

Information flow, cell types and stereotypy in a full olfactory connectome

Philipp Schlegel^{1,2†}, Alexander S. Bates^{1†}, Tomke Stürner^{2‡}, Sridhar R. Jagannathan^{2‡}, Nikolas Drummond², Joseph Hsu^{2,3}, Laia Serratosa Capdevila², Alexandre Javier², Elizabeth C. Marin², Asa Barth-Maron⁴, Imaan F. M. Tamimi², Feng Li³, Gerald M. Rubin³, Stephen M. Plaza³, Marta Costa², Gregory S.X.E. Jefferis^{1,2}

*For correspondence:
jefferis@mrc-lmb.cam.ac.uk (GJ)

[†]These authors contributed equally to this work

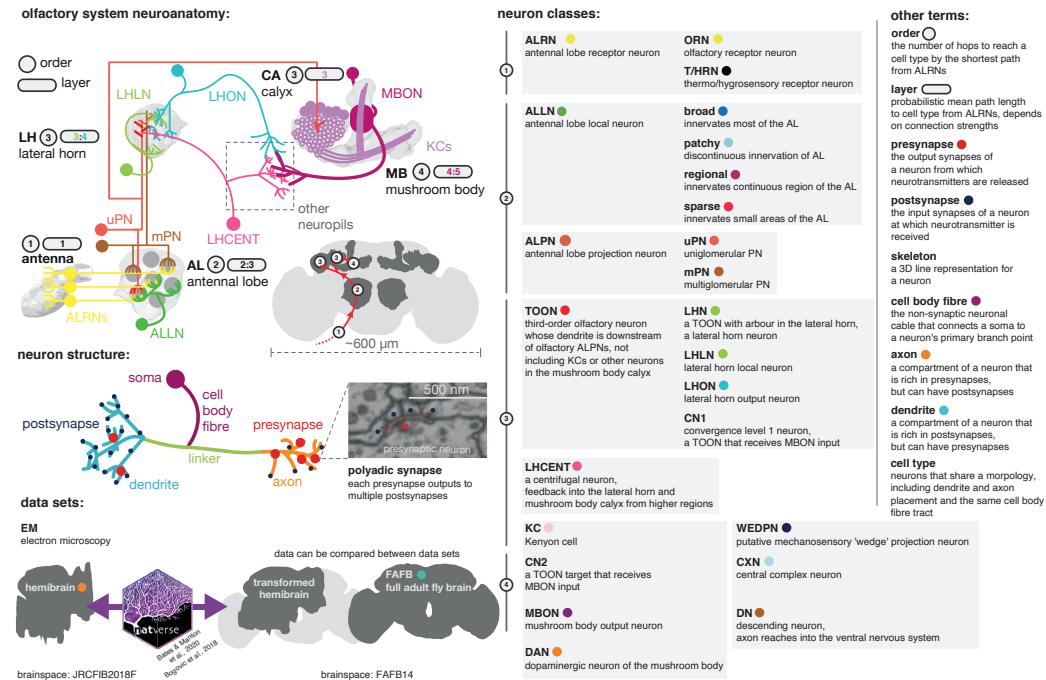
[‡]These authors also contributed equally to this work

¹Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK;

²Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; ³Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States;

⁴Department of Neurobiology, Harvard Medical School, Boston, United States

Abstract The *hemibrain* connectome provides large scale connectivity and morphology information for the majority of the central brain of *Drosophila melanogaster*. Using this data set, we provide a complete description of the *Drosophila* olfactory system, covering all first, second and lateral horn-associated third-order neurons. We develop a generally applicable strategy to extract information flow and layered organisation from connectome graphs, mapping olfactory input to descending interneurons. This identifies a range of motifs including highly lateralised circuits in the antennal lobe and patterns of convergence downstream of the mushroom body and lateral horn. Leveraging a second data set we provide a first quantitative assessment of inter – versus intra-individual stereotypy. Comparing neurons across two brains (three hemispheres) reveals striking similarity in neuronal morphology across brains. Connectivity correlates with morphology and neurons of the same morphological type show similar connection variability within the same brain as across two brains.



¹ Introduction

² By providing a full account of neurons and networks at synaptic resolution, connectomics can form
³ and inform testable hypotheses for nervous system function. This approach is most powerful
⁴ when applied at a whole-brain scale. However, until very recently, the handful of whole-brain con-
⁵ nectomics data sets have either been restricted to complete nervous systems of a few hundred
⁶ neurons (i.e. nematode worm [[White et al. \(1986\)](#)] and *Ciona* tadpole [[Ryan et al. \(2016\)](#)]) or to
⁷ the sparse tracing of specific circuits, as in larval and adult *Drosophila* ([Zheng et al., 2018](#); [Ohyama et al., 2015](#)).

⁹ Now, for the first time, it has become possible to analyse complete connectomes at the scale
¹⁰ of the adult vinegar fly, *Drosophila melanogaster*. The ‘hemibrain’ EM data set ([Scheffer et al., 2020](#))
¹¹ provides a step-change in both scale and accessibility: dense reconstruction of roughly 25,000
¹² neurons and 20M synapses comprising approximately half of the central brain of the adult fly. The
¹³ challenge now lies in extracting meaning from this vast amount of data. In this work, we develop
¹⁴ new software, analytical tools and integration strategies, and apply them to annotate and analyse

15 a full sensory connectome.

Figure 1. Graphical olfactory neuroanatomy glossary. Top left, schematic of the *D. melanogaster* olfactory system showing all its major neuron classes. The 'order' of each neuromodulatory pathway is given in a grey circle, its average layers in a grey lozenge. Inset, the fly brain with a scale bar and early olfactory neuropils shown. Red path is the major feedforward course of olfactory information through the brain. Middle left, a neuron with its compartments is shown. Bottom left, the two EM data sets that feature in this work, the partial dense connectome, the hemibrain, and a sparsely reconstructed data set, FAFB. Neuroanatomical data can be moved between the two spaces using a bridging registration (Bogovic et al., 2020; Bates et al., 2020a). Right, major neuron class acronyms are defined. Other neuroanatomical terms are also defined. Coloured dots indicate the colour used to signal these terms in the following figures.

Figure 1-video 1. Video of neurons typed in this study grouped by broad class. Colours correspond to cell type (ALRNs), lineage (ALRNs) or are random (ALPNs, TOONs).

16 The fly olfactory system is the largest central brain system that spans first-order sensory neurons to descending premotor neurons; it is a powerful model for the study of sensory processing, 17 learning and memory, and circuit development (Amin and Lin, 2019; Groschner and Miesenböck, 18 2019). In this study we take a principled approach to identify both large scale information flow and 19 discrete connectivity motifs using the densely reconstructed hemibrain data set. In addition, we 20 compare and validate results using a second EM data set, the full adult fly brain (FAFB, Zheng et al. 21 (2018)), which has been used until now for sparse manual circuit tracing (e.g. Dolan et al. (2018, 22 2019); Sayin et al. (2019); Felsenberg et al. (2018); Huoviala et al. (2018); Zheng et al. (2020); Marin 23 et al. (2020); Bates et al. (2020b); Otto et al. (2020); Coates et al. (2020)).

24 We catalogue first-order receptor neurons innervating the antennal lobe, second-order neurons 25 including all local interneurons, and a full survey of third-order olfactory neurons (excluding 26 the mushroom body, MB, see Li et al. (2020)). This classification defines cell types and associates 27 all olfactory neurons with extant functional knowledge in the literature, including the molecular 28 identity of the olfactory information they receive. To further aid human investigation and reasoning 29 in the data set, we develop a computational strategy to classify all olfactory neurons into layers 30 based on their distance from the sensory periphery. We apply this across the full data set, for ex- 31 ample identifying those descending neurons (connecting the brain to the ventral nerve cord) that 32 are particularly early targets of the olfactory system.

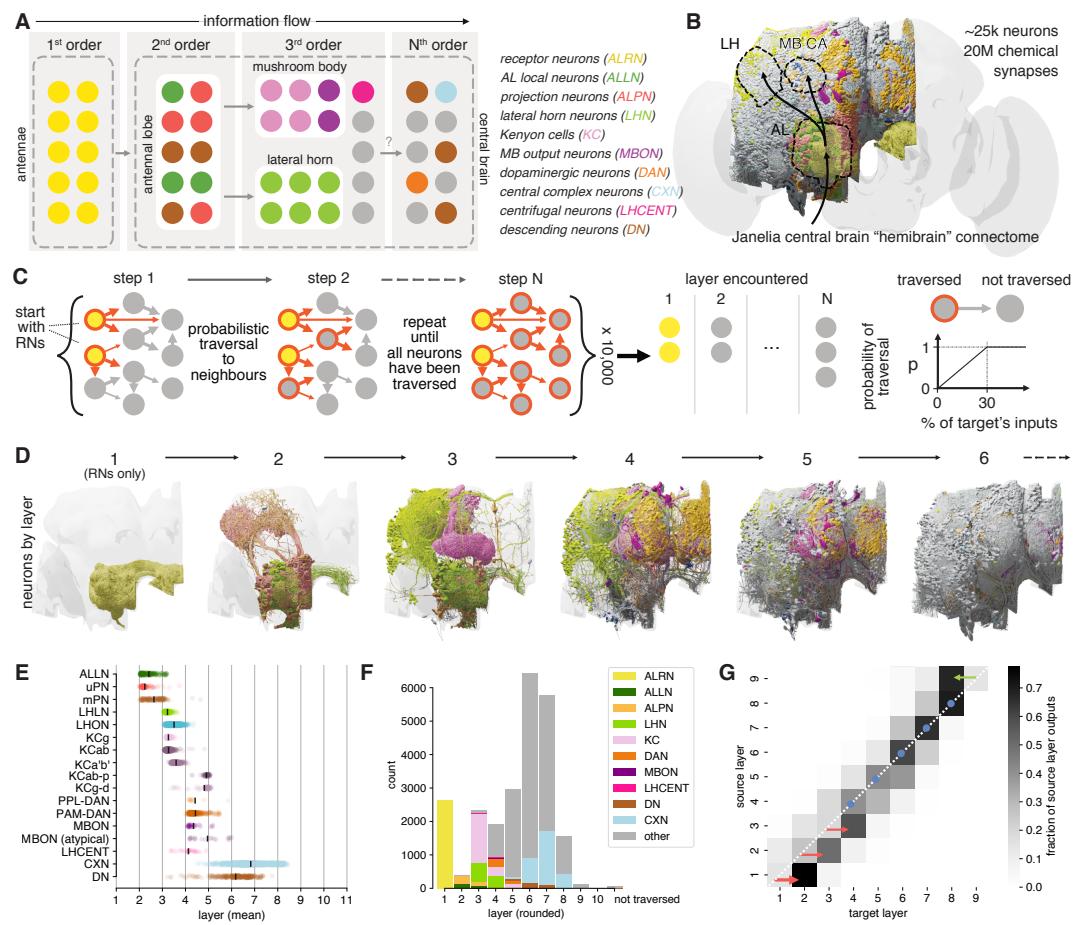
34 We also carry out focused analysis at different levels, including the antennal lobe, crucial for
35 initial sensory processing (*Wilson, 2013*), where we reveal highly lateralised microcircuits. After the
36 antennal lobe, information diverges onto two higher olfactory centres, the MB (required for learn-
37 ing) and the lateral horn (LH) (*Vosshall and Stocker, 2007; Heisenberg, 2003; Grabe and Sachse,
38 2018*). We analyse reconvergence downstream of these divergent projections as recent evidence
39 suggests that this is crucial to the expression of learned behaviour (*Dolan et al., 2018, 2019; Bates
40 et al., 2020b; Eschbach et al., 2020; Kadow, 2019*).

41 Finally, building on our recent analysis of second-order olfactory projection neurons in the FAFB
42 data set (*Bates et al., 2020b*), we investigate the stereotypy of cell types and connectivity both
43 within and across brains for select circuits. We show that in two separate cases, variability across
44 different brains is similar to variability across the two hemispheres of the same brain. This has
45 important practical implications for the interpretation of connectomics data but also represents a
46 first quantitative effort to understand the individuality of brain connectomes at this scale.

47 Results

48 Neurons of the olfactory system

49 The Janelia hemibrain data set comprises most of the right hemisphere of the central brain of
50 an adult female fly and contains ~25,000 largely complete neurons; neurons were automatically
51 segmented and then proofread by humans recovering on average ~39% of their synaptic connec-
52 tivity (*Scheffer et al., 2020*). Here we process this data into a graph encompassing 12.6M chemical
53 synapses across 1.7M edges (connections) between 24.6k neurons (see Methods). Leveraging this
54 enormous amount of data represents a major challenge. One way to start understanding these
55 data is to group neurons into broad classes and discrete cell types; this enables summaries of
56 large scale connectivity patterns as well as linking neurons to extant anatomical, physiological and
57 behavioural data.


58 As a first step, we carried out a comprehensive annotation of all first, second and third-order
59 olfactory neurons as well as many higher-order neurons. In particular, we annotate antennal lobe
60 olfactory and thermo/hygrosensory receptor neurons (ALRNs), uni – and multiglomerular projec-
61 tion neurons (uPNs, mPNs), antennal lobe local neurons (ALLNs), lateral horn neurons (LHNs) and
62 lateral horn centrifugal neurons (LHCENT). Defining cell type annotations depended on a range of
63 computational tools as well as expert review and curation. Broadly, we used NBLAST (*Costa et al.,
64 2016*) to cluster neurons into morphological groups and cross-reference them with existing light-
65 level data and in many cases confirmed typing by comparison with the FAFB EM data set (*Zheng
66 et al., 2018; Dorkenwald et al., 2020*).

67 Our annotation efforts - - amounting to 4732 cells and 966 types - - were coordinated with
68 those of Kei Ito, Masayoshi Ito and Shin-ya Takemura, who carried out cell typing across the entire
69 hemibrain EM data set (*Scheffer et al., 2020*). Other typing efforts are reported in detail elsewhere
70 (see e.g. *Li et al. (2020)* for Kenyon cells, KCs; mushroom body output neurons, MBONs; dopamin-
71 ergic neurons, DANs; *Hulse et al. (2020)* for neurons of the central complex; CXN) (*Figure 2A,B*). All
72 cell type annotations agreed upon by this consortium have already been made available through
73 the hemibrain v1.1 data release at neurodata.janelia.org in May 2020 (*Scheffer et al., 2020; Clements
74 et al., 2020*).

75 Owing to the truncated nature of the hemibrain EM volume, descending neurons (DNs) are
76 particularly hard to identify with certainty. By careful review and comparison with other data sets
77 including the full brain FAFB data set, we identified 236 additional DNs beyond the 109 reported
78 in the hemibrain v1.1 release (see Methods and Supplemental Data).

79 Layers in the olfactory system

80 Having defined cell types of the olfactory system, a second approach to obtain a system wide un-
81 derstanding of olfactory organisation is to characterise the connectome graph with respect to an

Figure 2. Identification of layers in the olfactory system. **A** Schematic of the fly's olfactory system. Colours reused in subsequent panels. **B** The Janelia Research Campus FlyEM hemibrain connectome. Principal olfactory neuropils as overlay; full brain plotted for reference. **C** Graph traversal model used to assign layers to individual neurons. **D** Neurons found in the first six layers. **E** Mean layer of individual neurons. Black line represents mean across a given neuron class. **F** Composition of each layer. **G** Connections between layers. Abbreviations: AL, antennal lobe; CA, calyx; LH, lateral horn; MB, mushroom body; WEDPN, wedge; ALPN, antennal lobe projection neuron; uPN/mPN, uni-/multiglomerular ALPN.

Figure 2-video 1. Video of neurons of the first 5 olfactory layers. Colours correspond to neuron types (e.g. ALRNs, ALPNs, etc) also used elsewhere.

Figure 2-Figure supplement 1. Graph traversal model extended data.

Figure 2-Figure supplement 2. Olfactory vs thermo/hygro sensory layers.

82 inferred sensory-integrative-motor hierarchy. While this cannot model all aspects of brain function
 83 it provides a human-intelligible summary of information flow.

84 The basic organisation of the early fly olfactory system is well documented and can be sum-
 85 marised as follows: first order receptor neurons (ALRNs) in the antennae project to the brain where
 86 they terminate in the antennal lobes (AL) and connect to second-order local (ALLNs) and projec-
 87 tion neurons (ALPNs). Information is then relayed to third-order olfactory neurons mainly in the mu-
 88 shroom body (MB) and the lateral horn (LH) (**Figure 2A**) (**Wilson, 2013; Bates et al., 2020b**). This coarse
 89 ordering of first, second and third-order neurons is helpful for neuroscientists, but is an oversim-
 90 plification that has not yet been derived from quantitative analysis. The recent hemibrain dense
 91 connectome covers nearly all (known) olfactory neurons; we can therefore for the first time take
 92 a systematic approach to layering in this sensory system (**Figure 2B**) (**Scheffer et al., 2020**). Here,
 93 we employ a simple probabilistic graph traversal model to "step" through the olfactory system and

94 record the position at which a given neuron is encountered. We call the positions established by
95 this procedure “layers” to disambiguate them from the well-established term “orders” used above.
96 Conceptually, layers correspond to the mean path length from the sensory periphery to any neuron
97 in our graph while taking account of connection strengths; a corresponding quantitative definition
98 of “orders” would be the shortest path length (which would not consider connection strengths).

99 In brief, we use the ~2600 ALRNs whose axons terminate in the right antennal lobe as a seed
100 pool (see next section and Methods for details of ALRN identification). The model then traverses
101 to neurons downstream of those in the seed pool in a probabilistic manner: the likelihood of a
102 given neuron being visited increases with the fraction of inputs it receives from neurons in the
103 pool and caps at 30%. For example, a neuron that receives 30%/10%/2% of its synaptic inputs
104 from an ALRN has a 100%/33.3%/0.06% chance to be traversed in the first round. When a neuron
105 is successfully traversed it is added to the pool and the process is repeated until the entire graph
106 has been traversed. For each neuron, we keep track of at which step it was traversed and use the
107 mean over 10,000 runs to calculate its layer (*Figure 2C*). The probability of traversal is the only free
108 parameter in the model and was tuned empirically using well-known cell types such as uPNs and
109 KCs. While absolute layers depended strongly on this parameterisation, relative layers (e.g. layers
110 of uPNs vs mPNs) were stable (see Methods and *Figure Supplement 1A,B* for details).

111 Running this model on the hemibrain graph set enabled us to assign a layer to ~25,000 neurons
112 (*Figure 2D*). While forgoing many of the complexities of real neural networks such as the sign (i.e.
113 excitation vs inhibition) or types (e.g. axo-dendritic vs axo-axonic) of connections, it represents
114 a useful simplification to quantitatively define olfactory information flow across the brain, even
115 in deep layers far from the sensory periphery. Practically, these layers also provided a means to
116 validate and refine the naturally iterative process of neuron classification. Early neuron classes
117 are assigned to layers that are intuitively ‘correct’: for example, most ALPNs and ALLNs appear
118 as expected in the second layer. However close inspection revealed marked differences, some of
119 which we analyse in-depth in subsequent sections. Initial observations include the fact that mPNs
120 appear, on average, slightly later than their uniglomerular counterparts (*Figure 2E, F*). This is likely
121 due to mPNs receiving significant input from other second-order neurons (i.e. uPNs and ALLNs) in
122 addition to their direct input from receptor neurons.

123 Neurons traditionally seen as third-order components of the two arms of the olfactory system
124 (Kenyon cells, KCs, in the MB calyx and lateral horn neurons, LHNs) actually span two layers (3 and
125 4) due to lateral connections. Among the KCs, those with primarily visual inputs (KC- $\alpha\beta p$ and KC γ -d)
126 appear later than those with primarily olfactory input.

127 Descending neurons (DNs) are few (~350-600/hemisphere) and represent the principal connec-
128 tion to the motor centres in the ventral nervous system (*Hsu and Bhandawat, 2016; Namiki et al.,*
129 *2018*). We find that the majority of DNs are distant from olfactory inputs (6th layer). However, a
130 small subset appear as third or fourth-layer neurons. These may represent shortcuts between the
131 olfactory and motor systems used for behaviours that are hard-wired or require fast responses.

132 In layers 1 through 3, neurons talk primarily to others in the next higher layer (*Figure 2G*). Layers
133 4 to 7 then show increased intra-layer connectivity. At layer 6 the directionality begins to reverse:
134 layers start connecting more strongly to neurons in the same layer and eventually the previous
135 one(s). This may indicate that the flow of information inverts at this point and that layers 6-7 rep-
136 resents the “deepest” point of the olfactory system.

137 The above analysis combines olfactory and thermo – and hygrosensory ALRNs (see *Figure 2-*
138 *Figure Supplement 2* for a separate break down). We will use these layers as we proceed through
139 the olfactory system, classifying neurons in detail and extracting connectivity motifs.

140 **Antennal lobe receptor neurons**

141 ALRNs that express the same receptor project to the same globular compartments, glomeruli, of
142 the olfactory bulb in vertebrates (*Su et al., 2009*), or the antennal lobe in insects (*Couto et al., 2005;*
143 *Fishilevich and Vosshall, 2005; Vosshall et al., 2000*). In *Drosophila*, ALRNs are either unilateral or

144 (more commonly) bilateral and connect with ALLNs and ALPNs (**Figure 3A**). We identified ~2600
145 ALRNs in the hemibrain data set as projecting to one of 58 glomeruli of the right antennal lobe
146 by manually curating a list of candidate neurons (**Figure 3B**, see Methods for details). Notably, we
147 renamed 3 glomeruli to resolve conflicting information in past literature: VC5 → VM6, VC3m → VC5,
148 VC3l → VC3 (see Methods for details). These changes will appear in version 1.3 of the hemibrain
149 dataset and have been coordinated with other research groups working on these glomeruli (**Task**
150 *et al.*, 2020; **Vulpe et al.**, 2021)

151 19 glomeruli are either medially or anteriorly truncated in the hemibrain volume, while an ad-
152 dditional 8 glomeruli are intact but have very fragmented ALRNs. This affects our recovery and iden-
153 tification of ALRNs (**Figure 3–Figure Supplement 1A,B**) and we estimate our coverage per glomeru-
154 lus to be on average around 70% compared to previously published counts (Rybak *et al.*, 2016;
155 Tobin *et al.*, 2017; Horne *et al.*, 2018; Stocker, 2001; Grabe *et al.*, 2016) (**Figure 3–Figure Supple-**
156 **ment 1C**). In subsequent analysis, ALRNs of truncated glomeruli are not included. The 31 fully intact
157 glomeruli include all the thermo – and hygrosensory ones (n=7) and 24 olfactory ones (**Figure 3C**)
158 (Marin *et al.*, 2020; Bates *et al.*, 2020b). Thermo – and hygrosensory ALRNs (TRN/HRNs) are mostly
159 unilateral (6/7) with 8 ALRNs per type on average, while olfactory ALRNs (ORNs) are predominantly
160 bilateral (22/24) with 27 ALRNs per type (**Figure 3–Figure Supplement 1A**).

161 Building on our comprehensive analysis of ALRNs, we have now found that ALRNs of the VM6
162 glomerulus consist of three anatomically distinct sub-populations (VM6v, VM6m and VM6l) con-
163 nnecting to the same postsynaptic PNs; these populations differ in their receptor expression and
164 their origin in peripheral sense organs (**Task et al.**, 2020; **Vulpe et al.**, 2021). These findings helped
165 to explain previous uncertainties about this part of the antennal lobe, which have resulted in
166 many nomenclature discrepancies in the prior literature. Having an almost full set of ALRNs in
167 the hemibrain, we asked whether any other glomerulus showed a similar subdivision. Based on
168 morphological clustering, we can confirm the VM6 subpartition but also conclude that none of the
169 other glomeruli exhibit a similar potential for further partitioning (**Figure 3–Figure Supplement 2A–**
170 **B**) Moreover, we find that the VM6 ALRN subpopulations, while morphologically distinct, appear
171 to converge onto the same downstream targets. None of the uniglomerular ALPNs show a clear
172 preference towards any individual VM6 ALRN subtype. Likewise, a clustering of VM6 ALRNs based
173 on their downstream connectivity does not align with the morphology based clustering (**Figure 3–**
174 **Figure Supplement 2C**).

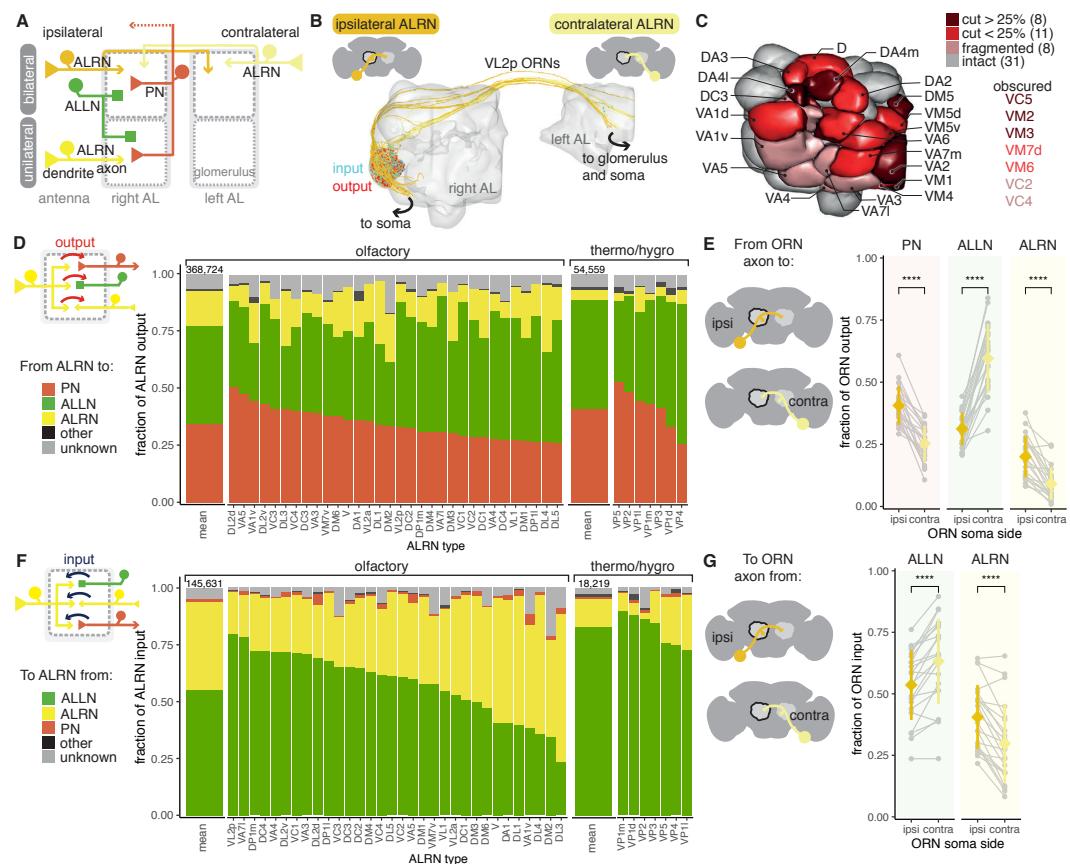
175 Besides providing the first large scale quantification of synaptic connectivity in the adult an-
176 tental lobe, we focused on two specific aspects: first, connection differences between the olfac-
177 tory and thermo/hygrosensory ALRNs; second, wiring differences between ALRNs originating from
178 the ipsilateral and contralateral antennae. Most of the output from ALRNs is to ALLNs (43% and
179 48% from ORNs and TRN/HRNs, respectively), followed by ALPNs (34% and 41% from ORNs and
180 TRNs/HRNs, respectively). The remainder is either accounted for by ALRN-ALRN connectivity or
181 other targets that are not ALRNs, ALPNs, or ALLNs. This connectivity profile is similar to what has
182 been reported for the larva (Berck *et al.*, 2016) even though the number of neurons and types has
183 increased significantly (Scheffer *et al.*, 2020; Bates *et al.*, 2020b). They are also consistent with two
184 previous studies of single glomeruli in the adult fly (Horne *et al.*, 2018; Tobin *et al.*, 2017).

185 We find that compared to ORNs, TRN/HRNs spend more of their output budget on connec-
186 tions to ALPNs (41% vs 34%) and this difference seems to be mostly accounted for by the very
187 low level of axo-axonic TRN/HRN to ALRN connectivity (**Figure 3D**). Type specificity is also clearly
188 apparent, however, with individual ALRN types showing different presynaptic densities (**Figure 3–**
189 **Figure Supplement 1D**) as well as particular profiles of ALLN and ALPN output (**Figure 3D–E**). Two
190 pheromone-sensitive ORN types, DA1 and VA1v, output the most to other neurons. Their main
191 target are the AL-AST1 neurons which arborise in and receive input from a subset of antennal
192 lobe glomeruli and output mostly in the antennal lobe and the saddle, a region that includes the
193 antennal mechanosensory and motor centre (AMMC) (Scheffer *et al.*, 2020; Tanaka *et al.*, 2012a).

194 The majority of input onto ALRNs is from ALLNs and other ALRNs, and can vary widely – in

195 particular across the different ORN types (**Figure 3F**). Connections between ALRNs occur almost
196 exclusively between neurons of the same type, e.g. DA1→DA1 but not DA1→DA2 (data not shown).
197 This is consistent with previous reports of connections between axon terminals of gustatory or
198 mechanosensory neurons in larval and adult *Drosophila* (**Hampel et al., 2020; Mirochnikow et al.,**
199 **2018**). The functional relevance of these connections is unclear. In contrast, ALLNs have been
200 shown to regulate and coordinate activity across glomeruli via lateral inhibition (see for example
201 **Mohamed et al. (2019); Wilson and Laurent (2005)**) and ALLN→ALRN connections likely play a role.
202 We find that pheromone-sensitive ORNs (targeting DA1, DL3 and VA1v) are amongst those with
203 the least ALLN input onto their terminals, suggesting that they might be less strongly modulated
204 by other channels. As expected from analysis of output connectivity, TRNs and HRNs mostly receive
205 input from ALLNs.

206 Breaking down bilateral ORN connectivity by laterality highlights a distinct behaviour of ALLNs:
207 on average, contralateral ORNs provide more information to, and receive more information from,
208 ALLNs than ipsilateral ORNs (**Figure 3E, G and Figure 3–Figure Supplement 1E**). This is in contrast
209 to ALPNs, whose behaviour is consistent with previous reports (**Gaudry et al., 2013; Agarwal and**
210 **Isacoff, 2011**). This bias could help the animal to respond to lateralised odour sources.


211 **Antennal lobe local neurons**

212 Light microscopy studies have estimated ~200 antennal lobe local neurons (ALLNs) (**Chou et al.,**
213 **2010**). ALLNs have complex inhibitory or excitatory synaptic interactions with all other neuron
214 types in the antennal lobe, i.e. the dendrites of outgoing ALPNs, the axons of incoming ALRNs and
215 other ALLNs. In particular, ALLN-ALLN connections are thought to facilitate communication across
216 glomeruli, implementing gain control for fine-tuning of olfactory behaviour (**Root et al., 2008; Olsen**
217 **and Wilson, 2008**). ALLNs are diverse in morphology, connectivity, firing patterns and neurotrans-
218 mitter profiles and critically, in the adult fly brain, they do not appear to be completely stereotyped
219 between individuals (**Seki et al., 2010; Okada et al., 2009; Chou et al., 2010; Berck et al., 2016**). Pre-
220 viously, six types of ALLNs (LN1-LN6) had been defined mainly based on the expression of specific
221 GAL4 lines (**Tanaka et al., 2012a**). The hemibrain data set now provides us with the first opportunity
222 to identify and analyse a complete set of ALLNs at single-cell resolution.

223 We find 196 ALLNs in the right hemisphere which we assign to 5 lineages, 4 morphological
224 classes, 25 anatomical groups and 74 cell types (**Figure 4A-D and Figure 5–Figure Supplement 1**).
225 ALLNs derive from three main neuroblast clones: the lateral neuroblast lineage ("l" and "l2" from
226 AL1), the ventral neuroblast lineage ("v" from ALv1) and the ventral ALLN specific lineage ("v2"
227 from ALv2) (**Sen et al., 2014**). Their cell bodies cluster dorsolateral, ventromedial or ventrolateral
228 to the antennal lobe or in the gnathal ganglion (referred to as i13 (**Bates et al., 2020b; Shang et al.,**
229 **2007; Tanaka et al., 2012a**). Around 40% (78) of the ALLNs are bilateral and also project to the left
230 antennal lobe; most of these (49) originate from the v2 lineage. Correspondingly, we identified
231 fragments of 88 ALLNs that originate in the left and project to the right antennal lobe (**Figure 4A**).

232 The morphological classification of ALLNs is based on their glomerular innervation patterns
233 reported by Chou et al. 2010: "broad" ALLNs innervate all or most of the AL; "patchy" ALLNs exhibit
234 characteristic discontinuous innervation; "regional" ALLNs innervate large continuous regions of
235 the AL, and "sparse" ALLNs innervate only a small area of the antennal lobe (**Figure 4B**). These
236 differences in innervation patterns can be quantified: for each ALLN we ranked glomeruli by the
237 number of synapses placed inside (descending) and further normalised them per ALLN. Finally
238 we summed those numbers up cumulatively per ALLN. Sparse ALLNs place their synapses in a
239 select few glomeruli (typically <10), while broad ALLNs distribute their synapses evenly across the
240 majority of glomeruli (typically >30) (**Figure 4E**). Anatomical groups are then defined as sets of cell
241 types with similar morphological features.

242 Previous research has shown that while most ALLNs exhibit input and outputs in all innervated
243 glomeruli, some show signs of polarisation (**Chou et al., 2010**). Indeed, regional and sparse ALLNs
244 can mostly be split into an axonic and a dendritic compartment, while broad and patchy ALLNs tend

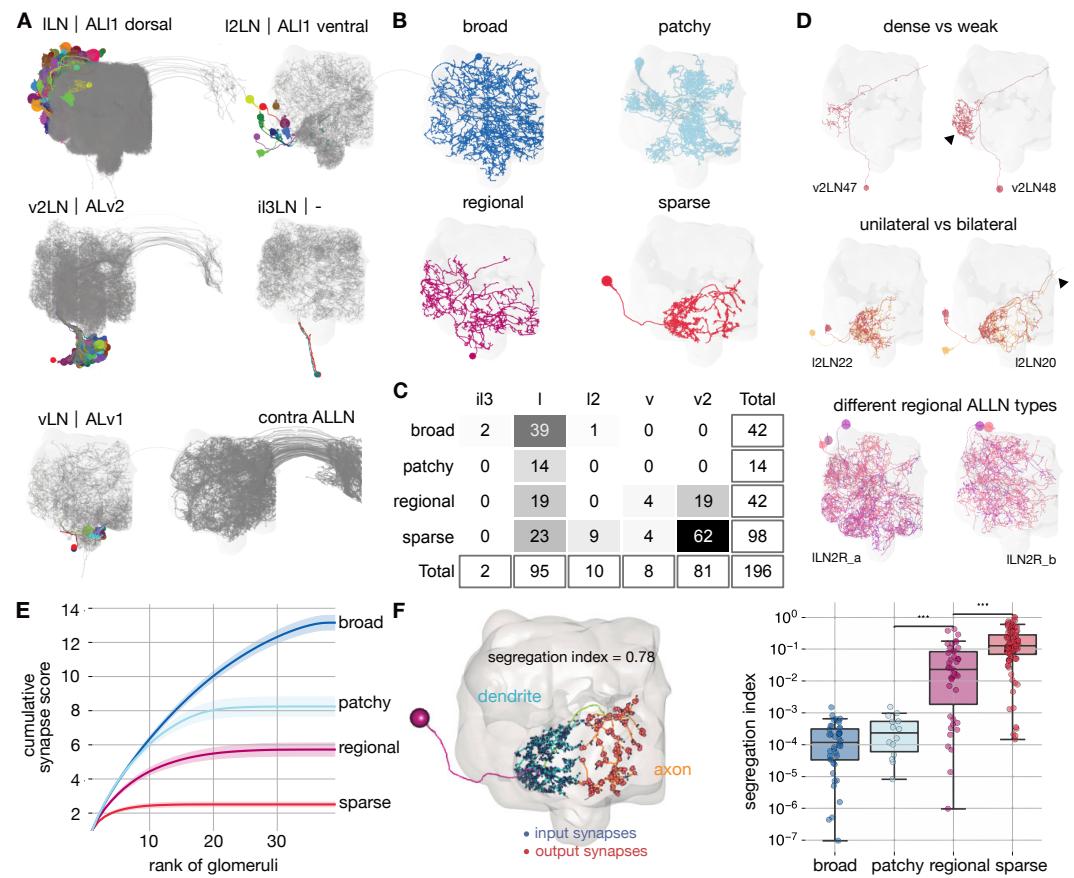


Figure 3. Antennal lobe receptor neurons mostly target projection and local neurons. **A** Summary schematic of antennal lobe ALRN classification and the major cell types present in the antennal lobe that interact with them. ALLN: antennal lobe local neuron; ALPN: projection neuron. **B** Ipsilateral and contralateral VL2p olfactory ALRNs (ORNs) in the right antennal lobe. The somas are not visible as they are cut off from the volume. Output synapses in red, input ones in blue. **C** Antennal lobe glomerular meshes (generated from ALRNs) showing which glomeruli are truncated and by how much (qualitative assessment). ALRN types in whole glomeruli but with fragmented ALRNs, which prevents assignment of soma side, are also shown. **D** Fraction of ALRN output per type. The left-most bar is the mean for olfactory or thermo/hygrosensory ALRNs, with number of synapses on top. **E** Fraction of ipsilateral (ipsi) or contralateral (contra) ORN output to ALLNs, ALPNs and ALRNs. Means were compared using Wilcoxon two-sample tests. **F** Fraction of ALRN input per type. The left-most bar is the mean for ORNs and TRNs/HRNs, with number of synapses on top. **G** Fraction of ipsilateral (ipsi) or contralateral (contra) ORN input from ALLNs and ALRNs. Means were compared using Wilcoxon two-sample tests. Significance values: ns: $p > 0.05$; *: $p \leq 0.05$; **: $p \leq 0.01$; ***: $p \leq 0.001$; ****: $p \leq 0.0001$.

Figure 3-Figure supplement 1. Annotation of ALRN bodies and connectivity features.

Figure 3-Figure supplement 2. ALRN clustering and subdivision of the VM6 glomerulus.

245 to be less polarised (**Figure 4F**). Axon-dendrite segregation may facilitate specific inter-glomerular
 246 interactions. In particular, looking at the most polarised ALLNs (score >0.1), differential dendritic
 247 input and axonic output are apparent with respect to pairs of thermo/hygrosensory glomeruli of
 248 opposing valences (**Figure 4-Figure Supplement 1G**). Significantly, v2LN49 neurons receive den-
 249 dritic input in the 'heating' glomerulus VP2 (*Ni et al., 2013*), and have axonic outputs in the 'cooling'
 250 glomerulus VP3 (*Gallo et al., 2011; Budelli et al., 2019*), while I2LN20 and I2LN21 perform the
 251 opposite operation. An interesting odour example is ILN17 which receives dendritic inputs from
 252 pheromone glomerulus DA1 and has axonic output to another pheromone glomerulus, VA1v (*Kur-*
 253 *tovic et al., 2007; Dweck et al., 2015*). Such interactions might help regulate female receptivity.
 254 ALLNs principally connect to ALRNs, ALPNs and other ALLNs. Connectivity differs greatly be-

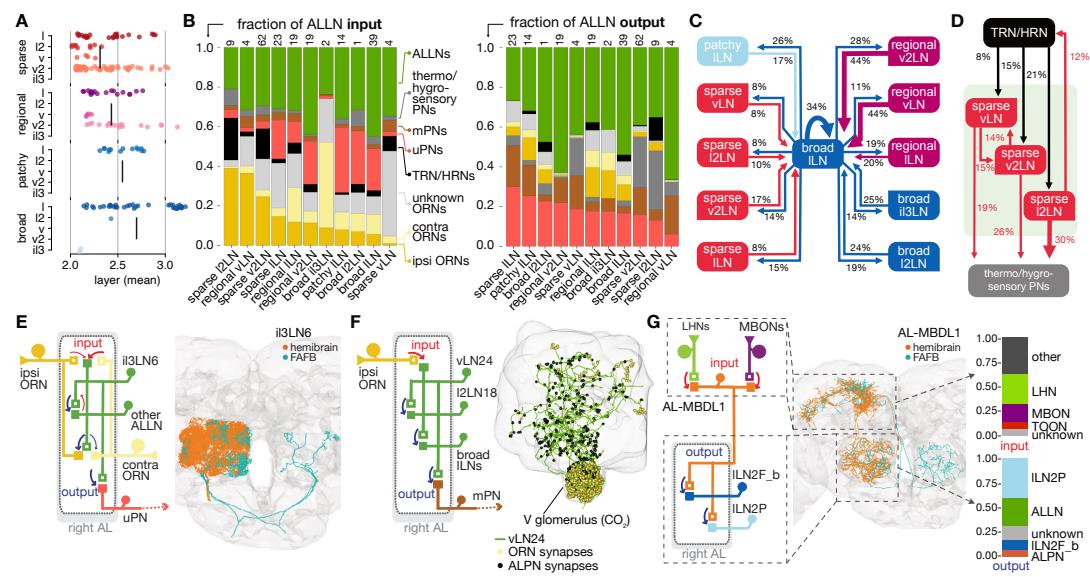


Figure 4. Cell typing, morphological classification and polarity of antennal lobe local neurons. **A** ALLNs classified by hemilineage and contralateral ALLNs (contra ALLN), along with the antennal lobe mesh in the background. Soma locations (circles) and primary neurite tracts are illustrated in multicolours. **B** Morphological classes of ALLNs. A representative example of each category is shown. **C** Number of ALLNs per hemilineage and morphological class. **D** Representative examples illustrating criteria used for typing: unilateral and bilateral neurites, lineage identity, area innervated by ALLN neurites and their density. Arrow heads point towards dense innervation and bilateral projection. **E** Synapse score per morphological class. Cumulative number of synapses is computed per ranked glomerulus (by number of synapses) and plotted against its rank. Envelopes represent standard error of the mean. **F** Polarisation of neurites per morphological class. Segregation index is a metric for how polarised a neuron is; the higher the score the more polarised the neuron (Schneider-Mizell *et al.*, 2016). Left inset shows a sparse ALLN, I2LN21, as an example of a highly polarised ALLN. Significance values: *: $p \leq 0.05$; **: $p \leq 0.01$; ***: $p \leq 0.001$; ****: $p \leq 0.0001$; pairwise Tukey-HSD post-hoc test.

Figure 4-Figure supplement 1. ALLN glomerular innervation patterns.

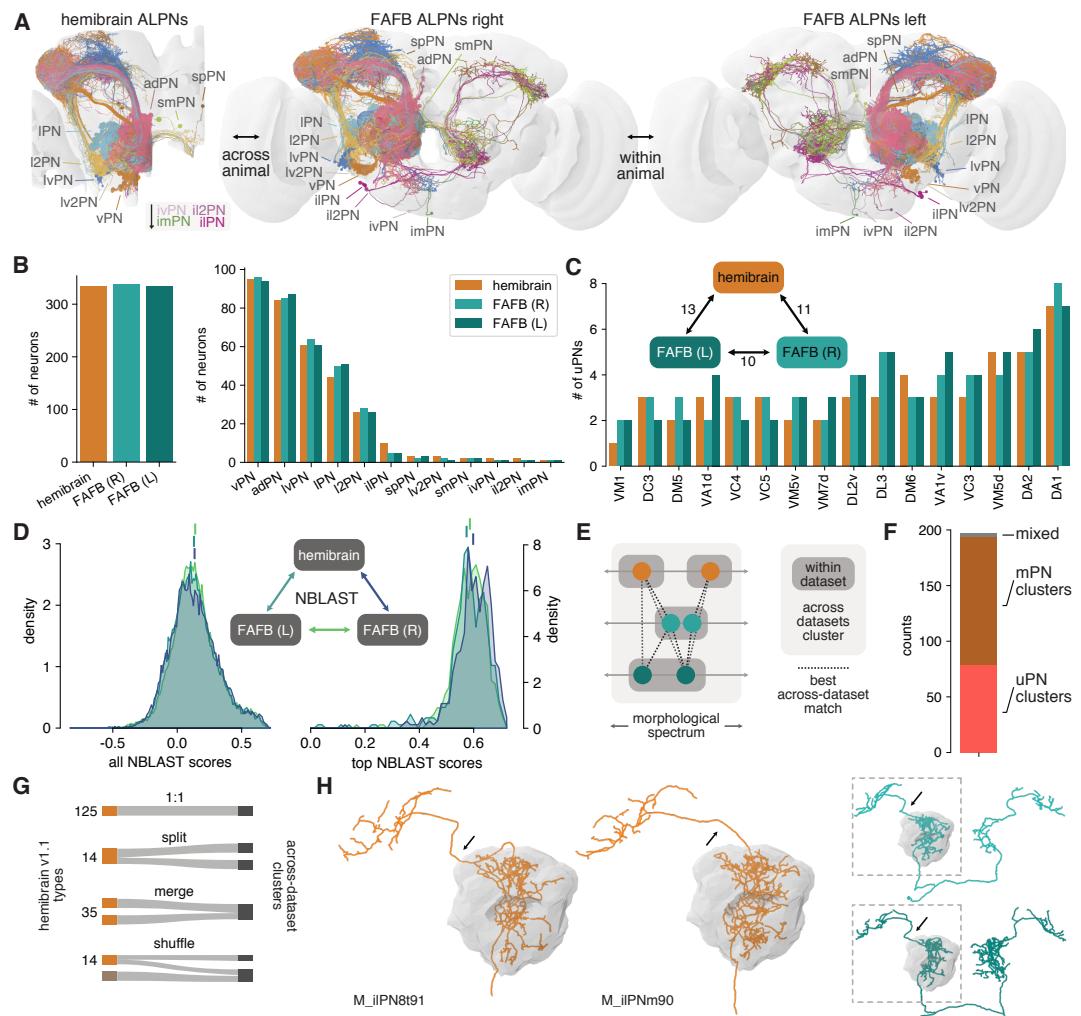
255 between ALLN cell types, even within groups (**Figure 5A,B**). Smaller ALLNs (sparse, regional) tend to
 256 receive a greater fraction of direct ALRN input than larger ALLNs (broad, patchy) and are therefore
 257 assigned to earlier layers (**Figure 5A**). Strong ALLN-ALRN connectivity arises mostly from the broad
 258 ALLNs of the lateral lineage (**Figure 5C**). They may act as master regulators of the ALLN network.

259 Breaking down the input onto ALLNs, we see that some have very high specificity for specific
 260 glomeruli: for example, vLN24 receives 67% of its ALRN input from the CO_2 responsive V glomerulus
 261 ORNs (**Figure 5B,F**). Importantly, we also observe substantial differences in the degree of ipsi-
 262 – versus contralateral ALRN input across the ALLN population (**Figure 5B**). At one end of the spec-
 263 trum, regional vLNs receive more than 10 times as much input from ipsilateral versus contralateral
 264 ORNs; in contrast broad il3LNs receive fivefold more contralateral ORN input. These broad il3LN,
 265 a single pair of bilateral neurons likely analogous to the larval Keystone ALLNs (Coates *et al.*, 2020;
 266 Berck *et al.*, 2016), interact strongly with broad ILNs while also providing strong presynaptic inhi-

Figure 5. Antennal lobe local neuron connectivity and example circuit motifs. **A** Layers of ALLNs. Vertical lines indicate group mean. **B** Fraction of ALLN input (left) and output (right) for different ALLN groups. Number of neurons per category is shown at the top of each bar. Where possible ORNs are split into 'ipsi-' and 'contra'-lateral ('unknown' ORNs mostly correspond to those that are fragmented or belonging to truncated glomeruli). **C** Diagram illustrating ALLN-ALLN connectivity. ALLN groups are coloured by morphological class. **D** Diagram illustrating the most prominent ALLN connections to thermo/hygro-sensory ALRN and ALPNs. **E-G** Examples of ALLN connectivity. **E** A pair of broad ALLNs, i3LN6, cross-matched to the FAFB Keystone ALLNs. **F** An example of type regional ALLNs, vLN24, that receives specialised input in the V glomerulus (CO₂). **G** A bilateral medial bundle neuron, AL-MBDL1, that integrates LHN and MBON input and outputs to two specific types of ALLNs, broad ILN2F_b and patchy ILN2P.

Figure 5-Figure supplement 1. Antennal lobe local neuron groups.

267 bition onto ORN terminals (**Figure 5B,C,E**). This may represent a major mechanism by which con-
268 tralateral odour information influences the ipsilateral ALLN-ALLN network.


269 Curiously, sparse ALLN cell types receive a large proportion of their input from TRNs/HRNs
270 (sparse I2LN: 21%, sparse v2LN: 15%, sparse vLN: 8%). Other cell types receive at most 5%. In-
271 deed, comparing antennal lobe innervation patterns against a random null model suggests that
272 sparse ALLNs are more likely to co-innervate thermo/hygro-sensory glomeruli (**Figure 4-Figure Sup-**
273 **plement 1H**). Similarly, when we examine ALPN connectivity, we see that sparse ALLN cell types
274 send a large proportion of their output to THPNs (sparse I2LN: 30%, sparse v2LN: 26%, sparse
275 vLN: 19%). Other cell types receive at most 5%. This indicates that sparse ALLNs may be modulat-
276 ing very specific thermo/hygro-sensory information among the circuitry within the AL. In combi-
277 nation, this suggests the existence of a local network made of sparse ALLNs that encompasses only
278 the non-olfactory, thermo/hygro-sensory glomeruli.

279 Regional ALLNs, on the other hand, co-innervate combinations with the DP1m (responds to
280 e.g. 3-hexanone, apple cider vinegar) or DP1I (acetic acid) glomeruli, which may be key food-
281 odours detecting glomeruli and are some of the largest in the antennal lobe. The patchy ALLNs'
282 co-innervation does not differ from the null model, which agrees with observations from light level
283 data (**Chou et al., 2010**).

284 About half of the ALLNs also feedback strongly onto ALRN axons. Interestingly, ALLNs of lin-
285 eages v2 and v send very little output to the ALRN (regional v2LN: 1.8%, sparse vLN: 1.7%,
286 sparse v2LN: 5.2%, sparse I2LN: 5%, regional vLN: 1.2%) compared with other ALLNs, which
287 spend >16% of their outputs on ALRN axons. The ALLNs that modulate ALRN axons likely execute
288 circuit functions distinct from those that do not, perhaps operating to quickly adapt and stabilise
289 ALRN responses.

290 We also observe centrifugal feedback from higher olfactory areas, into the antennal lobe. The
 291 antennal lobe-associated median bundle neuron (AL-MBDL1) is a centrifugal modulatory neuron
 292 that integrates input from the MB and the LH (*Tanaka et al., 2012a*) (**Figure 5G**). It arborises widely
 293 in the antennal lobe and outputs onto two specific sets of ALLNs: the 14 patchy ILN2P and a pair
 294 of broad ILN2F_b neurons (**Figure 5F**). This means that the superior brain regions may be able to
 295 exercise control over the ALLN-ALLN network through AL-MBDL1 activity.

296 **Stereotypy in olfactory projection neurons**

Figure 6. Numerical and morphological across- and within-animal stereotypy. **A** Antennal lobe projection neurons (ALPNs) reconstructed in the hemibrain and from the left and right hemispheres of the FAFB EM volume. **B** Overall ALPN counts are almost identical across hemispheres as well as across animals. **C** 17/56 uPN types show variations in numbers. Numbers in triangle count instances of variation in numbers. **D** Across-dataset NBLAST similarity scores are much the same. All scores on the left, only pairwise top scores on the right. Top lines represent means. **E** Clustering approach based on best across-dataset matches. **F** Total number of across-dataset clusters by composition. **G** Quantification of discrepancies between hemibrain v1.1 types and the across-dataset clusters. See also **Figure 6-Figure Supplement 1F**. **H** Example where two hemibrain types merge into one across-dataset cluster (2). One of the hemibrain neurons takes the “wrong” antennal lobe tract (arrows) and has therefore been incorrectly given a separate type. See **Figure 6-Figure Supplement 1G-J** for more examples.

Figure 6-Figure supplement 1. Comparison of ALPNs across three hemispheres.

297 Glomeruli are innervated by principal cells, mitral and tufted cells in vertebrates and projection
298 neurons (ALPNs) in insects, which convey odour, temperature and humidity information to third-
299 order neurons in higher brain regions (*Figure 6A*). These neurons may be excitatory or inhibitory,
300 and either uniglomerular (uPNs) or multiglomerular (mPNs), i.e. sampling from a single glomerulus
301 or multiple glomeruli, respectively (*Bates et al., 2020b; Tanaka et al., 2012a*).

302 Most uPNs are well studied and have been shown to be highly stereotyped (*Jefferis et al., 2007*)
303 which makes cross-matching these cell types relatively straight-forward. In particular, the “canonical”
304 uPN types that have been extensively studied in the past (*Yu et al., 2010; Ito et al., 2013; Tanaka
305 et al., 2012a; Grabe et al., 2016*) are easily and unambiguously identifiable in the hemibrain. The
306 situation is less clear for mPNs, for which there is as yet no conclusive cell typing. mPN types were
307 therefore determined by the aforementioned consortium using a combination of within-dataset
308 morphological and connectivity clustering under the assumption that these types would be further
309 refined in future releases. In combination, hemibrain v1.1 features 188 ALPN types.

310 We previously described the morphology of 164 uPNs (forming 81 different types) and 181
311 mPNs (untyped) in the right hemisphere in the FAFB (full adult fly brain) EM volume (*Bates et al.,
312 2020b*). Here, we add a third ALPN dataset from the left hemisphere of FAFB. Together, these data
313 allow us to assess numerical and morphological stereotypy within (FAFB right vs left) and across
314 animals (hemibrain vs FAFB left/right) (*Figure 6A*).

315 First, we find that the total number of ALPNs is largely consistent across brains as well as across
316 hemispheres of the same brain (*Figure 6B*). For uPN types, we find similar variations in ALPN num-
317 bers within and across animals (*Figure 6C* and *Figure 6–Figure Supplement 1A*). Interestingly, varia-
318 tion only occurs in larval-born ‘secondary’ neurons but not with embryonic ‘primary’ neurons, and
319 is more obvious for later-born neurons (*Figure 6–Figure Supplement 1A*).

320 To obtain a quantitative assessment of morphological stereotypy, we first transformed all
321 ALPNs into the same template brain space (JRC2018F, *Bogovic et al. (2020)*) and mirrored the left
322 FAFB ALPNs onto the right (see *Bates et al. (2020a)* and Methods for details). Next, we used NBLAST
323 (*Costa et al., 2016*) to generate pairwise morphological similarity scores across the three sets of
324 ALPNs (*Figure 6D*). Due to the large number of data points (~23k per comparison), the distributions
325 of within – and across-animal scores are statistically different ($p < 0.05$, Kolmogorov-Smirnov test)
326 however the effect size is extremely small. Importantly, the top within-animal scores are on aver-
327 age not higher than those from the across-animal comparisons. This suggests that neurons are
328 as stereotyped within one brain (i.e. across left/right brain hemispheres) as they are between two
329 brains.

330 An open question is whether individual cells and cell types can be recovered across animals.
331 For neurons like the canonical uPNs this has already been shown but it is less clear for e.g. the
332 mPNs. First, for nearly all hemibrain ALPN we find a match in FAFB and for most neurons the top
333 NBLAST hit is already a decent match (data not shown). The few cases without an obvious match
334 are likely due to truncation in the hemibrain or developmental abnormalities of the neuron.

335 Next, we sought to reproduce hemibrain cell types across datasets. Biological variability might
336 well produce a partition in one animal that is not present in another, and *vice versa* (*Figure 6E*). To
337 address this, we used the top across-dataset NBLAST scores to generate 197 clusters of morpho-
338 logically similar neurons across the three populations of PN (*Figure 6D-F*; see Methods for details).
339 This is slightly more than the 188 PN types listed for hemibrain v1.1 and might indicate that our
340 approach over-segments the data. Indeed, the majority of our clusters represent 1:1:N matches
341 (*Figure 6–Figure Supplement 1B*).

342 In general, the correspondence between hemibrain types and the across-dataset clusters is
343 good: ~74% of hemibrain types map to either one single cluster or split into separate clusters that
344 contain only this cell type (a consequence of the over-segmentation) (*Figure 6G*). 35 (19%) hemi-
345 brain types merge into larger clusters. For example, M_ilPNm90 and M_ilPN8t91 were assigned
346 separate types because of differences in the axonal tract. In comparison with FAFB ALPNs it be-
347 comes apparent that M_ilPNm90’s tract is an exception and they indeed belong to the same type

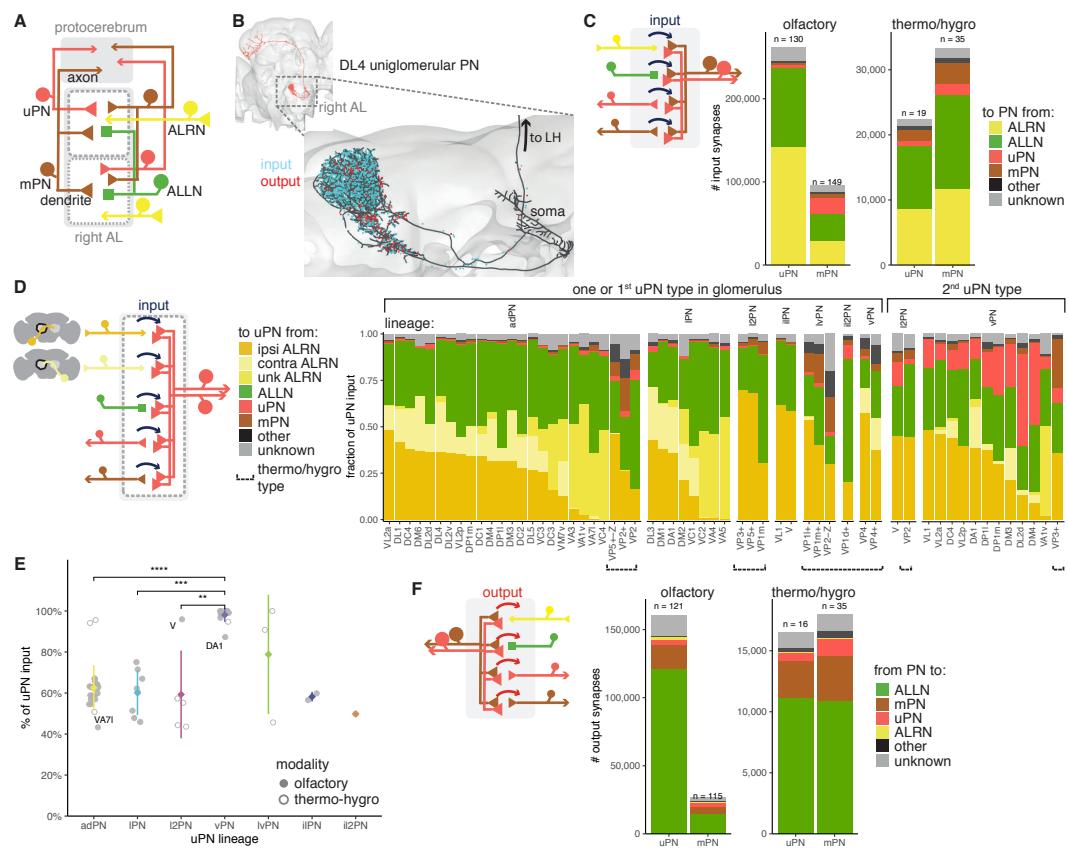
348 (**Figure 6H**). Only 14 (~7%) hemibrain types are shuffled into different clusters. We also note a few
349 instances of discrepancies between classifications of co-clustered neurons which will be solved in
350 future hemibrain/FAFB releases.

351 In summary, these results are encouraging with respect to matching neurons (types) across
352 data sets while simultaneously illustrating potential pitfalls of cell typing based on a single dataset.

353 **Connectivity of olfactory projection neurons**

354 Within the antennal lobe, ALPN dendrites connect with ALRN axons and ALLNs (**Figure 7A,B**). As
355 expected, olfactory mPNs and uPNs exhibit quite different connectivity profiles: mPNs receive both
356 less overall dendritic input and also a smaller proportion of direct input from ALRNs than uPNs
357 (30% vs 50% comes from ALRNs). As a consequence of these connectivity profiles, uPNs show up
358 earlier than mPNs in the layered olfactory system (**Figure 2E,F**). In contrast, the connectivity profile
359 of thermo/hygrosensory ALPNs, of which 1/3 are biglomerular, is quite similar across ALPN classes,
360 and falls in between the olfactory uPNs and mPNs (**Figure 7C**).

361 When uPNs are broken down by type, we see a range of ALRN inputs (16% to 71%), the majority
362 of them from ipsilateral ALRNs (for those with bilateral ALRNs) as well as from ALLNs (15% to 70%)
363 (**Figure 7D**). In those glomeruli with more than one uPN type, the second uPN is usually from the
364 GABAergic vPN lineage, and receives significant input from the first, likely cholinergic uPN. vPNs
365 (which include various multiglomerular PNs) provide feed-forward inhibition to a range of targets
366 in the lateral horn (**Bates et al., 2020b**) and are thought to increase the fly's ability to discriminate
367 (food) odors and gate between qualitatively different olfactory stimuli (**Liang et al., 2013; Parnas**
368 **et al., 2013**). Curiously, the cholinergic V glomerulus uPN from the l2PN lineage (**Bates et al., 2020b**)
369 resembles a vPN, both in terms of its output profile and total input fraction (**Figure 7D,E**).


370 Although highly polarised, olfactory uPNs have hundreds of presynapses and thou-
371 sandes of outgoing connections from their dendrites while mPNs make far fewer connec-
372 tions. Thermo/hygrosensory ALPNs have very similar output profiles to each other, although
373 thermo/hygrosensory mPNs, as with olfactory mPNs, provide much less output in the antennal
374 lobe. The majority of these connections are onto ALLNs (56% to 75%), with the remaining being
375 onto the dendrites of other ALPNs (**Figure 7F**).

376 **Higher-order olfactory neurons**

377 The ALPN combinatorial odour code is read out by two downstream systems in very different ways.
378 In general, the mushroom body (MB) is necessary for the formation, consolidation and retrieval of
379 olfactory memories, while other superior neuropils support innate olfactory processing (**Dubnau**
380 **et al., 2001; Heimbeck et al., 2001; Krashes et al., 2007; McGuire et al., 2001; Parnas et al., 2013;**
381 **Bates et al., 2020b**). This dichotomy is by no means absolute (**Dolan et al., 2018; Zhao et al., 2019;**
382 **Yu et al., 2004; Séjourné et al., 2011; Sayin et al., 2019; Bräcker et al., 2013**) and indeed we find nu-
383 merous examples of direct interactions between these brain areas (see also **Li et al. (2020)**). Never-
384 theless, it remains a helpful simplification when investigating the logic innate vs learned pathways.

385 Historically third order olfactory neurons (TOONs) have often been defined by overlap with the
386 axons of ALPNs. Using the hemibrain connectome we can now re-examine non-MB, third-order
387 olfactory neuron morphology exhaustively. We translated this into a connectomics definition of
388 TOONs as "neurons that receive either at least 1% (or 10 postsynapses in total) of their inputs from a
389 single ALPN, or 10% of their inputs from any combination of ALPNs *outside of the MB*". This revealed
390 a total of ~2,383 non-MB TOONs which means that both classic olfactory pathways – learned and
391 innate – exhibit very similar convergence-divergence ratios: 2581:137:2035 ORN:PN:KC for the MB
392 path and 2581:330:2383 ORN:PN:TOON for the non-MB path.

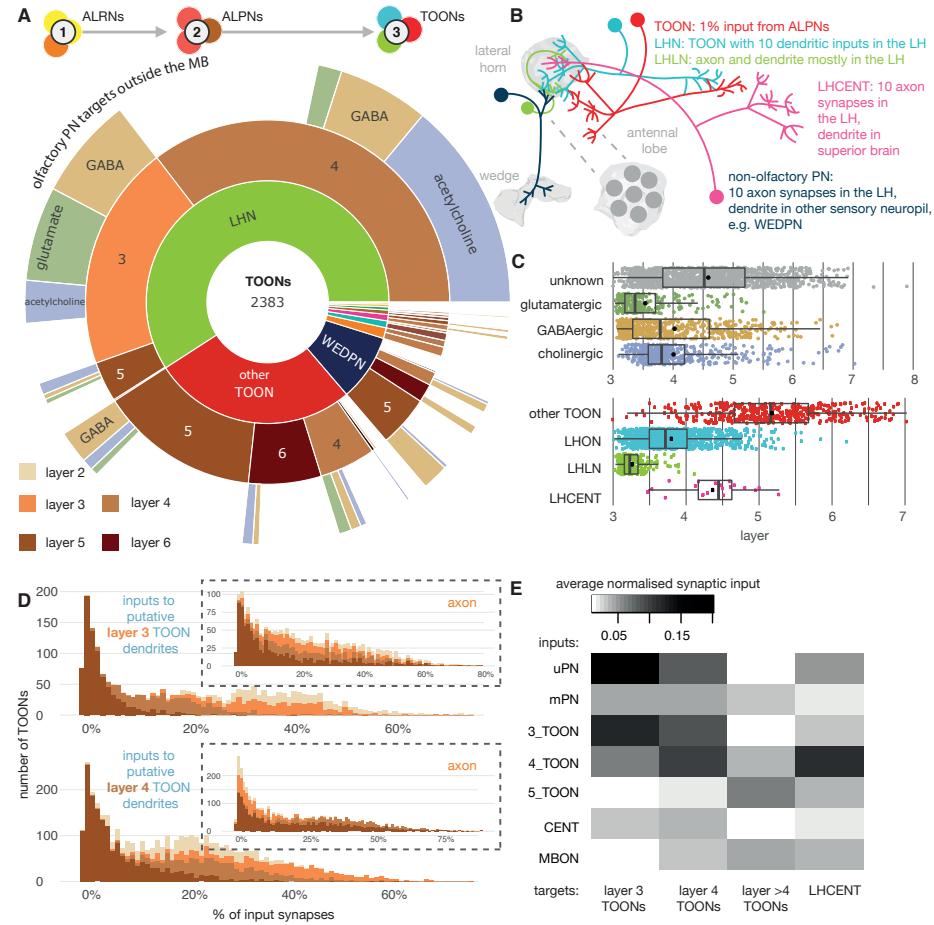

393 In the past, we focused on the lateral horn (LH) when examining TOONs in the context of in-
394 nate behaviour guidance (**Dolan et al., 2019; Frechter et al., 2019**), because the lateral horn is the
395 brain neuropil most heavily innervated by ALPNs (**Bates et al., 2020b**). Based on light-level data,

Figure 7. Antennal lobe projection neuron connectivity in the right antennal lobe. A Summary schematic of ALPN classification and the major cell types present in the antennal lobe that interact with them. uPN: uniglomerular ALPN; mPN: multiglomerular ALPN. **B** DL4 uniglomerular PN showing inputs (cyan) and outputs (red). **C** Number of input synapses onto olfactory or thermo/hygrosensory uPNs and mPNs. Number of neurons in each category shown at the top of the bar. **D** Fraction of uPN input, grouped by type and lineage. The left group shows glomeruli that have only one uPN type, or one of the types for those with more than one. The right group shows the second uPN type for those glomeruli with more than one. ALRN soma side indicated as 'ipsi' (ipsilateral), 'contra' (contralateral) or 'unk' (unknown, mostly corresponding to those glomeruli with fragmented ALRNs). Thermo/hygrosensory uPNs with SEZ innervation are indicated by 'Z' following the glomerulus. **E** Percentage of input onto uPN types relative to total connectivity (input + output), per lineage. Some of the outlier uPN types are labelled. Comparisons to categories with less than 4 data points were not done. Means per lineage were compared using Wilcoxon two sample tests. Significance values: ns: $p > 0.05$; *: $p \leq 0.05$; **: $p \leq 0.01$; ***: $p \leq 0.001$; ****: $p \leq 0.0001$. **F** Number of output synapses from olfactory or thermo/hygrosensory uPNs and mPNs. Number of neurons in each category shown at the top of the bar.

396 we previously estimated ~1,400 third order lateral horn neuron (LHNs) forming >264 cell types
 397 (*Frechter et al., 2019*). The cell count estimate appears to have been accurate: of the hemibrain
 398 TOONs, ~60% (1,428) have dendrites in the LH (*Figure 8A,B*) making the LH the largest target for
 399 olfactory information beyond the antennal lobe (*Bates et al., 2020b*). With the higher resolution of
 400 the connectome, we were able to divide these LHNs into 496 near-isomorphic cell types (*Figure 8*–
 401 *Figure Supplement 1A*, see Methods), many of which (~35%) could be matched to light-level data
 402 from the literature (*Frechter et al., 2019*). KCs on the other hand fall into only 15 types (*Li et al.,*
 403 *2020*). Therefore, in terms of cell types, the LH path exhibits far greater expansion than the MB
 404 path (*Caron et al., 2013*).

405 The distinction between LHNs and other TOONs remains useful in that it distinguishes a subset
 406 of TOONs that are part of the densely ALPN-innervated hub that is the lateral horn. LHN cell types

Figure 8. The targets of antennal lobe projection neuron axons. **A** Starburst chart breakdown of the 2,383 targets of ALPN axons, outside of the mushroom body, by various properties. We term these neurons 'third-order olfactory neurons', or TOONs' (see text for definition). From the inside out, neurons are grouped by: broad neuron class, layer according to the traversal model and their putative neurotransmitter. Most TOONs receive the majority of this input at their dendrites: green, lateral horn neurons (LHNs); dark blue, wedge projection neurons (WEDPNs); orange, dopaminergic neurons of the mushroom body (DANs); brown, descending neurons to the ventral nervous system (DNs); pink, lateral horn centrifugal neurons (LHCENTs). The starburst plot also includes some neurons connected only or mainly at their axons, including a small number of: light blue, visual projection neurons; yellow, severed contralateral axons; dark green, putative gustatory projection neurons from the gnathal ganglia; yellow, putative axons ascending from the ventral nervous system. **B** Schematic illustrating the definitions used to group neurons into broad classes. For details see Methods. **C** Jitter plot showing olfactory layers of TOONs broken down by predicted transmitter (if known) and broad class (LHONs, LH output neuron; LHNL, LH local neuron) (Frechter *et al.*, 2019). **D** The percentage of input supplied onto third-order neurons by different classes of input neuron. Upper, inputs onto third-order neurons' dendrite, lower, fourth-order neurons dendrites. Insets, input onto axons. **E** Normalised synaptic input to layer three and four neurons, as well as LH centrifugal neurons whose dendrites lie outside the LH but whose axons innervate it. Synaptic input is normalised by the total number of input synapses to the neuron's predicted axon or dendrite.

Figure 8-Figure supplement 1. Defining cell types for third-order olfactory neurons.

Figure 8-Figure supplement 2. Split-GAL4 lines for excitatory lateral horn output neurons.

Figure 8-Figure supplement 3. Split-GAL4 lines for inhibitory lateral horn output neurons.

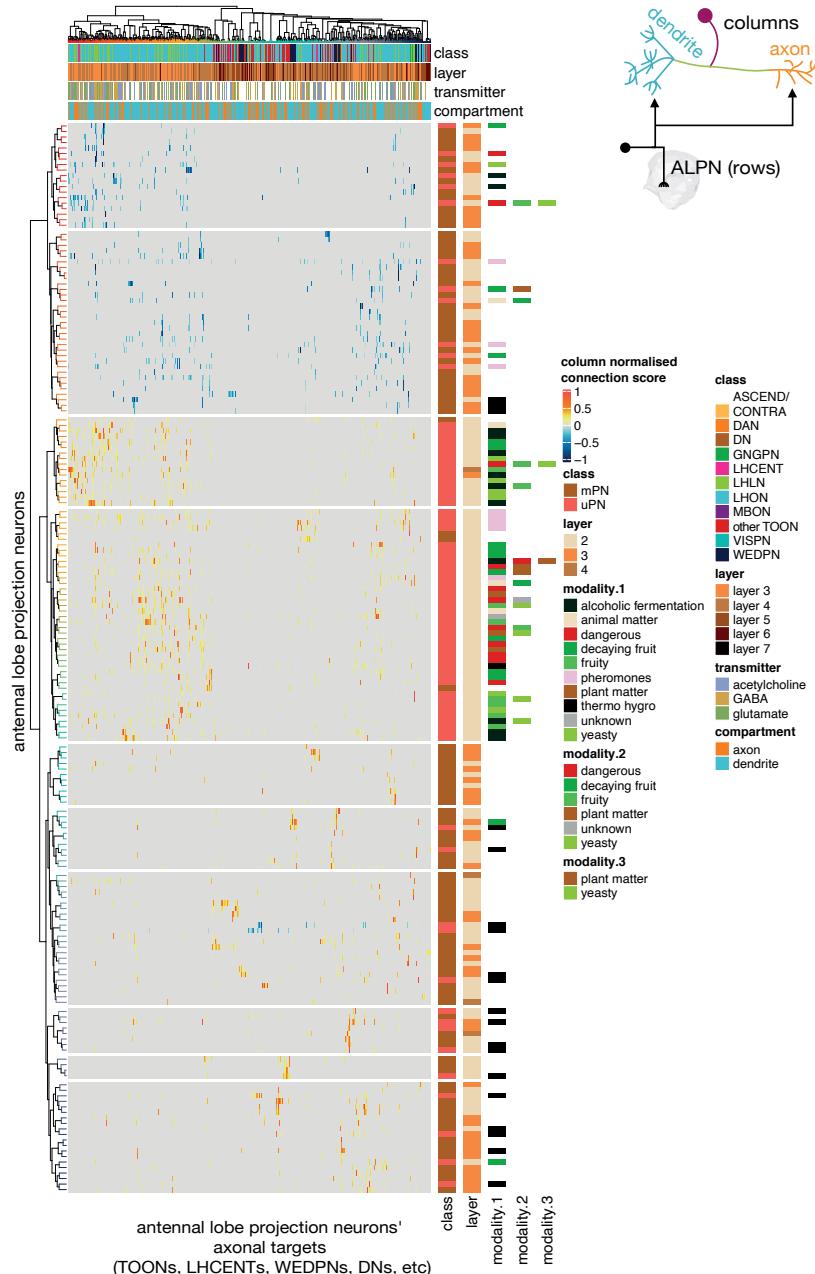
Figure 8-Figure supplement 4. Split-GAL4 lines for lateral horn local neurons.

Figure 8-Figure supplement 5. Split-GAL4 lines for lateral horn input neurons.

407 currently have more extant data in the literature e.g. allowing sparse genetic driver lines to be
408 identified, or assignment of developmental identities and putative transmitter expression.

409 With the benefit of a full, high-resolution LHN inventory from the hemibrain, we re-assessed
410 sparse genetic driver lines we previously generated to help experimentally target specific LHN
411 cell types (*Figure 8-Figure Supplement 2,Figure 8-Figure Supplement 3,Figure 8-Figure Supple-*
412 *ment 4,Figure 8-Figure Supplement 5*). We then grouped neurons into developmentally related
413 'hemilineages' and assigned all members of a given hemilineage the same 'transmitter identity' if
414 we knew that at least one member of that hemilineage to express acetylcholine, GABA or glutamate
415 based on immunohistochemical work (*Dolan et al., 2019*). Our assignments (*Figure 8C* and
416 *Figure 8-Figure Supplement 1B*) are based on an assumption that neurons of a hemilineage share
417 the same transmitter expression, as has been demonstrated for the ventral nervous system (*Lacin*
418 *et al., 2019*). This is a useful proxy that gives an impression of fast-acting neurotransmitter ex-
419 pression diversity throughout the pool of TOONs, but it is far from definitive. We anticipate that
420 machine learning methods will assist in automatic transmitter type classification for synapses in
421 data sets such as the hemibrain in the near future (*Eckstein et al., 2020*). LHNs are very diverse
422 in terms of their hemilineage origins: ~30% of known hemilineages in the midbrain contribute to
423 LHNs, with some more biased to layer 3 or layer 4 LHNs (*Figure 8D*). This is in contrast to KCs, that
424 arise from a set of only four neuroblasts (*Truman and Bate, 1988*).

425 All the LHNs we consider are direct targets of olfactory ALPNs and would therefore historically
426 be considered third-order olfactory neurons. In absence of connectivity data this is a necessary
427 and useful simplification. Using the layers (*Figure 2C*), we can now for the first time take a more
428 quantitative look at their putative position within the olfactory system. This shows that LHNs pop-
429 ulate different layers of the olfactory system because the fraction of direct ALPN input can vary
430 widely (*Figure 8C,E*).


431 LHNs in layer 3 are mainly putative GABAergic or glutamatergic neurons based on their develop-
432 mental origins and therefore likely inhibitory, while layer 4 LHNs are more commonly cholinergic
433 and therefore excitatory (*Figure 8A*). It is important to note that the layer 4 LHNs are still direct
434 synaptic partners of ALPNs; their designation as layer 4 is a result of weaker direct connectivity
435 from ALPNs and slightly greater local input from layer 3 and 4 neurons (*Figure 8D*).

436 Matching hemibrain neurons to light-level data and partial tracings for neurons from FAFB
437 shows that most 'anatomically' local neurons have a layer closer 3, and output neurons a layer
438 closer to 4 (*Figure 8C*). The uPNs contribute most strongly and directly to the input budgets of
439 layer 3 and 4 LHNs; in contrast, mPNs could be said to short-circuit the olfactory system, connect-
440 ing to LHNs of layers 3-6 as well as other TOONs of the superior protocerebrum (*Figure 8* and
441 *Figure 10*).

442 Individual TOON cell types can sample from a variety of ALPNs (*Figure 9*), and each type ex-
443 hibits a relatively unique 'fingerprint' of input connectivity. Comparing the cosine similarity in
444 ALPN→target connectivity between ALPN cell types reveals that uPNs and mPNs have very differ-
445 ent connectivity profiles (*Figure 9-Figure Supplement 1*). While a certain amount of structure is
446 present, there is no clear subgrouping of ALPN into subsets that serve as preferred inputs onto
447 distinct target subsets. Thermo/hygrosensory ALPN cell types often exhibit similar connectivity
448 with one another, and their uPNs clusters away from purely olfactory uPNs, however, their targets
449 also commonly receive olfactory input from mPN cell types.

450 By breaking TOONs and their identified inputs into large classes (*Figure 8B,E* and *Figure 10-*
451 *Figure Supplement 1*), we can see that while direct uPN input to TOONs decreases from layers 3
452 through 5, mPN innervation remains constant and occurs onto both TOON dendrites and axons.
453 Layer 3 TOONs heavily feedback onto ALPNs by making GABAergic axo-axonic contacts, while layer
454 4 TOONs feedback to layer 3 by both axo-dendritic and dendro-dendritic contacts.

455 If we think of obvious outputs of the olfactory system, we might consider dopaminergic neurons
456 of the mushroom body (DANs) or putative pre-motor descending neurons (DNs) that project to
457 the ventral nervous system, help to inform the writing of olfactory memory and the control of

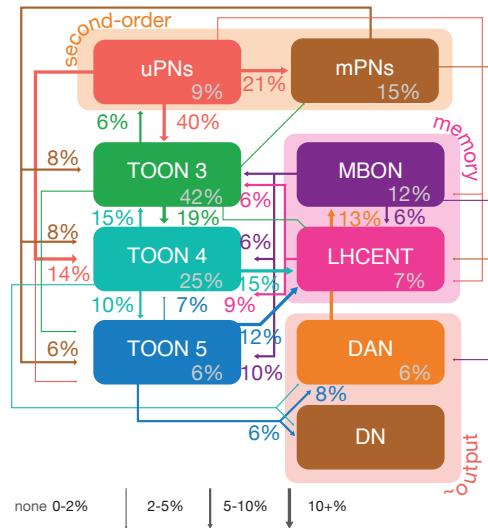


Figure 9. Antennal lobe projection neuron connectivity onto downstream targets. Annotated heatmap showing the ALPN cell types (188, rows) → target (column) connection strengths. These connection strengths have been max normalised per column (target). ALPNs known to be glutamatergic or GABAergic have been given negative connection strengths, those that are unknown or cholinergic, positive. Each target column represents an entire connectivity types' dendrites or axons (964 connectivity types' dendrites, 534 connectivity type's axons), in which each neuron has to have at least a 10 synapse or 1% postsynapse-normalised connection from an ALPN. Annotation bars indicate axons versus dendrites, as well as other metadata. Row and column clusters based on cosine similarity between connection strengths, see *Figure 9-Figure Supplement 1*. Where 'modality' is left white, the cell type in question combines information from multiple antennal lobe glomeruli. Clustering based on Ward's distance, ALPNs grouped into 10 blocks for visualisation.

Figure 9-Figure supplement 1. Neurons at the ALPN axon → target connection, clustered by connection similarity

458 olfactory-related motor output, respectively. Strong output onto DANs and DNAs first occurs with
459 layer 4 TOONs and gets stronger with layer 5 TOONs, these contacts mostly being cholinergic axo-
460 dendritic ones.

461 Higher TOON layers receive strong connections from memory-reading output neurons of the
462 MB (MBONs) while lower ones receive greater, putatively inhibitory centrifugal feedback from neu-
463 rons downstream of MBONs (LHCENTs) (*Figure 8E* and *Figure 10*). Using a neurotransmitter pre-
464 diction pipeline based on applying machine learning to raw EM data of presynapses in the FAFB
465 data set, LHCENT1-3, LHCENT5-6 and LHCENT9 appear to be GABAergic (*Eckstein et al., 2020*). LH-
466 CENT4 is predicted to be glutamatergic. LHCENT4 also differs from the others in that it is upstream
467 of most other LHCENTs. LHCENT7 is predicted to be dopaminergic and has also been described as
468 PPL202, a dopaminergic neuron that can sensitise KCs for associative learning (*Boto et al., 2019*).

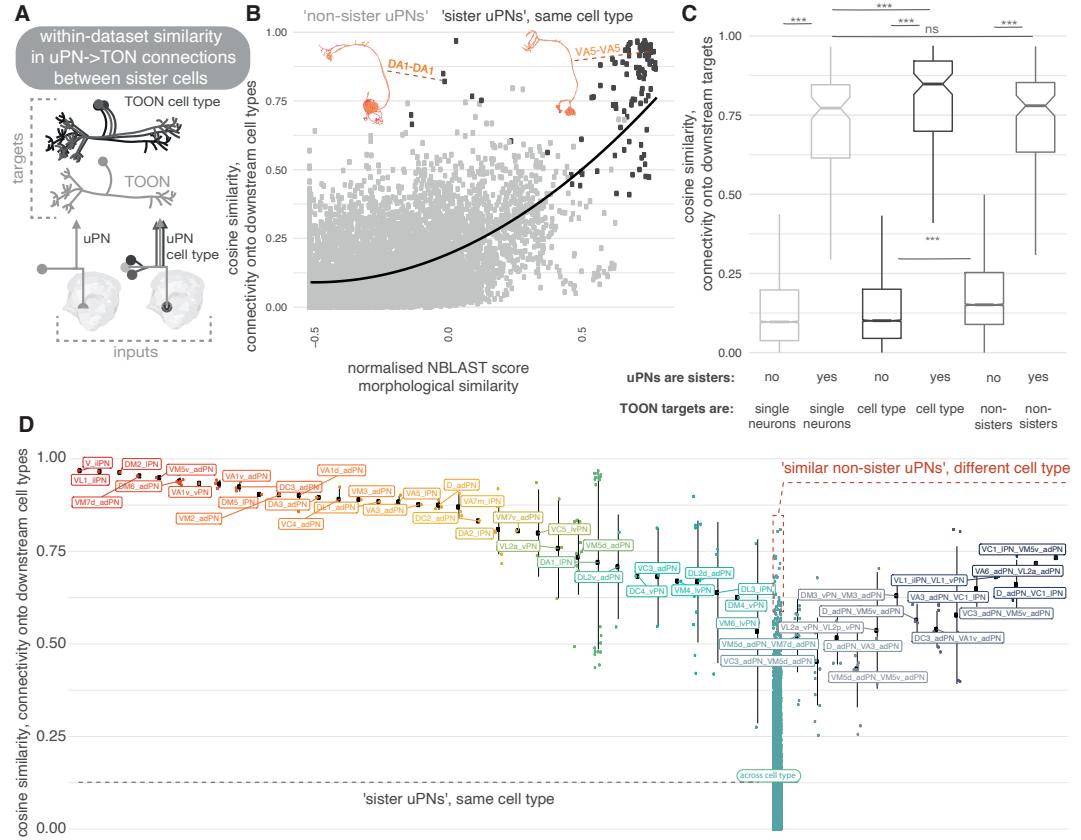
Figure 10. Neuron class-level network diagram of higher olfactory layers. A circuit schematic of third-order olfactory neurons, showing the average connection strength between different classes of neurons (mean percentage of input synapses), broken into their layers, as well as the ALPN, LHCENT and MBON inputs to this system and DAN and DN outputs. The percentage in grey, within coloured lozenges, indicates the mean input that class provides to its own members. The threshold for a connection to be reported here is 5%, and >2% for a line to be shown.

Figure 10-Figure supplement 1. Neuron class-level network diagrams of higher olfactory layers, broken down by neuron compartments and putative transmitters.

469 **Stereotypy in superior brain olfactory neurons**

470 Are these ~500 LHN types reproducible units? To address this question, we looked at the similarity
471 in connectivity among members of the same cell type in the hemibrain data set (*Figure 11*). We
472 also cross-compared hemibrain neurons with neurons in an EM volume of a different brain (FAFB)
473 (*Figure 12A-C*) (*Zheng et al., 2018*). We find that 'sister' uPN – i.e. those that have their dendrites
474 in the same glomerulus and come from the same hemilineage – typically make similar numbers
475 of connections onto common downstream targets. This is especially obvious when targets are
476 grouped by their cell type rather than each considered as individual neurons (*Figure 11A-C*). Nev-
477 ertheless, the consistency of these connections differ by sister uPN type, with some (e.g. DM4
478 vPNs, mean cosine similarity 0.50) being less similar to one another than a few non-sister compar-
479 isons (e.g. VC1 IPN and VM5v adPN, 0.63) (*Figure 11A*). For TOON cell types, comparing both up
480 – and downstream connectivity to the axon or dendrite also yields a cosine similarity measure of
481 ~0.75 (*Figure 11-Figure Supplement 1A,B*), with only a small difference between inputs/outputs and

482 axon/dendrites (**Figure 11–Figure Supplement 1D,E**). The more similar the inputs to a cell type's den-
483 drites, the more similar its axonic outputs (**Figure 11–Figure Supplement 1C**). Both also correlate
484 with the morphological similarity between TOONs of a cell type (**Figure 11–Figure Supplement 1E**).


485 For comparisons with FAFB, we picked 10 larval-born 'secondary' hemilineages in the hemibrain
486 data set and coarsely reconstructed all neurons of the same hemilineages in the FAFB volume (see
487 Methods). We show that the morphologies can be matched between the two data sets and that,
488 visually, these matches can be striking (**Figure 12A** and **Figure 12–Figure Supplement 4A**). Every LHN
489 and wedge projection neuron (**Bates et al., 2020b**) hemibrain cell type in these 10 hemilineages
490 can be matched to one in FAFB (172 cell types), with some small variability in cell number per brain
491 (**Figure 12B**, **Figure 12–Figure Supplement 1**). We also examined a set of 'primary' embryonic-born
492 neurons, the LH centrifugal neurons LHCENT1-11, and could match them up well between the two
493 data sets. In some cases, putative cell types that appear isomorphic 'at light-level' can be broken
494 down into several connectivity sub-types.

495 In several cases, we see that each of these subtypes have small but consistent morphological
496 deviations between the two data sets (**Figure 12–Figure Supplement 2A**). To account for this, we
497 broke our 569 morphological cell types into 642 connectivity types (**Scheffer et al., 2020**). In general,
498 the closer the two neurons' morphology, the more similar their connectivity. However, similar
499 morphologies can also have different connectivity (**Figure 12–Figure Supplement 4B**), perhaps due
500 to non-uniform under-recovery of synapses during the automatic segmentation of neurons and
501 their connections in the hemibrain (**Scheffer et al., 2020**).

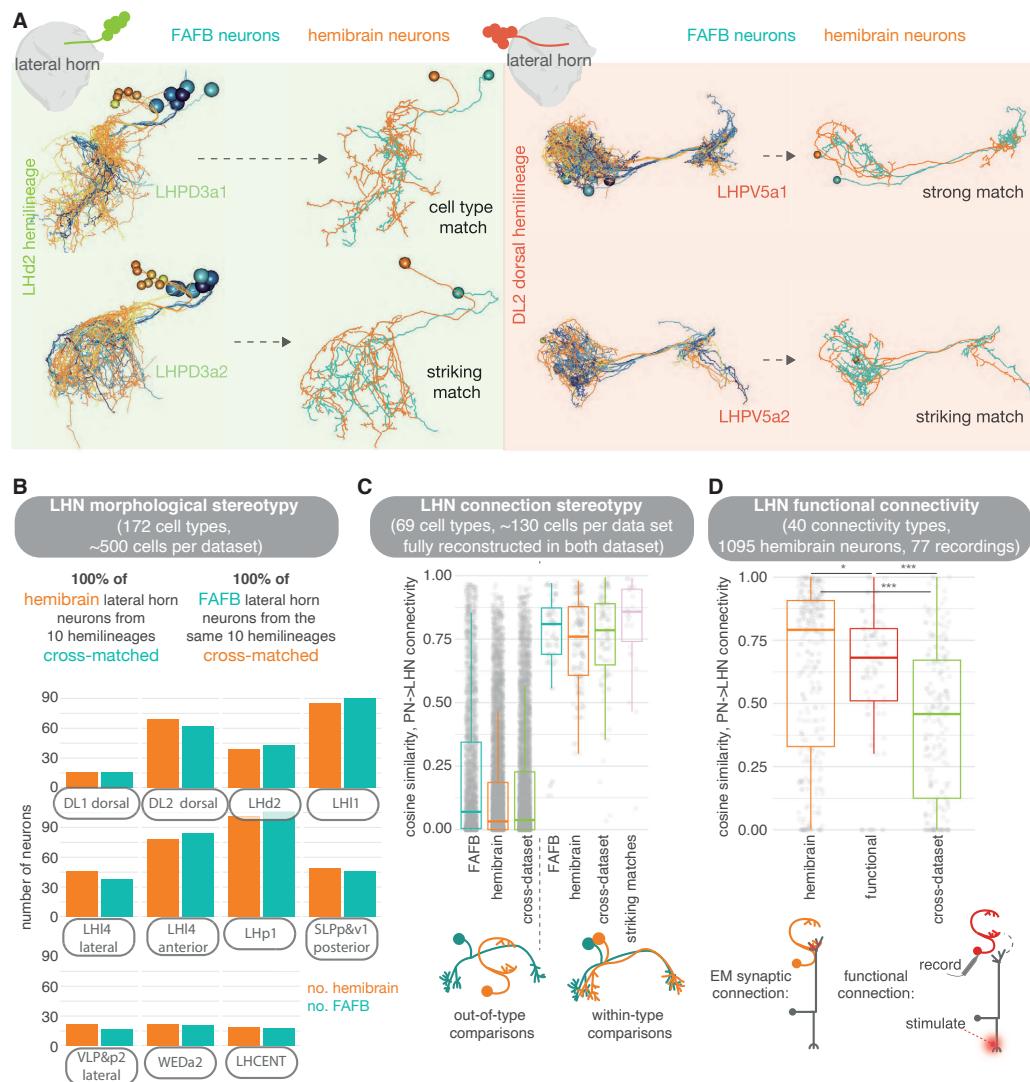
502 It is difficult to directly compare synapse numbers between the two data sets, as the meth-
503 ods of reconstruction were very different (see Methods). In FAFB, each human-annotated polyadic
504 synapse has a mean of 11 postsynapses, whereas in the hemibrain machine-annotation has re-
505 sulted in ~8 (for the same, cross-matched neurons) (**Figure 12–Figure Supplement 4D**). This is
506 likely because different reconstruction methodologies have resulted in different biases for synap-
507 tic annotation. Nevertheless, we aimed to see whether ALPN→LHN connections in FAFB were also
508 present in the hemibrain data set.

509 We previously reconstructed all members of selected cell types in FAFB (**Bates et al., 2020b**).
510 Here, we manually reviewed the same types in the hemibrain data set (an average of 3 neurons per
511 type) so that they are far more complete than the average hemibrain LHN (**Scheffer et al., 2020**) (see
512 Methods). We also examined other cell types for which we have only subsets in FAFB (**Figure 12–**
513 **Figure Supplement 4A**). Normalised connections strengths (normalised by total input synapses)
514 from ALPNs to LHNs are, on average, stronger in the hemibrain than in FAFB. In the hemibrain
515 a larger total number of input synapses have been assigned per neuron but fewer ALPN→LHN
516 connections, perhaps an artefact of the different reconstruction methods employed (**Figure 12–**
517 **Figure Supplement 4C**). Nevertheless, by comparing our FAFB reconstructions with their cognates
518 in the hemibrain for 12 connectivity types, using a cosine measure for connection similarity, we
519 see that the variability in ALPN→LHN connections between data sets is no greater than within the
520 same data set (**Figure 12C** and **Figure 12–Figure Supplement 2B**).

521 This suggests that morphological cell types may be as consistent between animals as within an
522 animal. We also compare the hemibrain connectivity to a data set describing functional connec-
523 tivity between antennal lobe glomeruli and LHNs (**Jeanne et al., 2018**). For some LHNs these func-
524 tional connections are well recapitulated in the hemibrain's cognate uPN→LHN synaptic connectiv-
525 ity. For many other pairs, however, the connectivity similarity is no greater than that to other neu-
526 rons in the data set (**Figure 12D** and **Figure 12–Figure Supplement 3**): some functional connections
527 are not present as direct synaptic connections in the connectome and *vice versa*. Similarly, there is
528 no clear correlation between the strength of a functional connection and the synaptic strength of
529 corresponding hemibrain ALPN→LHN connections (**Figure 12–Figure Supplement 3D,E**). This could
530 be due to the action of local processing in the LH as well as connections from mPNs, which have
531 impacted feed-forward transmission more for some LHN cell types than for others. For example,
532 LHAV4a4 neurons have very similar structural and functional connectivity, while LHAV6a1 neurons

Figure 11. Within-data set connectivity similarity for key olfactory cell types. **A** The synaptic targets of uPNs (left) and uPN cell types (right) can be thought of as both individual downstream cells (lower) as well as cell types (upper). **B** For each pair of uPNs, the cosine similarity for their outputs onto downstream cell types is compared against their morphological similarity. The uPN-uPN pairs where both neurons are from the same cell type, 'sisters', shown in dark grey, otherwise in light grey. **C** The cosine similarity in the downstream target pool for sister and non-sister uPN pairs is compared. Targets can either be considered as separate cells (light grey, leftmost boxplots) or pooled by cell type (dark grey, middle boxplots). Shuffled data, for which cell type labels were shuffled for neurons downstream of each uPN to produce random small out-of-cell-type groupings of cells, shown in mid grey (rightmost box plots). Non-sister TOONs are shuffled pairs of TOONs from different cell types. There are 113 different sister PN-PN comparisons, and 9157 non-sister PN-PN comparisons, from our pool of 136 uniglomerular PNs. **D** The cosine similarity between connections to downstream cell. Left, all reconstructed LHNs types, for uPN-uPN pairs. Pairs shown are from the same cell type (left) or different cell types, where at least one comparison has a similarity of above >0.6 . Significance values, Wilcoxon test: ***: $p < 0.001$.

Figure 11—Figure supplement 1. Similarity in connectivity up and downstream of olfactory neurons.


533 do not, though both their structural and functional connectivity seem stereotyped even if they are
534 different from one another (*Jeanne et al., 2018; Fişek and Wilson, 2014*). In addition, functional
535 connection strength integrates inhibitory and excitatory inputs from different ALPN classes, which
536 might also confound our results. Indeed, the glomeruli for which we have some of the largest
537 deviations from the hemibrain structural data are those with GABAergic uPNs (*Figure 12–Figure
538 Supplement 3B*).

539 **Integration of innate and learned olfactory pathways**

540 With the hemibrain data set, we can look at the extent to which MBONs directly connect to LHNs.
541 We see that while most olfactory ALPN input is onto LHN dendrites, most MBON input is onto
542 their axons (*Figure 13A,C,D*). We quantify this using an ALPN-MBON axon-dendrite compartment
543 separation score (see Methods) and find high compartmental segregation of inputs, with MBONs
544 inputting onto LHN axons (though many cells have a score at or near zero as they receive little
545 MBON innervation) (*Figure 13–Figure Supplement 4*). Many of those with negative scores are either
546 neurons tangential to the LH or LH centrifugal neurons, whose MBON innervation is known to
547 target their dendrites (*Bates et al., 2020b*). More than 20% of layer four LHN axons are targeted by a
548 range of MBONs (*Figure 13C*): both cholinergic and GABAergic, and including MBONs implicated in
549 both aversive and appetitive learning (*Aso et al., 2014b*). MBON connectivity to LHNs is sparse and
550 only a few LHNs receive inputs from multiple MBONs (*Figure 13E,F*). With MBON→LHN connections
551 being axo-axonic, there is the potential of them being reciprocal. However, there is very little output
552 from LHNs onto MBON axons (*Figure 13B*), suggesting that MBONs might gate LHN activity, but not
553 *vice versa*.

554 Next, we asked whether MBONs target the axons of LHNs that pool particular kinds of olfactory
555 information. To examine this question, we performed a matrix multiplication between connectiv-
556 ity matrices for ALPN→LHN dendrite innervation, and MBON→LHN axon innervation, normalised
557 by the LHN compartment's input synapse count, to generate a 'co-connectivity' score (*Figure 13–
558 Figure Supplement 1C-D*). From this, three coarse groups emerge: some MBON types seem to
559 preferentially target 'putative food related' LHNs. These LHNs receive input from ALPNs that re-
560 spond to mostly yeasty, fruity, plant matter and alcoholic fermentation-related odours. Another
561 group preferably targets a separate set of LHNs, that themselves receive input from ALPNs in-
562 volved in thermosensation, ethanol, CO₂, aversive fruity odours and pheromones. The third pool of
563 MBONs wire with neurons from both pools of ALPNs. About half the uPNs did not have a strong co-
564 connectivity score with MBONs. To try and assess whether certain MBONs might play a role in the
565 processing of particular odours, we multiplied the co-connectivity matrix by odour response data
566 from a recent study (*Badel et al., 2016*). We did not see a striking separation, though all MBONs con-
567 verge on TOONs that get appetitive fruity odours (e.g. ethyl butyrate) information from PNs, largely
568 because these odours are well represented on the PN level, and less so highly specific odours that
569 are less broadly encoded (*Figure 13–Figure Supplement 1A*), such as the bacterial odour geosmin.

570 In examining neurons downstream of MBONs, we found a cell type of 12 neurons which
571 receives an unusually high proportion, up to ~37%, of their input connections from MBONs:
572 LHAD1b2, cholinergic LH output neurons whose activation generates approach behaviour (*Dolan
573 et al., 2019; Frechter et al., 2019*). Electrophysiological recording of these cells has shown them to
574 act as a categoriser for 'rotting', amine-type odours (*Frechter et al., 2019*). Consistent with connec-
575 tivity observed in FAFB (*Bates et al., 2020b*), we find now the full suite of excitatory, naively aversive
576 and inhibitory appetitive MBONs that target LHAD1b2 axons, and the naively appetitive MBONs
577 and specific ALPNs that target their dendrites (*Figure 13–Figure Supplement 2A,B*). We also ob-
578 serve LHAD1b2 connections onto the dendrites of PAM DANs involved in appetitive learning, again
579 consistent with work in FAFB (*Otto et al., 2020*) (*Figure 13–Figure Supplement 2C*). Together, this
580 builds a model whereby naively appetitive information from the LH signals the presence of rotting

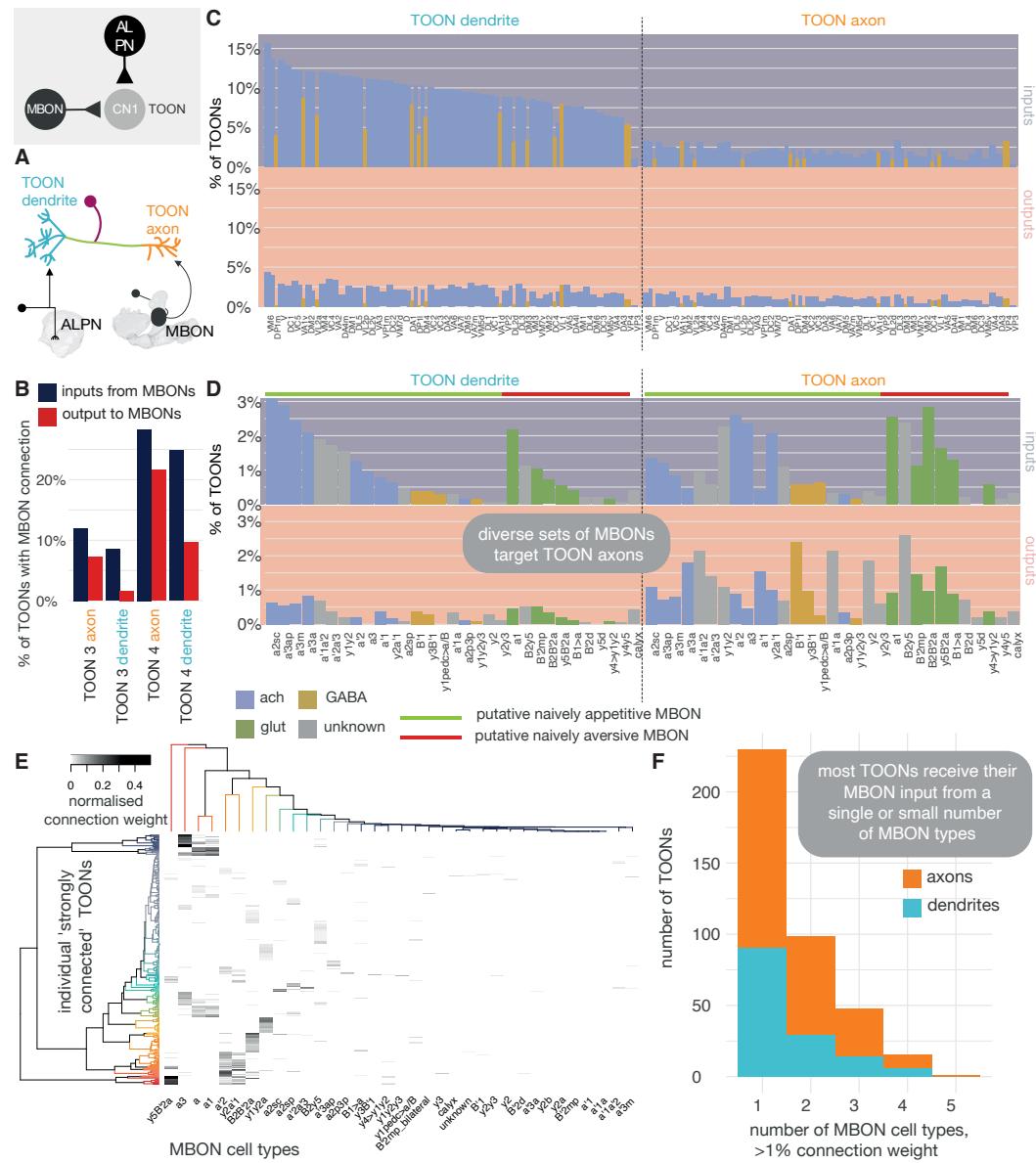

Figure 12. Stereotypy in morphology and connectivity between lateral horn neurons in the hemibrain, FAFB and functional data sets. **A** Cell types and individual neurons that have been cross-matched between data sets. Examples from the hemilineages LHd2 (i.e. the dorsal most cell body group in the LHd2 lineage clone, otherwise known as DPLm2 dorsal) and DL2 dorsal (otherwise known as CP3 dorsal). **B** We were able to cross-match >600 neurons across 10 hemilineages between the hemibrain and FAFB. **C** For neurons that had been fully synaptically reconstructed in FAFB, we calculate the cosine similarity for their ALPN→LHN connectivity vectors to hemibrain neurons, both out-of-cell-type (left) and within-cell-type (right), as well as between the two data sets. In pink, same-cell-type between data set comparisons are made for only our ‘best’ morphological matches; matches for which the two neurons look so similar they could be the ‘same cell’. **D** Within-cell-type cosine similarity for ALPN→LHN connectivity for within the hemibrain data set, within the Jeanne et al. (2018) functional connectivity data set, and between members of the same cell type across data sets. Significance values, Student’s T-test: ns: $p > 0.05$; *: $p \leq 0.05$; **: $p \leq 0.01$; ***: $p \leq 0.001$; ****: $p \leq 0.0001$.

Figure 12-Figure supplement 1. Stereotypy in morphology between lateral horn neurons in the hemibrain and FAFB data sets.

Figure 12-Figure supplement 2. Stereotypy in connectivity between lateral horn neurons in the hemibrain and FAFB.

Figure 12-Figure supplement 3. Stereotypy in connectivity between lateral horn neurons in the hemibrain and a functional data set.

Figure 12-Figure supplement 4. Matching synaptically complete neurons between two EM data sets.

Figure 13. MBON innervation of lateral horn neurons. **A** Olfactory projection neurons and MBONs seem to target different ends of lateral horn output neurons. **B** The percentage of TOONs (2383 neurons in total) that receive a 'strong' connection from an MBON type (71 neurons in total) (>1% of their dendrite's/axon's input synapses). **C** Percentages are broken down by MBON cell type. **D** The percentage of TOONs that receive a 'strong' connection from a uPN type (136 neurons in total), broken down by type (>1% of their dendrite's/axon's input synapses). **E** A heatmap showing the normalised input of different MBONs onto TOONs' axons. **F** A histogram showing the number of downstream TOONs that receive input from different numbers of MBONs. A threshold of >1% the input synapse count is used, axons and dendrites treated separately.

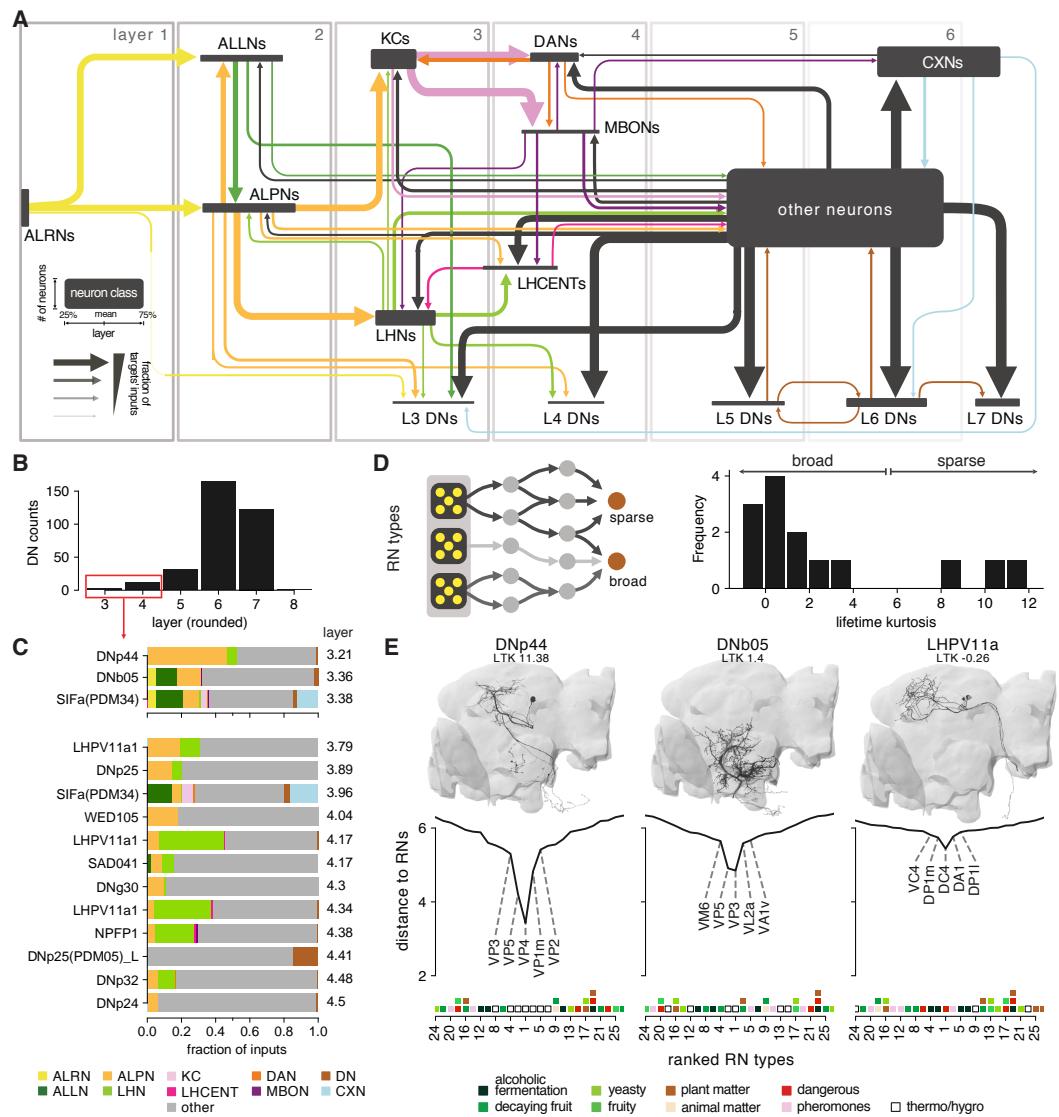
Figure 13-Figure supplement 1. Propagating known odour information to third-order olfactory neurons and mushroom body output neurons.

Figure 13-Figure supplement 2. An exemplar convergence cell type of the lateral horn and mushroom body.

Figure 13-Figure supplement 3. Convergence neurons of the lateral horn and mushroom body.

Figure 13-Figure supplement 4. A class-compartment separation score.

581 fruit (*Mansourian and Stensmyr, 2015*). This activity is then bidirectionally gated by MBON input:
582 expression of an aversive memory reduces the cholinergic drive to the axon, while an appetitive
583 memory reduces glutamatergic inhibition, thereby potentiating the cell type's effect on its down-
584 stream targets. If the cell type fires, it could excite PAM DANs that feedback to create a long-term
585 depression in MB compartments associated with naive aversion, i.e. appetitive learning.


586 The next level at which 'innate' information from the non-MB arm of the olfactory system and
587 'learned' information from the MB arm can converge, is in 'convergence' neurons (CN2) down-
588 stream of both of these neuropils. By looking at LHN cell types known to evoke either aversive
589 or appetitive behaviour (*Figure 13–Figure Supplement 3A*) (*Dolan et al., 2019*), we see that down-
590 stream partners of appetitive LHNs are more likely to be innervated by MBONs than those of
591 aversive LHNs (*Figure 13–Figure Supplement 3C*). CN2 neurons that receive at least 1% of their
592 synaptic inputs from LHNs or from MBONs tend to get cholinergic input from naively appetitive
593 MBONs and LHNs, and inhibitory input from naively aversive MBONs and LHNs (*Figure 13–Figure*
594 *Supplement 3B,D*).

595 **Connections to the motor system**

596 Motor systems ultimately responsible for generating behaviour are located in the ventral nervous
597 system and the suboesophageal zone (SEZ) and can, to some extent, function independently of
598 the rest of brain (*Berni et al., 2012; Hückesfeld et al., 2015; Egeth, 2011; Hampel et al., 2017*).
599 How olfactory circuits connect to and modulate these motor systems remains an open question.
600 In general, higher brain circuits exert control over motor systems via descending neurons (DNs)
601 (*Lemon, 2008*). In *Drosophila*, a recent light-level study identified ~700 DNs (~350 per side of the
602 brain) that connect the brain to the ventral nervous system (*Namiki et al., 2018*). We used existing
603 neuPrint annotations and complemented them with DNs identified in the "FlyWire" segmentation
604 of FAFB to compile a list of 345 confirmed DNs in the hemibrain data set (see supplemental files)
605 (*Dorkenwald et al., 2020*). Due to the truncation, the hemibrain volume does not contain many
606 of the DNs in the SEZ ("DNg" in Namiki et al., 2018) and most of the DNs present descend from
607 higher brain regions. Even without knowing their exact targets in the ventral nervous system, such
608 DNs represent a common outlet for all higher brain circuits. We find only 11 DNs that appear to be
609 "early" (i.e. layer 3 or 4) with respect to the olfactory system (*Figure 14A,B*). These early DNs typically
610 receive diverse inputs including from ALPNs and lateral horn neurons (LHNs) (*Figure 14C*). We next
611 asked whether individual DNs exhibit preferences with respect to which types of antennal lobe
612 receptor neurons (ALRNs) they receive direct or indirect input from. To answer this, we re-ran the
613 graph traversal model using only the ALRNs of a given type/glomerulus as seeds. This produced,
614 for each DN, a vector describing the distances to 49 different ALRN types (we excluded some of the
615 more severely truncated glomeruli). Using those vectors to calculate the lifetime kurtosis, we find
616 both broad and sparse early DNs (*Figure 14D*). By contrast, DNs in layer 5 and above are generally
617 broadly tuned and no longer exhibit a preference for specific ALRNs (data not shown). There do
618 appear to be "shortcuts" between the thermo/hygro sensory and the motor system via early DNs
619 that connect most directly to VP1-5 ALRNs. One might expect similar connections for biologically
620 highly relevant odours such as the wasp pheromone Iridomyrmecin (Or49a/Or85f, DL4), Geosmin
621 (Or56a, DA2) or the sex pheromone cVA (Or67d, DA1) (*Mansourian and Stensmyr, 2015; Stensmyr*
622 *et al., 2012; Kurtovic et al., 2007; Kohl et al., 2013; Ebrahim et al., 2015*). However, ORNs appear
623 to only converge onto broadly tuned early DNs that show no clear preferences for specific odour
624 scenes (*Figure 14E* and *Figure 14–Figure Supplement 1*). This suggests that thermo/hygro sensory
625 employs labeled-line shortcuts whereas olfaction uses (higher-order) population coding to effect
626 motor output.

627 **Discussion**

628 One of the most significant practical outcomes of our work are classifications for thousands of ol-
629 factory system neurons across the hemibrain data set, comprising a full inventory for a single brain

Figure 14. Connections between the olfactory system and descending neurons. **A** Summary of olfactory circuits organised by layers. Box heights and widths correspond to the number and layer of neurons represented, respectively; arrow widths correspond to fraction of the targets' inputs. See also legend in lower left. **B** The number of "early" (layer 3 and 4) descending neurons (DNs) is low. **C** Inputs to early DNs are diverse. Labels represent names in neuPrint. **D** Sparseness (lifetime kurtosis, LTK) of early DNs with respect to individual receptor neuron (ALRN) types. Most early DNs receive indirect inputs from a broad range of ALRNs. **E** Exemplary DNs and their connectivity to individual ALRN types. A low distance indicates a more direct connection between an ORNs or TRN/HRN type and the DN. Only the top 25 ALRN types shown. Hemibrain DNs are shown in black and their homologs in the FlyWire dataset as reference in grey. Heatmap shows glomeruli odour scenes.

Figure 14-Figure supplement 1. Extended data for *Figure 14E*.

hemisphere (see Supplemental Material). This includes the first full survey of antennal lobe local neurons (ALLNs), third-order olfactory neurons (TOONs) and lateral horn centrifugal neurons (LHCENTs), and complements a recent inventory of antennal lobe projection neurons (ALPNs) (Bates *et al.*, 2020b) (*Figure 1*). We explore this data with a model that breaks down the olfactory system into layers. Layering had not previously been computable for higher-order neurons, and this analysis reveals interesting features even within the first three layers. Additionally, we have investigated high-level connectivity motifs between the neuron classes and cell types that we have defined and examined how stable our classifications are by asking whether we can find the same neurons, and

638 in some cases the same connections, in a second connectomic data set.

639 **Cell type annotations across the first three orders of the olfactory system**

640 We have built open-source neuroinformatic tools in R and Python (see Methods) to read and sum-
641 marise neuron data from the hemibrain data set efficiently. We have used these with morpho-
642 logical clustering tools, namely NBLAST (*Costa et al., 2016*), to break neurons into groups that we
643 can validate against other neuron data, both from light microscopy (*Chiang et al., 2011*) and an-
644 other EM data set (*Zheng et al., 2018*). In so doing, for the right hemisphere, we have classified
645 all 2644 receptor neurons (ALRN, olfactory and thermo/hygro sensory) in all 58 antennal lobe (AL)
646 glomeruli, as well as the 338 second-order projection neurons (uPNs and mPNs) and 196 anten-
647 nal lobe local neurons (ALLNs), and 2300 third-order neurons outside of the mushroom body. We
648 connect these olfactory neurons to known cell types, and for ALLNs (Figure *Figure 6E*) and lateral
649 horn neurons (LHNs) we have expanded extant naming systems to cover hundreds of new mor-
650 phologies (Figure *Figure 8A*). For the whole hemibrain data set of ~25,000 neurons we assign a
651 putative olfactory layer (Figure *Figure 2*). We find that for layers 1-3, information is mostly propa-
652 gated forward, for layers 4-6 there is much intra-layer cross-talk, and from 7 onwards information
653 tends to propagate back to lower layers (Figure *Figure 2G*). In light of this new data, we have also
654 re-evaluated the neurons targeted by recently published lateral horn split-GAL4 lines (*Dolan et al.,*
655 *2019*) (*Figure 8-Figure Supplement 2, Figure 8-Figure Supplement 3, Figure 8-Figure Supplement 4,*
656 *Figure 8-Figure Supplement 5*).

657 **Class-level connection motifs in the olfactory system**

658 We have found that connectivity with respect to first-order olfactory inputs, the ALRNs, differs de-
659 pending on whether the axon enters the antennal lobe from the ipsi – or contralateral side of
660 the brain (*Figure 3*). Although there have been functional indications of asymmetric information
661 processing (*Gaudry et al., 2013*) no connectomic signature had been observed in adult *Drosophila*
662 before, while in larva ORNs are unilateral. We identify a general principle that ipsilateral sensory
663 input has stronger feedforward connections to the ALPNs that convey information to higher cen-
664 tres, while contralateral ALRNs are biased to form connections with antennal lobe local neurons.
665 We also show specific connectivity motifs such as the extreme bias for contralateral sensory input
666 of the broadly innervating bilateral iL3LN6 neurons, which appear to be the adult analogue of the
667 larval 'Keystone' (*Berck et al., 2016*) ALLNs (Figure *Figure 5B,E*). We see that many sparse ALLNs
668 innervating a small number of glomeruli interact specifically with thermo/hygro sensory circuits;
669 although this is consistent with a model in which these 7 glomeruli form a specialised subsystem,
670 there are local interactions with other glomeruli so they are not completely isolated. Furthermore,
671 some ALLN cell types are segregated into axon and dendrite, which facilitates reciprocal interac-
672 tions between, for example, the 'heating' glomerulus VP2 and the 'cooling' glomerulus VP3. The
673 antennal lobe also receives feedback from superior brain regions and this primarily targets the
674 ALLN network, as opposed to ALPN dendrites or ORN axons (Figure *Figure 5G*).

675 Amongst ALPNs, we see a second general rule: while uPNs mostly receive feedforward input,
676 multiglomerular mPNs get a higher proportion of their input from lateral ALPN-ALPN connections
677 and from ALLNs, meaning that in our analysis many emerge as layer 3 neurons (Figure *Figure 2E,F*).
678 The uPNs provide most of the feedforward drive to the third-order olfactory neurons (TOONs).
679 However, they provide decreasing levels of input to TOONs from layer 3 to layer 5. They receive
680 feedback to their axons from largely glutamatergic or GABAergic layer 3 TOONs (cells we once
681 classed as LH local neurons) and LH centrifugal neurons. We expect these connections to inhibit
682 uPN axons. The mPNs can short-circuit this progression, and provide roughly consistent amounts
683 of input to all groups of TOONs, both at their dendrite and axons. Comparison with our recent
684 work reveals that we had previously thought of layer 3 TOONs as 'local' neurons and layer 4+ LHNs
685 as 'output' neurons (Figure *Figure 8E*). As olfactory information filters through to layer 5+ TOONs,

686 stronger connections are made to 'outputs' of the olfactory system, including dopaminergic neu-
687 rons that can inform memory and descending neurons that contact premotor circuits (Figure *Fig-
688 ure 10-Figure Supplement 1*).

689 These output neurons can get strong but sparse input from a diversity of MBONs to their ax-
690 ons, acting as 'convergence level 1' (CN1) neurons that re-connect the non-MB and MB arms of
691 the olfactory system (Figure *Figure 13A-F*). This MBON innervation is biased towards TOONs that
692 receive input from certain ALPN groups, including those that encode food-like odours (Figure *Fig-
693 ure 13G*). Neurons downstream of TOONs can also receive MBON input; these are 'convergence
694 level 2' (CN2) neurons. There are more CN2 neurons downstream of known appetitive TOONs
695 than aversive ones (Figure *Figure 13-Figure Supplement 1F*). In general, CN2 neurons tend to get
696 inhibitory inputs from naively aversive MBONs and TOONs, and excitatory input from naively ap-
697 petitive MBONs and TOONs (*Figure 13-Figure Supplement 3*). Analogous innate-learned integra-
698 tion has been studied in the larva, also in connectome-informed experimentation (*Eschbach et al.,
699 2020*). The authors investigated a CN2 cell type and found it to be excited by appetitive LHNs and
700 MBONs and inhibited by aversive MBONs. Naive MBON activity is likely to be relatively stereotyped
701 between animals (*Mittal et al., 2020*). The hypothesis is that in naive animals, opposing MBON
702 drive balances to produce a stereotyped 'innate' outcome; learning then shifts this balance to bias
703 behaviour.

704 **Between-animal stereotypy in olfactory system neurons**

705 One of the most pressing questions for the field now is how stereotyped the fly brain actually is.
706 This is critical for interpreting connectomes, but also a fundamental issue of biology across species
707 all the way to mammals. We do not expect two fly connectomes to be exactly the same. However
708 there is a palpable expectation that one would identify the same strong partners for a neuron of
709 experimental interest or reveal a shared architecture of some circuit because many small cell types
710 are faithfully reproduced between animals (*Bates et al., 2019*).

711 Here, we have found that all ALPN cell types from a complete survey in FAFB could be found in
712 the hemibrain, with small variations in cell number that correlate with birth-order (*Figure 6C* and
713 *Figure 6-Figure Supplement 1A*). More variation occurs in the number of larval-born secondary
714 neurons than the primary neurons born in the embryo. There are several possible reasons for
715 these differences, including the fact that in the larva, each of 21 olfactory glomeruli is defined by
716 a single ORN and ALPN. Since missing one neuron would therefore eliminate a whole olfactory
717 channel, there might be a strong drive to ensure numerical consistency.

718 Assessing cell type stereotypy of mPNs and ALLNs between hemibrain and FAFB is somewhat
719 compromised by truncation of glomeruli in the hemibrain data set. However, examining morpho-
720 logically far more diverse LHNs, we could find the same cell types across 10 hemilineages in similar
721 numbers (*Figure 12-Figure Supplement 1*).

722 Because LHNs also have reasonably stereotyped dendritic projections (*Dolan et al., 2019*), func-
723 tional connections from ALPNs (*Jeanne et al., 2018*) and responses to odorants (*Frechter et al.,
724 2019*), it is likely that ALPN-LHN contacts have intrinsic relevance to the animal. Conversely, ol-
725factory ALPN-KC contacts have minimal intrinsic meaning and exhibit near-random wiring (*Eichler
726 et al., 2017; Zheng et al., 2020; Caron et al., 2013*) although connection biases may enable asso-
727 ciative memory to focus on certain parts of olfactory space (*Zheng et al., 2020*). ALPN connectivity
728 onto third-order neurons in the 'non-MB' path through the olfactory system appears to be reason-
729 ably stereotyped, as suggested by the strong morphological stereotypy among these higher-order
730 neurons (*Figure 12*). Structural connectivity from the hemibrain does not necessarily cap-
731 ture functional connections assayed by physiology. Encouragingly, however, recent work with a
732 retrograde genetic system for finding neurons that input onto genetically targetable cells found
733 6/7 glomerular connections to LHPD2a1/b1 neurons of above 10 synapses in FAFB, and 8/9 for
734 LHAV1a1 (*Cachero et al., 2020*).

735 Conclusion

736 Our study (together with the work of *Li et al. (2020)* on the mushroom body) provides an annotated
737 guide to the complete olfactory system of the adult fly. We believe that it will be invaluable
738 in driving future work in this important model system for development, information processing
739 and behaviour. Our microcircuit analysis already raised specific hypotheses about brain functions
740 including stereo processing of odours, higher order feedback controlling sensory processing and
741 the logic of integration downstream of the two main higher olfactory centres.

742 The tools and analytic strategies that we have developed should enable many future analyses
743 of the hemibrain dataset as well as in progress and planned datasets for the male and female central
744 nervous system. For example the layer analysis could usefully be carried out across sensory
745 modalities to quantify multisensory integration. They also provide a quantitative basis for comparative
746 connectomics studies across datasets, for which we provide initial comparisons at two
747 different levels of the olfactory system. Finally, these strategies and the circuit principles that they
748 uncover provide a platform for connectomics approaches to larger brains that will surely follow
749 (*Abbott et al., 2020*).

750 Acknowledgments

751 This work was supported by a Wellcome Trust Collaborative Award (203261/Z/16/Z) to G.S.X.E.J.,
752 and G.M.R.; an ERC Consolidator grant (649111) and core support from the MRC (MC-U105188491)
753 to G.S.X.E.J.; NIH BRAIN Initiative grant 1RF1MH120679-01 to Davi Bock and G.S.X.E.J.; a Boehringer
754 Ingelheim Fonds PhD Fellowship and a Herchel Smith Studentship to A.S.B.; NIH R01DC008174
755 (to Rachel Wilson) and an F31 fellowship (DC016196) to A.B.-M; and by the Howard Hughes Medical
756 Institute. We thank the FlyEM team and their collaborators for pre-publication access to the
757 hemibrain data set and reconstructions. Development and administration of the FAFB tracing environment,
758 analysis tools and G.S.X.E.J, T.S. and P.S. were funded in part by NIH BRAIN Initiative grant
759 1RF1MH120679-01 to Davi Bock and G.S.X.E.J., with software development effort and administrative
760 support provided by Tom Kazimiers (Kazmos GmbH) and Eric Perlman (Yikes LLC). We are also
761 grateful to the Seung and Murthy labs for access to the flywire.ai reconstruction community. We
762 thank Kei Ito, Masayoshi Ito and Shin-ya Takemura for the examination and discussion of neuron
763 types and names in the antennal lobe and lateral horn, and Rachel Wilson for those in the antennal
764 lobe. We also thank Romain Franconville for his contributions to our R package *neupintr*. We thank
765 Karen Menuz, Darya Task, Veit Grabe, Chris Potter and Silke Sachse for discussions on posterior
766 antennal lobe glomeruli and receptor neuron identity. Finally, we thank Liqun Luo, Kei Ito, Rachel
767 Wilson, Thomas Riemensperger and Andrew Lin for comments on the manuscript.

768 Methods

769 Data and tool availability

770 Hemibrain version 1.1 and 1.2 data is available via neuPrint (<https://neuprint.janelia.org/>) (*Clements et al., 2020; Scheffer et al., 2020*). New FAFB tracing data presented in this study will be made
771 available through the public CATMAID instance hosted by Virtual Fly Brain (<https://fafb.catmaid.virtualflybrain.org/>) upon publication. Previously published FAFB data is already available on the
772 site.

775 Analyses were performed in R and in Python using open source packages. As part of this paper
776 we have developed various new packages to fetch, process and analyse hemibrain data and integrated
777 them with existing neuroanatomy libraries (*Bates et al., 2020a*). **Table 1** gives an overview
778 of the main software resources used. The packages used for specific analyses will be identified in
779 each section of our methods.

780 Where appropriate, we have added short tutorials to the documentation of above packages
781 demonstrating some of the analyses performed in this paper. We also provide example code snippets
782 directly related to the analyses in this paper at https://github.com/flyconnectome/2020hemibrain_

Table 1. R and Python packages used and developed in this study.

	Language	Name	Github repository	Description
by the authors	R	neupintr	natverse/neupintr	Query data from neuPrint
	R	hemibrainr	natverse/hemibrainr	Analyse hemibrain data and metadata
	R	catmaid	natverse/rcatmaid	Query CATMAID data (e.g. for FAFB)
	R	nat.jrcbrains	natverse/nat.jrcbrains	Map between brain templates (inc hemibrain & FAFB)
	R	nat.nblast	natverse/nat.nblast	Morphological comparison
	Python	navis	schlegelp/navis	Query and process neuron data
	Python	navis-flybrains	schlegelp/navis-flybrains	Map between brain templates (inc hemibrain & FAFB)
	Python	pymaid	schlegelp/pymaid	Query CATMAID data (e.g. for FAFB)
	Python	fafbseg	flyconnectome/fafbseg-py	Work with autosegmented FAFB data (e.g. FlyWire)
third party	Python	neuprint-python	connectome-neuprint/neuprint-python	Query data from neuPrint, developed by Stuart Berg (Janelia Research Campus)

783 examples.

784 **Neuronal reconstructions in the hemibrain data set**

785 The hemibrain connectome (*Scheffer et al., 2020*) has been largely automatically reconstructed using flood-filling networks (*Januszewski et al., 2018*) from data acquired by focused ion-beam milling scanning EM (FIB-SEM) (*Knott et al., 2008; Xu et al., 2017*), followed by manual proofreading. Pre-
786 - (T-bars) and postsynapses were identified completely automatically. Significantly, the dense labelling allows estimating completion status as fraction of postsynapses successfully mapped to a neuron. For this first iteration of the hemibrain data set, the completion rate varies between 787 85% and 16% across neuropils. Notably, the lateral horn currently has one of the lowest completion rates with only ~18% of postsynapses connected mapped to a neuron. We have therefore 788 employed focused semi-manual review of identified neurons in the hemibrain for higher-fidelity 789 connectivity comparison (no manual assessment of synapses). The data can be accessed via the 790 neuPrint connectome analysis service (<https://neuprint.janelia.org/>) (*Clements et al., 2020*). We built 791 additional software tools to pull, process and analyse these data for R (as part of the natverse 792 ecosystem) (*Bates et al., 2020a*) and Python (see table above). Neurons can be read from neuPrint 793 and processed (e.g. split into axon and dendrite) with the package `hemibrainr` using the function 794 `hemibrain_read_neurons`.

800 **Neuronal reconstructions in the FAFB data set**

801 Unlike the hemibrain, the FAFB image volume comprises an entire female fly brain (*Zheng et al., 2018*). Two public segmentations of FAFB exist from Google (*Li et al., 2019*) and the Seung lab 802 (<https://flywire.ai/>) (*Dorkenwald et al., 2020*). However, unlike for the hemibrain data set, these 803 segmentations have not yet been proof-read by humans (at least not at scale). To date, most 804 of the neuronal reconstruction in FAFB has been manual, using CATMAID (*Saalfeld et al., 2009; Schneider-Mizell et al., 2016*). We estimate that ~7% of the brain's total neuronal cable, and <1%

807 of its connectivity, has been reconstructed in FAFB by a consortium of 27 laboratories worldwide
808 using CATMAID. For data presented in this work, we have combined coarse morphologies extracted
809 and proof-read from the FlyWire and Google segmentation with detailed manual reconstructions
810 and synapse annotation. We have built software tools to pull, process and analyse these data from
811 CATMAID and FlyWire in R (part of the *natverse* ecosystem) and Python.

812 **Processing of neuron skeletons and synapse data**

813 Raw skeleton and predicted synapse information from the hemibrain project may have a number
814 of associated issues. Synapses, for example, are sometimes assigned to a neuron's soma or cell
815 body fibre; these are incorrect automatic synapse detections. Autapses are often seen, but the
816 majority of these cases are false-positives (the neuPrint web interface filters those by default). A
817 single neuron may also have multiple skeletons associated with it that need to be connected. In
818 addition, these skeletons are typically not rooted to their base – i.e. the soma if available or, in
819 case of truncated neurons without a soma, the severed cell body fibre. A correctly rooted skeleton
820 is important for some forms of analysis, including axon-dendrite splitting (*Schneider-Mizell et al., 2016*).
821

822 We wrote custom code to deal with these issues, as well as split neurons into their axon
823 and dendrite. The correct root of a neuron was identified using an interactive pipeline and
824 expert review (`hemibrain_somas`). We re-rooted all neurons in the data set (`hemibrain_reroot`),
825 removed incorrect synapses at somata, along cell body fibres and along primary dendrites
826 (`hemibrain_remove_bad_synapses`), healed split skeletons, employed a graph-theoretic algorithm
827 to split neurons into axon and dendrites (`hemibrain_flow_centrality`) and implemented in-
828 teractive pipelines for users to correct erroneous splits and soma placements. This has en-
829 abled us to build putative connectivity edge lists including neuron compartment information
830 (`hemibrain_extract_synapses`). We have made our code and manipulated data available in our
831 R package `hemibrainr`.

832 **Matching neurons between data sets**

833 Hemibrain neurons were matched to those from FAFB, as well as light level reconstructions (e.g.
834 hemilineage models, see *Wong et al. (2013); Lovick et al. (2013)*, stochastic labelling data (*Dolan*
835 *et al., 2019*) and images of neuron clones (*Yu et al., 2013; Ito et al., 2013*) by bridging these data
836 into the same brain space (*Bogovic et al., 2020; Bates et al., 2020a*) and then using NBLAST (*Costa*
837 *et al., 2016*) to calculate neuron-neuron morphology similarity scores.

838 Neurons were bridged using the R `nat.jrcbrains` package (<https://github.com/natverse/nat.jrcbrains>) and `nat.templatebrains::xform_brain` function or the Python package `navis` (`navis.xform_brain`) in combination with `navis-flybrains` (<https://github.com/schlegelp/navis-flybrains>), both of which wrap light-EM bridging registrations reported in *Bogovic et al. (2020)*. Prior to
842 NBLAST (using `nat.nblast` or `navis`), EM skeletons were scaled to units of microns, arbour was re-
843 sampled to $1\mu\text{m}$ step size and then converted to vector cloud `dotprops` format with $k=5$ neigh-
844 bours. To ensure that skeletons from the two EM data sets could be fairly compared, we per-
845 formed certain post-processing steps such as pruning away terminal twigs of less than $2 - 5\mu\text{m}$
846 (`nat::prune_twigs/navis.prune_twigs`) or restricting the arbour for all neurons to the hemibrain
847 volume (`hemibrainr::hemibrain_cut`) (even if tracing existed outside of this volume for FAFB neu-
848 rons).

849 For TOON matching, human experts then visually compared potential matches (with function
850 `hemibrain_matching`) and qualitatively assessed them as 'good', a near-exact match between the
851 two data sets; 'medium', match definitely represents neurons of the same cell type; and 'poor', neu-
852 rons are probably the same cell type but under-tracing, registration issues or biological variability
853 made the expert uncertain. We have made our matching pipeline code and matches available in
854 our R package `hemibrainr`. Matches are available in the package `hemibrainr` as `hemibrain_matches`.

855 **Neurotransmitter assignment**

856 We know the transmitter expression of a few hundred olfactory system neurons based mainly
857 on immunohistochemistry results from the literature (*Tanaka et al., 2012b; Wilson and Laurent,*
858 *2005; Liang et al., 2013; Lai et al., 2008; Dolan et al., 2019; Aso et al., 2014a; Okada et al., 2009;*
859 *Tanaka et al., 2012a*). To guess at the transmitter expression of related neurons, we hypothesised
860 that if brain neurons share a hemilineage they will share their fast-acting transmitter expression,
861 as has been seen in the adult ventral nerve cord (*Lacin et al., 2019*). If neuron 1 belongs to the
862 same hemilineage as neuron 2, for which there is data to suggest its neurotransmitter expression,
863 neuron 1 is assumed to express the same neurotransmitter.

864 **Antennal lobe glomeruli**

865 The antennal lobe is composed of 58 neuropils called glomeruli. Each glomerulus is a region
866 where a specific type of olfactory or thermo/hygrosensory receptor neurons (ALRNs) synapses
867 onto local and projection neurons, ALLNs and ALPNs, respectively. There are 7 identified
868 thermo/hygrosensory glomeruli: VP1d, VP1l, VP1m (*Marin et al., 2020*), VP2, VP3 (*Stocker et al.,*
869 *1990*), VP4 (*Silbering et al., 2011; Frank et al., 2017; Knecht et al., 2017*) and 51 olfactory glomeruli
870 (*Bates et al., 2020a*).

871 **Truncated glomeruli**

872 Based on a qualitative assessment, a number of glomeruli (DA4l, DA4m, DM5, VA2, VC5, VM1, VM2,
873 VM3) are substantially (>25%) and 11 (D, DA2, DA3, VA1d, VA6, VA7m, VM6, VM4, VM5d, VM5v,
874 VM7d) are partially (<25%) truncated in the hemibrain. The truncation is due to the proximity of
875 these glomeruli to the 'hot-knife' sections and to the boundary line in the imaging sample (medial
876 and anterior antennal lobe regions).

877 **Renaming posterior AL glomeruli**

878 Our glomerular identification in *Bates et al. (2020b)* was principally based on previously reported
879 projection neurons (ALPNs) associated with a single glomerulus (i.e. "uniglomerular PNs"). Using
880 PNs provides more points of reference (position of dendrites, lineage, axonal projections) than the
881 relative positions of sensory receptor neuron (ALRN) axon terminals. While this approach works
882 for most glomeruli, some of the posterior glomeruli have had conflicting reports in the literature:

- 883 • VC3 has been treated as a single glomerulus (e.g. *Yu et al. (2010)*) as well as two separate
884 glomeruli, VC3m and VC3l (e.g. *Tanaka et al. (2012a); Laissue et al. (1999)*)
- 885 • the VM6 PN has been referred to as VC5 (*Tanaka et al., 2012a*) and VM6+VP1 (*Yu et al., 2010*)

886 In collaboration with Karen Menuz (University of Connecticut), Darya Task and Chris Potter (John
887 Hopkins University), Veit Grabe and Silke Sachse (Max Planck Institute for Chemical Ecology), we
888 now consolidate these accounts with extant literature on sensory receptors (see also below table).
889 As a result of this, three glomeruli were renamed compared with hemibrain v1.1/v1.2 and *Bates*
890 *et al. (2020b)*:

- 891 • VC3l → VC3
- 892 • VC3m → VC5
- 893 • VC5 → VM6

894 ALRNs of the VM6 glomerulus further split into three distinct subpopulations – VM6v, VM6m and
895 VM6l – with different receptors and origins ((*Task et al., 2020*)) (*Figure 3-Figure Supplement 2B*).
896 This is likely part of the reason for confusion in the past. Because these subpopulations appear
897 to be indiscernible from the perspective of the downstream network (*Figure 3-Figure Supple-*
898 *ment 2B,C*), we decided to refer to the PNs that cover the combination of VM6v, VM6m and VM6l as
899 "VM6" uPNs. Following this reasoning, we still refer to the antennal lobe as containing 58 glomeruli.
900 Please see *Table 2* for a summary and supporting references.

Table 2. Names of posterior glomeruli across datasets and publications, and supporting reference for names used in this study.

glomerulus	hemibrain v1.1+1.2	Bates et al. (2020)	Tanaka et al. (2012)	Yu et al. (2010)	receptor	supporting references
VC5	VC3m	VC3m	VC3m	-	Ir41a	<i>Silbering et al.</i> (2011); <i>Task et al.</i> (2020); <i>Hussain et al.</i> (2016); <i>Min et al.</i> (2013); <i>Chai et al.</i> (2019)
VC3	VC3l	VC3l	VC3l	VC3	Or35a	<i>Couto et al.</i> (2005); <i>Grabe et al.</i> (2016); <i>Silbering et al.</i> (2011); <i>Task et al.</i> (2020); <i>Min et al.</i> (2013)
VM6 (v+m+l)	VC5	VC5	VC5	VM6+VP1	Rh50/Amt	<i>Endo et al.</i> (2007); <i>Li et al.</i> (2016); <i>Chai et al.</i> (2019); <i>Vulpe et al.</i> (2021); <i>Task et al.</i> (2020)

901 These corrections affect names ("instances") and types of ALRNs and ALPNs. Changes will be
902 merged into the hemibrain with the release of version 1.3. All neurons can still be unambiguously
903 identified and tracked across versions of the dataset via their body IDs.

904 **AL glomeruli meshes**

905 The boundary between glomeruli can be defined either using presynapses of ALRNs or the
906 corresponding postsynapses of uniglomerular ALPNs (uPNs). Hence we generated both ALRN
907 - and ALPN-based glomeruli meshes. These are available in the package `hemibrainr` as
908 `hemibrainr_al.surf` and in the supplemental data.

909 In brief, we used the location of synapses (either dendritic postsynapses of identified uPNs
910 or axonal presynapses of ALRNs) to produce a Gaussian kernel density estimate (KDE) for each
911 glomerulus. We then divided the entire AL into isotropic 480nm voxels and used the KDEs' point
912 density functions (pdf) to assign each voxel to its most likely glomerulus. Voxels with a below-
913 threshold probability to belong to any glomerulus (e.g. tracts) were discarded. The voxel data
914 was postprocessed (binary erosion, fill holes) before being converted to meshes using a marching
915 cubes algorithm. All above steps were performed in Python using `scipy` (<https://www.scipy.org>) and
916 `scikit-learn` (<https://scikit-learn.org>). Sample code can be found at https://github.com/flyconnectome/2020hemibrain_examples. Finally, the meshes were inspected and manually fixed if required using
917 `Blender3d` (<https://www.blender.org>). For the ALPN-based glomeruli meshes, we used the lo-
918 cation of dendritic postsynapses of all the uniglomerular projection neurons (uPNs) – except for
919 glomeruli VP3, VP5, VP1d, VP1l which do not have clear-cut uPNs and where we used the presy-
920 naptic locations of corresponding ALRNs. For the ALRN-based meshes we used locations of ALRN
921 presynapses. Here, VM2 was excluded because of too few RNs identified for this glomerulus. Also
922 note that for the ALRN-based meshes we used the VM6 ORN subtypes to generate separate meshes
923

924 for VM6v, VM6m and VM6l.

925 Cell type annotation

926 Annotations are available via neuPrint and as part of our R package `hemibrainr`. These are available
927 in the package `hemibrainr` with the function `hemibrain_get_meta`.

928 Antennal lobe receptor neurons

929 Antennal lobe receptor neurons (ALRNs, 2643) were identified by morphology and by connectivity
930 to projection neurons. Types were named by the glomerulus they innervate. Soma side was as-
931 signed to each ALRN from non-truncated glomeruli whenever possible, based on visual inspection
932 of the path of the neurite towards the nerve entry point.

933 The number of ALRNs in the 39 whole glomeruli is 1680. For 8 types (DC3, VA1v, VA3, VA4,
934 VA5, VA7l, VC2, VC4), although the glomeruli are whole, the majority of ALRNs are fragmented,
935 preventing the assignment of a soma side. For VM6 ALRNs, the glomeruli truncation prevented us
936 from assigning every VM6 ALRN to one of the 3 populations (12 unassigned). For that reason, in
937 certain instances, we still refer to VM6 ALRNs as one group.

938 Particularly in truncated glomeruli and glomeruli with fragmented ALRNs, there are many
939 smaller, and fragmented bodies for which it is not possible to say if they represent a unique ALRN,
940 or if they will merge to another body. Although we have tried to identify these fragments we can-
941 not be sure that the total number of ALRN bodies is an accurate representation of the number of
942 ALRNs.

943 In addition to the 2644 ALRNs that we were able to classify, there were 10 that presented is-
944 sues. Two could be identified as ALRNs but their glomerular arborisation was missing, therefore a
945 type could not be assigned (ids 2197880387, 1852093746, not listed in Supplementary File). Three
946 typed ORNs were excluded because they were pending fixes that altered their connectivity (ids
947 1951059936, 2071974816, 5812995304). We also found 5 outlier ORNs with axon terminals not
948 confined to one glomerulus (either 2 glomeruli in one hemisphere, different glomeruli between
949 hemispheres or innervating the antennal lobe hub (ids 1760080402, 1855835989, 2229278366,
950 2041285497, 5813071357).

951 To assess potential subdivisions of ALRN populations within each glomerulus (**Figure 3-Figure**
952 **Supplement 2**), we used a modified version of the synapse-based morphological clustering in
953 **Schlegel et al. (2016)** coined syNBLAST (implemented in our Python library `navis`).

954 Antennal lobe local neurons

955 Candidate neurons (4973) were first identified as any neuron that had at least 5% of its pre - or
956 post-synapses in the AL. From these we excluded the already typed ALPNs (338) and ALRNs (2653),
957 resulting in a candidate list (307) of antennal lobe local neurons (ALLNs). Among these only 197
958 could be typed in accordance with their lineage, morphology and connectivity. The remaining 110
959 ALLNs are too fragmented to classify and were not used further. Only the ALLNs from the right
960 hemisphere (196) were included in the analysis.

961 Lineages were identified on the basis of soma and cell body fibre location, partially shared with
962 ALPNs. Next, major groups were assigned in accordance with the previously described neurite
963 morphologies (**Chou et al., 2010**). Due to truncated glomeruli in the data set, we decided to not
964 distinguish between ALLNs innervating all but a few glomeruli vs most glomeruli; thus both groups
965 are classified as broad ALLNs. The 74 cell types were assigned based on the major morphology
966 class, presence/absence of a bilateral projection, glomerular innervation patterns and neurite den-
967 sity. The ALLN types were named by concatenating lineage, ID number/capital letter combination
968 and a small letter, in case of strong connectivity differences. The first 6 ID numbers match the
969 previously identified ALLN types in Tanaka et al. 2012, and the following are newly identified types,
970 in decreasing order of arbour size.

971 Antennal lobe projection neurons

972 Uniglomerular ALPNs (uPNs) were identified by morphology and classified according to our re-
973 cent complete inventory from the FAFB data set by matching neurons with the help of NBLAST
974 (**Bates et al., 2020b**). Multiglomerular ALPNs (mPNs) not been comprehensively typed in past
975 studies. Therefore, mPNs types for hemibrain v1.1/v1.2 were determined in coordination with
976 Kei Ito, Masayoshi Ito and Shin-ya Takemura using a combination of morphological and connectiv-
977 ity clustering. These v1.1/v1.2 mPN types were deliberately very fine-grained to facilitate potential
978 changes (e.g. merges) future releases. See also the paragraph on ALPN analyses below.

979 Non-MB olfactory third-order neurons

980 Non-MB olfactory third-order olfactory neurons (TOONs) were defined as neurons downstream
981 of ALPN axons outside of the MB calyx. They must receive 1% of their synaptic input (or else 10
982 connections) from an olfactory ALPN, or otherwise 10% of their input (or else 100 connections) from
983 any combination of olfactory ALPNs. This search yields 2383 identifiable, and mainly complete,
984 neuron morphologies. TOONs comprise a range of neuron classes, including a small number of
985 second and third-order neurons of the gustatory, mechanosensory and visual systems, as well as
986 dopaminergic neurons of the mushroom body, descending neurons to the ventral nervous system
987 and, most prominently, neurons of the lateral horn.

988 Lateral horn neurons

989 Lateral horn neurons (LHNs) were defined as a subset of TOONs that have at least 10 pre - or post-
990 synapses in the LH volume (as defined in the hemibrain). We named these cells by extending the
991 LHN naming scheme from Frechter et al. (2019), except for cell types with more prominent names
992 already in use in the literature. Neurons were first divided into their hemilineages, indicated by the
993 path of their cell body fibres, e.g. DPLm2 (**Lovick et al., 2013**). Hemilineage matches were made to
994 both FAFB and light-level data in order to verify their composition. To simplify the naming of neu-
995 rons, hemilineages and primary neurons (those cells born in the embryo, which do not fasciculate
996 strongly with secondary hemilineages in the adult brain) were grouped into similar-looking groups,
997 e.g. PV5 (posterior-ventral to the LH, 5). Next, neurons within each hemilineage were grouped into
998 coarse morphological sets, termed 'anatomy groups', e.g. PV5a. Within each anatomy group, LHNs
999 were broken into morphological cell types using NBLAST, followed by manual curation, e.g. PV5a1.
1000 Partial reconstructions in FAFB, concatenated using automatically reconstructed neuron fragments
1001 (**Li et al., 2019**) were used to help resolve edge cases, i.e. by examining which morphological vari-
1002 ations appeared consistent between data sets. Neurons were further subdivided into connectivity
1003 types (i.e. 'cell type_letter') using CBLAST (**Scheffer et al., 2020**), e.g. LHPV5a1_a. With so many new
1004 types being added, our expansion of the Frechter et al. (2019) LH naming system incurred some
1005 changes. We have tried to keep names used in main sequence figures in our previous publications
1006 (**Dolan et al., 2019; Frechter et al., 2019; Bates et al., 2020b**) but some have changed as, for ex-
1007 ample, the hemibrain data has revealed that neurons originate from a different hemilineage or
1008 neurons we had once considered to be of the same cell type have different connectivity profiles.
1009 Code for these analyses can be found in our R data package, [lhns](#) and [hemibrainr](#).

1010 Descending neurons

1011 The hemibrain v1.1/v1.2 data set includes cell type information for 109 descending neurons (DNs)
1012 (**Namiki et al., 2018**), 88 with somata on the right hand side of the brain. Given that the hemibrain
1013 volume does not include the neck connective, ambiguous or previously unknown DNs are difficult
1014 to identify. We sought to identify as many DNs as possible without explicitly defining the cell types
1015 (many of which are not previously reported in the literature). We used several data sources to help
1016 identify DNs including manual and automated tracing in FAFB (**Zheng et al., 2018; Li et al., 2019**) and
1017 the neuronbridge search tool (<https://neuronbridge.janelia.org/>, <https://github.com/JaneliaSciComp/neuronbridge>, **Meissner et al., 2020; Otsuna et al., 2018**), also see our R package [neuronbridger](#)).

1019 The single most comprehensive source of information is the recent FlyWire segmentation of the
1020 FAFB volume (<https://flywire.ai/>) (*Dorkenwald et al., 2020*) where we reconstructed neurons that
1021 descend from the brain through the neck connective. These FAFB DNs were cross-matched against
1022 all hemibrain neurons using NBLAST and subsequent manual curation. This enabled us to identify
1023 an additional 236 hemibrain hemibrain neurons as DNs (see Supplementary Files). A detailed cell
1024 typing of these DNs based on combining both data sets will be presented in a future manuscript.

1025 **Graph traversal model**

1026 To sort hemibrain neurons into layers with respect to the olfactory system we employ a simple
1027 probabilistic graph traversal model. The model starts with a given pool of neurons – receptor
1028 neurons (ALRNs) in our case – as seeds. It then pulls in neurons directly downstream of those
1029 neurons already in the pool. This process is repeated until all neurons in the graph have been
1030 “traversed” and we keep track of at which step each neuron was visited. Here, the probability of a
1031 not-yet-traversed neuron to be added to the pool depends on the fraction of the inputs it receives
1032 from neurons already in the pool. We use a linear function to determine the probability P_{ij} of a
1033 traversal from neuron i to j :

$$P_{ij} = \begin{cases} \frac{w_{ij}}{(\sum_k w_{kj}) * 0.3} & \text{if } P_{ij} \leq 1 \\ 1 & \text{if } P_{ij} > 1, \end{cases}$$

1034 where w_{ij} is the number of synaptic connections from i to j . In simple terms: if the connection
1035 from neuron i makes up 30% or more of neuron j 's inputs, there is a 100% chance of it being
1036 traversed. Each connection from a neuron already in the pool to a neuron outside the pool has an
1037 independent chance to be traversed. The threshold of 30% was determined empirically such that
1038 known neuron classes like ALLNs and ALPNs are assigned to the intuitively “correct” layer.

1039 The graph traversal was repeated 10,000 times for the global models (*Figure 2* and *Figure 2–*
1040 *Figure Supplement 1*) and 5,000 per type for the by-RN-type analysis (*Figure 14*). Layers were then
1041 produced from the mean across all runs. The code for the traversal model is part of *navis* (<https://github.com/schlegelp/navis>).

1043 To generate the graph, we used all hemibrain v1.2 neurons with either a type annotation or
1044 status label “Traced” or “Roughly traced”. We then took the edges between those neurons and
1045 removed (a) single-synapse connections to reduce noise and (b) connections between Kenyon cells
1046 which are considered false positives (*Li et al., 2020*). This produced a graph encompassing 12.6M
1047 chemical synapses across 1.7M edges between 24.6k neurons. Outputs of the model as used in
1048 this paper are available in the package *hemibrainr* as *hemibrain_olfactory_layers*.

1049 **Class-compartment separation score**

1050 This score is inspired by the synapse segregation index used in (*Schneider-Mizell et al., 2016*). ALPN
1051 innervation of a dendrite is first normalised by the total amount of innervation by ALPNs ($d.pn$) and
1052 MBONs ($d.mbon$):

$$d.total = d.mbon + d.pn$$

$$D = d.pn / d.total$$

1054 A dendrite segregation index is then calculated as:

$$d.si = -(D * \log_{10}(D) - (1 - D) * \log_{10}(1 - D))$$

1055 Where D is the proportion of dendritic innervation by ALPNs, divided by the total dendritic
1056 innervation by MBONs and ALPNs. The axon segregation index ($a.si$) is calculated for the axon of
1057 the same neuron. Then the entropy is taken as:

```
1058     e = (1/(d.total + a.total) * ((a.si * a.total) + (d.si * d.total))  
1059     PN = (d.pn + a.pn)/(d.total + a.total)  
1060     c = -(PN * log10(PN) + (1 - PN))  
1061     segregation.score = 1 - (e/c)
```

1061 **Antennal lobe receptor neuron analyses**

1062 ALRN analysis included only those ALRNs for which a glomerular type has been assigned and it ex-
1063 cluded glomeruli that are truncated (see 'Antennal lobe glomeruli'). Additionally, any analysis that
1064 relied on soma side excluded the 8 types that have whole glomeruli but have truncated ALRNs (DC3,
1065 VA1v, VA3, VA4, VA5, VA7l, VC2, VC4). Only bilateral ORNs were used for laterality comparisons, as
1066 only 1 of 7 TRN/HRN types is bilateral.

1067 In connectivity plots, the category 'other' includes any neuron that has been identified, but is
1068 not an ALRN, ALPN or ALLN. 'Unknown' refers to un-annotated bodies; this might include potential
1069 ALRN fragments that cannot be identified.

1070 ALRN presynaptic density was calculated using skeletons and presynapses subsetted to the
1071 relevant ALRN-based glomerulus mesh.

1072 **Antennal lobe projection neuron analyses**

1073 Across-dataset morphological clustering

1074 For clustering ALPNs across data sets (hemibrain vs FAFB right vs FAFB left) we first transformed
1075 their skeletons from their respective template brains to the JRC2018F space. FAFB left ALPNs were
1076 additionally mirrored to the right (*Bogovic et al., 2020; Bates et al., 2020a*). We then used NBLAST to
1077 produce morphological similarity scores between ALPNs of the same (hemi-)lineage (*Costa et al.,
2016*). For NBLASTs between hemibrain and FAFB ALPNs, the FAFB ALPNs were first pruned to
1078 the hemibrain volume such that they were similarly truncated. The pairwise NBLAST scores were
1079 generated from the minimum between the forward (query → target) and reverse (query ← target)
1080 scores.

1082 Next, we used the NBLAST scores to – for each ALPN – find the best matches among the ALPNs
1083 in the other two data sets. Conceptually, unique ALPNs should exhibit a clear 1:1:1 matching where
1084 the best across-dataset match is always reciprocal. For ALPN types with multiple representatives
1085 we expect that individuals can not be tracked across dataset because matches are not necessarily
1086 reciprocal. We used a graph representation of this network of top matches to produce clusters
1087 (*Figure 6–Figure Supplement 1B*). These initial clusters still contained incorrect merges due to a
1088 small number of "pathological" ALPNs (e.g. from developmental aberrations) which introduce in-
1089 correct edges to the graph. To compensate for such cases, we used all pairwise scores (not just the
1090 top NBLAST scores) to refine the clusters by finding the minimal cut(s) required to break clusters
1091 such that the worst within-cluster score was ≥ 0.4 (*Figure 6–Figure Supplement 1C*). This value
1092 was determined empirically using the known uPN types as landmarks. Without additional manual
1093 intervention, this approach correctly reproduced all "canonical" (i.e. repeatedly described across
1094 multiple studies) uPN types. We note though that in some cases this unsupervised clustering still
1095 requires manual curation. We point out some exemplary cases in *Figure 6–Figure Supplement 1F–
1096 J*. For example, M_adPNm4's exhibit features of uniglomerular VC3 adPNs and as a result are in-
1097 correctly co-clustered with them. Likewise, a single VC5 lvPN invades the VM4 glomerulus and is
1098 therefore co-clustered with the already rather similar looking VM4 lvPNs. In such cases, connectiv-
1099 ity information could potentially be used to inform the refinement of the initial clusters.

1100 **Connectivity**

1101 Analyses of ALPN connectivity excluded glomeruli that are truncated (see 'Antennal lobe glomeruli').
1102 Additionally, any analysis that relied on ALRN soma side (i.e. ipsilateral ALRNs versus contralateral)
1103 excluded the 8 glomeruli that are whole but have truncated ALRNs (DC3, VA1v, VA3, VA4, VA5, VA7l,
1104 VC2, VC4). In connectivity plots, the category 'other' includes any neuron that has been identified,
1105 but is not an ALRN, ALPN or ALLN. 'Unknown' refers to un-annotated bodies; this might include
1106 potential RN fragments that cannot be identified.

1107 **Antennal lobe local neuron analyses**

1108 The main theme of the ALLN analysis is to quantify the differences across ALLN types (based on
1109 morphology) in innervation (synapses across glomeruli, co-innervation, intra-glomerular morphol-
1110 ogy) and connectivity motifs. For all of the ALLN analysis, glomerular meshes based on the ALPN-
1111 based glomeruli were used.

1112 **Synaptic distribution across glomeruli**

1113 The main goal of this analysis was to understand how synapses are distributed across the glomeruli,
1114 for the ALLN types. First, for each morphological type, we constructed a matrix with columns rep-
1115 resenting neurons and rows representing glomeruli. Each element in this matrix has the num-
1116 ber of synapses of the specific neuron in the corresponding glomerulus. Synapses per neuron
1117 were fetched using the *neuprint-python* package (Python, <https://github.com/connectome-neuprint/neuprint-python>). Second, for each neuron, glomerular identities were collapsed and sorted by de-
1118 scending order. Third, each column (neuron) was normalised from a range of 0 to 1 using the
1119 minmax scaler from the *scikit-learn* (Python, <https://scikit-learn.org/>) package. Fourth, the cumula-
1120 tive sum per column was computed. The resulting matrix is composed of each column (neuron)
1121 where synaptic score is ordered in a cumulative way.
1122

1123 **Glomerular co-innervation**

1124 The main goal of this analysis was to identify pairs of glomeruli that are strongly co-innervated by
1125 different ALLN types. For defining co-innervation, the number of synapses in the specific glomeruli
1126 from the specific neuron would be used. First, for each morphological type, we constructed a ma-
1127 trix where columns represented neurons and rows represented glomeruli. Each element in this
1128 matrix reflected the number of synapses of that neuron in that specific glomerulus. Synapses per
1129 neuron were fetched using the *neuprint-python* package. Second, the possible combinations of
1130 pairs of glomeruli (that are un-cut) was computed: $39C_2$ or 741 total pairs. Third, for each com-
1131 bination pair the synapses that are co-occurring within a neuron were calculated, resulting in a
1132 matrix of dimensions combination pairs (741) by number of neurons of specific ALLN type. Fourth,
1133 co-occurring synapses per pair were summed, resulting in a vector of length combinations. This
1134 represented the ground truth of co-occurring synapses. Fifth, after computing the matrix from step
1135 3, we shuffled every row independently (i.e. choosing a neuron and shuffling across the pairs of
1136 glomeruli). Sixth, we then performed step 4 with this shuffled matrix and repeated steps 5 and 6 for
1137 20k times. This output represented the shuffled synapses. Seventh, for each pair of glomeruli, we
1138 computed the proportion of shuffled synapses (within a specific pair of glomeruli) that are higher
1139 than the ground truth; this conveys the likelihood of the ground truth being non-random and hence
1140 it is the uncorrected p-value. Lastly, we corrected the p-value for multiple comparisons using the
1141 package *statsmodels* (Python, <https://www.statsmodels.org/>), using the *holm-sidak* procedure with a
1142 family wise error rate of 0.05. The pairs with significant p-values following the correction represent
1143 the pairs of glomeruli that are strongly co-innervated by the specific ALLN type.

1144 **Connectivity**

1145 The main goal of this analysis was to identify how different ALLN types are connected to olfactory
1146 ALRNs, uPNs, mPNs, and thermo/hygrohygrosensory ALPNs. The input and output synapses be-

1147 tween ALLNs and other categories were fetched using the *neuprint-python* package. ALLNs were
1148 categorised into a combination of morphological type (sparse, etc) and lineage type (v, etc).

1149 Intra-glomerular morphology

1150 The main goal of this analysis was to identify how intra-glomerular innervation patterns vary across
1151 different ALLN types. First, taking each whole glomerulus in turn, we pruned the arbors for each
1152 ALLN within that glomerulus using the *navis* package (Python, <https://github.com/schlegelp/navis/>).
1153 From the pruned ALLNs we excluded any with less than 80 micrometres of cable length. Second, we
1154 calculated the distance between all pairs of ALLNs within that specific glomerulus. This was done as
1155 follows: first, for each ALLN pair, for each node we took the 5 nearest nodes in the opposite ALLN
1156 using the KDTree from the *scipy* package (Python, <https://www.scipy.org/>) and further computed
1157 the mean distance. Second, the same procedure was then repeated for all nodes on both sets of
1158 ALLNs, producing mean distances per node per ALLN. Lastly, we collapsed the ids of the neurons
1159 and computed the mean of the top 10% (largest) of the mean distances. This was considered to
1160 be the mean intraglomerular distance between the ALLNs for that specific glomerulus.

1161 Input-Output segregation

1162 The main goals of this analysis were 1) to identify how different ALLN morphological classes vary
1163 in the amount of synaptic input and output across different glomeruli and 2) to compare the same
1164 with uPNs and ALRNs. First, for each type, we constructed a presynaptic matrix where columns rep-
1165 resented neurons and rows represented glomeruli. Each element in this matrix reflected the num-
1166 ber of presynaptic connectors of that neuron in that specific glomerulus. Connectors per neuron
1167 were fetched using the *neuprint-python* package. Similarly, we constructed a postsynaptic matrix,
1168 where each element reflected the number of postsynapses of that neuron in that specific glomeru-
1169 lus. Second, we performed postprocessing on both the presynaptic and postsynaptic matrix. For
1170 each neuron, we ranked glomeruli in descending order by synapse number and then removed
1171 those glomeruli accounting for the bottom 5% of the synapses. Third, we computed the difference
1172 (Input-Output segregation) by subtracting presynaptic connectors from the postsynapses per neu-
1173 ron. Here we ignored glomeruli where both presynaptic connectors and postsynapses are zero.
1174 Fourth, we collapsed the glomerular identities and sorted all neurons by the difference (Input-
1175 Output segregation). Finally, we computed the mean across the neurons. We gave positive ranks
1176 to values above 0 (more input) and negative ranks to values below 0 (more output).

1177 Clustering of ALLNs by the ratio of their axonal output or dendritic input per glomerulus
1178 The main goal of this analysis (*Figure 4-Figure Supplement 1G*) was to identify how different ALLN
1179 types are polarised across different glomeruli (axon-dendrite split developed using the algorithm
1180 from **Schneider-Mizell et al. (2016)**). First, we selected only those ALLNs (76) that have a axo-
1181 dendritic segregation index of >0.1, i.e. they are polarised. Second, for each ALLN we computed
1182 the axon and dendritic compartment using the flow-centrality algorithm developed in **Schneider-**
1183 **Mizell et al. (2016)**. Third, for each glomerulus and for each ALLN we computed the fraction of
1184 dendritic inputs (input synapses located in the dendritic compartment inside the specific glomeru-
1185 lus) to the total dendritic inputs (input synapses located in the dendritic compartment across all
1186 glomeruli) and fraction of axonic outputs (output synapses located in the axonic compartment in-
1187 side the specific glomerulus) to the total axonic outputs (output synapses located in the axonic
1188 compartment across all glomeruli). Fourth, we computed a score defined by the fraction of axonic
1189 output – the fraction of dendritic input. The higher the score, the greater the ALLN's bias for axon-
1190 ically outputting in a glomerulus, over receiving dendritic input. Fifth, we computed the mean of
1191 these scores for different ALLN types across the different glomeruli. Finally, we applied the cluster-
1192 ing algorithm (using hierarchical clustering based on Ward's distance using functions from base R)
1193 to these scores.

1194 **Supplemental data**

1195 We have made our code, with examples, and detailed data available in our R package [hemibrainr](#).
1196 Here we provide core data. Please see [Table 3](#) for a description of the meta data contained in the
1197 supplemental files.

1198 **Supplemental file 1**

1199 Layers assigned by the probabilistic graph traversal model. `bodyId` refers to neurons' unique ID in
1200 `neuPrint`. `layer_mean` contains the mean layer after 10,000 iterations of the main model ([Figure 2](#)).
1201 `layer_olf_mean` and `layer_th_mean` contain the mean layers from running the traversal model with
1202 ORNs and THN/HRNs, respectively ([Figure 2–Figure Supplement 2](#)).
1203 [S1_hemibrain_neuron_layers.csv](#)

1204 **Supplemental file 2**

1205 Sensory meta-information related to each glomerulus. Columns: `glomerulus` (canonical name for
1206 one of the 51 olfactory + 7 thermo/hygrosensory antennal lobe glomeruli), `laterality` (whether the
1207 glomerulus receives bilateral or only unilateral innervation from ALRNs), `expected_cit` (a citation
1208 that describes the expected number of RNs in this glomerulus), `expected_RN_female_1h` (number
1209 of expected RNs in one hemisphere), `expected_RN_female_SD` (standard deviation in the expected
1210 number of RNs), `missing` (qualitative assessment of glomeruli truncation), `RN_frag` (if the RNs in
1211 that glomerulus are fragmented), `receptor` (the OR or IR expressed by cognate ALRNs, ([Bates et al.,
1212 2020b; Task et al., 2020](#))), `odour_scenes` (the general 'odour scene(s)' which this glomerulus may
1213 help signal, ([Mansourian and Stensmyr, 2015; Bates et al., 2020b](#))), `key_ligand` (the ligand that
1214 excites the cognate ALRN or receptor the most, based on pooled data from multiple studies, [Münch
1215 and Galizia \(2016\)](#)), `valence` (the presumed valence of this odour channel, [Badel et al. \(2016\)](#)). Exists
1216 as `hemibrain_glomeruli_summary` in our R package [hemibrainr](#).
1217 [S2_hemibrain_olfactory_information.csv](#)

1218 **Supplemental file 3**

1219 File listing all identified antennal lobe receptor neurons (ALRNs) in the hemibrain, including infor-
1220 mation shown in `neuPrint`. See above for column explanations. Exists as `rn.info` in our R package
1221 [hemibrainr](#).
1222 [S3_hemibrain_ALRN_meta.csv](#)

1223 **Supplemental file 4**

1224 All the hemibrain neurons we have classed as antennal lobe local neurons (ALLNs). See above for
1225 column explanations. Exists as `alln.info` in our R package [hemibrainr](#).
1226 [S4_hemibrain_ALLN_meta.csv](#)

1227 **Supplemental file 5**

1228 All the hemibrain neurons we have classed as antennal lobe projection neurons (ALPNs). See above
1229 for column explanations. In addition, `across_dataset_cluster` refers to the clustering with left and
1230 right FAFB PNs; `is_canonical` indicates whether that ALPN is one of the well studied "canonical"
1231 uPNs. Exists as `pn.info` in our R package [hemibrainr](#).
1232 [S5_hemibrain_ALPN_meta.csv](#)

1233 Supplemental file 6

1234 All the hemibrain neurons we have classed as third-order olfactory neurons (TOONs) including lat-
1235 eral horn neurons (LHNs), as well as wedge projection neurons (WEDPNs), lateral horn centrifugal
1236 neurons (LHCENT) and other projection neuron classes (*Figure 1*). See above for column explana-
1237 tions. Exists as `ton.info` in our R package [hemibrainr](#).

1238 `S6_hemibrain_TOON_meta.csv`

1239 Supplemental file 7

1240 All the hemibrain neurons we have classed as neurons that descend to the ventral nervous system
1241 (DNs). See above for column explanations. Exists as `dn.info` in our R package [hemibrainr](#).

1242 `S8_hemibrain_DN_meta.csv`

1243 Supplemental file 8

1244 The root point in hemibrain voxel space, for each hemibrain neuron. This is either the location of
1245 the soma, or the tip of a severed cell body fibre tract, where possible. Exists as `hemibrain_somas`
1246 in our R package [hemibrainr](#).

1247 `S8_hemibrain_root_points.csv`

1248 Supplemental file 9

1249 The start points for different neuron compartments. Nodes downstream of this position in
1250 the 3D structure of the neuron indicated with `bodyid`, belong to the compartment type des-
1251 ignated by `Label`. A product of running `flow_centrality` on hemibrain neurons, exists as
1252 `hemibrain_splitpoints` in our R package [hemibrainr](#).

1253 `S9_hemibrain_compartment_startpoints.csv`

1254 Supplemental file 10

1255 3D triangle mesh for the hemibrain surface as a `.obj` file. This mesh was generated by first merging
1256 individual ROI meshes from neuPrint and then filling the gaps in between in a semi-manual process.
1257 It also exists as `hemibrain.surf` in our R package [hemibrainr](#).

1258 `S10_hemibrain_raw.obj`

1259 Supplemental file 11

1260 3D meshes of 51 olfactory + 7 thermo/hygrosensory antennal lobe glomeruli for the hemibrain
1261 volume, generated from ALRN presynapses. These meshes follow the subdivision of VM6 and
1262 hence contain 60 meshes in total.

1263 Note that hemibrain coordinate system has the anterior-posterior axis aligned with the Y axis
1264 (rather than the Z axis, which is more commonly observed).

1265 `S11_hemibrain_AL_glomeruli_meshes_RN-based.zip`

1266 Supplemental file 12

1267 3D meshes of 51 olfactory + 7 thermo/hygrosensory antennal lobe glomeruli for the hemibrain
1268 volume, generated from ALPN postsynapses.

1269 Note that hemibrain coordinate system has the anterior-posterior axis aligned with the Y axis
1270 (rather than the Z axis, which is more commonly observed).

1271 These meshes are also available as `hemibrain_al.surf` in our R package [hemibrainr](#).

1272 S12_hemibrain_AL_glomeruli_meshes_PN-based.zip

1273 References

1274 **Abbott LF**, Bock DD, Callaway EM, Denk W, Dulac C, Fairhall AL, Fiete I, Harris KM, Helmstaedter M, Jain V, Kasthuri N, LeCun Y, Lichtman JW, Littlewood PB, Luo L, Maunsell JHR, Reid RC, Rosen BR, Rubin GM, Sejnowski TJ, et al. The Mind of a Mouse. *Cell*. 2020 9; 182(6):1372–1376. doi: [10.1016/j.cell.2020.08.010](https://doi.org/10.1016/j.cell.2020.08.010).

1275 **Agarwal G**, Isacoff E. Specializations of a pheromonal glomerulus in the *Drosophila* olfactory system. *J Neurophysiol*. 2011 4; 105:1711–21. doi: [10.1152/jn.00591.2010](https://doi.org/10.1152/jn.00591.2010).

1276 **Amin H**, Lin AC. Neuronal mechanisms underlying innate and learned olfactory processing in *Drosophila*. *Curr Opin Insect Sci*. 2019 6; 36:9–17. doi: [10.1016/j.cois.2019.06.003](https://doi.org/10.1016/j.cois.2019.06.003).

1277 **Aso Y**, Hattori D, Yu Y, M JR, Iyer NA, Ngo TTB, Heather D, Abbott LF, Axel R, Tanimoto H, Rubin GM. The neuronal architecture of the mushroom body provides a logic for associative learning. *eLife*. 2014 12; 3:e04577. doi: [10.7554/eLife.04577](https://doi.org/10.7554/eLife.04577).

1278 **Aso Y**, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Nobuhiro Y, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TTB, Chen N, Wyatt K, Nitabach MN, Heberlein U, Thomas P, Branson KM, Tanimoto H, et al. Mushroom body output neurons encode valence and guide memory-based action selection in *Drosophila*. *eLife*. 2014 12; 3:e04580. doi: [10.7554/eLife.04580](https://doi.org/10.7554/eLife.04580).

1279 **Badel L**, Ohta K, Tsuchimoto Y, Kazama H. Decoding of Context-Dependent Olfactory Behavior in *Drosophila*. *Neuron*. 2016 7; 91:155–67. doi: [10.1016/j.neuron.2016.05.022](https://doi.org/10.1016/j.neuron.2016.05.022).

1280 **Bates AS**, Janssens J, SXE JG, Aerts S. Neuronal cell types in the fly: single-cell anatomy meets single-cell genomics. *Curr Opin Neurobiol*. 2019 6; 56:125–134. doi: [10.1016/j.conb.2018.12.012](https://doi.org/10.1016/j.conb.2018.12.012).

1281 **Bates A**, Manton J, Jagannathan S, Costa M, Schlegel P, Rohlfing T, Jefferis G. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. *eLife*. 2020 4; 9:e53350. doi: [10.7554/eLife.53350](https://doi.org/10.7554/eLife.53350).

1282 **Bates A**, Schlegel P, Roberts R, Drummond N, Tamimi I, Turnbull R, Zhao X, Marin E, Popovici P, Dhawan S, Jamasb A, Javier A, Serratosa CL, Li F, Rubin G, Waddell S, Bock D, Costa M, Jefferis G. Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain. *Curr Biol*. 2020 8; 30:3183–3199.e6. doi: [10.1016/j.cub.2020.06.042](https://doi.org/10.1016/j.cub.2020.06.042).

1283 **Berck ME**, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Matthieu L, Samuel ADT, Cardona A. The wiring diagram of a glomerular olfactory system. *eLife*. 2016 5; 5:e14859. doi: [10.7554/eLife.14859](https://doi.org/10.7554/eLife.14859).

1284 **Berni J**, Pulver SR, Griffith LC, Bate M. Autonomous Circuitry for Substrate Exploration in Freely Moving *Drosophila* Larvae. *Curr Biol*. 2012 10; 22(20):1861–1870. doi: [10.1016/j.cub.2012.07.048](https://doi.org/10.1016/j.cub.2012.07.048).

1285 **Bogovic JA**, Otsuna H, Heinrich L, Ito M, Jeter J, Meissner G, Nern A, Colonell J, Malkesman O, Ito K, Saalfeld S. An unbiased template of the *Drosophila* brain and ventral nerve cord. *PLOS ONE*. 2020 Dec; 15(12):e0236495. doi: [10.1371/journal.pone.0236495](https://doi.org/10.1371/journal.pone.0236495).

1286 **Boto T**, Stahl A, Zhang X, Louis T, Tomchik S. Independent Contributions of Discrete Dopaminergic Circuits to Cellular Plasticity, Memory Strength, and Valence in *Drosophila*. *Cell Rep*. 2019 5; 27:2014–2021.e2. doi: [10.1016/j.celrep.2019.04.069](https://doi.org/10.1016/j.celrep.2019.04.069).

1287 **Bräcker LB**, Siju KP, Varela N, Aso Y, Zhang M, Hein I, Vasconcelos ML, Kadow ICG. Essential Role of the Mushroom Body in Context-Dependent CO₂ Avoidance in *Drosophila*. *Curr Biol*. 2013 7; 23(13):1228–1234. doi: [10.1016/j.cub.2013.05.029](https://doi.org/10.1016/j.cub.2013.05.029).

1288 **Budelli G**, Ni L, Berciu C, van GL, Knecht Z, Chang E, Kaminski B, Silbering A, Samuel A, Klein M, Benton R, Nicastro D, Garrity P. Ionotropic Receptors Specify the Morphogenesis of Phasic Sensors Controlling Rapid Thermal Preference in *Drosophila*. *Neuron*. 2019 2; 101:738–747.e3. doi: [10.1016/j.neuron.2018.12.022](https://doi.org/10.1016/j.neuron.2018.12.022).

1289 **Cachero S**, Gkantia M, Bates AS, Frechter S, Blackie L, McCarthy A, Sutcliffe B, Strano A, Aso Y, Jefferis GSXE. BAC-Trace, a tool for retrograde tracing of neuronal circuits in *Drosophila*. *Nat Methods*. 2020 Nov; 17(12):1254–1261. doi: [10.1038/s41592-020-00989-1](https://doi.org/10.1038/s41592-020-00989-1).

1290 **Caron SJC**, Ruta V, Abbott LF, Richard A. Random convergence of olfactory inputs in the *Drosophila* mushroom body. *Nature*. 2013 5; 497(7447):113–117. doi: [10.1038/nature12063](https://doi.org/10.1038/nature12063).

1291 **Chai PC**, Cruchet S, Wigger L, Benton R. Sensory neuron lineage mapping and manipulation in the *Drosophila* olfactory system. *Nat Commun*. 2019 2; 10(1):643. doi: [10.1038/s41467-019-08345-4](https://doi.org/10.1038/s41467-019-08345-4).

1322 **Chiang AS**, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, Shih CT, Wu JJ, Wang GT, Yung-Chang C, Wu
1323 CC, Chen GY, Ching YT, Lee PC, Lin CY, Lin HH, Chia-Chou W, Hsu HW, Huang YA, Chen JY, et al. Three-
1324 dimensional reconstruction of brain-wide wiring networks in *Drosophila* at single-cell resolution. *Curr Biol*.
1325 2011 1; 21(1):1–11. doi: [10.1016/j.cub.2010.11.056](https://doi.org/10.1016/j.cub.2010.11.056).

1326 **Chou YH**, Spletter ML, Yaksi E, S LJC, Wilson RI, Luo L. Diversity and wiring variability of olfactory local interneu-
1327 rons in the *Drosophila* antennal lobe. *Nat Neurosci*. 2010 4; 13(4):439–449. doi: [10.1038/nn.2489](https://doi.org/10.1038/nn.2489).

1328 **Clements J**, Dolafci T, Umayam L, Neubarth NL, Berg S, Scheffer LK, Plaza SM. neuPrint: Analysis Tools for EM
1329 Connectomics. *bioRxiv*. 2020 1; doi: [10.1101/2020.01.16.909465](https://doi.org/10.1101/2020.01.16.909465).

1330 **Coates K**, Calle-Schuler S, Helmick L, Knotts V, Martik B, Salman F, Warner L, Valla S, Bock D, Dacks A. The Wiring
1331 Logic of an Identified Serotonergic Neuron That Spans Sensory Networks. *J Neurosci*. 2020 8; 40:6309–6327.
1332 doi: [10.1523/JNEUROSCI.0552-20.2020](https://doi.org/10.1523/JNEUROSCI.0552-20.2020).

1333 **Costa M**, Manton J, Ostrovsky A, Prohaska S, Jefferis G. NBLAST: Rapid, Sensitive Comparison of Neu-
1334 ronal Structure and Construction of Neuron Family Databases. *Neuron*. 2016 7; 91:293–311. doi:
1335 [10.1016/j.neuron.2016.06.012](https://doi.org/10.1016/j.neuron.2016.06.012).

1336 **Couto A**, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the *Drosophila* olfactory
1337 system. *Curr Biol*. 2005 9; 15(17):1535–1547. doi: [10.1016/j.cub.2005.07.034](https://doi.org/10.1016/j.cub.2005.07.034).

1338 **Dolan MJ**, Belliard-Guérin G, Shakeel BA, Frechter S, Aurélie LSA, Aso Y, Roberts RJV, Schlegel P, Wong A, Hammad
1339 A, Davi B, Rubin GM, Preat T, Pierre-Yves P, Jefferis GSXE. Communication from Learned to Innate Olfactory
1340 Processing Centers Is Required for Memory Retrieval in *Drosophila*. *Neuron*. 2018 9; 100(3):651–668.e8. doi:
1341 [10.1016/j.neuron.2018.08.037](https://doi.org/10.1016/j.neuron.2018.08.037).

1342 **Dolan MJ**, Frechter S, Bates AS, Dan C, Huoviala P, Jv RR, Schlegel P, Dhawan S, Tabano R, Dionne H, Christoforou
1343 C, Close K, Sutcliffe B, Giuliani B, Li F, Costa M, Ihrke G, Meissner GW, Bock DD, Aso Y, et al. Neurogenetic dis-
1344 section of the *Drosophila* lateral horn reveals major outputs, diverse behavioural functions, and interactions
1345 with the mushroom body. *eLife*. 2019 5; 8:e43079. doi: [10.7554/eLife.43079](https://doi.org/10.7554/eLife.43079).

1346 **Dorkenwald S**, McKellar C, Macrina T, Kemnitz N, Lee K, Lu R, Wu J, Popovych S, Mitchell E, Nehoran B, Jia Z,
1347 Bae JA, Mu S, Ih D, Castro M, Ogedengbe O, Halageri A, Ashwood Z, Zung J, Brittain D, et al. FlyWire: Online
1348 community for whole-brain connectomics. *bioRxiv*. 2020 8; doi: [10.1101/2020.08.30.274225](https://doi.org/10.1101/2020.08.30.274225).

1349 **Dubnau J**, Grady L, Kitamoto T, Tully T. Disruption of neurotransmission in *Drosophila* mushroom body blocks
1350 retrieval but not acquisition of memory. *Nature*. 2001 5; 411(6836):476–480. doi: [10.1038/35078077](https://doi.org/10.1038/35078077).

1351 **Dweck HKM**, Ebrahim SAM, Thoma M, Mohamed AAM, Keesey IW, Trona F, Lavista-Llanos S, Svatoš A, Sachse
1352 S, Knaden M, Hansson BS. Pheromones mediating copulation and attraction in *Drosophila*. *Proceedings of*
1353 *the National Academy of Sciences*. 2015 May; 112(21):E2829–E2835. doi: [10.1073/pnas.1504527112](https://doi.org/10.1073/pnas.1504527112).

1354 **Ebrahim SAM**, Dweck HKM, Stökl J, Hofferberth JE, Trona F, Weniger K, Rybak J, Seki Y, Stensmyr MC, Sachse
1355 S, Hansson BS, Knaden M. *Drosophila* Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated
1356 Olfactory Circuit. *PLoS Biol*. 2015 12; 13(12):e1002318. doi: [10.1371/journal.pbio.1002318](https://doi.org/10.1371/journal.pbio.1002318).

1357 **Eckstein N**, Bates AS, Du M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter Classification from Electron
1358 Microscopy Images at Synaptic Sites in *Drosophila*. *bioRxiv*. 2020 6; doi: [10.1101/2020.06.12.148775](https://doi.org/10.1101/2020.06.12.148775).

1359 **Egert M**. Behavioral Responses to Light by Headless Anesthetized *Drosophila Melanogaster*. *Perception*. 2011
1360 1; 40(2):247–248. doi: [10.1086/p6850](https://doi.org/10.1086/p6850).

1361 **Eichler K**, Li F, Litwin-Kumar A, Youngser P, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach
1362 C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS, Marta Z, Cardona A. The complete con-
1363 nectome of a learning and memory centre in an insect brain. *Nature*. 2017 8; 548(7666):175–182. doi:
1364 [10.1038/nature23455](https://doi.org/10.1038/nature23455).

1365 **Endo K**, Aoki T, Yoda Y, Kimura KI, Hama C. Notch signal organizes the *Drosophila* olfactory circuitry by diver-
1366 sifying the sensory neuronal lineages. *Nat Neurosci*. 2007 2; 10(2):153–160. doi: [10.1038/nn1832](https://doi.org/10.1038/nn1832).

1367 **Eschbach C**, Fushiki A, Winding M, Afonso B, Andrade IV, Cocanougher BT, Eichler K, Gepner R, Si G, Valdes-
1368 Aleman J, Gershow M, Jefferis GS, Truman JW, Fetter RD, Samuel A, Cardona A, Zlatic M. Circuits for integrating
1369 learnt and innate valences in the fly brain. *bioRxiv*. 2020 4; doi: doi.org/10.1101/2020.04.23.058339.

1370 **Felsenberg J**, Jacob PF, Walker T, Barnstedt O, Edmondson-Stait AJ, W PM, Otto N, Schlegel P, Sharifi N, Perisse E, Smith CS, Lauritzen JS, Costa M, Jefferis GSXE, Bock DD, Waddell S. Integration of Parallel Opposing Memories Underlies Memory Extinction. *Cell*. 2018 10; 175(3):709–722.e15. doi: [10.1016/j.cell.2018.08.021](https://doi.org/10.1016/j.cell.2018.08.021).

1373 **Fişek M**, Wilson RI. Stereotyped connectivity and computations in higher-order olfactory neurons. *Nat Neurosci*. 2014 2; 17(2):280–288. doi: [10.1038/nn.3613](https://doi.org/10.1038/nn.3613).

1375 **Fishilevich E**, Vosshall LB. Genetic and functional subdivision of the *Drosophila* antennal lobe. *Curr Biol*. 2005 9; 15(17):1548–1553. doi: [10.1016/j.cub.2005.07.066](https://doi.org/10.1016/j.cub.2005.07.066).

1377 **Frank DD**, Enjin A, Jouandet GC, Zaharieva EE, Para A, Stensmyr MC, Gallio M. Early Integration of Temperature and Humidity Stimuli in the *Drosophila* Brain. *Curr Biol*. 2017 8; 27(15):2381–2388.e4. doi: [10.1016/j.cub.2017.06.077](https://doi.org/10.1016/j.cub.2017.06.077).

1380 **Frechter S**, Bates AS, Tootoonian S, Dolan MJ, Manton J, Jamasb AR, Kohl J, Bock D, Jefferis G. Functional and anatomical specificity in a higher olfactory centre. *eLife*. 2019 5; 8:e44590. doi: [10.7554/eLife.44590](https://doi.org/10.7554/eLife.44590).

1382 **Gallio M**, Ofstad T, Macpherson L, Wang J, Zuker C. The coding of temperature in the *Drosophila* brain. *Cell*. 2011 2; 144:614–24. doi: [10.1016/j.cell.2011.01.028](https://doi.org/10.1016/j.cell.2011.01.028).

1384 **Gaudry Q**, Hong E, Kain J, de BB, Wilson R. Asymmetric neurotransmitter release enables rapid odour lateralization in *Drosophila*. *Nature*. 2013 1; 493:424–428. doi: [10.1038/nature11747](https://doi.org/10.1038/nature11747).

1386 **Grabe V**, Baschwitz A, Dweck HKM, Lavista-Llanos S, Hansson BS, Sachse S. Elucidating the Neuronal Architecture of Olfactory Glomeruli in the *Drosophila* Antennal Lobe. *Cell Rep*. 2016 9; 16(12):3401–3413. doi: [10.1016/j.celrep.2016.08.063](https://doi.org/10.1016/j.celrep.2016.08.063).

1389 **Grabe V**, Sachse S. Fundamental principles of the olfactory code. *Biosystems*. 2018 2; 164:94–101. doi: [10.1016/j.biosystems.2017.10.010](https://doi.org/10.1016/j.biosystems.2017.10.010).

1391 **Groschner LN**, Miesenböck G. Mechanisms of Sensory Discrimination: Insights from *Drosophila* Olfaction. *Annu Rev Biophys*. 2019 5; 48:209–229. doi: [10.1146/annurev-biophys-052118-115655](https://doi.org/10.1146/annurev-biophys-052118-115655).

1393 **Hampel S**, McKellar C, Simpson J, Seeds A. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in *Drosophila*. *eLife*. 2017 9; 6:e28804. doi: [10.7554/eLife.28804](https://doi.org/10.7554/eLife.28804).

1395 **Hampel S**, Eichler K, Yamada D, Bock DD, Kamikouchi A, Seeds AM. Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae. *eLife*. 2020 10; 9:e59976. doi: [10.7554/elife.59976](https://doi.org/10.7554/elife.59976).

1398 **Heimbeck G**, Bugnon V, Gendre N, Keller A, Stocker RF. A central neural circuit for experience-independent olfactory and courtship behavior in *Drosophila melanogaster*. *Proc Natl Acad Sci U S A*. 2001 12; 98(26):15336–15341. doi: [10.1073/pnas.011314898](https://doi.org/10.1073/pnas.011314898).

1401 **Heisenberg M**. Mushroom body memoir: from maps to models. *Nat Rev Neurosci*. 2003 4; 4:266–75. doi: [10.1038/nrn1074](https://doi.org/10.1038/nrn1074).

1403 **Horne J**, Langille C, McLin S, Wiederman M, Lu Z, Xu C, Plaza S, Scheffer L, Hess H, Meinertzhagen I. A resource for the *Drosophila* antennal lobe provided by the connectome of glomerulus VA1v. *eLife*. 2018 11; 7:e37550. doi: [10.7554/eLife.37550](https://doi.org/10.7554/eLife.37550).

1406 **Hsu C**, Bhandawat V. Organization of descending neurons in *Drosophila melanogaster*. *Sci Rep*. 2016 2; 6:20259. doi: [10.1038/srep20259](https://doi.org/10.1038/srep20259).

1408 **Hulse BK**, Haberkern H, Franconville R, Turner-Evans DB, Takemura S, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the *Drosophila* central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. *bioRxiv*. 2020 12; doi: [10.1101/2020.12.08.413955](https://doi.org/10.1101/2020.12.08.413955).

1412 **Huoviala P**, Dolan MJ, Love FM, Frechter S, Roberts RJV, Mitrevica Z, Schlegel P, Bates AS, Yoshinori A, Rodrigues T, Cornwall H, Marcus S, Bock D, Rubin GM, Costa M, Gregory S X. Neural circuit basis of aversive odour processing in *Drosophila* from sensory input to descending output. *bioRxiv*. 2018 8; doi: <https://doi.org/10.1101/394403>.

1416 **Hussain A**, Zhang M, Üçpunar HK, Svensson T, Quillery E, Gompel N, Ignell R, Grunwald Kadow IC. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines. *PLoS Biol*. 2016 5; 14(5):e1002454. doi: [10.1371/journal.pbio.1002454](https://doi.org/10.1371/journal.pbio.1002454).

1419 **Hückesfeld S**, Schoofs A, Schlegel P, Mirochnikow A, Pankratz M. Localization of Motor Neurons and Central
1420 Pattern Generators for Motor Patterns Underlying Feeding Behavior in *Drosophila* Larvae. *PLoS One*. 2015;
1421 10:e0135011. doi: [10.1371/journal.pone.0135011](https://doi.org/10.1371/journal.pone.0135011).

1422 **Ito M**, Masuda N, Shinomiya K, Endo K, Ito K. Systematic analysis of neural projections reveals clonal composition
1423 of the *Drosophila* brain. *Curr Biol*. 2013 4; 23(8):644–655. doi: [10.1016/j.cub.2013.03.015](https://doi.org/10.1016/j.cub.2013.03.015).

1424 **Januszewski M**, Kornfeld J, Li P, Pope A, Blakely T, Lindsey L, Maitin-Shepard J, Tyka M, Denk W, Jain V. High-
1425 precision automated reconstruction of neurons with flood-filling networks. *Nat Methods*. 2018 8; 15:605–610.
1426 doi: [10.1038/s41592-018-0049-4](https://doi.org/10.1038/s41592-018-0049-4).

1427 **Jeanne J**, Fişek M, Wilson R. The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons.
1428 *Neuron*. 2018 6; 98:1198–1213.e6. doi: [10.1016/j.neuron.2018.05.011](https://doi.org/10.1016/j.neuron.2018.05.011).

1429 **Jefferis GSXE**, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR, Luo L. Comprehensive Maps of
1430 *Drosophila* Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation. *Cell*. 2007
1431 3; 128(6):1187–1203. doi: [10.1016/j.cell.2007.01.040](https://doi.org/10.1016/j.cell.2007.01.040).

1432 **Kadow ICG**. State-dependent plasticity of innate behavior in fruit flies. *Curr Opin Neurobiol*. 2019 2; 54:60–65.
1433 doi: [10.1016/j.conb.2018.08.014](https://doi.org/10.1016/j.conb.2018.08.014).

1434 **Knecht Z**, Silbering A, Cruz J, Yang L, Croset V, Benton R, Garrity P. Ionotropic Receptor-dependent moist and
1435 dry cells control hygrosensation in *Drosophila*. *eLife*. 2017 6; 6:e26654. doi: [10.7554/eLife.26654](https://doi.org/10.7554/eLife.26654).

1436 **Knott G**, Marchman H, Wall D, Lich B. Serial section scanning electron microscopy of adult brain tissue using
1437 focused ion beam milling. *J Neurosci*. 2008 3; 28:2959–64. doi: [10.1523/JNEUROSCI.3189-07.2008](https://doi.org/10.1523/JNEUROSCI.3189-07.2008).

1438 **Kohl J**, Ostrovsky AD, Frechter S, Jefferis GSXE. A Bidirectional Circuit Switch Reroutes Pheromone Signals in
1439 Male and Female Brains. *Cell*. 2013 12; 155(7):160–23. doi: [10.1016/j.cell.2013.11.025](https://doi.org/10.1016/j.cell.2013.11.025).

1440 **Krashes M**, Keene A, Leung B, Armstrong J, Waddell S. Sequential use of mushroom body neuron subsets during
1441 *Drosophila* odor memory processing. *Neuron*. 2007 1; 53:103–15. doi: [10.1016/j.neuron.2006.11.021](https://doi.org/10.1016/j.neuron.2006.11.021).

1442 **Kurtovic A**, Widmer A, Dickson BJ. A single class of olfactory neurons mediates behavioural responses to a
1443 *Drosophila* sex pheromone. *Nature*. 2007 Mar; 446(7135):542–546. doi: [10.1038/nature05672](https://doi.org/10.1038/nature05672).

1444 **Lacin H**, Chen H, Long X, Singer R, Lee T, Truman J. Neurotransmitter identity is acquired in a lineage-restricted
1445 manner in the *Drosophila* CNS. *eLife*. 2019 3; 8:e43701. doi: [10.7554/eLife.43701](https://doi.org/10.7554/eLife.43701).

1446 **Lai SL**, Awasaki T, Ito K, Lee T. Clonal analysis of *Drosophila* antennal lobe neurons: diverse neuronal architectures
1447 in the lateral neuroblast lineage. *Development*. 2008 9; 135(17):2883–2893. doi: [10.1242/dev.024380](https://doi.org/10.1242/dev.024380).

1448 **Laissue PP**, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF. Three-dimensional reconstruction of the
1449 antennal lobe in *Drosophila melanogaster*. *J Comp Neurol*. 1999 3; 405(4):543–552. doi: [10.1002/\(SICI\)1096-9861\(19990322\)405:4%3C543::AID-CNE7%3E3.0.CO;2-A](https://doi.org/10.1002/(SICI)1096-9861(19990322)405:4%3C543::AID-CNE7%3E3.0.CO;2-A).

1450 **Lemon RN**. Descending Pathways in Motor Control. *Annu Rev Neurosci*. 2008 7; 31(1):195–218. doi: [10.1146/annurev.neuro.31.060407.125547](https://doi.org/10.1146/annurev.neuro.31.060407.125547).

1451 **Li F**, Lindsey J, Marin E, Otto N, Dreher M, Dempsey G, Stark I, Bates A, Pleijzier M, Schlegel P, Nern A, Take-
1452 mura S, Eckstein N, Yang T, Francis A, Braun A, Parekh R, Costa M, Scheffer L, Aso Y, et al. The connectome
1453 of the adult *Drosophila* mushroom body provides insights into function. *eLife*. 2020 12; 9:e62576. doi: [10.7554/eLife.62576](https://doi.org/10.7554/eLife.62576).

1454 **Li PH**, Lindsey LF, Januszewski M, Zheng Z, Bates AS, Taisz I, Tyka M, Nichols M, Li F, Perlman E, Maitin-Shepard J,
1455 Blakely T, Leavitt L, Jefferis GSXE, Bock D, Jain V. Automated Reconstruction of a Serial-Section EM *Drosophila*
1456 Brain with Flood-Filling Networks and Local Realignment. *bioRxiv*. 2019 4; doi: [10.1101/605634](https://doi.org/10.1101/605634).

1457 **Li Q**, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved
1458 Gene Regulatory Network Module Governing Olfactory Neuron Diversity. *PLOS Genetics*. 2016 1;
1459 12(1):e1005780. doi: [10.1371/journal.pgen.1005780](https://doi.org/10.1371/journal.pgen.1005780).

1460 **Liang L**, Li Y, Potter C, Yizhar O, Deisseroth K, Tsien R, Luo L. GABAergic projection neurons route selective olfactory
1461 inputs to specific higher-order neurons. *Neuron*. 2013 9; 79:917–31. doi: [10.1016/j.neuron.2013.06.014](https://doi.org/10.1016/j.neuron.2013.06.014).

1462 **Lovick J**, Ngo K, Omoto J, Wong D, Nguyen J, Hartenstein V. Postembryonic lineages of the *Drosophila* brain: I. Development of the lineage-associated fiber tracts. *Dev Biol*. 2013 12; 384:228–57. doi: [10.1016/j.ydbio.2013.07.008](https://doi.org/10.1016/j.ydbio.2013.07.008).

1468 Mansourian S, Stensmyr MC. The chemical ecology of the fly. *Curr Opin Neurobiol.* 2015 10; 34:95–102. doi: [10.1016/j.conb.2015.02.006](https://doi.org/10.1016/j.conb.2015.02.006).

1470 Marin EC, Büld L, Theiss M, Sarkissian T, Roberts RJV, Turnbull R, Tamimi IFM, Pleijzier MW, Laursen WJ, Drummond N, Schlegel P, Bates AS, Li F, Landgraf M, Costa M, Bock DD, Garrity PA, Jefferis GSXE. Connectomics analysis reveals first, second, and third order thermosensory and hygrosensory neurons in the adult *Drosophila* brain. *Curr Biol.* 2020; 30(16):3167–3182.e4. doi: [10.1016/j.cub.2020.06.028](https://doi.org/10.1016/j.cub.2020.06.028).

1474 McGuire SE, Le PT, Davis RL. The role of *Drosophila* mushroom body signaling in olfactory memory. *Science.* 2001 8; 293(5533):1330–1333. doi: [10.1371/journal.pgen.1008963](https://doi.org/10.1371/journal.pgen.1008963).

1476 Meissner GW, Dorman Z, Nern A, Forster K, Gibney T, Jeter J, Johnson L, He Y, Lee K, Melton B, Yarbrough B, Clements J, Goina C, Otsuna H, Rokicki K, Svirskas RR, Aso Y, Card GM, Dickson BJ, Ehrhardt E, et al. An image resource of subdivided *Drosophila* GAL4-driver expression patterns for neuron-level searches. *bioRxiv.* 2020 5; doi: [10.1101/2020.05.29.080473](https://doi.org/10.1101/2020.05.29.080473).

1480 Min S, Ai M, Shin Sa, Suh GSB. Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in *Drosophila*. *Proc Natl Acad Sci U S A.* 2013; 110(14):E1321–9. doi: [10.1073/pnas.1215680110](https://doi.org/10.1073/pnas.1215680110).

1482 Mirochnikow A, Schlegel P, Schoofs A, Hueckesfeld S, Li F, Schneider-Mizell CM, Fetter RD, Truman JW, Cardona A, Pankratz MJ. Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a *Drosophila* feeding connectome. *eLife.* 2018 12; 7:e40247. doi: [10.7554/elife.40247](https://doi.org/10.7554/elife.40247).

1485 Mittal A, Gupta D, Singh A, Lin A, Gupta N. Multiple network properties overcome random connectivity to enable stereotyped sensory responses. *Nat Commun.* 2020 2; 11:1023. doi: [10.1038/s41467-020-14836-6](https://doi.org/10.1038/s41467-020-14836-6).

1487 Mohamed AAM, Retzke T, Das Chakraborty S, Fabian B, Hansson BS, Knaden M, Sachse S. Odor mixtures of opposing valence unveil inter-glomerular crosstalk in the *Drosophila* antennal lobe. *Nat Commun.* 2019 3; 10(1):1201. doi: [10.1038/s41467-019-09069-1](https://doi.org/10.1038/s41467-019-09069-1).

1490 Münch D, Galizia C. DoOR 2.0—Comprehensive Mapping of *Drosophila melanogaster* Odorant Responses. *Sci Rep.* 2016 2; 6:21841. doi: [10.1038/srep21841](https://doi.org/10.1038/srep21841).

1492 Namiki S, Dickinson MH, Wong AM, Korff W, Card GM. The functional organization of descending sensory-motor pathways in *Drosophila*. *eLife.* 2018 6; 7:e34272. doi: [10.7554/elife.34272](https://doi.org/10.7554/elife.34272).

1494 Nern A, Pfeiffer B, Rubin G. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. *Proc Natl Acad Sci U S A.* 2015 6; 112:E2967–76. doi: [10.1073/pnas.1506763112](https://doi.org/10.1073/pnas.1506763112).

1497 Ni L, Bronk P, Chang E, Lowell A, Flam J, Panzano V, Theobald D, Griffith L, Garrity P. A gustatory receptor parologue controls rapid warmth avoidance in *Drosophila*. *Nature.* 2013 8; 500:580–4. doi: [10.1038/nature12390](https://doi.org/10.1038/nature12390).

1500 Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M. A multilevel multimodal circuit enhances action selection in *Drosophila*. *Nature.* 2015; 520(7549):633–639. doi: [10.1038/nature14297](https://doi.org/10.1038/nature14297).

1503 Okada R, Awasaki T, Ito K. Gamma-aminobutyric acid (GABA)-mediated neural connections in the *Drosophila* antennal lobe. *J Comp Neurol.* 2009 5; 514:74–91. doi: [10.1002/cne.21971](https://doi.org/10.1002/cne.21971).

1505 Olsen SR, Wilson RI. Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of *Drosophila*. *Trends Neurosci.* 2008 10; 31(10):512–520. doi: [10.1016/j.tins.2008.07.006](https://doi.org/10.1016/j.tins.2008.07.006).

1507 Otsuna H, Ito M, Kawase T. Color depth MIP mask search: a new tool to expedite Split-GAL4 creation. *bioRxiv.* 2018 5; doi: [10.1101/318006](https://doi.org/10.1101/318006).

1509 Otto N, Pleijzier M, Morgan I, Edmondson-Stait A, Heinz K, Stark I, Dempsey G, Ito M, Kapoor I, Hsu J, Schlegel P, Bates A, Feng L, Costa M, Ito K, Bock D, Rubin G, Jefferis G, Waddell S. Input Connectivity Reveals Additional Heterogeneity of Dopaminergic Reinforcement in *Drosophila*. *Curr Biol.* 2020 8; 30:3200–3211.e8. doi: [10.1016/j.cub.2020.05.077](https://doi.org/10.1016/j.cub.2020.05.077).

1513 Parnas M, Lin AC, Huetteroth W, Miesenböck G. Odor discrimination in *Drosophila*: from neural population codes to behavior. *Neuron.* 2013 9; 79(5):932–944. doi: [10.1016/j.neuron.2013.08.006](https://doi.org/10.1016/j.neuron.2013.08.006).

1515 Root CM, Masuyama K, Green DS, Enell LE, Nässel DR, Lee CH, Wang JW. A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior. *Neuron.* 2008 7; 59(2):311–321. doi: [10.1016/j.neuron.2008.07.003](https://doi.org/10.1016/j.neuron.2008.07.003).

1517 **Ryan K**, Lu Z, Meinertzhagen I. The CNS connectome of a tadpole larva of *Ciona intestinalis* (L.) highlights
1518 sidedness in the brain of a chordate sibling. *eLife*. 2016 12; 5:e16962. doi: [10.7554/eLife.16962](https://doi.org/10.7554/eLife.16962).

1519 **Rybak J**, Talarico G, Ruiz S, Arnold C, Cantera R, Hansson B. Synaptic circuitry of identified neurons in the
1520 antennal lobe of *Drosophila melanogaster*. *J Comp Neurol*. 2016 6; 524:1920–56. doi: [10.1002/cne.23966](https://doi.org/10.1002/cne.23966).

1521 **Saalfeld S**, Cardona A, Hartenstein V, Tomancak P. CATMAID: collaborative annotation toolkit for massive
1522 amounts of image data. *Bioinformatics*. 2009 8; 25:1984–6. doi: [10.1093/bioinformatics/btp266](https://doi.org/10.1093/bioinformatics/btp266).

1523 **Sayin S**, De BJ, Siju K, Wosniack M, Lewis L, Frisch L, Gansen B, Schlegel P, Edmondson-Stait A, Sharifi N, Fisher
1524 C, Calle-Schuler S, Lauritzen J, Bock D, Costa M, Jefferis G, Gjorgjieva J, Grunwald KI. A Neural Circuit Arbitrates
1525 between Persistence and Withdrawal in Hungry *Drosophila*. *Neuron*. 2019 11; 104:544–558.e6. doi:
1526 [10.1016/j.neuron.2019.07.028](https://doi.org/10.1016/j.neuron.2019.07.028).

1527 **Scheffer LK**, Xu CS, Januszewski M, Lu Z, Takemura Sy, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard
1528 J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T,
1529 Kainmueller D, et al. A connectome and analysis of the adult *Drosophila* central brain. *eLife*. 2020 9; p. e57443.
1530 doi: [10.7554/eLife.57443](https://doi.org/10.7554/eLife.57443).

1531 **Schlegel P**, Texada MJ, Mirochnikow A, Schoofs A, Hückesfeld S, Marc P, Schneider-Mizell CM, Lacin H, Li F,
1532 Fetter RD, Truman JW, Cardona A, Pankratz MJ. Synaptic transmission parallels neuromodulation in a central
1533 food-intake circuit. *eLife*. 2016 11; 5:e16799. doi: [10.7554/eLife.16799](https://doi.org/10.7554/eLife.16799).

1534 **Schneider-Mizell CM**, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD,
1535 Saalfeld S, Cardona A. Quantitative neuroanatomy for connectomics in *Drosophila*. *eLife*. 2016 3; 5:e12059.
1536 doi: [10.7554/eLife.12059](https://doi.org/10.7554/eLife.12059).

1537 **Séjourné J**, Plaçais PY, Yoshinori A, Siwanowicz I, Trannoy S, Thoma V, Tedjakumala SR, Rubin GM, Tchénio P,
1538 Ito K, Isabel G, Tanimoto H, Preat T. Mushroom body efferent neurons responsible for aversive olfactory
1539 memory retrieval in *Drosophila*. *Nat Neurosci*. 2011; 14(7):903–910. doi: [10.1038/nn.2846](https://doi.org/10.1038/nn.2846).

1540 **Seki Y**, Rybak J, Wicher D, Sachse S, Hansson BS. Physiological and Morphological Characterization of
1541 Local Interneurons in the *Drosophila* Antennal Lobe. *J Neurophys*. 2010 8; 104(2):1007–1019. doi:
1542 [10.1152/jn.00249.2010](https://doi.org/10.1152/jn.00249.2010).

1543 **Sen S**, Biagini S, Reichert H, VijayRaghavan K. Orthodenticle is required for the development of olfactory
1544 projection neurons and local interneurons in *Drosophila*. *Biology Open*. 2014 7; 3(8):711–717. doi:
1545 [10.1242/bio.20148524](https://doi.org/10.1242/bio.20148524).

1546 **Shang Y**, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G. Excitatory Local Circuits and Their
1547 Implications for Olfactory Processing in the Fly Antennal Lobe. *Cell*. 2007 2; 128(3):601–612. doi:
1548 [10.1016/j.cell.2006.12.034](https://doi.org/10.1016/j.cell.2006.12.034).

1549 **Silbering aF**, Rytz R, Grosjean Y, Abuin L, Ramdy P, Jefferis GSXE, Benton R. Complementary Function and Integrated
1550 Wiring of the Evolutionarily Distinct *Drosophila* Olfactory Subsystems. *J Neurosci*. 2011; 31(38):13357–
1551 13375. doi: [10.1523/JNEUROSCI.2360-11.2011](https://doi.org/10.1523/JNEUROSCI.2360-11.2011).

1552 **Stensmyr MC**, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S,
1553 Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS. A Conserved Dedicated Olfactory Circuit for
1554 Detecting Harmful Microbes in *Drosophila*. *Cell*. 2012 Dec; 151(6):1345–1357. doi: [10.1016/j.cell.2012.09.046](https://doi.org/10.1016/j.cell.2012.09.046).

1555 **Stocker RF**, Lienhard MC, Borst A, Fischbach KF. Neuronal architecture of the antennal lobe in *Drosophila*
1556 *melanogaster*. *Cell Tissue Res*. 1990 10; 262(1):9–34. doi: [10.1016/j.celrep.2016.08.063](https://doi.org/10.1016/j.celrep.2016.08.063).

1557 **Stocker RF**. *Drosophila* as a focus in olfactory research: Mapping of olfactory sensilla by fine structure odor
1558 specificity, odorant receptor expression, and central connectivity. *Microsc Res and Tech*. 2001; 55(5):284–296.
1559 doi: [10.1002/jemt.1178](https://doi.org/10.1002/jemt.1178).

1560 **Su CY**, Menuz K, Carlson JR. Olfactory perception: receptors, cells, and circuits. *Cell*. 2009 10; 139(1):45–59. doi:
1561 [10.1016/j.cell.2009.09.015](https://doi.org/10.1016/j.cell.2009.09.015).

1562 **Tanaka N**, Endo K, Ito K. Organization of antennal lobe-associated neurons in adult *Drosophila melanogaster*
1563 brain. *J Comp Neurol*. 2012 12; 520:4067–130. doi: [10.1002/cne.23142](https://doi.org/10.1002/cne.23142).

1564 **Tanaka NK**, Suzuki E, Dye L, Ejima A, Stopfer M. Dye fills reveal additional olfactory tracts in the protocerebrum
1565 of wild-type *Drosophila*. *J Comp Neurol*. 2012 12; 520(18):4131–4140. doi: [10.1002/cne.23149](https://doi.org/10.1002/cne.23149).

1566 **Task D**, Lin CC, Afify A, Li H, Vulpe A, Menuz K, Potter CJ. Widespread Polymodal Chemosensory Receptor
1567 Expression in *Drosophila* Olfactory Neurons. bioRxiv. 2020; doi: [10.1101/2020.11.07.355651](https://doi.org/10.1101/2020.11.07.355651).

1568 **Tobin WF**, Wilson RI, Lee WCA. Wiring variations that enable and constrain neural computation in a sensory
1569 microcircuit. eLife. 2017 5; 6:e24838. doi: [10.7554/eLife.24838](https://doi.org/10.7554/eLife.24838).

1570 **Truman JW**, Bate M. Spatial and temporal patterns of neurogenesis in the central nervous system of *Drosophila*
1571 *melanogaster*. Dev Biol. 1988; 125(1):145–157. doi: [10.1016/0012-1606\(88\)90067-x](https://doi.org/10.1016/0012-1606(88)90067-x).

1572 **Vosshall LB**, Wong AM, Axel R. An olfactory sensory map in the fly brain. Cell. 2000 7; 102(2):147–159. doi:
1573 [10.1016/s0092-8674\(00\)00021-0](https://doi.org/10.1016/s0092-8674(00)00021-0).

1574 **Vosshall LB**, Stocker RF. Molecular Architecture of Smell and Taste in *Drosophila*. Annu Rev Neurosci. 2007 Jul;
1575 30(1):505–533. doi: [10.1146/annurev.neuro.30.051606.094306](https://doi.org/10.1146/annurev.neuro.30.051606.094306).

1576 **Vulpe A**, Kim HS, Ballou S, Wu ST, Grabe V, Gonzales CN, Sachse S, Jeanne JM, Su CY, Menuz K. An
1577 ammonium transporter is a non-canonical olfactory receptor for ammonia. bioRxiv. 2021 3; doi:
1578 [10.1101/2021.03.31.437861](https://doi.org/10.1101/2021.03.31.437861).

1579 **White J**, Southgate E, Thomson J, Brenner S. The structure of the nervous system of the nematode *Caenorhabditis elegans*. Philos Trans R Soc Lond B Biol Sci. 1986 11; 314:1–340. doi: [10.1098/rstb.1986.0056](https://doi.org/10.1098/rstb.1986.0056).

1580 **Wilson RI**. Early olfactory processing in *Drosophila*: mechanisms and principles. Annu Rev Neurosci. 2013;
1581 36:217–241. doi: [10.1146/annurev-neuro-062111-150533](https://doi.org/10.1146/annurev-neuro-062111-150533).

1582 **Wilson R**, Laurent G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the
1583 *Drosophila* antennal lobe. J Neurosci. 2005 10; 25:9069–79. doi: [10.1523/JNEUROSCI.2070-05.2005](https://doi.org/10.1523/JNEUROSCI.2070-05.2005).

1584 **Wong DC**, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ, Hartenstein V. Postembryonic lineages of the
1585 *Drosophila* brain: II. Identification of lineage projection patterns based on MARCM clones. Developmental
1586 Biology. 2013 Dec; 384(2):258–289. doi: [10.1016/j.ydbio.2013.07.009](https://doi.org/10.1016/j.ydbio.2013.07.009).

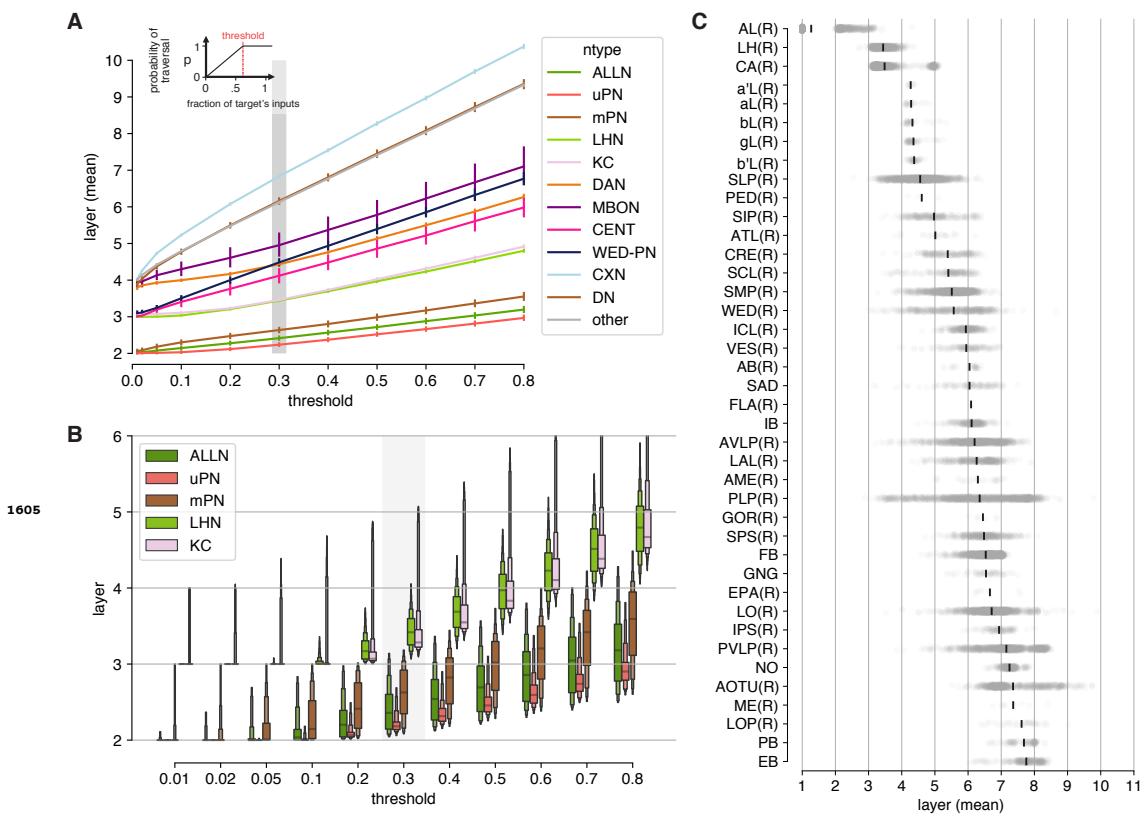
1587 **Xu C**, Hayworth K, Lu Z, Grob P, Hassan A, García-Cerdán J, Niyogi K, Nogales E, Weinberg R, Hess H. Enhanced
1588 FIB-SEM systems for large-volume 3D imaging. eLife. 2017 5; 6:e25916. doi: [10.7554/eLife.25916](https://doi.org/10.7554/eLife.25916).

1589 **Yu D**, Ponomarev A, Davis RL. Altered Representation of the Spatial Code for Odors after Olfactory Classical
1590 Conditioning. Neuron. 2004 5; 42(3):437–449. doi: [10.1016/s0896-6273\(04\)00217-x](https://doi.org/10.1016/s0896-6273(04)00217-x).

1591 **Yu HH**, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, Ding P, Kao JC, Wu GYY, Peng H, Myers G, Lee T. Clonal
1592 Development and Organization of the Adult *Drosophila* Central Brain. Curr Biol. 2013 4; 23(8):633–643. doi:
1593 [10.1016/j.cub.2013.02.057](https://doi.org/10.1016/j.cub.2013.02.057).

1594 **Yu HH**, Kao CF, He Y, Ding P, Kao JC, Lee T. A complete developmental sequence of a *Drosophila* neuronal lineage
1595 as revealed by twin-spot MARCM. PLoS Biol. 2010 8; 8(8):e1000461. doi: [10.1371/journal.pbio.1000461](https://doi.org/10.1371/journal.pbio.1000461).

1596 **Zhao B**, Sun J, Zhang X, Mo H, Niu Y, Li Q, Wang L, Zhong Y. Long-term memory is formed immediately without
1597 the need for protein synthesis-dependent consolidation in *Drosophila*. Nat Commun. 2019 10; 10(1):4550.
1598 doi: [10.1038/s41467-019-12436-7](https://doi.org/10.1038/s41467-019-12436-7).


1599 **Zheng Z**, Lauritzen JS, Perlman E, Saalfeld S, Fetter RD, D BCD. A Complete Electron Microscopy Volume of the
1600 Brain of Adult *Drosophila melanogaster*. Cell. 2018; 174:1–14. doi: [10.1016/j.cell.2018.06.019](https://doi.org/10.1016/j.cell.2018.06.019).

1601 **Zheng Z**, Li F, Fisher C, Ali IJ, Sharifi N, Calle-Schuler S, Hsu J, Masoodpanah N, Kmecova L, Kazimiers T, Perlman
1602 E, Nichols M, Li PH, Jain V, Bock DD. Structured sampling of olfactory input by the fly mushroom body. bioRxiv.
1603 2020; doi: [10.1101/2020.04.17.047167](https://doi.org/10.1101/2020.04.17.047167).

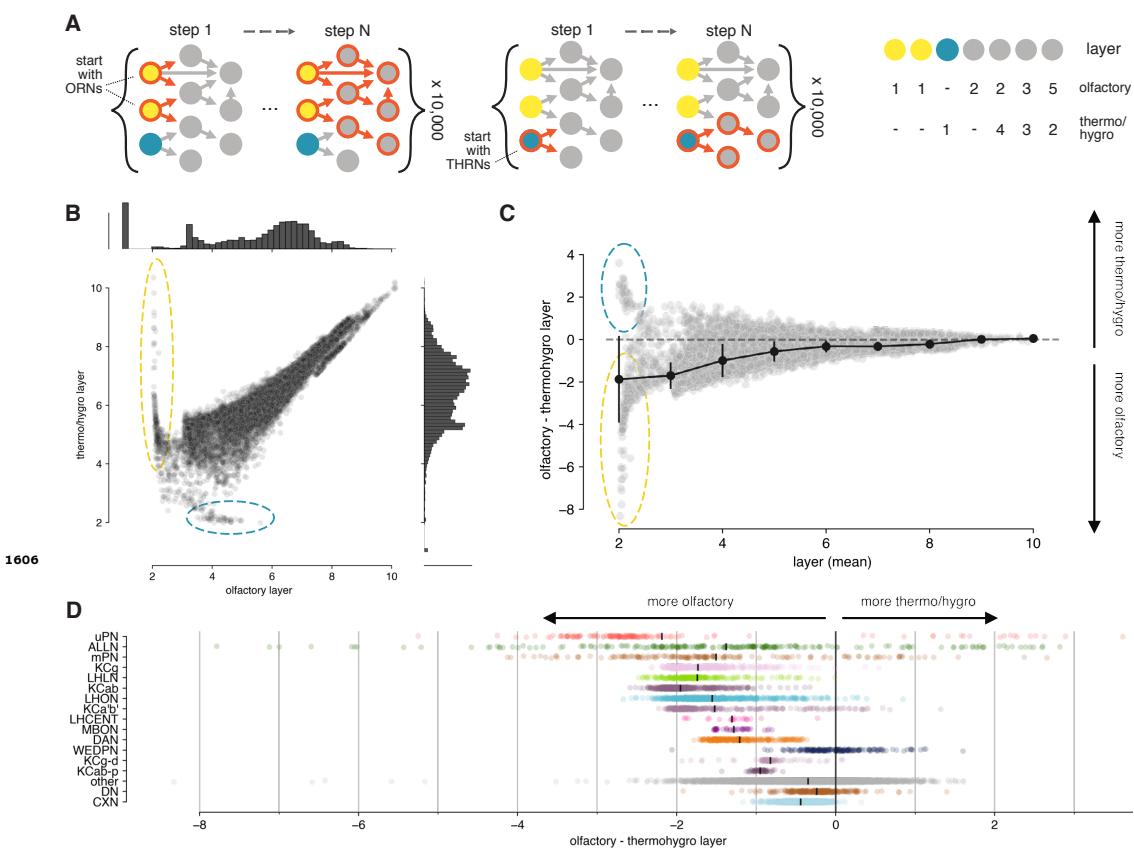
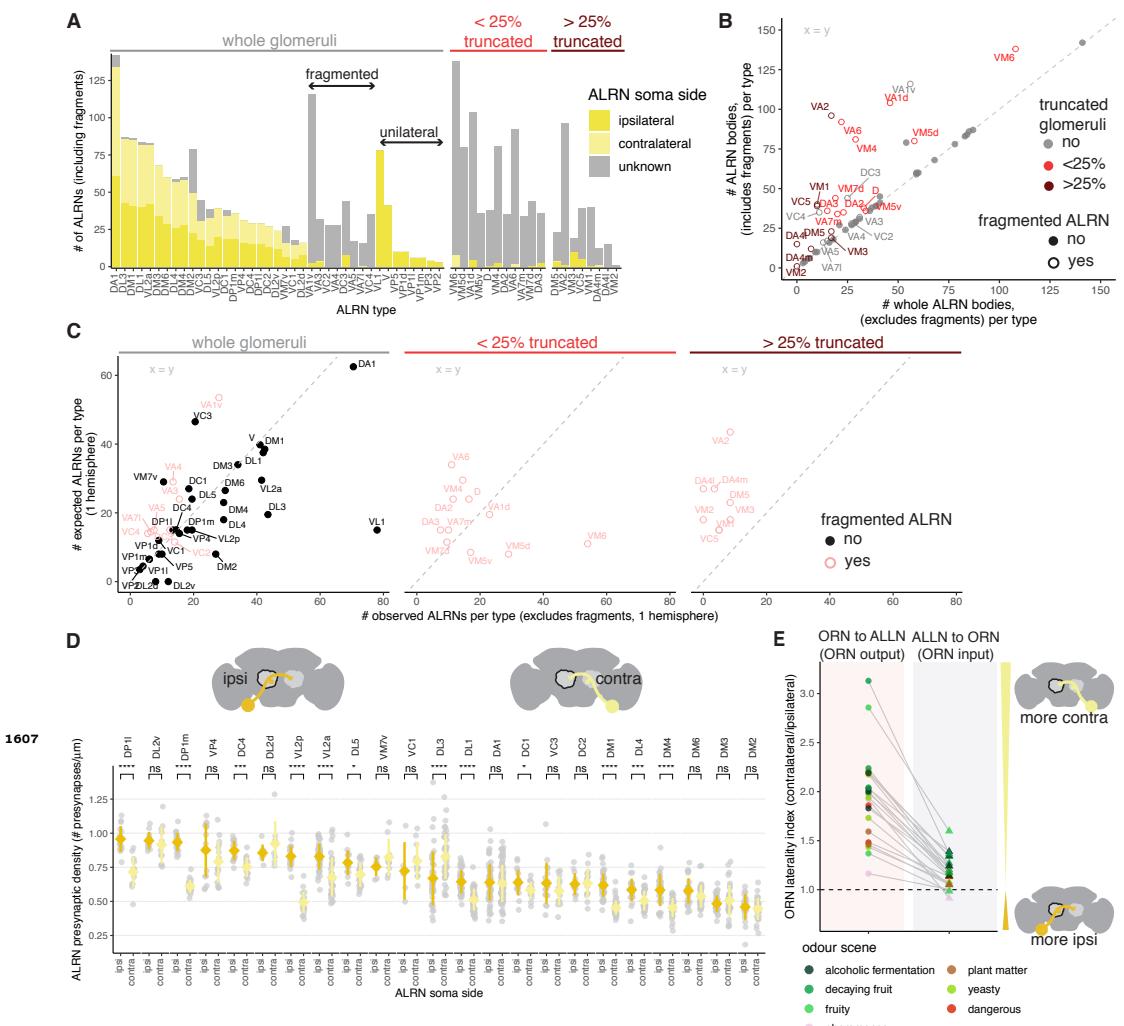
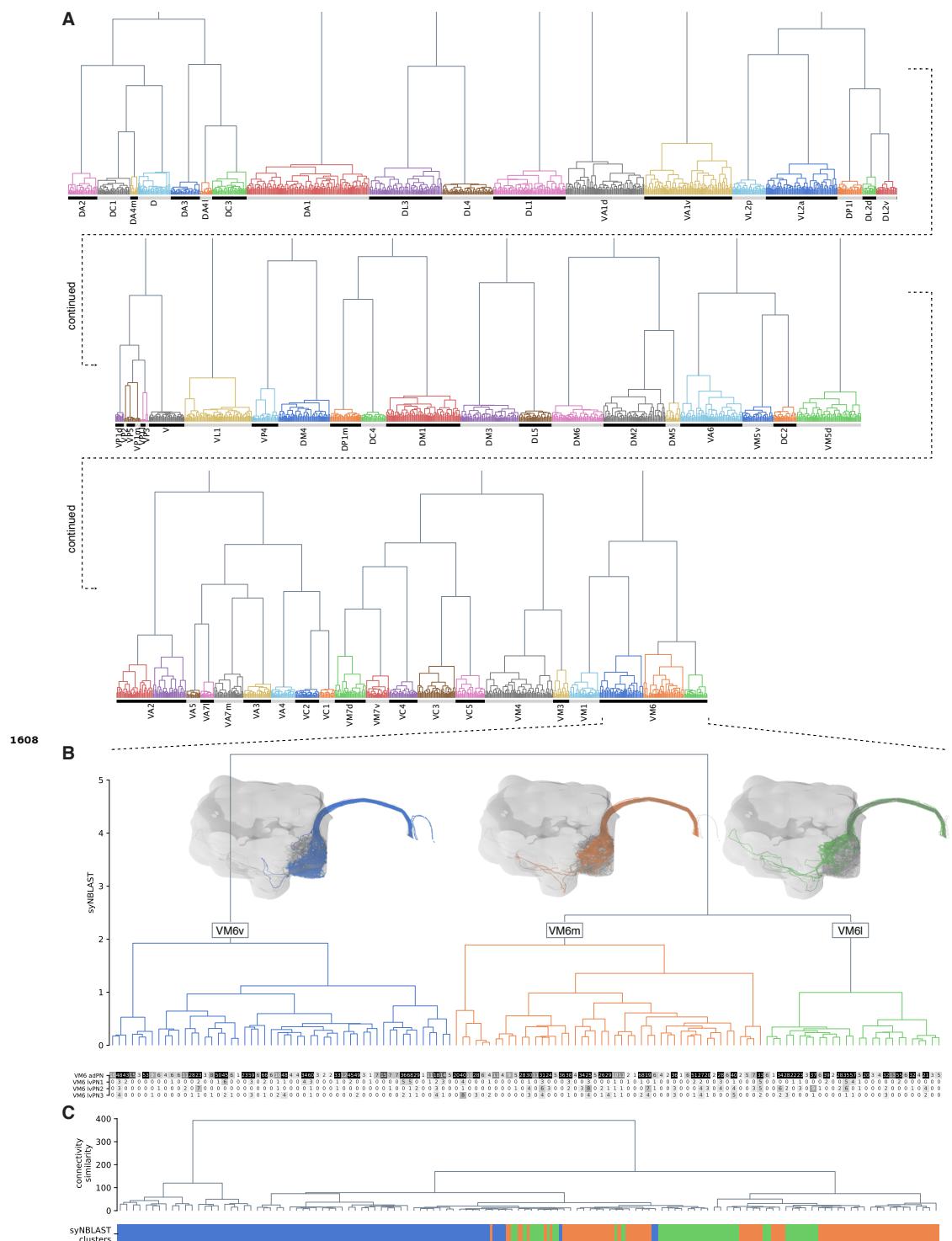
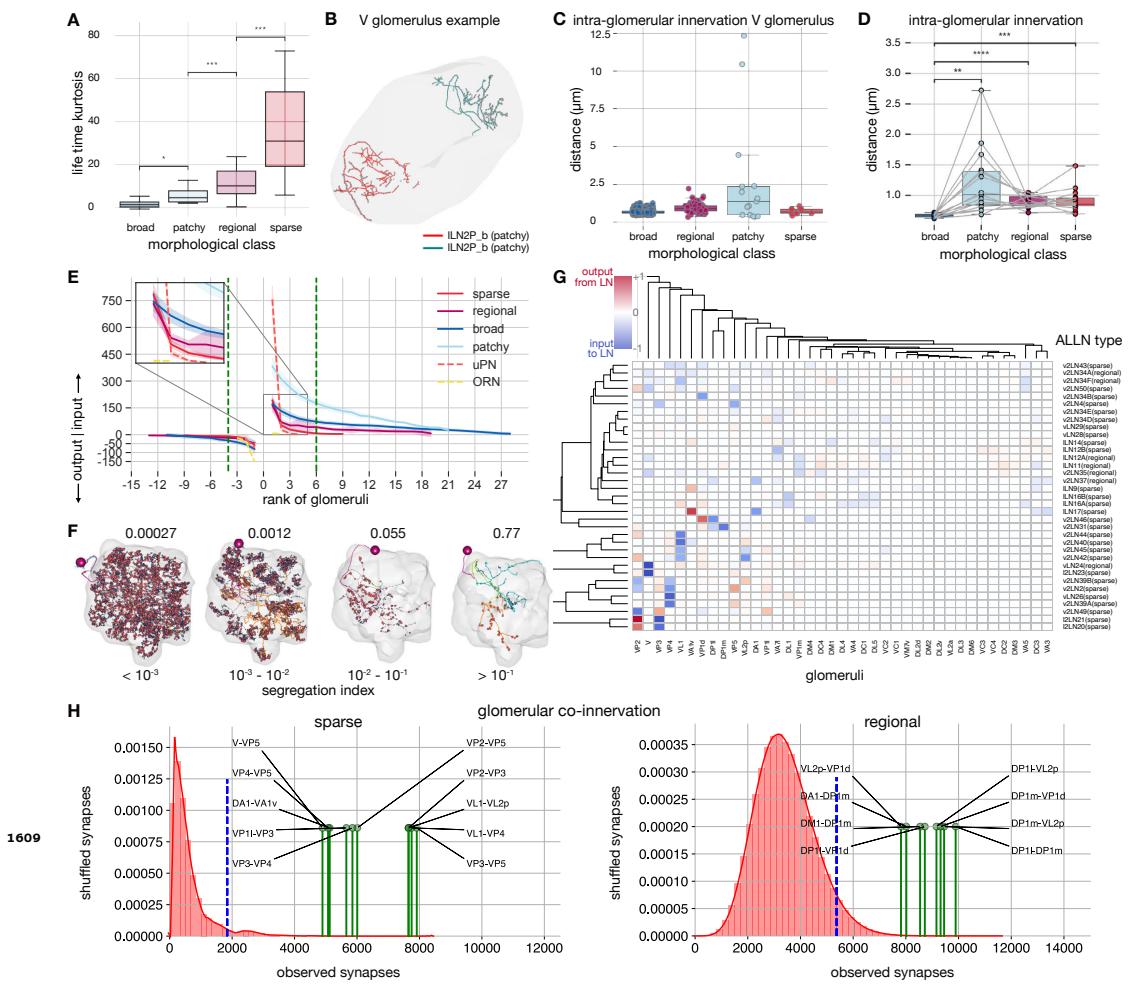
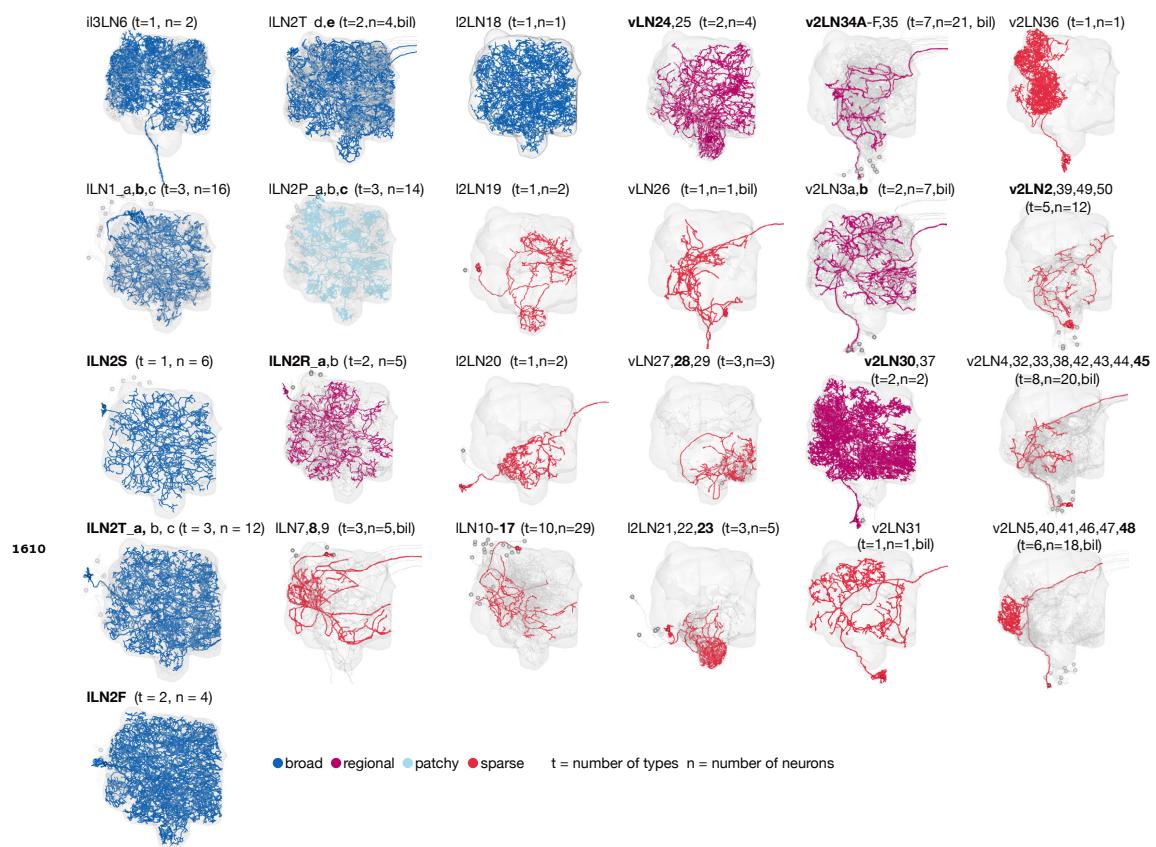

1604

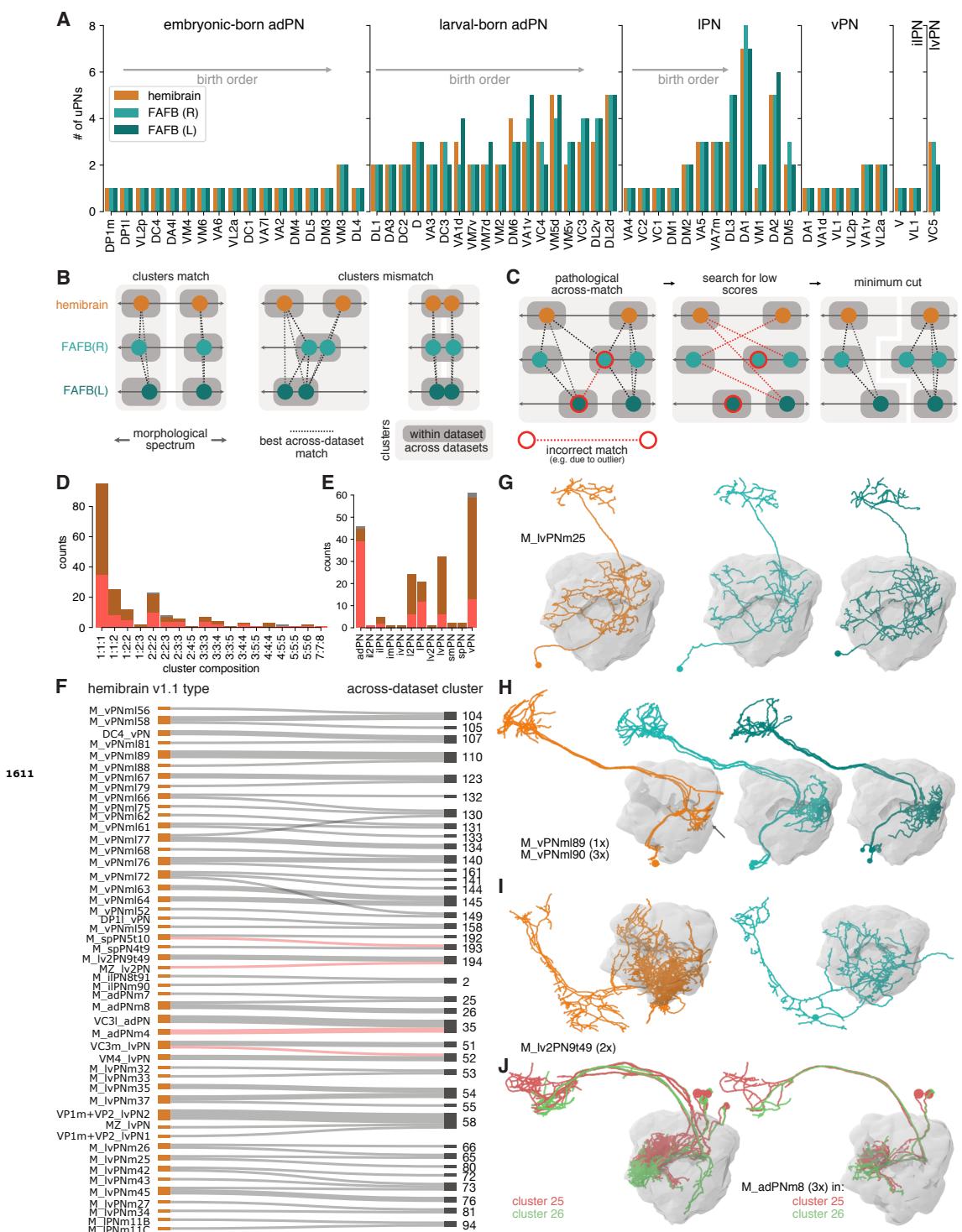
Table 3. Description of neuron metadata listed in supplemental files.

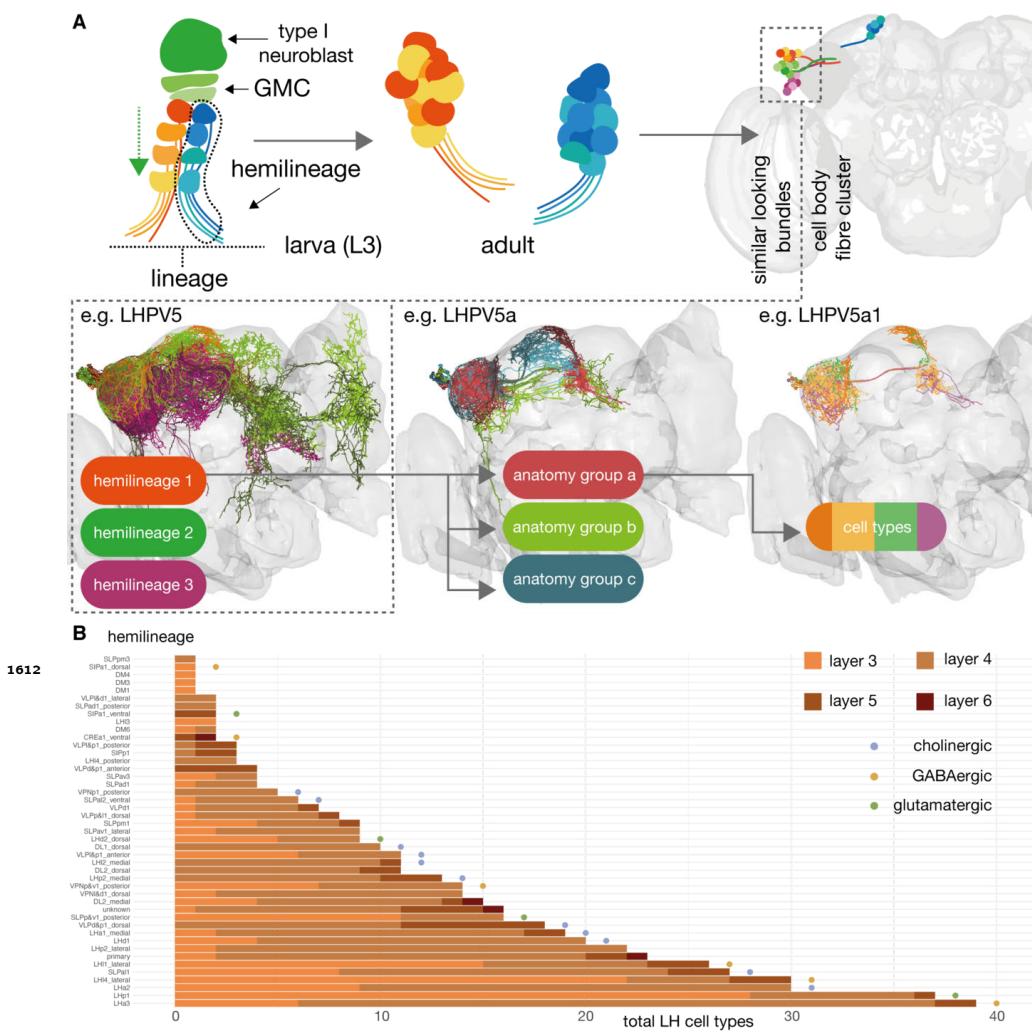

column name	description
bodyid	a unique identifier for a single hemibrain neuron
pre	the number of presynapses (outputs) a neuron contains, each of these is polyadic
post	the number of postsynapses (inputs) to the neuron
upstream	the number of incoming connections to a neuron
downstream	the number of outgoing connections from a neuron
voxels	neuron size in voxels
soma	whether the neuron has a soma in the hemibrain volume
name	the name of this neuron, as read from neuPrint
side	which brain hemisphere contains the neuron's soma
connectivity.type	a subset of neurons within a cell type that share similar connectivity, a connectivity type is distinguished from a cell type by an ending _letter unless there is only one connectivity type for the cell type, defined using CBLAST (Scheffer et al., 2020)
cell.type	neurons of a shared morphology that take the same cell body fibre tract and come from the same hemilineage (Bates et al., 2019)
class	the greater anatomical group to which a neuron belongs, see Figure 1
cellBodyFiber	the cell body fibre for a neuron, as read from neuPrint (Scheffer et al., 2020)
ItoLee_Hemilineage	the hemilineage that we reckon this cell type belongs to, based on expert review of light level data from the K. Ito and T. Lee groups (Yu et al., 2013, Ito et al., 2013)
Hartenstein_Hemilineage	the hemilineage that we reckon this cell type belongs to, based on expert review of light level data from the V. Hartenstein group (Wong et al., 2013, Lovick et al., 2013)
putative.classic.transmitter	putative neurotransmitter based on what neurons in the hemilineage in question have been shown to express, out of acetylcholine, GABA and/or glutamate
putative.other.transmitter	potential second neurotransmitter
FAFB.match	the ID of the manual match from the FAFB data set, ID indicates a neuron reconstructed in FAFBv14 CATMAID, many of these neurons will be available through Virtual Fly Brain, https://v2.virtualflybrain.org/
FAFB.match.quality	the matcher makers' qualitative assessment of how good this match is: a poor match could be a neuron from a very similar cell type or a highly untraced neuron that may be the correct cell type; an okay match should be a neuron that looks to be from the same morphological cell type but there may be some discrepancies in its arbour; a good match is a neuron that corresponds well between FAFB and the hemibrain data
layer	probabilistic mean path length to neuron from ALRNs, depends on connection strengths
layer.ct	the mean layer for cell type, rounded to the nearest whole number
axon.outputs	number of outgoing connections from the neuron's predicted axon
dend.outputs	number of outgoing connections from the neuron's predicted dendrite
axon.inputs	number of incoming connections from the neuron's predicted axon
dend.inputs	number of incoming connections from the neuron's predicted dendrite
total.length	total cable length of the neuron in micrometres
axon.length	total axon cable length of the neuron in micrometres
dend.length	total dendrite cable length of the neuron in micrometres
pd.length	total cable length of the primary dendrite 'linker' between axon and dendrite
segregation_index	a quantification of how polarised a neuron is, in terms of its segregation of inputs onto its predicted dendrite and outputs onto its axon, where 0 is no-polarisation and 1 is totally polarised (Schneider-Mizell et al., 2016)
notes	other notes from annotators

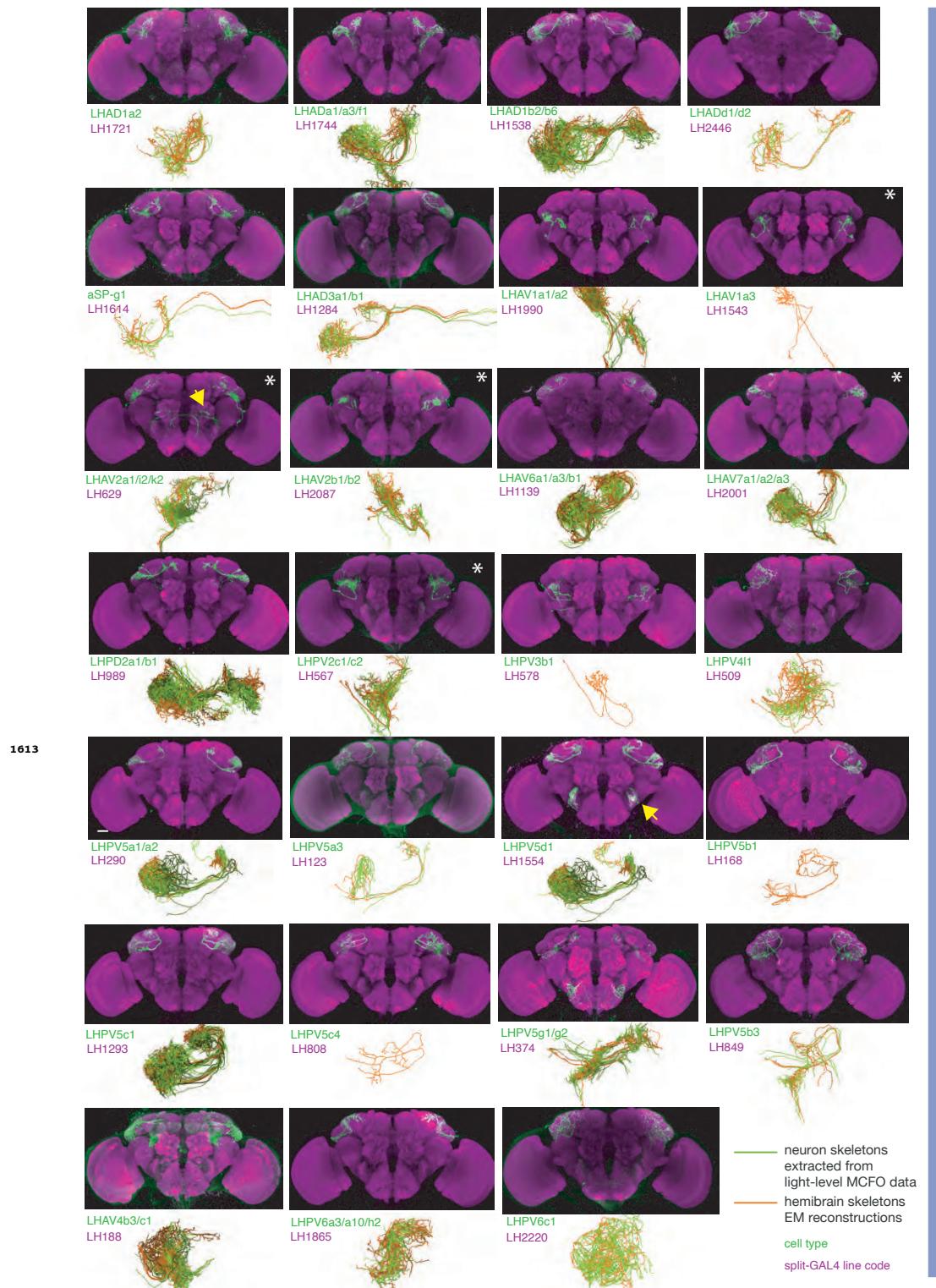

Figure 2-Figure supplement 1. Graph traversal model extended data. A Model parameterization: relative positions are stable across parameter space (with the exception of WEDPNs). Grey bar indicates threshold used for final model (0.3). Error bars represent S.E.M. **B** Final threshold was chosen using known neuron classes as landmarks. **C** Mean layer by neuropil. Each neuron is assigned a “primary” neuropil based on where it receives most of its inputs.

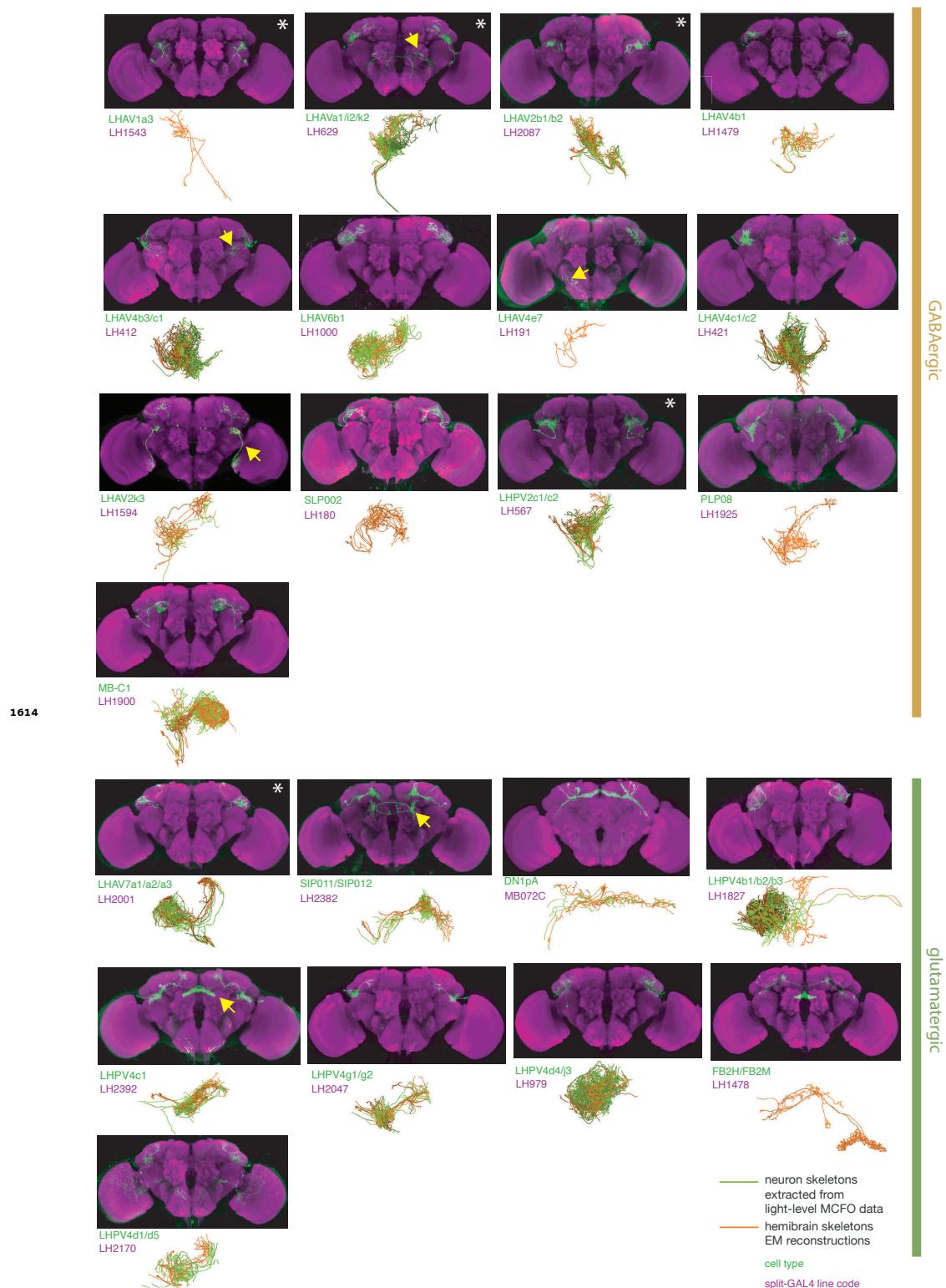

Figure 2-Figure supplement 2. Olfactory vs thermo/hygro sensory layers. **A** Separate models with olfactory receptor neurons (ORNs) or thermo/hygro-receptor neurons (TRNs/HRNs) as seeds were run to assign layers with respect to the olfactory or thermo/hygro sensory system. **B**, **C** Comparison of olfactory vs thermo/hygro sensory layer. Early on there are neurons that appear dedicated to either olfactory (yellow circle) or thermo/hygro (blue circle) sensory information. This separation vanishes in higher layers. Error bars in C represent S.E.M. **D** Olfactory vs thermo/hygro sensory layer by neuron class.

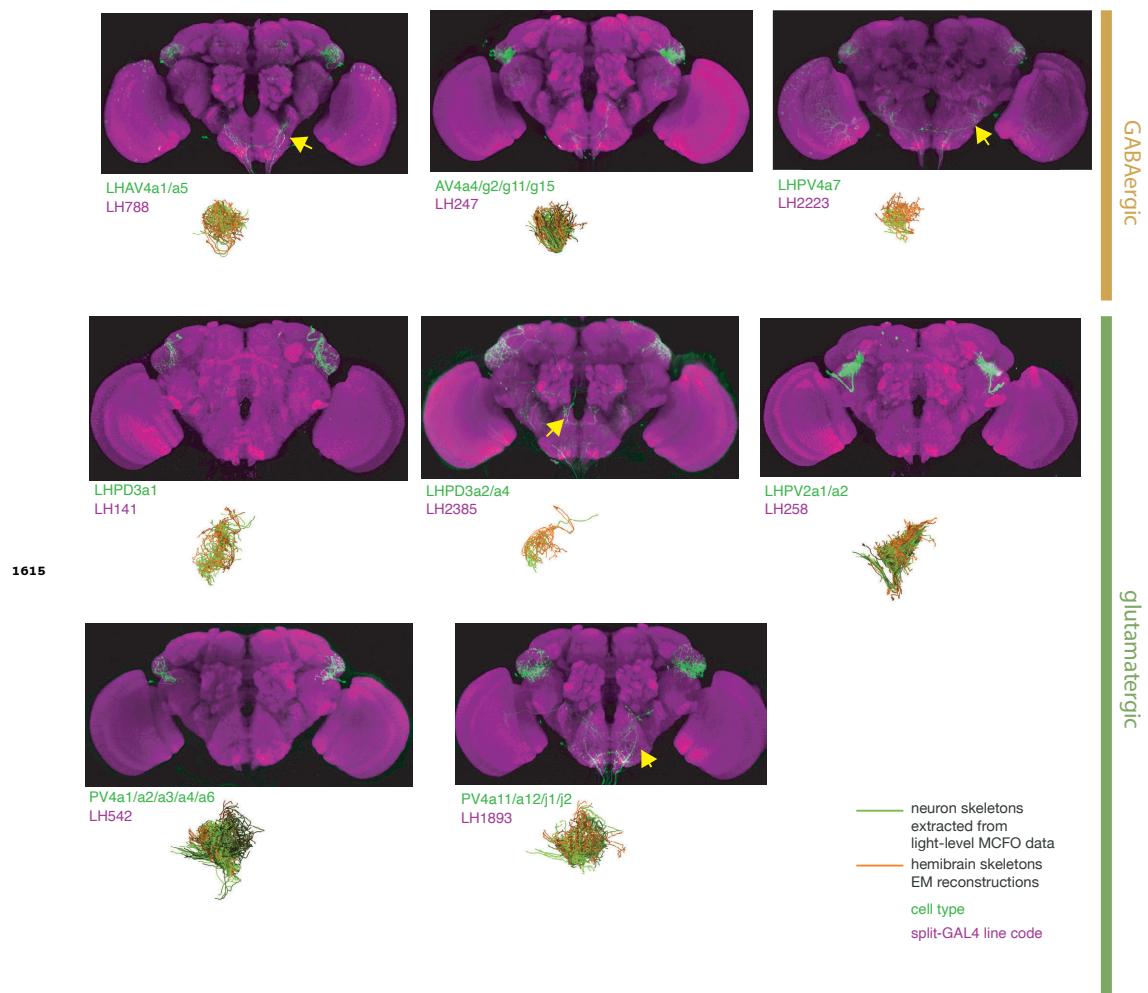

Figure 3-Figure supplement 1. Annotation of ALRN bodies and connectivity features. A Number of unique bodies classified as ALRNs per type and per soma side. Truncated glomeruli (0, <25%, >25%), fragmented ALRN types in whole glomeruli and unilateral ALRN types are indicated. **B** Relationship between the number of unique ALRN bodies (including fragments) and whole ALRN bodies (excluding fragments). **C** Comparison between the number of observed ALRNs (whole) and the expected number per type, in one hemisphere. In A, B and C VM6 ALRNs are plotted as one population, as not every body could be assigned to one of the 3 subpopulations because of the glomerulus truncation. **D** Presynaptic density for ipsilateral and contralateral ALRNs, per type. Types are ordered by mean ipsilateral density. **E** Laterality index for ORN and ALLN connectivity (ORN output and ORN input): fraction of contralateral ORN connectivity / fraction of ipsilateral ORN connectivity. Each ORN type is coloured by its functional relevance. Mean comparisons made by Wilcoxon two-sample tests. ns: $p > 0.05$; *: $p \leq 0.05$; **: $p \leq 0.01$; ***: $p \leq 0.001$; ****: $p \leq 0.0001$

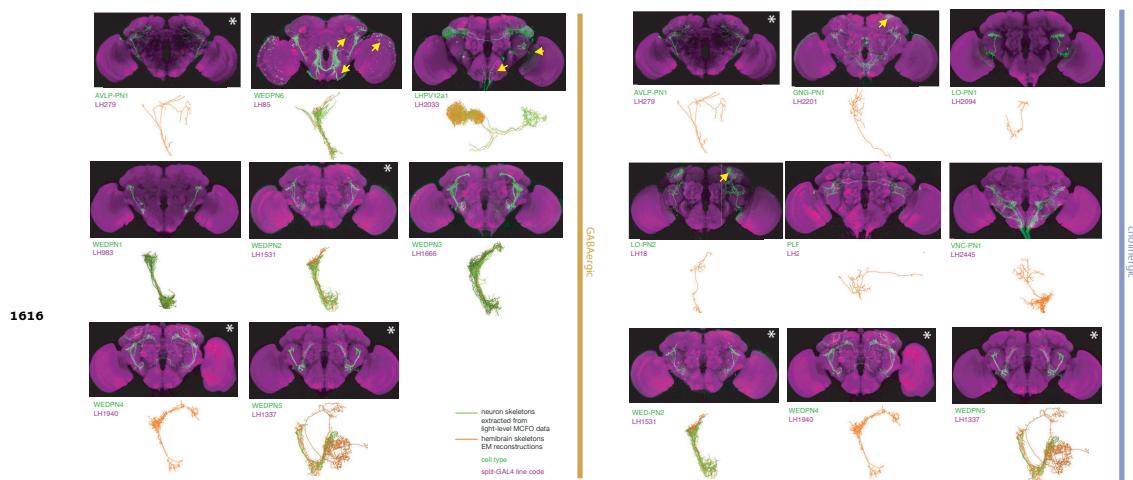

Figure 3-Figure supplement 2. ALRN clustering and subdivision of the VM6 glomerulus. A Synapse-based hierarchical clustering (syNBLAST) of all ALLRNs. **B** Zoom-in on VM6 ALRN captures the partition into 3 sub-populations: VM6v, VM6m and VM6l. Heatmap shows connections of VM6 ALRN subtypes to VM6 ALPNs. **C** Clustering of VM6 ALRN subtypes based on their downstream connectivity. Color bar at the bottom correspond to syNBLAST clusters in B. The connectivity-based clustering do not align with the subpopulations which suggests that information from the different types of VM6 ALRN subtypes is co-processed by the downstream networks.

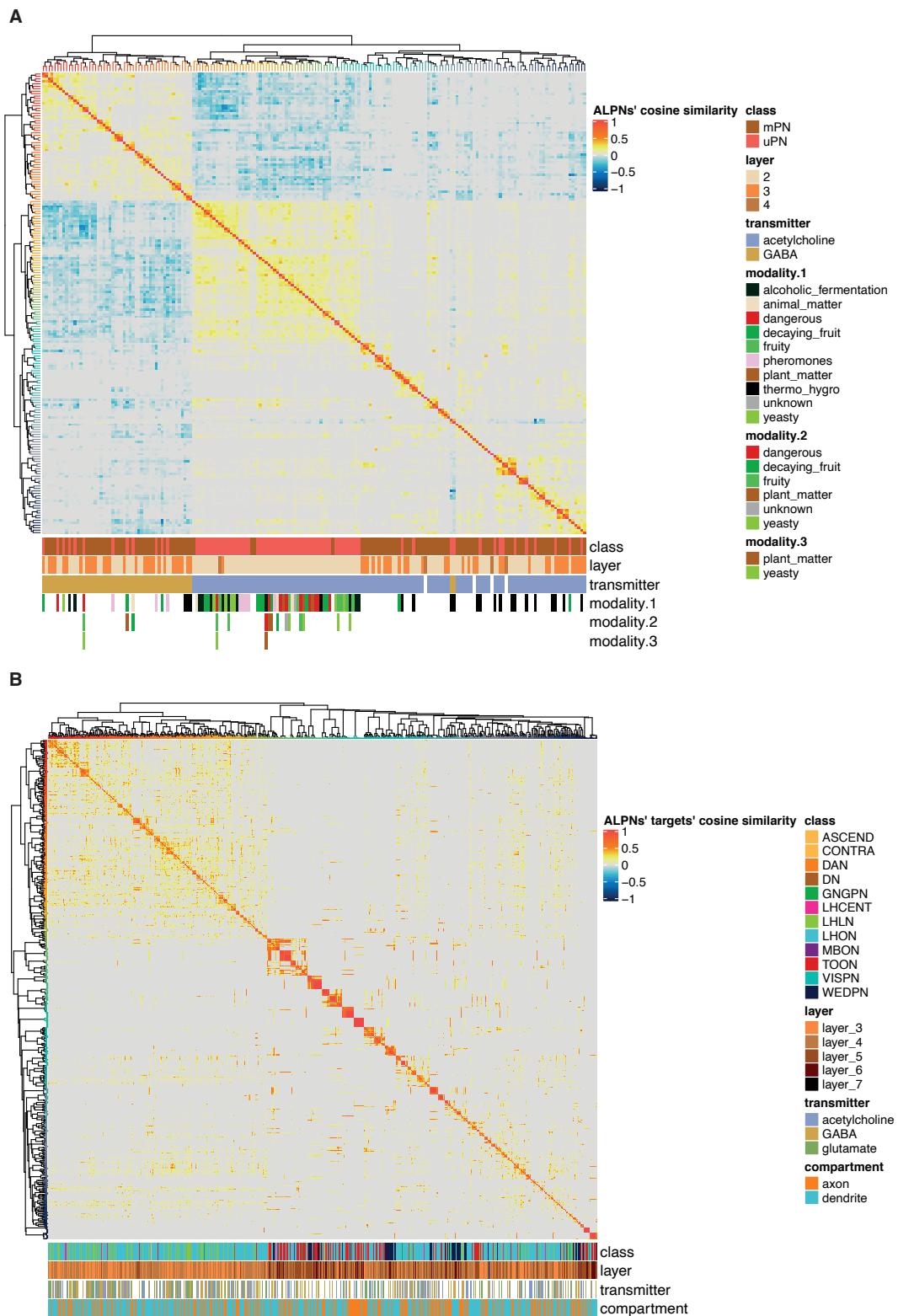

Figure 4-Figure supplement 1. ALLN glomerular innervation patterns. **A** Sparseness of different ALLNs by morphological lifetime kurtosis class based on glomerular innervation (number of synapses) to calculate the lifetime kurtosis. **B** Example of two patchy ALLNs that are restricted to different areas of the V glomerulus. **C** Distances between ALLNs of the same morphology within the V glomerulus. **D** Distances between ALLNs of the same morphology in all glomeruli. **E** Input-output segregation by ALLN types. For each morphological class input and output synapses per glomerulus are plotted in rank order. The inset shows that regional and sparse ALLNs asymptote faster to 0 compared with broad and patchy ALLNs consistent with the selective nature of their inputs. The green line indicates glomerular rank at which at least two of the ALLN types asymptote to 0. **F** Some ALLNs are polarised. The segregation index is a measure of how well they can be split into an axon and a dendrite; the higher the score, the more polarised the neuron. Images show splits for exemplary ALLNs across a range of segregation indices. **G** Heatmap showing, for all ALLN types with a segregation index above 0.1, their glomerular innervation. For each neuron, for each glomerulus, the proportion of dendritic input synapses is subtracted from the proportion of axonic output synapses in that glomerulus. Negative scores indicate dendritic input, positive ones axonic output. **H** Glomerular co-innervation per morphological class. Glomeruli that are frequently co-innervated are compared to the random distribution of synapses (in red). The blue dotted line represents the 95th percentile of the distribution of shuffled synapses. Co-innervation of significant pairs of glomeruli for sparse (left) and regional (right) ALLNs.

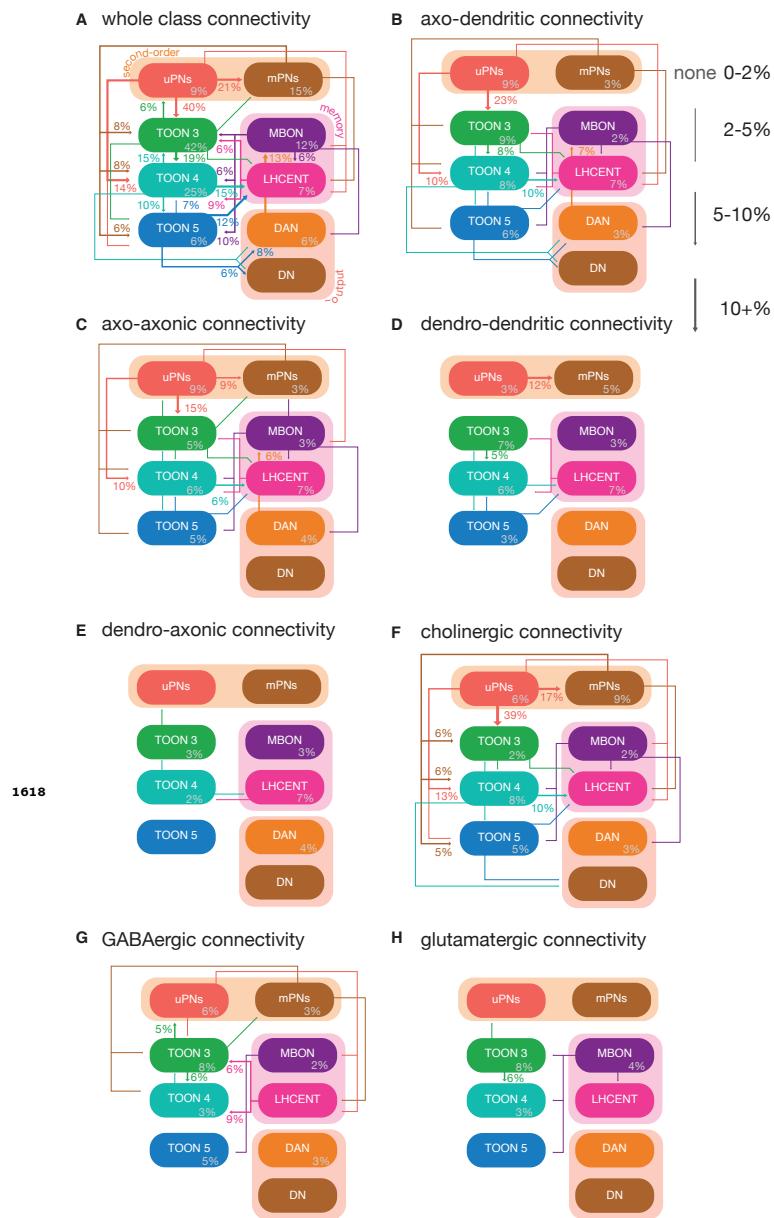

Figure 5-Figure supplement 1. Antennal lobe local neuron groups. ALLN types can be grouped into 25 anatomical groups that differ in their lineage, morphology, area of innervation and density of innervation. One neuron is plotted in colour as an example, the remaining are in grey. For groups with more than one type, the type of the coloured neuron is in bold. The group v2LN34A-F, 35 includes regional and sparse types. Note that each of the ILN2T_d extends several neurites towards the midline. bil = neurons project bilaterally.

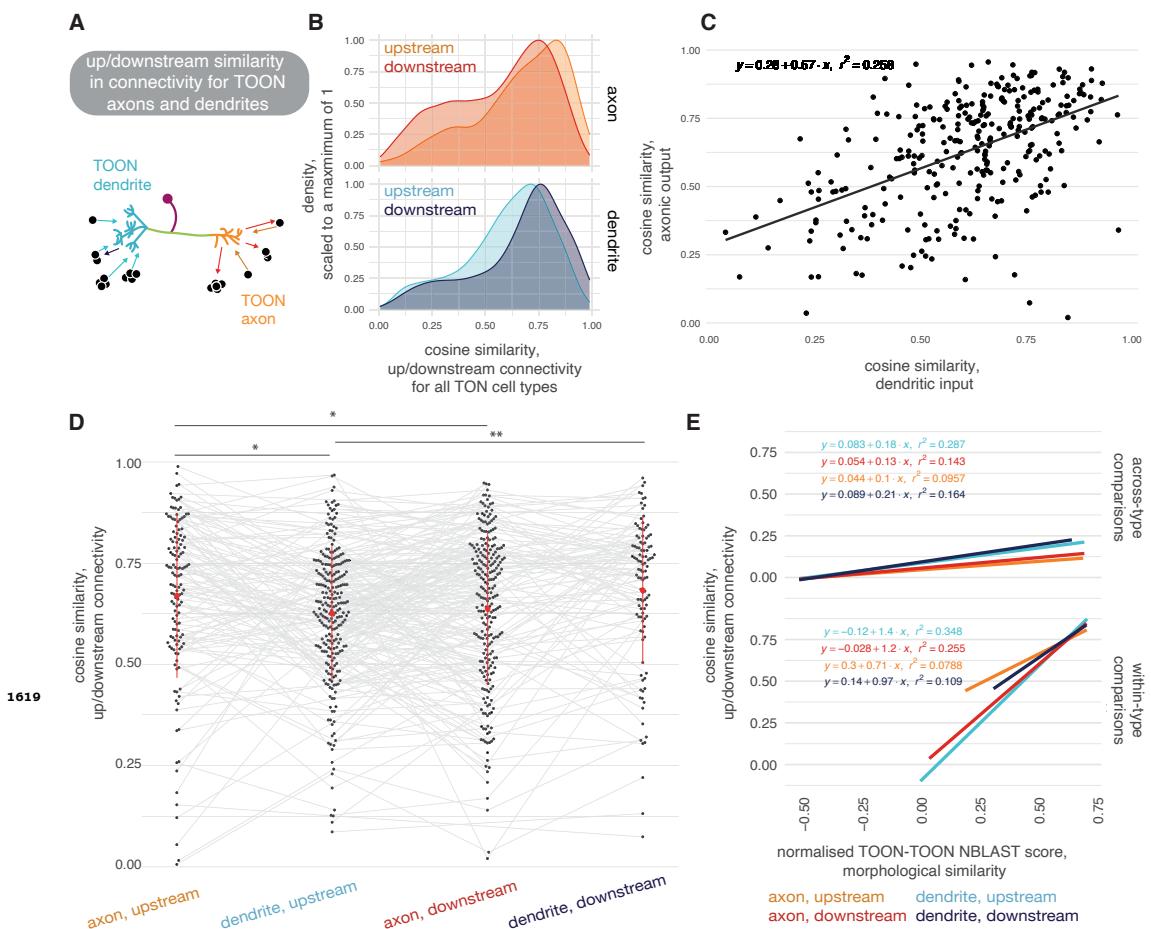

Figure 6-Figure supplement 1. Comparison of ALPNs across three hemispheres. **A** Counts for 56 uPN types across the three hemispheres. If known, order corresponds to order of birth. **B** Expanded explanation for across-dataset clustering. **C** Illustration of refinement of initial clusters to deal with incorrect “pathological” (red outline) across-dataset matches. **D** Cluster composition as number of neurons from the three datasets. **E** Number of clusters per ALPN lineage. **F** Flow diagram for hemibrain v1.1 types that are merged or shuffled in the across-dataset clusters. Across-dataset merges identified as wrong are highlighted in red (see I for example). **G-J** Illustrative examples. **G** Single mPN that can be tracked 1:1:1 across datasets. **H** Truncated (arrow) hemibrain mPNs matched to FAFB ALPNs. **I** mPN without a match in FAFB(L) caused an incorrect merge into cluster 194. **J** M_adPNm8 mPNs are split into across-dataset clusters 25 and 26.

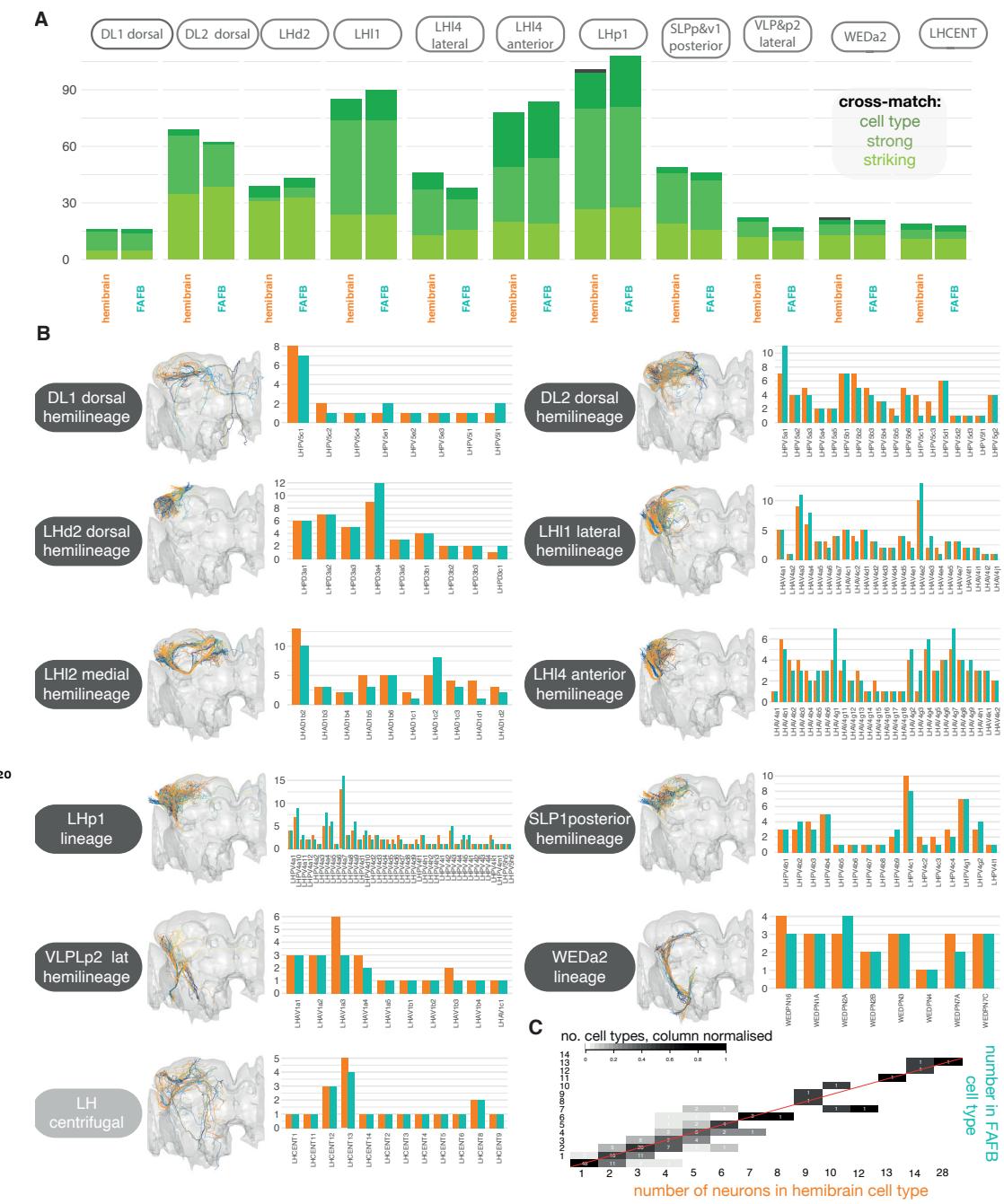

Figure 8–Figure supplement 1. Defining cell types for third-order olfactory neurons. The scheme by which we have named LHNs derives from the system we implemented in *Frechter et al.* (2019). **A** Similar-looking hemilineages are grouped together, neurons of similar coarse morphology are grouped together into ‘anatomy groups’ and each anatomy group is broken down into approximately isomorphic cell type (*Bates et al.*, 2019). **B** The number of LHN cell types contributed by different hemilineages, which approximate cell body fibre tracts (*Wong et al.*, 2013; *Lovick et al.*, 2013). Names from the scheme by the K. Ito and T. Lee groups (*Yu et al.*, 2013; *Ito et al.*, 2013). Colours give a breakdown by their layer. Putative transmitter indicated by coloured circles.

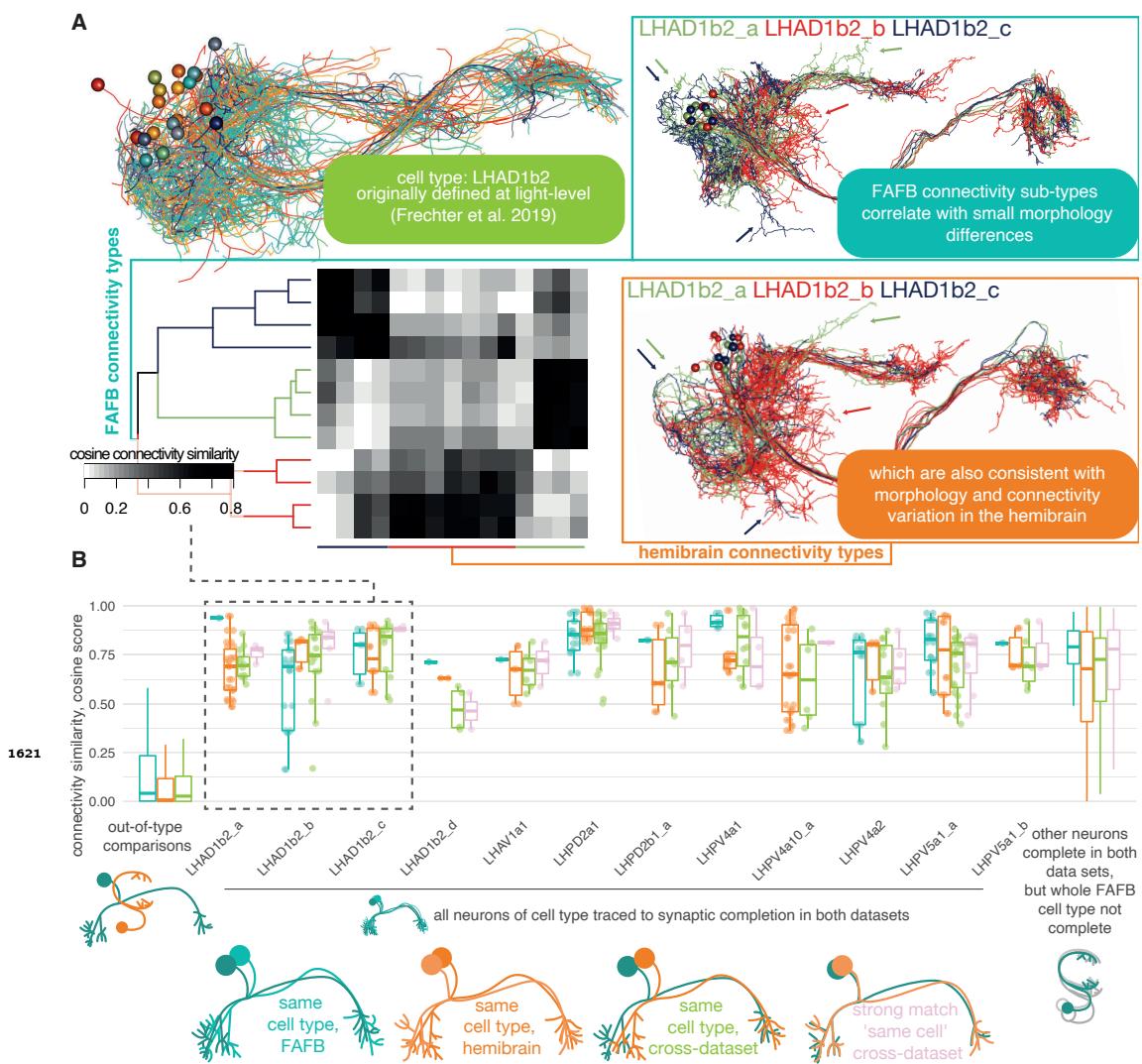

Figure 8-Figure supplement 2. Split-GAL4 lines for excitatory lateral horn output neurons. Putative excitatory output neurons of the lateral horn for which there are targeted genetic reagents as well as EM reconstructions (Dolan *et al.*, 2019; Bates *et al.*, 2020b; Scheffer *et al.*, 2020). Expression of split-GAL4 lines are visualised using UAS-csChrimson::mVenus in attP18 (green), with nc82 as a neuropil stain (magenta) (Dolan *et al.*, 2019). Off-target expression in the brain for non-ideal lines labelled with a yellow arrow. See www.janelia.org/split-gal4 for image data.

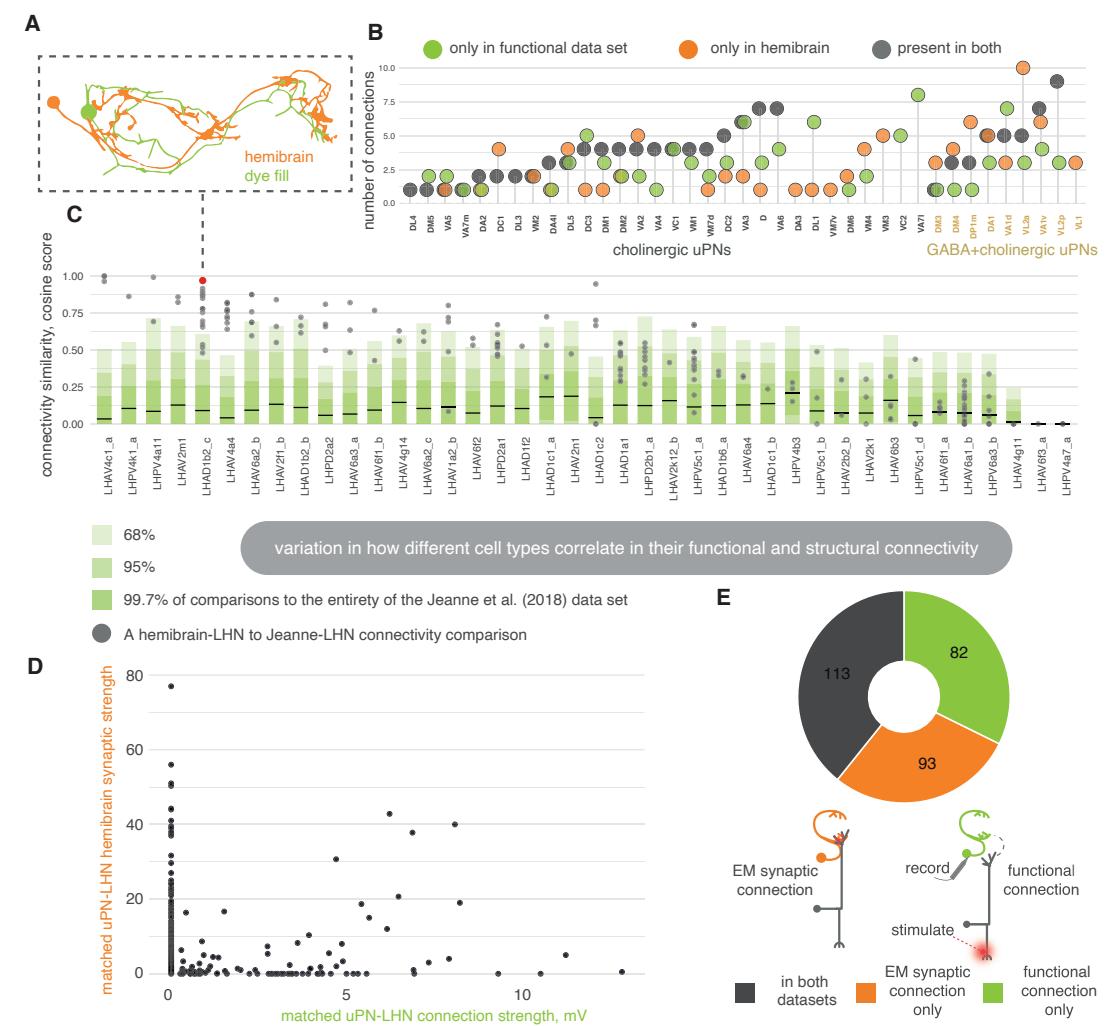

Figure 8-Figure supplement 3. Split-GAL4 lines for inhibitory lateral horn output neurons.
 Putative inhibitory output neurons of the lateral horn for which there are targeted genetic reagents as well as EM reconstructions (Dolan et al., 2019; Scheffer et al., 2020; Bates et al., 2020b). See www.janelia.org/split-gal4 for image data.

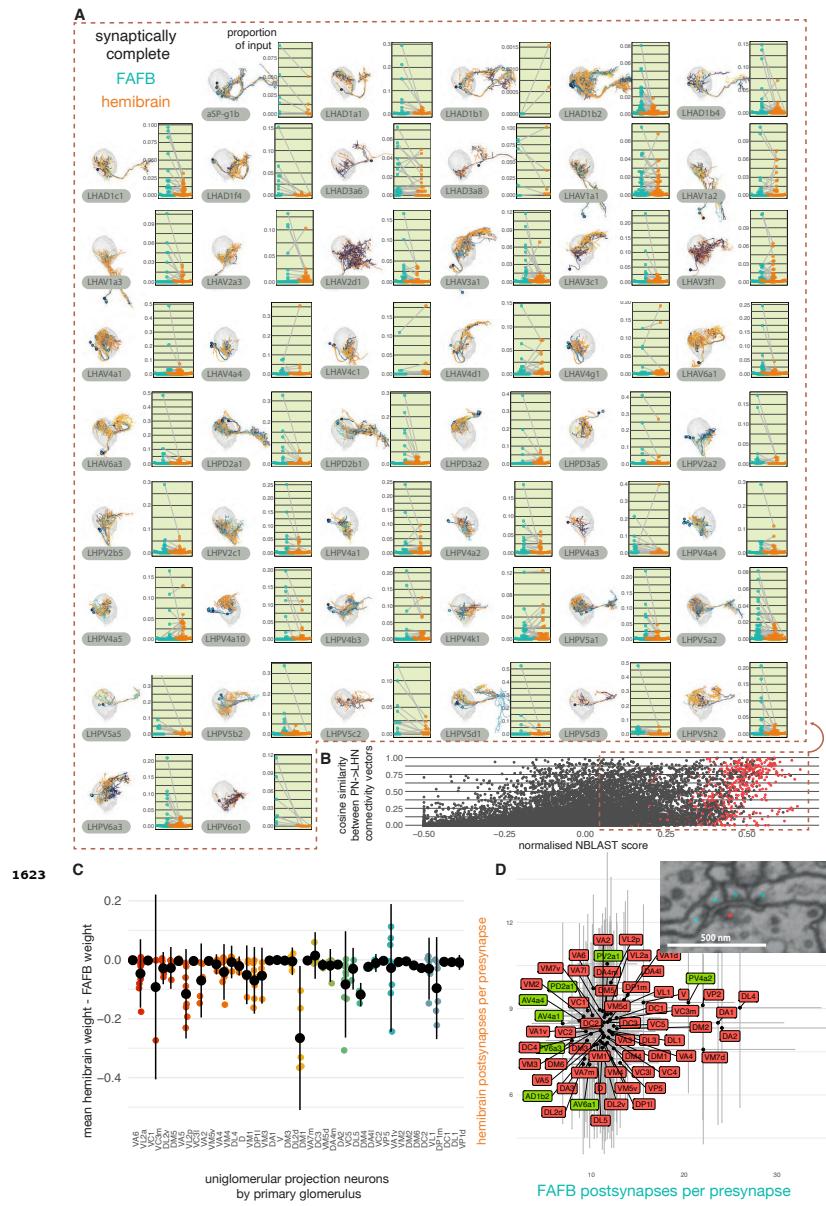

Figure 8-Figure supplement 4. Split-GAL4 lines for lateral horn local neurons. Putative local neurons of the lateral horn for which there are targeted genetic reagents as well as EM reconstructions (Dolan *et al.*, 2019; Bates *et al.*, 2020b; Scheffer *et al.*, 2020). See www.janelia.org/split-gal4 for image data.

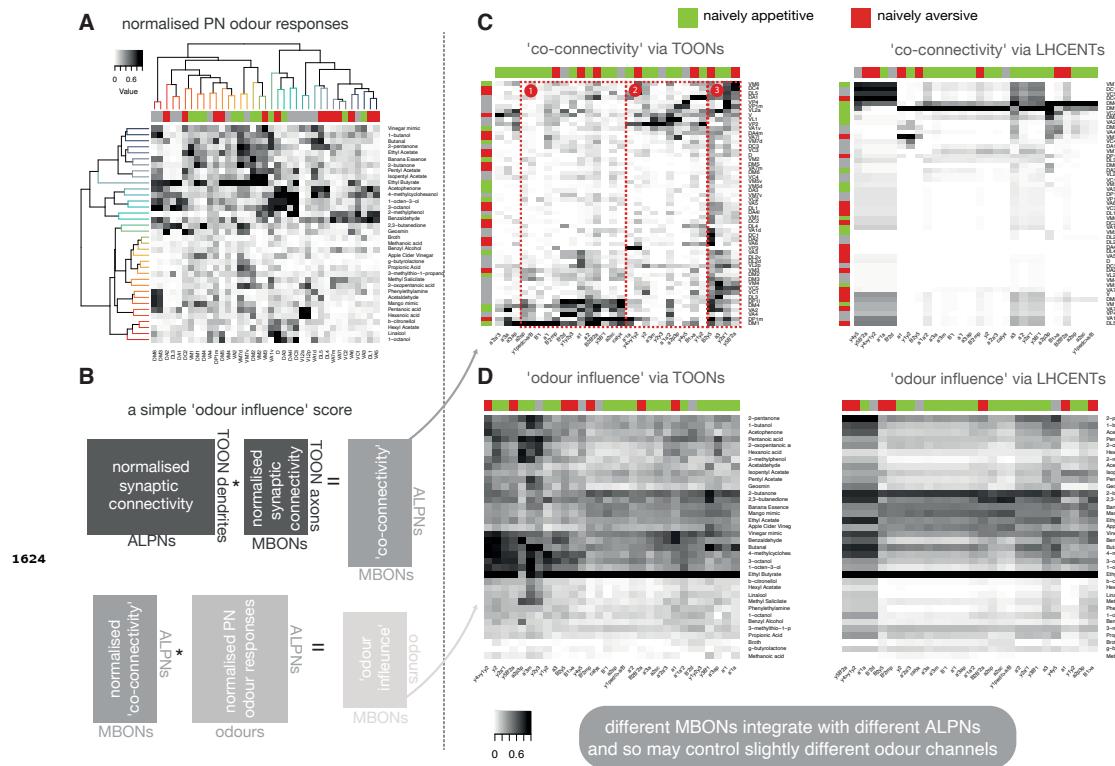

Figure 8-Figure supplement 5. Split-GAL4 lines for lateral horn input neurons. Putative non-olfactory input neurons to the lateral horn for which there are targeted genetic reagents as well as EM reconstructions (Dolan *et al.*, 2019; Scheffer *et al.*, 2020; Bates *et al.*, 2020b). See www.janelia.org/split-gal4 for image data.

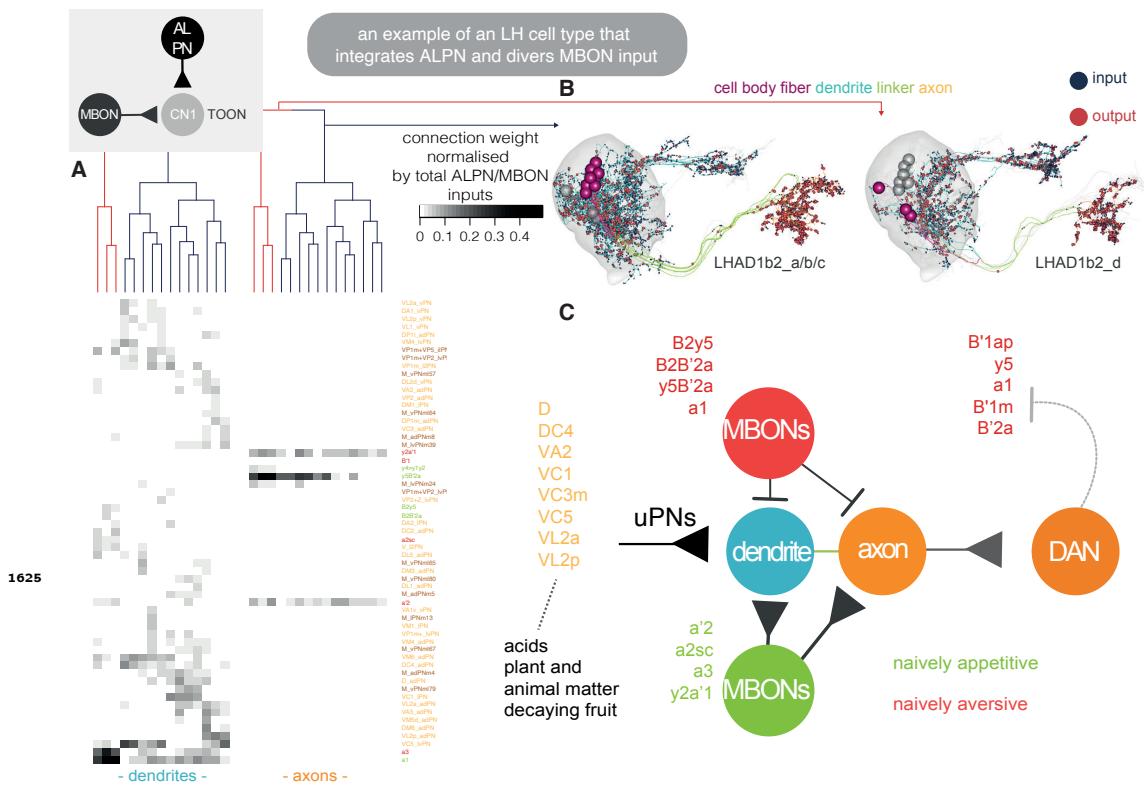

Figure 9-Figure supplement 1. Neurons at the ALPN axon → target connection, clustered by connection similarity. A Cosine similarity calculated between ALPN cell types, based on ALPN→targets connection strengths, see **Figure 9**. **B** Cosine similarity calculated between ALPN target connectivity types, broken into axon and dendrite and based on ALPN→targets connection strengths. Clustering by Ward's method, method 'ward.D2' with the base R function `hclust`.

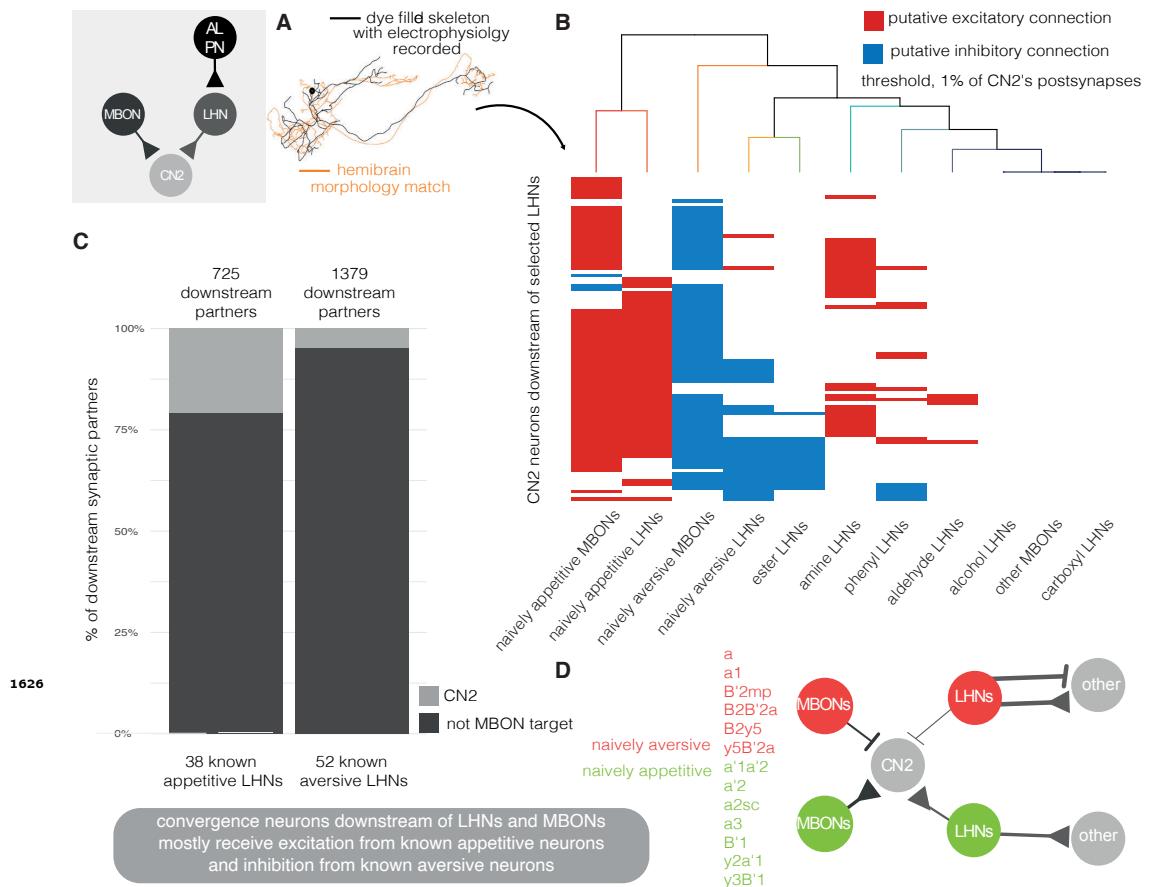

Figure 10—Figure supplement 1. Neuron class-level network diagrams of higher olfactory layers, broken down by neuron compartments and putative transmitters. A A circuit schematic of third-order olfactory neurons, showing the average connection strength between different classes of neurons (mean percentage of input synapses), broken into their layers, as well as the ALPN, LHCENT and MBON inputs to this system and DAN and DN outputs. The percentage in grey, within coloured lozenges, indicates the mean input that class provides to its own members. The threshold for a connection to be reported here is 5%, and >2% for a line to be shown. Subsequent plots just show a subset of this connectivity, i.e. **B** axo-dendritic connections, **C** axo-axonic connections, **D** dendro-dendritic connections, **E** dendro-axonic connections, **F** putative cholinergic connections, **G** putative GABAergic connections and **H** putative glutamatergic connections.

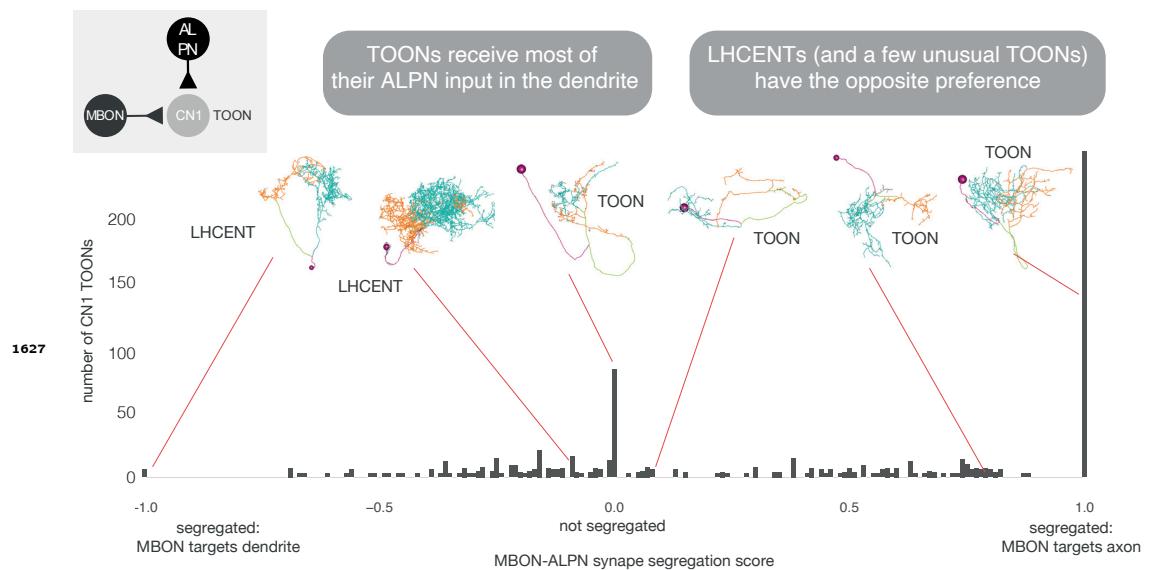

Figure 11-Figure supplement 1. Similarity in connectivity up and downstream of olfactory neurons. **A** Neuron can give and receive output from both their axons and their dendrites. **B** Density plots, showing cosine similarity scores for the cell types downstream of TOON-TOON pairs, where both members of the pair are from the same cell type. Upper, cosine similarity between the two populations upstream and downstream of the TOONs' axons. Lower, cosine similarity between the two populations upstream and downstream of the TOONs' dendrites. **C** Correlation between the mean cosine similarity between members of a TOON cell type's dendritic input populations (x-axis) and axonic target populations (y-axis). **D** Cosine similarity between connections from/onto TOON axons/dendrites, for TOON-TOON pairs of the same cell type. **E** Correlations between morphological similarity and connectivity similarity shown, for both out-of-cell-type comparisons (top) and within-cell-type comparisons (bottom). Significance values: ns: $p > 0.05$; *: $p \leq 0.05$; **: $p \leq 0.01$; ***: $p \leq 0.001$; ****: $p \leq 0.0001$.


Figure 12–Figure supplement 1. A Tallies for the number of matches made from hemibrain → FAFB neurons (right) and hemibrain → FAFB neurons, and hemibrain → FAFB neurons (left), in both sets of ‘secondary’ hemilineages, plus LH centrifugal neurons, most of which are ‘primary’. ‘Striking’ indicates that the two neurons look so similar they could be the ‘same cell’, ‘strong’ means that these cells look to belong to the same cell type, ‘cell type’ means that the two cells most likely belong to at least the same cell type. **B** Hemibrain image shows all reconstructed LHNs from both hemilineages are plotted together in the same brain space (hemibrain, grey) after a bridging registration had been applied (Bates *et al.*, 2020a). Right, counts for neurons per identified LHN cell type, in each hemilineage in each data set. **C** Comparing the number of neurons in matched hemibrain-FAFB cell types. Red unity line.


Figure 12-Figure supplement 2. Stereotypy in connectivity between lateral horn neurons in the hemibrain and FAFB. A An example of a cell type that looked cohesive at light-level resolution (Frechter et al., 2019), which actually breaks down into several connectivity sub-types on examination of the hemibrain data (Scheffer et al., 2020). Only uniglomerular ALPN (uPN) inputs are considered for the cross-correlation plot. **B** Cosine similarity scores for uPN \rightarrow LHN inputs. The cell types shown have been ‘completely’ synaptically reconstructed in both data sets (total of 34 FAFB reconstructions), and the cosine similarity score calculated for every pairing within each data set (FAFB, blue; hemibrain, orange), between the two data sets (green) and between all ‘strongly’ cross-data set matched pairs (pink). Each completed FAFB cell type comprises a mean of 3.4 ± 1.1 s.d. neurons. Out-of-cell type comparisons also made (leftmost), as well as for other neurons completed in FAFB, where not all members of the cell type have been completed (rightmost, 48 FAFB reconstructions) (Bates et al., 2020b).


Figure 12-Figure supplement 3. Stereotypy in connectivity between lateral horn neurons in the hemibrain and a functional data set. A We matched light-level neuron skeletons from Jeanne et al. (2018) to hemibrain reconstructions; these light-level skeletons are associated with functional glomeruli → LHN connections ascertained by electrophysiology (Jeanne et al., 2018). **B** We calculate the number of equivalent connections, present by any degree, between both data sets. **C** the cosine similarity score for ALPN → LHN connections. Horizontal bars, mean of the cosine comparison of each Jeanne et al. (2018) cell type against all other cells in the Jeanne et al. (2018) data set; dark green is one standard deviation from the mean, mid-green is two standard deviations, light green is three. Grey, comparison to matched hemibrain cell type, each point is one neuron-neuron comparison. **D** Scatter plot showing the strength of the recorded functional connections, in mV, and the number of connecting synapses in their cross-matched hemibrain neurons, for the corresponding uPN→LHN contact. **E** The number of putative ALPN→LHN connections from a study on functional connectivity (Jeanne et al., 2018), that can be found in the hemibrain data set, for cross-matched neurons. A threshold of 4 synapses has been applied for the hemibrain data.


Figure 12—Figure supplement 4. Matching synaptically complete neurons between two EM data sets. **A** Each full hemibrain LHN cell type is compared with as many of its cognates in FAFB as possible, i.e. from those neurons reconstructed in *Bates et al. (2020b)*. Each point represents the normalised connection strength of a single uPN type onto the target cell type in question (total connecting synapses / number of postsynapses in the target cell type). **B** Scatter plot showing the cosine similarity in uPN→LHN connectivity for LHN-LHN pairs, and LHN-LHN NBLAST scores. Every hemibrain neuron in A is compared with every FAFB neuron in A. Neurons of the same cell type are shown in red. **C** For each uPN cell type, the mean normalised connection strength to each hemibrain cell type is taken as in A, and the normalised connection strength to its cognate FAFB cell type is subtracted. Each point represents a different cell type comparison. **D** Inset, insect synapses are polyadic meaning that one presynaptic site connects with multiple postsynaptic sites. We previously manually marked up presynapse-postsynapse connections for dozens of presynapses over a limited number of cell types in FAFB (green) (*Bates et al., 2020b*). The number of automatically detected postsynapses for each presynapse is also given for those same cell types in the hemibrain data set.


Figure 13–Figure supplement 1. Propagating known odour information to third-order olfactory neurons and mushroom body output neurons. A Calcium responses recorded from ALPN dendrites in the antennal lobe to odour presentations in *Badel et al. (2016)*. **B** ‘Co-connectivity’ and ‘odour influence’ scores calculated by matrix multiplication of uPN→TOON or uPN→LHCENT connectivity, MBON connectivity and previously published odour response data (*Badel et al., 2016*). Groupings referred to in text labelled in red dashed boxes. 311 TOONs that have PN innervation at their dendrites and MBON innervation at their axons, were used. All matrices are minmax normalised across their columns. **C,D** Scores calculated using both MBON→TOON axon connectivity and MBON→LHCENT dendrite connectivity.

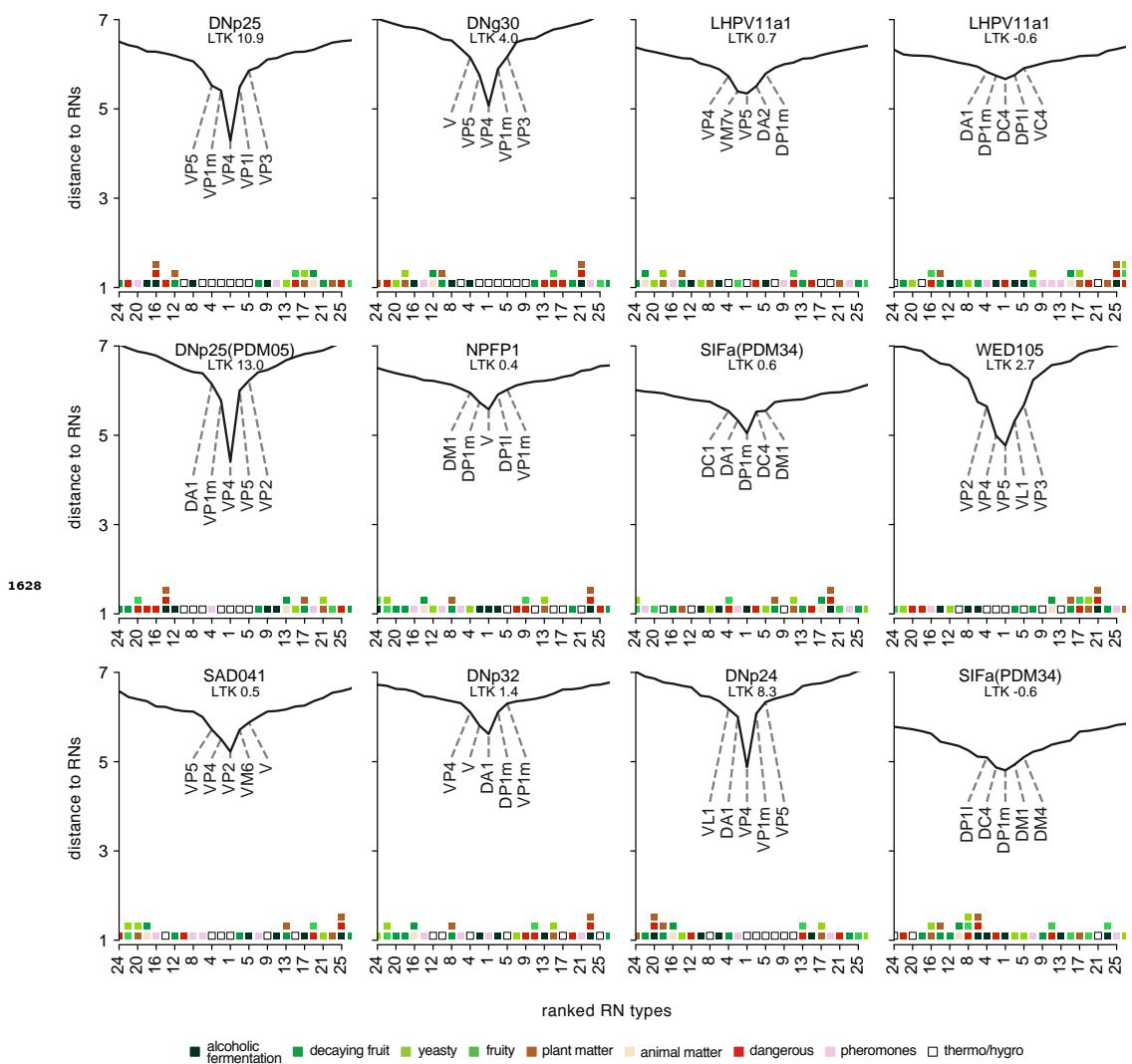

Figure 13-Figure supplement 2. An exemplar convergence cell type of the lateral horn and mushroom body. **A** Heatmap showing the normalised connectivity (weight / total number of LHN inputs) of ALPN and MBON input (rows) onto 15 LHAD1b2 neurons, axons (right) and dendrites (left). Clustering by Ward's method on dendrite data, cut at Euclidean linkage distance 0.2. MBON-dendrite connects can happen on distinct sub-branches, see (*Dolan et al., 2019*). **B** Visualisation of the two connectivity clusters split into their dendrite-axon compartments (*Schneider-Mizell et al., 2016; Bates et al., 2020b*), which also correspond to small deviations in morphology. The other cluster is shown in grey in each panel. **C** An LHAD1b2 specific schematic for an emerging circuit motif integrating LH and MB output, based on the available labelled LHN data. MBONs coloured by naive valence, ALPNs by class.

Figure 13–Figure supplement 3. Convergence neurons of the lateral horn and mushroom body. **A** Matches were made between hemibrain reconstructions and LHN morphologies of electrophysiologically recorded cells (Frechter *et al.*, 2019) and MultiColor FlpOut (Nern *et al.*, 2015) data from LHN split-GAL4 lines used in behavioural studies (Dolan *et al.*, 2019). A neuron is ‘appetitive’ if its optogenetic activation causes attraction to the stimulating light, and aversive if the opposite behaviour is significant (Dolan *et al.*, 2019; Aso *et al.*, 2014b). **B** Connections onto downstream targets (rows) by MBONs and LHNs, grouped by putative valence or odour coding. Note that LHN valence and odour coding categories are not mutually exclusive. Connections have been binarised: if the upstream neuron class accounts for greater than 1% of inputs onto a given target, the connection is shown. Putative excitatory connections in red (i.e. cholinergic) and inhibitory in blue (i.e. GABAergic or glutamatergic). **C** The proportion of downstream targets from putatively aversive and appetitive LHNs, that also receive direct MBON input. **D** A general schematic for an emerging circuit motif integrating LH and MB output, based on the available labelled LHN data.

Figure 13-Figure supplement 4. A class-compartment separation score. The more positive the score, the more polarised the neuron such that ALPN innervation is seen at the dendrite and MBON innervation at the axon. Negative scores show the opposite segregation. See Methods.

Figure 14-Figure supplement 1. Extended data for Figure 14E. ALRN → DN distances for DNs not shown in main figure. A low distance indicates a more direct connection between an ALRN type and given DN. Only the top 25 ALRN types shown. Heatmap shows glomeruli odour scenes.