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Abstract

Forecasting how the risk of pathogen spillover changes over space is essential for the
effective deployment of interventions such as human or wildlife vaccination. However,
due to the sporadic nature of spillover events and limited availability of data, developing
and validating robust predictions is challenging. Recent efforts to overcome this obstacle
have capitalized on machine learning to predict spillover risk. Past approaches combine
infection data from both humans and reservoir to train models that assess risk across
broad geographical regions. In doing so, these models blend data sources that separately
describe pathogen risk posed by the reservoir and the realized rate of spillover into the
human population. We develop a novel approach that models as separate stages: 1) the
contributions of spillover risk from the reservoir and pathogen distribution, and 2) the
resulting incidence of pathogen in the human population. Our methodology allows for a
rigorous assessment of whether forecasts of spillover risk can reliably predict the realized
spillover rate into humans, as measured by seroprevalence. In addition to providing a
rigorous cross-validation of risk predictions, this methodology could shed light on
human habits that modulate or amplify the resultant spillover. We apply our method to
Lassa virus, a zoonotic pathogen that poses a high threat of emergence in West Africa.
The resulting framework is the first forecast to quantify the extent to which predictions
of spillover risk from the reservoir explain regional variation in human seroprevalence.
We use predictions generated by the model to revise existing estimates for the annual
number of new human Lassa infections. Our model predicts that between 935,200 —
3,928,000 humans are infected by Lassa virus each year, an estimate that exceeds

current conventional wisdom.

Author Summary

The 2019 emergence of SARS-2 coronavirus is a grim reminder of the threat
animal-borne pathogens pose to human health. Even prior to SARS-2, the spillover of
so-called zoonotic pathogens was a persistent problem, with pathogens such as Ebola
and Lassa regularly but unpredictably causing outbreaks. Machine-learning models that

can anticipate when and where animal-to-human virus transmission is most likely to
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occur could help guide surveillance effort, as well as preemptive countermeasures to
pandemics, like information campaigns or vaccination programs. We develop a novel
machine learning framework that uses data-sets describing the distribution of a virus
within its host and the range of its animal host, along with human immunity data, to
infer rates of animal-to-human transmission across a focal region. By training the model
on data from the animal host, our framework allows rigorous validation of spillover
predictions on human data. We apply our framework to Lassa fever, a viral disease of
West Africa that is spread to humans by rodents, and update estimates of symptomatic
and asymptomatic Lassa virus infections in humans. Our results suggest that Nigeria is
most at risk for the emergence of new strains of Lassa virus, and therefore should be

prioritized for outbreak-surveillance.

Introduction

Emerging infectious diseases (EIDs) pose a deadly threat to public health.
Approximately 40% of EIDs are caused by pathogens that circulate in a non-human
wildlife reservoir (i.e., zoonotic pathogens) [1]. Prior to full scale emergence, interaction
between humans and wildlife creates opportunities for the occasional transfer, or
spillover, of the zoonotic pathogen into human populations [2]. These initial spillover
cases, in turn, represent newly established pathogen populations in human hosts that
are subject to evolutionary pressures and may potentially lead to increased transmission
among humans [2,3]. Consequently, a key step in preempting the threat of EIDs is
careful monitoring of when and where spillover into the human population occurs.
However, because the majority of EIDs from wildlife originate in low and middle income
regions with limited health system infrastructure, accurately estimating the rate and
geographical range of pathogen spillover, and therefore the risk of new EIDs, is a major
challenge [1].

Machine learning techniques have shown promise at predicting the geographical
range of spillover risk for several zoonotic diseases including Lassa fever [4-6],
Ebola [7,8], and Leishmaniases [9]. Generally, these models are trained to associate
environmental features with the presence or absence of case reports in humans or the

associated reservoir. Once inferred from the training process, the learned relationships
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between disease presence and the environment can be extended across a region of
interest. Using these techniques, previous studies of Lassa fever (LF) have derived risk
maps that assess the likelihood of human LF cases being present in different regions of
West Africa [4,5]. Fitted risk maps are often assessed, in turn, by evaluating the ability
of a model to discriminate between case data and background data that was left out of
the training process [5,7]. Though such models have demonstrated impressive
discrimination abilities when evaluated by such binary classification ability, these
forecasts are not explicitly vetted on their ability to predict the magnitude of pathogen
spillover from the reservoir into humans. As a result, the extent to which predicted risk
explains the realized variation in human exposure to the pathogen is unclear.

To address this need, we develop a multi-layer machine learning framework that
accounts for the differences between how data involving a wildlife reservoir, and data
from human serosurveys, can simultaneously inform spillover risk in people and
rigorously assess whether predicted risk quantifies the rate of new cases in humans. Our
approach uses machine learning algorithms that, when trained on data from the wildlife
reservoir alone, estimate the likelihood that the reservoir and the zoonotic pathogen are
present in an area. These predictions are then combined into a composite estimate of
spillover risk to humans. Next, our framework uses estimates of human pathogen
seroprevalence, as well as estimates of human population density, to translate the
composite risk estimate into a prediction of the realized rate of zoonotic spillover into
humans. Omitting human seroprevalence data from the training process of the risk-layer
has several advantages. First, in the case of LF, due to modern transportation and the
longevity of Lassa virus antibodies in humans, a general concern is that the reported
location of human disease or Lassa virus antibody detection is not the site at which the
infection occurred [10-12]. Training the risk layer on reservoir data alone helps avoid
these biases. Secondly, in our framework, human seroprevalence estimates provide an
ultimate test of the risk layer’s ability to correlate with cumulative human exposure to
the pathogen.

We apply our framework to Lassa virus (formally Lassa mammarenavirus [LASV]), a
negative sense, bi-segmented, single-stranded ambisense RNA virus in the Arenaviridae
family and the causative agent of LF in West Africa [11,13]. Though LASV can

transmit directly between humans and often does so in hospital settings [14],
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rodent-to-human transmission is believed to account for the majority of new LASV
infections [11,15]. LASV spreads to humans from its primary reservoir, the
multimammate rat Mastomys natalensis, through food contaminated with infected
rodent feces and urine, as well as through the hunting of rodents for food
consumption [16]. Because M. natalensis have limited dispersal relative to humans,
direct LASV detection in the rodents is likely to indicate actual areas of spillover risk.
We evaluate each layer of our framework for its ability to predict different attributes
of LASV spillover into humans. Our model demonstrates a clear ability to predict
spillover risk as measured by the spatial distribution of the LASV pathogen and
reservoir, and a more moderate correlation between the predicted risk and human
seroprevalence. We also use our machine learning framework to estimate the total LASV
spillover into humans. Data from longitudinal serosurveys has been used to estimate
that between 100,000 and 300,000 LASV infections occur each year, and that between 74
—94% of LASV infections result in sub-clinical febrile illness or are asymptomatic [17].
Though these estimates are often used to describe the magnitude of LASV spillover into
humans [11,18,19], their generality is unclear because they are based on extrapolation
from serosurveys conducted in the 1980’s in Sierra Leone [17]. More recent estimates

indicate that as many as 13 million LASV infections may occur each year [20].

Data

Our response data-set contains three types of data: 1) capture-locations of genetically
confirmed M. natalensis, as well as occurrence locations of non-M. natalensis murids; 2)
locations and outcomes of LASV surveys conducted in M. natalensis; and 3) locations
and measured seroprevalence of human LASV serosurveys. The first two data-sets
generate response variables for the model layers that predict LASV risk. The human
seroprevalence data are used to evaluate the combined LASV risk layer for its ability to
predict LASV spillover in humans and are also used to calibrate the stage of the model
that predicts human LASV spillover. Our full data-set and the script files used to fit

the models are available in a github repository [21].
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Mastomys natalensis presence data and background

We collected data on documented presences of M. natalensis using the African
Mammalia database [22], supplemented with additional presences found in the
literature. Because M. natalensis is morphologically similar to other rodents in the area
(e.g., Mus baoulei, Mastomys erythroleucus), we only include those presences that have
been confirmed with gene sequencing methods. Each presence was verified with the help
of a rodent expert (E.F.C).

Fitting the model requires supplementing the presence-only data with background
points, also called pseudo-absences [23,24]. Background points serve as an estimate of
the distribution of sampling effort for the organism being modeled [25]. We used
background points chosen from capture locations of members within the Muridae family
(i.e., rodents) in West Africa from the Global Biodiversity Information Facility (GBIF)
website [26]. We only included background points that: 1) document the location of a
species other than M. natalenis, 2) fall outside of any pixel that contains a documented
M. natalensis capture, and 3) are within the study region.

These locations were used to categorize a subset of the pixels in West Africa into two
exclusive categories: those in which one or more M. natalensis has been captured
(capture-positive), and those with only non-M. natalensis occurrences. In total, our
data-set classified 184 unique pixels as capture-positive for M. natalensis, and 897 pixels

as background.

Surveys of Mastomys natalensis for Lassa virus

We compiled a data-set from published studies that sampled M. natalensis rodents for
indicators of LASV. The majority of the studies used were found using Table 2 of
Fichet-Calvet and Rogers (2009). For each study, we found the sampling location for
each tested rodent (either latitude/longitude or a village name for which coordinates
could be obtained). In total, we compiled ten rodent studies [17,27-34]. To this
data-set, we added documented occurrences of LASV in M. natalensis from the
GenBank website [35]. We searched for the keywords Lassa, Lassa fever, Lassa virus,
Lassa fever virus, Lassa arenavirus, and Lassa mammarenavirus. From the results, we

collated any sources that tested confirmed M. natalensis for LASV and contained
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latitude/longitude coordinates.

With these data, each 0.05°x0.05° pixel (approximately 5 km by 5 km) in West
Africa that contained a M. natalensis LASV survey was classified into the categories
“Lassa positive” or “Lassa negative.” Specifically, a pixel was defined as Lassa positive if,
at some point, a M. natalensis rodent was captured within the pixel, and the rodent
tested positive for LASV using a RT-PCR assay. Pixels were classified as Lassa negative
if five or more M. natalenis rodents in total were tested for LASV infection by RT-PCR,
or tested for any previous arenavirus exposure using a serological assay, and all rodents
tested were negative. This procedure allowed us to classify 74 unique pixels in total: 36

were classified as Lassa negative, and 38 were classified as Lassa positive (Figure 1).

Human seroprevalence data

Lastly, we collected human arenavirus seroprevalence data. To ensure that the measured
seroprevalence was representative of a larger village population, we required that the
individuals tested for the study were chosen at random from a village. This criterion
excluded nosocomial outbreaks, for example, as well as case-studies that detected
arenavirus antibodies in individual missionaries. Each datum contains latitude and
longitude of where the serosurvey took place, the number of individuals tested, and the
number of individuals determined to have arenavirus antibodies. In total, we collected
101 serosurveys from nine studies (Fig 1) [17,36-43]. These serosurveys were conducted

between 1973 and 2019 and are located in six countries in West Africa.
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Fig 1. Locations at which Lassa virus or arenavirus antibodies have been sampled in
rodents or humans. Each rodent point shows the outcome of a serological or PCR test.
Each human population point shows the location of a village serosurvey.

Predictors 130

We include predictors that are broadly hypothesized to influence the distributions of M. 1z
natalensis and LASV. M. natalensis is widely distributed across sub-Saharan Africa in 1
savanna and shrubland environments. Within such environments, M. natalensis is 133
commonly associated with small villages and is considered a serious agricultural 134

pest [44,45]. To allow the model the possibility to learn these relationships, we include 13

predictors that describe MODIS land cover features as predictors, and also include 136
human population density within each pixel. We also include elevation in meters. 137
Because climate seasonality and crop maturation affect the breeding season of M. 138
natalensis, we include various measures of the seasonality of the vegetative index 139

(NDVI), precipitation, and temperature [46]. See S1 Appendix for a complete list of 140
environmental variables. LASV is often associated with M. natalensis, so we use the 1

same set of predictors for the pathogen layer. 142
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Methods

We developed a model that predicts the rate of LASV infection in humans within
individual 0.05°x0.05° pixels across West Africa. This focal region is chosen as the
intersection of West Africa and the International Union for Conservation of Nature
(IUCN) range map for Mastomys natalensis [45]. Our M. natalensis capture data, as
well as all of the LASV survey data, originate from within this region, thus providing a
discrete bound on the area of West Africa in which the learned relationships of the
model apply.

An overview of the model framework is depicted in Fig 2. Outputs from the model
are generated in two stages. The first stage uses environmental features to estimate
different layers of LASV spillover risk. The layers of risk, in turn, are described by: 1)
Dy, a classification score indicating the likelihood that a pixel contains the primary
rodent reservoir, M. natalensis, and 2) Dy, a score indicating the likelihood that LASV
circulates within the M. natalensis population. Depending on the layer, the response
variable for this stage is generated from documented occurrences of M. natalensis (D
layer), or evidence of past LASV infection in M. natalensis (D, layer). The second
stage of our framework uses a generalized linear model to regress the estimates of
human arenavirus seroprevalence onto a composite layer made from Dy, and Dy,.
Lastly, we used a susceptible-infected-recovered-susceptible (i.e., SIRS) model to derive

human incidence from the predictions of seroprevalence.
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Mastomys natalensis Lassa virus surveys

capture locations in Mastomys natalensis

M. natalensis Lassa virus
distribution (D) distribution (Dy)

Combined risk
(Dx = Dy - Dy)

!

Generalized

linear
model

Human Lassa virus SPI'()I)I’(“,\'&L]PII('(‘!

!

|H1mmn Lassa virus irlvi(len(te|

Fig 2. Overview of the model. Ellipses represent data-sets, circles represent models,
and rectangles represent model predictions.
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LASYV risk layers

Each risk layer of the first stage is generated by a separate boosted classification tree
(BCT). The BCT, in turn, uses environmental features within a pixel to infer a
classification score, between zero and one, that indicates how likely it is that the pixel is
positive for M. natalensis (Dys layer) or LASV in M. natalensis (Dy, layer). BCTs use
a stage-wise learning algorithm that, at each stage, trains a new tree model to the
residuals of the current model iteration. Each newly fitted tree is added to the ensemble
model, thereby reducing the residual deviance between the model predictions and a
training set [47]. Boosted trees are commonly used in species and disease distribution
models because they are simultaneously resistant to over-fitting in scenarios where many
feature variables are implemented and are also able to model complex interactions
among features [48].

Prior to inclusion in the model-fitting procedure, each feature variable was vetted for
its ability to distinguish between presences and absences in each of the layers.
Specifically, for each risk layer’s binary response variable, we performed a
Mann-Whitney U-test on each candidate feature. In doing so, we test the null
hypothesis that the distribution of a feature is the same between pixels that are
classified as a presence or (pseudo) absence. We only include predictors for which the
null hypothesis is rejected at the a = 0.05 level.

For a given training set, we fit the BCT model using the gbm.step function of the
“dismo” package in the statistical language R [49]. This specific function uses 10-fold
cross-validation to determine the number of successive trees that best model the
relationship between response and features without over-fitting the data [49]. The
learning rate parameter, which determines the weight given to each successive tree, was
set to small values (Dy: 1072, Dr: 1073) that encourage a final model that is
composed of many small incremental improvements. A smaller learning rate was used in
the Dy, layer because the corresponding data-set was smaller. The parameter that
describes the maximum number of allowable trees was set to a large value (107) to
ensure that the cross-validation fitting process was able to add trees until no further
improvement occurred [47].

For the D), layer, we trained 25 boosted classification trees to learn how
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environmental predictors influence the suitability of a habitat for M. natalensis. Each
model was fit by selecting 184 presence pixels and pairing these with 184 background
pixels in which only non-M. natalensis murids were found. Both presences and
background pixels were chosen with replacement. By choosing equal numbers of
presences and background pixels for each training set, we encourage each model to learn
patterns in features that allow presences to be discriminated from background pixels,
rather than having the model learn the (likely biased) distribution of presences and
background pixels that are available in the overall data-set [24].

For each model fit for the Dy, layer, presence and pseudo-absence pixels that were
not used to train the model (i.e., out-of-bag data) were used to test the model using the
area-under-the-receiver-curve (AUC). The AUC measures a classifier’s ability to assign
a high classification score to presences, and a low score to background pixels. A score of
one indicates a perfect classifier, and a score of 0.5 indicates a classifier that is no better
than chance. Because some of the background pixels likely contain unreported M.
natalensis (i.e., are false negatives), this is a conservative estimate of the model’s
performance. A pairwise-distance sampling scheme was used to pair an equal number of
test-background pixels to the out-of-bag presences that together comprise the test set.
Specifically, for each test presence point, the pairwise distance sampling method chooses
a test background point so that the minimum distance between the training presences
and test presence is similar to the minimum distance between the test background point
and training presences [50]. Compared to random selection of test background points,
pairwise distance sampling oftentimes results in a lower AUC score that more accurately
measures the model’s ability to generalize to new regions [50].

The Dy, layer is generated by the averaged predictions of 25 boosted classification
tree models, each of which is trained to discriminate between pixels that are Lassa
positive or Lassa negative. The LASV rodent survey data-set contains 36 locations that
were classified as Lassa negative, and 38 that were classified as Lassa positive. We
trained each model on a data-set comprised of 36 absence locations and 36 presence
locations, sampled from the full data-set with replacement. The estimation of error in
the Dy, layer is similar to that described in the Dy, layer. Specifically, we calculate the
AUC of the fitted model on an equal number of out-of-bag presences and absences.

Next, we combined the Dy; and Dy, layers into a composite feature, denoted by Dx,
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that is indicative of whether a pixel simultaneously has environmental features that are
suitable for M. natalensis, as well as LASV in M. natalensis. The combined feature is
defined as Dx = Dj; x Dy, and summarizes the realized risk of LASV spillover to

humans within the local environment.

Connection to human seroprevalence and incidence

To connect the new risk parameter Dx to human arenavirus seroprevalence, and to
evaluate the ability of the Dx layer to explain historical LASV spillover in humans, we
regressed seroprevalence from human arenavirus serosurveys on the Dx layer and an
intercept. We used quasi-binomial regression to account for over-dispersion in
seroprevalence measurements that could otherwise contaminate hypothesis tests on
model coefficients [51]. In the regression, the log-odds of each seroprevalence estimate is
weighted by the number of individuals tested in the serosurvey.

Next, we used a SIRS model that includes waning immunity to derive an equation
that relates a given LASV spillover rate into humans and the resulting seroprevalence in
a human population. Throughout, we assume that the seroprevalence measures that
were obtained from historical serosurveys describe LASV infection at steady-state (i.e.,
are unchanging in time). This derivation, in turn, is used to translate the regression
model’s predictions of LASV seroprevalence into incidence (spillover cases per year) in
humans. For the SIRS model, we employ several assumptions: 1) humans within each
0.05x0.05° pixel constitute a closed population with constant birth rate b and per-capita
death rate d. Within each pixel, humans are compartmentalized into three
non-overlapping classes: susceptible (S), infected with LASV (I), and recovered from
LASV infection (R). The size of the human population is assumed to be large enough
so that stochastic events (LASV extinction) do not occur. 2) All LASV infections in
humans are caused by contact with infectious rodents. Though human-to-human
transmission of LASV is common in nosocomial outbreaks, rodent-to-human
transmission is believed to be the primary pathway by which the virus is spread outside
of hospital environments [15]. 3) Susceptible humans become infected with LASV at a
constant rate F'S, where F' denotes the rate of infectious contact between a human and

infected M. natalensis (i.e., the force of infection). Any seasonal fluctuation in the
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contact rate between humans and rodents, as well as fluctuation in the prevalence of
LASV infection in rodents, is assumed to average out over the decades-long timescales
we consider. 4) We assume that LASV infection in humans is non-fatal, so that infected
humans recover at rate . All recovered individuals gain temporary LASV immunity

through antibodies. Though LASV infection causes mortality in approximately 2% of

non-nosocomial cases, this rate is small enough to be negligible for our predictions [11].

As described by McCormick et al. (1987), we assume that recovered individuals lose
immunity to LASV infection and transition back into the susceptible class at a rate .
For each pixel across West Africa, the equations that describe the number of humans in

each of the classes are:

dsS

2 b—dS—F

7 b—dS S+ AR,

dl

L FS—dl —~I 1
= S —dl —~I, (1)
dR

== =4I —dR - )R.

7 ¥ R R

We find the steady-state values of S, I, and R by setting the left-hand-side of
equations (1) to zero, and solving the resulting algebraic equations for each state

variable. This yields the steady-state values

g b (d+9)(d+ ) o)
d (d+F)d+v)+Md+F+7)

b F(d+\) 3)
d (d+F)d+~)+Xd+F+7)’

=l Py . (4)
d (d+F)(d+v)+Ad+F+7)

By dividing R* by the total population size at steady-state, g, we find that the

long-term seroprevalence, denoted Q*:
Fry

Q*:(d+F)(d+7)+>\(d+F+v)' (5)

Next, we use Eq (5) to estimate the LASV spillover rate F.S*, given that the
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steady-state LASV seroprevalence is Q*. Solving Eq (5) for F in terms of Q* yields:

O (d+y)(d+N)
S T N Y (6)

The rate of new cases is given by
* b * —1
ni=FS" = S0 (d+7)(d+ M)y (7)

These analyses were derived using Mathematica. The notebook file is available in the
github repository [21].

By substituting our prediction of human LASV seroprevalence for 2*, we can
estimate the total human infection rate using Eq (7). Calculating these estimates
requires values for b, d, v and A\. We choose parameters that are broadly in line with
the epidemiology of LASV, and the demography of humans in West Africa. We use the

unprocessed WorldPop 2020 population data (see Data section) as an estimate of the

b
IR R)

steady-state population size within each pixel of the original 0.0083° resolution. We
choose d = 0.02 yr~! to describe a mean human lifespan of 50 years. Studies indicate
that the duration of LASV infection is typically about one month, so that v = 12
yr—t [11].

The rate of seroreversion is difficult to estimate empirically. McCormick et al. (1987)
estimated that A\ = 0.064 yr—! using a longitudinal study of immune markers in
individuals. However, it is unclear whether their results indicated true seroreversion, or
whether the reduction of LASV immune markers below detectable levels made it appear
as though seroreversion occurred. Furthermore, LASV antibodies have been shown to
exist decades after infection in at least some individuals [10]. Because of the uncertainty
in the rate of reversion, we report the number of new cases estimated with values in
accordance with McCormick et al. (1987) (A = 0.064), and also in the scenario where
seroreversion never occurs (A = 0).

The general effect of seroreversion can be understood by comparing estimates of new
cases, 17, with that obtained by the same equation with A = 0, denoted 79. We find that
with our parameter values,

n _d+A _

=g A 8)
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In words, the estimated number of LASV spillover cases per year is 4.2 times greater
when seroreversion is included in the model, relative to estimates obtained when
seroreversion does not occur.

We also derive a null estimate of the yearly number of LASV spillover cases in
humans from Eq (7). This estimate assumes that the incidence of LASV in humans is
the same everywhere in the West African study region. Specifically, we calculate Q* as
the mean seroprevalence across all serosurveys, weighted by the number of individuals
tested (Q* ~ 0.184). The population size b/d is set equal to the population of humans

in the West African study region (b/d & 374 million).

Results

LASYV risk layers

The Dy layer is constructed by averaging the predictions of 25 boosted classification
tree models. Across all 25 bootstrap fits, the average out-of-bag AUC was 0.63, with a
standard deviation of 0.05. This AUC indicates that the model has a modest ability to
correctly discriminate pixels in which M. natalensis has been captured from background
pixels, and is similar to out-of-bag AUC scores obtained in another study with a similar
assessment criterion [5]. The algorithm assigned especially great importance to
maximum precipitation, precipitation contingency (i.e. regularity of precipitation),
elevation, and the coefficient of variation of precipitation (S1 Appendix). Across 25
fitted models that made up the Dy, layer, the average AUC was 0.83, with a standard
deviation of 0.08. This indicates a model that is good at discriminating between Lassa
presences and absences. The algorithm primarily used precipitation contingency to
determine whether or not a pixel is suitable for endemic LASV in M. natalensis(S1
Appendix).

Figure 3 shows maps of each of the fitted risk layers (top row), as well as the
combined layer of realized risk, Dx. As indicated by the ITUCN range map for M.
natalensis [45], all West Africa countries likely harbor this primary rodent reservoir of
LASV (Fig 3a). Similar to other Lassa risk maps [4,5], our Dy, layer predictions

indicate that the risk of LASV in rodents is primarily concentrated in the eastern and
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western extremes of West Africa (Fig 3b). The combined risk, shown in Fig 3c, indicates
that environmental features suitable for rodent-to-human LASV transmission are

primarily located in Sierra Leone, Guinea, and Nigeria.

('d) Mastomys natalensis Distribution ( Dy ) (])) Lassa Distribution (D )

Occurrence score
Occurrence score

o LASV -
® LASV +

N

(c) Combined Risk ( Dy =Dy - D¢ )

® Confirmed captures

o
o

o
=

Combined score

o
N

0.0

Fig 3. (a) Map shows the likelihood that each 0.05° pixel in West Africa contains the
primary reservoir of Lassa virus, M. natalensis. Pink dots indicate locations of captures
that were confirmed using molecular techniques and were used to train the model. Black
line indicates the IUCN M. natalensis range map. (b) Predicted distribution of Lassa

virus in M. natalensis. Dots indicate locations in which M. natalensis were surveyed for
the virus. (c) Combined risk, defined as the product of the above two layers.

Connection to human seroprevalence and incidence

A quasi-binomial regression indicated a significant, positive association between the

combined LASV risk predictor Dy, and the human arenavirus seroprevalence measured

in serosurveys (p = 0.0045, Fig 4). The Pearson’s correlation coefficient between the

fitted model’s predictions and actual human seroprevalence is 0.23 when all
seroprevalence observations are equally weighted and 0.29 when weighted by the number
of individuals tested in each survey. By applying the general linear model to the
combined LASYV risk layer, we extrapolate the human LASV seroprevalence across West

Africa (Fig 5). Our results indicate that human LASV seroprevalence is greatest in the
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eastern and western regions of West Africa, with especially high seroprevalence in

central Guinea, Sierra Leone, and Nigeria.
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Fig 4. Human LASV seroprevalence (circles) and predictions of the quasi-binomial
model (line) vs the D, combined risk layer. Each dot represents a different serosurvey.
The size of the dot indicates the number of humans that were tested.

0.22
(0]
(8]
g
0.20 ¢
>
o
o
0.18 2
[0
0}
ks
016 5
<
o
a
0.14
0.12

Fig 5. Predicted human seroprevalence of Lassa virus in West Africa. Dots show
locations of human serosurveys that sampled at least 50 individuals, and dot color
indicates the residual of the predicted seroprevalence. White dots indicate locations for
which measured seroprevalence fell within 0.1 of the prediction. Measured
seroprevalence at red dots was 0.1 or more greater than that predicted, and
seroprevalence at blue dots was 0.1 or more below the prediction.
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Furthermore, by assuming that our predictions are representative of LASV infection
at steady-state, we can derive the number of LASV cases per year in humans. The
simplest path to estimating human infections is to assume spatial homogeneity of LASV
infection across West Africa. In this case we do not use the LASV risk layer Dx.
Instead, we assume that human LASV seroprevalence is uniformly equal to the average
seroprevalence across all available serosurveys (18.4%). This spatially uniform model
implies 1,342,000 LASV infections occur in humans each year. When LASV reinfection
(i.e., LASV infection following seroreversion) is included in the model, the estimate
increases to 5,636,500 cases per year.

We can develop more spatially refined estimates using the spatially heterogeneous
LASV risk that is predicted by the Dx layer. If LASV seroprevalence in humans is
spatially heterogeneous, and spatial heterogeneity is described by the Dx layer, the
model estimates that 935,200 — 3,928,000 new human infections occur each year. Table 1
shows the number of LASV infections per year by country, ordered by number of cases,
when reinfection is assumed not to occur. Inclusion of reinfection does not change the
ranking of countries. These spatially heterogeneous predictions indicate that more than
half of new human LASV infections (513,200) in West Africa will occur in Nigeria (Fig
6). This distribution of LASV infection is largely due to the greater population size
within Nigeria, as the per person incidence rates do not differ dramatically between
countries (Table 1). After Nigeria, Ghana (72,500 cases per year) and the Ivory Coast
(62,400 cases per year), respectively, are predicted to have the highest incidence of
human LASYV infections. Guinea and Sierra Leone are predicted to have the highest
per-capita rates of LASV infection (Table 1), but because of their relatively small

population sizes, these countries are predicted to have relatively few total cases.
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Predicted Cases / ( Year x km? )

Fig 6. Predicted annual number of Lassa virus infections in humans, averaged over 25
bootstrap iterations. Yellow areas show regions with high population density that are
also predicted to have high Lassa virus seroprevalence in humans.

Country 1000’s of Cases | Rate
Nigeria 513.2 2.5
Ghana 72.5 2.4
Ivory Coast 62.4 24
Niger 54.4 24
Burkina Faso 49.9 2.4
Mali 47.8 2.4
Guinea 47.0 3.3
Benin 29.3 2.4
Sierra Leone 23.2 3.3
Togo 19.8 24
Liberia 13.2 2.6
Mauritania 1.3 2.4
Senegal 1.0 2.4

Table 1. Predicted annual number of Lassa virus cases in the study region, as well as
infection rate (number of cases per year per 1000 people). Estimates in the table are
derived assuming seroreversion and reinfection do not occur.

Discussion 350

Machine learning approaches that forecast the risk of emerging infectious diseases such 6
as LF are often not assessed on their ability to predict proxies of pathogen spillover into e
human populations [5,27]. Our forecasting framework advances these approaches by 367

generating predictions of spillover risk based only on data from the primary rodent 368
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reservoir of LASV, and directly assessing those predictions on data from human
arenavirus serosurveys across West Africa. As indicated by a generalized linear
regression, our reservoir-based model of spillover risk is able to explain a statistically
significant amount of the variability in human seroprevalence. Furthermore, a
generalized linear regression of human seroprevalence on the spillover risk yields
predictions that are moderately correlated with the results of serosurveys (unweighted:
0.22; weighted: 0.29).

By distinguishing between the pathogen risk posed by a reservoir, and the realized
seroprevalence in humans, our framework could allow for a more complete
understanding of the factors that influence pathogen spillover into humans. In the case
of LF, human factors such as the use of rodent-proof housing materials (concrete vs
mud) and hunting habits can affect the extent to which LASV is able to transmit
between rodents and humans [16,52]. The residuals of seroprevalence predictions from
our model could help guide understanding of where such human factors are mitigating
or facilitating spillover into humans. If such human factors like housing type can be
readily identified for regions within West Africa, they can be incorporated in the human
stage of the model that connects spillover risk to human seroprevalence.

Because our framework traces the spillover risk into humans back to the spatial
heterogeneity in Lassa risk and human density across West Africa, our approach allows
us to predict which countries have the highest per-capita risk of LASV infection (e.g.,
Guinea, Sierra Leone) due to attributes of the reservoir and those that have the highest
number of human cases because of their large human population size (e.g., Nigeria).
Clarifying and distinguishing these two different types of risk helps to manage
risk-reduction and behavior-change communication campaigns, countermeasures such as
rodent population management or vaccination of rodent reservoir hosts, and travel
advisories to high risk areas. In addition to intervention strategies such as vaccination
or management of rodent populations, both of these areas of West Africa should be
prioritized for surveillance of LASV emergence in rodents and at-risk human
populations.

Using this framework, we are able to generate predictions of the number of new cases
of LASV infection within different regions of West Africa. Our results indicate that

Nigeria contributes the greatest number of new human cases each year, and that the
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magnitude of new cases in Nigeria is driven primarily by its greater human population
density, rather than an increased per-capita risk. If these predictions are correct,
Nigeria is likely to represent the greatest risk of LASV emergence because the large
number of annual spillover events allows for extensive sampling of viral strain diversity
and repeated opportunities for viral adaptation to the human populations [53].

In addition to identifying the countries most at risk for viral emergence, our model

framework provides updated estimates for the rate of LASV spillover across West Africa.

Previous estimates of 100,000 — 300,000 cases per year were based on longitudinal
studies from communities in Sierra Leone conducted in the 1980’s [17]. Using
seroprevalence data from studies across West Africa, our model predicts between
935,200 — 3,928,000 LASV infections in humans occur each year. Where the true value
lies within this range depends on whether or not seroreversion and subsequent LASV
reinfection are regular features of human LASV epidemiology, and reinforces the need to
better understand the scope for LASV reinfection. It is important to realize that our
predictions include both symptomatic and asymptomatic cases. Thus, because many
human LASV infections result in mild flu-like symptoms or are asymptomatic, it is
unsurprising that our predicted values exceed the reported number of confirmed LF
cases in Nigeria [54,55].

Several factors contribute to the discrepancy between previous estimates of LASV
spillover, and our revised estimates. McCormick et al. (1987) used seroconversion data
from a 15 month period to infer a rate of LASV infection across West Africa. However,
the population of West Africa has increased by a factor of 2.4 since that time, making
these estimates outdated [56]. Later estimates that were partially based on the same
longitudinal serosurveys derived an upper bound of 13 million LASV infections, but
only considered the number of cases in Nigeria, Guinea, and Sierra Leone [20].
Furthermore, these later estimates are derived from the maximum observed human
LASYV seroconversion rate in the Sierra Leone study, which likely does not apply across
West Africa. In contrast, our estimates are based on human seroprevalence data that
comes from six countries in West Africa and spans a 47 year time period. Because our
data-set was obtained from a broader spatial and temporal range, our estimates are less
likely to be biased by sporadic extremes in LASV spillover.

Our modeling framework has the benefit of being extendable, thereby giving
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structured insight into how other attributes of the reservoir and pathogen translate into
observed human seroprevalence. Future iterations of this framework could include the
contributions of 1) more detailed life history of M. natalensis; 2) additional LASV
animal reservoirs; and 3) genomic variability in LASV strains. For example, the first
stage of these advanced models could include the temporal probability of a rodent being
inside a domestic dwelling. The incidence of LF is generally believed to peak in the dry
season, when M. natalensis migrate into domestic settings [44,57]. Temporal
fluctuations in population density, due to seasonal rainfall, would provide another
important insight into the seasonal burden of human LF cases [11]. Understanding this
ecological connection is important because distributing vaccines at seasonal population
lows in wildlife demographic cycles can, in theory, substantially increase the probability
of pathogen elimination [58,59]. Incorporating these temporal layers will become more
feasible as more time-series data on population density in the focal reservoir species
become available.

Other potentially important risk layers that could be added are geographic
distributions for other known reservoirs of LASV. Specifically, several species of rodents
are known to be capable of harboring the virus [27]. Though M. natalensis is believed
to be the primary reservoir that contributes to human infection, it is unknown whether
this holds across all regions of West Africa. Understanding the relationship between the
habitat suitability of different rodent reservoirs and human LF burden may also help
determine whether M. natalensis is the host at which intervention strategies should
always be directed. Finally, additional virus sequence data could be used to train a risk
layer that forecasts the presence or absence of specific genomic variants that are more
likely to cause either severe disease or more efficient human-to-human transmission
cycles.

Although the methods we have used here make efficient use of available data, the
accuracy of our risk forecasts remains difficult to rigorously evaluate due to the limited
availability of current data from human populations across West Africa. The sparseness
of modern human data arises for two reasons: 1) the lack of robust surveillance and
testing across much of the region where LASV is endemic and 2) the absence of publicly
available databases reporting human cases in those countries that do have sophisticated

surveillance in place. Improving surveillance for LASV across West Africa and
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developing publicly available resources for sharing the resulting data would allow more
robust risk predictions to be developed and facilitate targeting effective risk reducing
interventions. Despite these limitations of existing data, the structured
machine-learning models we develop here provide insight into what aspects of
environment, reservoir, and virus, contribute to spillover, and the potential risk of
subsequent emergence into the human population. By understanding these connections,
we can design and deploy more effective intervention and surveillance strategies that

work in tandem to reduce disease burden and enhance global health security.

Supporting information captions

S1 Appendix. Details on the predictors used in the model and model fits.
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