

1 **Respiratory tract explant infection dynamics of influenza A virus in California sea lions,**
2 **northern elephant seals, and rhesus macaques**

3

4 Hongwei Liu¹, Magdalena Plancarte¹, Erin. E. Ball¹, Christopher M. Weiss¹, Omar Gonzales-
5 Viera¹, Karen Holcomb¹, Zhong-Min Ma², A. Mark Allen², J. Rachel Reader², Pádraig J.
6 Duignan³, Barbie Halaska³, Zenab Khan⁴, Divya Kriti⁴, Jayeeta Dutta⁴, Harm van Bakel⁴,
7 Kenneth Jackson¹, Patricia A. Pesavento¹, Walter M. Boyce¹, Lark L. Coffey^{1#}

8

9 ¹University of California, Davis, School of Veterinary Medicine, Department of Pathology, Microbiology
10 and Immunology

11 ²University of California, Davis, California National Primate Research Center

12 ³The Marine Mammal Center, 2000 Bunker Road, Sausalito, California

13 ⁴Icahn School of Medicine at Mount Sinai, New York, New York

14

15 [#]Corresponding author

16 lcoffey@ucdavis.edu

17

18 ORCID numbers:

19 Lark L. Coffey : 0000-0002-0718-5146

20 Erin E. Ball: 0000-0002-8464-6612

21 Karen M. Holcomb: 0000-0002-9403-3756

22 Hongwei Liu: 0000-0002-8342-2545

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 **Abstract**

38

39 To understand susceptibility of wild California sea lions and Northern elephant seals to
40 influenza A virus (IAV), we developed an *ex vivo* respiratory explant model and used it to
41 compare infection kinetics for multiple IAV subtypes. We first established the approach using
42 explants from colonized rhesus macaques, a model for human IAV. Trachea, bronchi, and
43 lungs from 11 California sea lions, 2 Northern elephant seals and 10 rhesus macaques were
44 inoculated within 24 hours post-mortem with 6 strains representing 4 IAV subtypes. Explants
45 from the 3 species showed similar IAV infection kinetics with peak viral titers 48-72 hours post-
46 inoculation that increased by 2-4 \log_{10} plaque forming units (PFU)/explant relative to the
47 inoculum. Immunohistochemistry localized IAV infection to apical epithelial cells. These results
48 demonstrate that respiratory tissue explants from wild marine mammals support IAV infection.
49 In the absence of the ability to perform experimental infections of marine mammals, this *ex vivo*
50 culture of respiratory tissues mirrors the *in vivo* environment and serves as a tool to study IAV
51 susceptibility, host-range, and tissue tropism.

52

53 **Importance**

54

55 Although influenza A virus can infect marine mammals, a dearth of marine mammal cell lines
56 and ethical and logistical challenges prohibiting experimental infections of living marine
57 mammals means that little is known about IAV infection kinetics in these species. We
58 circumvented these limitations by adapting a respiratory tract explant model first to establish
59 the approach with rhesus macaques and then for use with explants from wild marine mammals
60 euthanized for non-respiratory medical conditions. We observed that multiple strains
61 representing 4 IAV subtypes infected trachea, bronchi, and lungs of macaques and marine
62 mammals with variable peak titers and kinetics. This *ex vivo* model can define infection
63 dynamics for IAV in marine mammals. Further, use of explants from animals euthanized for
64 other reasons reduces use of animals in research.

65

66 **Introduction**

67

68 Influenza A viruses (IAV) are important etiologies of respiratory disease in humans and
69 especially affect the elderly, infants, and people with immunodeficiencies and chronic
70 respiratory disease. Dwarfed in 2020 by SARS-CoV-2, IAV are a significant cause of morbidity
71 annually, producing about 500,000 deaths worldwide each year (1). IAV possess a wide host
72 range that includes birds, horses, pigs, and humans (2, 3). Marine mammals can also be

73 infected, sometimes with strains from human pandemics (4, 5). The viral genetic and host
74 factors that affect cross-species transmission by IAV, especially from birds to mammals
75 including humans, have been extensively studied (5–9). However, mechanisms of zoonotic IAV
76 transmission from avian or human to other mammalian species, including marine mammals,
77 are less well understood (6).

78
79 IAV was first identified in North American marine mammals in 1979, when an H7N7 epizootic
80 killed 500 harbor seals and caused hemorrhagic pneumonia in others (10–12). Since then, IAV
81 infection and sometimes disease has been identified in several marine mammal species,
82 including mass mortalities in harbor seals near Cape Cod, Massachusetts, USA, attributed to
83 H7N7, H4N5, or H4N6, and detection of antibody to multiple H and N subtypes in several seal
84 species (13–20). On the West Coast, surveillance from 2009 to 2015 (4, 21, 22), and from
85 2016 to present (unpublished) in multiple marine mammal species from California shows
86 variable IAV exposure. Seroprevalence in sea otters and Northern elephant seals is higher than
87 in sympatric harbor seals and California sea lions, and sea otters are exposed to avian- and
88 human-origin IAV, including pandemic H1N1 (4, 21). Despite frequent antibody detection,
89 isolation of IAV from marine mammals has been limited. In California, only pandemic H1N1 has
90 been isolated from 2 Northern elephant seals in 2010 (4). Together, these surveillance data
91 suggest that marine mammals can be infected with some of the same IAV subtypes that cause
92 human epidemics. However, in the absence of *in vivo* study capabilities in marine mammals,
93 infection dynamics and subtype-specific susceptibility remain unknown. Therefore, there is a
94 need to develop approaches to study the infection biology of IAV in these species.

95
96 Given that the respiratory tract is the initial site of IAV infection, defining infection dynamics and
97 cellular tropism in respiratory tissues is important for assessing species susceptibility. However,
98 *in vivo* systems for studying susceptibility of marine mammals to IAV are not available. As an
99 alternative, *ex vivo* explants from respiratory tract tissues can mimic the physiological
100 microenvironment of a respiratory tract. *Ex vivo* systems in human and animals (excluding
101 marine mammals) have been successfully developed and used to study host innate responses,
102 infection dynamics, viral genetic determinants of infection, antiviral drug treatments, and
103 pathogenesis of human and animal IAV and other respiratory viruses (23–28). The goal of this
104 study, therefore, was to expand these existing models for use in marine mammals to study
105 susceptibility and infection dynamics of IAV strains of mammalian and avian origin to assess
106 the potential for interspecies transmission, and to provide a new approach for studying the
107 biology and pathogenesis of IAV in marine mammals. Given that marine mammal tissues are
108 only opportunistically available from wild animals treated at The California Marine Mammal

109 Center in Sausalito, CA, USA, we first established the *ex vivo* explant system using rhesus
110 macaques that are more regularly available from the California National Primate Research
111 Center, Davis, CA, USA. Rhesus macaques represent a valuable model for understanding IAV
112 infection dynamics in the human respiratory tract due to similar structure, physiology, and
113 mucosal immunity. Additionally, IAV infection dynamics have not been studied in rhesus
114 macaques, although they are a model for human IAV infection (29) and are used for testing
115 vaccine candidates (30, 31).

116

117 We used trachea, bronchi, and lung explants from rhesus macaques to compare the
118 susceptibility, infection kinetics, and tissue tropism of 6 strains of IAV from 4 subtypes to
119 validate the utility of this system. After establishing the explant approach with IAV in rhesus
120 macaques, we used it to study IAV infection dynamics and tropism in California sea lions and
121 Northern elephant seals. We observed that both rhesus macaques and marine mammals are
122 susceptible to all 6 IAV strains, and that rhesus macaque and California sea lion respiratory
123 tract explants exhibit temporal, tissue, and IAV subtype-dependent IAV infection kinetics.

124

125 **Material and Methods**

126

127 **Ethics Statement**

128 This project was conducted with approval from the United States National Marine Fisheries Service
129 Marine Mammal permit # 18786-04. The University of California, Davis is accredited by the
130 Association for Assessment and Accreditation Laboratory Animal Care International (AAALAC).
131 Animal care was performed in compliance with the 2011 Guide for the Care and Use of Laboratory
132 Animals provided by the Institute for Laboratory Animal Research. Rhesus macaque studies were
133 approved by the University of California, Davis IACUC under protocol #19760.

134 *Cell culture*

135

136 Madin-Darby Canine Kidney (MDCK) cells (ATCC #CCL-34) were maintained at 37°C and 5%
137 CO₂ in MDCK-growth-medium (Iscove's Modified Dulbecco's Medium (IMDM), supplemented
138 with 5% FBS, 0.1% sodium bicarbonate, penicillin and streptomycin).

139

140 *Influenza A virus propagation and titration*

141

142 We used IAV strains of avian and marine mammal origin for explant studies (**Table 1**). The harbor
143 seal H3N8 (HS/H3N8) IAV strain was obtained from Dr. Hon Ip, (National Wildlife Health Center,
144 Madison Wisconsin). The other strains were isolated at UC Davis and used in this study. Avian
145 allantoic fluid virus stocks of 6 strains were amplified in Madin-Darby canine kidney (MDCK) cells to
146 obtain sufficient titers and volumes for use as inocula. Viral titers of the 6 inocula were determined by
147 plaque assay using MDCK cells. Briefly, MDCK cells were grown in 6-well plates to 80-90%
148 confluence in MDCK growth medium. Viral stocks were serially ten-fold diluted in viral-growth-medium
149 (Minimum Essential Medium (MEM), supplemented with 0.5% BSA, 0.1% sodium bicarbonate, 10
150 mM Hepes, penicillin and streptomycin). The MDCK cells were washed 3 times with Dulbecco's
151 phosphate buffered saline (DPBS) prior to inoculation with 200 ul of diluted virus samples. After 1
152 hour incubation at 37°C with 5% CO₂, 3 ml viral-growth-medium containing 1 ug/ml N-p-tosyl-L-
153 phenylalaninechloromethyl ketone-treated (TPCK) and 0.5% agarose was added to each well. After a
154 48 hour incubation at 37°C with 5% CO₂, MDCK cells were fixed with 4% formaldehyde and stained
155 with 0.05% crystal violet.

156

157 *In vitro infection kinetics of IAV*

158

159 Infection kinetics for the 6 IAV strains were assessed in MDCK cells. Cells were grown at 37°C
160 with 5% CO₂ to 6×10^5 cells/well in 24-well plates and inoculated in triplicate with 6×10^3 PFU
161 virus of IAV, representing a multiplicity of infection (MOI) of 0.01. After 1 hour incubation, each
162 well was washed with 1 ml of DPBS 3 times to remove unbound virus. Next, viral growth
163 medium supplemented with 1 ug/ml TPCK trypsin for IAV was added to each well. The
164 supernatant was sampled at 1, 24, 48, and 72 hours post-inoculation and stored at -80°C in
165 virus growth medium. Viral titers were assessed by plaque assay.

166

167 *Titration to quantify infectious IAV*

168

169 Plaques were counted against a white background and the titer in plaque forming units (PFU) was
170 determined by counting wells with individual plaques. Two to 3 dilutions of each explant were tested
171 once. Viral titers were recorded as the reciprocal of the highest dilution where plaques are noted and
172 represented as PFU per ml for liquid samples or PFU per explant for tissues. The limit of detection
173 (LOD) of the plaque assay was 50 PFU/ml or explant.

174

175 *Explant sources, collection and processing*

176

177 Respiratory tract tissues including trachea, bronchi, and lungs were used for explant studies (**Table**
178 **2**). Tissues were obtained from Indian origin rhesus macaques (*Macaca mulatta*), euthanized due to
179 medical conditions, who were born and raised at the California National Primate Research Center,
180 University of California, Davis, CA. The respiratory tract tissues of marine mammals were from wild
181 California sea lions (*Zalophus californianus*) and Northern elephant seals (*Mirounga angustirostris*)
182 who stranded on beaches and were euthanized due to medical conditions at The Marine Mammal
183 Center in Sausalito, CA. The Marine Mammal Center rehabilitates stranded marine mammals. Some
184 animals that present with severe conditions are not able to be returned to the wild and are therefore
185 euthanized. To reduce confounding effects of respiratory disease on IAV infection, we intentionally
186 excluded animals whose necropsy reports indicated respiratory disease as the primary or sole reason
187 for euthanasia. Serum harvested from blood collected at necropsy from macaques and marine
188 mammals were tested for IAV antibody directed against a conserved epitope of the nucleoprotein
189 using an enzyme-linked immunosorbent assay (ELISA) ID-Screen® Influenza A Antibody Competition
190 Multi-species kit, (IDvet, Grabels, France) following the manufacturer's instructions. Positive and
191 negative controls included in the kit were also tested on each plate. An ELX808 BioTek
192 Spectrophotometer (BioTek Instruments, Winooski, VT) was used to measure absorbance. Sera was
193 considered positive for IAV antibody when the ratio of the absorbance of the test sample to the
194 negative control was less than 0.45, as previously established (21, 22). Marine mammals were also
195 tested for IAV RNA by reverse transcription polymerase chain reaction (RT-PCR). Nasal and rectal
196 swabs were collected from each California sea lion and Northern elephant seal by veterinary staff at
197 The Marine Mammal Center upon entry to the facility. Swabs were placed in vials containing 1.5 ml of
198 viral transport media (VTM). Samples were refrigerated for up to one week prior to shipping to the
199 laboratory. Once received at the laboratory, swab samples were processed the same day or stored at
200 -80°C. RNA was extracted from swab samples using the MagMAX-96 AI/ND Viral RNA Isolation Kit
201 (Applied Biosystems, Foster City, CA) and a KingFisher Magnetic Particle Processor (Thermo
202 Scientific, Waltham, MA). Extracted RNAs from swab samples were subjected to an established IAV
203 RT-PCR (32) targeting a conserved region of the matrix gene using the AgPath-ID™ One Step RT-
204 PCR mix (Applied Biosystems, Foster City, CA) and an ABI 7500 real-time PCR System (Applied
205 Biosystems, Foster City, CA). The positive control, a cell culture isolate of ES/H1N1, and a negative
206 control, VTM, were also tested on each plate. Samples with a cycle threshold (Ct) value <45 were
207 considered positive (33). Tissues from all three species were stored for up to 24 hours in Roswell
208 Park Memorial Institute-1640 (RPMI) medium (Gibco) at 4°C. During tissue preparations, lungworms
209 (*Parafilaroides decorus*) were observed, either in airways (i.e., bronchioles/bronchi) or sometimes free
210 in the lung parenchyma (in which case they were occasionally associated with mild inflammation), in
211 all California sea lions. Areas of tissues without worms were selected as explants. No worms were
212 observed grossly in explants during the IAV infection studies. Prior to preparation for infection studies,

213 tissues were separated and washed 4-6 times in 50 ml conical tubes containing 30 ml of RPMI
214 medium for 2-5 min each at 27°C. The final wash was performed in RPMI-growth-medium (RPMI
215 medium supplemented with 100 U/ml each of penicillin and 100 ug/ml streptomycin (Gibco) and 1x
216 antibiotic-antimycotic (Gibco)).

217

218 *Preparation of tracheal and bronchi explants*

219

220 A simplified *ex vivo* culture procedure was derived from the methods described by Nunes *et al.*
221 (Nunes et al, 2010). After washing in RPMI medium, the surrounding connective tissue exterior
222 to the tracheal and bronchi cartilage was removed. Trachea were cut into O-rings horizontally
223 where each slice contained about 0.5 cm cartilage. Each O-ring consisted of the respiratory
224 mucosa, epithelial cell layer, and underlying cartilage. O-rings were further cut into small pieces
225 of approximately 0.5 cm x 0.5 cm. Bronchi were cut similarly. Explants were implanted singly
226 onto agarose plugs (RPMI-growth-medium containing 0.5 % agarose) in 24-well plates with the
227 mucosal surface facing up. Explants were maintained in a humidified 37°C incubator with 5%
228 CO₂ for up to 7 days.

229

230 *Preparation of lung, liver, and kidney explants*

231

232 Lung tissues were used to investigate IAV tissue specificity. The liver and kidney of two rhesus
233 macaques were also used as non-target tissue controls where IAV infection was not expected.
234 Processing of these tissues was the same as for trachea and bronchi, where tissues were cut
235 into pieces of approximately 0.5 cm³ after washing. Each piece was implanted onto agarose
236 plugs and incubated using the same conditions as for trachea and bronchi.

237

238 *Ex vivo IAV infection kinetics*

239

240 To evaluate IAV infection kinetics *ex vivo*, trachea, bronchi, and lung explants were inoculated
241 in triplicate (when sufficient tissue was available) with 1 x 10⁴ PFU of one of each of the 6 IAV
242 strains in 10 ul viral growth medium onto the epithelial surface of each section for rhesus
243 macaques. The inoculum volume for marine mammals was adjusted to 20 ul at a dose of 2 x
244 10⁴ PFU for each IAV strain. Viral growth medium was used in the mock-infected control
245 explants. Inoculated explants were sampled at 1 hour post inoculation (hpi) and every 24 hours
246 up to 72 hpi (or as indicated in graphs) for viral quantification and histology. For viral
247 quantification, each infected explant was directly immersed in 0.5 ml RPMI-growth-medium in a

248 2 ml centrifuge tube with a 5 mm glass bead and homogenized in a Mixer Mill MM300 (Retsch,
249 Leeds, UK) at 30 hertz for 4 minutes at 22°C followed by centrifugation at 16,000 g for 4
250 minutes and storage at -80°C. Titers of the released progeny virus from explants were
251 determined by plaque assay. Titers are reported as the geometric mean of triplicate explants at
252 each time point.

253 *Stability assays*

254 To determine whether IAV detected after inoculation was due to productive virus infection in
255 respiratory tissues, we performed viral stability assays in the absence of tissue sections.
256 Medium containing 1 X 10⁴ PFU/ml of each of the 6 IAV strains was added to 24-well tissue
257 culture plates and supernatant was collected at 0, 24 and 48 hpi for the determination of viral
258 titers by plaque assay. As a second step, the stability assays were also performed using non-
259 target tissues (liver and kidney) to confirm that the viral titers detected in respiratory tissues
260 reflect productive infection in target cells. Liver and kidney explants were inoculated with 1 x
261 10⁴ PFU of each of the 6 IAV strains in 10 ul RPMI growth medium and assayed by the same
262 methods used for respiratory tract tissues.

263 *IAV immunohistochemistry*

264 Tracheal, bronchial, and lung explants from a subset of IAV-inoculated animals (M11, M13, SL08, and
265 SL12) were fixed in 10% buffered formalin and embedded in paraffin. Explants not treated with IAV
266 and incubated only with rabbit IgG (Invitrogen) as primary antibody were included as negative isotype
267 controls for background staining. These animals were selected since they showed higher IAV titers
268 than others. Antigen retrieval was performed on 5 um sections via incubation in AR10 (Biogenex) in a
269 digital decloaking chamber (Biocare Medical) for 2 minutes at 125°C, followed by cooling to 90°C for
270 10 minutes, rinsing with water, and a final Tris-buffered saline with 0.05% Tween 20 rinse. Tissue
271 sections were exposed to the primary rabbit anti-influenza A virus nucleoprotein antibody (LSBio), at a
272 ratio of 1:250 with antibody diluent (Dako). Tris-buffered saline with 0.05% Tween 20 was used for all
273 washes. Nonspecific binding sites were blocked with 5% bovine serum albumin (Jackson
274 ImmunoResearch). Binding of the primary antibody was detected using Envision rabbit polymer with
275 AEC as the chromogen (Dako). Each tissue section was evaluated independently by two pathologists.
276 Sections from slides were visualized with a Zeiss Imager Z1 (Carl Zeiss). Digital images were
277 captured and analyzed using Openlab software (Improvisation). Cells with nuclear immunoreactivity
278 were considered positive. The positive cells in the epithelium of the trachea were manually counted.
279 The area of the tracheal epithelium was measured. The number of positive cells was presented as
280 cells per square millimeter of the epithelium.

281 *Influenza A virus genome sequencing*

282

283 IAV RNA from inocula and homogenized explant samples harvested 48 to 96 hpi from selected
284 animals for all 3 species were sequenced. Viral RNAs were extracted using the Magmax-96
285 AI/ND Viral RNA isolation kit (Applied Biosystems). Viral RNA extracts were used as a template
286 for multi-segment RT-PCR reactions to generate all 8 genomic segments of IAV using
287 procedures described previously (22, 34). Consensus sequences were generated at the Icahn
288 School of Medicine at Mount Sinai, as described previously (35). Genome sequences from
289 explant samples were compared to inocula.

290

291 *Statistical analyses*

292

293 Statistical analyses were conducted using GraphPad Prism software version 8. Two-way
294 ANOVA with Dunnett's multiple comparisons tests were performed to compare the mean viral
295 titers in explants at 24, 48 and 72 hpi to the mean titer 1 hpi as well as mean viral titers in
296 MDCK cells for all 6 IAV strains at 24, 48 and 72 hpi. IAV titers in tissue explants were plotted
297 at 0, 24, 48, and 72 hpi and mean area under the curve (AUC) was calculated for all titers
298 above the assay limit of detection. Within individual tissues, mean AUC was compared by one-
299 way ANOVA using Tukey's method for multiple comparisons between all IAV strains. AUC for
300 California sea lions grouped by reason for euthanasia (respiratory versus non-respiratory) were
301 compared by Mann-Whitney rank test. Mean titers for IAV strains and tissues after inoculation
302 of rhesus macaque and California sea lion explants were computed using R (36). Welch
303 ANOVA with the Games-Howell post-hoc tests were used to compare changes in mean \log_{10}
304 viral titers from 1 to 24, 48, and 72 hpi across IAV strains, tissues within species, and by IAV
305 strain and tissue pairs between species.

306

307 *Data availability*

308

309 Sequencing data are available at the CEIRS Data Processing and Coordinating Center (DPCC)
310 Project Identifier: SP4-Boyce_5004 and Submission_ID: 1136547734004 and at GenBank accession
311 numbers MW132167-MW132399.

312

313 **Results**

314 *Influenza A virus strain selection*

315 We compared relative infection kinetics for 6 IAV strains (**Table 1**) used in this study. Since
316 marine mammals and water birds share the same near shore environments where cross-

317 species transmission can occur, we used strains isolated from both marine mammals and birds.
318 The strains used also represent common IAV subtypes. Further, the elephant seal (ES)/H1N1
319 strain shows high genetic similarity with human pandemic H1N1 (4). Strains were isolated from
320 an elephant seal (ES, N=1), or a harbor seal (HS, N=1), or mallard ducks (m, N=4), and they
321 share similar passage histories in embryonated chicken eggs and MDCK cells.
322

323 ***Influenza A virus strains exhibit differential infection kinetics in immortalized cells***
324 Given that cell infection kinetics for 4 of the strains had not previously been established, we first
325 performed growth assays for each of the 6 IAV strains after inoculation into MDCK cells in
326 triplicate at a MOI of 0.01 (**Figure 1**). The H3N8 strain isolated from a harbor seal (HS/H3N8),
327 exhibited the slowest and lowest growth kinetics, peaking at 10^5 PFU/ml 48 hpi. The H1N1
328 strains showed the fastest and highest growth kinetics, peaking at $>10^7$ PFU/ml by 24 hpi. The
329 viral infection kinetics of the other 4 strains tested, 3 of which were isolated from mallard ducks
330 and 1 from a harbor seal, were intermediate between HS/H3N8 and the 2 H1N1 strains. Titers
331 for all strains were significantly higher than those for HS/H3N8 at one or more time points
332 between 24-72 hpi (two way ANOVA). Given these data show that *in vitro* infection kinetics in
333 an immortalized cell line are different for the 6 IAV strains used in this study, we sought to
334 determine whether the growth kinetics of these strains also differed in explant tissues from the
335 3 animal species.
336

337 ***Influenza A viruses infect rhesus macaque respiratory tract explants***
338 Given that marine mammal tissues are only opportunistically available from wild animals
339 treated at The California Marine Mammal Center in Sausalito, CA, USA, we first established the
340 *ex vivo* explant system using rhesus macaques that are more regularly available from the
341 California National Primate Research Center, Davis, CA, USA (**Figure 2A**) . The rhesus
342 macaques were bred and then euthanized at the California National Primate Research Center
343 due to non-respiratory medical conditions. Although tissues were used within 6 h post-mortem,
344 we microscopically visualized movement of glass beads by cilia placed atop tracheas from
345 some macaques and verified viability at 24, 48, and 72 hours, similar to Nunes *et al.* (23). To
346 determine whether rhesus macaque explants support IAV infection and to define infection
347 kinetics, we measured viral titers for 7 days (from 1 to 168 hpi) in explants from the first animal,
348 an 11-year old female macaque inoculated with HS/H3N8 (**Figure 2B**) who had no detectable
349 IAV antibody in sera at the time of necropsy. We defined infection as detection of a kinetic
350 increase in infectious IAV titer above the inoculum, 10^4 PFU. Titers increased over time in all 3
351 tissues and exceeded inocula from 48-168 hpi in trachea, from 24-120 hpi in bronchi, and from
352 72-96 hpi in the lung. Maximal titers $>10^5$ PFU/tissue were detected in all 3 tissue types.

353 Decreases in titers over time (i.e. 120-168 hpi) were likely concomitant with death of target cells
354 in explants. By contrast, when 10^4 PFU of IAV strains were inoculated into medium in the
355 absence of explants (**Figure 2C**) or into non-IAV target kidney (**Figure 2D**) or liver (**Figure 2E**)
356 from a 3.5 year old macaque, no IAV was detected above the limit of detection (50
357 PFU/explant) at 24 or 48 hpi, which indicates IAV are not viable over time absent IAV-
358 susceptible tissues. Together these results demonstrate that rhesus macaque respiratory tract
359 explants support productive infection by IAV.
360

361 ***Influenza A virus exhibits strain-specific infection patterns in ex vivo respiratory tract***
362 ***tissues***

363 **Rhesus macaques:** To determine whether rhesus macaques share similar susceptibilities to
364 different IAV subtypes, we inoculated respiratory tract explants from 10 rhesus macaques
365 (**Table 2**) with 6 virus strains. Five of the macaques were females and five were males and they
366 ranged from 1 to 16 years of age. Most of the macaques were euthanized due to injuries
367 sustained due to non-respiratory conditions including trauma or chronic diarrhea. All macaques
368 tested IAV seronegative by ELISA in serum from blood collected at necropsy (**Table 2**). We
369 focused on 0 to 72 hpi since increases in IAV titers were observed over that period in the
370 preliminary experiment (**Figure 2B**). We first determined kinetics of mean IAV titers in explants
371 from trachea, bronchi, and lung from all rhesus macaques considered together (**Figure 3A-C**).
372 Mean IAV infection kinetics increased from 0 to 72 hpi in all 3 explant tissues and reached
373 highest levels at 72 hpi for most strains. For most IAV strains, slower kinetics and peak titers
374 that were 10^{2-3} PFU/explant lower were observed in lungs compared to trachea and bronchi.
375 The mean area under the curve (AUC) was significantly higher for H3N8 and H7N5 strains
376 compared to H1N1 and H5N2 strains in trachea and bronchi and trended higher in the lung,
377 although not significantly (**Figure 3D**). Infection kinetics in explants from a representative
378 rhesus macaque (M15) are shown in detail (**Figure 4**) and parallel strain differences were
379 observed in explants from the mean of all 10 animals. Infection kinetics in individual rhesus
380 macaques over time (**Figure 5A**) also reveal the pattern of lower titers in the lung compared to
381 trachea or bronchi. To verify the histologic integrity of explants, hematoxylin and eosin (H&E)
382 staining of tracheal (**Figure 6A-D**) and bronchial explants (not shown) from 2 randomly
383 selected macaques was performed. Microscopically, rhesus macaque tracheal and bronchial
384 explants appeared viable for 48-72 hpi. Normal architecture of ciliated columnar respiratory
385 epithelium, underlying lamina propria, submucosa, and cartilage were generally maintained.
386 Conversely, bronchioles and alveoli were less well preserved. After 48-72 hpi, explants
387 exhibited variable but progressive loss of cilia at the apical epithelial surface, scattered vacuolar
388 degeneration or single-cell necrosis of respiratory epithelial cells, and occasional small foci of

389 epithelial cell loss, though these lesions were also occasionally observed at 0 or 24 hpi. No
390 explants showed evidence of cytopathic effects after IAV inoculation. Together, these results
391 show that multiple IAV subtypes infect viable respiratory tract explants from rhesus macaques
392 with variable kinetics and peak titers.

393

394 **Marine mammals:** We next examined whether respiratory tract explants from marine mammals are
395 susceptible to infection with the same IAV strains used to infect rhesus macaques, including the 2
396 strains of marine mammal origin. Explant tissues were obtained from wild California sea lions (N=11)
397 and Northern elephant seals (N=2) euthanized due to non-respiratory medical conditions at The
398 Marine Mammal Center in Sausalito, CA. Marine mammals were mostly male and ranged in age from
399 weanling to adult (**Table 2**). All animals were recovered stranded on beaches. The causes of death
400 varied and were sometimes ascribed to an infectious or toxic etiology but were not typically due to
401 respiratory disease. To assess whether Tissues from animals with gross respiratory tract pathologies
402 at necropsy were also excluded from this study. All California sea lions had a mild burden of a lung
403 worm, *Parafilaroides decorus*, which is found as a normal occurrence in healthy pinnipeds (37).
404 Explants were sectioned to avoid worms and no worms were observed grossly during the IAV
405 infection studies. All marine mammals tested IAV seronegative by ELISA and IAV RNA negative in
406 nasal and rectal swabs at intake to The Marine Mammal Center by RT-PCR (**Table 2**). Although
407 tissues were used within 24 h post-mortem, we confirmed ciliary viability by microscopically visualizing
408 movement of polystyrene beads floating atop cultured California sea lion tracheal tissue from 0 to 72
409 h. Viability was evidenced by clearance of beads to the side of explants within 60 minutes. As in
410 rhesus macaques, IAV infection kinetics for most strains increased in California sea lions from 0 to 72
411 hpi in all 3 tissues and reached highest levels at 72 hpi for most strains (**Figure 3E-G**). Similar to
412 rhesus macaques, the mean area under the curve (AUC) was significantly higher for H3N8 and H7N5
413 strains compared to H1N1 and H5N2 strains in trachea and bronchi while the AUC in lung explants
414 from sea lions was only higher for H7N5 (**Figure 3H**). Detailed data (**Figure 7**) from 1 representative
415 California sea lion (SL12) paralleled patterns from the mean of all 11 animals. Infection kinetics in
416 individual marine mammals over time (**Figure 5B**) showed higher titers in the bronchi relative to
417 trachea or lung. Contrary to our expectation that IAV of marine mammal origin would produce high
418 titers in marine mammal explants, the strain from an elephant seal (ES/H1N1) produced lower and
419 slower kinetics (**Figure 3E-G, 5B**) than many of the strains isolated from mallards. Like rhesus
420 macaque explants, California sea lion tracheobronchial explants maintained a relatively normal
421 microscopic appearance for 48-72 hours (**Figure 6E-H**), with poor preservation of bronchioles and
422 alveoli and progressive loss of normal architecture over time. All California sea lion tissues also
423 exhibited variable degrees of pre-existing tracheobronchitis, likely associated with their nematode
424 burden. Although California sea lions with respiratory conditions or gross respiratory pathologies were

425 excluded from this study, we also analyzed whether systemic conditions including domoic acid toxicity
426 or septicemia may have exacerbated IAV susceptibility. We assessed AUC for IAV infection kinetics in
427 sea lions euthanized for non-systemic and non-respiratory conditions including malnourishment or
428 leptospirosis (N=6, SL01,SL03-07) versus systemic conditions including domoic acid toxicity or
429 septicemia (N=5, SL02, SL08-13). The AUC infection kinetics between the 2 groups of animals were
430 not significantly different in any of the three respiratory tissues (data not shown). These analyses
431 suggest that IAV infection kinetics in wild California sea lion explants are not impacted by systemic
432 conditions. Together, these results show that, similar to rhesus macaques, multiple IAV subtypes
433 infect viable respiratory tract explants from marine mammals with variable kinetics and peak titers. To
434 further determine whether the differences in mean IAV kinetics were supported statistically over time,
435 we examined IAV infection dynamics in 24 hour windows.

436

437 *IAV Kinetics Over Time:* We tested whether explants inoculated with different IAV strains
438 experience different mean changes in titer from 1 to 72 hpi. Considering all 3 tissue types
439 together, the \log_{10} change in viral titer was calculated for three time frames: 1 versus 24, 1
440 versus 48, and 1 versus 72 hpi for rhesus macaques and California sea lions (**Table 3**).
441 Northern elephant seals were not included in analyses since explants from only two animals
442 were available, although they produced infectious IAV after inoculation with some strains
443 (**Figure 5B**). Infection kinetics of the six IAV strains differed for each time frame considered. In
444 rhesus macaques, mean titer changes for HS/H3N8, m/H3N8, and m/H7N5 did not differ
445 significantly from each other over any of the time frames. m/H1N1 and mH5/N2 did not differ
446 significantly from each other over any of the time frames but were different from HS/H3N8,
447 m/H3N8 and m/H7N5. By contrast, the change in ES/H1N1 viral titers significantly differed from
448 all other strains except m/H1N1 from 1 to 48 hpi. In California sea lions, HS/H3N8 and m/H7N5
449 shared similar mean changes in \log_{10} titers in all time frames. For m/H1N1 and HS/H3N8, the
450 mean change in \log_{10} titers did not vary significantly from 1 to 24 hpi but did vary from 1 to 48
451 and 1 to 72 hpi. The mean change in \log_{10} viral titers between m/H1N1 and m/H7N5 were only
452 different from 1 to 48 hpi and m/H5N2 and m/H7N5 differed from 1 to 48 and 1 to 72 hpi. These
453 results show that mean changes in IAV titers over 24 hour windows in respiratory tract explants
454 from both rhesus macaques and California sea lions vary with IAV strain.

455

456 *IAV Kinetics by Tissue:* To examine whether tissue type associated with IAV titer, we analyzed
457 all 6 IAV strains together (**Table 4**). Infection kinetics in bronchi and trachea from rhesus
458 macaques were significantly higher than in the lung over all 24 hour windows from 1 to 72 hpi.
459 In California sea lions, infection kinetics in bronchi and trachea were significantly higher than in
460 the lung at 24 hpi, while infection kinetics in bronchi were significantly higher than in the trachea

461 and lung at 48 and 72 hpi. Together, these data support tissue-specific IAV infectivity, where
462 bronchi and trachea from both species support production of higher IAV titers than lung
463 explants.

464

465 *IAV Kinetics by Species*: To evaluate whether species associates with infection kinetics for the
466 6 IAV strains, we compared changes in mean \log_{10} titer between rhesus macaque and
467 California sea lion explants (**Table 5**). The mean change in titer of both H3N8 strains and
468 m/H7N5 was significantly higher in trachea at all time points and in bronchi to 48 hpi in rhesus
469 macaques compared to California sea lions. Changes in mean \log_{10} titers for m/H3N8 in the
470 lung from 1 to 48 and 1 to 72 hpi were higher in rhesus macaques compared to California sea
471 lions. Together these data show that rhesus macaque explants produce higher titers compared
472 to California sea lions for most IAV strains used here.

473

474 ***Cellular tropism of influenza A virus in rhesus macaque and California sea lion explants***

475 We used immunohistochemistry to assess the cellular tropism of IAV in rhesus macaque and
476 California sea lion respiratory tissue explants (**Figure 8, Table 6**). At least 22 sections from each
477 tissue type for 2 rhesus macaques (M11 and M13) and at least 56 sections from each tissue type for 2
478 California sea lions (SL08 and SL12) were evaluated. All examined sections exhibited variable
479 degrees of nonspecific cytoplasmic, membranous and/or background staining; as such, only cells with
480 strong nuclear immunoreactivity were considered positive. For all explants from both species and all
481 IAV subtypes, positive staining for viral nucleoprotein was limited to epithelial cells of the trachea and
482 bronchi; representative slides are shown (**Figure 8A-D**). Staining for IAV nucleoprotein was not
483 observed in non-inoculated explants or IHC antibody-treated negative isotype controls from rhesus
484 macaque (**Figure 8E-F**) or California sea lion (**Figure 8G-H**) trachea. Pneumocytes within the lung
485 were IAV negative. Infection was primarily localized to apical epithelial cells, particularly tracheal and
486 bronchial ciliated columnar cells and goblet cells, while basal cells were largely spared. Rhesus
487 macaque explants from M11 and M13 infected with H3N8 strains exhibited higher relative proportions
488 of positive tracheal and bronchial epithelial cells 24 and 48 hpi, even though IAV titers at those times
489 for most strains exceeded 10^4 PFU/explant 24 hpi (**Figure 5A**). The explants from M11 infected with
490 m/H7N5 exhibited the largest variation in relative proportion of positive cells between 24 and 48 hpi.
491 The number of infected respiratory epithelial cells generally increased between 24 and 48 hpi, which
492 is consistent with infection kinetics where IAV titers increased during that period. While positive nuclei
493 were less frequent within California sea lion explants, those infected with H3N8 strains also exhibited
494 higher relative proportions of positive tracheal and bronchial epithelial cells at 24 and 48 hpi, which is
495 consistent with data from rhesus macaques. These results demonstrate that IAV infects the apical
496 epithelial cells of upper respiratory tract explants in rhesus macaques and California sea lions.

497

498 **Genetic changes in influenza A viruses sequenced from explants**

499 IAV genomes in inoculated explants from 2 rhesus macaques, 3 California sea lions, and 1 Northern
500 elephant seal were compared to sequences of the strains used as inocula (**Table 7**). Sequence
501 comparisons showed that all genomes from rhesus macaque explants were 100% identical at the
502 consensus level (mutations occurring on 50% or more of viral RNAs) to their corresponding inoculum
503 (data not shown). Six nonsynonymous nucleotide substitutions in the HA, NA, and PA genes were
504 detected in California sea lion and Northern elephant seal explants inoculated with different IAV
505 subtypes (**Table 8**). Inocula contained a mixture of bases including the mutant nucleotide at each of
506 these loci, indicating that none of the mutations developed *de novo* in explants (data not shown). One
507 synonymous nucleotide substitution, PB2 1368 in m/H7N5, was detected in bronchi from all 3
508 California sea lions at 48 and 72 hpi. The nucleotide affecting this substitution was present at a
509 minority frequency (41%) in the inoculum, indicating that it did not develop *de novo* but increased to
510 consensus frequency in explants by 48 hpi (data not shown). Together these data show that no *de*
511 *novo* IAV mutations were detected in any strain during *ex vivo* respiratory tract explant infection from
512 selected rhesus macaques and marine mammals.

513

514 **Discussion**

515 We adapted an *ex vivo* respiratory tract infection model to study susceptibility and to define
516 comparative infection kinetics of IAV in colony-raised rhesus macaques and wild marine
517 mammals. We observed that IAV exhibits temporal, subtype- and species-dependent infection
518 kinetics in explants from both rhesus macaques and California sea lions. Although the relative
519 infection kinetics for the six strains was similar for explants from rhesus macaques and
520 California sea lions, similar patterns were not observed in MDCK cells. This suggests that
521 immortalized cell lines may not accurately represent infection phenotypes *in vivo*, further
522 underscoring the value of using *ex vivo* systems.

523 *Ex vivo* respiratory tract models have been used for studying respiratory pathogens of humans,
524 swine, bovines, canines, and equines (23, 25–28, 38–40). *Ex vivo* cultures of respiratory
525 tissues provide a close resemblance to the respiratory tract *in vivo* by: 1) shared polarity, where
526 the basolateral surface is exposed to culture medium and the apical cell surface is exposed to
527 air, 2) shared cell positioning *in situ* which maintains virus receptor distribution, 3) possession
528 of multiple cell types and states of differentiation, 4) maintenance of the three dimensional
529 integrity and architecture of a tissue, unlike cell monocultures, and 5) ciliary activity to preserve
530 mucociliary clearance. Given these similarities to living IAV hosts, explants are valuable tools

531 for assessing host susceptibility, infection kinetics, and pathogenesis of respiratory pathogens.
532 *Ex vivo* systems also better assess infectivity compared to cell monoculture binding assays that
533 only measure virus-receptor affinity (25, 27). In addition, tissues collected from a single animal
534 can be divided into pieces and used to compare relative infectivity of different viral strains while
535 holding the host constant. Last, use of explants from animals euthanized for other reasons
536 reduced the number of animals used in research, following the principles of reduction,
537 replacement, and refinement.

538 Limitations of the *ex vivo* approach include restricted availability of tissues, short periods of viability,
539 and inter-animal variability in IAV susceptibility. The absence of a blood supply also constitutes a
540 weakness since recruitment of immune cells to the infection site cannot occur. However, such a pitfall
541 might be co-opted in future studies to understand the effects of innate and intrinsic immunity without
542 immune cell influx. Use of explants from wild marine mammals euthanized for non-respiratory
543 conditions, some of which present systemically, is another limitation of this study. Some of the marine
544 mammals used in this study showed evidence of exposure to toxins, malnourishment, or congenital
545 defects, factors that may modify IAV susceptibility. However, systemic conditions including toxin
546 exposure did not correspond to observed differences in IAV infection capacity in California sea lion
547 explants in the current study. Given that the only marine mammals available for this study were those
548 euthanized for other conditions, we unfortunately do not have the opportunity to study tissues from
549 healthy animals, especially since both California sea lions and elephant seals are protected by the
550 Marine Mammal Protection Act.

551
552 Lower IAV titers in *ex vivo rhesus* macaque and marine mammal lungs relative to trachea and bronchi
553 support the upper respiratory tract as the primary site of virus infection with the virus strains used in
554 this study. The ability of IAV to produce higher titers in the upper respiratory tract may reflect
555 adaptation of the virus to infect cell targets in closest anatomic proximity to its entry point and
556 shedding site, the respiratory mucosa. Lower susceptibility of the lung to IAV infection could result
557 from decreased receptor expression in that tissue. We did not identify or enumerate IAV receptor
558 expression in explants in this study to confirm this hypothesis. An alternate possibility is that lungs of
559 both species decayed more quickly than the trachea and bronchi, rendering them less susceptible to
560 IAV infection. However, we feel accelerated lung decay is unlikely given our gross and histologic
561 observations showed similar architectural integrity in all 3 tissues to 72 hpi (data not shown).
562 Alternately, lower IAV lung infectivity could result from increased resident immune cell activation and
563 response in that tissue.

564

565 The infection kinetics of harbor seal-origin H3N8 and mallard-origin H7N5 in California sea lion
566 respiratory tract explant tissues were superior to other subtype strains isolated from mallards
567 and elephant seal-origin H1N1. Since all strains share similar passage histories, infection
568 kinetic differences are not likely due to varying passage or changes in consensus sequence
569 since all were nearly identical to those of their unpassaged progenitors. Our observation that
570 the elephant seal H1N1 infection kinetics were lower than other strains in California sea lions
571 suggests that having a marine mammal as the isolate source does not necessarily translate to
572 higher marine mammal explant infectivity. The lack of augmented infectivity in explants of the
573 species from which the isolate was made has also been observed in swine, where strains of the
574 same subtype isolated from both swine and humans showed similar infection kinetics (41).
575 Further, some human-isolated IAV show great inter-strain variability in infection kinetics in
576 human explants (27). In spite of the different infection kinetics across strains, the 6 strains
577 used here, representing 4 IAV subtypes, productively infected at least one explant type for both
578 species. These data suggest that any of these subtypes could also infect marine mammals in
579 the wild, consistent with serologic data showing exposure to many subtypes (13–16, 18, 19).
580 Together, data presented here show that the marine mammal *ex vivo* culture of respiratory
581 tissues is a tool to study IAV susceptibility, host-range, and tissue tropism.
582

583 **ACKNOWLEDGEMENTS**

584 We are grateful to the veterinary and research staff at The Marine Mammal Center for coordinating
585 the collection and transfer of fresh tissue samples to our laboratory. Sample possession was granted
586 by a Letter of Authorization from the National Oceanic and Atmospheric Administration National
587 Marine Fisheries Service.
588

589 **FUNDING ACKNOWLEDGEMENTS**

590 Funding support was provided by NIH NIAID #HHSN272201400008C to WB and LLC and from the
591 University of California, Davis Office of Research to PAP and HL. EEB was supported by a
592 Comparative Medical Science Training Program T32 fellowship # OD011147. We thank Kathy West at
593 the California National Primate Research Center for generating the rhesus macaque image used in
594 figures and Ana L. Ramirez for generating the other images used in figures.
595

596 **COMPETING INTERESTS**

597 The authors declare that there are no competing interests.
598

599 **AUTHOR CONTRIBUTIONS**

600 Conceptualization: HL, MP, WB, LLC, Methodology: HL, CMW, LLC, BH, Investigation: HL, MP,
601 CMW, OG-V, AMA, EEB, ZMM, KMH, KJ, PAP, ZK, DK. Writing-original draft: HL, LLC. Writing-
602 review and editing: HL, CMW, MP, EEB, ZMM, HB, BH, KMH, WB, PAP, LLC. Visualization: HL,
603 CMW, EEB, PAP, KJ, LLC. Supervision and project administration: WB, HB, LLC. Funding
604 acquisition: WB, HL, PAP, LLC.

605

606 **REFERENCES**

- 607 1. Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw
608 ML, Treanor J, Webster RG, García-Sastre A. 2018. Influenza. *Nat Rev Dis Prim.* Nature
609 Publishing Group. 4(1):3.
- 610 2. Landolt GA, Olsen CW. 2007. Up to new tricks - a review of cross-species transmission of
611 influenza A viruses. *Anim Health Res Rev* 8(1):1-21
- 612 3. Taubenberger JK, Kash JC. 2010. Influenza virus evolution, host adaptation, and pandemic
613 formation. *Cell Host Microbe.* 7(6):440-51.
- 614 4. Goldstein T, Mena I, Anthony SJ, Medina R, Robinson PW, Greig DJ, Costa DP, Lipkin WI,
615 Garcia-Sastre A, Boyce WM. 2013. Pandemic H1N1 Influenza Isolated from Free-Ranging
616 Northern Elephant Seals in 2010 off the Central California Coast. *PLoS One.* 8(5):e62259.
- 617 5. Karlsson EA, Ip HS, Hall JS, Yoon SW, Johnson J, Beck MA, Webby RJ, Schultz-Cherry S.
618 2014. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal.
619 *Nat Commun.* 5:4791.
- 620 6. Reperant LA, Kuiken T, Osterhaus ADME. 2012. Adaptive pathways of zoonotic influenza
621 viruses: From exposure to establishment in humans. *Vaccine.* 30(30):4419-34.
- 622 7. Kaplan BS, Webby RJ. 2013. The avian and mammalian host range of highly pathogenic avian
623 H5N1 influenza. *Virus Res.* 178(1): 3–11.
- 624 8. Sikkema RS, Freidl GS, de Bruin E, Koopmans M. 2016. Weighing serological evidence of
625 human exposure to animal influenza viruses – A literature review. *Eurosurveillance.*
626 21(44):30388.
- 627 9. Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. 2019. Inventory of
628 molecular markers affecting biological characteristics of avian influenza A viruses. *Virus Genes.*
629 55(6):739-768.
- 630 10. Lang G, Gagnon A, Geraci JR. 1981. Isolation of an influenza A virus from seals. *Arch Virol.*
- 631 11. Webster RG, Hinshaw VS, Bean WJ, Van Wyke KL, Geraci JR, St. Aubin DJ, Petursson G.
632 1981. Characterization of an influenza A virus from seals. *Virology.* 113(2):712-24.
- 633 12. Geraci JR, Aubin DJS, Barker IK, Webster RG, Hinshaw VS, Bean WJ, Ruhnke HL, Prescott
634 JH, Early G, Baker AS, Madoff S, Schooley RT. 1982. Mass mortality of harbor seals:
635 Pneumonia associated with influenza A virus. *Science* 215(4536):1129-31

636 13. Ohishi K, Kishida N, Ninomiya A, Kida H, Takada Y, Miyazaki N, Boltonov AN, Maruyama T.
637 2004. Antibodies to human-related H3 influenza A virus in Baikal seals (*Phoca sibirica*) and
638 ringed seals (*Phoca hispida*) in Russia. *Microbiol Immunol.* 48(11):905-9.

639 14. Fereidouni S, Munoz O, Von Dobschuetz S, De Nardi M. 2014. Influenza virus infection of
640 marine mammals. *Ecohealth.* 13(1):161-70.

641 15. Puryear WB, Keogh M, Hill N, Moxley J, Josephson E, Davis KR, Bandoro C, Lidgard D,
642 Bogomolni A, Levin M, Lang S, Hammill M, Bowen D, Johnston DW, Romano T, Waring G,
643 Runstadler J. 2016. Prevalence of influenza A virus in live-captured North Atlantic gray seals: A
644 possible wild reservoir. *Emerg Microbes Infect.* 5(8):e81.

645 16. Stuen S, Have P, Osterhaus AD, Arnemo JM, Moustgaard A. 1994. Serological investigation of
646 virus infections in harp seals (*Phoca groenlandica*) and hooded seals (*Cystophora cristata*). *Vet
647 Rec.* 134(19):502-3.

648 17. Nielsen O, Clavijo A, Boughen JA. 2001. Serologic evidence of influenza A infection in marine
649 mammals of Arctic Canada. *J Wildl Dis.* 37(4):820-5.

650 18. Greig DJ, Gulland FMD, Smith WA, Conrad PA, Field CL, Fleetwood M, Harvey JT, Ip HS,
651 Jang S, Packham A, Wheeler E, Hall AJ. 2014. Surveillance for zoonotic and selected
652 pathogens in harbor seals *phoca vitulina* from central California. *Dis Aquat Organ.* 111(2):93-
653 106.

654 19. Danner GR, McGregor MW, Zarnke RL, Olsen CW. 1998. Serologic evidence of influenza virus
655 infection in a ringed seal (*Phoca hispida*) from Alaska. *Mar Mammal Sci.* 14(2):380-384.

656 20. Venkatesh D, Bianco C, Núñez A, Collins R, Thorpe D, Reid SM, Brookes SM, Essen S,
657 McGinn N, Seekings J, Cooper J, Brown IH, Lewis NS. 2020. Detection of H3N8 influenza A
658 virus with multiple mammalian-adaptive mutations in a rescued Grey seal (*Halichoerus grypus*)
659 pup. *Virus Evol.* 18;6(1):veaa016.

660 21. Capuano AM, Miller M, Stallknecht DE, Moriarty M, Plancarte M, Dodd E, Batac F, Boyce WM.
661 2017. Serologic detection of subtype-specific antibodies to influenza A viruses in southern sea
662 otters (*Enhydra lutris nereis*). *J Wildl Dis.* 53(4):906-910.

663 22. Ramey AM, Hill NJ, Cline T, Plancarte M, De La Cruz S, Casazza ML, Ackerman JT, Fleskes
664 JP, Vickers TW, Reeves AB, Gulland F, Fontaine C, Prosser DJ, Runstadler JA, Boyce WM.
665 2017. Surveillance for highly pathogenic influenza A viruses in California during 2014-2015
666 provides insights into viral evolutionary pathways and the spatiotemporal extent of viruses in
667 the Pacific Americas Flyway. *Emerg Microbes Infect.* 6(9):e80.

668 23. Nunes SF, Murcia PR, Tiley LS, Brown IH, Tucker AW, Maskell DJ, Wood JLN. 2010. An ex
669 vivo swine tracheal organ culture for the study of influenza infection. *Influenza Other Respi
670 Viruses.* 4(1):7-15

671 24. Löndt BZ, Brookes SM, Nash BJ, Núñez A, Stagg DA, Brown IH. 2013. The infectivity of

672 pandemic 2009 H1N1 and avian influenza viruses for pigs: An assessment by *ex vivo*
673 respiratory tract organ culture. *Influenza Other Respi Viruses*.7(3):393-402.

674 25. Chan RWY, Chan MCW, Nicholls JM, Malik Peiris JS. 2013. Use of *ex vivo* and *in vitro* cultures
675 of the human respiratory tract to study the tropism and host responses of highly pathogenic
676 avian influenza A (H5N1) and other influenza viruses. *Virus Res.* 178(1):133-45.

677 26. Nicholas B, Staples KJ, Moese S, Meldrum E, Ward J, Dennison P, Havelock T, Hinks TSC,
678 Amer K, Woo E, Chamberlain M, Singh N, North M, Pink S, Wilkinson TMA, Djukanović R.
679 2015. A novel lung explant model for the *ex vivo* study of efficacy and mechanisms of anti-
680 influenza drugs. *J Immunol.* 194(12):6144-54.

681 27. Hui KPY, Ching RHH, Chan SKH, Nicholls JM, Sachs N, Clevers H, Peiris JSM, Chan MCW.
682 2018. Tropism, replication competence, and innate immune responses of influenza virus: an
683 analysis of human airway organoids and *ex-vivo* bronchus cultures. *Lancet Respir Med.*
684 6(11):846-854.

685 28. Hui KPY, Cheung MC, Perera RAPM, Ng KC, Bui CHT, Ho JCW, Ng MMT, Kuok DIT, Shih KC,
686 Tsao SW, Poon LLM, Peiris M, Nicholls JM, Chan MCW. 2020. Tropism, replication
687 competence, and innate immune responses of the coronavirus SARS-CoV-2 in human
688 respiratory tract and conjunctiva: an analysis in *ex-vivo* and *in-vitro* cultures. *Lancet Respir Med*
689 8(7):687–695.

690 29. Shinya K, Gao Y, Cilloniz C, Suzuki Y, Fujie M, Deng G, Zhu Q, Fan S, Makino A, Muramoto Y,
691 Fukuyama S, Tamura D, Noda T, Eisfeld AJ, Katze MG, Chen H, Kawaoka Y. 2012. Integrated
692 clinical, pathologic, virologic, and transcriptomic analysis of H5N1 influenza virus-induced viral
693 pneumonia in the rhesus macaque. *J Virol.* 86(11):6055-66.

694 30. Carroll TD, Jegaskanda S, Matzinger SR, Fritts L, McChesney MB, Kent SJ, Fairman J, Miller
695 CJ. 2018. A lipid/DNA adjuvant-inactivated influenza virus vaccine protects rhesus macaques
696 from uncontrolled virus replication after heterosubtypic influenza a virus challenge. *J Infect Dis.*
697 218(6):856-867.

698 31. Skinner JA, Zurawski SM, Sugimoto C, Vinet-Oliphant H, Vinod P, Xue Y, Russell-Lodrigue K,
699 Albrecht RA, García-Sastre A, Salazar AM, Roy CJ, Kuroda MJ, Oh SK, Zurawski G. 2014.
700 Immunologic characterization of a rhesus macaque H1N1 challenge model for candidate
701 influenza virus vaccine assessment. *Clin Vaccine Immunol.* 21(12):1668-80.

702 32. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum LT,
703 Suarez DL. 2002. Development of a real-time reverse transcriptase PCR assay for type A
704 influenza virus and the avian H5 and H7 hemagglutinin subtypes. *J Clin Microbiol.* 40(9):3256-
705 60.

706 33. Spackman E. 2014. Avian Influenza Virus Detection and Quantitation by Real-Time RT-PCR, p.
707 vol 1161. *In Animal Influenza Virus. Methods in Molecular Biology (Methods and Protocols)*.

708 Hu, New York, NY.

709 34. Mena I, Nelson MI, Quezada-Monroy F, Dutta J, Cortes-Fernández R, Lara-Puente JH, Castro-
710 Peralta F, Cunha LF, Trovão NS, Lozano-Dubernard B, Rambaut A, Van Bakel H, García-
711 Sastre A. 2016. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. *Elife*.
712 5:e16777.

713 35. Venkatesh D, Poen MJ, Bestebroer TM, Scheuer RD, Vuong O, Chkhaidze M, Machablishvili
714 A, Mamuchadze J, Ninua L, Fedorova NB, Halpin RA, Lin X, Ransier A, Stockwell TB,
715 Wentworth DE, Kriti D, Dutta J, van Bakel H, Puranik A, Slomka MJ, Essen S, Brown IH,
716 Fouchier RAM, Lewis NS. 2018. Avian influenza viruses in wild birds: virus evolution in a
717 multihost ecosystem. *J Virol*. 92(15):e00433-18.

718 36. R: A language and environment for statistical computing. R Foundation for Statistical
719 Computing, Vienna, Austria.gbif.org

720 37. Greig DJ, Gulland FMD, Kreuder C. 2005. A decade of live California sea Lion (*Zalophus*
721 *californianus*) strandings along the Central California coast: causes and trends, 1991-2000.
722 *Aquat Mamm*. 31(1):11-22.

723 38. Vandekerckhove A, Glorieux S, Broeck W Van den, Gryspeerdt A, van der Meulen KM,
724 Nauwynck HJ. 2009. *In vitro* culture of equine respiratory mucosa explants. *Vet J*. 181(3):280-
725 7.

726 39. Priestnall SL, Mitchell JA, Brooks HW, Brownlie J, Erles K. 2009. Quantification of mRNA
727 encoding cytokines and chemokines and assessment of ciliary function in canine tracheal
728 epithelium during infection with canine respiratory coronavirus (CRCoV). *Vet Immunol
729 Immunopathol*. 127(1-2):38-46.

730 40. Niesalla HS, Dale A, Slater JD, Scholes SFE, Archer J, Maskell DJ, Tucker AW. 2009. Critical
731 assessment of an *in vitro* bovine respiratory organ culture system: A model of bovine
732 herpesvirus-1 infection. *J Virol Methods*. 158(1-2):123-9.

733 41. Van Poucke SGM, Nicholls JM, Nauwynck HJ, Van Reeth K. 2010. Replication of avian, human
734 and swine influenza viruses in porcine respiratory explants and association with sialic acid
735 distribution. *Virol J*. 7:38.

736

737

738

739

740

741

742

743

744 **FIGURE LEGENDS**

745

746 **Figure 1. *In vitro* infection kinetics of 6 influenza A virus strains in Madin-Darby canine kidney**

747 cells. A MOI of 0.01 was used. The geometric mean virus titer from triplicate wells at each time point

748 was plotted as PFU per milliliter \pm geometric standard deviation. The dotted line represents the limit of

749 detection (LOD) of 500 PFU/ml. Asterisks show comparisons of mean titers between HS/H3N8 and all

750 other strains analyzed by two-way ANOVA of log transformed values where * is $p < 0.001$ and ** is p

751 < 0.0001 . Strain names refer to the original source of the virus isolate followed by the hemagglutinin

752 and neuraminidase subtype. HS is harbor seal. m is mallard. ES is elephant seal.

753

754 **Figure 2. (A) Experimental design for *ex vivo* rhesus macaque respiratory tract explant**

755 **inoculations with influenza A virus (IAV). (B)** Seven day infection kinetics of IAV HS/H3N8 in

756 explants from an 11 year old animal that was serologically IAV non-reactive at necropsy. **(C)** IAV titers

757 in the absence of explants to evaluate stability of infectious virus from 0 to 48 hpi. IAV titers in kidney

758 **(D)** and liver **(E)**, tissues that are not IAV targets from a 3.5 year old animal from 0 to 48 hpi. Each bar

759 shows the measurement from a single explant. The dotted black line shows the limit of detection, 50

760 PFU/explant. The red line shows the inoculum. hpi is hours post inoculation. Strain names refer to the

761 original source of the virus isolate followed by the hemagglutinin and neuraminidase subtype. HS is

762 harbor seal. m is mallard. ES is elephant seal.

763

764 **Figure 3: Ex vivo influenza A virus infection kinetics.** Mean kinetics in 10 rhesus macaque **(A-C)**

765 and 11 California sea lions **(E-G)** and areas under the infection curve (AUC) **(D, H)** in *ex vivo*

766 respiratory tract trachea, bronchi, and lung explants. Error bars show standard deviations. The dotted

767 black line shows the limit of detection, 50 PFU/explant. Colors in squares in D and H show differences

768 in mean AUC by strain analyzed using one-way ANOVA tests where the darker the color, the smaller

769 the p-value. Strain names refer to the original source of the virus isolate followed by the hemagglutinin

770 and neuraminidase subtype. HS is harbor seal. m is mallard. ES is elephant seal.

771

772 **Figure 4.** Influenza A virus infection kinetics from 1 to 72 hpi in respiratory tract explants from a 4 year

773 old male rhesus macaque (M15 in Table 2) inoculated with 1×10^4 PFU of 6 viral strains. Viral titers are

774 represented as the geometric mean and geometric standard deviation. Three explants at each time

775 point were titrated independently and the mean of the triplicates is represented by the middle

776 horizontal line. Asterisks show p values (two-way ANOVA with Dunnett's multiple comparisons)

777 comparing titers at 24, 48 or 72 hpi to 1 hpi, respectively. ** $p \leq 0.005$, *** $p < 0.001$, and **** $p < 0.0001$.

778 The dashed line indicates limit of detection, 50 PFU/explant. Strain names refer to the original source

779 of the virus isolate followed by the hemagglutinin and neuraminidase subtype. HS is harbor seal. m is

780 mallard. ES is elephant seal.

781

782 **Figure 5. Comparison of *ex vivo* influenza A virus infection kinetics in respiratory tract explants**

783 **from individual animals. (A)** IAV titers in explants from 10 rhesus macaques and **(B)** 11 California

784 sea lions and 2 Northern elephant seals inoculated with 1×10^4 PFU and 2×10^4 PFU of each of the 6

785 IAV strains over a 72 hour period. The kinetics of viral infection were determined by plaque assays of

786 homogenized explants, where each square represents the titer from 10^1 (blue) to 10^6 (yellow) in

787 PFU/explant. The limit of detection was 50 PFU/explant. Each explant was titrated once at 2-3

788 dilutions. Strain names refer to the original source of the virus isolate followed by the hemagglutinin

789 and neuraminidase subtype (Table 1). HS is harbor seal. m is mallard. ES is elephant seal. Boxes with
790 'X' indicate the sample was not available for titration.

791 **Figure 6. Representative light photomicrograph of sections of (A-D) rhesus macaque M11 and**
792 **(E-H) California sea lion SL08 ex vivo tracheal explants** at 0 (A, E), 24 (B, F), 48 (C, G), and 72
793 (D, H) hours. Cilia (black arrows) are present on the apical surface of epithelial cells. Sections were
794 stained with hematoxylin and eosin (400x magnification); bar=50um. RE= respiratory epithelium; LP=

795 lamina propria.

796

797 **Figure 7. Influenza A virus infection kinetics from 1 to 96 hpi in respiratory tract explants from**
798 **an adult female California sea lion** (SL12 in Table 2) inoculated with 2×10^4 PFU of 6 IAV strains.
799 Viral titers are represented as the geometric mean and geometric standard deviation. Three explants
800 at each time point were titrated independently and the mean of the triplicates is represented by the
801 middle horizontal line. Asterisks show p values (two-way ANOVA with Dunnett's multiple comparisons)
802 comparing titers at 24, 48, 72 or 96 hpi to 1 hpi, respectively. **p < 0.005, ***p < 0.001, and ****p <
803 0.0001. The dashed line indicates limit of detection, 50 PFU/explant. Strain names refer to the original
804 source of the virus isolate followed by the hemagglutinin and neuraminidase subtype. HS is harbor
805 seal. m is mallard. ES is elephant seal.

806

807 **Figure 8. Immunohistochemical (IHC) staining for influenza A virus in rhesus macaque and**
808 **California sea lion tracheal and bronchial explants.** (A) Bronchi from rhesus macaques 48 hours
809 post inoculation (hpi) with (A) m/H7N5 (animal M11) or (B) HS/H3N8 (animal M13); (C) Trachea from
810 California sea lion SL12 48 hpi with HS/H3N8; (D) Trachea from California sea lion SL08 24 hpi with
811 m/H3N8; Bronchi from rhesus macaque M13, 48 hpi treated with (E) growth medium only or (F) with
812 HS/H3N8 and stained with isotype IgG; Trachea from SL12 24 hpi treated with (G) growth medium
813 only or (H) with HS/H3N8 and stained with isotype IgG. IHC stain used an antibody that labels IAV
814 nucleoprotein. Positive respiratory epithelial cells exhibit strong nuclear immunoreactivity (red-brown
815 nuclear staining; arrows). Positive staining is primarily localized to apical epithelial cells, with relative
816 sparing of basal cells.

817

Table 1. IAV strains used for explant infection experiments. ES is elephant seal, HS is harbor seal, m is mallard. N/A indicates strain was isolated at UC Davis and first described in this study. MDCK is Madin-Darby canine kidney cell. PFU is plaque forming unit.

Virus ID	Strain name	Subtype	Passage number	MDCK or Vero E6 titer (PFU/ml)	GenBank Accession number	Reference
ES/H1N1	A/Elephant seal/California/1/2010	H1N1	p4	1.3x10 ⁸	JX865419-JX865426	Goldstein et al. 2013 (4)
HS/H3N8	A/harbor seal/New Hampshire/179629/2011	H3N8	p3	1.8x10 ⁶	KJ467564-KJ467571	Karlsson et al. 2014 (5)
m/H3N8	A/mallard/California/1475/2010	H3N8	p2	6x10 ⁶	CY120501-CY120508	N/A
m/H1N1	A/mallard/California/3134/2010	H1N1	p2	4x10 ⁷	CY120611-CY120618	N/A
m/H5N2	A/mallard/California/2396/2010	H5N2	p2	4x10 ⁷	CY120587-CY120594	N/A
m/H7N5	A/mallard/California/1390/2010	H7N5	p2	1x10 ⁷	CY120555-CY120562	N/A

Table 2. Explant sources for IAV *ex vivo* infection studies. Tissues were derived from 10 rhesus macaques (*Macaca mulatta*), 11 California sea lions (*Zalophus californianus*) and 2 northern elephant seals (*Mirounga angustirostris*). M is macaque, SL is sea lion, ES is elephant seal, y is year, m is month.

Animal	Species	Sex	Age	Reason for euthanasia	IAV ELISA	IAV RT-PCR
M12	<i>Macaca mulatta</i>	male	1y	chronic diarrhea	negative	not performed
M13	<i>Macaca mulatta</i>	male	3y4m	lameness due to trauma	negative	not performed
M15	<i>Macaca mulatta</i>	male	4y5m	leg trauma	negative	not performed
M16	<i>Macaca mulatta</i>	male	3y6m	chronic diarrhea	negative	not performed
M17	<i>Macaca mulatta</i>	male	4y5m	chronic diarrhea	negative	not performed
M11	<i>Macaca mulatta</i>	female	5y11m	chronic diarrhea	negative	not performed
M14	<i>Macaca mulatta</i>	female	16y6m	endometriosis	negative	not performed
M19	<i>Macaca mulatta</i>	female	1y6m	chronic diarrhea	negative	not performed
M21	<i>Macaca mulatta</i>	female	4y	leg trauma	negative	not performed
M20	<i>Macaca mulatta</i>	female	3y11m	liver amyloid, diarrhea, bloating	negative	not performed
SL01	<i>Zalophus californianus</i>	male	yearling	malnourished, peritonitis	negative	negative
SL02	<i>Zalophus californianus</i>	male	yearling	leptospirosis, mild pneumonia	negative	negative
SL03	<i>Zalophus californianus</i>	male	yearling	leptospirosis	negative	negative
SL04	<i>Zalophus californianus</i>	male	juvenile	leptospirosis	negative	negative
SL05	<i>Zalophus californianus</i>	male	subadult	leptospirosis, seizures	negative	negative
SL06	<i>Zalophus californianus</i>	male	subadult	leptospirosis	negative	negative
SL07	<i>Zalophus californianus</i>	male	subadult	leptospirosis	negative	negative
SL08	<i>Zalophus californianus</i>	male	yearling	asphyxia	negative	negative
SL09	<i>Zalophus californianus</i>	female	adult	domoic acid toxicity	negative	negative
SL12	<i>Zalophus californianus</i>	female	adult	septicemia	negative	negative
SL13	<i>Zalophus californianus</i>	male	yearling	domoic acid toxicity	negative	negative
ES10	<i>Mirounga angustirostris</i>	male	yearling	tachypnea, tachycardia	negative	negative
ES11	<i>Mirounga angustirostris</i>	male	weanling	blindness; congenital defect	negative	negative

Table 3. Mean change in \log_{10} titer of influenza virus strains after inoculation in rhesus macaque or California sea lion respiratory tract explant tissues. Means for the same time frame followed by a common letter are not significantly different by the Games-Howell test at the 5% level of significance. Values in parentheses show standard deviations. The symbols indicate that the mean change in titer differs significantly for at least one strain according to Welch's ANOVA at 5% level of significance for: *1 vs 24 hpi $F=15.417$, $df=(5,91.649)$, $p\text{-value}=5.55e-11$ for rhesus macaques and $F=4.666$, $df=(5,189.21)$, $p\text{-value}=4.85e-04$ for California sea lions, the † denotes 1 vs 48 hpi ($F=25.823$, $df=(5,91.569)$, $p\text{-value}=3.59e-16$) for rhesus macaques and ($F=5.784$, $df=(5,182.59)$, $p\text{-value}=5.55e-05$) for California sea lions, and the ‡ denotes 72 hpi ($F=23.351$, $df=(5,91.826)$, $p\text{-value}=4.58e-15$) for rhesus macaques and ($F=6.636$, $df=(5,189.35)$, $p\text{-value}=1.02e-05$) for California sea lions. Strain names refer to the original source of the virus isolate followed by the hemagglutinin and neuraminidase subtype. HS is harbor seal. m is mallard. ES is elephant seal.

	RHESUS MACAQUES			CALIFORNIA SEA LIONS		
	1 vs 24 hpi *	1 vs 48 hpi †	1 vs 72 hpi ‡	1 vs 24 hpi *	1 vs 48 hpi †	1 vs 72 hpi ‡
HS/H3N8	1.2 (1.1) ^a	1.8 (1.5) ^{ab}	2.2 (1.5) ^{ad}	0.4 (0.8) ^e	0.6 (1.2) ^e	0.8 (1.4) ^e
m/H3N8	0.9 (1.1) ^{ac}	1.8 (1.1) ^{ac}	0.9 (1.4) ^{ab}	-0.04 (0.7) ^{abc}	-0.07 (1.1) ^{abc}	0.2 (1.3) ^{abc}
ES/H1N1	-0.1 (0.6) ^b	-0.1 (0.8) ^e	0.1 (0.9) ^e	-0.1 (0.5) ^{ab}	-0.1 (0.8) ^{ab}	-0.1 (0.9) ^{ab}
m/H1N1	0.2 (0.7) ^b	0.3 (1.0) ^{de}	0.9 (1.2) ^c	0.03 (0.6) ^{bcd}	-0.05 (0.7) ^{bd}	0.2 (1.0) ^{bcd}
m/H5N2	0.3 (0.7) ^{bc}	1.0 (1.4) ^{bcd}	1.5 (1.4) ^{bcd}	-0.02 (0.5) ^{ad}	-0.07 (0.6) ^{ad}	0.2 (1.0) ^{ad}
m/H7N5	1.1 (0.8) ^a	1.9 (1.0) ^a	2.4 (1.2) ^a	0.3 (0.9) ^{cde}	0.5 (1.2) ^{ce}	0.8 (1.5) ^{ce}

Table 4. Mean change in \log_{10} titer of influenza virus in respiratory tract tissues from rhesus macaques and California sea lions. Means for the same time frame followed by a common letter are not significantly different by the Games-Howell test at the 5% level of significance. Values in parentheses show standard deviations. The symbols indicate that the mean change in titer differs significantly for at least one tissue according to Welch's ANOVA at 5% level of significance for: * 1 vs 24 hpi ($F=28.071$, $df=(2, 127.39)$, $p\text{-value}=7.93e-11$) in rhesus macaques, ($F=15.369$, $df=(2, 269.45)$, $p\text{-value}=5.96e-05$) for California sea lions, † 1 vs 48 hpi ($F=13.641$, $df=(2, 129.47)$, $p\text{-value}=4.02e-6$) in rhesus macaques, ($F=10.105$, $df=(2, 257.71)$, $p\text{-value}=5.96e-05$) in California sea lions, ‡ 1 vs 72 hpi ($F=7.8203$, $df=(2, 133.05)$, $p\text{-value}=6.16e-4$) for rhesus macaques, ($F=11.083$, $df=(2, 268.89)$, $p\text{-value}=2.37e-05$) for California sea lions.

	RHESUS MACAQUES			CALIFORNIA SEA LIONS		
Tissue	1 vs 24 hpi*	1 vs 48 hpi†	1 vs 72 hpi‡	1 vs 24 hpi*	1 vs 48 hpi†	1 vs 72 hpi‡
Bronchi	1.0 (0.9) ^a	1.5 (1.4) ^a	1.7 (1.5) ^a	0.3 (0.8) ^a	0.5 (1.3) ^a	0.8 (1.5) ^a
Trachea	0.8 (1.0) ^a	1.4 (1.5) ^a	1.9 (1.5) ^a	0.1 (0.7) ^a	0.1 (0.8) ^b	0.2 (1.0) ^b
Lung	0.1 (0.7) ^b	0.5 (1.1) ^b	1.0 (1.4) ^b	-0.2 (0.6) ^b	-0.1 (0.8) ^b	0.1 (1.1) ^b

Table 5. Difference in mean \log_{10} change for respiratory tract explant tissues from California sea lions versus rhesus macaques. Differences are shown as p-values after the Games-Howell post-hoc test. Significant p -values ($p < 0.05$) are in bold. Strain names refer to the original source of the virus isolate followed by the hemagglutinin and neuraminidase subtype. HS is harbor seal. m is mallard. ES is elephant seal. hpi is hours post inoculation.

Timeframe	IAV Strain	Trachea	Bronchi	Lung
1-24 hpi	HS/H3N8	-1.26 (0.011)	-1.13 (0.023)	-0.11 (0.989)
	m/H3N8	-1.26 (0.003)	-1.40 (<0.001)	-0.29 (0.695)
	ES/H1N1	-0.03 (1.00)	-0.13 (0.967)	-0.10 (0.996)
	m/H1N1	-0.14 (0.959)	-0.32 (0.475)	-0.03 (1.00)
	m/H5N2	-0.41 (0.362)	-0.45 (0.388)	-0.07 (0.997)
	m/H7N5	-1.02 (0.047)	-0.62 (0.266)	-0.46 (0.551)
1-48 hpi	HS/H3N8	-1.95 (0.002)	-1.27 (0.120)	-0.18 (0.982)
	m/H3N8	-2.21 (<0.001)	-1.50 (0.009)	-1.50 (0.006)
	ES/H1N1	-0.02 (1.00)	0.25 (0.963)	-0.45 (0.572)
	m/H1N1	-0.74 (0.160)	-0.48 (0.714)	0.01 (1.00)
	m/H5N2	-0.99 (0.100)	-1.50 (0.024)	-0.25 (0.918)
	m/H7N5	-1.75 (<0.001)	-1.50 (0.001)	-0.71 (0.540)
1-72 hpi	HS/H3N8	-2.41 (<0.001)	-1.74 (0.015)	-0.49 (0.711)
	m/H3N8	-2.02 (<0.001)	-1.44 (0.085)	-1.87 (0.006)
	ES/H1N1	-0.05 (1.00)	0.01 (1.00)	-0.48 (0.464)
	m/H1N1	-0.83 (0.265)	-1.06 (0.131)	-0.03 (1.00)
	m/H5N2	-2.11 (<0.001)	-1.23 (0.083)	-0.32 (0.893)
	m/H7N5	-2.16 (<0.001)	-1.08 (0.229)	-1.11 (0.335)

Table 6. Immunohistochemical detection of influenza A virus in macaque and California sea lion respiratory tissue explants. Trachea, bronchi and lung were examined for each animal. At least 22 sections from each tissue type were examined for the rhesus macaques and at least 56 sections from each tissue type were examined for the California sea lions. Strain names refer to the original source of the virus isolate followed by the hemagglutinin and neuraminidase subtype. HS is harbor seal. m is mallard. ES is elephant seal. hpi is hours post inoculation.

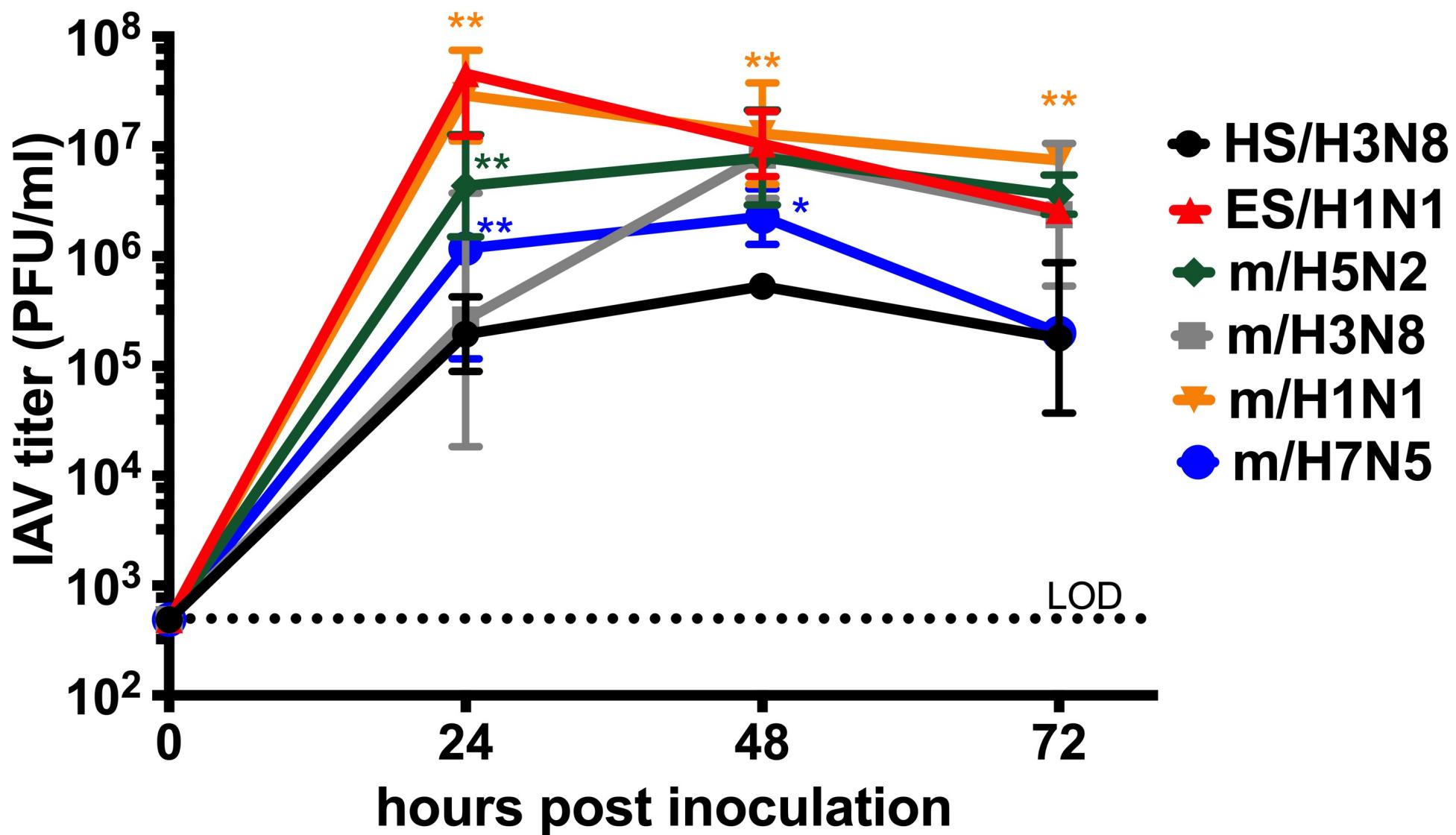
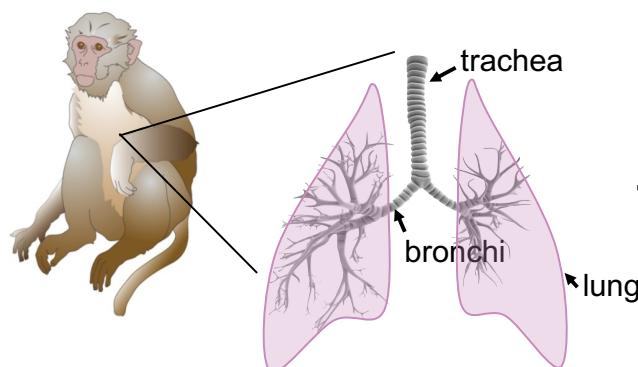

Animal	IAV positive epithelial cells/mm ²							
	M11		M13		SL08		SL12	
hpi	24	48	24	48	24	48	24	48
HS/H3N8	458	519	71	224	0	0	51	21
m/H3N8	349	544	0	1	2	0	0	26
ES/H1N1	0	0	0	0	0	0	0	0
m/H1N1	0	8	0	0	0	0	0	0
m/H5N2	7	19	0	0	0	0	0	0
m/H7N5	50	626	9	0	0	0	8	<5

Table 7. IAV inoculated rhesus macaque and marine mammal respiratory tract explants from which whole genome IAV sequences were obtained at indicated times post-inoculation and compared to their respective inocula. Empty squares indicate samples for which sequencing was not attempted. HS is harbor seal. m is mallard. ES is elephant seal, M is macaque, SL is California sea lion.

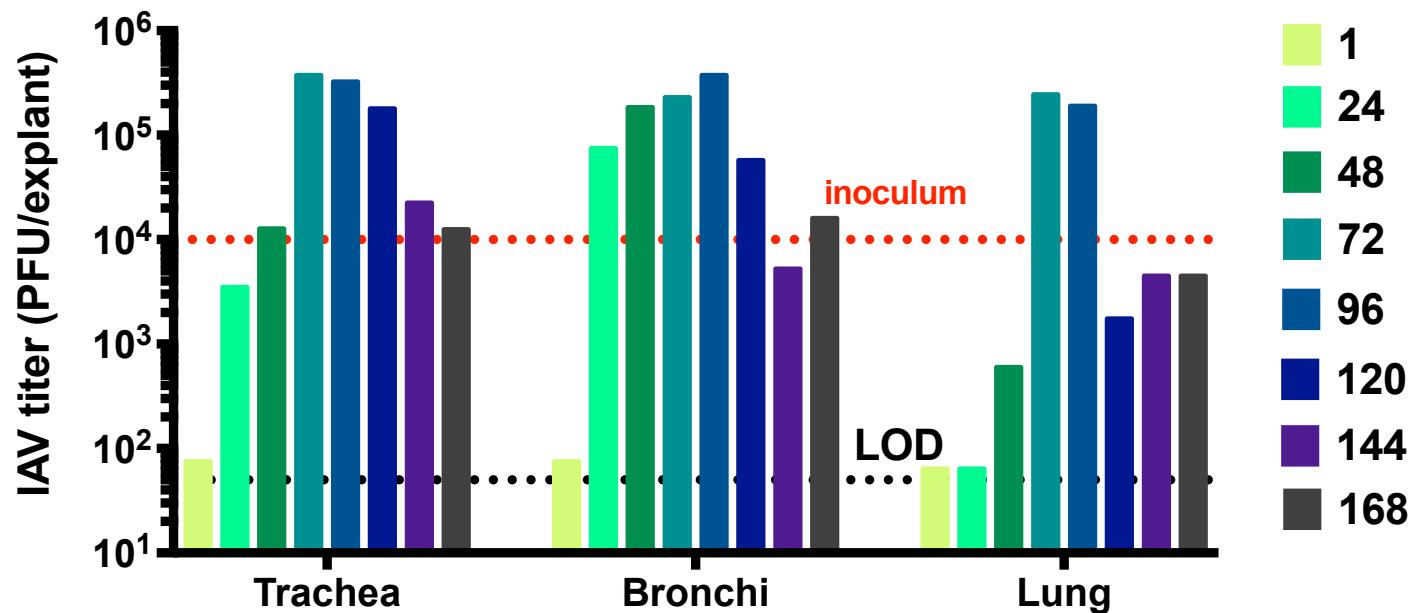
Animal ID	tissue	hour(s) post inoculation					
		HS/H3N8	m/H3N8	ES/H1N1	m/H1N1	m/H5N2	m/H7N5
M15	trachea	72	72		72	72	72
	lung						72
M11	trachea	72	72		72		72
SL01	bronchi		72				72, 96
SL06	bronchi	48, 72	72			72	48, 72
SL08	trachea						48
	bronchi			72			72
ES10	bronchi	48, 72					


Table 8. IAV amino acid changes compared to inocula detected in *ex vivo* bronchi explants from California sea lions and a Northern elephant seal. Numbers shown correspond to positions in indicated IAV proteins. *Indicates that the mutation was a synonymous change. Empty squares indicate no sequence differences were detected. An X shows samples for which sequencing was not attempted. hpi is hours post inoculation, HS is harbor seal, m is mallard, ES is elephant seal, M is macaque, SL is California sea lion, HA is hemagglutinin, NA is neuraminidase, PA is polymerase acidic protein, PB is polymerase basic protein.

Animal ID	hpi	HS/H3N8 HA	HS/H3N8 NA	ES/H1N1 PA	m/H7N5 HA	m/H7N5 PB2*
SL01	72	X	X	X	V311I	1368
	96		V394I	X		
SL06	48			X		1368
	72		P118S	X		1368
SL08	48	X	X	X		1368
	72	X	X	I359N, M441I		1368
ES10	48	A154T	P118S	X	X	X
	72	A154T	P118S	X	X	X

A

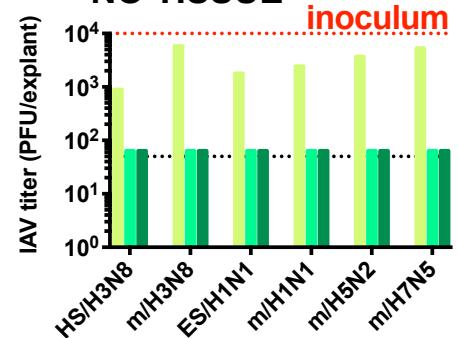
rhesus macaque



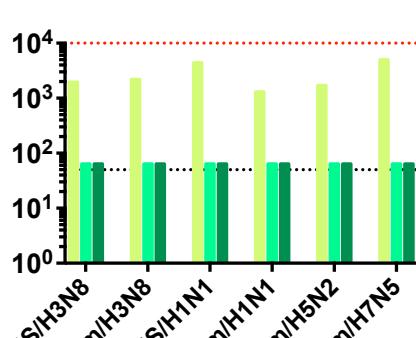
influenza A virus

infection kinetics

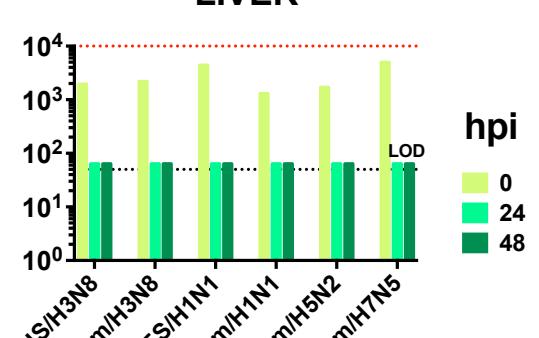
B


7 DAYS

C


NO TISSUE

inoculum

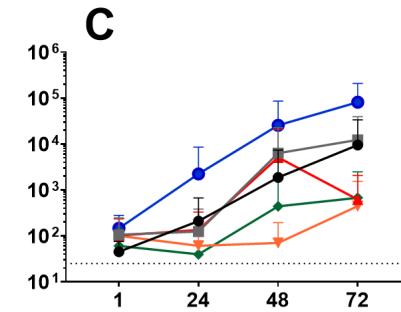
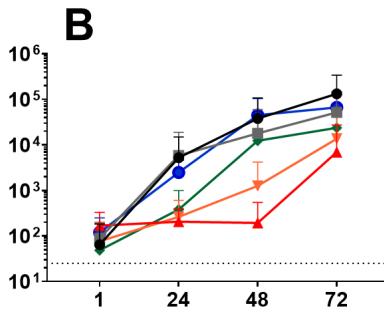
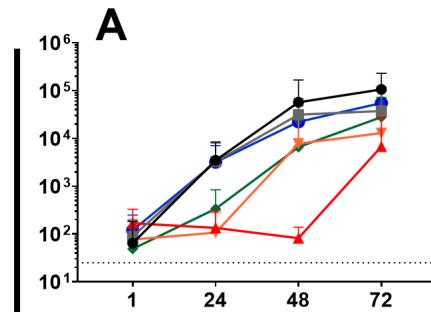

D

KIDNEY

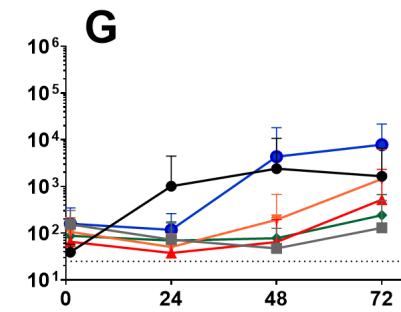
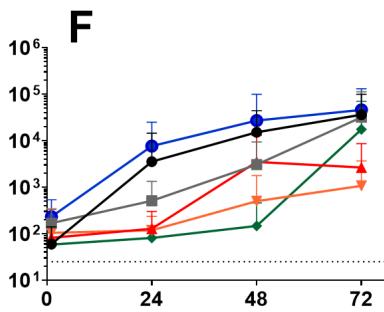
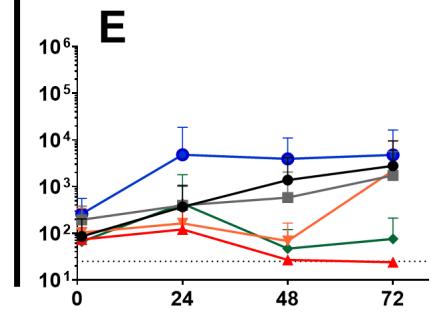
E

LIVER

IAV subtype




TRACHEA

BRONCHI




LUNG

RHESUS MACAQUES, N=10

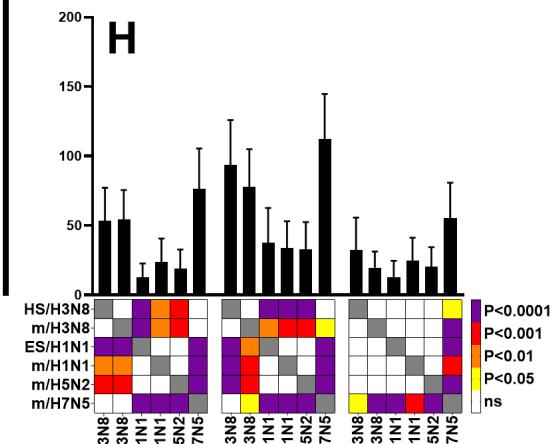
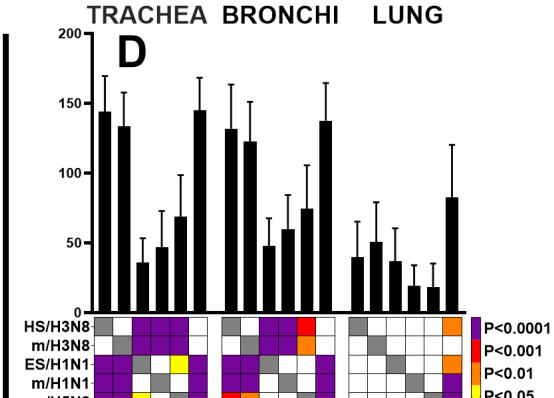
IAV titer (PFU/explant)

CALIFORNIA SEA LIONS, N=11

hours post inoculation

● HS/H3N8

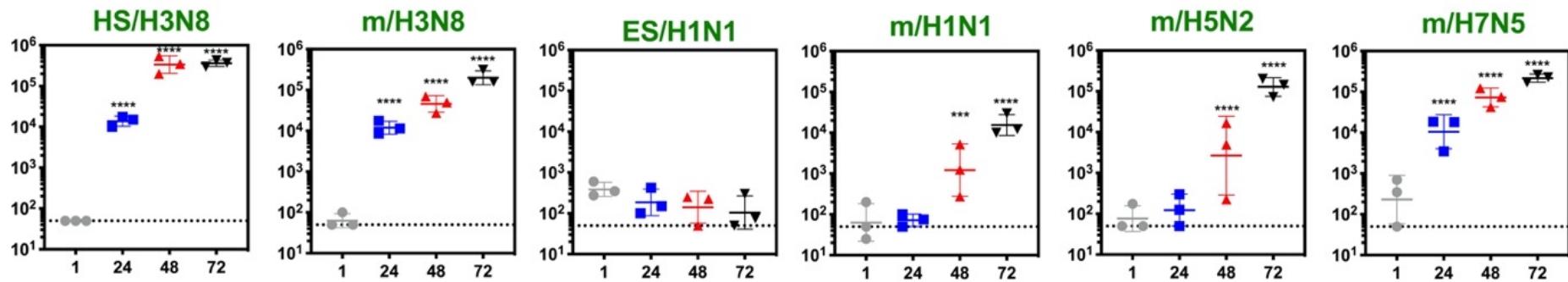
★ ES/H1N1

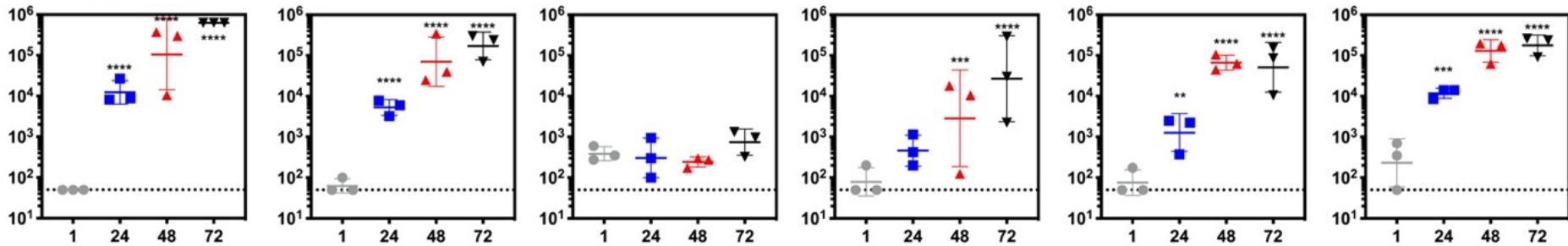


◆ m/H5N2

■ m/H3N8

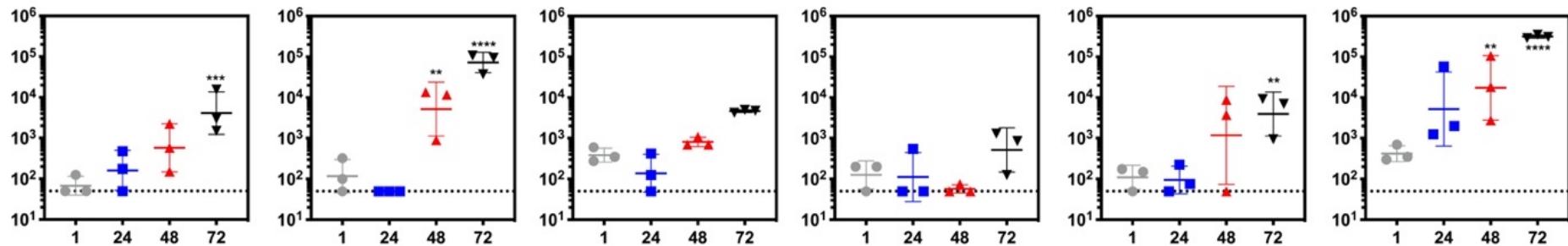
▽ m/H1N1

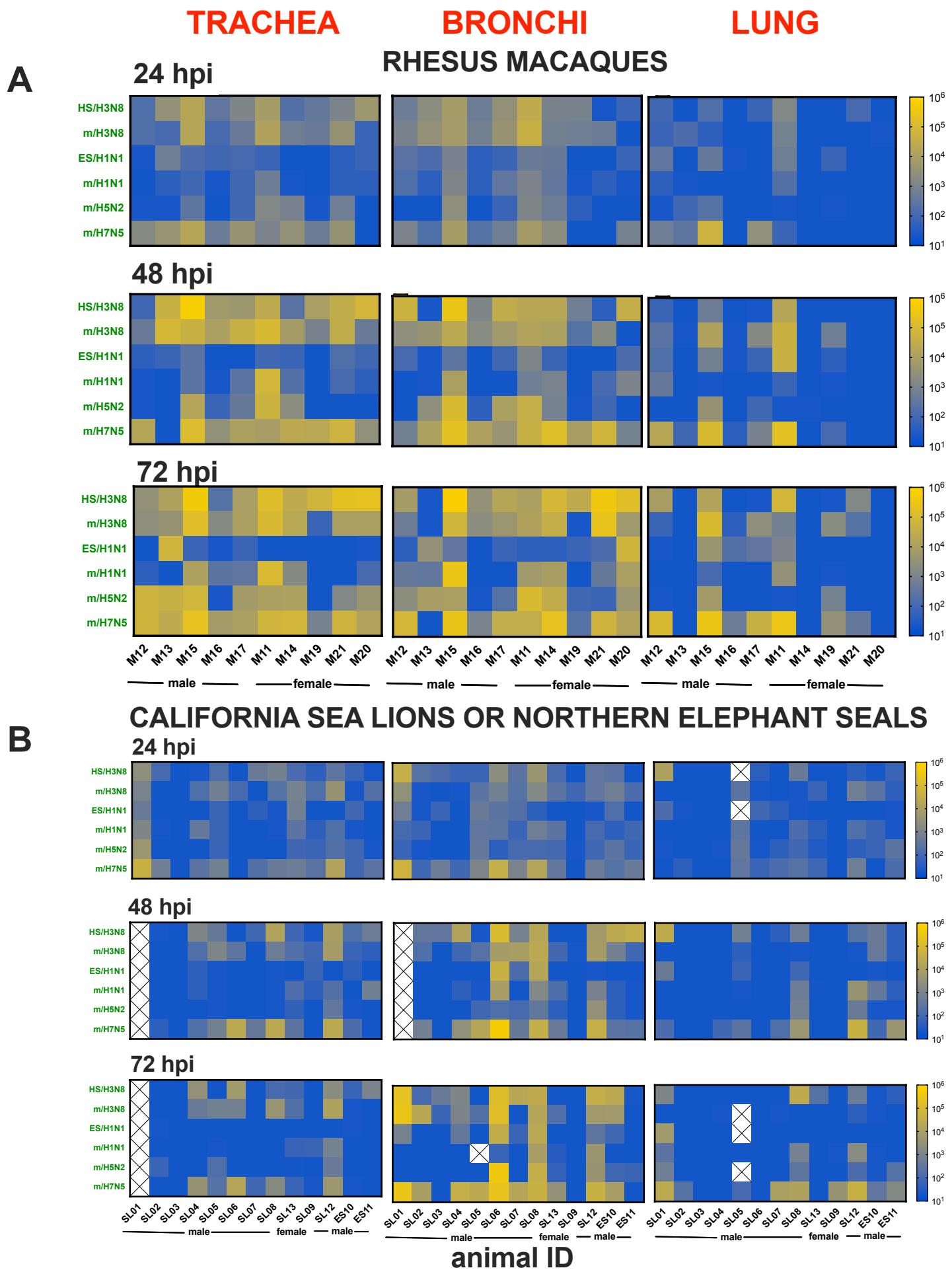
● m/H7N5

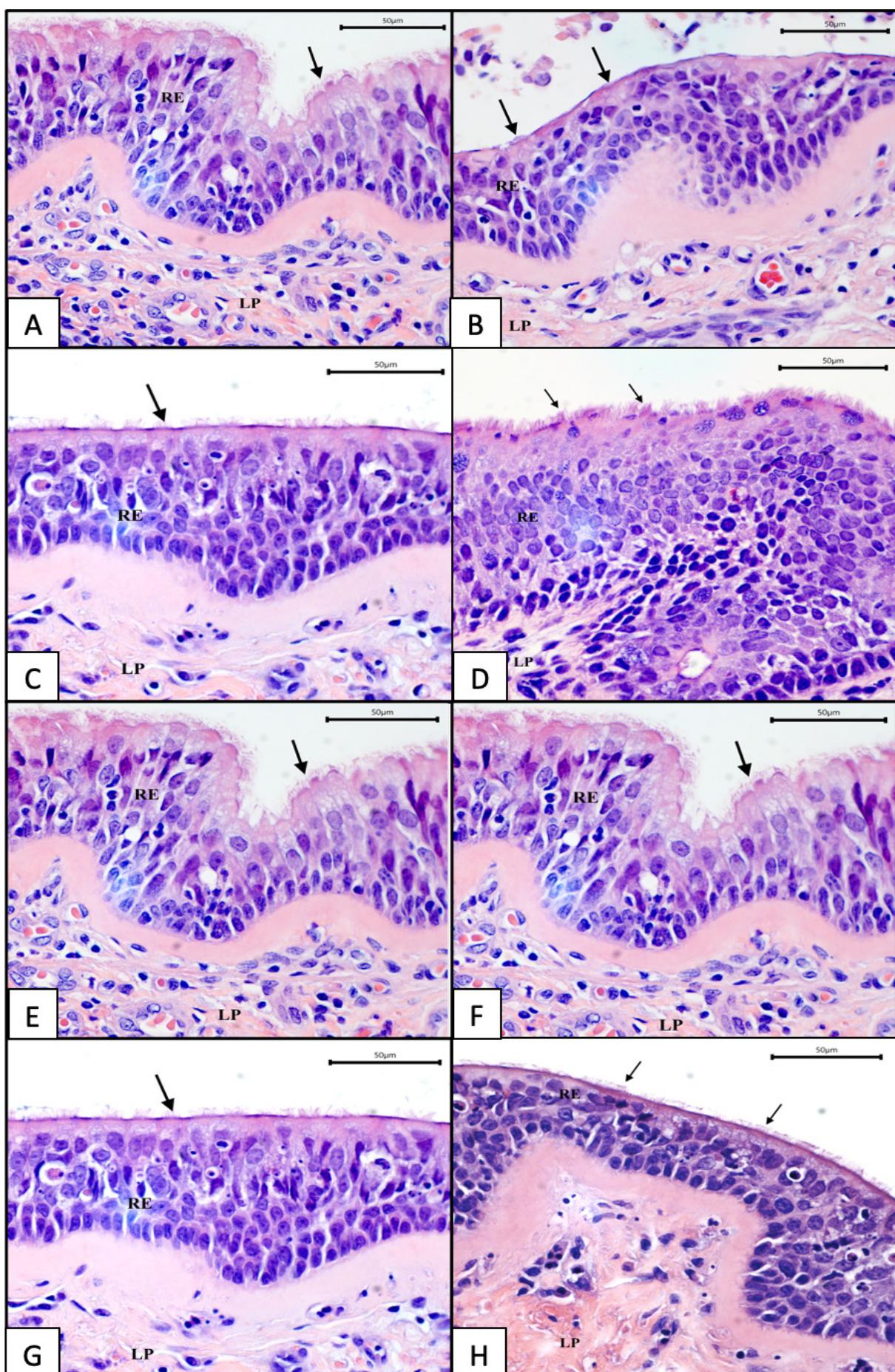

Area Under the Curve (Log₁₀)


IAV subtype

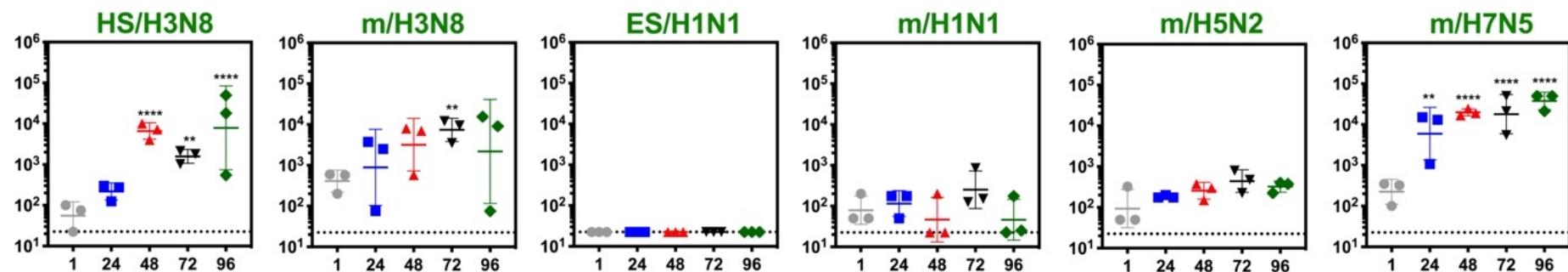
TRACHEA

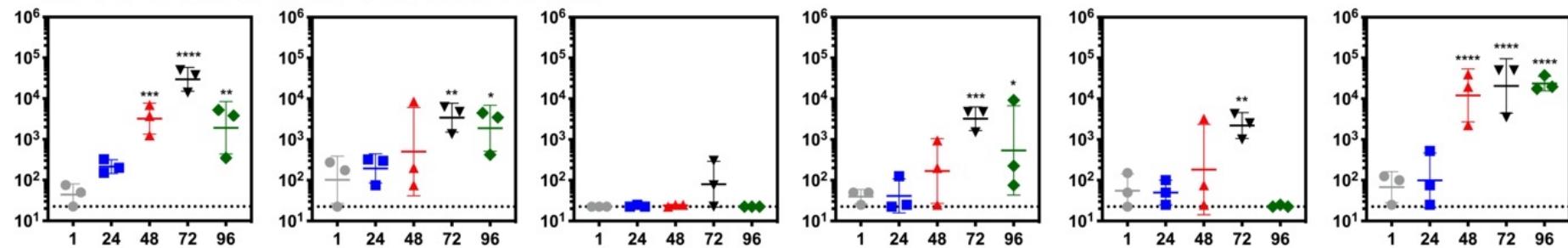

IAV titer (PFU/explant)


BRONCHI

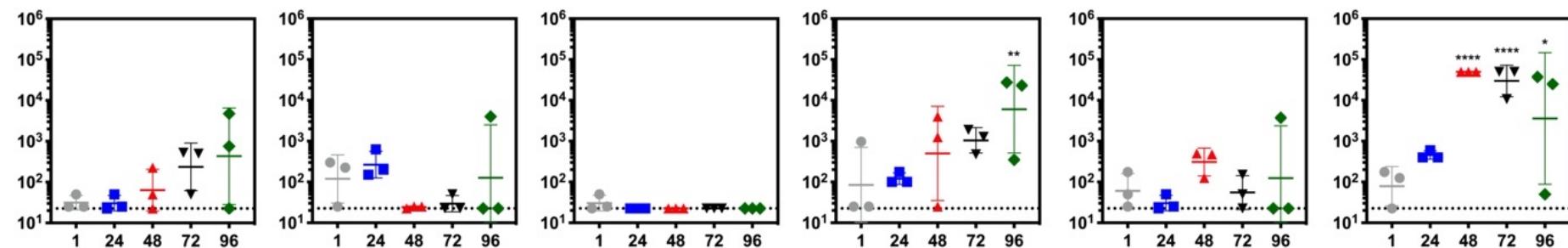


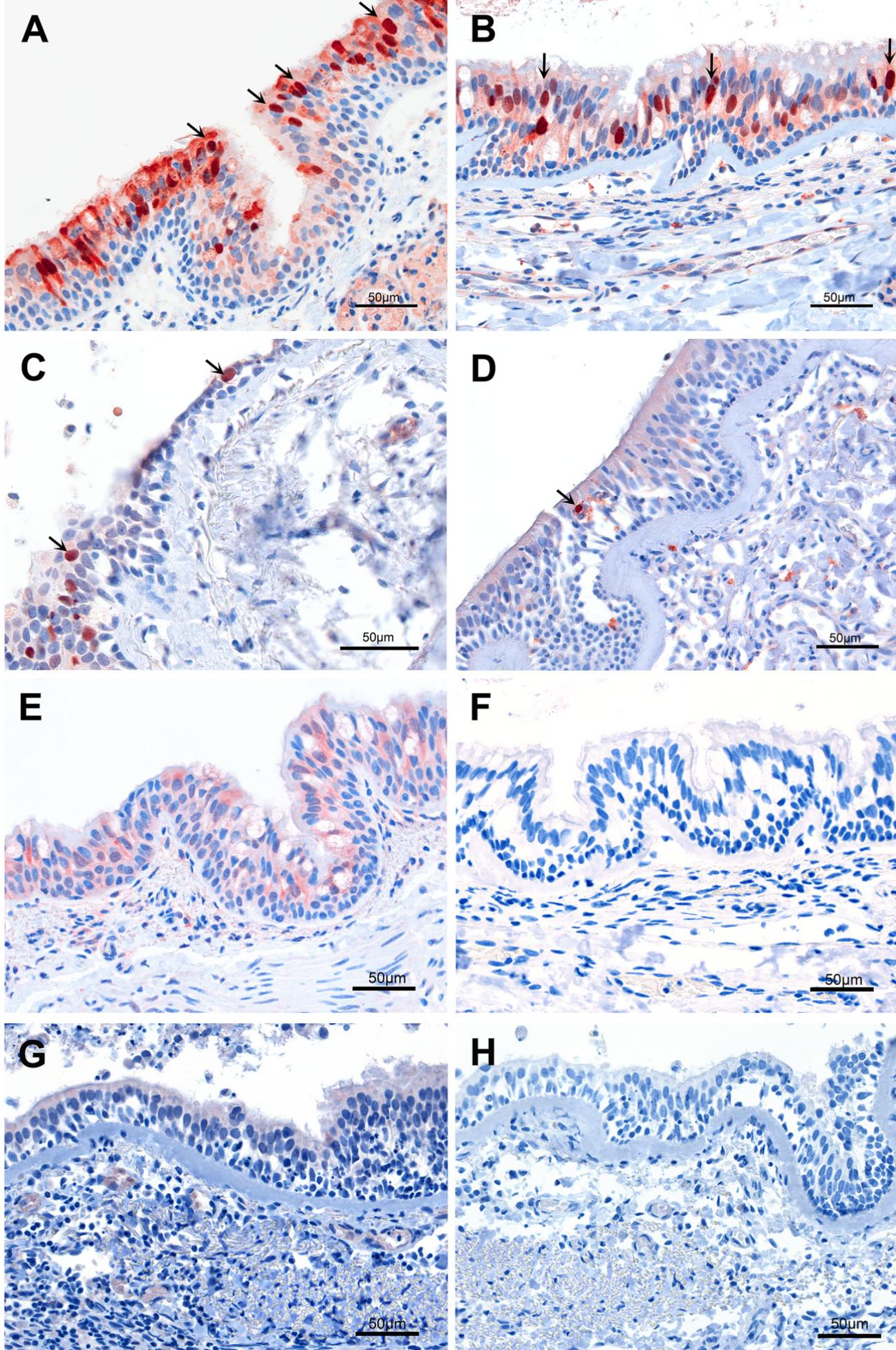
LUNG


hours post inoculation



PRIMARY BRONCHI


IAV titer (PFU/explant)


SECONDARY BRONCHI

LUNG

hours post inoculation

