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Abstract

Forecasting how the risk of pathogen spillover changes over space is essential for the

effective deployment of interventions such as human or wildlife vaccination. However,

due to the sporadic nature of spillover events and limited availability of data, developing

and validating robust predictions is challenging. Recent efforts to overcome this obstacle

have capitalized on machine learning to predict spillover risk. Past approaches combine

infection data from both humans and reservoir to train models that assess risk across

broad geographical regions. In doing so, these models blend data sources that separately

describe pathogen risk posed by the reservoir and the realized rate of spillover into the

human population. We develop a novel approach that models as separate stages: 1) the

contributions of spillover risk from the reservoir and pathogen distribution, and 2) the

resulting incidence of pathogen in the human population. Our methodology allows for a

rigorous assessment of whether forecasts of spillover risk can reliably predict the realized

spillover rate into humans, as measured by seroprevalence. In addition to providing a

rigorous cross-validation of risk predictions, this methodology could shed light on

human habits that modulate or amplify the resultant spillover. We apply our method to

Lassa virus, a zoonotic pathogen that poses a high threat of emergence in West Africa.

The resulting framework is the first forecast to quantify the extent to which predictions

of spillover risk from the reservoir explain regional variation in human seroprevalence.

We use predictions generated by the model to revise existing estimates for the annual

number of new human Lassa infections. Our model predicts that between 935,200 –

3,928,000 humans are infected by Lassa virus each year, an estimate that exceeds

current conventional wisdom.

Author Summary

The 2019 emergence of SARS-2 coronavirus is a grim reminder of the threat

animal-borne pathogens pose to human health. Even prior to SARS-2, the spillover of

so-called zoonotic pathogens was a persistent problem, with pathogens such as Ebola

and Lassa regularly but unpredictably causing outbreaks. Machine-learning models that

can anticipate when and where animal-to-human virus transmission is most likely to
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occur could help guide surveillance effort, as well as preemptive countermeasures to

pandemics, like information campaigns or vaccination programs. We develop a novel

machine learning framework that uses data-sets describing the distribution of a virus

within its host and the range of its animal host, along with human immunity data, to

infer rates of animal-to-human transmission across a focal region. By training the model

on data from the animal host, our framework allows rigorous validation of spillover

predictions on human data. We apply our framework to Lassa fever, a viral disease of

West Africa that is spread to humans by rodents, and update estimates of symptomatic

and asymptomatic Lassa virus infections in humans. Our results suggest that Nigeria is

most at risk for the emergence of new strains of Lassa virus, and therefore should be

prioritized for outbreak-surveillance.

Introduction 1

Emerging infectious diseases (EIDs) pose a deadly threat to public health. 2

Approximately 40% of EIDs are caused by pathogens that circulate in a non-human 3

wildlife reservoir (i.e., zoonotic pathogens) [1]. Prior to full scale emergence, interaction 4

between humans and wildlife creates opportunities for the occasional transfer, or 5

spillover, of the zoonotic pathogen into human populations [2]. These initial spillover 6

cases, in turn, represent newly established pathogen populations in human hosts that 7

are subject to evolutionary pressures and may potentially lead to increased transmission 8

among humans [2, 3]. Consequently, a key step in preempting the threat of EIDs is 9

careful monitoring of when and where spillover into the human population occurs. 10

However, because the majority of EIDs from wildlife originate in low and middle income 11

regions with limited health system infrastructure, accurately estimating the rate and 12

geographical range of pathogen spillover, and therefore the risk of new EIDs, is a major 13

challenge [1]. 14

Machine learning techniques have shown promise at predicting the geographical 15

range of spillover risk for several zoonotic diseases including Lassa fever [4–6], 16

Ebola [7, 8], and Leishmaniases [9]. Generally, these models are trained to associate 17

environmental features with the presence or absence of case reports in humans or the 18

associated reservoir. Once inferred from the training process, the learned relationships 19
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between disease presence and the environment can be extended across a region of 20

interest. Using these techniques, previous studies of Lassa fever (LF) have derived risk 21

maps that assess the likelihood of human LF cases being present in different regions of 22

West Africa [4, 5]. Fitted risk maps are often assessed, in turn, by evaluating the ability 23

of a model to discriminate between case data and background data that was left out of 24

the training process [5, 7]. Though such models have demonstrated impressive 25

discrimination abilities when evaluated by such binary classification ability, these 26

forecasts are not explicitly vetted on their ability to predict the magnitude of pathogen 27

spillover from the reservoir into humans. As a result, the extent to which predicted risk 28

explains the realized variation in human exposure to the pathogen is unclear. 29

To address this need, we develop a multi-layer machine learning framework that 30

accounts for the differences between how data involving a wildlife reservoir, and data 31

from human serosurveys, can simultaneously inform spillover risk in people and 32

rigorously assess whether predicted risk quantifies the rate of new cases in humans. Our 33

approach uses machine learning algorithms that, when trained on data from the wildlife 34

reservoir alone, estimate the likelihood that the reservoir and the zoonotic pathogen are 35

present in an area. These predictions are then combined into a composite estimate of 36

spillover risk to humans. Next, our framework uses estimates of human pathogen 37

seroprevalence, as well as estimates of human population density, to translate the 38

composite risk estimate into a prediction of the realized rate of zoonotic spillover into 39

humans. Omitting human seroprevalence data from the training process of the risk-layer 40

has several advantages. First, in the case of LF, due to modern transportation and the 41

longevity of Lassa virus antibodies in humans, a general concern is that the reported 42

location of human disease or Lassa virus antibody detection is not the site at which the 43

infection occurred [10–12]. Training the risk layer on reservoir data alone helps avoid 44

these biases. Secondly, in our framework, human seroprevalence estimates provide an 45

ultimate test of the risk layer’s ability to correlate with cumulative human exposure to 46

the pathogen. 47

We apply our framework to Lassa virus (formally Lassa mammarenavirus [LASV]), a 48

negative sense, bi-segmented, single-stranded ambisense RNA virus in the Arenaviridae 49

family and the causative agent of LF in West Africa [11,13]. Though LASV can 50

transmit directly between humans and often does so in hospital settings [14], 51
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rodent-to-human transmission is believed to account for the majority of new LASV 52

infections [11,15]. LASV spreads to humans from its primary reservoir, the 53

multimammate rat Mastomys natalensis, through food contaminated with infected 54

rodent feces and urine, as well as through the hunting of rodents for food 55

consumption [16]. Because M. natalensis have limited dispersal relative to humans, 56

direct LASV detection in the rodents is likely to indicate actual areas of spillover risk. 57

We evaluate each layer of our framework for its ability to predict different attributes 58

of LASV spillover into humans. Our model demonstrates a clear ability to predict 59

spillover risk as measured by the spatial distribution of the LASV pathogen and 60

reservoir, and a more moderate correlation between the predicted risk and human 61

seroprevalence. We also use our machine learning framework to estimate the total LASV 62

spillover into humans. Data from longitudinal serosurveys has been used to estimate 63

that between 100,000 and 300,000 LASV infections occur each year, and that between 74 64

– 94% of LASV infections result in sub-clinical febrile illness or are asymptomatic [17]. 65

Though these estimates are often used to describe the magnitude of LASV spillover into 66

humans [11,18,19], their generality is unclear because they are based on extrapolation 67

from serosurveys conducted in the 1980’s in Sierra Leone [17]. More recent estimates 68

indicate that as many as 13 million LASV infections may occur each year [20]. 69

Data 70

Our response data-set contains three types of data: 1) capture-locations of genetically 71

confirmed M. natalensis, as well as occurrence locations of non-M. natalensis murids; 2) 72

locations and outcomes of LASV surveys conducted in M. natalensis; and 3) locations 73

and measured seroprevalence of human LASV serosurveys. The first two data-sets 74

generate response variables for the model layers that predict LASV risk. The human 75

seroprevalence data are used to evaluate the combined LASV risk layer for its ability to 76

predict LASV spillover in humans and are also used to calibrate the stage of the model 77

that predicts human LASV spillover. Our full data-set and the script files used to fit 78

the models are available in a github repository [21]. 79
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Mastomys natalensis presence data and background 80

We collected data on documented presences of M. natalensis using the African 81

Mammalia database [22], supplemented with additional presences found in the 82

literature. Because M. natalensis is morphologically similar to other rodents in the area 83

(e.g., Mus baoulei, Mastomys erythroleucus), we only include those presences that have 84

been confirmed with gene sequencing methods. Each presence was verified with the help 85

of a rodent expert (E.F.C). 86

Fitting the model requires supplementing the presence-only data with background 87

points, also called pseudo-absences [23,24]. Background points serve as an estimate of 88

the distribution of sampling effort for the organism being modeled [25]. We used 89

background points chosen from capture locations of members within the Muridae family 90

(i.e., rodents) in West Africa from the Global Biodiversity Information Facility (GBIF) 91

website [26]. We only included background points that: 1) document the location of a 92

species other than M. natalenis, 2) fall outside of any pixel that contains a documented 93

M. natalensis capture, and 3) are within the study region. 94

These locations were used to categorize a subset of the pixels in West Africa into two 95

exclusive categories: those in which one or more M. natalensis has been captured 96

(capture-positive), and those with only non-M. natalensis occurrences. In total, our 97

data-set classified 184 unique pixels as capture-positive for M. natalensis, and 897 pixels 98

as background. 99

Surveys of Mastomys natalensis for Lassa virus 100

We compiled a data-set from published studies that sampled M. natalensis rodents for 101

indicators of LASV. The majority of the studies used were found using Table 2 of 102

Fichet-Calvet and Rogers (2009). For each study, we found the sampling location for 103

each tested rodent (either latitude/longitude or a village name for which coordinates 104

could be obtained). In total, we compiled ten rodent studies [17,27–34]. To this 105

data-set, we added documented occurrences of LASV in M. natalensis from the 106

GenBank website [35]. We searched for the keywords Lassa, Lassa fever, Lassa virus, 107

Lassa fever virus, Lassa arenavirus, and Lassa mammarenavirus. From the results, we 108

collated any sources that tested confirmed M. natalensis for LASV and contained 109
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latitude/longitude coordinates. 110

With these data, each 0.05◦x0.05◦ pixel (approximately 5 km by 5 km) in West 111

Africa that contained a M. natalensis LASV survey was classified into the categories 112

“Lassa positive” or “Lassa negative.” Specifically, a pixel was defined as Lassa positive if, 113

at some point, a M. natalensis rodent was captured within the pixel, and the rodent 114

tested positive for LASV using a RT-PCR assay. Pixels were classified as Lassa negative 115

if five or more M. natalenis rodents in total were tested for LASV infection by RT-PCR, 116

or tested for any previous arenavirus exposure using a serological assay, and all rodents 117

tested were negative. This procedure allowed us to classify 74 unique pixels in total: 36 118

were classified as Lassa negative, and 38 were classified as Lassa positive (Figure 1). 119

Human seroprevalence data 120

Lastly, we collected human arenavirus seroprevalence data. To ensure that the measured 121

seroprevalence was representative of a larger village population, we required that the 122

individuals tested for the study were chosen at random from a village. This criterion 123

excluded nosocomial outbreaks, for example, as well as case-studies that detected 124

arenavirus antibodies in individual missionaries. Each datum contains latitude and 125

longitude of where the serosurvey took place, the number of individuals tested, and the 126

number of individuals determined to have arenavirus antibodies. In total, we collected 127

101 serosurveys from nine studies (Fig 1) [17, 36–43]. These serosurveys were conducted 128

between 1973 and 2019 and are located in six countries in West Africa. 129
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Fig 1. Locations at which Lassa virus or arenavirus antibodies have been sampled in
rodents or humans. Each rodent point shows the outcome of a serological or PCR test.
Each human population point shows the location of a village serosurvey.

Predictors 130

We include predictors that are broadly hypothesized to influence the distributions of M. 131

natalensis and LASV. M. natalensis is widely distributed across sub-Saharan Africa in 132

savanna and shrubland environments. Within such environments, M. natalensis is 133

commonly associated with small villages and is considered a serious agricultural 134

pest [44,45]. To allow the model the possibility to learn these relationships, we include 135

predictors that describe MODIS land cover features as predictors, and also include 136

human population density within each pixel. We also include elevation in meters. 137

Because climate seasonality and crop maturation affect the breeding season of M. 138

natalensis, we include various measures of the seasonality of the vegetative index 139

(NDVI), precipitation, and temperature [46]. See S1 Appendix for a complete list of 140

environmental variables. LASV is often associated with M. natalensis, so we use the 141

same set of predictors for the pathogen layer. 142

July 14, 2020 8/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.03.05.979658doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.979658
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 143

We developed a model that predicts the rate of LASV infection in humans within 144

individual 0.05◦x0.05◦ pixels across West Africa. This focal region is chosen as the 145

intersection of West Africa and the International Union for Conservation of Nature 146

(IUCN) range map for Mastomys natalensis [45]. Our M. natalensis capture data, as 147

well as all of the LASV survey data, originate from within this region, thus providing a 148

discrete bound on the area of West Africa in which the learned relationships of the 149

model apply. 150

An overview of the model framework is depicted in Fig 2. Outputs from the model 151

are generated in two stages. The first stage uses environmental features to estimate 152

different layers of LASV spillover risk. The layers of risk, in turn, are described by: 1) 153

DM , a classification score indicating the likelihood that a pixel contains the primary 154

rodent reservoir, M. natalensis, and 2) DL, a score indicating the likelihood that LASV 155

circulates within the M. natalensis population. Depending on the layer, the response 156

variable for this stage is generated from documented occurrences of M. natalensis (DM 157

layer), or evidence of past LASV infection in M. natalensis (DL layer). The second 158

stage of our framework uses a generalized linear model to regress the estimates of 159

human arenavirus seroprevalence onto a composite layer made from DM and DL. 160

Lastly, we used a susceptible-infected-recovered-susceptible (i.e., SIRS) model to derive 161

human incidence from the predictions of seroprevalence. 162
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Mastomys natalensis

capture locations
Environmental features

Lassa virus surveys

in Mastomys natalensis

Boosted

tree

Boosted

tree

M. natalensis

distribution (DM)

Lassa virus

distribution (DL)

Combined risk

(DX = DM ·DL)
Human serosurveys

Generalized

linear

model

Human Lassa virus seroprevalence

SIRS model

Human Lassa virus incidence

Fig 2. Overview of the model. Ellipses represent data-sets, circles represent models,
and rectangles represent model predictions.
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LASV risk layers 163

Each risk layer of the first stage is generated by a separate boosted classification tree 164

(BCT). The BCT, in turn, uses environmental features within a pixel to infer a 165

classification score, between zero and one, that indicates how likely it is that the pixel is 166

positive for M. natalensis (DM layer) or LASV in M. natalensis (DL layer). BCTs use 167

a stage-wise learning algorithm that, at each stage, trains a new tree model to the 168

residuals of the current model iteration. Each newly fitted tree is added to the ensemble 169

model, thereby reducing the residual deviance between the model predictions and a 170

training set [47]. Boosted trees are commonly used in species and disease distribution 171

models because they are simultaneously resistant to over-fitting in scenarios where many 172

feature variables are implemented and are also able to model complex interactions 173

among features [48]. 174

Prior to inclusion in the model-fitting procedure, each feature variable was vetted for 175

its ability to distinguish between presences and absences in each of the layers. 176

Specifically, for each risk layer’s binary response variable, we performed a 177

Mann-Whitney U-test on each candidate feature. In doing so, we test the null 178

hypothesis that the distribution of a feature is the same between pixels that are 179

classified as a presence or (pseudo) absence. We only include predictors for which the 180

null hypothesis is rejected at the α = 0.05 level. 181

For a given training set, we fit the BCT model using the gbm.step function of the 182

“dismo” package in the statistical language R [49]. This specific function uses 10-fold 183

cross-validation to determine the number of successive trees that best model the 184

relationship between response and features without over-fitting the data [49]. The 185

learning rate parameter, which determines the weight given to each successive tree, was 186

set to small values (DM : 10−2, DL: 10−3) that encourage a final model that is 187

composed of many small incremental improvements. A smaller learning rate was used in 188

the DL layer because the corresponding data-set was smaller. The parameter that 189

describes the maximum number of allowable trees was set to a large value (107) to 190

ensure that the cross-validation fitting process was able to add trees until no further 191

improvement occurred [47]. 192

For the DM layer, we trained 25 boosted classification trees to learn how 193
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environmental predictors influence the suitability of a habitat for M. natalensis. Each 194

model was fit by selecting 184 presence pixels and pairing these with 184 background 195

pixels in which only non-M. natalensis murids were found. Both presences and 196

background pixels were chosen with replacement. By choosing equal numbers of 197

presences and background pixels for each training set, we encourage each model to learn 198

patterns in features that allow presences to be discriminated from background pixels, 199

rather than having the model learn the (likely biased) distribution of presences and 200

background pixels that are available in the overall data-set [24]. 201

For each model fit for the DM layer, presence and pseudo-absence pixels that were 202

not used to train the model (i.e., out-of-bag data) were used to test the model using the 203

area-under-the-receiver-curve (AUC). The AUC measures a classifier’s ability to assign 204

a high classification score to presences, and a low score to background pixels. A score of 205

one indicates a perfect classifier, and a score of 0.5 indicates a classifier that is no better 206

than chance. Because some of the background pixels likely contain unreported M. 207

natalensis (i.e., are false negatives), this is a conservative estimate of the model’s 208

performance. A pairwise-distance sampling scheme was used to pair an equal number of 209

test-background pixels to the out-of-bag presences that together comprise the test set. 210

Specifically, for each test presence point, the pairwise distance sampling method chooses 211

a test background point so that the minimum distance between the training presences 212

and test presence is similar to the minimum distance between the test background point 213

and training presences [50]. Compared to random selection of test background points, 214

pairwise distance sampling oftentimes results in a lower AUC score that more accurately 215

measures the model’s ability to generalize to new regions [50]. 216

The DL layer is generated by the averaged predictions of 25 boosted classification 217

tree models, each of which is trained to discriminate between pixels that are Lassa 218

positive or Lassa negative. The LASV rodent survey data-set contains 36 locations that 219

were classified as Lassa negative, and 38 that were classified as Lassa positive. We 220

trained each model on a data-set comprised of 36 absence locations and 36 presence 221

locations, sampled from the full data-set with replacement. The estimation of error in 222

the DL layer is similar to that described in the DM layer. Specifically, we calculate the 223

AUC of the fitted model on an equal number of out-of-bag presences and absences. 224

Next, we combined the DM and DL layers into a composite feature, denoted by DX , 225
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that is indicative of whether a pixel simultaneously has environmental features that are 226

suitable for M. natalensis, as well as LASV in M. natalensis. The combined feature is 227

defined as DX = DM ×DL and summarizes the realized risk of LASV spillover to 228

humans within the local environment. 229

Connection to human seroprevalence and incidence 230

To connect the new risk parameter DX to human arenavirus seroprevalence, and to 231

evaluate the ability of the DX layer to explain historical LASV spillover in humans, we 232

regressed seroprevalence from human arenavirus serosurveys on the DX layer and an 233

intercept. We used quasi-binomial regression to account for over-dispersion in 234

seroprevalence measurements that could otherwise contaminate hypothesis tests on 235

model coefficients [51]. In the regression, the log-odds of each seroprevalence estimate is 236

weighted by the number of individuals tested in the serosurvey. 237

Next, we used a SIRS model that includes waning immunity to derive an equation 238

that relates a given LASV spillover rate into humans and the resulting seroprevalence in 239

a human population. Throughout, we assume that the seroprevalence measures that 240

were obtained from historical serosurveys describe LASV infection at steady-state (i.e., 241

are unchanging in time). This derivation, in turn, is used to translate the regression 242

model’s predictions of LASV seroprevalence into incidence (spillover cases per year) in 243

humans. For the SIRS model, we employ several assumptions: 1) humans within each 244

0.05x0.05◦ pixel constitute a closed population with constant birth rate b and per-capita 245

death rate d. Within each pixel, humans are compartmentalized into three 246

non-overlapping classes: susceptible (S), infected with LASV (I), and recovered from 247

LASV infection (R). The size of the human population is assumed to be large enough 248

so that stochastic events (LASV extinction) do not occur. 2) All LASV infections in 249

humans are caused by contact with infectious rodents. Though human-to-human 250

transmission of LASV is common in nosocomial outbreaks, rodent-to-human 251

transmission is believed to be the primary pathway by which the virus is spread outside 252

of hospital environments [15]. 3) Susceptible humans become infected with LASV at a 253

constant rate FS, where F denotes the rate of infectious contact between a human and 254

infected M. natalensis (i.e., the force of infection). Any seasonal fluctuation in the 255
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contact rate between humans and rodents, as well as fluctuation in the prevalence of 256

LASV infection in rodents, is assumed to average out over the decades-long timescales 257

we consider. 4) We assume that LASV infection in humans is non-fatal, so that infected 258

humans recover at rate γ. All recovered individuals gain temporary LASV immunity 259

through antibodies. Though LASV infection causes mortality in approximately 2% of 260

non-nosocomial cases, this rate is small enough to be negligible for our predictions [11]. 261

As described by McCormick et al. (1987), we assume that recovered individuals lose 262

immunity to LASV infection and transition back into the susceptible class at a rate λ. 263

For each pixel across West Africa, the equations that describe the number of humans in 264

each of the classes are: 265

dS

dt
= b− dS − FS + λR,

dI

dt
= FS − dI − γI,

dR

dt
= γI − dR− λR.

(1)

We find the steady-state values of S, I, and R by setting the left-hand-side of 266

equations (1) to zero, and solving the resulting algebraic equations for each state 267

variable. This yields the steady-state values 268

S∗ =
b

d
· (d+ γ)(d+ λ)

(d+ F )(d+ γ) + λ(d+ F + γ)
, (2)

I∗ =
b

d
· F (d+ λ)

(d+ F )(d+ γ) + λ(d+ F + γ)
, (3)

R∗ =
b

d
· Fγ

(d+ F )(d+ γ) + λ(d+ F + γ)
. (4)

By dividing R∗ by the total population size at steady-state, b
d , we find that the 269

long-term seroprevalence, denoted Ω∗: 270

Ω∗ =
Fγ

(d+ F )(d+ γ) + λ(d+ F + γ)
. (5)

Next, we use Eq (5) to estimate the LASV spillover rate FS∗, given that the 271
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steady-state LASV seroprevalence is Ω∗. Solving Eq (5) for F in terms of Ω∗ yields: 272

F =
Ω∗(d+ γ)(d+ λ)

−γ + Ω∗(d+ γ + λ)
. (6)

The rate of new cases is given by 273

η := FS∗ =
b

d
Ω∗ (d+ γ) (d+ λ) γ−1. (7)

These analyses were derived using Mathematica. The notebook file is available in the 274

github repository [21]. 275

By substituting our prediction of human LASV seroprevalence for Ω∗, we can 276

estimate the total human infection rate using Eq (7). Calculating these estimates 277

requires values for b, d, γ and λ. We choose parameters that are broadly in line with 278

the epidemiology of LASV, and the demography of humans in West Africa. We use the 279

unprocessed WorldPop 2020 population data (see Data section) as an estimate of the 280

steady-state population size, b
d , within each pixel of the original 0.0083◦ resolution. We 281

choose d = 0.02 yr−1 to describe a mean human lifespan of 50 years. Studies indicate 282

that the duration of LASV infection is typically about one month, so that γ = 12 283

yr−1 [11]. 284

The rate of seroreversion is difficult to estimate empirically. McCormick et al. (1987) 285

estimated that λ = 0.064 yr−1 using a longitudinal study of immune markers in 286

individuals. However, it is unclear whether their results indicated true seroreversion, or 287

whether the reduction of LASV immune markers below detectable levels made it appear 288

as though seroreversion occurred. Furthermore, LASV antibodies have been shown to 289

exist decades after infection in at least some individuals [10]. Because of the uncertainty 290

in the rate of reversion, we report the number of new cases estimated with values in 291

accordance with McCormick et al. (1987) (λ = 0.064), and also in the scenario where 292

seroreversion never occurs (λ = 0). 293

The general effect of seroreversion can be understood by comparing estimates of new 294

cases, η, with that obtained by the same equation with λ = 0, denoted η0. We find that 295

with our parameter values, 296

η

η0
=
d+ λ

d
≈ 4.2. (8)
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In words, the estimated number of LASV spillover cases per year is 4.2 times greater 297

when seroreversion is included in the model, relative to estimates obtained when 298

seroreversion does not occur. 299

We also derive a null estimate of the yearly number of LASV spillover cases in 300

humans from Eq (7). This estimate assumes that the incidence of LASV in humans is 301

the same everywhere in the West African study region. Specifically, we calculate Ω∗ as 302

the mean seroprevalence across all serosurveys, weighted by the number of individuals 303

tested (Ω∗ ≈ 0.184). The population size b/d is set equal to the population of humans 304

in the West African study region (b/d ≈ 374 million). 305

Results 306

LASV risk layers 307

The DM layer is constructed by averaging the predictions of 25 boosted classification 308

tree models. Across all 25 bootstrap fits, the average out-of-bag AUC was 0.63, with a 309

standard deviation of 0.05. This AUC indicates that the model has a modest ability to 310

correctly discriminate pixels in which M. natalensis has been captured from background 311

pixels, and is similar to out-of-bag AUC scores obtained in another study with a similar 312

assessment criterion [5]. The algorithm assigned especially great importance to 313

maximum precipitation, precipitation contingency (i.e. regularity of precipitation), 314

elevation, and the coefficient of variation of precipitation (S1 Appendix). Across 25 315

fitted models that made up the DL layer, the average AUC was 0.83, with a standard 316

deviation of 0.08. This indicates a model that is good at discriminating between Lassa 317

presences and absences. The algorithm primarily used precipitation contingency to 318

determine whether or not a pixel is suitable for endemic LASV in M. natalensis(S1 319

Appendix). 320

Figure 3 shows maps of each of the fitted risk layers (top row), as well as the 321

combined layer of realized risk, DX . As indicated by the IUCN range map for M. 322

natalensis [45], all West Africa countries likely harbor this primary rodent reservoir of 323

LASV (Fig 3a). Similar to other Lassa risk maps [4, 5], our DL layer predictions 324

indicate that the risk of LASV in rodents is primarily concentrated in the eastern and 325
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western extremes of West Africa (Fig 3b). The combined risk, shown in Fig 3c, indicates 326

that environmental features suitable for rodent-to-human LASV transmission are 327

primarily located in Sierra Leone, Guinea, and Nigeria. 328

(a) (b)

(c)

Fig 3. (a) Map shows the likelihood that each 0.05◦ pixel in West Africa contains the
primary reservoir of Lassa virus, M. natalensis. Pink dots indicate locations of captures
that were confirmed using molecular techniques and were used to train the model. Black
line indicates the IUCN M. natalensis range map. (b) Predicted distribution of Lassa
virus in M. natalensis. Dots indicate locations in which M. natalensis were surveyed for
the virus. (c) Combined risk, defined as the product of the above two layers.

Connection to human seroprevalence and incidence 329

A quasi-binomial regression indicated a significant, positive association between the 330

combined LASV risk predictor DX , and the human arenavirus seroprevalence measured 331

in serosurveys (p = 0.0045, Fig 4). The Pearson’s correlation coefficient between the 332

fitted model’s predictions and actual human seroprevalence is 0.23 when all 333

seroprevalence observations are equally weighted and 0.29 when weighted by the number 334

of individuals tested in each survey. By applying the general linear model to the 335

combined LASV risk layer, we extrapolate the human LASV seroprevalence across West 336

Africa (Fig 5). Our results indicate that human LASV seroprevalence is greatest in the 337

July 14, 2020 17/31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2020. ; https://doi.org/10.1101/2020.03.05.979658doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.979658
http://creativecommons.org/licenses/by-nc-nd/4.0/


eastern and western regions of West Africa, with especially high seroprevalence in 338

central Guinea, Sierra Leone, and Nigeria. 339
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Fig 4. Human LASV seroprevalence (circles) and predictions of the quasi-binomial
model (line) vs the Dx combined risk layer. Each dot represents a different serosurvey.
The size of the dot indicates the number of humans that were tested.

Fig 5. Predicted human seroprevalence of Lassa virus in West Africa. Dots show
locations of human serosurveys that sampled at least 50 individuals, and dot color
indicates the residual of the predicted seroprevalence. White dots indicate locations for
which measured seroprevalence fell within 0.1 of the prediction. Measured
seroprevalence at red dots was 0.1 or more greater than that predicted, and
seroprevalence at blue dots was 0.1 or more below the prediction.
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Furthermore, by assuming that our predictions are representative of LASV infection 340

at steady-state, we can derive the number of LASV cases per year in humans. The 341

simplest path to estimating human infections is to assume spatial homogeneity of LASV 342

infection across West Africa. In this case we do not use the LASV risk layer DX . 343

Instead, we assume that human LASV seroprevalence is uniformly equal to the average 344

seroprevalence across all available serosurveys (18.4%). This spatially uniform model 345

implies 1,342,000 LASV infections occur in humans each year. When LASV reinfection 346

(i.e., LASV infection following seroreversion) is included in the model, the estimate 347

increases to 5,636,500 cases per year. 348

We can develop more spatially refined estimates using the spatially heterogeneous 349

LASV risk that is predicted by the DX layer. If LASV seroprevalence in humans is 350

spatially heterogeneous, and spatial heterogeneity is described by the DX layer, the 351

model estimates that 935,200 – 3,928,000 new human infections occur each year. Table 1 352

shows the number of LASV infections per year by country, ordered by number of cases, 353

when reinfection is assumed not to occur. Inclusion of reinfection does not change the 354

ranking of countries. These spatially heterogeneous predictions indicate that more than 355

half of new human LASV infections (513,200) in West Africa will occur in Nigeria (Fig 356

6). This distribution of LASV infection is largely due to the greater population size 357

within Nigeria, as the per person incidence rates do not differ dramatically between 358

countries (Table 1). After Nigeria, Ghana (72,500 cases per year) and the Ivory Coast 359

(62,400 cases per year), respectively, are predicted to have the highest incidence of 360

human LASV infections. Guinea and Sierra Leone are predicted to have the highest 361

per-capita rates of LASV infection (Table 1), but because of their relatively small 362

population sizes, these countries are predicted to have relatively few total cases. 363
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Fig 6. Predicted annual number of Lassa virus infections in humans, averaged over 25
bootstrap iterations. Yellow areas show regions with high population density that are
also predicted to have high Lassa virus seroprevalence in humans.

Country 1000’s of Cases Rate
Nigeria 513.2 2.5
Ghana 72.5 2.4

Ivory Coast 62.4 2.4
Niger 54.4 2.4

Burkina Faso 49.9 2.4
Mali 47.8 2.4

Guinea 47.0 3.3
Benin 29.3 2.4

Sierra Leone 23.2 3.3
Togo 19.8 2.4

Liberia 13.2 2.6
Mauritania 1.3 2.4

Senegal 1.0 2.4

Table 1. Predicted annual number of Lassa virus cases in the study region, as well as
infection rate (number of cases per year per 1000 people). Estimates in the table are
derived assuming seroreversion and reinfection do not occur.

Discussion 364

Machine learning approaches that forecast the risk of emerging infectious diseases such 365

as LF are often not assessed on their ability to predict proxies of pathogen spillover into 366

human populations [5, 27]. Our forecasting framework advances these approaches by 367

generating predictions of spillover risk based only on data from the primary rodent 368
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reservoir of LASV, and directly assessing those predictions on data from human 369

arenavirus serosurveys across West Africa. As indicated by a generalized linear 370

regression, our reservoir-based model of spillover risk is able to explain a statistically 371

significant amount of the variability in human seroprevalence. Furthermore, a 372

generalized linear regression of human seroprevalence on the spillover risk yields 373

predictions that are moderately correlated with the results of serosurveys (unweighted: 374

0.22; weighted: 0.29). 375

By distinguishing between the pathogen risk posed by a reservoir, and the realized 376

seroprevalence in humans, our framework could allow for a more complete 377

understanding of the factors that influence pathogen spillover into humans. In the case 378

of LF, human factors such as the use of rodent-proof housing materials (concrete vs 379

mud) and hunting habits can affect the extent to which LASV is able to transmit 380

between rodents and humans [16,52]. The residuals of seroprevalence predictions from 381

our model could help guide understanding of where such human factors are mitigating 382

or facilitating spillover into humans. If such human factors like housing type can be 383

readily identified for regions within West Africa, they can be incorporated in the human 384

stage of the model that connects spillover risk to human seroprevalence. 385

Because our framework traces the spillover risk into humans back to the spatial 386

heterogeneity in Lassa risk and human density across West Africa, our approach allows 387

us to predict which countries have the highest per-capita risk of LASV infection (e.g., 388

Guinea, Sierra Leone) due to attributes of the reservoir and those that have the highest 389

number of human cases because of their large human population size (e.g., Nigeria). 390

Clarifying and distinguishing these two different types of risk helps to manage 391

risk-reduction and behavior-change communication campaigns, countermeasures such as 392

rodent population management or vaccination of rodent reservoir hosts, and travel 393

advisories to high risk areas. In addition to intervention strategies such as vaccination 394

or management of rodent populations, both of these areas of West Africa should be 395

prioritized for surveillance of LASV emergence in rodents and at-risk human 396

populations. 397

Using this framework, we are able to generate predictions of the number of new cases 398

of LASV infection within different regions of West Africa. Our results indicate that 399

Nigeria contributes the greatest number of new human cases each year, and that the 400
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magnitude of new cases in Nigeria is driven primarily by its greater human population 401

density, rather than an increased per-capita risk. If these predictions are correct, 402

Nigeria is likely to represent the greatest risk of LASV emergence because the large 403

number of annual spillover events allows for extensive sampling of viral strain diversity 404

and repeated opportunities for viral adaptation to the human populations [53]. 405

In addition to identifying the countries most at risk for viral emergence, our model 406

framework provides updated estimates for the rate of LASV spillover across West Africa. 407

Previous estimates of 100,000 – 300,000 cases per year were based on longitudinal 408

studies from communities in Sierra Leone conducted in the 1980’s [17]. Using 409

seroprevalence data from studies across West Africa, our model predicts between 410

935,200 – 3,928,000 LASV infections in humans occur each year. Where the true value 411

lies within this range depends on whether or not seroreversion and subsequent LASV 412

reinfection are regular features of human LASV epidemiology, and reinforces the need to 413

better understand the scope for LASV reinfection. It is important to realize that our 414

predictions include both symptomatic and asymptomatic cases. Thus, because many 415

human LASV infections result in mild flu-like symptoms or are asymptomatic, it is 416

unsurprising that our predicted values exceed the reported number of confirmed LF 417

cases in Nigeria [54,55]. 418

Several factors contribute to the discrepancy between previous estimates of LASV 419

spillover, and our revised estimates. McCormick et al. (1987) used seroconversion data 420

from a 15 month period to infer a rate of LASV infection across West Africa. However, 421

the population of West Africa has increased by a factor of 2.4 since that time, making 422

these estimates outdated [56]. Later estimates that were partially based on the same 423

longitudinal serosurveys derived an upper bound of 13 million LASV infections, but 424

only considered the number of cases in Nigeria, Guinea, and Sierra Leone [20]. 425

Furthermore, these later estimates are derived from the maximum observed human 426

LASV seroconversion rate in the Sierra Leone study, which likely does not apply across 427

West Africa. In contrast, our estimates are based on human seroprevalence data that 428

comes from six countries in West Africa and spans a 47 year time period. Because our 429

data-set was obtained from a broader spatial and temporal range, our estimates are less 430

likely to be biased by sporadic extremes in LASV spillover. 431

Our modeling framework has the benefit of being extendable, thereby giving 432
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structured insight into how other attributes of the reservoir and pathogen translate into 433

observed human seroprevalence. Future iterations of this framework could include the 434

contributions of 1) more detailed life history of M. natalensis; 2) additional LASV 435

animal reservoirs; and 3) genomic variability in LASV strains. For example, the first 436

stage of these advanced models could include the temporal probability of a rodent being 437

inside a domestic dwelling. The incidence of LF is generally believed to peak in the dry 438

season, when M. natalensis migrate into domestic settings [44,57]. Temporal 439

fluctuations in population density, due to seasonal rainfall, would provide another 440

important insight into the seasonal burden of human LF cases [11]. Understanding this 441

ecological connection is important because distributing vaccines at seasonal population 442

lows in wildlife demographic cycles can, in theory, substantially increase the probability 443

of pathogen elimination [58,59]. Incorporating these temporal layers will become more 444

feasible as more time-series data on population density in the focal reservoir species 445

become available. 446

Other potentially important risk layers that could be added are geographic 447

distributions for other known reservoirs of LASV. Specifically, several species of rodents 448

are known to be capable of harboring the virus [27]. Though M. natalensis is believed 449

to be the primary reservoir that contributes to human infection, it is unknown whether 450

this holds across all regions of West Africa. Understanding the relationship between the 451

habitat suitability of different rodent reservoirs and human LF burden may also help 452

determine whether M. natalensis is the host at which intervention strategies should 453

always be directed. Finally, additional virus sequence data could be used to train a risk 454

layer that forecasts the presence or absence of specific genomic variants that are more 455

likely to cause either severe disease or more efficient human-to-human transmission 456

cycles. 457

Although the methods we have used here make efficient use of available data, the 458

accuracy of our risk forecasts remains difficult to rigorously evaluate due to the limited 459

availability of current data from human populations across West Africa. The sparseness 460

of modern human data arises for two reasons: 1) the lack of robust surveillance and 461

testing across much of the region where LASV is endemic and 2) the absence of publicly 462

available databases reporting human cases in those countries that do have sophisticated 463

surveillance in place. Improving surveillance for LASV across West Africa and 464
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developing publicly available resources for sharing the resulting data would allow more 465

robust risk predictions to be developed and facilitate targeting effective risk reducing 466

interventions. Despite these limitations of existing data, the structured 467

machine-learning models we develop here provide insight into what aspects of 468

environment, reservoir, and virus, contribute to spillover, and the potential risk of 469

subsequent emergence into the human population. By understanding these connections, 470

we can design and deploy more effective intervention and surveillance strategies that 471

work in tandem to reduce disease burden and enhance global health security. 472

Supporting information captions 473

S1 Appendix. Details on the predictors used in the model and model fits. 474
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