designed to amplify a 750 bp region at the 5' end of the HSP90B1 mRNA,
416 one of the most abundantly detected mRNAs in our sequencing study. Bands of the expected size were
417 obtained in MCF-7 and BJ cells (**Figure 3, E** and data not shown).

418 Next, we addressed whether extracellular ribosomes/polysomes were functional. To do this, we
419 concentrated HBSS+ washes and added ATP/GTP plus puromycin (5 μ g / mL) and incubated the samples
420 for two hours at either 4°C or 37°C (**Figure 3, F**). Surprisingly, Western blot analysis with an anti-
421 puromycin antibody showed significant incorporation of the antibiotic to nascent peptides when samples
422 were incubated at 37°C but not at 4°C. To the best of our knowledge, this is the first evidence of the
423 peptidyl transference reaction occurring in extracellular samples obtained without deliberated cell lysis
424 steps.

425

426 **Nonvesicular ribosomal RNAs co-purify with extracellular vesicles**

427 Isopycnic centrifugation of exRNAs obtained after washing U2-OS cells with HBSS+ for only 30 seconds
428 confirmed that virtually all RNAs detectable by SYBR gold staining were not associated with
429 extracellular vesicles (**Figure 3, G and Supplementary Fig. 3, E**). However, sequential
430 ultracentrifugation of cell conditioned HBSS (either with or without divalent cations) showed
431 sedimentation of rRNA- and tRNA-containing complexes at speeds usually used to purify small EVs
432 (100,000 x g; **Figure 3, H**). Strikingly, presence of divalent ions favored rRNA sedimentation at speeds
433 typically used to collect large EVs (16,000 x g). This effect was not observed for tRNAs (**Figure 3, I**).
434

435 The effect of divalent cations on ribosomal RNAs was also evidenced by SEC analysis. Washing of cells
436 with buffers containing calcium or magnesium depleted the P0 while not affecting the P1 peak
437 (**Supplementary Fig. 3, F-H**). This effect was reproduced when cells were washed in the absence of
438 divalent cations, but these were added immediately afterwards (data not shown). Thus, divalent cations
439 affect the structural integrity of the RNA complexes present in P0. Because we routinely spin samples at
440 16,000 x g before SEC and given the ultracentrifugation profile of nonvesicular exRNAs (**Figure 3, H-I**),
441 the $\text{Ca}^{2+}/\text{Mg}^{2+}$ -induced loss of the P0 peak can be explained by a disassembly of higher order ribosomal
442 aggregates in the absence of divalent cations. This is consistent with the involvement of magnesium ions
443 in the stabilization of ribosomes and polysomes and their disassembly upon EDTA treatment ⁴⁸, although
444 SEC-purification of polysomes is possible under optimized conditions ⁴⁹.

445

446 More importantly, our results show that two of the most popular methods for the purification of
447 extracellular vesicles, i.e., SEC and ultracentrifugation⁵⁰, cannot separate EVs
448 from nondegraded extracellular ribosomes or polysomes.

449

450

451

452 **Extracellular biogenesis of extracellular tRNA halves**

453 We have previously shown (**Figure 1**) that full-length tRNAs comprise the majority of RNAs present in
454 the P1 peak in RI-treated CCM, but this profile shifted toward RNase-resistant glycine tRNA halves (30–
455 31 nt) in the absence of RI. One possibility is that these tRNA halves were released directly from cells
456 and accumulated because of their resistance to degradation. Alternatively, they could be generated by the
457 fragmentation of extracellular tRNAs.

458

459 To distinguish between both possibilities, U2-OS were incubated for one hour in serum-free media (ITS;
460 protocol: 3). The CCM was then split in two aliquots and one of them was treated with RI. Both aliquots
461 were then incubated for 24 hours at 37°C (“cell-free maturation step”; **Figure 4, A**). Isopycnic
462 centrifugation in high-resolution iodixanol gradients confirmed that most of the RNAs were present in the
463 nonvesicular fractions under these experimental conditions (**Figure 4, B**). In both aliquots, extracellular
464 RNAs were similarly and significantly affected by prolonged incubation at 37°C, with a complete loss of
465 28S and 18S rRNA bands. In contrast, tRNAs were affected to a much lower extent (**Figure 4, C**).
466 Surprisingly, Northern blot analysis showed marked differences between tRNAs. For instance, while
467 tRNA^{Lys}_{UUU} was detectable in both aliquots, tRNA^{iMet}_{CAU} was sensitive to RI addition and tRNA^{Gly}_{GCC} was
468 barely detectable (**Figure 4, D**). The opposite trend was evident for their corresponding 5' fragments,
469 with tRNA^{Gly}_{GCC} > tRNA^{iMet}_{CAU} > tRNA^{Lys}_{UUU}.

470

471 The 5' fragments of tRNA^{Gly} were either 33 – 35 nt (i.e., 5' tRNA halves cleaved at the anticodon loop)
472 or 30 – 31 nt (**Figure 4, D** and **Supplementary Fig. 4, A**). For simplicity, we will call these fragments
473 long tRNA halves (L-tRNAh) and short tRNA halves (S-tRNAh), respectively. Both species are
474 detectable inside U2-OS cells stressed with sodium arsenite but L-tRNAh are produced at much higher
475 levels⁵¹. In contrast, only the S-tRNAh are predicted to form RNase-resistant homodimers according to
476 our previous studies³⁶. Strikingly, only the S-tRNAh were detectable in the extracellular milieu in the
477 absence of RI, suggesting that they are indeed very stable. None of these fragments was directly produced

478 by the ribonuclease Angiogenin because nearly identical results were obtained in Δ ANG or Δ RNA1
479 (Angiogenin inhibitor) cells.

480
481 Five prime tRNA halves were termed “stress-induced tRNA-derived fragments” or tiRNAs³⁸ because
482 their production is induced by cellular stress. Loading of one microgram of intracellular RNA from U2-
483 OS cells did not show production of these tRNA halves or tiRNAs above the assay’s sensitivity
484 (**Supplementary Fig. 4, A**). If present, intracellular tiRNA levels were lower than the levels of the pre-
485 tRNA^{Gly}_{GCC}, as expected in cells not deliberately exposed to stress. Despite the full-length
486 tRNA^{Gly}_{GCC} was not detectable after 24 hours of cell-free maturation of the CCM (**Figure 4, D**), the full-
487 length tRNA as well as the L-tRNAh and S-tRNAh were clearly present in the extracellular space if the
488 cell-free maturation step was omitted (**Supplementary Fig. 4, A**). Interestingly, 3’ tRNA-derived
489 fragments were also detectable in the same samples although they are rarely found intracellularly, even in
490 arsenite-treated U2-OS cells³⁸. The higher the degradation state of the exRNA population, the higher the
491 fragment-to-tRNA ratio for both 5’ and 3’ fragments (**Supplementary Fig. 4, B**).
492

493 To obtain direct evidence for the conversion of extracellular tRNAs into tRNA halves, we briefly washed
494 U2-OS cells with HBSS+ in the absence of RI and divided the cell-conditioned buffer into four aliquots.
495 These aliquots were incubated for 0, 1 or 5 hours at 37°C before addition of RI and subsequent analysis
496 by Northern blot (**Figure 4, E**). The 4th aliquot was mixed 1:1 with S+ medium (to obtain a final serum
497 concentration of 5%) and incubated for one hour at 37°C. The full-length tRNA^{Gly}_{GCC} and the L-tRNAh
498 (but not the S-tRNAh) were present at t = 0. Incubation for 5 hours at 37°C showed a slight decrease in
499 the intensity of the full-length band and a concomitant increase in L-tRNAh. Strikingly, incubation for
500 only one hour in the presence of serum (RNase-rich sample) entirely converted the full-length tRNA band
501 to S-tRNAh. The L-tRNAh band was also lost.
502

503 We wondered whether the L-tRNAh are a necessary intermediate for the formation of extracellular S-
504 tRNAh, or whether these could be formed by an alternative cleavage site at the beginning of the anticodon
505 loop of glycine tRNAs (**Figure 4, F**). *In vitro* controlled digestion with synthetic mimics of 34
506 nt tRNA^{Gly}_{GCC} 5’ halves showed that these RNAs are not preferentially converted to 30-31 nt
507 fragments by bovine RNase A (**Supplementary Fig. 4, C**). This suggests that different tRNA halves
508 might be generated by alternative cleavage sites, as has been recently shown for shorter fragments⁵².
509

510 In summary, evidence from Northern blot (**Figure 4, A-E**) and small RNA sequencing (**Figure 1, E**)
511 consistently show the depletion of full-length tRNAs and L-tRNAh and the concomitant accumulation of

512 glycine S-tRNAh in the presence of serum or in the absence of added RI. Thus, the ubiquitous presence of
513 these specific fragments in biofluids³² can be explained by a combination of factors: a) high expression of
514 tRNA^{Gly}_{GCC} in cells⁴², b) high susceptibility of tRNA^{Gly}_{GCC} to extracellular nucleases (**Figure 4, D**), c)
515 high resistance of the extracellularly-generated 30 – 31 nt 5' tRNA halves (S-tRNAh) to
516 degradation³⁶ (**Figure 4, E**) and d) the capacity of these fragments to be sequenced by standard methods
517 (i.e., lack of predictable “hard-stop” modified bases⁴¹).

518

519

520 **EVs contain full-length ncRNAs while the non-EV fraction is enriched in ncRNA fragments.**

521 All previous assays were performed either in serum-free media or after very short washes with serum-free
522 media or buffers. To evaluate exRNA profiles under standard serum-containing growth conditions (S+;
523 protocol: 1), we collected CCM at different time points, separated vesicles from nonvesicular RNAs by
524 iodixanol gradients and analyzed exRNAs by Northern blot. As depicted in **Figure 4, G**, the S+ medium
525 alone did not reveal detectable bands which could interfere with our analysis.

526

527 One striking difference in respect to what was previously observed in ITS incubations (protocol: 3;
528 **Figure 4, B**) or HBSS+ washes (protocol: 4; **Figure 3, G**) was that the tRNA and the 7SL RNA bands
529 were enriched according to what could be expected by rRNA band intensities (**Supplementary Fig. 4, D**).
530 Here, addition of RI (120U; 12U / mL) did not have any observable effects on exRNA profiles.

531

532 Having observed that tRNA^{Gly}_{GCC} is particularly susceptible to the action of serum RNases (**Figure 4, D-E**), we were surprised to detect it by Northern blot in the extracellular space of U2-OS cells incubated in
533 the presence of 10% serum (**Figure 4, G**). Furthermore, the intensity of the full-length tRNA band was
534 positively correlated to the length of the incubation and there was no interference of FBS-derived tRNAs
535 at the level of sensitivity of the assay. Density gradient analysis reconciled these and previous
536 observations. In serum containing CCM (conditioned for 24 hs) all the observed tRNAs and 7SL RNAs
537 were associated with EVs (**Figure 4, H**). Association of full-length tRNAs and 7SL RNAs with EVs was
538 still observed in ΔYB-1 U2-OS cells (**Supplementary Fig. 4, E**), which is remarkable given the reported
539 involvement of this RNA-binding protein in selecting tRNAs for EV-dependent secretion⁵³. In contrast,
540 neither glycine nor lysine tRNAs were detectable in the nonvesicular fractions. Conversely, tRNA-
541 derived fragments (glycine S-tRNAh in particular) were only present outside EVs.

543

544 A similar tendency was found for other RNA polymerase III transcripts like YRNAs and their fragments.
545 Analysis by SL-RT-qPCR showed amplification of full-length YRNAs in 100,000 x g pellets of U2-

546 OS CCM (EV-enriched fraction), but not in the supernatants (EV-depleted fraction). In contrast, YRNA
547 fragments selected from previous extracellular sequencing studies ³⁰ as well as miR-21-5p were amplified
548 in both samples at comparable levels (**Supplementary Fig. 4, F**). Similar results have been reported in
549 nematodes, where full-length YRNAs were found exclusively inside EVs whereas their fragments were
550 found outside ⁵⁴.

551
552 In summary, long transcripts (including tRNAs) cannot resist prolonged incubation in samples with high
553 RNase activities such as those containing serum except when protected inside EVs. However, some of
554 their fragments are much more resistant and are consistently detected in the non-EV fraction. These
555 fragments define the extracellular nonvesicular RNAome in the absence of added RI. In addition, the low
556 correlation between intracellular and extracellular small RNA profiles can be explained by the fact that
557 many of these fragments are not directly released by cells.

558
559 **Immunoregulatory potential of extracellular nonvesicular RNAs**
560 The innate immune system is equipped with a battery of membrane-bound and cytoplasmic pattern
561 recognition receptors (PRRs) capable of sensing pathogen- or damage-associated molecular patterns
562 (PAMPs, DAMPs). Among them, ssRNAs and dsRNAs can be sensed by a variety of PRRs including
563 RIG-1, MDA5, TLR3, TLR7 and TLR8. On the other hand, extracellular exposure of some endogenous
564 intracellular proteins and nucleic acids can also trigger immune cell activation, because exposure of these
565 molecules is interpreted as a sign of cellular or tissue damage ⁵⁵. In this line of reasoning, we wondered
566 whether innate immune cells could sense and react to extracellular ribosomes, tRNAs or their fragments
567 and whether at least some of these RNAs could be considered as DAMPs.

568
569 We first observed that the amount of extracellular, nonvesicular RNAs could be increased by the addition
570 of cytotoxic compounds (data not shown). Next, we studied whether dendritic cells (DCs) could sense and
571 react to nonvesicular exRNAs. These cells are regarded as the sentinels of the immune system and link
572 innate and adaptive immune responses ⁵⁶. Thus, we reasoned that if exRNAs are non-silent from an
573 immunological perspective, they should be sensed by DCs in the first place.

574
575 ExRNAs obtained from MCF-7 cells were either treated or not with RNase A and later separated by SEC
576 in order to obtain the following samples/fractions: P0, P0 post RNase-treatment and P1. These fractions
577 were concentrated, filtered and added directly to the media of freshly prepared non-primed bone marrow-
578 derived murine dendritic cells (BMDC) (**Figure 5, A-B**). The synthetic dsRNA analogue Poly(I:C) was
579 used as a positive control. After incubation for 24 hours, BMDC maturation was evaluated by flow

580 cytometry monitoring the percentage of CD11c-positive cells expressing high levels of the activation-
581 induced markers MHC class II and CD80 (**Figure 5, C and Supplementary Fig. 5**). The Poly (I:C)
582 present at either 3 or 30 μ g / mL in the extracellular space elicited a significant increase in BMDC
583 maturation, compared to nontreated (NT) cells or cells exposed to synthetic single-stranded
584 oligonucleotides (**Figure 5, D**). Interestingly, the purified P0 peak diluted to an RNA concentration as
585 low as 12 ng / mL was sufficient to trigger BMDC maturation. Undiluted P0 (1.2 μ g / mL) was highly
586 cytotoxic, with more than 90% of cells staining positive for PI. Strikingly, high levels of the pro-
587 inflammatory cytokine IL-1 β were found in the media of these cells (**Figure 5, E**). Altogether, these
588 observations suggest that components in the P0 peak can be sensed by DCs when present in the
589 extracellular space. They can trigger DC maturation and, at higher concentrations, a form of cell death
590 presumably related to over activation or pyroptosis. The latter effect is dependent on RNA because
591 undiluted RNase-treated P0 did not induce IL-1 β release nor it triggered significant BMDC maturation in
592 viable cells. These observations strongly argue against potential endotoxin contamination of the P0
593 fraction that may have led to DC maturation and/or IL-1 β secretion. These results afford new avenues in
594 the biological characterization of exRNAs, suggesting at least some of these RNAs are immunologically
595 non-silent. This supports the possibility of an immune surveillance mechanism involving exRNAs or
596 RNP complexes such as extracellular ribosomes.

597

598 **DISCUSSION**

599 A substantial fraction of exRNAs is not encapsulated inside EVs, yet the extracellular nonvesicular
600 RNAome has not been studied in a comprehensive manner until this work. As expected, our results show
601 that EVs and RNPs (or nonvesicular RNA complexes in general) constitute two conceptually different
602 exRNA carriers in cell culture media that can be distinguished by their different buoyant densities and the
603 degree of RNase protection that they confer. By inhibiting extracellular RNases, our results highlight that
604 the nonvesicular RNA fraction is highly dynamic. This experimental approach enabled us to obtain
605 exRNA profiles with an unprecedented level of detail and with temporal resolution. Furthermore, we
606 succeeded in stabilizing extracellular full-length tRNAs and ribosomes, which have not been identified
607 before outside EVs due to their susceptibility to extracellular ribonucleases. In contrast, some of their
608 fragments were found to be highly stable and they collectively define the nonvesicular RNAome under
609 standard conditions, especially in the presence of serum. These results have profound implications on the
610 way we understand the mechanisms responsible for RNA release.

611

612 The presence of ribosomal aggregates in the extracellular non-EV fraction, presumably related to disomes
613 and oligoribosomes, is further supported by the co-isolation of rRNAs, ribosomal proteins and polyA+

614 mRNAs from the same chromatographic fractions. Extracellular ribosomes were described in the 70's in
615 the blowfly *Calliphora vicina*⁵⁷ but subsequently linked to an experimental artefact⁵⁸ and have received
616 little attention since then. However, we have demonstrated that extracellular ribosomes exist at least
617 transiently in the media of cultured mammalian cells and possibly also in body fluids. In support of the
618 latter, the group of Thomas Tuschl has recently optimized a modified small-RNA sequencing method that
619 permits the identification of mRNA fragments in blood plasma or serum⁵⁹. Strikingly, the authors found
620 that the distribution and length of reads mapping to mRNAs was reminiscent of ribosome profiling,
621 suggesting that the sequenced fragments could be the footprints of ribosomes circulating in biofluids.
622

623 The biomarker potential⁶⁰ and the involvement of extracellular microRNAs in intercellular
624 communication⁵ have established a bias in the use of small RNA sequencing techniques compatible with
625 microRNA detection to assess the RNA content of EVs. Because these techniques usually show a
626 predominance of rRNA and tRNA-derived fragments which greatly surpass microRNAs³⁰, EVs can be
627 considered as carriers of small RNAs between cells. However, there is an increasing amount of evidence
628 showing that EVs actually contain more full-length ncRNAs than microRNAs or ncRNA fragments. For
629 instance, Bioanalyzer's peaks corresponding to intact 18S and 28S rRNAs have been identified in purified
630 EVs^{26,61-64}, while full-length YRNAs and other ncRNAs have been identified by sequencing, RT-qPCR
631 and/or Northern blot^{31,65}. The use of thermostable group II intron reverse transcriptases (TGIRT-seq) has
632 allowed the identification of full-length tRNAs in EVs, which greatly outnumber tRNA-derived
633 fragments^{53,66,67}. Our results are consistent with these reports, and clearly show the presence of tRNAs
634 and 7SL RNAs in EVs purified by buoyant density flotation in linear iodixanol gradients. At the level of
635 sensitivity achievable by DIG-based Northern blotting, tRNA-derived fragments were not detectable in
636 EVs.
637

638 It is possible that different EVs derived from different subcellular compartments have different
639 mechanisms for sorting RNAs into them⁶⁷. The density gradient separation method used herein was
640 optimized to separate RNPs from EVs²⁶ rather than to discriminate between different EV subpopulations
641 with slightly different buoyant densities^{67,68}. In any case, current evidence is sufficient to support that the
642 most abundant intracellular RNAs are loaded and released in at least certain EV subsets⁶⁹.
643

644 Since RNases such as Angiogenin have been associated with EVs³¹, it is possible that vesicle-associated
645 RNAs may be more dynamic than previously thought. It has been reported that cancer cell-derived
646 exosomes encapsulate Dicer and AGO2 together with pre-miRNAs and that at least some degree of cell-
647 independent miRNA biogenesis occurs in the extracellular space⁷⁰. This finding is still controversial as

648 others have not detected AGO2 or Dicer in the ultracentrifugation pellets of cell-conditioned medium²⁶ or
649 in low-density fractions enriched in EVs^{67,71,72}. In summary, although some degree of intravesicular RNA
650 processing is feasible, the nonvesicular extracellular fraction is intrinsically and highly dynamic while
651 EVs tend to confer an RNase-protecting environment where less stable RNAs can persist (**Figure 6**).
652

653 Beyond vesicles, this work mainly focused in extravesicular exRNAs, which have received very little
654 attention¹⁵ until recently²⁶. In the past, we have compared the small RNA content between EVs and
655 100,000 x g supernatants of cell-conditioned medium and found that the non-EV fraction was highly
656 enriched in 5' tRNA halves of precisely 30 or 31 nucleotides and exclusively derived from glycine or
657 glutamic acid tRNAs³⁰. Similar results were obtained by other groups working on primary cultures of
658 glioblastoma³¹. Furthermore, glycine tRNA halves are predominantly found outside EVs in serum³⁴ and
659 are ubiquitous in many biofluids including serum, urine, saliva and bile³². Altogether, these results could
660 suggest that cells actively release specific tRNA fragments to the nonvesicular extracellular space.
661 Herein, we have provided an alternative explanation. Enrichment of these fragments, especially when
662 found in the non-EV fraction, can be a consequence of their differential extracellular stability rather than
663 their preferential or selective secretion. This is further supported by the recent observation that circular
664 RNAs, which are known to be highly stable, are increased in nearly all human biofluids when compared
665 to matched tissues⁷³. Furthermore, we have provided evidence that the tRNA-derived fragments found
666 outside cells are not necessarily the same as those found inside, since we have now discovered a
667 biogenesis route for the extracellular production of tRNA halves and other related fragments. The
668 remarkable extracellular stability of certain ncRNA fragments such as glycine 5' tRNA halves of 30 – 31
669 nt (S-tRNAh) may be related to their capacity of forming homodimers³⁶. Protein binding and base
670 modifications may confer additional layers of RNase protection.
671

672 Live cells can release a representative fraction of their cytoplasm by mechanisms such as cytoplasmic
673 extrusion⁷⁴ or amphisome fusion with the plasma membrane²⁶. However, a few events of cellular
674 damage or death might be quantitatively more important in defining exRNA profiles as has been
675 discussed above. In support of this, it has been shown that extracellular rRNA levels correlate with
676 extracellular lactate dehydrogenase (LDH) activity, which is widely used as a marker of cell death⁷⁵.
677 Even though exRNA analysis derived from dead cells can be considered as an artifact of cell culture,
678 there are situations where nonapoptotic, immunogenic cell death (ICD) occurs at abnormal frequencies in
679 an organism. These situations include aging⁷⁶, trauma⁷⁷, ischemia-reperfusion injury⁷⁸, infectious
680 diseases and cancer. In the latter, ICD can occur because of the hypoxic inner mass characteristic of solid
681 tumors or following treatment with cytotoxic agents⁷⁹. In all cases, dying cells release intracellular

682 components which are sensed by innate immune cells and interpreted as damage-associated molecular
683 patterns (DAMPs). Furthermore, the therapeutic activity of several anticancer drugs eliciting ICD
684 involves an autocrine and paracrine circuit which depends at least in part on the release of self RNAs by
685 stressed or dying cancer cells ⁸⁰. Because rRNAs and tRNAs are highly abundant intracellularly and they
686 are exposed in the extracellular space in cases of damage, and considering RNAs are actively sensed by
687 the innate immune system ^{55,81}, we hypothesized that exRNA-containing nonvesicular complexes could be
688 endowed with immunomodulatory abilities. The high turnover of these complexes as a consequence of
689 extracellular RNases could prevent activation under physiological conditions.

690

691 As for the ribonuclease responsible for extracellular, nonvesicular tRNA cleavage, it is clearly a serum-
692 derived ribonuclease in FBS-containing samples (probably RNase A itself). When serum is not present or
693 highly diluted, such as after thoroughly washing cells with serum-free media or buffers, it is possible that
694 endogenous secreted RNases could shape nonvesicular exRNA profiles. Stressed cancer cells secrete
695 enzymes to perform some metabolic reactions in the extracellular space and then uptake the enzymatic
696 products to fuel cellular energetics ⁸². By analogy, we are tempted to speculate that secreted RNases such
697 as ANG could play a role in extracellular RNA metabolism, preventing the toxicity associated with its
698 intracellular activity in nonstressed cells ⁸³. Although the function of ANG in tRNA cleavage seems to be
699 partially redundant ^{51,52}, its implications in extracellular RNA cleavage under physiological conditions
700 remains to be elucidated. Redundancy might be lower in serum-free environments as the nervous system,
701 where several mutations in ANG have been functionally linked to neurodegenerative diseases ⁸⁴. It is
702 thought that mutations in ANG which impair its RNase activity will also impair angiogenesis in patients
703 with amyotrophic lateral sclerosis (ALS) ⁸⁵. Alternatively, ANG can confer cytoprotection against stress
704 by the action of certain stress-induced tRNA-derived small RNAs ⁸⁶. The possibility that ANG is involved
705 in shaping the extracellular RNAome in cerebrospinal fluid remains unexplored. We have provided
706 preliminary evidence suggesting an involvement of extracellular, nonvesicular RNAs or RNP s in immune
707 surveillance. Thus, a link between mutations in ANG and deregulated extracellular RNA fragmentation
708 patterns is feasible in diseases such as ALS whose etiology or evolution is deeply connected to
709 inflammation ⁸⁷.

710

711 Bacterial rRNA and tRNAs induce Toll-like receptor (TLR)-dependent DC maturation and IL-1 β
712 secretion, and are therefore considered pathogen-associated molecular patterns. However, to elicit such a
713 response, addition of the purified RNAs with cationic lipids seems to be essential ⁸⁸. In contrast, we have
714 obtained high extracellular levels of IL-1 β when incubating BMDC with approximately one microgram of
715 RNA obtained from the P0 peak of MCF-7 cells (composed mainly of ribosome particles) in the absence

716 of any transfection reagent. Strikingly, this effect was lost when incubating DCs with RNase A-pretreated
717 P0. It remains to be elucidated whether RNA itself or any potentially associated RNA-binding proteins
718 are responsible for these effects. Alternatively, the entire ribosome nanoparticle might be needed for
719 efficient uptake and subsequent intracellular signaling. In any case, it is becoming increasingly clear that
720 innate immune sensors originally thought to recognize pathogenic RNAs are used to sense damaged tissue
721 or dying cells^{55,89,90}. It could be argued that the frailty of extracellular ribosomes might not be compatible
722 with their capacity to elicit effective responses, especially once these particles are diluted in the
723 extracellular space. However, DCs and distressed or damaged tumor cells are present in close contact in
724 the tumor microenvironment^{91,92}, where soluble molecules are deeply involved in the cancer/immune cell
725 cross-talk which ultimately determines tumor survival.

726

727 Although extracellular ribosomes are not predicted to resist extracellular RNases and are probably
728 unrelated to recently described “exomers”¹⁶, they might still achieve functionally relevant concentrations
729 *in vivo* in extracellular microenvironments. The identification of a RNase-resistant peak (P2) derived from
730 partial fragmentation of P0 suggests that, similarly to what we have shown for 30 – 31 nt tRNA halves,
731 rRNA-derived fragments may accumulate in the extracellular space and their extracellular concentration
732 may increase in situations of abnormal cell death. A new method has been recently described enabling
733 RNA sequencing from a few microliters of human serum⁹³. With this method, almost perfect
734 separation (average area under curve = 1 in ROC curves) between normal and breast cancer patients was
735 possible based on rRNA or mitochondrial tRNA sequences. Because most of the serum samples were
736 collected during or after chemotherapy, rRNA-derived fragments stably circulating in sera have the
737 potential to alert abnormal cytotoxicity. Considering RNA-seq studies typically suppress rRNAs during
738 library preparation, their potential as biomarkers of early onset disease in untreated patients remains an
739 open question.

740

741 In conclusion, ribonuclease inhibition dramatically shapes extracellular RNA profiles and uncovers a
742 population of extracellular ribosomes, tRNAs and other coding and noncoding RNAs. These RNAs,
743 which are not protected by encapsulation inside EVs, are rapidly degraded by extracellular RNases.
744 However, some of their fragments resist degradation and can accumulate in cell culture media and in
745 biofluids. This dynamic view of exRNAs impacts our understanding of RNA secretion mechanisms and
746 may offer a window to new molecules with biomarker potential. These include intrinsically stable ncRNA
747 fragments and extracellular RNPs stabilized by addition of RI immediately upon collection of samples.
748 The signaling potential of EV-associated and EV-free exRNAs are discussed, and the possibility that
749 extracellular ribosomes could signal as DAMPs is presented.

750

751 **ACKNOWLEDGMENTS**

752

753 JPT, MS, MH and AC are members of the Sistema Nacional de Investigadores (SNI, ANII). Partial
754 funding for this work was received from Agencia Nacional de Investigación e Innovación, (ANII,
755 Uruguay) [FCE_3_2018_1_148745], from Comisión Sectorial de Investigación Científica (CSIC-UdelaR,
756 Uruguay) [MIA_PAS2019_2_99] and from the National Institutes of Health, USA [UG3CA241694,
757 supported by the NIH Common Fund, through the Office of Strategic Coordination/Office of the NIH
758 Director]. The authors want to thank the following core facilities at the Pasteur Institute of Montevideo:
759 Flow cytometry (UBC), and the Analytical Biochemistry and Proteomics Unit (UByPA) for their
760 technical assistance. TEM images were obtained in Centro Universitario Regional Este (CURE,
761 Universidad de la República) by Álvaro Olivera with the help of Laura Fornaro. The authors also want to
762 thank Eric Westhof (Strasbourg University), Marco Li Calzi (IPMon), Mauricio Castellano
763 (IPMon/UdelaR), Kenneth W. Witwer (Johns Hopkins University), Paul Anderson, Shawn Lyons, Nancy
764 Kedersha, Prakash Kharel and Vivek M. Advani (BWH/HMS) for helpful suggestions, experimental help
765 and insightful scientific discussions.

766

767

768 **FIGURE LEGENDS**

769

770 **Figure 1: Addition of ribonuclease inhibitor to cell culture conditioned medium (CCM) stabilizes**
771 **extravesicular ribosomal and transfer RNAs.** A) Size exclusion chromatography (SEC) of 100,000 x g
772 supernatants of MCF-7 CCM following addition of RNase A (middle) or Ribonuclease Inhibitor (RI,
773 bottom). Red, Blue: absorbance at 260 nm and 280 nm, respectively. B) The earlier RI was added to
774 the CCM during sample preparation, the higher the P0 peak and the lower the P2 peak (left) and therefore
775 the higher the P1 / P2 ratio (right). C) The P0 peak was purified after SEC and treated with RNase A,
776 which partially reconstituted the P2 peak. D) Comparison of extracellular stabilities of the P0, P1 and P2
777 peaks. E) Size distribution of reads mapping to the 5' half of glycine tRNA (left) or to all tRNAs (right) in
778 the P1 peak from MCF-7 cells either with (black) or without (red) addition of RI. F) Relative
779 representation of reads mapping to different tRNA isoacceptors in the P1 peak of MCF-7 cells obtained
780 after treatment (top) or without treatment (bottom) of RI. G) Analysis of the P1 peak either with (+) or
781 without (-) RI treatment (left gel) or the P0 peak (right gel) in a denaturing (7M urea) 8% polyacrylamide
782 gel. Sizes were estimated based on a MCF-7 RNA lysate (“cells”) and a RiboRuler Low Range small
783 RNA ladder (left marks; the 33 nt mark was calculated based on Rf). H) Size distribution of small RNA

784 sequencing reads mapping to rRNAs (red), tRNAs (violet) or other ncRNAs (see legend) in the P0 peak
785 of MCF-7 cells. RPM: reads per million mapped reads. I) As in (H), but showing only the reads aligning
786 to rRNAs. The number above each peak denotes the starting position of most reads defining that peak in
787 the corresponding rRNA. J) Amplification by random-primed RT-qPCR of different regions of 28S, 18S
788 and 5.8S rRNAs in different fractions collected after SEC separation of MCF-7 CCM. Gly_GSP:
789 amplification of glycine 5' halves by using a gene-specific primer during RT. Numbers following rRNA
790 primers (e.g., 28S_310) represent the position of the 5' end of the expected amplicon.

791
792 **Figure 2: Intracellular nucleic acids are released to the extracellular space after short washes in**
793 **serum-free media or isotonic buffers.** A) Schematic representation of the experimental protocol used in
794 panels B-E. S(+): DMEM + 10% FBS. S(-): MEGM media, serum-free. B) RNA analysis by SEC in PBS
795 washes #1 to #4 of MCF-7 cells. Conditions identical to those used in Figure 1. C) An example of
796 deconvolution analysis (Abs 260/280 ratio-to-RNA-concentration conversion) applied to a representative
797 chromatogram of MCF-7 CCM (ultracentrifugation supernatant). D) Variation of RNA concentration
798 corresponding to the P0 (light red) and P1 (dark red) peaks in PBS washes #1 to #4. The variation in the
799 Abs 280 nm at the BSA peak is plotted in the right Y axis. Initial values correspond to those present in
800 the CCM. E) Denaturing electrophoresis (7M Urea, 6% PAGE) of the concentrated P0 peak from the
801 4th PBS wash of HepG2, BJ and MCF-7 cell lines. No RNA purification was performed. “Cells”: MCF-7
802 RNA lysate. F) U2-OS cells after incubation in serum-free DMEM plus ITS supplement for one hour.
803 Top: monolayer. Bottom: tracking of floating nuclei (yellow line) in three consecutive shots taken one
804 second apart from each other. G) Cluster of floating nuclei. Same conditions as in (F). H) Analysis of
805 eIF2 alpha phosphorylation (Wblot) in nontreated (NT) MCF-7 cells, in cells exposed to four consecutive
806 PBS washes (4 x PBS), in cells cultured after confluence (100%) or exposed to 500 μ M sodium arsenite
807 for one hour (ARS 500). Bottom: densitometry analysis in two independent biological replicates of the
808 experiment. I) Denaturing electrophoresis (10% PAGE) of TRIzol-purified total extracellular RNA from
809 U2-OS cells washed for 30 seconds with HBSS, ran alongside 1 μ g of purified intracellular RNA from
810 the same cell line. J) Denaturing 10% PAGE exRNA analysis in U2-OS (left) or DU 145 (right) cell-
811 conditioned media (ITS, one hour) obtained in the presence (+) or absence (-) of 200 μ M sodium arsenite.
812 K) Denaturing electrophoresis of the purified P0 peak from E.G7-OVA cells, either treated (+) or not
813 treated (-) with recombinant RNase-free DNase I. Sample preparation after SEC was the same as in panel
814 (E). L) Chromatograms of cell-conditioned PBS form E.G7-OVA cells. The sample was separated into
815 two aliquots, one of which was treated with RNase A before SEC (right). M) Proteomic analysis of the
816 RNase-treated or not-treated (NT) P0 peak from E.G7-OVA cells. Blue: histones. Red: ribosomal
817 proteins. NSAF: normalized spectral abundance factor. N) List of the top ten proteins from the large (left)

818 and small (right) ribosomal subunits producing the higher number of spectra in the proteomic analysis of
819 the P0 peak from E.G7-OVA cells.

820

821 **Figure 3: The extracellular space contains ribosomes.** A) Schematic representation of the experimental
822 protocol used in panels B-C. B) Velocity gradient (10 – 40 % sucrose, 3 hours at 155,000 x g) of cell-
823 conditioned HBSS (plus divalent cations and RI) from U2-OS cells. Fractions of 0.5 mL were taken out
824 from the top of the tube and treated with TRIzol. RNA was analyzed in a denaturing 10% PAGE and
825 proteins were analyzed by Western blot using antibodies specific to human ribosomal proteins. C) Same
826 as (B), but cells were treated with puromycin (2 µg / mL; 10 min) or cycloheximide (10 µg / mL; 30 min)
827 before washes. D) Analysis of mRNAs in our sequencing of small RNAs from the P0 peak of MCF-7
828 cells (related to Figure 1H). The mRNA abundances (expressed as reads per kilobase of transcript, per
829 million mapped reads, RPKM) were estimated from sequenced fragments assuming they represent
830 random fragmentation of their parental mRNAs. Intracellular abundances in MCF-7 cells (“cells”) were
831 based on the Human Protein Atlas (proteinatlas.org) transcriptomic data. E) Amplification by RT-PCR of
832 human HSP90B1 mRNA with an oligo (dT)₁₈ RT primer and PCR primers complementary to exons 5 and
833 9 (2229 bp from 3' end). F) U2-OS cell-conditioned HBSS+ was treated with 5 µg / mL (left) or 0.5 µg /
834 mL puromycin for two hours at either 37°C or 4°C in the presence of ATP/GTP. Extracted proteins were
835 analyzed by Western blot with an anti-puromycin antibody. G) Isopycnic centrifugation in a 12 – 36 %
836 iodixanol gradient of the concentrated 4th wash of U2-OS cells for 30 seconds with HBSS+. Twelve
837 fractions of 1 mL were collected from the top of the tube and RNA was purified from each fraction and
838 run in a 10% denaturing gel. H-I) U2-OS cells were washed with HBSS containing or not containing
839 divalent ions for 30 seconds. The cell-conditioned HBSS was centrifuged twice at 2,000 x g, followed by
840 sequential ultracentrifugations. Pellets were resuspended in water and, together with the concentrated
841 100,000 x g supernatant, ethanol precipitated, resuspended, and analyzed by denaturing electrophoresis.
842 Panels H and I show different regions of the same gel.

843

844 **Figure 4: Extracellular tRNAs are processed to extracellular tRNA-derived fragments.** A)
845 Schematic representation of the experimental setup used in panels B-D. U2-OS cells were incubated for
846 one hour in ITS medium (protocol: 3) and the CCM was divided into two aliquots, one of which received
847 RI. Both were then incubated at 37°C for 24 hours before exRNA analysis. B) Iodixanol gradient showing
848 most exRNAs were present in the nonvesicular fractions (RNPs) in the input sample (before cell-free
849 processing). C) Analysis of exRNAs by denaturing electrophoresis before and after the cell-free
850 maturation step. D) Northern blot analysis with probes targeting the 5' region of different tRNAs in
851 samples obtained as explained in (A). U2-OS lacking functional ANG or RNH1 genes were used. L: 5'

852 tRNA halves of 33 – 34 nt; S: 5' tRNA halves of 30 – 31 nt. E) Samples were obtained after a short (30
853 sec) wash of U2-OS cells with HBSS+ (without RI addition), and incubated cell-free at 37°C for 0, 1 or 5
854 hours, or for 1 hour after addition of S+ medium in a 1:1 ratio. Northern blot was performed with two
855 different probes targeting both halves of tRNA^{Gly}_{GCC}. F) Cloverleaf representation of glycine tRNA (GCC
856 anticodon, isodecoder #2) with red arrow showing predicted ANG cleavage at the anticodon loop
857 (sequence CpCpA), rendering a 33 or 34 nt 5' fragment, and black arrows showing a putative alternative
858 cleavage site (sequence CpCpU), generating 30 – 31 nt 5' fragments. G) Analysis of exRNAs in U2-
859 OS CCM (1, 5 and 24 hours, S+ medium). The concentrated nonconditioned medium was run as a
860 control. Northern blot was done with the same probes as in panel (D), plus a 7SL RNA-specific probe. H)
861 Isopycnic centrifugation of U2-OS CCM (t = 24 hours in S+ medium). Vesicular fractions correspond to
862 those positive for CD9 and CD81 by Western blot and show clear 7SL RNA and full-length tRNA bands
863 which are also confirmed by Northern blot. In contrast, the non-EV fractions are enriched in tRNA-
864 derived fragments.

865

866 **Figure 5: The contents of the P0 peak can trigger dendritic cell maturation in an RNA-dependent**
867 **manner.** A) SEC separation of the P0 and P1 peaks used for dendritic cell maturation assays. MCF-7
868 cells were grown in serum-free MEGM for 48 hs. The first PBS wash was discarded. Cell-conditioned
869 PBS (t = 5 min) was concentrated and separated into two aliquots, one of which was treated with RNase
870 A. Both samples were separated by SEC to obtain the P0 and P1 peaks (or the P0 peak from the RNase A-
871 treated sample). B) SEC peaks were filter-sterilized and 100 µL were added to 900 µL of complete
872 medium containing 1x10⁶ nonprimed murine bone marrow-derived dendritic cells (BMDC). The TLR3
873 agonist Poly (I:C) was used as a positive control. C) Flow cytometry analysis of BMDC at t = 24 hours
874 post exposure to the P0 and P1 peaks (or synthetic RNAs). PI: propidium iodide. FSC: forward scatter.
875 SSC: side scatter. Numbers to the right correspond to the percentage of viable (PI negative), CD11c-
876 positive cells expressing high levels of class II MHC and CD80. D) Percentage of matured BMDC
877 (considered as antigen-presenting cells, APC) at t = 24 hours post exposure. Triangles correspond to
878 diluted fractions (P0: 1/100; P1: 1/100; Poly [I:C]: 1/10). E) Quantitation by ELISA of IL-1 β levels in the
879 media of BMDC analyzed by flow cytometry in the previous panel.

880

881 **Figure 6: Proposed model.** A) Cells in culture release tRNAs, ribosomal subunits or ribosomes to the
882 extracellular nonvesicular space. When the CCM is analyzed by SEC, these RNAs define the P0 and P1
883 peaks, respectively. However, their detection is only possible after addition of RI to the medium.
884 Regarding the mechanism responsible for the release of these RNAs, active secretion (e.g., autophagy-
885 dependent) might contribute, but damaged or dead cells with compromised plasma membrane integrity

886 are probably a main source of extravesicular exRNAs. Other forms of cell death can also release
887 nucleosomes and fragmented DNA (right), although this can also occur actively by autophagy-dependent
888 secretion. In contrast, live cells release EVs in a relatively continue fashion (center). These EVs contain
889 ncRNAs such as tRNAs. Extracellular RNases degrade extravesicular RNAs and generate some stable
890 fragmentation products. These products include tRNA halves, which can assemble into dimers and elute
891 in the chromatographic P1 peak when RI is not added to the medium. We speculate that the P2 peak is
892 composed of rRNA-derived fragments forming tightly bound dsRNAs which are not amenable to
893 standard small RNA sequencing techniques. While full-length tRNAs and YRNAs are not detected in the
894 non-EV fraction in the absence of RI, those which are present inside EVs are protected from degradation.
895 Thus, EVs are probably the only source of full-length ncRNAs in RNase-rich extracellular samples. B) A
896 diagram explaining possible biogenetic routes for extracellular, nonvesicular tRNA^{Gly}_{GCC} 5' halves.
897

898 **Supplementary Figure 1:** data associated to Figure 1. A) Injection of synthetic RNAs of 30 nt
899 corresponding to 5' tRNA^{Gly}_{GCC} (which forms RNA dimers as reported in Tosar et al. (2018)³⁶; red) and
900 a mutant with a 25U/C substitution (which is not able to dimerize; violet) in a Superdex 200 10/300
901 column with PBS 1x as the mobile phase. B-C) same as Figure 1(H) and Figure 1(I) but in the P1 peak of
902 MCF-7 CCM either treated (top) or not treated (bottom) with RI. D) Representation of SNORD49A
903 (U49A; black)/28S rRNA (red) interaction, as depicted in snoRNABase (www-snorna.biotoul.fr). Below
904 is the sequence with the highest number of reads. Its relative abundance is expressed as reads per million
905 mapped reads (RPM). Its ranking in the “P1 + RI” dataset is also shown. E) Alignment of reads mapping
906 to tRNA^{Glu} (anticodons CUC and UUC) and the genomic sequence for tRNA^{Glu}_{UUC} with manual addition
907 of the 3' CCA sequence. “A.C”: anticodon. F) Coverage plots of sequences mapping to 28S rRNA in P0
908 (red), “P1 + RI” (green), “P1 – RI” (violet) and P2 (blue), either in linear scale (top) or Log2 scale
909 (bottom).

910
911 **Supplementary Figure 2:** data associated to Figure 2. A) Same as Figure 2(B) but washing cells with
912 MEGM instead of PBS. B) Deconvolution of chromatograms obtained by SEC analysis of PBS washes of
913 different adherent malignant and nonmalignant cell lines, derived from different mammalian species. C)
914 U2-OS cells before (left) and after (right) four consecutive washes with HBSS for 30 seconds.

915
916 **Supplementary Figure 3:** data associated to Figures 2 and 3. A) SEC analysis of cell-conditioned PBS of
917 the human THP-1 cell line. Sample preparation based on protocol #5. B) Flow cytometry analysis of
918 EG.7-OVA cells stained with propidium iodide and Annexin V-FITC. Left: nontreated cells. Center:
919 Washed with DMEM and PBS, following protocol #5. Right: positive control for apoptotic induction with

920 500 μ M sodium deoxycholate. C) Quantitation of the percentage of PI-negative, AnV-positive cells (left),
921 PI-positive, AnV-positive cells (center) and PI-positive, AnV-negative cells (right) in three replicates of
922 the experiment. *: $p < 0.05$. Student t test. D) Negative-stain TEM image of a ribosome-like particle in
923 the concentrated chromatographic P0 peak from Hep G2 cells washed with PBS + RI. Scale bar: 30 nm.
924 S: presumed small ribosomal subunit. L: presumed large ribosomal subunit. Particle dimensions: 29.0 nm
925 x 26.2 nm. E) Density of the twelve fractions collected after high resolution 12 – 36% iodixanol gradients
926 (related to Figure 3, G), and comparison with the reported densities in Jeppesen et al. (2019)²⁶. F) Effect
927 of divalent cations on the P0 peak. MCF-7 cells were washed with PBS (wash #1), PBS (wash #2), PBS +
928 1 mM CaCl₂ (#3) and PBS (wash #4) and all these washes were analyzed by SEC following standard
929 procedures. G) Quantitation of the P0/P1 ratio (left), or individual P0 and P1 concentrations (obtained by
930 deconvolution analysis of SEC chromatograms) in MCF-7 cells washed with different buffers or media.
931 From left to right: PBS, PBS + 1mM CaCl₂, PBS + 1mM CaCl₂ + 1mM MgCl₂, PBS + 1mM CaCl₂ +
932 1mM MgCl₂ + 1x nonessential amino acids (NEAA), PBS + 1x NEAA, DMEM and MEGM. *: $p < 0.05$;
933 **: $p < 0.01$; Student t test, unpaired values. H) Quantitation of the P0 and P1 peaks when washing cells
934 with PBS with increasing CaCl₂ concentrations.

935

936

937 **Supplementary Figure 4:** data associated to Figure 4. A) Experimental conditions were similar to those
938 used in Figure 4 A-D, but the cell-free processing step was omitted. Control lanes include RNA lysates
939 from U2-OS cells incubated in DMEM + 10% FBS (S+) or in the same cells used for exRNA analysis
940 (ITS, 1 hour). L: 5' tRNA halves of 33 – 34 nt; S: 5' tRNA halves of 30 – 31 nt. B) Comparison of SYBR
941 gold-stained denaturing 10% PAGE gels from Figure 4, C and Supplementary Fig. 4, A. A parameter
942 named the RNA Degradation Number (RDN) was defined as the ratio between SYBR gold intensities
943 above and below the tRNA band. The lower the RDN (the higher extent of extracellular fragmentation),
944 the higher the fragment-to-full-length-tRNA ratio (estimated by densitometric analysis of Northern blot
945 bands). C) Controlled digestion of synthetic RNAs (10 nmol; 5' phosphorylated) corresponding to 34 nt
946 and 30 nt 5' tRNA^{Gly}_{GCC} fragments with RNase A from bovine origin (0, 0.64 and 64 pg). Reaction
947 conditions: 5 μ L, PBS 1x, 1 hour at room temperature. D) Effect of RI addition (120 U in 10 mL) in
948 exRNA profiles from U2-OS CCM (1 hour in ITS medium or 1 – 24 hours in S+ medium). E) Isopycnic
949 centrifugation in iodixanol gradients (12 – 36 %) of U2-OS CCM (t = 24 hs, S+) in either wild-type or
950 Δ YBX-1 (Δ YB1) cells. Only fractions corresponding to extracellular vesicles are shown. Control lane: 1
951 μ g intracellular RNA from U2-OS cells. F) Analysis of YRNAs (left) or some selected 5' fragments
952 (right) by RT-qPCR (left) or SL-RT-qPCR (right) in 100,000 x g pellets (EVs) or concentrated 100,000 x
953 g supernatants (RNPs) of U2-OS Δ ANG conditioned medium (t = 48 hs; MEGM).

954

955 **Supplementary Figure 5:** data associated to Figure 5C. Complete flow cytometry analysis in all the
956 samples included in Figure 5, D-E. Gly (31): a synthetic single-stranded RNA of 31 nucleotide with the
957 sequence of glycine 5' tRNA halves.

958

959 REFERENCES

960

1. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. *Nature Reviews Genetics* **20**, 71–88 (2019).
2. Sacher, A. G. *et al.* Prospective validation of rapid plasma genotyping for the detection of EGFR and kras mutations in advanced lung cancer. *JAMA Oncol.* **2**, 1014–1022 (2016).
3. Warren, J. D. *et al.* Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. *BMC Med.* **9**, (2011).
4. Antoury, L. *et al.* Analysis of extracellular mRNA in human urine reveals splice variant biomarkers of muscular dystrophies. *Nat. Commun.* **9**, (2018).
5. Thomou, T. *et al.* Adipose-derived circulating miRNAs regulate gene expression in other tissues. *Nature* **542**, 450–455 (2017).
6. Zomer, A. *et al.* In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. *Cell* **161**, 1046–1057 (2015).
7. Valadi, H. *et al.* Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nat. Cell Biol.* **9**, 654–659 (2007).
8. Tsui, N. B. Y., Ng, E. K. O. & Lo, Y. M. D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. *Clin. Chem.* **48**, 1647–1653 (2002).
9. Ratajczak, J. *et al.* Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. *Leukemia* **20**, 847–856 (2006).
10. Skog, J. *et al.* Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. *Nat. Cell Biol.* **10**, 1470–1476 (2008).
11. Tabet, F. *et al.* HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. *Nat. Commun.* **5**, (2014).
12. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. *Nat. Cell Biol.* **13**, 423–435 (2011).
13. Arroyo, J. D. *et al.* Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 5003–5008 (2011).
14. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. *Nucleic Acids Res.* **39**, 7223–7233 (2011).
15. Li, K. *et al.* Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. *JCI insight* **3**, (2018).
16. Zhang, H. *et al.* Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. *Nat. Cell Biol.* **20**, 332–343 (2018).
17. Zhang, Q. *et al.* Transfer of Functional Cargo in Exosomes. *Cell Rep.* **27**, 940–954.e6 (2019).
18. Tkach, M. & Théry, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. *Cell* **164**, 1226–1232 (2016).
19. Cai, Q. *et al.* Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. *Science* **360**, 1126–1129 (2018).
20. Ostrowski, M. *et al.* Rab27a and Rab27b control different steps of the exosome secretion pathway. *Nat. Cell Biol.* **12**, 19–30 (2010).

1002 21. Trajkovic, K. *et al.* Ceramide triggers budding of exosome vesicles into multivesicular endosomes. *Science* (80-.). **319**, 1244–1247 (2008).

1003 22. Hoshino, A. *et al.* Tumour exosome integrins determine organotropic metastasis. *Nature* **527**, 329–335 (2015).

1004 23. Kamerkar, S. *et al.* Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. *Nature* **546**, 498–503 (2017).

1005 24. Elahi, F. M., Farwell, D. G., Nolta, J. A. & Anderson, J. D. Preclinical Translation of Exosomes Derived from Mesenchymal Stem/Stromal Cells. *Stem Cells* (2019). doi:10.1002/stem.3061

1006 25. Turchinovich, A., Tonevitsky, A. G. & Burwinkel, B. Extracellular miRNA: A Collision of Two Paradigms. *Trends in Biochemical Sciences* **41**, 883–892 (2016).

1007 26. Jeppesen, D. K. *et al.* Reassessment of Exosome Composition. *Cell* **177**, 428–445.e18 (2019).

1008 27. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA Comprises an in Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. *Cell* **164**, 57–68 (2016).

1009 28. Ulz, P. *et al.* Inferring expressed genes by whole-genome sequencing of plasma DNA. *Nat. Genet.* **48**, 1273–1278 (2016).

1010 29. Murillo, O. D. *et al.* exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids. *Cell* **177**, 463–477.e15 (2019).

1011 30. Tosar, J. P. *et al.* Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. *Nucleic Acids Res.* **43**, 5601–5616 (2015).

1012 31. Wei, Z. *et al.* Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. *Nat. Commun.* **8**, 1145 (2017).

1013 32. Srinivasan, S. *et al.* Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. *Cell* **177**, 446–462.e16 (2019).

1014 33. Godoy, P. M. *et al.* Large Differences in Small RNA Composition Between Human Biofluids. *Cell Rep.* **25**, 1346–1358 (2018).

1015 34. Dhahbi, J. M. *et al.* 5' tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. *BMC Genomics* **14**, 298 (2013).

1016 35. Zhang, Y. *et al.* Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. *Journal of Molecular Cell Biology* **6**, 172–174 (2014).

1017 36. Tosar, J. P. *et al.* Dimerization confers increased stability to nucleases in 5' halves from glycine and glutamic acid tRNAs. *Nucleic Acids Res.* **46**, 9081–9093 (2018).

1018 37. Fu, H. *et al.* Stress induces tRNA cleavage by angiogenin in mammalian cells. *FEBS Lett.* **583**, 437–442 (2009).

1019 38. Yamasaki, S., Ivanov, P., Hu, G.-F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. *J. Cell Biol.* **185**, 35–42 (2009).

1020 39. Thompson, D. M., Lu, C., Green, P. J. & Parker, R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. *RNA* **14**, 2095–2103 (2008).

1021 40. Segovia, M., Cuturi, M. C. & Hill, M. Preparation of mouse bone marrow-derived dendritic cells with immunoregulatory properties. *Methods Mol. Biol.* **677**, 161–168 (2011).

1022 41. Cozen, A. E. *et al.* ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. *Nat. Methods* **12**, 879–884 (2015).

1023 42. Gogakos, T. *et al.* Characterizing Expression and Processing of Precursor and Mature Human tRNAs by Hydro-tRNAseq and PAR-CLIP. *Cell Rep.* **20**, 1463–1475 (2017).

1024 43. Torres, A. G., Reina, O., Attolini, C. S. O. & De Pouplana, L. R. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 8451–8456 (2019).

1025 44. Zheng, G. *et al.* Efficient and quantitative high-throughput tRNA sequencing. *Nat. Methods* **12**, 835–837 (2015).

1026 45. Pakos-Zebrucka, K. *et al.* The integrated stress response. *EMBO Rep.* **17**, 1374–1395 (2016).

1027 46. Ouyang, D. Y. *et al.* Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5. *Autophagy* **9**, 20–32 (2013).

1053 47. Wettenhall, R. E. & Wool, I. G. Reassociation of eukaryotic ribosomal subunits. Kinetics of
1054 reassociation; role of deacylated transfer ribonucleic acid; effect of cycloheximide. *J. Biol. Chem.*
1055 **247**, 7201–6 (1972).

1056 48. Nolan, R. D. & Arnstein, H. R. V. The Dissociation of Rabbit Reticulocyte Ribosomes with
1057 EDTA and the Location of Messenger Ribonucleic Acid. *Eur. J. Biochem.* **9**, 445–450 (1969).

1058 49. Yoshikawa, H. *et al.* Efficient analysis of mammalian polysomes in cells and tissues using ribo
1059 mega-SEC. *Elife* **7**, (2018).

1060 50. Gardiner, C. *et al.* Techniques used for the isolation and characterization of extracellular vesicles:
1061 Results of a worldwide survey. *J. Extracell. Vesicles* **5**, (2016).

1062 51. Akiyama, Y. *et al.* Multiple ribonuclease A family members cleave transfer RNAs in response to
1063 stress. *bioRxiv* 811174 (2019). doi:10.1101/811174

1064 52. Su, Z., Kuscu, C., Malik, A., Shibata, E. & Dutta, A. Angiogenin generates specific stress-induced
1065 tRNA halves and is not involved in tRF-3-mediated gene silencing. *J. Biol. Chem.*
1066 jbc.RA119.009272 (2019). doi:10.1074/jbc.RA119.009272

1067 53. Shurtleff, M. J. *et al.* Broad role for YBX1 in defining the small noncoding RNA composition of
1068 exosomes. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E8987–E8995 (2017).

1069 54. Buck, A. H. *et al.* Exosomes secreted by nematode parasites transfer small RNAs to mammalian
1070 cells and modulate innate immunity. *Nat. Commun.* **5**, 5488 (2014).

1071 55. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and
1072 inflammatory diseases. *Nat. Rev. Immunol.* (2019). doi:10.1038/s41577-019-0215-7

1073 56. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. *Nature* **392**, 245–
1074 252 (1998).

1075 57. Sridhara, S. & Levenbook, L. Extracellular ribosomes during metamorphosis in the blowfly
1076 Calliphora erythrocephala. *Biochem. Biophys. Res. Commun.* **53**, 1253–9 (1973).

1077 58. Levenbook, L., Sridhara, S. & Lambertsson, A. Extracellular ribosomes during metamorphosis of
1078 the blowfly Calliphora vicina R. D. -- A reappraisal of their authenticity. *Biochem. Biophys. Res. Commun.* **70**, 15–21 (1976).

1079 59. Akat, K. M. *et al.* Detection of circulating extracellular mRNAs by modified small-RNA-
1080 sequencing analysis. *JCI Insight* **4**, 127317 (2019).

1081 60. Yokoi, A. *et al.* Integrated extracellular microRNA profiling for ovarian cancer screening. *Nat. Commun.* **9**, (2018).

1082 61. Lunavat, T. R. *et al.* BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome
1083 of malignant melanoma cells. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E5930–E5939 (2017).

1084 62. Lunavat, T. R. *et al.* Small RNA deep sequencing discriminates subsets of extracellular vesicles
1085 released by melanoma cells – Evidence of unique microRNA cargos. *RNA Biol.* **12**, 810–823
1086 (2015).

1087 63. Lässer, C. *et al.* Two distinct extracellular RNA signatures released by a single cell type identified
1088 by microarray and next-generation sequencing. *RNA Biol.* **14**, 58–72 (2017).

1089 64. Chiou, N. T., Kageyama, R. & Ansel, K. M. Selective Export into Extracellular Vesicles and
1090 Function of tRNA Fragments during T Cell Activation. *Cell Rep.* **25**, 3356–3370.e4 (2018).

1091 65. Driedonks, T. A. P. *et al.* Immune stimuli shape the small non-coding transcriptome of
1092 extracellular vesicles released by dendritic cells. *Cell. Mol. Life Sci.* **75**, 3857–3875 (2018).

1093 66. Qin, Y. *et al.* High-throughput sequencing of human plasma RNA by using thermostable group II
1094 intron reverse transcriptases. *RNA* **22**, 111–128 (2016).

1095 67. Temoche-Diaz, M. M. *et al.* Distinct mechanisms of microRNA sorting into cancer cell-derived
1096 extracellular vesicle subtypes. *Elife* **8**, e47544 (2019).

1097 68. Kowal, J. *et al.* Proteomic comparison defines novel markers to characterize heterogeneous
1098 populations of extracellular vesicle subtypes. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E968–E977
1099 (2016).

1100 69. Gámbaro, F. *et al.* Stable tRNA halves can be sorted into extracellular vesicles and delivered to
1101 recipient cells in a concentration-dependent manner. *RNA Biol.* **in press**, 1–15 (2019).

1102

1103

1104 70. Melo, S. A. *et al.* Cancer exosomes perform cell-independent microRNA biogenesis and promote
1105 tumorigenesis. *Cancer Cell* **26**, 707–721 (2014).

1106 71. Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-box protein 1 is
1107 required to sort microRNAs into exosomes in cells and in a cell-free reaction. *Elife* **5**, e19276
1108 (2016).

1109 72. Van Deun, J. *et al.* The impact of disparate isolation methods for extracellular vesicles on
1110 downstream RNA profiling. *J. Extracell. Vesicles* **3**, 24858 (2014).

1111 73. Hulstaert, E. *et al.* Charting extracellular transcriptomes in The Human Biofluid RNA Atlas.
1112 *bioRxiv* 823369 (2019). doi:10.1101/823369

1113 74. Lee, K.-Z. *et al.* Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut
1114 Epithelium to Pore-Forming Toxin Attack. *Cell Host Microbe* **20**, 716–730 (2016).

1115 75. Böttcher, K., Wenzel, A. & Warnecke, J. M. Investigation of the origin of extracellular RNA in
1116 human cell culture. *Ann. N. Y. Acad. Sci.* **1075**, 50–6 (2006).

1117 76. Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘Garb-aging’.
1118 *Trends Endocrinol. Metab.* **28**, 199–212 (2017).

1119 77. Zhang, Q. *et al.* Circulating mitochondrial DAMPs cause inflammatory responses to injury.
1120 *Nature* **464**, 104–107 (2010).

1121 78. Slegtenhorst, B. R., Dor, F. J. M. F., Rodriguez, H., Voskuil, F. J. & Tullius, S. G.
1122 Ischemia/Reperfusion Injury and its Consequences on Immunity and Inflammation. *Curr.*
1123 *Transplant. Reports* **1**, 147–154 (2014).

1124 79. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer
1125 and infectious disease. *Nature Reviews Immunology* **17**, 97–111 (2017).

1126 80. Sistigu, A. *et al.* Cancer cell-autonomous contribution of type I interferon signaling to the efficacy
1127 of chemotherapy. *Nat. Med.* **20**, 1301–1309 (2014).

1128 81. Dhir, A. *et al.* Mitochondrial double-stranded RNA triggers antiviral signalling in humans. *Nature*
1129 **560**, 238–242 (2018).

1130 82. Loo, J. M. *et al.* Extracellular metabolic energetics can promote cancer progression. *Cell* **160**,
1131 393–406 (2015).

1132 83. Thomas, S. P., Hoang, T. T., Ressler, V. T. & Raines, R. T. Human angiogenin is a potent
1133 cytotoxin in the absence of ribonuclease inhibitor. *RNA* **24**, 1018–1027 (2018).

1134 84. van Es, M. A. *et al.* Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis.
1135 *Ann. Neurol.* **70**, 964–73 (2011).

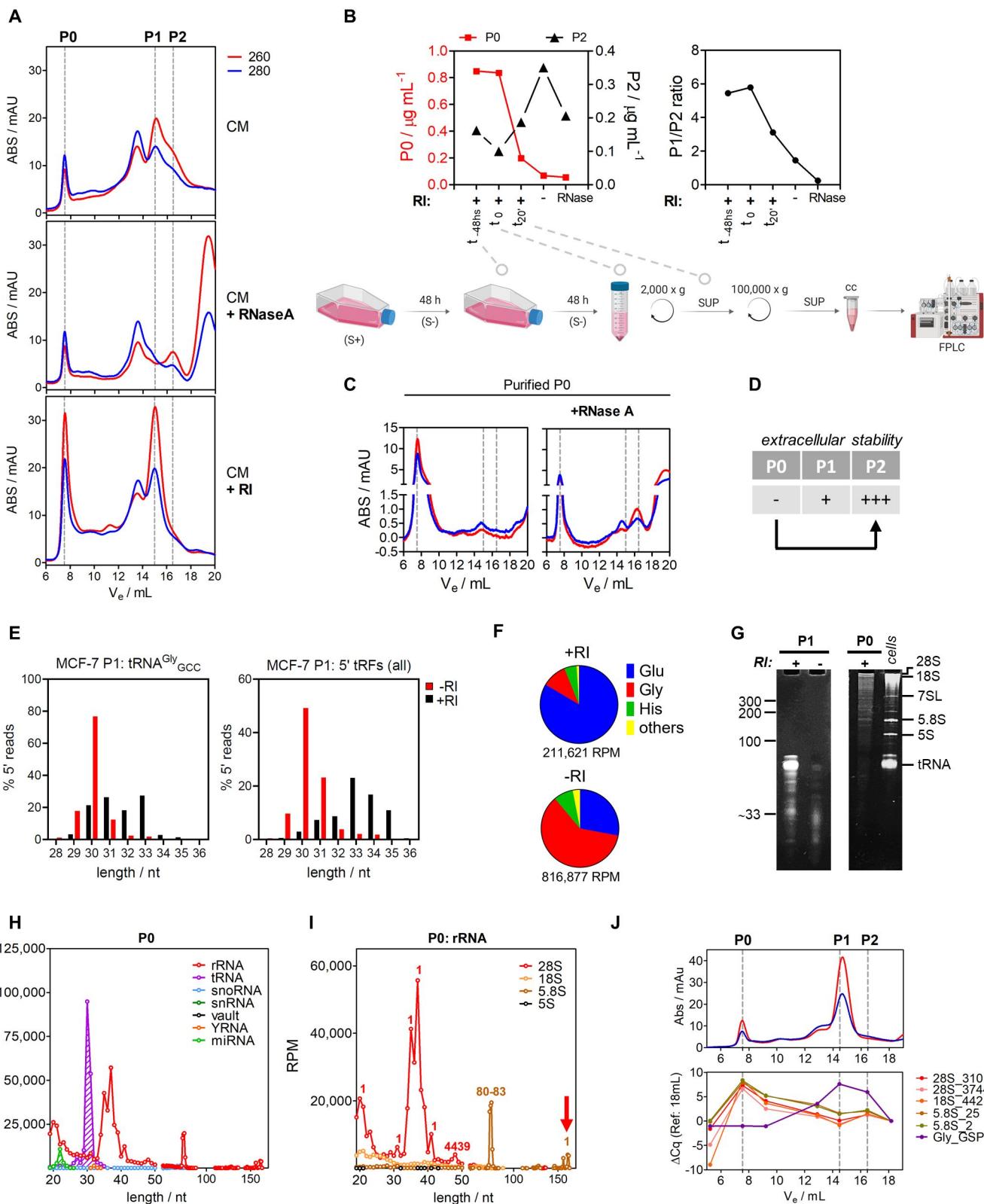
1136 85. Lambrechts, D., Lafuste, P., Carmeliet, P. & Conway, E. M. Another angiogenic gene linked to
1137 amyotrophic lateral sclerosis. *Trends in Molecular Medicine* **12**, 345–347 (2006).

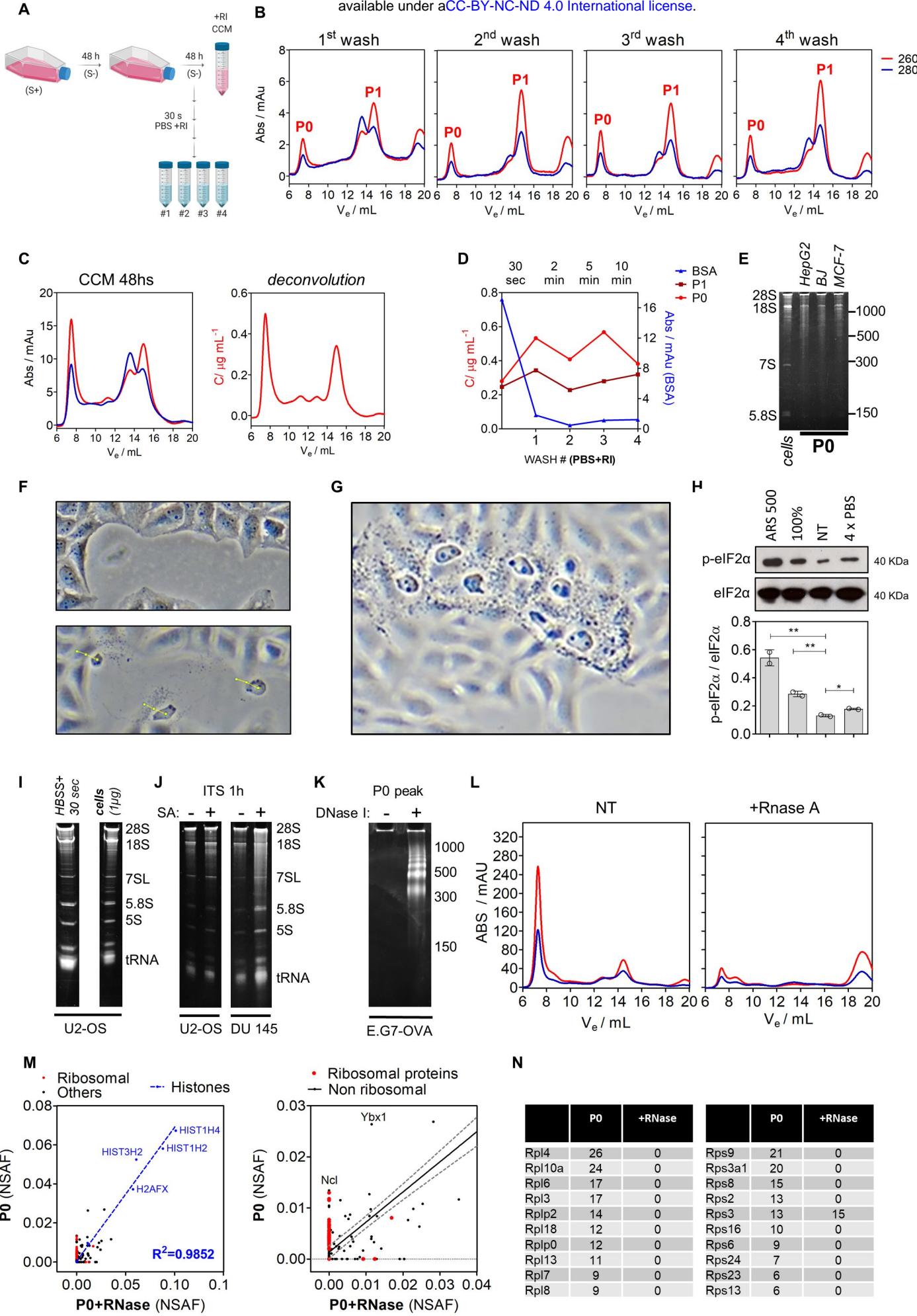
1138 86. Ivanov, P. *et al.* G-quadruplex structures contribute to the neuroprotective effects of angiogenin-
1139 induced tRNA fragments. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 18201–18206 (2014).

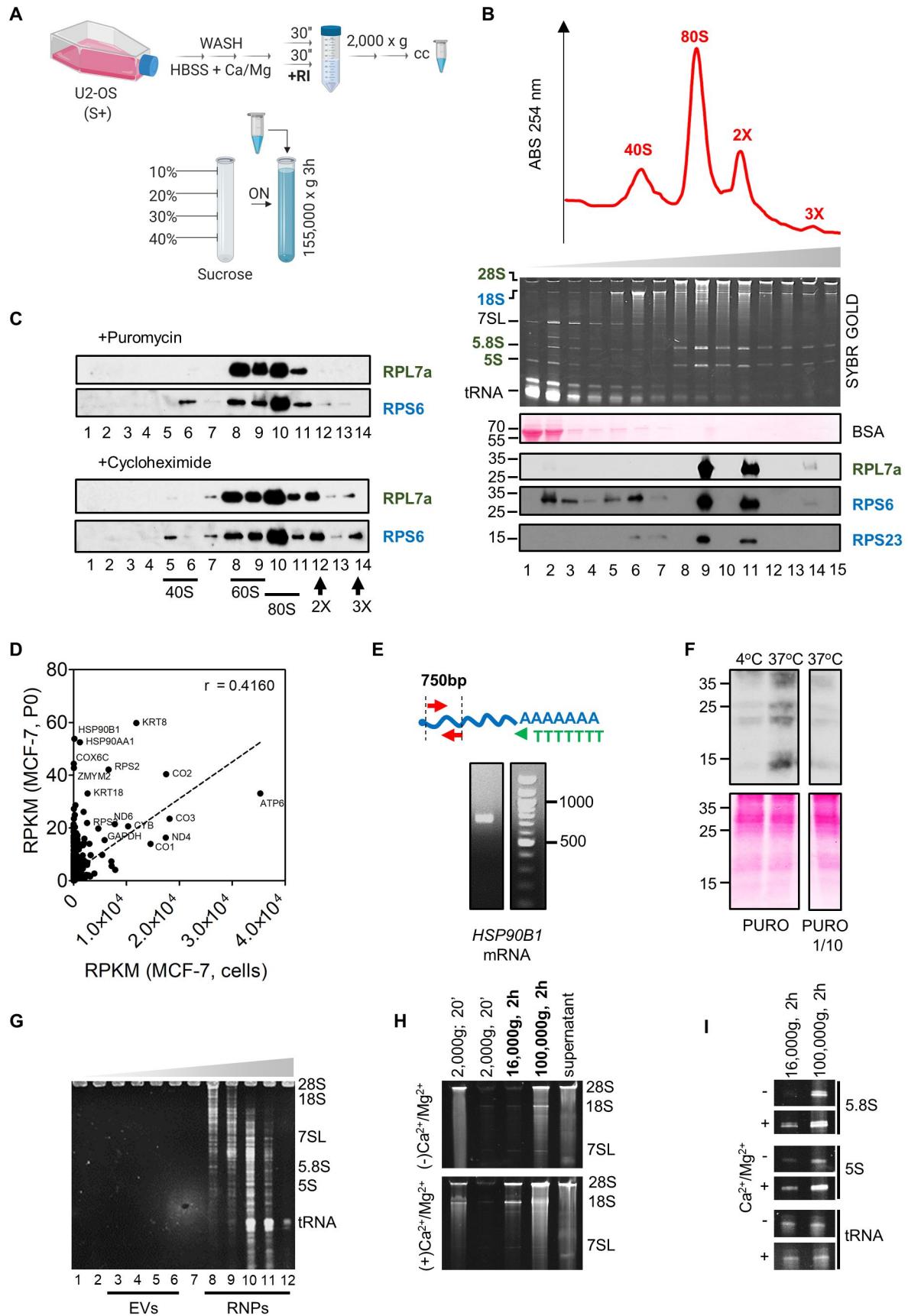
1140 87. Trias, E. *et al.* Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS.
1141 *JCI insight* **3**, (2018).

1142 88. Sha, W. *et al.* Human NLRP3 Inflammasome senses multiple types of bacterial RNAs. *Proc. Natl.*
1143 *Acad. Sci. U. S. A.* **111**, 16059–16064 (2014).

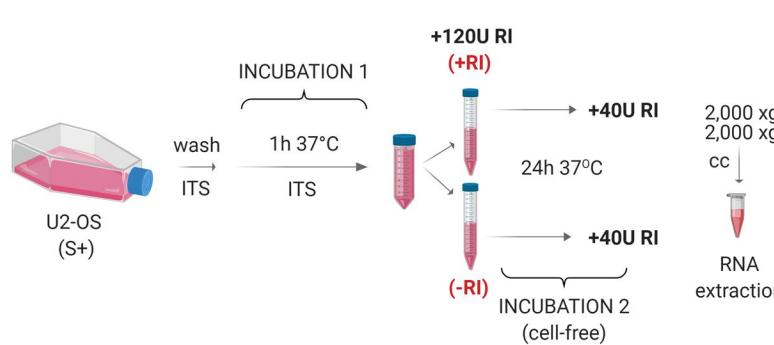
1144 89. Cavassani, K. A. *et al.* TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory
1145 events. *J. Exp. Med.* **205**, 2609–2621 (2008).

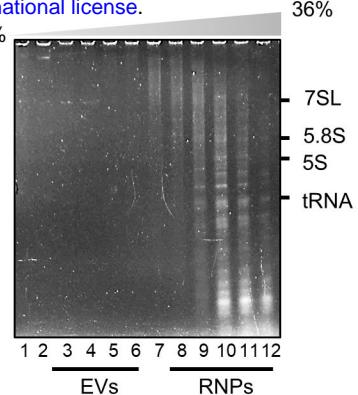

1146 90. Feng, Y. *et al.* Cardiac RNA induces inflammatory responses in cardiomyocytes and immune cells
1147 via Toll-like receptor 7 signaling. *J. Biol. Chem.* **290**, 26688–26698 (2015).

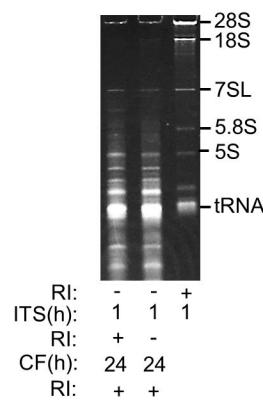

1148 91. Veglia, F. & Gabrilovich, D. I. Dendritic cells in cancer: the role revisited. *Current Opinion in*
1149 *Immunology* **45**, 43–51 (2017).

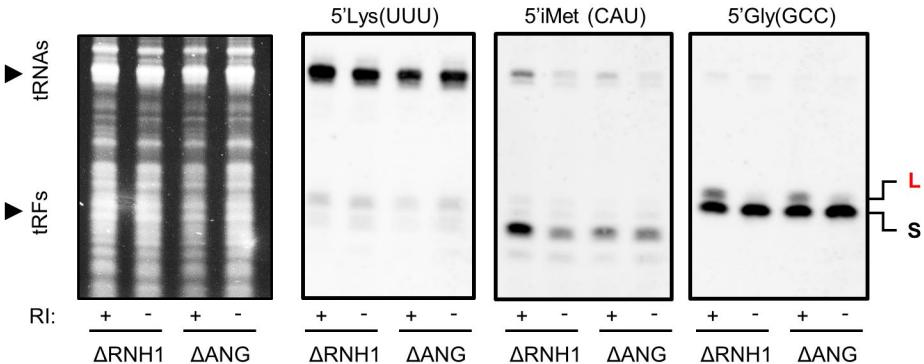

1150 92. Tran Janco, J. M., Lamichhane, P., Karyampudi, L. & Knutson, K. L. Tumor-Infiltrating Dendritic
1151 Cells in Cancer Pathogenesis. *J. Immunol.* **194**, 2985–2991 (2015).

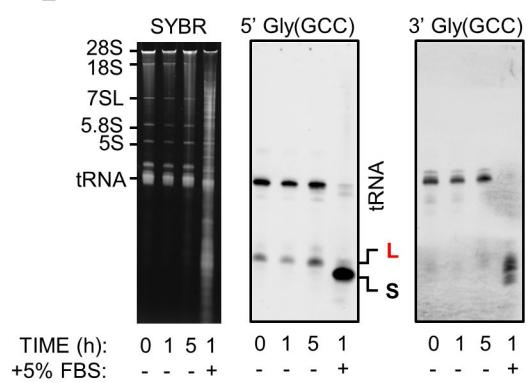
1152 93. Zhou, Z. *et al.* Extracellular RNA in a single droplet of human serum reflects physiologic and
1153 disease states. *Proc. Natl. Acad. Sci.* 201908252 (2019). doi:10.1073/pnas.1908252116

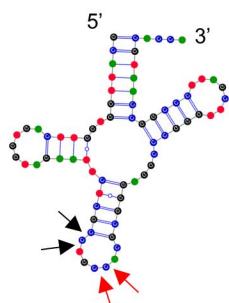

1154

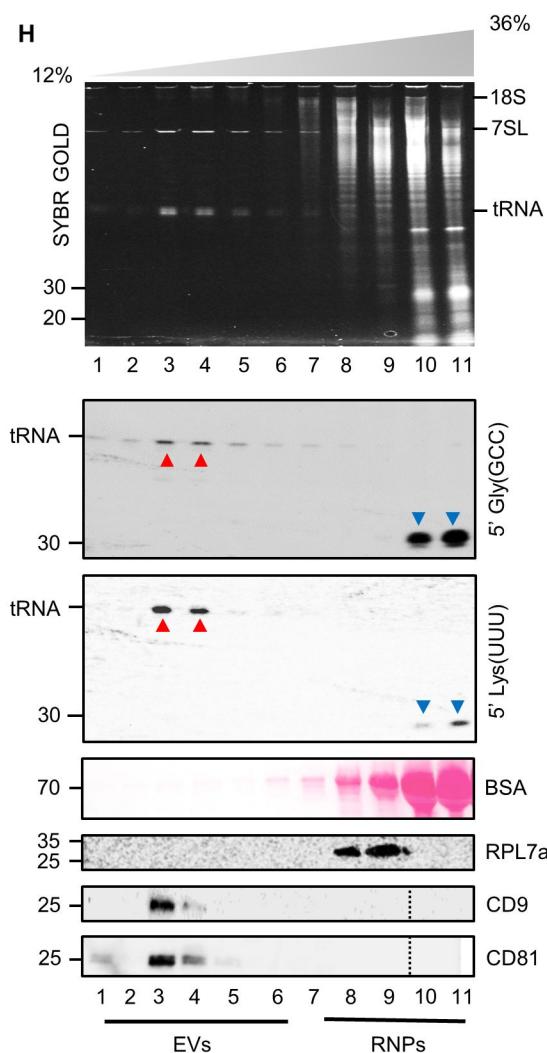


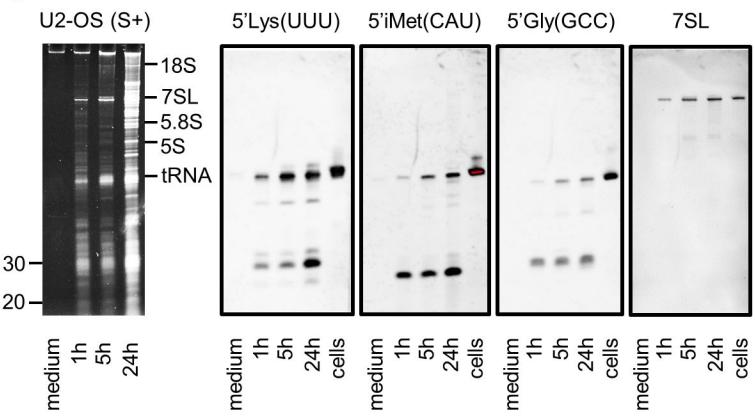

A

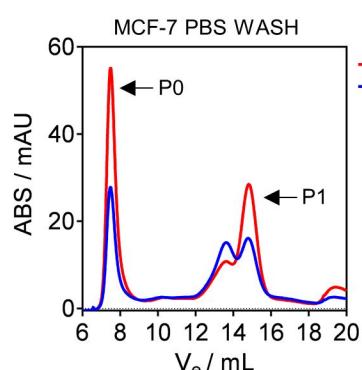

B

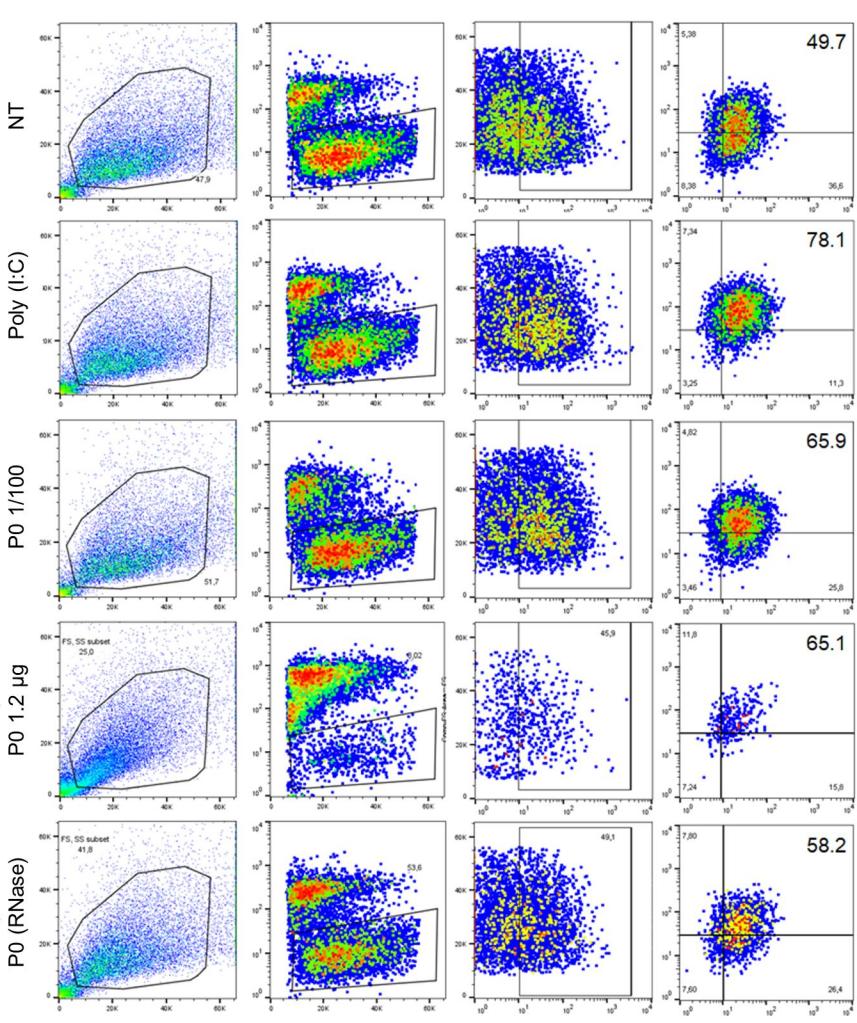

C

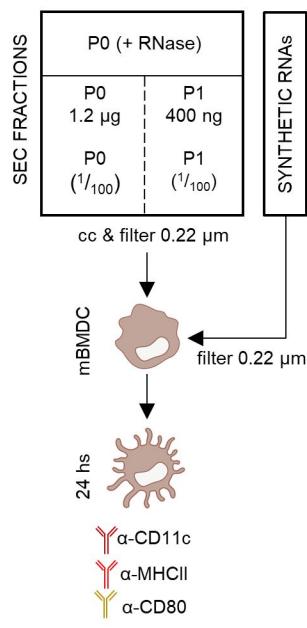

D

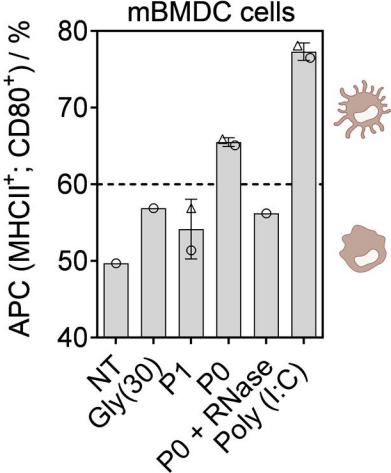

E

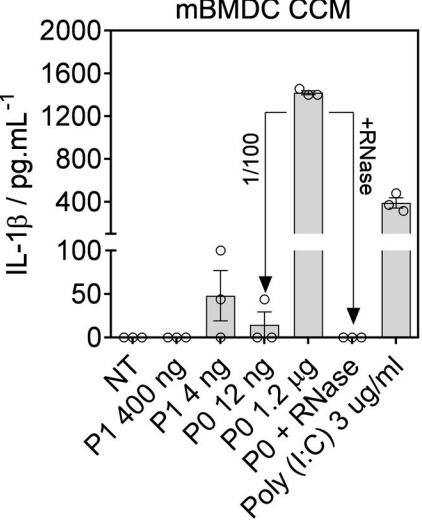

F

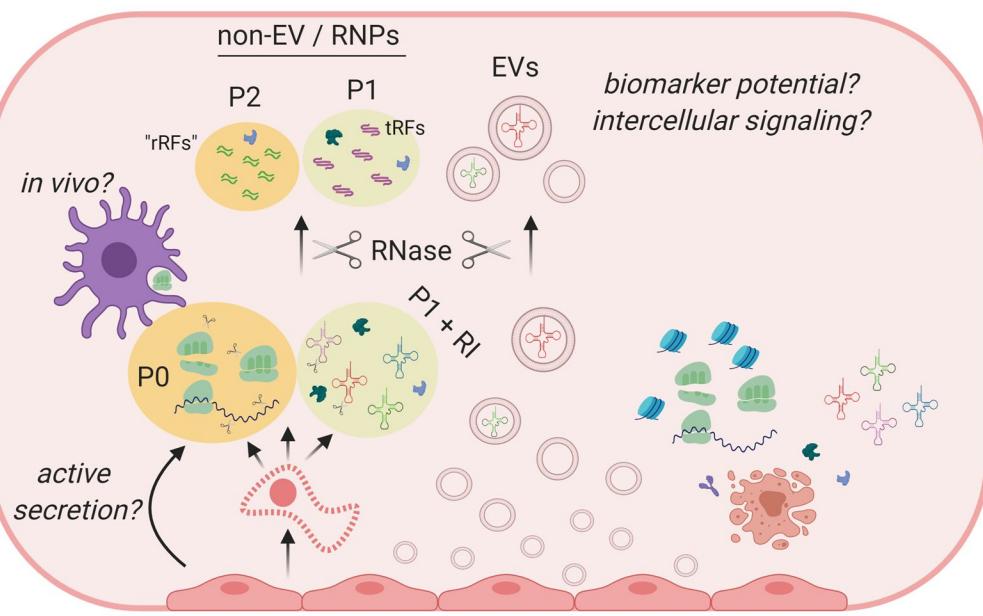

H

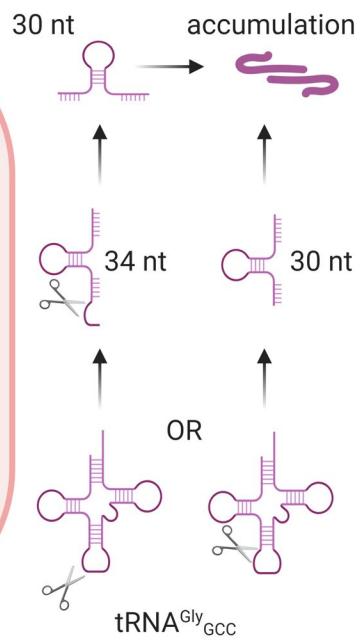

G


A


C


B


D


E

A

B

