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Abstract

Mathematical models are routinely calibrated to experimental data, with goals ranging from
building predictive models to quantifying parameters that cannot be measured. Whether
or not reliable parameter estimates are obtainable from the available data can easily be
overlooked. Such issues of parameter identifiability have important ramifications for both the
predictive power of a model, and the mechanistic insight that can be obtained. Identifiability
analysis is well-established for deterministic, ordinary differential equation (ODE) models,
but there are no commonly-adopted methods for analysing identifiability in stochastic models.
We provide an accessible introduction to identifiability analysis and demonstrate how existing
ideas for analysis of ODE models can be applied to stochastic differential equation (SDE)
models through four practical case studies. To assess structural identifiability,we study
ODEs that describe the statistical moments of the stochastic process using open-source
software tools. Using practically-motivated synthetic data and Markov-chain Monte Carlo
(MCMC) methods, we assess parameter identifiability in the context of available data. Our
analysis shows that SDE models can often extract more information about parameters than

deterministic descriptions. All code used to perform the analysis is available on [Github.
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1 Introduction

Stochastic mathematical models are rapidly becoming an essential tool for interpreting biological
phenomena [1H7]. These models are necessitated, in part, by increasing experimental interest in
capturing finer-scale, time-series observations [8/12] as well as spatial information [13-18] rather
than coarse-scale deterministic trends . As computational inference techniques for
stochastic models have improved [19-23|, a fundamental question that often remains overlooked
is whether or not model parameters can be confidently estimated from the available data.
Drug development, for example, often relies on the quantification of cell growth rates from a
proliferation assay [24]. If a mean-field model is applied to interpret the most
frequently reported observation—cell count data—only the net growth rate is identifiable, not the
proliferation and death rates [2526]. Establishing the identifiability of model parameters is critical
as predictions, and parameter estimates, from a non-identifiable model may be unreliable [27-30],
with further analysis required to quantify prediction uncertainty in non-identifiable models [31-33].
Identifiability should always, therefore, be established before parameter estimation is attempted.
Such identifiability analysis is well-established for deterministic ordinary differential equation
(ODE) models [28,[34-41], but there is a scarcity of methods available for the stochastic models
that are becoming increasingly important.

Stochasticity is fundamental to many processes [2,42-48]. For example, diabetic patients rely
on the rapid interpretation of highly volatile blood glucose measurements to determine insulin
input [49,50]. Data from the COVID-19 pandemic [1] is also volatile (figure 1el),
and inferences of epidemic data must often be drawn from a single, stochastic, time-series.
Finally, for systems at equilibrium in the mean-field, such as ion-channel data, models that
account for system noise are required to establish parameters [51,|52]. Stochastic differential
equation (SDE) models of the Ito form are widely applied in systems biology to describe
stochastic phenomena [53-56]. While many stochastic systems can be simulated exactly using
discrete Markov models, SDE approximations offer a significant computational advantage. In
addition, the use of reflected SDEs [57] can guarantee good agreement with their discrete
counterparts at boundaries [57,58]. SDE models can describe intrinsic noise in, for example,
gene expression [2,/9,23] or a bio-chemical reaction network [59]; extrinsic noise describing
volatility in the environment [48./53,/60}61]; and model approximations and unknown effects in
so-called grey-boxr models [62,/63]. Explicitly modelling this variability in biological systems can
often capture more information about a process than a deterministic model is able to [64H67].
Further, SDE models can account for the correlations inherent to time-series data and account
for noise that might otherwise obscure parameters. Our results demonstrate how to establish
parameter identifiability for SDE models that encode information about the intrinsic noise of the
process [64]. We focus on SDE state-space models that can be formulated through the chemical
Langevin equation (CLE), although our intention is to provide analysis applicable to any SDE
of the Itd form. The use of such formulations have a long and extensive history of use.

A prerequisite for parameter estimation is that model parameters be structurally identifiable
[28,3436,,71-73|. Structural identifiability refers to the question of whether a parameter can be
identified given an infinite amount of noise-free data. A state-space model is said to be structurally

identifiable if distinct values of the parameters imply distinct observed model outputs (or in the
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Figure 1. (a—d) Cell proliferation and death observed in vitro over 36 hours in a proliferation assay .
Each snapshot has a field-of-view of 1440 x 1440 pm and the location of each cell is indicated with a
yellow marker. (e) Data from the early stages of the coronavirus pandemic comprising the observed
number of (7) infected individuals, deaths, and (ii) daily new case count in Australia [69]. (f) Continuous
glucose monitoring data from a single individual over three consecutive days .

case of a stochastic model, distinct observed output distributions ), and vice versa .
Techniques such as differential algebra and transfer function approaches
can establish structural identifiability in ODE models. These approaches are also used to
establish identifiable relationships between parameters —for example, the net growth
rate in a proliferation assay—which can aid model design and model reduction . Many of
these techniques have accessible implementations in symbolic computation packages ,
meaning structural identifiability analysis does not require a detailed understanding of the, often
complex, underlying mathematical analysis .

When experimental data is considered, a more useful question is that of practical identifiability
or estimability ,. That is, can parameters in the model be accurately estimated
given a finite amount of noisy experimental data? This kind of analysis is routinely used in
the field of experimental design to assess the nature of data required to adequately identify
biophysical parameters ,. Practical identifiability is established in conjunction
with an inference technique, such as profile or maximum likelihood or Markov-chain
Monte-Carlo (MCMC) [29[51]. These techniques provide information about the flatness (or
otherwise) of the likelihood function or, in the Bayesian case, the posterior distribution, that
describes knowledge about the parameters after the experimental data is taken into consideration.
For deterministic and simple stochastic models, this information can be obtained directly from
the Fisher information matrix . A model parameter is classified as practically non-identifiable
if it cannot be established uniquely within a reasonable level of confidence . Compared
with structural identifiability, which is a property of the model, practical identifiability is
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more nuanced and additionally dependent upon prior knowledge; the experimental data; and
consequentially, the experiment itself [29,[83]. For example, should the model and data provide
no more information about a parameter than that already established in previous studies, the
parameter may be classified as practically non-identifiable from the data and model in question.
For this reason, we take a Bayesian approach to parameter estimation and encode existing
knowledge about the parameters in a prior distribution. This question of practical identifiability
has not yet been demonstrated for SDE models in systems biology.

Computational inference for stochastic models is a significant challenge [22]. Unlike ap-
proaches to parameter estimation for deterministic models, the likelihood function for a realistic
stochastic model is, generally, intractable |22]. Techniques based on approximations, such as a
linear-noise approximation [93] or approximate Bayesian computation [20}/94-98], are available
for SDEs but are, naturally, approximations. Pseudo-marginal methods [99,/100], developed
relatively recently, are computationally costly, but provide an unbiased estimate of the true
likelihood function for partially observed time-series described by non-linear stochastic models.
In this review, we utilise a pseudo-marginal MCMC approach, where we estimate the likelihood
with a particle filter, which we refer to as particle MCMC [101,102|. There are many excellent
reviews of inference for stochastic models in systems biology [20122,{102,103], so we do not focus
on the details our out implementation here. Despite the established importance of identifiability,
it is all too common in parts of the inference literature to draw the standard assumption that
the model parameters are identifiable: we note that all the aforementioned review articles make
no mention of identifiability. The computational cost of inference for stochastic models, in itself,
motivates us to consider identifiability. For example, identifiability can guide model selection: if
both a deterministic and stochastic description of a process are practically non-identifiable, the
cheaper deterministic model may, in some cases, be adequate for parameter estimation. Where
structural non-identifiability is detected, practical non-identifiability necessarily follows and does
not need to be established separately.

The focus of this review is to provide an accessible guide to establishing identifiability in SDE
models in biology. To do this, we analyse identifiability in SDE descriptions of four case study
models, shown in The simplest model we consider is a birth-death process (figure 2a))
that is routinely used to describe cell proliferation and death in a range of in vitro and in vivo
biological systems, such as that shown in We demonstrate that, from cell count-data,
the cell proliferation and death rates are structurally non-identifiable for a routinely employed
ODE model, but can be identified for an SDE model. Next, we consider two multi-state models
where only partial observations of the system are available. First, a two-pool model
that can describe, for example, the decay of human cholesterol whilst it transfers between two
organs [35,104]. We assume that data from the two-pool model comprises several time-series
observations of the substance concentration in a single pool. Secondly, an epidemic model
[105-107] describes individuals infected due to interactions between susceptible and
infectious individuals. We model a testing procedure such that unknown proportions of the
number of infectious and recovered individuals are observed, and inferences are drawn from a

single time-series. The last model we consider is a non-linear SDE model for insulin regulation

by [-cells (figure 2d)) [108,|109]. This type of model can describe the volatility associated
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Figure 2. We demonstrate identifiability in an SDE CLE description of four models: (a) a birth-death
process; (b) a two-pool model; (¢) an epidemic model; and (d) a S-insulin-glucose circuit. The coloured
boxes indicate the observed quantity, which is coupled to a noisy observation process.

with data from a continuous glucose monitoring device [70]. The equivalent ODE
description of the S-insulin-glucose circuit is not structurally or practically identifiable [110], and
we demonstrate how the analysis for the ODE description can inform a parameter transformation
to aid identifiability analysis for the SDE model.

We demonstrate two main approaches to assess identifiability in SDE models. First, we assess
structural identifiability through a surrogate model, taken to be a system of ODEs that describe
the time-evolution of the statistical moments of the SDE [111-115]. This allows us to apply the
established open-source structural identifiability software package DAISY (written for the freeware
REDUCE software) to the SDE models through the moment equations.We repeat this analysis in
the more recent open-source software package GenSSI2 [116.|117], written for MATLAB, which can
be more efficient for non-linear systems. We interpret these results as a proxy for identifiability
of the SDE model itself. While this approach is not always conclusive, it can provide a rapid
preliminary screening tool and allows direct comparison of identifiability for an SDE model,
which contains information about the mean, variance and higher moments; to identifiability for
a corresponding ODE model that is typically assumed to describe an approximation of the mean.
We only apply this approach where an exact system of moment equations can be derived, which
occurs when the reaction rates are polynomial. For more complex stochastic models containing
terms such as Hill functions, as found in the S-insulin-glucose circuit model, an exact system of
moment equations cannot be derived, we do not apply the moment dynamics approach in this
case. We assess practical identifiability for all models using MCMC [29}51], first demonstrating
how practical identifiability can be cheaply established from a naive proposal kernel. To compute
credible intervals for each parameter, and visualise potential correlations between parameters,
we produce results using a tuned proposal kernel where we can be more certain of convergence.

The outline of this review is as follows. In we establish the types of SDE models
and observation processes that we consider, and then outline the techniques used to generate
synthetic data. Following this, in we summarise moment closure techniques for SDEs
and describe how we implement the software tools DAISY and GenSSI to assess for structural
identifiability. Next, in we provide a brief overview of our implementation of the
particle MCMC algorithm. Full details of particle MCMC for SDE models can be found in the
existing literature [102},/103] and as supporting material. In , we use these tools to
assess identifiability using an SDE description of four models. In and 5] we discuss

our results and provide an outlook on the future of identifiability for stochastic models in biology.
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To aid in the accessibility of the techniques we review, we provide our MCMC code in the form

of a moduleE]for the open-source, high-performance Julia programming language [118].

2 Mathematical techniques

In this section, we outline the mathematical and statistical techniques we use to perform

identifiability analysis. Full details of all algorithms used are provided as supporting material.

2.1 Stochastic models in biology

We consider It6 SDE state space models of the form

dXt = Oé(Xt,t,e) dt—{—o’(Xt,t,B) th, (1)
Y.~ g(Yi|Xy, 15 6). (2)

Here, the state is described by X¢ = (X1, Xoy, ..., Xny¢) € RN, W, €R¥ is a ()-dimensional
Wiener process with independent components; a(-) maps to an N-dimensional vector; and o (-)
maps to an N x @ matrix. The observables, Y; = (Y14, Yay,...,Yae) € RM  are connected
to the state variables according to an observation process with probability density function

9(Y¢|X4,t;0). We consider several forms of observation function, including partial observations
2

Sp- In

of the state with both additive and multiplicative Gaussian noise with unknown variance o

lequations (1) and (2) 0 is a vector of unknown parameters to be determined through inference.

In this review, all variables and parameters are dimensionless.

The focus of this review is on It6 SDE models that are formulated through the CLE description
of a system of bio-chemical reactions [59,/119,(120]. Therefore, additional information about
rate parameters is encoded in the noise of the process. The first three models we consider
(figure 2a—c)) can be expressed directly as a network of reactions. As the S-insulin-glucose circuit
model involves state variables modelled as concentrations, not individual counts,
we derive a stochastic description from the CLE but scale the noise term in proportion to the
concentration of each species.

In summary, a bio-chemical reaction network comprises N species, X1, X2, ..., Xy, that
interact through @ reactions [121-123]. The population of each species is given by X; =
(X146, X2ty , XNt) € RY. By the law of mass action [59,124], each reaction occurs with a rate
described by a propensity function, ax(Xy,t; @), which is equal to the product of the reactants
and the rate constant. The net effect of the kth reaction is described by the stoichiometry vy
such that, should reaction k occur in [¢,t + dt),

Xirdr = Xy + vg. (3)

For bio-chemical reaction networks without an explicit time-dependent input, the propensity
functions will be independent of £ and the system can be simulated exactly using an event-driven
stochastic simulation algorithm (SSA) [5,/124-126]. The principle behind an exact SSA is that

!Code available on Github at https://github.com/ap-browning/SDE-Identifiability
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Figure 3. (a—d) 100 example realisations of each model, produced using: (a—c) the SSA; and, (d) the
SDE. (e—h) Synthetic data used for practical identifiability analysis. Synthetic data comprises noisy
observations of the (e) full and (f—h) partial state. In (e, f,h), experimental replicates used simultaneously
for parameterisation are shown semi-transparent, with the first replicate fully opaque. For the epidemic
model, both short-time (opaque) and long-time (semi-transparent) data are considered separately. In both
cases of the epidemic model, an unknown proportion of the number of infected individuals (green), and
the recovered individuals (black), is observed. In (d,h), the § cell concentration, 8; (and the measured
concentration Y; ;) is shown on the right axis.

reactions can be modelled by an inhomogeneous Poisson process. The time interval between

reactions, At, is exponentially distributed such that

Q
At ~ Exp (Z ap(Xe; 9)) . (4)

k=1

A single reaction occurs at each time-step; the kth reaction occurs with probability proportional to
ar(Xy; 0). A typical implementation of the SSA first samples a time-step using then
samples the next event to occur; and finally updates the state. Full details of our implementation
of an SSA are given as supporting material, and the reader is directed to for a comprehensive
review of simulation algorithms for bio-chemical reaction networks. We generate synthetic data
for the first three models, for which the propensity functions are independent of ¢, using the
SSA. In we show 100 realisations of the SSA for the birth-death process, two-pool
model and epidemic model, respectively.

When the population of each species is large and reactions sufficiently frequent, the dynamics
of a bio-chemical reaction network can be approximated using the CLE ,,. Such an
approximation is widely applied in systems biology ,, and it is often necessary as the
SSA quickly becomes computationally expensive as the populations become large and reactions
are frequent enough . The CLE is an It6 SDE of the form

Q Q
dX; = vear(Xe, 60) dt + > vey/ap(Xs, t;0)dW. (5)
k=1 k=1

a(Xy,t;0) o (X¢,t;,0)dW,
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Here Wy = (Wy 4, Way, ... ,Wg4) is a Q-dimensional Wiener process with independent com-
ponents. In this study, we derive an SDE description for each model using the CLE, and we
calibrate this SDE to the synthetic data to approximate the parameters in each model. For the
first three models, where data is generated using the SSA, not the SDE, this means that identifi-
ability analysis is conducted in such a way that model misspecification could potentially arise.
This pragmatically mirrors experimental data, where any model (including an ODE and SDE
description) is an approximation. The forward simulation for each SDE is approximated using
the Euler-Maruyama algorithm [130], where we apply reflected SDEs to ensure positivity [57].

Full details of the numerical algorithm are given as supporting material.

2.2 Moment dynamics

To enable the application of established methods for structural identifiability analysis to SDE
models, we formulate a system of ODEs that describe the statistical moments of the random
variable X; € RY. We denote m;,;, i, (t) as a raw moment of Xy, such that [112-{114}120]

N .
j=1

where (-) indicates the expectation taken with respect to the probability measure of the random
variable X;. Here, J = Zf\i 1% is the order of the moment. For example, the first order
moments correspond to the mean of each dimension of X;, the second order moments relate to
the variances and covariances, and so forth.

We apply the software packages DAISY [38] and GenSSI2 |117] to establish structural identifi-
ability of the resultant system of moment equations. The software package takes a system of
ODEs describing the state equations—in our case, the moment equations—in addition to an
explicit algebraic relationship between the observables and the state. We, therefore, provide the

moments of the observables, Y, in the noise-free limit, which we denote

Miyiy...ipe(£) = lim <H Y“> : (7)

In many cases, the observation distribution, g(Y¢|X¢,¢;0), will depend upon the unknown
parameters, 0, if, for example, an unknown proportion of the state is observed. This is captured
in the structural identifiability analysis as the equations derived for the observed moments, n,
may depend on 8. We provide well commented input and output obtained using DAISY on
Github as supporting material.

An expression for the time derivative of each moment can be found using It6’s lemma
(supplementary material). When each component of ¢ is an analytic function, which occurs

when all the propensity functions in the bio-chemical reaction network are also analytic functions,
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we obtain |131]

dmiiy...i (75) i

1
+ 5T ol (X,,t;0)H IIX” o(Xy,t;0) >,

where H(-) denotes the N x N Hessian matrix of its argument and V = (%, %, cey %).
In the case that N = 1, [equation (8)|reduces to
dmz(t)

: o0 (X, t;0
_Gm*m&mm+m—nmﬁa(“’»,

dt 2

where a and ¢ are now scalar functions.

When each component of & and o” ¢ are polynomials in Xy, the expectation in
can be carried through to replace powers of X; with appropriate moments. This, in general,
provides an infinite system ODEs that ezactly describe the time evolution of the moments. In
practice, we consider a finite system of moments, up to and including moments of order J. We

express this now finite system of ODEs as

dng(t)

rramnt fes(me;(t), ms (1)), (9)

where m< ;(t) is a vector containing all the moments up to, and including, order J; and m- (t)
is a vector containing all moments of order J + 1 and above. In the case that f<;(-) depends
only on moments up to order J, the system is said to be closed at order J. That is, the infinite
system of equations can be truncated at order J and solved directly to obtain an exact solution
for the moments. This is the case if a and o7 are linear in Xy, which occurs in SDEs derived
from the CLE if each propensity is linear in X, as is the case for the first two models we consider
(figure 2a,b|).

For more complicated models, including the epidemic model , the system will not,
in general, be closed. We must, therefore, apply a moment closure approximation to express
moments of order higher than J in terms of lower order moments [45]. Moment closures typically
make an a priori assumption about the distribution of the random variable X;. For example,
assuming components of X; are independent or normally distributed is a common approach. In
this review, we consider three common moment closures: (1) a mean-field closure [113]; (2) a
pairwise closure [113]; and (3) a Gaussian closure |112].

The mean-field closure we consider makes the approximation

N
Miig..in ~ <HX;,Jt> : (10)
Jj=1

This closure is derived from the assumption that components of X, are weakly correlated [113]

and is also referred to as the covariance closure [132]. In the case a closure is drawn at J = 1,
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the mean-field closure often corresponds to an ODE description of the process. For our analysis
of the epidemic model, we find that the mean-field closure behaves poorly, suggesting that an
assumption that the components of X; are independent may not be appropriate (Supplementary
Material, Figure S1).

While the mean-field closure is commonly drawn at order J = 1, it is more common for
the pair-approximation closure to be applied for second and higher order closures [113]. The

pair-approximation closure assumes that a third order moment can be expressed as

<Xa,tXb,t> (Xb,tXc,t>

<Xa,tXb,tXc,t> ~ (Xb,t> )

(Xpe) # 0. (11)

The Gaussian closure approximates higher order moments to match those of the normal
distribution, and gives a closure in terms of the mean and covariances. Higher order moments

can be approximated with |112,/133]

0 if J =1 i is odd,

7 12
>s H(j,k)els Cov(X;Xy+), otherwise. (12)

Miyiy..in (1) ~ {

Here, My iy iy (1) = <H§V:1(Xj,t - <Xj7t>)ij> denotes a central moment; Cov(X;;X}+) denotes
the covariance between X;; and Xj;; and Iy are the sets formed by partitioning the set
{1,1,...,1,... ,N,N,... ,N} into unordered pairs, where s is the number of sets. The raw
— —_
i1 iN
moments, M;,i,..iy (f) can then be solved from the expressions for the central moments obtained
from For a practical example of the Gaussian closure, see |112].

Other choices of moment closure are routinely used in systems biology, such as those based
upon a multivariate lognormal distribution [112] or a derivative matching scheme [134]. However,
more complex closures add further complexity to the moment equations, which is a significant
computational disadvantage for automated assessment of structural identifiability in software
packages such as DAISY and GenSSI2. Furthermore, an approximate system of moment equations
(which must then also be closed) could be obtained by applying a series expansion approximation,
or an approximation similar to the mean-field closure, to systems containing non-polynomial
analytic functions; this is the case for the fourth model we consider . We do not

consider the moment dynamics approach for non-polynomial models in this review.

2.3 Inference with MCMC

We take a Bayesian approach to parameter estimation to update our knowledge about the

parameters, 6, from a set of observations, D, using the likelihood function, £, such that [135]
p(8|D) o L(D|6)p(0). (13)

Here, p(0) is the prior distribution, and represents our knowledge of @ before consideration
of the observations D. The prior distribution may encode information from, for example,
previous experiments, established knowledge, or physical restrictions on the parameters. In

the context of practical identifiability, our goal is to significantly increase our understanding
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of @ from our prior knowledge. We specify p(0) to be a truncated uniform distribution: all
parameters within a specified region of realistic parameter values (the support) are considered
equally likely [29]. An advantage of a uniform prior in the context of identifiability is that
the posterior corresponds to the truncated likelihood function, and, therefore, high density
regions of the posterior correspond to regions of high likelihood. Further, should an improper,
unbounded uniform prior be considered, the posterior will be directly proportional to the
likelihood. Thus, our methodology can also be applied to assess parameter identifiability using a
purely likelihood-based approach.

We use an MCMC technique, based on the Metropolis-Hastings algorithm, to sample from
the posterior distribution [135-138|. The principle behind MCMC in Bayesian inference is to
construct a Markov chain, {6;}>0, with a stationary distribution equal to p(6|D). We make a
standard choice to initiate the chain from a prior sample, 8y ~ p(0). At each iteration of the
algorithm, a new state is proposed, 8* ~ q(0*|0,,), where ¢ is termed the proposal kernel. The

proposal is accepted, 0,41 < 0%, with probability

(14)

0.0, = i 1, 20O IOICDI0") ),

" q(6*]01)p(0) L(D|6rn)

else the proposal is rejected, 6,11 < 0,,. Full details of our implementation are provided as
supporting material. In this review, we use a multivariate normal proposal so that ¢(6,,|6*) =
q(60*10,,). An interpretation of the Metropolis choice of acceptance probability,
where the proposal is normal and, therefore, symmetric, is that proposals that increase the
posterior density are always accepted, whereas proposals that decrease the posterior density are
accepted with some reduced probability [29].

We refer to the first set of MCMC chains for each problem as pilot chains |[139]. The proposal
distribution for each pilot chain is set to be a multivariate normal distribution with independent
components and variances equal to one-tenth the corresponding prior variance for each parameter,
a typical choice. We always produce four pilot chains, each of 10,000 iterations, which we find to
be sufficient to indicate identifiability for our models. These pilot chains are then used to tune
the MCMC proposal kernel [140]. We then produce four tuned chains, which can be reliably
used to estimate credible intervals and other features of the posterior distribution. The proposal
distribution for each tuned chain is chosen to be multivariate normal, with covariance given

by [139)] )
2.382 ..
38 &

== dim ()

(15)

Here, dim(0) is the number of unknown parameters, and 3 is the covariance matrix for the
pooled samples from the four pilot chains (a total of 28,000 samples after 3,000 samples are
discarded as burn-in from each pilot chain). To assess convergence, we calculate the commonly
used R [141] and neg (effective sample size) [135] diagnostics. In summary, R measures the
ratio of between-chain and within-chain variance; and n.g measures the effective number of
independent samples drawn from the posterior. To draw reliable inferences, Gelman et al. [135]
suggest ensuring that R < 1.1. Full details of these convergence statistics are available in [135].

The primary challenge with performing inference for SDE models, with time-series data, is
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computing the likelihood function. In this review, we consider synthetic data from F independent

experiments, each with Ng time-series observations. The data are denoted

D = {{tni, Yo 0B 11, (16)
and correspond to the likelihood function
E Ng
—1,
D|0 H Hp obs obs"" 7Y(7)lbs Z)' (17)
i=1n=1

In most cases, the likelihood for noisy time-series data modelled by an SDE will be intractable
[102]. This contrasts with data modelled by a deterministic model, which are typically assumed
to be independent and normally distributed about the model output [29]. Likelihood free
methods, such as ABC [20,97] and pseudo-marginal approaches [100], are routinely used in
systems biology to calibrate complex stochastic models to experimental data by approximating
In this study, we apply a pseudo-marginal approach based on a bootstrap particle
filter to approximate the likelihood and calibrate each SDE model to synthetic experimental
data [102]. In summary, the bootstrap particle filter approximates by

E Ng

coo)=1111 3 Z YO XT 1 0). (18)

zlnl

Here, the observation probability density, g (equation (2))), is averaged over R samples from the
SDE, X |X2 " to approximate the likelihood. The bootstrap particle filter then resamples from
the set of Welghted samples, {(g (YZbZS|XZ ), X;:) it ., at each time-step to form the starting
locations for each SDE sample to sample forward to t,41. This process is repeated for each
independent experiment, and the result is an unbiased Monte Carlo estimate of the likelihood
function, ﬁ(D|0), that replaces £ in the Metropolis acceptance probability . Full
details of the particle MCMC algorithm, including an implementation for an ODE model used
in one case study, are provided as supporting material, and for further information the reader is

directed to [102}/103].

3 Case studies

Using the moment equations and MCMC, we provide a practical guide for assessing parameter
identifiability in SDE CLE models through four case studies. We generate synthetic data for
each model using the SSA when the propensity functions are time-independent (the birth-death
process, two-pool model and epidemic model), and the corresponding CLE when the propensity
functions are time-dependent (the S-insulin-glucose circuit). In practice, we would first assess
practical identifiability using the experimental data available. However, working with synthetic
data provides the means to evaluate the effect of different experiment designs, and observation
protocols, on practical identifiability. Our focus is on data comprising partial observations of the

process that realistically captures potential experimental data.
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3.1 Birth-death process

The first model we consider is a birth-death process . The birth-death processes can
describe, for example, the growth of a well-mixed cell population where individuals proliferate
and die according to rates €1 and 65, respectively. We consider practical identifiability for
synthetic data comprising noisy measurements of the cell count at 10 equally spaced times

in 10 identically prepared experiments. Such data are typical for in wvitro cell proliferation

experiments |24,/142|, an example of which is shown in [figure 1a—d

3.1.1 Model formulation and moment equations

The birth-death process can be expressed as the bio-chemical reaction network

x%ox, x%y,

~— ~—
birth death

with stoichiometries 1 = 1 and v» = —1; and propensities a1 (X;) = 61 X; and az(X;) = 02X;.
Here, we denote X; as the number of individuals in the population. The observed number of

individuals, Y%, is described by the noise model
Yt = thta gt ~ N(170-§I‘I‘)’ (19)

Here, we consider a noise process that scales with the total population, that is, multiplicative
Gaussian noise. We show 100 realisations of the SSA for the birth-death process in
and the synthetic data used for practical identifiability analysis in The data are
generated using the initial condition Xg = 50 and target parameter values 6; = 0.2, 6, = 0.1
and o¢r = 0.05. Here, ooy < 1, which ensures that Y; remains positive.

The CLE for the birth-death process is

dXt = (91 — QQ)Xt dt + (‘91 + 92)Xt tha (20)

and the first and second order moment equations are

d
% = (01 — 02)my,

et (21)
Tf = 2(61 — 62)ma + (61 + 62)m.

The moment equations for the SDE description of the birth-death model above are identical to
the moment equations for the discrete Markov model that we simulate using the SSA [143]. The
moments of the observable (in the noise-free limit) are given to second order by n; = m; and
ng = ma. As a(-) and o2(-) are linear in X;, the moment equations of the birth-death process

are closed at every order and so are exact. Further, we note that the common
mean-field model for the birth-death process,

dX

o =6 02)X, (22)
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corresponds to the first moment, and describes the average behaviour of X;. The solution to

is o
X(t) = X(0)exp {(61 — 62)t}. (23)

Here, the population, X (t), undergoes exponential growth with a net-growth rate of 6; — 5.
Therefore, intuitively, it is not possible to identify 6; and 6, if only average growth behaviour is
observed [25].

3.1.2 Structural identifiability

We first assess structural identifiability of the moment equations in DAISY [38]. If only the
first moment, nq, is observed, the system is structurally non-identifiable, meaning the model
parameters cannot be uniquely estimated with any amount of data. However, the system becomes
structurally identifiable if ng is also observed. As the moment equations are closed at every order,
and therefore exact, this analysis indicates that the ODE model corresponding to
the first moment equation) is structurally non-identifiable, while the SDE model is structurally
identifiable.

These structural identifiability results can be intuitively understood through re-
parameterisation [40]. The first moment equation (or the ODE model) can be re-parameterised
with 1 = 61 — 65 where 6; is the sole parameter in the model. Therefore, for a fixed 0~1, all values
on the line ; = 9~1 + 65 produce indistinguishable behaviour in the first moment, my, and hence
in the observation, n1. On the other hand, when re-parameterised the second moment equation
contains a second, linearly independent, parameter 0y = 61 + 05. For the birth-death process, the
second moment provides enough additional information to uniquely identify both parameters
01 and 05, provided enough data is available. Thus, the birth-death process is structurally

identifiable from the first two moments.

3.1.3 Practical identifiability

We assess practical identifiability of the parameter vector @ = (01,02, 0¢ry) for the ODE and
SDE models using MCMC. We place independent uniform priors on each parameter so that
p(61) = p(f2) =U(0,0.6) and p(cer) = U(0,0.3). If prior knowledge about the population (i.e.,
the cell line) is available, perhaps based upon previously conducted experiments, this can be
incorporated into the analysis through an informative prior. For example, upper bounds that
define reasonable values for biological parameters are routinely applied in this context [90].

In we show MCMC results for the birth-death process using the ODE model.
Based on the structural identifiability results, we expect the likelihood (and for a uniform prior,
the posterior density) to be constant along the identifiable parameter combination 6 = 61 — 6o,
and we see this in These results also suggest that, should one of 6; or 62 be known
(for example, if the cells are treated with an anti-proliferative drug that enforces 6, = 0 [144])
the other be identifiable. However, lower and upper bounds for 61 and 65, respectively, are
able to be established as a direct consequence of the prior assumption that all parameters are
strictly positive. Examination of univariate credible intervals, shown in [table 1} reveals that

each parameter cannot individually be identified within 3—4 orders of magnitude, a hallmark
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of non-identifiability [29]. We note that oy is practically identifiable 95% Crl:
(0.1448,0.1907)) from the ODE model, however it will always be overestimated as the observation
model for the ODE model must also account for the intrinsic noise of the process.

We repeat the analysis for the SDE model, results of which are shown in For the
prior support chosen, both #; and 6, are practically identifiable, as seen in Further,
95% credible intervals identify each parameter within a single order of magnitude (table 1J).
While structural identifiability analysis revealed that the SDE model is identifiable in the limit
of infinite, noise-free data, it is not necessarily so for data with a realistic signal-to-noise ratio,
characterised by the noise model parameter oey. In our case, if prior knowledge provided an
upper bound for 61 and 0, at, for example, 0.3, conclusions of practical identifiability may be
analogous to those of the ODE model. We see this in where the upper bounds of the
credible intervals for 6, and 6> extend beyond 0.3. This is also evident from both the bivariate
scatter plot and MCMC trace plots , where posterior samples above 0.3
are regularly drawn for both #; and 6. As the SDE explicitly accounts for intrinsic noise, ger is

identifiable with estimates close to the true value, in contrast to results from the ODE model.
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Figure 4. MCMC results for (a—i) an ODE and (j—r) an SDE description of the birth-death process. (a,c,f) and (j,l,0) show trace plots for the ODE and SDE
models, respectively. Kernel density estimates of the posterior for each parameter ((b,e,i) and (k,n,r)), and bivariate scatter plots ((d,g,h) and (m,p,q)), are
produced by thinning the MCMC chains by using every 100th sample from four independent MCMC chains, after burn-in.
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ODE SDE
True | 95%Cil | R | Se 95%Crl | R | Se
6; | 02 [(0.1276,0.5891) | 1.00056 | 2292 | (0.1609,0.4059) | 1.01068 | 104
6, | 0.1 | (0.0130,0.4744) | 1.00056 | 2300 | (0.0477,0.3016) | 1.01107 | 107
err | 0.05 | (0.1448,0.1907) | 1.00242 | 2254 | (0.0270,0.0667) | 1.00079 | 364

Table 1. 95% credible intervals, and diagnostics, for the parameter estimates for the birth-death process.
Credible intervals are approximated using the MCMC quantiles after burn-in.

3.2 Two-pool model

Next, we consider partial observations of a process governed by a two-pool model, describing
the decay of a substance that is able to transfer between two pools . Identifiability of
a two-pool model was first examined in the fundamental study of Bellman and Astrém [34] as
they introduced the concept of structural identifiability. The model can represent, for example,
human cholesterol distribution dispersed through two-pools (for example, two organs), where
measurements are taken from a tracer in the first pool [104]. Bellman [34] and later Cobelli |35]
show that, for an ODE model, the pool transfer and decay rates are not structurally identifiable.
We consider practical identifiability for synthetic data comprising noisy measurements of the
first pool at 10 equally spaced time points in five identically prepared experiments. Although
measurements of the second pool are not taken, we assume, for demonstration purposes, that
the initial concentration in each pool is zero before a known amount is introduced to the first
pool, thus the full initial condition is known. In practice, the initial condition may also depend

on a set of unknown parameters, and we focus on this with the epidemic model.

3.2.1 Model formulation and moment equations

The two-pool model can be expressed as the bio-chemical reaction network
0
X80, x %0, X1§X2,
4

with stoichiometries v1 = (—1,0)7, vo = (0,—-1)T, v3 = (=1,1)T and vy = (1,-1)T; and
propensities a1(X¢) = 01X1, a2(Xy) = 02X9, a3(Xy) = 05X1 and ag(Xy) = 04X5. Here, we
denote X; = (X17t7X27t)T as the concentration of cholesterol in the first and second pools,

respectively. The observed concentration, Y;, is described by the noise model
1/1‘/ — Xl,t + gtv gt ~ N(Ov Ue2rr)a (24)

in which we consider that the data are subject to measurement error in the form of additive
Gaussian noise [9}/145,/146]. We show 100 realisations of the SSA for the two-pool model in

and the synthetic data used for practical identifiability analysis in The data

are generated using the initial condition X¢ = (100,0)” and target parameter values 61 = 0.1,

0y = 0.2, 05 = 0.2, 4 = 0.5 and 0ey = 2. Here, we note that ooy < X; (figure 3¢f), which
ensures Y; > 0.
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The CLE for the two-pool model is

X9t — X — X — X 04X
aX, — (04 94 — (61 + 03) 1,t> dt+< VO X1 0 V0 X1 /04 2’t>th,

03 X1t — (02 + 04) Xo 4 0 —/0:2X2;  \/0sX1 —\/0sX2,
(25)
and the moment equations are given to second order by
dm
dtlo = 04mo1 — (01 + 03)mo,
dm
dt01 = O3m1g — (02 + 04)mo1,
dmag

el 04(mo1 + 2ma1) + (61 + 63)(m1o — 2mao), (26)

dm,

dt02 = 03(myo + 2ma1) + (02 + 04) (mo1 — 2me2),
dm

dtll = —(01 + 62)m11 — O4(mo1 — mo2 + m11)

— 03(m1o + mi1 — map).

The moments of the observed cholesterol concentration are given in the noise-free limit by
n1 = mio and ng = may. As with the birth-death process, all elements of a(-) and o (-)o(-)T

are linear in Xy, so the moment equations are closed at every order and, therefore, exact.

3.2.2 Structural identifiability

The two-pool model provides an archetypical example of structural non-identifiability in an
ODE model [34}35]. Unless a restriction is placed on one of the parameters (for example, if
decay of the substance can only occur from the first pool so 3 = 0), the model parameters are
structurally non-identifiable: many parameter combinations give identical behaviour in the ODE
model. Therefore, the model parameters cannot be uniquely determined from any amount of
noise-free experimental data if observations are made from only the first pool.

We assess structural identifiability of an SDE description of the two-pool SDE model using
DAISY with the system of moment equations up to second order . While the ODE
model is structurally non-identifiable, the SDE model is structurally identifiable. Therefore, in
the limit of infinite, noise-free data, the model parameters can be uniquely determined from an

SDE description of the two-pool model.

3.2.3 Practical identifiability

To assess practical identifiability of the two-pool model, we apply MCMC to infer 8 =
(01,02,03,04, 0¢r;). Initially, independent uniform priors are chosen such that p(6,) = 4(0,0.5),
p(62) =U(0,2), p(03) =U(0,1), p(As) = U(0,0.5), and p(oerr) = U(0,10). The support of each
prior is chosen to cover a range of magnitudes over the target parameter values. Results from

four independent pilot chains, each initiated at a random sample from the prior, are shown in

[igure H5a—f| In [figure 5a| we see that the log-likelihood estimate rapidly stabilises, indicating

that the chain has moved to a high-likelihood region of the parameter space. Results for o,

and 05 also rapidly stabilise, indicating that these parameters are practically identifiable [29].
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Figure 5. Pilot MCMC trace plots, and log-likelihood estimates, of four chains for the two pool SDE
model on with (a—f) untransformed parameters; and (¢g-I) transformed parameters. Priors for each
parameter are uniform with support corresponding to the respective axis limits. The target parameters,
used to generate synthetic data, are indicated (black dashed line).

Results for the remaining three kinetic rate parameters in indicate that 6;, 65 and
0, are practically non-identifiable. In particular, chains for #; and 0 spend a non-negligible
time near zero, indicating that the model may be indistinguishable (using the available data)
from a model where removal only occurs from a single pool.

We next repeat the analysis using MCMC to infer 8, = (log 61, log 02,log 03,10 04, Terr).
Inferring the logarithm of rate parameters will provide more detailed information about the
magnitude of rate parameters potentially close to zero . This transformation provides
an excellent example of why even a uniform prior is informative, since a uniform prior placed
on the linear-scale is not uniform on the log-scale. A uniform prior on the linear-scale makes
parameters of a smaller magnitude less likely than a larger magnitude. The priors are again
chosen to be independent and uniform (on the log-scale), such that p(log ;) = U(—7,2) for all i
and p(oey) = U(0,10) as before. The support of each prior is chosen, again, to cover a range of
magnitudes above and below that of the target parameter values. Results in confirm
that 03 is practically identifiable, while 65 and 6,4 are practically non-identifiable. From results
in we term 0, one-sided identifiable: the parameter has an identifiable lower bound,
and is distinguishable from zero.

To visualise correlations between inferred parameters, we tune the proposal kernel
tion (15)) and run the MCMC algorithm for 30,000 iterations, results are shown in and
If only the univariate marginal distributions are considered, all parameters except for
04 may be classified as practically identifiable. However, our analysis shows that ¢; and 0, are
distinguishable only within a large range of magnitudes. A strong correlation is seen between
f1 and 6s, indicating that the total substance exit rate, 81 + 02, may be practically identifiable.
If one of 6, or s were known in advance, perhaps based on past experimental knowledge, the
other may become practically identifiable. Further, results from the tuned chains verify that 63
is practically identifiable (95% CrI (0.1356,0.4857)) and 64 is distinguishable from zero.
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‘ ‘ True ‘ 95% Crl R ‘ Sef ‘
01 0.1 (0.0042,0.1503) | 1.0024 | 510
02 0.2 | (0.0307,1.0699) | 1.0014 | 456
03 0.2 (0.1356,0.4857) | 1.0023 | 515
n 0.5 | (0.4372,1.9585) | 1.0004 | 741
Oerr | 2.0 (0.5715,2.8773) | 1.0089 | 409

Table 2. 95% credible intervals, and diagnostics, for the parameter estimates (on the linear-scale) for
the two-pool model. Credible intervals are approximated using the MCMC quantiles after burn-in.
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Figure 6. Tuned MCMC results for the two-pool model with a parameters on the linear-scale. The
left-most column shows an MCMC trace from a single chain. Kernel density estimates of the marginal
posterior for each parameter and bivariate scatter plots are produced using every 300th sample from four
independent MCMC chains, after burn-in. The autocorrelation function for a single chain is shown in (c),
indicating that every 300th sample is approximately independent.
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3.3 Epidemic model

Here, we consider a four-compartment epidemic model — the SEIR model [105-107] . In
this model, susceptible individuals, S, are infected due to interactions with infectious individuals,
I, and undergo an unknown period of time during which they have been exposed, E, but are
not themselves infectious. Infectious individuals either recover or are removed from the total
population, R. A noisy unknown proportion, &, with mean pgps, of the number of infectious and
recovered individuals is monitored. This captures a testing regime where not all infectious or
recovered individuals are tested. We supplement these results by considering a scenario where
the same unknown proportion of the exposed individuals is also monitored during the early part
of the epidemic.

The kind of data available for the epidemic model differs significantly from that for the
experiment-based models we have considered thus far: we are interested in a practical iden-
tifiability problem where data from only a single time-series is available, which mirrors data
available from an actual epidemic [147]. We first consider practical identifiability using data
from the early part of the epidemic, before the number of cases is observed to decrease. Next,
these results are compared to a case where data further through the course of the epidemic is
considered . Initially, 10 infected individuals and 10 recovered individuals are detected.
For simplicity we assume there is no noise in these initial observations, so the number of infected
and recovered individuals is given by 10/puobs. An unknown number of individuals, Ey, are
initially exposed. In our analysis, we assume that Fy is not of direct interest, and we class it a

nuisance parameter.

3.3.1 Model formulation and moment equations
The SEIR model can be represented by the following bio-chemical reactions

s™e E21 1%R,
with stoichiometries vy = (—1,1,0,0)7, vo = (0,—1,1,0)” and v3 = (0,0, —1,1)7; and propensi-
ties al(Xt) = HlStIt, CLQ(Xt) = 02Et and ag(Xt) = 03_[75. Here, we denote Xt = (St, Et, It, Rt)T

as the number of individuals in each compartment. Two observations are made,

Y1 =&y, €1t ~ N (fobs, 0oer)s (27)
Yo = &4 Ry, €0t ~ N (Lobs, Toy)- (28)

Here, Y7 ; and Ya; describe the observed number of infected individuals and recovered individuals,
respectively. We further assume that pqps, the average observed proportion; and e, the obser-
vation error, are unknown and must be estimated. We show 100 realisations of the SSA for the
epidemic model in and synthetic data used for practical identifiability analysis in [fig]
The data are generated using the initial condition Xo = (500 — Eg, Eo, 10/ ttobs, 10/ tiobs)
and target parameter values 61 = 0.01, 6o = 0.2, 63 = 0.1, Ey = 20, pops = 0.5 and o¢y = 0.05.
Here, we note that gerr < pobs, ensuring that Yi ; and Y ; remain positive.

The moment equations differ from the previous two models considered in that they are
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not closed. Therefore, the first order moment equations are not equivalent to those for the
corresponding ODE model [30], unless a mean-field closure is drawn at first order. To make
progress, we close the moment equations after second order to form an approximate system of
moment equations for the first two moments. We give the system of 14 moment equations, under
all three moment closures considered, as supporting material. The moments of the observation

variables are given in the noise-free limit by
nij(t) = potimooii(t), i+j < 2. (29)

In the supporting material we produce numerical solutions to the moment equations for the
epidemic model for each closure considered (figure S1). All closures predict visually identical
behaviour at first order, and the pair-approximation and Gaussian closures are in agreement at
second order. For the target parameters we consider, the mean-field closure does not agree at
second order with the more advanced closures. Whereas a numerical solution to the moment
equations for the pair-approximation and Gaussian closures is readily obtainable from a standard
solver in Julia [148], the mean-field closure required a positivity-preserving Patankar-type
method [149] to avoid blow up.

3.3.2 Structural identifiability

We assess structural identifiability of the approximate system of moment equations in DAISY
and GenSSI2, results are shown in [table 3] The ODE model, equivalent to a mean-field closure
(equation (10)) drawn after the first moment, is structurally non-identifiable. The second-order
systems, for all closures, are structurally identifiable (table 3)). As the second-order systems
are approximate, this analysis is not conclusive for the SDE. However, we can conclude that if
the mean and variance of the epidemic model (the first two moments) are modelled using the
system of moment equations, and data is available accordingly, the parameters are able to be
accurately estimated in the limit of infinite, noise-free data. We highlight the computational cost
in DAISY of introducing complexity into the moment equations through the closure methods.
The pair-wise closure, which introduces a quotient, and the Gaussian closure,
which introduces a cubic, take significantly longer using DAISY to assess than the
mean-field closure, , yet give the same result. However, unlike MCMC, we note
that structural identifiability results are deterministic, and independent of user choices such as

prior, number of particles, and generated or real synthetic data.

3.3.3 Practical identifiability

We assess practical identifiability of the epidemic model using MCMC to infer 8 =
(01, 02,03, Ey, piobs, Oerr)- Independent uniform priors are placed on each parameter so that
p(0h) = U(0,0.1), p(f2) = U(0,1), p(#3) = U(0,0.5), p(Eo) = U(0,20), p(pobs) = U(0.2,1) and
p(0err) = U(0,0.2). Results are shown in where we initiate each chain at the same
location for all forms of data we consider.

First, we assess identifiability when only early-time data is available. The log-likelihood
estimate rapidly stabilises , indicating that the chains have moved to a high-likelihood
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Model Structural identifiability Runtime (DAISY) Runtime (GenSSI2)
ODE Non-Identifiable 5 seconds 5 seconds
SDE (mean-field closure) Identifiable 5 minutes 2 seconds
SDE (pair-wise closure)  Identifiable 16 hours 2 seconds
SDE (Gaussian closure)  Identifiable 7 hours 2 seconds

Table 3. Structural identifiability of the partially observed SEIR model assessed in DAISY and GenSSI2.
Structural identifiability of the SDE is assessed using each closure method for third and higher order
moments. Note that the ODE model is equivalent to the SDE model with a mean-field closure for second
and higher order moments. Runtimes correspond to a 3.7GHz quad-core i7 desktop machine running
Windows 10.

(a) . Early-time (b) Long-time (c) Early-time and exposed
0
-F‘ waw
©@ ) (i)
6, 05
o Medabaniinneciy i ] : o . P fronse.
0 (k) @

)
(1 ()
0 5 10 0 5 10
Iteration ('000) Iteration ('000) Iteration ('000)

Figure 7. Pilot MCMC trace plots, and log-likelihood estimate, of four chains for the epidemic model.
We consider data comprising noisy observations of an unknown proportion of the number of infected and
recovered individuals during the early part of the epidemic (first column) and throughout the epidemic
(second column). We supplement these results by considering the case we are also able to observe the
same unknown proportion of the number of exposed individuals during the early part of the epidemic
(third column). Priors for each parameter are uniform with support corresponding to the respective axis
limits. The target parameter set, used to generate synthetic data, are indicated (black dashed line).
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Figure 8. Posterior predictive distribution for the epidemic model using (a) short-time data; (b) long-time
data; and (c) short-time data where observations are also made of the number of exposed individuals. In
(a,c), the dashed line indicates the last observation point used for inference. The first 3,000 samples from
each pilot chain is discarded as burn-in. We resample 10,000 parameter combinations (with replacement)
and solve the SDE model to estimate posterior predictive intervals (PIs). Shown are 50% (darker) and
95% (lighted) prediction intervals computed from the quantiles of the posterior predictive distribution.

region of the parameter space [29]. Results for 63, the recovery rate, also stabilise, indicating
that 03 is structurally identifiable. Eventually, we see the estimate for A, stabilises in all chains,
however they under-estimate the target value, although proposals equal to and greater than the
target value 05 = 0.2 are occasionally accepted. To compensate, the estimate of #; stabilises, and
covers a region an order of magnitude greater than the target (f; = 0.01). Therefore, although 6
is practically identifiable to a large, but finite, range of values, we classify 61 as non-identifiable
from the short-time data. Estimates for Ey and pps in do not stabilise, and are
practically non-identifiable.

Next, we consider a scenario where long-time data are available, such that the number of
infected individuals is observed to eventually decrease. The log-likelihood estimate
and chains for all parameters, except Ejy, are observed to stabilise, indicating that all parameters
of interest are now practically identifiable. We supplement these results by considering a third
scenario, where only early-time data are available, but the same unknown proportion of the
number of exposed individuals is also monitored. As with the long-time data, all parameters of
interest are now practically identifiable.

We perform a posterior predictive check |135] of the epidemic model to compare the model
prediction—which accounts for parameter uncertainty, intrinsic noise and observation error—to
the synthetic data used for inference. We discard the first 3,000 samples from each pilot chain as
burn-in, and resample 10,000 parameter combinations for each data type considered. Results in
show that, in all cases, the model predictions are in agreement with the full time-course
(although, we note, the long-time data is only used to calibrate parameters in . Results
in for the short—time data, highlight how practical non-identifiability affects model
predictions. These results predict an epidemic size at ¢ = 30 is noticeably wider and higher than
those for the data types where 6 is practically identifiable. Further, the lower 95% credible
interval for the observed number of infected individuals reduces much faster than that predicted

by the other data types.
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3.4 [-insulin-glucose circuit

Finally, we consider a non-linear model of glucose homeostasis, the g-insulin-glucose circuit
[108L/109] . Parameterising mathematical models of glucose homeostasis is important
for the development of patient-specific insulin delivery for type 1 diabetics [49]. Time-series data
of blood glucose concentration is available from continuous glucose monitoring sensors, a critical
component of type 1 diabetes management [50L/70], an example of which is shown in
The model describes the regulation of blood plasma glucose by insulin secreted by pancreatic
cells. Glucose is introduced into the system through a base production plus a meal intake, u(t),
and decays linearly according to the insulin concentration. Insulin is secreted by [ cells at a
rate given by a non-linear Hill function [109]. 5 cells are produced and decay in a non-response
to the glucose concentration. We consider identifiability for synthetic data comprising noisy
measurements of the 5 cell and glucose concentrations, but not the insulin concentration. The
data consists of five independent experiments, each comprising 15 time-series observations
following a meal intake. We only consider inference for two biophysical parameters: 6, the
insulin secretion rate; and 65, the insulin sensitivity. The non-linearities in the model mean that
the moment equation approach is not available, and inference using MCMC is computationally
expensive. We demonstrate how structural identifiability analysis of the corresponding ODE
system [150] can guide analysis of the SDE system and alleviate some of the computational

challenges.

3.4.1 Model formulation

We consider a stochastic analogue of the model presented by Karin et al. [109]. Denoting
X; = (B, It, G¢)T as the concentrations of 3 cells, insulin and glucose, respectively, the propensity

functions and corresponding stoichiometries are given by

al(Xtvt) = 5(t))‘+(Gt)7 vy = (1’0’0)T7
az2(X¢, t) = LA (Gy), vy = (—1,0,0)7,
ag(Xy,t) = 018ip(Gy), vs = (0,1,0)7,
a4(Xt7t) = ’YIta vy = (Oa _170)T>
(I5(Xt,t) = Uo, Vs = (ana 1)T7
aG(Xtvt) = U(t), Vg = (Oa Oa 1)T7
CL7(Xt,t) = CGta vy = (ana _1)T7
GS(Xtat) = 92Itha Vg = (ana _1)T7
where
A (Gy) = %; A(Gr) = %’
1 — 1 2
(&) “(55)
G? 0.2, t<50
G;) = 775, t) = ’ )
pLGY) 24+ G2 u(?) {0, t > 50.
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Since B¢, I; and G} denote the concentrations of each substance, and not the population counts, we
scale the diffusion term in the CLE to represent the relative concentrations of each substance [57].
Denoting Ng, Nr and N¢ the relative concentration of § cells, insulin and glucose, respectively,
we write

8

1 1 1
dX; = viap(Xy, t; 0)dt + diag , )
; /N VN1 vNg

8
) > vVar(X, t;0)dWiy.  (30)
k=1

Two observations are made,

}/i,t =G+ 517157 fl,t ~ N(O7 Gi“r)?
1/2,15 = Gt + 52,15: 52,t ~ N(()? O'grr%

such that Y7 ; and Y5, are the observed /3 cell and glucose concentrations, respectively. We show
100 realisations of the SSA for the S-insulin-glucose circuit in and the synthetic data
used for practical identifiability analysis in The data are generated using the initial
condition Xg = (322,10, 5)7 with fixed parameters, py = 0.21/(24 x 60), u_ = 0.025/(24 x 60),
n =185 v =03 u = 1/30, c = 1073, Ng =1, Nf = Ng = 20, and target parameters
01 = 0.02, 6 = 0.0005 and gerr = 0.5 [109]. Here, we note oerr < B¢, Gt (figure 3d)), which

ensures that Y7 ; and Ya; remain positive.

3.4.2 Parameter transform

Villaverde et al. [151] study structural identifiability of the corresponding ODE model using
differential geometry. In the ODE model, 6; and 6, are structurally non-identifiable, unless the
insulin concentration is also observed or one of these two parameters is known. We demonstrate
this using MCMC in where the marginal posterior for (61, 62) covers a hyperbolic
region of the parameter space of equal posterior density. In the ODE model, the product 6165
is structurally identifiable. To demonstrate this, we perform MCMC on the ODE model with
transformed variables 9~1 = 0105 and 9~2 = 01/02, results shown in These results
also show how inefficient a naive MCMC proposal can be when correlations between posterior
parameters are non-linear. Structural identifiability analysis |[151] indicates that the hyperbolic
region defined by 6; = 6165 (for a fixed 51) produces indistinguishable behaviour, corresponding
to a flat posterior when a uniform prior is applied. Despite this, the tail regions in are
rarely sampled, which could give the impression that the parameters are practically identifiable.

As the propensity functions for the S-insulin-glucose circuit model contain non-polynomial
functions, we cannot produce an exact expression for the moment equations. Therefore, we only
study practical identifiability using MCMC, and do not consider structural identifiability of the
SDE for the B-insulin-glucose circuit using the moment equations. Motivated by the structural
identifiability analysis of the ODE model, we use MCMC to infer 8 = (c§17 05, Oerr), Where we

only consider the transformed variables 0~1 = #1605 and 9~2 =01/05.
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3.4.3 Practical identifiability

We show MCMC results from four pilot chains in The log-likelihood estimate rapidly

stabilises (figure 10af), as do results for 6; and cey (figure 10b,d)). As with the ODE model,

6, is practically identifiable, but 05 is not. To visualise possible correlations between inferred
parameters, we tune the proposal kernel and run the MCMC algorithm for
10,000 iterations. The univariate marginal distributions, and MCMC trace plots, show that
01 (95% Crl: (1.34,1.67) x 107°) and oy (95% Crl: (0.812,1.049)) are practically identifiable,
whereas 65 is not (95% Crl: (8.21,97.79)). No large correlations are seen between the parameters
(p(9~1, 0~2) = 0.10), and 6 is clearly practically non-identifiable as samples cover the entire range

of the prior.
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Figure 9. Kernel density of the bivariate marginal posterior distribution of the biophysical parameters
in the S-insulin-glucose circuit, using the ODE and 100,000 pilot MCMC iterations (the first 3,000 are
discarded as burn-in. (a) The posterior for the untransformed parameters, (61, 02) shows non-identifiability.
(b) The posterior for the transformed parameters, (51, 52), demonstrates that 8; = 6,6, is identifiable,
but 0y = 61/05 is not.
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Figure 10. Pilot MCMC trace plots, and log likelihood estimate, of four chains for the S-insulin-glucose
circuit in the transformed parameter space. The likelihood quickly stabilises, but estimates for 65 do not,
indicating practical non-identifiability. Priors for each parameter are uniform with support corresponding

to the respective axis limits. The target parameter set, used to generate synthetic data, are indicated
(black dashed line).
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Figure 11. Tuned MCMC results for the g-insulin-glucose circuit in the transformed parameter space.
The left-most column shows an MCMC trace from a single chain. Kernel density estimates of the marginal
posterior for each parameter and bivariate scatter plots are produced using every 100th sample from four
independent MCMC chains, after burn-in. The autocorrelation function for a single chain is shown in (c),
indicating that every 20th sample is approximately independent.
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4 Discussion

Mathematical models are routinely calibrated to experimental data, with goals ranging from
building a predictive model to quantifying biophysical parameters that cannot be directly
measured. Much of the usefulness of calibrated models hinges on an assumption that model
parameters are identifiable. Heavily over-parameterised models, with large numbers of practically
non-identifiable parameters, are often referred to as sloppy in the systems biology literature
[72,152H154]. Worryingly, these issues of parameter identifiability can often go undetected:
models with non-identifiable parameters can still match experimental data , but may
have poor predictive power and provide little or no mechanistic insight [28]. Identifiability
analysis is well-developed for deterministic ODE models, but there is little guidance in the
literature to conducting such analysis for the stochastic models that are often vital for interpreting
complex experimental data. In this review, we demonstrate how existing techniques can be

applied to assess both structural and practical identifiability of SDE models in biology.

4.1 Moment dynamics approach

We demonstrate how existing ODE identifiability techniques can be applied directly to stochastic
problems by formulating a system of moment equations. In the birth-death process and the
two-pool model, the derived moment equations are closed and, therefore, exactly describe the
time-evolution of the moments of the SDE. In these two case studies we find that the moment
equations are structurally identifiable. This implies structural identifiability of the corresponding
SDE model, and parameters can be uniquely estimated in the limit of infinite, noise-free data. For
an SDE model this implies an infinite number of observation-noise free trajectories of the SDE,
since the variability, which relates to higher-order moments, contains information. While we find
that the two-pool model of cholesterol distribution is not practically identifiable, establishing
structural identifiability is useful as it suggests to the practitioner that the observation process
(i.e. observe cholesterol in the first pool) is sufficient, in principle, to fully parameterise the
model.

For the epidemic model, the moment equations are not closed, so we study structural
identifiability through an approximate system of second-order moment equations. The idea of
studying identifiability through an approximate system was first suggested by Pohjanpalo 75|,
who studies identifiability of ODE systems through a power series expansion. The closed system
of moment equations suggest the epidemic SDE model could be structurally identifiable, and
these results agree, in our case, with practical identifiability detected using MCMC. More
research is needed to establish how identifiability is affected when closing, or truncating, a
system of moment equations. For example, if information required to identify model parameters
is contained in third or higher order moments, results suggesting that a model is practically
non-identifiable from a second order closure will not be indicative of non-identifiability in the
SDE model. Furthermore, if structural identifiability differs between moment closures, such a
preliminary screening tool needs to be interpreted with caution. If this were the case, a conclusion
of structural identifiability is indicative of the model under a particular closure. Recent work

suggests that a finite number of moments often contain the information required to identify

30


https://doi.org/10.1101/2020.08.10.245233
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.10.245233; this version posted October 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

parameters [155], even for a bimodal distribution and if a closure is applied [156].

Due to the computational constraints placed on analysing structural identifiability of non-
polynomial ODE models, we do not attempt to apply the moment dynamics approach to the
stochastic S-insulin-glucose circuit model. However, for many models, a mean-field closure
corresponds to an ODE description of the system, and studying identifiability of this ODE model
can aid practical identifiability analysis of the corresponding SDE. In our case, the corresponding
ODE model is structurally non-identifiable due to a hyperbolic relationship between the two
parameters of interest: for a fixed 61602, model outputs are indistinguishable [151]. The question
of whether an SDE description can provide enough information to practically identify 6; and
f2 can be answered through MCMC, however simple variants of MCMC can struggle when
correlations between parameters are strong and non-linear. Therefore, we work in a transformed
parameter space where, for the ODE model, 6; = 6,65 is identifiable but 65 is not |)
This analysis provides a better sense of whether the SDE model captures enough information to
identify the parameters, and provides more robust results that are less dependent upon choices
made in the MCMC algorithm.

4.2 Particle Markov-chain Monte Carlo

We demonstrate practical identifiability by calibrating each model to synthetic data using particle
MCMC. We observe the MCMC chains to stabilise in a region of high posterior density, after
which time transitions produce samples from the posterior distribution [29]. By visualising
MCMC trace plots, we see that estimates of practically identifiable parameters also stabilise,
but those of practically non-identifiable parameters do not. These results also demonstrate that,
although estimates made of practically identifiable parameters are precise (that is, within a
reasonable level of confidence), they are not necessarily accurate. For example, in
the rate at which exposed individuals become infectious is practically identifiable, but it is
underestimated compared to the target value, which could hint at model misspecification.

Given that particle MCMC is computationally expensive, our implementation of a standard
technique to detect identifiability from pilot chains carries several advantages. First, pilot
chains are regularly generated in the early stages of many inference procedures to establish
efficient proposal kernels. Practical identifiability can, therefore, be established as part of an
existing workflow. Second, more sophisticated methods are by their very nature more difficult to
implement and dependent on practitioner choices, which could obscure results and require more
algorithmic experimentation. In comparison, we take an automated approach: aside from the
model and choice of prior, the procedure to perform MCMC for each model we consider is identical.
Once identifiability is established, the computational cost of MCMC can be alleviated to some
extent by adopting a more efficient inference technique. For example, adaptive MCMC [157],
sequential Monte-Carlo [158], multi-level methods [159-161], sub-sampling techniques [162]
and model-based proposal methods [163] provide significant performance improvements over
the standard technique we employ. Further, we expect applying higher-order SDE simulation
algorithms, such as a Runge-Kutta method [164], or considering GPU approaches to particle
MCMC [165], to improve performance.

As we calibrate to synthetic data for the purpose of a didactic demonstration, we take a
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pragmatic approach by treating the true values as unknown. Hence, we initiate each chain as a
random sample from the prior distribution. This involves a burn-in phase before the MCMC
chain settles in an area of high posterior density. For computationally expensive models, such as
those found in the cardiac modelling literature [166], synthetic data can be used with pilot chains
initiated at the target values. If models have have already been calibrated to experimental data
using, for example, maximum likelihood estimation, the chain can be initiated at the calibrated
values. MCMC then, relatively cheaply, provides information about the posterior distribution
about this point, akin to the Fisher information for models where it can be calculated [41].

MCMC can be applied to detect identifiability for any stochastic model provided an ap-
proximation to the likelihood is available. Recent developments to particle MCMC have seen
its adoption for more complicated SDE models, such as SDE mixed effects models [167]. For
systems with relatively small populations, it may be more appropriate to work directly with
an SSA with, for example, a tau-leap method [54,/119]. Alternative approximations to the
likelihood, such as those employed by ABC, may be necessary if model complexity requires;
for example, should the model include spatial effects |1§]. A major drawback of ABC in the
context of identifiability is that one must typically decide a priori which features of the model
and data to match. Common applications of ABC for SDE models match the mean and variance
of system [103] or the mean square error between simulations and data [16§]. Estimating the
likelihood directly, as particle MCMC does, is advantageous when assessing identifiability as it
is not clear a priori which features of the data and model are significant. For example, some
systems might contain the information required for identifiability in higher-order moments or
auto-correlations between time-series observations. If ABC is used, a variant that preserves
features of the model distribution might be desirable |169].

4.3 Modelling noise

In contrast to many studies of identifiability analysis for ODEs, we do not pre-specify parameters
in the observation distribution. In a deterministic modelling framework, it is common to
assume that all the variability in the data is uncorrelated and sourced from the observation
process [41190,/170]. Therefore, for an ODE model, the observation parameters can be reliably
estimated using the pooled sample variance. For inference on the birth-death ODE model
(figure 4)), we see that, because the observation variance must now also account for intrinsic
noise, the identified value of e, is significantly larger than the target value. For an ODE model
with additive homoscedastic Gaussian noise, the posterior mode (in the case of an improper
uniform prior), maximum likelihood estimate and least-squares estimate are identical and are
independent of the choice of the observed variance. For an SDE model, this is not the case as
the intrinsic component of the noise is also modelled implicitly. Therefore, pre-specifying the
observation variance could lead to biased estimates and obscure parameter identifiability. We
account for this by treating the observation distribution variance as a nuisance parameter that
we infer using MCMC, finding it to be identifiable in every case-study considered.

We have focussed our analysis on SDEs derived through the CLE, where the intrinsic noise
can provide more information about the process. However, for large populations, the information

contained in higher-order moments dissipates: to leading order, <X 2> — (X )2 as X — oco. We
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see this in the epidemic model , where the variance is small compared to the scale of
the mean. This loss of information in higher-order moments will not be detected by structural
identifiability analysis of the moment equations, which is independent of the relative sizes of
each moment. As populations become large, the information tends towards that obtained from
the equivalent ODE system: this is the assumption behind many mean-field models. There are,
however, many other models that contain sources of variability in their own right. For example,
Mummert and Otunuga [61] study identifiability of an epidemic model where the infection rate
varies according to a white noise process. Other external effects, such as seasonal effects, are
often incorporated into epidemic models |[171,]172]. In other systems, extrinsic noise describing,
for example, the environment, forms a core part of the process and is described by an SDE
independent of the population size [48]. Grey-box models use a diffusion term to characterise
uncertain physiological effects [63] that could obscure inference, rather than contain information.
Making high-level assumptions about which noise process contains information can help with
some of the computational challenges by formulating hybrid models containing a mixture of
ODEs and SDEs. Particle MCMC carries across, trivially, to any It6 SDE, and the moment
equation approach can be applied provided a system of moments be constructed. We have not
considered identifiability of SDE models containing non-diffusion noise, such as coloured noise
or jump noise. These models lend themselves to different inference techniques, such as forms of

rejection sampling [173].

4.4 Approaches to computational challenges

The primary computational cost of working with SDE models stems from the need to simulate
a suite of trajectories at each iteration of the particle MCMC algorithm. This cost increases
not only with the dimensionality of the problem (as for deterministic models) but also with
the amount of data, since the number of particles required for an unbiased likelihood estimate
increases with the sample size [25,100]. We see this, in particular, when conducting practical
identifiability analysis of the two-pool and S-insulin-glucose models. These issues have important
ramifications for identifiability, as it may not always be feasible to increase the amount of
experimental data to rectify practical non-identifiability. Working with a surrogate model, such
as a system of moment equations, can help alleviate some of these challenges. For example,
establishing structural identifiability—which is requisite for parameter estimation [28]—indicates
that the computational investment is worthwhile. Furthermore, such surrogate models can also
form a computationally efficient alternative for assessing practical identifiability and performing
inference [156,(174], while still capturing more information than a purely deterministic description.

A large class of high-dimensional stochastic models lend themselves to structural identifiability
analysis through moment equations. For example, CLE descriptions of multi-state ion-channel
systems [57] and cascades with many bimolecular reactions [175], can be analysed in terms of a
surrogate model using moment equations. This approach can be used because the propensity
functions are often polynomial. However, the systems of moment equations are often infinite
and require a moment closure approximation to facilitate this analysis. When a moment
closure assumption is required, we find that newer software, such as GenSSI2 in Matlab, is
computationally advantageous over DAISY . Further, for larger systems, it may not
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be necessary to consider a full system of second-order moments: a closed system that neglects
covariances is also a potentially useful surrogate model.

Many stochastic problems are both computationally expensive to assess using particle MCMC
and may not directly permit moment dynamics analysis. The §-insulin-glucose model comprises
eight reactions and takes approximately 30 hours to perform 10,000 iterations of a pilot chairﬂ
These issues are magnified by the quantity of data we consider in this example: five time-series
of 15 observations each. Non-polynomial propensity functions mean that an exact expression
for the moment equations cannot be derived, so it may not be possible to pre-detect structural
non-identifiability through the moment dynamics approach. Fortunately, other approaches,
such as those that use polynomial chaos [176], Gaussian processes [177], or the linear noise
approximation [93] can provide alternative means of deriving surrogate models. This kind
of approximation is already routine in the field of uncertainty quantification, which has deep
connections to identifiability [178|179]. In the future, many of these ideas could allow tractable
structural and practical identifiability analysis of large systems of SDEs and, by extension,
analysis of spatial problems described by stochastic partial differential equations (SPDEs).

The computational cost of MCMC, in particular for stochastic models with many parameters,
has spurred the development of alternatives to explore and exploit the geometry of the likelihood
near parameter estimates. Komorowski et al. [93| apply the linear noise approximation—which
captures first and second order behaviour—to perform sensitivity analysis and calculate the
Fisher information matrix for stochastic chemical kinetics models. The concept of information
geometry [153]/180] generalises Fisher information and can be applied to detect identifiability
through local information [181], and improve the performance of MCMC algorithms [182]. For
SDE models in particular, variational Bayesian techniques provide an efficient alternative to
MCMC for parameter estimation [183]. In many cases, mathematical models are calibrated to
experimental data to establish the value of a biophysical parameter, not to fully parameterise a
model. Profile likelihood [92,|184] is widely applied to assess identifiability in ODE models by
maximising out parameters that are not of direct interest to reduce the dimensionality of the
analysis. Since the bootstrap particle filter that we employ estimates the likelihood function,
profile likelihood could be applied to SDE problems.

5 Conclusion

It is essential to consider identifiability when performing inference. Yet, there is a scarcity
of methods available for assessing identifiability of the stochastic models that are becoming
increasingly important. We have provided, through this review, an introduction to identifiability
and a guide for performing identifiability analysis of SDE models in systems biology. By
formulating a system of moment equations, we show how existing techniques for structural
identifiability analysis of ODE models can be applied directly to SDE models [2834,35,/150].
Through synthetic data and particle MCMC, we have demonstrated how to establish practical
identifiability for SDE models from data [29,/51].

2Runtimes for all results produced are available on Github at https://github.com/ap-browning/
SDE-Identifiability
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The analysis we demonstrate is critical for tailoring model complexity to the available
data [28]. When a structurally identifiable model is found to be practically non-identifiable,
identifiability analysis can guide experiment design to discern the quality and quantity of data
required to estimate model parameters [185]. On the other hand, models found to be structurally
non-identifiable should be re-parameterised, reduced in complexity, or changed [87,186]. Moving
from an ODE to an SDE model can often provide enough information to render an otherwise
structurally non-identifiable parameter identifiable: we demonstrate this with the birth-death
process. As increasing computing power facilitates inference of complex stochastic models, we

expect identifiability to become ever more relevant.

Data availability
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