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Abstract

Mathematical models are routinely calibrated to experimental data, with goals ranging from

building predictive models to quantifying parameters that cannot be measured. Whether

or not reliable parameter estimates are obtainable from the available data can easily be

overlooked. Such issues of parameter identifiability have important ramifications for both the

predictive power of a model, and the mechanistic insight that can be obtained. Identifiability

analysis is well-established for deterministic, ordinary differential equation (ODE) models,

but there are no commonly-adopted methods for analysing identifiability in stochastic models.

We provide an accessible introduction to identifiability analysis and demonstrate how existing

ideas for analysis of ODE models can be applied to stochastic differential equation (SDE)

models through four practical case studies. To assess structural identifiability,we study

ODEs that describe the statistical moments of the stochastic process using open-source

software tools. Using practically-motivated synthetic data and Markov-chain Monte Carlo

(MCMC) methods, we assess parameter identifiability in the context of available data. Our

analysis shows that SDE models can often extract more information about parameters than

deterministic descriptions. All code used to perform the analysis is available on Github.
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1 Introduction

Stochastic mathematical models are rapidly becoming an essential tool for interpreting biological

phenomena [1–7]. These models are necessitated, in part, by increasing experimental interest in

capturing finer-scale, time-series observations [8–12] as well as spatial information [13–18] rather

than coarse-scale deterministic trends (figure 1). As computational inference techniques for

stochastic models have improved [19–23], a fundamental question that often remains overlooked

is whether or not model parameters can be confidently estimated from the available data.

Drug development, for example, often relies on the quantification of cell growth rates from a

proliferation assay (figure 1a–d) [24]. If a mean-field model is applied to interpret the most

frequently reported observation—cell count data—only the net growth rate is identifiable, not the

proliferation and death rates [25,26]. Establishing the identifiability of model parameters is critical

as predictions, and parameter estimates, from a non-identifiable model may be unreliable [27–30],

with further analysis required to quantify prediction uncertainty in non-identifiable models [31–33].

Identifiability should always, therefore, be established before parameter estimation is attempted.

Such identifiability analysis is well-established for deterministic ordinary differential equation

(ODE) models [28, 34–41], but there is a scarcity of methods available for the stochastic models

that are becoming increasingly important.

Stochasticity is fundamental to many processes [2,42–48]. For example, diabetic patients rely

on the rapid interpretation of highly volatile blood glucose measurements to determine insulin

input (figure 1f ) [49, 50]. Data from the COVID-19 pandemic [1] is also volatile (figure 1e),

and inferences of epidemic data must often be drawn from a single, stochastic, time-series.

Finally, for systems at equilibrium in the mean-field, such as ion-channel data, models that

account for system noise are required to establish parameters [51, 52]. Stochastic differential

equation (SDE) models of the Itô form are widely applied in systems biology to describe

stochastic phenomena [53–56]. While many stochastic systems can be simulated exactly using

discrete Markov models, SDE approximations offer a significant computational advantage. In

addition, the use of reflected SDEs [57] can guarantee good agreement with their discrete

counterparts at boundaries [57, 58]. SDE models can describe intrinsic noise in, for example,

gene expression [2, 9, 23] or a bio-chemical reaction network [59]; extrinsic noise describing

volatility in the environment [48,53,60,61]; and model approximations and unknown effects in

so-called grey-box models [62,63]. Explicitly modelling this variability in biological systems can

often capture more information about a process than a deterministic model is able to [64–67].

Further, SDE models can account for the correlations inherent to time-series data and account

for noise that might otherwise obscure parameters. Our results demonstrate how to establish

parameter identifiability for SDE models that encode information about the intrinsic noise of the

process [64]. We focus on SDE state-space models that can be formulated through the chemical

Langevin equation (CLE), although our intention is to provide analysis applicable to any SDE

of the Itô form. The use of such formulations have a long and extensive history of use.

A prerequisite for parameter estimation is that model parameters be structurally identifiable

[28, 34–36,71–73]. Structural identifiability refers to the question of whether a parameter can be

identified given an infinite amount of noise-free data. A state-space model is said to be structurally

identifiable if distinct values of the parameters imply distinct observed model outputs (or in the
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Figure 1. (a–d) Cell proliferation and death observed in vitro over 36 hours in a proliferation assay [68].
Each snapshot has a field-of-view of 1440 × 1440 µm and the location of each cell is indicated with a
yellow marker. (e) Data from the early stages of the coronavirus pandemic comprising the observed
number of (i) infected individuals, deaths, and (ii) daily new case count in Australia [69]. (f) Continuous
glucose monitoring data from a single individual over three consecutive days [70].

case of a stochastic model, distinct observed output distributions [74]), and vice versa [75–77].

Techniques such as differential algebra [38, 78, 79] and transfer function approaches [34, 35]

can establish structural identifiability in ODE models. These approaches are also used to

establish identifiable relationships between parameters [35, 80]—for example, the net growth

rate in a proliferation assay—which can aid model design and model reduction [80–82]. Many of

these techniques have accessible implementations in symbolic computation packages [38, 83–86],

meaning structural identifiability analysis does not require a detailed understanding of the, often

complex, underlying mathematical analysis [38].

When experimental data is considered, a more useful question is that of practical identifiability

or estimability [28, 77, 83, 87]. That is, can parameters in the model be accurately estimated

given a finite amount of noisy experimental data? This kind of analysis is routinely used in

the field of experimental design to assess the nature of data required to adequately identify

biophysical parameters [29,51,55,88–90]. Practical identifiability is established in conjunction

with an inference technique, such as profile or maximum likelihood [90–93] or Markov-chain

Monte-Carlo (MCMC) [29, 51]. These techniques provide information about the flatness (or

otherwise) of the likelihood function or, in the Bayesian case, the posterior distribution, that

describes knowledge about the parameters after the experimental data is taken into consideration.

For deterministic and simple stochastic models, this information can be obtained directly from

the Fisher information matrix [93]. A model parameter is classified as practically non-identifiable

if it cannot be established uniquely within a reasonable level of confidence [28,29]. Compared

with structural identifiability, which is a property of the model, practical identifiability is
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more nuanced and additionally dependent upon prior knowledge; the experimental data; and

consequentially, the experiment itself [29, 83]. For example, should the model and data provide

no more information about a parameter than that already established in previous studies, the

parameter may be classified as practically non-identifiable from the data and model in question.

For this reason, we take a Bayesian approach to parameter estimation and encode existing

knowledge about the parameters in a prior distribution. This question of practical identifiability

has not yet been demonstrated for SDE models in systems biology.

Computational inference for stochastic models is a significant challenge [22]. Unlike ap-

proaches to parameter estimation for deterministic models, the likelihood function for a realistic

stochastic model is, generally, intractable [22]. Techniques based on approximations, such as a

linear-noise approximation [93] or approximate Bayesian computation [20,94–98], are available

for SDEs but are, naturally, approximations. Pseudo-marginal methods [99, 100], developed

relatively recently, are computationally costly, but provide an unbiased estimate of the true

likelihood function for partially observed time-series described by non-linear stochastic models.

In this review, we utilise a pseudo-marginal MCMC approach, where we estimate the likelihood

with a particle filter, which we refer to as particle MCMC [101,102]. There are many excellent

reviews of inference for stochastic models in systems biology [20,22,102,103], so we do not focus

on the details our out implementation here. Despite the established importance of identifiability,

it is all too common in parts of the inference literature to draw the standard assumption that

the model parameters are identifiable: we note that all the aforementioned review articles make

no mention of identifiability. The computational cost of inference for stochastic models, in itself,

motivates us to consider identifiability. For example, identifiability can guide model selection: if

both a deterministic and stochastic description of a process are practically non-identifiable, the

cheaper deterministic model may, in some cases, be adequate for parameter estimation. Where

structural non-identifiability is detected, practical non-identifiability necessarily follows and does

not need to be established separately.

The focus of this review is to provide an accessible guide to establishing identifiability in SDE

models in biology. To do this, we analyse identifiability in SDE descriptions of four case study

models, shown in figure 2. The simplest model we consider is a birth-death process (figure 2a)

that is routinely used to describe cell proliferation and death in a range of in vitro and in vivo

biological systems, such as that shown in figure 1a. We demonstrate that, from cell count-data,

the cell proliferation and death rates are structurally non-identifiable for a routinely employed

ODE model, but can be identified for an SDE model. Next, we consider two multi-state models

where only partial observations of the system are available. First, a two-pool model (figure 2b)

that can describe, for example, the decay of human cholesterol whilst it transfers between two

organs [35,104]. We assume that data from the two-pool model comprises several time-series

observations of the substance concentration in a single pool. Secondly, an epidemic model

(figure 2c) [105–107] describes individuals infected due to interactions between susceptible and

infectious individuals. We model a testing procedure such that unknown proportions of the

number of infectious and recovered individuals are observed, and inferences are drawn from a

single time-series. The last model we consider is a non-linear SDE model for insulin regulation

by β-cells (figure 2d) [108, 109]. This type of model can describe the volatility associated
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Figure 2. We demonstrate identifiability in an SDE CLE description of four models: (a) a birth-death
process; (b) a two-pool model; (c) an epidemic model; and (d) a β-insulin-glucose circuit. The coloured
boxes indicate the observed quantity, which is coupled to a noisy observation process.

with data from a continuous glucose monitoring device (figure 1f ) [70]. The equivalent ODE

description of the β-insulin-glucose circuit is not structurally or practically identifiable [110], and

we demonstrate how the analysis for the ODE description can inform a parameter transformation

to aid identifiability analysis for the SDE model.

We demonstrate two main approaches to assess identifiability in SDE models. First, we assess

structural identifiability through a surrogate model, taken to be a system of ODEs that describe

the time-evolution of the statistical moments of the SDE [111–115]. This allows us to apply the

established open-source structural identifiability software package DAISY (written for the freeware

REDUCE software) to the SDE models through the moment equations.We repeat this analysis in

the more recent open-source software package GenSSI2 [116,117], written for MATLAB, which can

be more efficient for non-linear systems. We interpret these results as a proxy for identifiability

of the SDE model itself. While this approach is not always conclusive, it can provide a rapid

preliminary screening tool and allows direct comparison of identifiability for an SDE model,

which contains information about the mean, variance and higher moments; to identifiability for

a corresponding ODE model that is typically assumed to describe an approximation of the mean.

We only apply this approach where an exact system of moment equations can be derived, which

occurs when the reaction rates are polynomial. For more complex stochastic models containing

terms such as Hill functions, as found in the β-insulin-glucose circuit model, an exact system of

moment equations cannot be derived, we do not apply the moment dynamics approach in this

case. We assess practical identifiability for all models using MCMC [29,51], first demonstrating

how practical identifiability can be cheaply established from a näıve proposal kernel. To compute

credible intervals for each parameter, and visualise potential correlations between parameters,

we produce results using a tuned proposal kernel where we can be more certain of convergence.

The outline of this review is as follows. In Section 2, we establish the types of SDE models

and observation processes that we consider, and then outline the techniques used to generate

synthetic data. Following this, in Section 2.2, we summarise moment closure techniques for SDEs

and describe how we implement the software tools DAISY and GenSSI to assess for structural

identifiability. Next, in Section 2.3, we provide a brief overview of our implementation of the

particle MCMC algorithm. Full details of particle MCMC for SDE models can be found in the

existing literature [102, 103] and as supporting material. In Section 3, we use these tools to

assess identifiability using an SDE description of four models. In Sections 4 and 5, we discuss

our results and provide an outlook on the future of identifiability for stochastic models in biology.
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To aid in the accessibility of the techniques we review, we provide our MCMC code in the form

of a module1for the open-source, high-performance Julia programming language [118].

2 Mathematical techniques

In this section, we outline the mathematical and statistical techniques we use to perform

identifiability analysis. Full details of all algorithms used are provided as supporting material.

2.1 Stochastic models in biology

We consider Itô SDE state space models of the form

dXt = α(Xt, t;θ) dt+ σ(Xt, t;θ) dWt, (1)

Yt ∼ g(Yt|Xt, t;θ). (2)

Here, the state is described by Xt = (X1,t, X2,t, . . . , XN,t) ∈ RN , Wt ∈ RQ is a Q-dimensional

Wiener process with independent components; α(·) maps to an N -dimensional vector; and σ(·)
maps to an N × Q matrix. The observables, Yt = (Y1,t, Y2,t, . . . , YM,t) ∈ RM , are connected

to the state variables according to an observation process with probability density function

g(Yt|Xt, t;θ). We consider several forms of observation function, including partial observations

of the state with both additive and multiplicative Gaussian noise with unknown variance σ2
err. In

equations (1) and (2), θ is a vector of unknown parameters to be determined through inference.

In this review, all variables and parameters are dimensionless.

The focus of this review is on Itô SDE models that are formulated through the CLE description

of a system of bio-chemical reactions [59, 119, 120]. Therefore, additional information about

rate parameters is encoded in the noise of the process. The first three models we consider

(figure 2a–c) can be expressed directly as a network of reactions. As the β-insulin-glucose circuit

model (figure 2d) involves state variables modelled as concentrations, not individual counts,

we derive a stochastic description from the CLE but scale the noise term in proportion to the

concentration of each species.

In summary, a bio-chemical reaction network comprises N species, X1, X2, . . ., XN , that

interact through Q reactions [121–123]. The population of each species is given by Xt =

(X1,t, X2,t, . . . , XN,t) ∈ RN . By the law of mass action [59,124], each reaction occurs with a rate

described by a propensity function, ak(Xt, t;θ), which is equal to the product of the reactants

and the rate constant. The net effect of the kth reaction is described by the stoichiometry νk

such that, should reaction k occur in [t, t+ dt),

Xt+dt = Xt + νk. (3)

For bio-chemical reaction networks without an explicit time-dependent input, the propensity

functions will be independent of t and the system can be simulated exactly using an event-driven

stochastic simulation algorithm (SSA) [5, 124–126]. The principle behind an exact SSA is that

1Code available on Github at https://github.com/ap-browning/SDE-Identifiability
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Figure 3. (a–d) 100 example realisations of each model, produced using: (a–c) the SSA; and, (d) the
SDE. (e–h) Synthetic data used for practical identifiability analysis. Synthetic data comprises noisy
observations of the (e) full and (f–h) partial state. In (e,f ,h), experimental replicates used simultaneously
for parameterisation are shown semi-transparent, with the first replicate fully opaque. For the epidemic
model, both short-time (opaque) and long-time (semi-transparent) data are considered separately. In both
cases of the epidemic model, an unknown proportion of the number of infected individuals (green), and
the recovered individuals (black), is observed. In (d,h), the β cell concentration, βt (and the measured
concentration Y1,t) is shown on the right axis.

reactions can be modelled by an inhomogeneous Poisson process. The time interval between

reactions, ∆t, is exponentially distributed such that

∆t ∼ Exp

(
Q∑
k=1

ak(Xt;θ)

)
. (4)

A single reaction occurs at each time-step; the kth reaction occurs with probability proportional to

ak(Xt;θ). A typical implementation of the SSA first samples a time-step using equation (4); then

samples the next event to occur; and finally updates the state. Full details of our implementation

of an SSA are given as supporting material, and the reader is directed to [121] for a comprehensive

review of simulation algorithms for bio-chemical reaction networks. We generate synthetic data

for the first three models, for which the propensity functions are independent of t, using the

SSA. In figure 3a–c we show 100 realisations of the SSA for the birth-death process, two-pool

model and epidemic model, respectively.

When the population of each species is large and reactions sufficiently frequent, the dynamics

of a bio-chemical reaction network can be approximated using the CLE [25,119,121]. Such an

approximation is widely applied in systems biology [127,128], and it is often necessary as the

SSA quickly becomes computationally expensive as the populations become large and reactions

are frequent enough [129]. The CLE is an Itô SDE of the form

dXt =

Q∑
k=1

νkak(Xt, t;θ)︸ ︷︷ ︸
α(Xt,t;θ)

dt+

Q∑
k=1

νk
√
ak(Xt, t;θ)dWk,t.︸ ︷︷ ︸

σ(Xt,t;θ)dWt

(5)
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Here Wt = (W1,t,W2,t, . . . ,WQ,t) is a Q-dimensional Wiener process with independent com-

ponents. In this study, we derive an SDE description for each model using the CLE, and we

calibrate this SDE to the synthetic data to approximate the parameters in each model. For the

first three models, where data is generated using the SSA, not the SDE, this means that identifi-

ability analysis is conducted in such a way that model misspecification could potentially arise.

This pragmatically mirrors experimental data, where any model (including an ODE and SDE

description) is an approximation. The forward simulation for each SDE is approximated using

the Euler-Maruyama algorithm [130], where we apply reflected SDEs to ensure positivity [57].

Full details of the numerical algorithm are given as supporting material.

2.2 Moment dynamics

To enable the application of established methods for structural identifiability analysis to SDE

models, we formulate a system of ODEs that describe the statistical moments of the random

variable Xt ∈ RN . We denote mi1i2...id(t) as a raw moment of Xt, such that [112–114,120]

mi1i2...iN (t) =

〈
N∏
j=1

X
ij
j,t

〉
, (6)

where 〈·〉 indicates the expectation taken with respect to the probability measure of the random

variable Xt. Here, J =
∑N

i=1 ij is the order of the moment. For example, the first order

moments correspond to the mean of each dimension of Xt, the second order moments relate to

the variances and covariances, and so forth.

We apply the software packages DAISY [38] and GenSSI2 [117] to establish structural identifi-

ability of the resultant system of moment equations. The software package takes a system of

ODEs describing the state equations—in our case, the moment equations—in addition to an

explicit algebraic relationship between the observables and the state. We, therefore, provide the

moments of the observables, Yt, in the noise-free limit, which we denote

ni1i2...iM (t) = lim
σ2
err→0

〈
M∏
j=1

Y
ij
j,t

〉
. (7)

In many cases, the observation distribution, g(Yt|Xt, t;θ), will depend upon the unknown

parameters, θ, if, for example, an unknown proportion of the state is observed. This is captured

in the structural identifiability analysis as the equations derived for the observed moments, n,

may depend on θ. We provide well commented input and output obtained using DAISY on

Github as supporting material.

An expression for the time derivative of each moment can be found using Itô’s lemma

(supplementary material). When each component of σTσ is an analytic function, which occurs

when all the propensity functions in the bio-chemical reaction network are also analytic functions,
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we obtain [131]

dmi1i2...iN (t)

dt
=

〈
α(Xt, t;θ) ·∇

 N∏
j=1

X
ij
j,t


+

1

2
Tr

σT (Xt, t;θ)H

 N∏
j=1

X
ij
j

σ(Xt, t;θ)

〉,
(8)

where H(·) denotes the N ×N Hessian matrix of its argument and ∇ =
(

∂
∂X1

, ∂
∂X2

, . . . , ∂
∂XN

)
.

In the case that N = 1, equation (8) reduces to

dmi(t)

dt
=

〈
iXi−1

t α(Xt, t;θ) + i(i− 1)Xi−2
t

σ2(Xt, t;θ)

2

〉
,

where α and σ are now scalar functions.

When each component of α and σTσ are polynomials in Xt, the expectation in equation (8)

can be carried through to replace powers of Xt with appropriate moments. This, in general,

provides an infinite system ODEs that exactly describe the time evolution of the moments. In

practice, we consider a finite system of moments, up to and including moments of order J . We

express this now finite system of ODEs as

dm≤J(t)

dt
= f≤J(m≤J(t),m>J(t)), (9)

where m≤J(t) is a vector containing all the moments up to, and including, order J ; and m>J(t)

is a vector containing all moments of order J + 1 and above. In the case that f≤J(·) depends

only on moments up to order J , the system is said to be closed at order J . That is, the infinite

system of equations can be truncated at order J and solved directly to obtain an exact solution

for the moments. This is the case if α and σTσ are linear in Xt, which occurs in SDEs derived

from the CLE if each propensity is linear in Xt, as is the case for the first two models we consider

(figure 2a,b).

For more complicated models, including the epidemic model (figure 2c), the system will not,

in general, be closed. We must, therefore, apply a moment closure approximation to express

moments of order higher than J in terms of lower order moments [45]. Moment closures typically

make an a priori assumption about the distribution of the random variable Xt. For example,

assuming components of Xt are independent or normally distributed is a common approach. In

this review, we consider three common moment closures: (1) a mean-field closure [113]; (2) a

pairwise closure [113]; and (3) a Gaussian closure [112].

The mean-field closure we consider makes the approximation

mi1i2...iN ≈

〈
N∏
j=1

X
ij
j,t

〉
. (10)

This closure is derived from the assumption that components of Xt are weakly correlated [113]

and is also referred to as the covariance closure [132]. In the case a closure is drawn at J = 1,
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the mean-field closure often corresponds to an ODE description of the process. For our analysis

of the epidemic model, we find that the mean-field closure behaves poorly, suggesting that an

assumption that the components of Xt are independent may not be appropriate (Supplementary

Material, Figure S1).

While the mean-field closure is commonly drawn at order J = 1, it is more common for

the pair-approximation closure to be applied for second and higher order closures [113]. The

pair-approximation closure assumes that a third order moment can be expressed as

〈Xa,tXb,tXc,t〉 ≈
〈Xa,tXb,t〉 〈Xb,tXc,t〉

〈Xb,t〉
, 〈Xb,t〉 6= 0. (11)

The Gaussian closure approximates higher order moments to match those of the normal

distribution, and gives a closure in terms of the mean and covariances. Higher order moments

can be approximated with [112,133]

m̂i1i2...iN (t) ≈

{
0, if J =

∑N
j=1 ij is odd,∑

s

∏
(j,k)∈Is Cov(Xj,tXk,t), otherwise.

(12)

Here, m̂i1i2...iN (t) =
〈∏N

j=1(Xj,t − 〈Xj,t〉)ij
〉

denotes a central moment; Cov(Xj,tXk,t) denotes

the covariance between Xj,t and Xk,t; and Is are the sets formed by partitioning the set

{1, 1, . . . , 1︸ ︷︷ ︸
i1

, . . . , N,N, . . . , N︸ ︷︷ ︸
iN

} into unordered pairs, where s is the number of sets. The raw

moments, mi1i2...iN (t) can then be solved from the expressions for the central moments obtained

from equation (12). For a practical example of the Gaussian closure, see [112].

Other choices of moment closure are routinely used in systems biology, such as those based

upon a multivariate lognormal distribution [112] or a derivative matching scheme [134]. However,

more complex closures add further complexity to the moment equations, which is a significant

computational disadvantage for automated assessment of structural identifiability in software

packages such as DAISY and GenSSI2. Furthermore, an approximate system of moment equations

(which must then also be closed) could be obtained by applying a series expansion approximation,

or an approximation similar to the mean-field closure, to systems containing non-polynomial

analytic functions; this is the case for the fourth model we consider (figure 2d). We do not

consider the moment dynamics approach for non-polynomial models in this review.

2.3 Inference with MCMC

We take a Bayesian approach to parameter estimation to update our knowledge about the

parameters, θ, from a set of observations, D, using the likelihood function, L, such that [135]

p(θ|D) ∝ L(D|θ)p(θ). (13)

Here, p(θ) is the prior distribution, and represents our knowledge of θ before consideration

of the observations D. The prior distribution may encode information from, for example,

previous experiments, established knowledge, or physical restrictions on the parameters. In

the context of practical identifiability, our goal is to significantly increase our understanding
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of θ from our prior knowledge. We specify p(θ) to be a truncated uniform distribution: all

parameters within a specified region of realistic parameter values (the support) are considered

equally likely [29]. An advantage of a uniform prior in the context of identifiability is that

the posterior corresponds to the truncated likelihood function, and, therefore, high density

regions of the posterior correspond to regions of high likelihood. Further, should an improper,

unbounded uniform prior be considered, the posterior will be directly proportional to the

likelihood. Thus, our methodology can also be applied to assess parameter identifiability using a

purely likelihood-based approach.

We use an MCMC technique, based on the Metropolis-Hastings algorithm, to sample from

the posterior distribution [135–138]. The principle behind MCMC in Bayesian inference is to

construct a Markov chain, {θi}i≥0, with a stationary distribution equal to p(θ|D). We make a

standard choice to initiate the chain from a prior sample, θ0 ∼ p(θ). At each iteration of the

algorithm, a new state is proposed, θ∗ ∼ q(θ∗|θm), where q is termed the proposal kernel. The

proposal is accepted, θm+1 ← θ∗, with probability

αMH(θ∗,θm) = min

(
1,

q(θm|θ∗)p(θ∗)L(D|θ∗)
q(θ∗|θm)p(θm)L(D|θm)

)
, (14)

else the proposal is rejected, θm+1 ← θm. Full details of our implementation are provided as

supporting material. In this review, we use a multivariate normal proposal so that q(θm|θ∗) =

q(θ∗|θm). An interpretation of the Metropolis choice of acceptance probability, equation (14),

where the proposal is normal and, therefore, symmetric, is that proposals that increase the

posterior density are always accepted, whereas proposals that decrease the posterior density are

accepted with some reduced probability [29].

We refer to the first set of MCMC chains for each problem as pilot chains [139]. The proposal

distribution for each pilot chain is set to be a multivariate normal distribution with independent

components and variances equal to one-tenth the corresponding prior variance for each parameter,

a typical choice. We always produce four pilot chains, each of 10,000 iterations, which we find to

be sufficient to indicate identifiability for our models. These pilot chains are then used to tune

the MCMC proposal kernel [140]. We then produce four tuned chains, which can be reliably

used to estimate credible intervals and other features of the posterior distribution. The proposal

distribution for each tuned chain is chosen to be multivariate normal, with covariance given

by [139]

Σopt =
2.382

dim(θ)
Σ̂. (15)

Here, dim(θ) is the number of unknown parameters, and Σ̂ is the covariance matrix for the

pooled samples from the four pilot chains (a total of 28,000 samples after 3,000 samples are

discarded as burn-in from each pilot chain). To assess convergence, we calculate the commonly

used R̂ [141] and neff (effective sample size) [135] diagnostics. In summary, R̂ measures the

ratio of between-chain and within-chain variance; and neff measures the effective number of

independent samples drawn from the posterior. To draw reliable inferences, Gelman et al. [135]

suggest ensuring that R̂ < 1.1. Full details of these convergence statistics are available in [135].

The primary challenge with performing inference for SDE models, with time-series data, is
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computing the likelihood function. In this review, we consider synthetic data from E independent

experiments, each with NE time-series observations. The data are denoted

D =
{
{tn,i,Yn,i

obs}
NE
n=1

}E
i=1
, (16)

and correspond to the likelihood function

L(D|θ) =

E∏
i=1

NE∏
n=1

p(Yn,i
obs|Y

1,i
obs, . . . ,Y

n−1,i
obs ). (17)

In most cases, the likelihood for noisy time-series data modelled by an SDE will be intractable

[102]. This contrasts with data modelled by a deterministic model, which are typically assumed

to be independent and normally distributed about the model output [29]. Likelihood free

methods, such as ABC [20, 97] and pseudo-marginal approaches [100], are routinely used in

systems biology to calibrate complex stochastic models to experimental data by approximating

equation (17). In this study, we apply a pseudo-marginal approach based on a bootstrap particle

filter to approximate the likelihood and calibrate each SDE model to synthetic experimental

data [102]. In summary, the bootstrap particle filter approximates equation (17) by

L̂(D|θ) =

E∏
i=1

NE∏
n=1

1

R

R∑
r=1

g(Yn,i
obs|X

i,r
tn , t;θ). (18)

Here, the observation probability density, g (equation (2)), is averaged over R samples from the

SDE, Xi,r
tn |X

i,r
tn−1

to approximate the likelihood. The bootstrap particle filter then resamples from

the set of weighted samples, {(g(Yn,i
obs|X

i,r
tn ),Xi,r

tn )}Rr=1, at each time-step to form the starting

locations for each SDE sample to sample forward to tn+1. This process is repeated for each

independent experiment, and the result is an unbiased Monte Carlo estimate of the likelihood

function, L̂(D|θ), that replaces L in the Metropolis acceptance probability (equation (14)). Full

details of the particle MCMC algorithm, including an implementation for an ODE model used

in one case study, are provided as supporting material, and for further information the reader is

directed to [102,103].

3 Case studies

Using the moment equations and MCMC, we provide a practical guide for assessing parameter

identifiability in SDE CLE models through four case studies. We generate synthetic data for

each model using the SSA when the propensity functions are time-independent (the birth-death

process, two-pool model and epidemic model), and the corresponding CLE when the propensity

functions are time-dependent (the β-insulin-glucose circuit). In practice, we would first assess

practical identifiability using the experimental data available. However, working with synthetic

data provides the means to evaluate the effect of different experiment designs, and observation

protocols, on practical identifiability. Our focus is on data comprising partial observations of the

process that realistically captures potential experimental data.
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3.1 Birth-death process

The first model we consider is a birth-death process (figure 2a). The birth-death processes can

describe, for example, the growth of a well-mixed cell population where individuals proliferate

and die according to rates θ1 and θ2, respectively. We consider practical identifiability for

synthetic data comprising noisy measurements of the cell count at 10 equally spaced times

in 10 identically prepared experiments. Such data are typical for in vitro cell proliferation

experiments [24,142], an example of which is shown in figure 1a–d .

3.1.1 Model formulation and moment equations

The birth-death process can be expressed as the bio-chemical reaction network

X
θ1→ 2X︸ ︷︷ ︸

birth

, X
θ2→ ∅︸ ︷︷ ︸

death

,

with stoichiometries ν1 = 1 and ν2 = −1; and propensities a1(Xt) = θ1Xt and a2(Xt) = θ2Xt.

Here, we denote Xt as the number of individuals in the population. The observed number of

individuals, Yt, is described by the noise model

Yt = ξtXt, ξt ∼ N (1, σ2
err). (19)

Here, we consider a noise process that scales with the total population, that is, multiplicative

Gaussian noise. We show 100 realisations of the SSA for the birth-death process in figure 3a,

and the synthetic data used for practical identifiability analysis in figure 3e. The data are

generated using the initial condition X0 = 50 and target parameter values θ1 = 0.2, θ2 = 0.1

and σerr = 0.05. Here, σerr � 1, which ensures that Yt remains positive.

The CLE for the birth-death process is

dXt = (θ1 − θ2)Xt dt+
√

(θ1 + θ2)Xt dWt, (20)

and the first and second order moment equations are

dm1

dt
= (θ1 − θ2)m1,

dm2

dt
= 2(θ1 − θ2)m2 + (θ1 + θ2)m1.

(21)

The moment equations for the SDE description of the birth-death model above are identical to

the moment equations for the discrete Markov model that we simulate using the SSA [143]. The

moments of the observable (in the noise-free limit) are given to second order by n1 = m1 and

n2 = m2. As α(·) and σ2(·) are linear in Xt, the moment equations of the birth-death process

are closed at every order and so equations (21) are exact. Further, we note that the common

mean-field model for the birth-death process,

dX̃

dt
= (θ1 − θ2)X̃, (22)
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corresponds to the first moment, and describes the average behaviour of Xt. The solution to

equation (22) is

X̃(t) = X̃(0) exp
{

(θ1 − θ2)t
}
. (23)

Here, the population, X̃(t), undergoes exponential growth with a net-growth rate of θ1 − θ2.

Therefore, intuitively, it is not possible to identify θ1 and θ2 if only average growth behaviour is

observed [25].

3.1.2 Structural identifiability

We first assess structural identifiability of the moment equations in DAISY [38]. If only the

first moment, n1, is observed, the system is structurally non-identifiable, meaning the model

parameters cannot be uniquely estimated with any amount of data. However, the system becomes

structurally identifiable if n2 is also observed. As the moment equations are closed at every order,

and therefore exact, this analysis indicates that the ODE model (equation (22), corresponding to

the first moment equation) is structurally non-identifiable, while the SDE model is structurally

identifiable.

These structural identifiability results can be intuitively understood through re-

parameterisation [40]. The first moment equation (or the ODE model) can be re-parameterised

with θ̃1 = θ1−θ2 where θ̃1 is the sole parameter in the model. Therefore, for a fixed θ̃1, all values

on the line θ1 = θ̃1 + θ2 produce indistinguishable behaviour in the first moment, m1, and hence

in the observation, n1. On the other hand, when re-parameterised the second moment equation

contains a second, linearly independent, parameter θ̃2 = θ1 + θ2. For the birth-death process, the

second moment provides enough additional information to uniquely identify both parameters

θ1 and θ2, provided enough data is available. Thus, the birth-death process is structurally

identifiable from the first two moments.

3.1.3 Practical identifiability

We assess practical identifiability of the parameter vector θ = (θ1, θ2, σerr) for the ODE and

SDE models using MCMC. We place independent uniform priors on each parameter so that

p(θ1) = p(θ2) = U(0, 0.6) and p(σerr) = U(0, 0.3). If prior knowledge about the population (i.e.,

the cell line) is available, perhaps based upon previously conducted experiments, this can be

incorporated into the analysis through an informative prior. For example, upper bounds that

define reasonable values for biological parameters are routinely applied in this context [90].

In figure 4a–i , we show MCMC results for the birth-death process using the ODE model.

Based on the structural identifiability results, we expect the likelihood (and for a uniform prior,

the posterior density) to be constant along the identifiable parameter combination θ̃1 = θ1 − θ2,

and we see this in figure 4d . These results also suggest that, should one of θ1 or θ2 be known

(for example, if the cells are treated with an anti-proliferative drug that enforces θ2 = 0 [144])

the other be identifiable. However, lower and upper bounds for θ1 and θ2, respectively, are

able to be established as a direct consequence of the prior assumption that all parameters are

strictly positive. Examination of univariate credible intervals, shown in table 1, reveals that

each parameter cannot individually be identified within 3–4 orders of magnitude, a hallmark
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of non-identifiability [29]. We note that σerr is practically identifiable (figure 4i , 95% CrI:

(0.1448,0.1907)) from the ODE model, however it will always be overestimated as the observation

model for the ODE model must also account for the intrinsic noise of the process.

We repeat the analysis for the SDE model, results of which are shown in figure 4j–r . For the

prior support chosen, both θ1 and θ2 are practically identifiable, as seen in figure 4k,n. Further,

95% credible intervals identify each parameter within a single order of magnitude (table 1).

While structural identifiability analysis revealed that the SDE model is identifiable in the limit

of infinite, noise-free data, it is not necessarily so for data with a realistic signal-to-noise ratio,

characterised by the noise model parameter σerr. In our case, if prior knowledge provided an

upper bound for θ1 and θ2 at, for example, 0.3, conclusions of practical identifiability may be

analogous to those of the ODE model. We see this in table 1, where the upper bounds of the

credible intervals for θ1 and θ2 extend beyond 0.3. This is also evident from both the bivariate

scatter plot (figure 4m) and MCMC trace plots (figure 4j,l), where posterior samples above 0.3

are regularly drawn for both θ1 and θ2. As the SDE explicitly accounts for intrinsic noise, σerr is

identifiable with estimates close to the true value, in contrast to results from the ODE model.
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Figure 4. MCMC results for (a–i) an ODE and (j–r) an SDE description of the birth-death process. (a,c,f) and (j,l,o) show trace plots for the ODE and SDE
models, respectively. Kernel density estimates of the posterior for each parameter ((b,e,i) and (k,n,r)), and bivariate scatter plots ((d,g,h) and (m,p,q)), are
produced by thinning the MCMC chains by using every 100th sample from four independent MCMC chains, after burn-in.
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ODE SDE

True 95% CrI R̂ Seff 95% CrI R̂ Seff

θ1 0.2 (0.1276,0.5891) 1.00056 2292 (0.1609,0.4059) 1.01068 104
θ2 0.1 (0.0130,0.4744) 1.00056 2300 (0.0477,0.3016) 1.01107 107
σerr 0.05 (0.1448,0.1907) 1.00242 2254 (0.0270,0.0667) 1.00079 364

Table 1. 95% credible intervals, and diagnostics, for the parameter estimates for the birth-death process.
Credible intervals are approximated using the MCMC quantiles after burn-in.

3.2 Two-pool model

Next, we consider partial observations of a process governed by a two-pool model, describing

the decay of a substance that is able to transfer between two pools (figure 2b). Identifiability of

a two-pool model was first examined in the fundamental study of Bellman and Åström [34] as

they introduced the concept of structural identifiability. The model can represent, for example,

human cholesterol distribution dispersed through two-pools (for example, two organs), where

measurements are taken from a tracer in the first pool [104]. Bellman [34] and later Cobelli [35]

show that, for an ODE model, the pool transfer and decay rates are not structurally identifiable.

We consider practical identifiability for synthetic data comprising noisy measurements of the

first pool at 10 equally spaced time points in five identically prepared experiments. Although

measurements of the second pool are not taken, we assume, for demonstration purposes, that

the initial concentration in each pool is zero before a known amount is introduced to the first

pool, thus the full initial condition is known. In practice, the initial condition may also depend

on a set of unknown parameters, and we focus on this with the epidemic model.

3.2.1 Model formulation and moment equations

The two-pool model can be expressed as the bio-chemical reaction network

X1
θ1→ ∅, X2

θ2→ ∅, X1
θ3


θ4
X2,

with stoichiometries ν1 = (−1, 0)T , ν2 = (0,−1)T , ν3 = (−1, 1)T and ν4 = (1,−1)T ; and

propensities a1(Xt) = θ1X1, a2(Xt) = θ2X2, a3(Xt) = θ3X1 and a4(Xt) = θ4X2. Here, we

denote Xt = (X1,t, X2,t)
T as the concentration of cholesterol in the first and second pools,

respectively. The observed concentration, Yt, is described by the noise model

Yt = X1,t + ξt, ξt ∼ N (0, σ2
err), (24)

in which we consider that the data are subject to measurement error in the form of additive

Gaussian noise [9, 145, 146]. We show 100 realisations of the SSA for the two-pool model in

figure 3b, and the synthetic data used for practical identifiability analysis in figure 3f . The data

are generated using the initial condition X0 = (100, 0)T and target parameter values θ1 = 0.1,

θ2 = 0.2, θ3 = 0.2, θ4 = 0.5 and σerr = 2. Here, we note that σerr � Xt (figure 3c), which

ensures Yt > 0.
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The CLE for the two-pool model is

dXt =

(
θ4X2,t − (θ1 + θ3)X1,t

θ3X1,t − (θ2 + θ4)X2,t

)
dt+

(
−
√
θ1X1,t 0 −

√
θ3X1,t

√
θ4X2,t

0 −
√
θ2X2,t

√
θ3X1,t −

√
θ4X2,t

)
dWt,

(25)

and the moment equations are given to second order by

dm10

dt
= θ4m01 − (θ1 + θ3)m10,

dm01

dt
= θ3m10 − (θ2 + θ4)m01,

dm20

dt
= θ4(m01 + 2m11) + (θ1 + θ3)(m10 − 2m20),

dm02

dt
= θ3(m10 + 2m11) + (θ2 + θ4)(m01 − 2m02),

dm11

dt
= −(θ1 + θ2)m11 − θ4(m01 −m02 +m11)

− θ3(m10 +m11 −m20).

(26)

The moments of the observed cholesterol concentration are given in the noise-free limit by

n1 = m10 and n2 = m20. As with the birth-death process, all elements of α(·) and σ(·)σ(·)T

are linear in Xt, so the moment equations are closed at every order and, therefore, exact.

3.2.2 Structural identifiability

The two-pool model provides an archetypical example of structural non-identifiability in an

ODE model [34, 35]. Unless a restriction is placed on one of the parameters (for example, if

decay of the substance can only occur from the first pool so θ2 = 0), the model parameters are

structurally non-identifiable: many parameter combinations give identical behaviour in the ODE

model. Therefore, the model parameters cannot be uniquely determined from any amount of

noise-free experimental data if observations are made from only the first pool.

We assess structural identifiability of an SDE description of the two-pool SDE model using

DAISY with the system of moment equations up to second order (equation (26)). While the ODE

model is structurally non-identifiable, the SDE model is structurally identifiable. Therefore, in

the limit of infinite, noise-free data, the model parameters can be uniquely determined from an

SDE description of the two-pool model.

3.2.3 Practical identifiability

To assess practical identifiability of the two-pool model, we apply MCMC to infer θ =

(θ1, θ2, θ3, θ4, σerr). Initially, independent uniform priors are chosen such that p(θ1) = U(0, 0.5),

p(θ2) = U(0, 2), p(θ3) = U(0, 1), p(θ4) = U(0, 0.5), and p(σerr) = U(0, 10). The support of each

prior is chosen to cover a range of magnitudes over the target parameter values. Results from

four independent pilot chains, each initiated at a random sample from the prior, are shown in

figure 5a–f . In figure 5a we see that the log-likelihood estimate rapidly stabilises, indicating

that the chain has moved to a high-likelihood region of the parameter space. Results for σerr

and θ3 also rapidly stabilise, indicating that these parameters are practically identifiable [29].
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Figure 5. Pilot MCMC trace plots, and log-likelihood estimates, of four chains for the two pool SDE
model on with (a–f) untransformed parameters; and (g–l) transformed parameters. Priors for each
parameter are uniform with support corresponding to the respective axis limits. The target parameters,
used to generate synthetic data, are indicated (black dashed line).

Results for the remaining three kinetic rate parameters in figure 5c,d,f indicate that θ1, θ2 and

θ4 are practically non-identifiable. In particular, chains for θ1 and θ2 spend a non-negligible

time near zero, indicating that the model may be indistinguishable (using the available data)

from a model where removal only occurs from a single pool.

We next repeat the analysis using MCMC to infer θ∗ = (log θ1, log θ2, log θ3, log θ4, σerr).

Inferring the logarithm of rate parameters will provide more detailed information about the

magnitude of rate parameters potentially close to zero [102]. This transformation provides

an excellent example of why even a uniform prior is informative, since a uniform prior placed

on the linear-scale is not uniform on the log-scale. A uniform prior on the linear-scale makes

parameters of a smaller magnitude less likely than a larger magnitude. The priors are again

chosen to be independent and uniform (on the log-scale), such that p(log θi) = U(−7, 2) for all i

and p(σerr) = U(0, 10) as before. The support of each prior is chosen, again, to cover a range of

magnitudes above and below that of the target parameter values. Results in figure 5k confirm

that θ3 is practically identifiable, while θ2 and θ4 are practically non-identifiable. From results

in figure 5l we term θ4 one-sided identifiable: the parameter has an identifiable lower bound,

and is distinguishable from zero.

To visualise correlations between inferred parameters, we tune the proposal kernel (equa-

tion (15)) and run the MCMC algorithm for 30,000 iterations, results are shown in figure 6 and

table 2. If only the univariate marginal distributions are considered, all parameters except for

θ4 may be classified as practically identifiable. However, our analysis shows that θ1 and θ2 are

distinguishable only within a large range of magnitudes. A strong correlation is seen between

θ1 and θ2, indicating that the total substance exit rate, θ1 + θ2, may be practically identifiable.

If one of θ1 or θ2 were known in advance, perhaps based on past experimental knowledge, the

other may become practically identifiable. Further, results from the tuned chains verify that θ3

is practically identifiable (95% CrI (0.1356,0.4857)) and θ4 is distinguishable from zero.
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True 95% CrI R̂ Seff

θ1 0.1 (0.0042,0.1503) 1.0024 510
θ2 0.2 (0.0307,1.0699) 1.0014 456
θ3 0.2 (0.1356,0.4857) 1.0023 515
θ4 0.5 (0.4372,1.9585) 1.0004 741
σerr 2.0 (0.5715,2.8773) 1.0089 409

Table 2. 95% credible intervals, and diagnostics, for the parameter estimates (on the linear-scale) for
the two-pool model. Credible intervals are approximated using the MCMC quantiles after burn-in.
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Figure 6. Tuned MCMC results for the two-pool model with a parameters on the linear-scale. The
left-most column shows an MCMC trace from a single chain. Kernel density estimates of the marginal
posterior for each parameter and bivariate scatter plots are produced using every 300th sample from four
independent MCMC chains, after burn-in. The autocorrelation function for a single chain is shown in (c),
indicating that every 300th sample is approximately independent.

20

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.08.10.245233doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245233
http://creativecommons.org/licenses/by-nd/4.0/


3.3 Epidemic model

Here, we consider a four-compartment epidemic model — the SEIR model [105–107] (figure 2c). In

this model, susceptible individuals, S, are infected due to interactions with infectious individuals,

I, and undergo an unknown period of time during which they have been exposed, E, but are

not themselves infectious. Infectious individuals either recover or are removed from the total

population, R. A noisy unknown proportion, ξ, with mean µobs, of the number of infectious and

recovered individuals is monitored. This captures a testing regime where not all infectious or

recovered individuals are tested. We supplement these results by considering a scenario where

the same unknown proportion of the exposed individuals is also monitored during the early part

of the epidemic.

The kind of data available for the epidemic model differs significantly from that for the

experiment-based models we have considered thus far: we are interested in a practical iden-

tifiability problem where data from only a single time-series is available, which mirrors data

available from an actual epidemic [147]. We first consider practical identifiability using data

from the early part of the epidemic, before the number of cases is observed to decrease. Next,

these results are compared to a case where data further through the course of the epidemic is

considered (figure 3g). Initially, 10 infected individuals and 10 recovered individuals are detected.

For simplicity we assume there is no noise in these initial observations, so the number of infected

and recovered individuals is given by 10/µobs. An unknown number of individuals, E0, are

initially exposed. In our analysis, we assume that E0 is not of direct interest, and we class it a

nuisance parameter.

3.3.1 Model formulation and moment equations

The SEIR model can be represented by the following bio-chemical reactions

S
θ1I→ E, E

θ2→ I, I
θ3→ R,

with stoichiometries ν1 = (−1, 1, 0, 0)T , ν2 = (0,−1, 1, 0)T and ν3 = (0, 0,−1, 1)T ; and propensi-

ties a1(Xt) = θ1StIt, a2(Xt) = θ2Et and a3(Xt) = θ3It. Here, we denote Xt = (St, Et, It, Rt)
T

as the number of individuals in each compartment. Two observations are made,

Y1,t = ξ1,tIt, ξ1,t ∼ N (µobs, σ
2
err), (27)

Y2,t = ξ2,tRt, ξ2,t ∼ N (µobs, σ
2
err). (28)

Here, Y1,t and Y2,t describe the observed number of infected individuals and recovered individuals,

respectively. We further assume that µobs, the average observed proportion; and σerr, the obser-

vation error, are unknown and must be estimated. We show 100 realisations of the SSA for the

epidemic model in figure 3c, and synthetic data used for practical identifiability analysis in fig-

ure 3g . The data are generated using the initial condition X0 = (500−E0, E0, 10/µobs, 10/µobs)
T

and target parameter values θ1 = 0.01, θ2 = 0.2, θ3 = 0.1, E0 = 20, µobs = 0.5 and σerr = 0.05.

Here, we note that σerr � µobs, ensuring that Y1,t and Y2,t remain positive.

The moment equations differ from the previous two models considered in that they are
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not closed. Therefore, the first order moment equations are not equivalent to those for the

corresponding ODE model [30], unless a mean-field closure is drawn at first order. To make

progress, we close the moment equations after second order to form an approximate system of

moment equations for the first two moments. We give the system of 14 moment equations, under

all three moment closures considered, as supporting material. The moments of the observation

variables are given in the noise-free limit by

nij(t) = µi+jobsm00ij(t), i+ j ≤ 2. (29)

In the supporting material we produce numerical solutions to the moment equations for the

epidemic model for each closure considered (figure S1). All closures predict visually identical

behaviour at first order, and the pair-approximation and Gaussian closures are in agreement at

second order. For the target parameters we consider, the mean-field closure does not agree at

second order with the more advanced closures. Whereas a numerical solution to the moment

equations for the pair-approximation and Gaussian closures is readily obtainable from a standard

solver in Julia [148], the mean-field closure required a positivity-preserving Patankar-type

method [149] to avoid blow up.

3.3.2 Structural identifiability

We assess structural identifiability of the approximate system of moment equations in DAISY

and GenSSI2, results are shown in table 3. The ODE model, equivalent to a mean-field closure

(equation (10)) drawn after the first moment, is structurally non-identifiable. The second-order

systems, for all closures, are structurally identifiable (table 3). As the second-order systems

are approximate, this analysis is not conclusive for the SDE. However, we can conclude that if

the mean and variance of the epidemic model (the first two moments) are modelled using the

system of moment equations, and data is available accordingly, the parameters are able to be

accurately estimated in the limit of infinite, noise-free data. We highlight the computational cost

in DAISY of introducing complexity into the moment equations through the closure methods.

The pair-wise closure, equation (11), which introduces a quotient, and the Gaussian closure,

equation (12), which introduces a cubic, take significantly longer using DAISY to assess than the

mean-field closure, equation (10), yet give the same result. However, unlike MCMC, we note

that structural identifiability results are deterministic, and independent of user choices such as

prior, number of particles, and generated or real synthetic data.

3.3.3 Practical identifiability

We assess practical identifiability of the epidemic model using MCMC to infer θ =

(θ1, θ2, θ3, E0, µobs, σerr). Independent uniform priors are placed on each parameter so that

p(θ1) = U(0, 0.1), p(θ2) = U(0, 1), p(θ3) = U(0, 0.5), p(E0) = U(0, 20), p(µobs) = U(0.2, 1) and

p(σerr) = U(0, 0.2). Results are shown in figure 7, where we initiate each chain at the same

location for all forms of data we consider.

First, we assess identifiability when only early-time data is available. The log-likelihood

estimate rapidly stabilises (figure 7a), indicating that the chains have moved to a high-likelihood
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Model Structural identifiability Runtime (DAISY) Runtime (GenSSI2)

ODE Non-Identifiable 5 seconds 5 seconds
SDE (mean-field closure) Identifiable 5 minutes 2 seconds
SDE (pair-wise closure) Identifiable 16 hours 2 seconds
SDE (Gaussian closure) Identifiable 7 hours 2 seconds

Table 3. Structural identifiability of the partially observed SEIR model assessed in DAISY and GenSSI2.
Structural identifiability of the SDE is assessed using each closure method for third and higher order
moments. Note that the ODE model is equivalent to the SDE model with a mean-field closure for second
and higher order moments. Runtimes correspond to a 3.7GHz quad-core i7 desktop machine running
Windows 10.
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Figure 7. Pilot MCMC trace plots, and log-likelihood estimate, of four chains for the epidemic model.
We consider data comprising noisy observations of an unknown proportion of the number of infected and
recovered individuals during the early part of the epidemic (first column) and throughout the epidemic
(second column). We supplement these results by considering the case we are also able to observe the
same unknown proportion of the number of exposed individuals during the early part of the epidemic
(third column). Priors for each parameter are uniform with support corresponding to the respective axis
limits. The target parameter set, used to generate synthetic data, are indicated (black dashed line).
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Figure 8. Posterior predictive distribution for the epidemic model using (a) short-time data; (b) long-time
data; and (c) short-time data where observations are also made of the number of exposed individuals. In
(a,c), the dashed line indicates the last observation point used for inference. The first 3,000 samples from
each pilot chain is discarded as burn-in. We resample 10,000 parameter combinations (with replacement)
and solve the SDE model to estimate posterior predictive intervals (PIs). Shown are 50% (darker) and
95% (lighted) prediction intervals computed from the quantiles of the posterior predictive distribution.

region of the parameter space [29]. Results for θ3, the recovery rate, also stabilise, indicating

that θ3 is structurally identifiable. Eventually, we see the estimate for θ2 stabilises in all chains,

however they under-estimate the target value, although proposals equal to and greater than the

target value θ2 = 0.2 are occasionally accepted. To compensate, the estimate of θ1 stabilises, and

covers a region an order of magnitude greater than the target (θ1 = 0.01). Therefore, although θ1

is practically identifiable to a large, but finite, range of values, we classify θ1 as non-identifiable

from the short-time data. Estimates for E0 and µobs in figure 7m,p do not stabilise, and are

practically non-identifiable.

Next, we consider a scenario where long-time data are available, such that the number of

infected individuals is observed to eventually decrease. The log-likelihood estimate (figure 7b)

and chains for all parameters, except E0, are observed to stabilise, indicating that all parameters

of interest are now practically identifiable. We supplement these results by considering a third

scenario, where only early-time data are available, but the same unknown proportion of the

number of exposed individuals is also monitored. As with the long-time data, all parameters of

interest are now practically identifiable.

We perform a posterior predictive check [135] of the epidemic model to compare the model

prediction—which accounts for parameter uncertainty, intrinsic noise and observation error—to

the synthetic data used for inference. We discard the first 3,000 samples from each pilot chain as

burn-in, and resample 10,000 parameter combinations for each data type considered. Results in

figure 8 show that, in all cases, the model predictions are in agreement with the full time-course

(although, we note, the long-time data is only used to calibrate parameters in figure 8b). Results

in figure 8a, for the short–time data, highlight how practical non-identifiability affects model

predictions. These results predict an epidemic size at t = 30 is noticeably wider and higher than

those for the data types where θ1 is practically identifiable. Further, the lower 95% credible

interval for the observed number of infected individuals reduces much faster than that predicted

by the other data types.
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3.4 β-insulin-glucose circuit

Finally, we consider a non-linear model of glucose homeostasis, the β-insulin-glucose circuit

[108, 109] (figure 2d). Parameterising mathematical models of glucose homeostasis is important

for the development of patient-specific insulin delivery for type 1 diabetics [49]. Time-series data

of blood glucose concentration is available from continuous glucose monitoring sensors, a critical

component of type 1 diabetes management [50,70], an example of which is shown in figure 1f .

The model describes the regulation of blood plasma glucose by insulin secreted by pancreatic β

cells. Glucose is introduced into the system through a base production plus a meal intake, u(t),

and decays linearly according to the insulin concentration. Insulin is secreted by β cells at a

rate given by a non-linear Hill function [109]. β cells are produced and decay in a non-response

to the glucose concentration. We consider identifiability for synthetic data comprising noisy

measurements of the β cell and glucose concentrations, but not the insulin concentration. The

data consists of five independent experiments, each comprising 15 time-series observations

following a meal intake. We only consider inference for two biophysical parameters: θ1, the

insulin secretion rate; and θ2, the insulin sensitivity. The non-linearities in the model mean that

the moment equation approach is not available, and inference using MCMC is computationally

expensive. We demonstrate how structural identifiability analysis of the corresponding ODE

system [150] can guide analysis of the SDE system and alleviate some of the computational

challenges.

3.4.1 Model formulation

We consider a stochastic analogue of the model presented by Karin et al. [109]. Denoting

Xt = (βt, It, Gt)
T as the concentrations of β cells, insulin and glucose, respectively, the propensity

functions and corresponding stoichiometries are given by

a1(Xt, t) = β(t)λ+(Gt), ν1 = (1, 0, 0)T ,

a2(Xt, t) = Itλ−(Gt), ν2 = (−1, 0, 0)T ,

a3(Xt, t) = θ1βtρ(Gt), ν3 = (0, 1, 0)T ,

a4(Xt, t) = γIt, ν4 = (0,−1, 0)T ,

a5(Xt, t) = u0, ν5 = (0, 0, 1)T ,

a6(Xt, t) = u(t), ν6 = (0, 0, 1)T ,

a7(Xt, t) = cGt, ν7 = (0, 0,−1)T ,

a8(Xt, t) = θ2ItGt, ν8 = (0, 0,−1)T ,

where

λ+(Gt) =
µ+

1 +

(
8.6

Gt

)1.7 , λ−(Gt) =
µ−

1 +

(
Gt
4.8

)8.5 ,

ρ(Gt) =
G2
t

η2 +G2
t

, u(t) =

{
0.2, t < 50,

0, t ≥ 50.
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Since βt, It and Gt denote the concentrations of each substance, and not the population counts, we

scale the diffusion term in the CLE to represent the relative concentrations of each substance [57].

Denoting Nβ , NI and NG the relative concentration of β cells, insulin and glucose, respectively,

we write

dXt =

8∑
k=1

νkak(Xt, t;θ)dt+ diag

(
1√
Nβ

,
1√
NI

,
1√
NG

)
8∑

k=1

νk
√
ak(Xt, t;θ)dWk,t. (30)

Two observations are made,

Y1,t = βt + ξ1,t, ξ1,t ∼ N (0, σ2
err),

Y2,t = Gt + ξ2,t, ξ2,t ∼ N (0, σ2
err),

such that Y1,t and Y2,t are the observed β cell and glucose concentrations, respectively. We show

100 realisations of the SSA for the β-insulin-glucose circuit in figure 3d , and the synthetic data

used for practical identifiability analysis in figure 3h. The data are generated using the initial

condition X0 = (322, 10, 5)T with fixed parameters, µ+ = 0.21/(24× 60), µ− = 0.025/(24× 60),

η = 7.85, γ = 0.3, u0 = 1/30, c = 10−3, Nβ = 1, NI = NG = 20, and target parameters

θ1 = 0.02, θ2 = 0.0005 and σerr = 0.5 [109]. Here, we note σerr � βt, Gt (figure 3d), which

ensures that Y1,t and Y2,t remain positive.

3.4.2 Parameter transform

Villaverde et al. [151] study structural identifiability of the corresponding ODE model using

differential geometry. In the ODE model, θ1 and θ2 are structurally non-identifiable, unless the

insulin concentration is also observed or one of these two parameters is known. We demonstrate

this using MCMC in figure 9a, where the marginal posterior for (θ1, θ2) covers a hyperbolic

region of the parameter space of equal posterior density. In the ODE model, the product θ1θ2

is structurally identifiable. To demonstrate this, we perform MCMC on the ODE model with

transformed variables θ̃1 = θ1θ2 and θ̃2 = θ1/θ2, results shown in figure 9b. These results

also show how inefficient a näıve MCMC proposal can be when correlations between posterior

parameters are non-linear. Structural identifiability analysis [151] indicates that the hyperbolic

region defined by θ̃1 = θ1θ2 (for a fixed θ̃1) produces indistinguishable behaviour, corresponding

to a flat posterior when a uniform prior is applied. Despite this, the tail regions in figure 9a are

rarely sampled, which could give the impression that the parameters are practically identifiable.

As the propensity functions for the β-insulin-glucose circuit model contain non-polynomial

functions, we cannot produce an exact expression for the moment equations. Therefore, we only

study practical identifiability using MCMC, and do not consider structural identifiability of the

SDE for the β-insulin-glucose circuit using the moment equations. Motivated by the structural

identifiability analysis of the ODE model, we use MCMC to infer θ = (θ̃1, θ̃2, σerr), where we

only consider the transformed variables θ̃1 = θ1θ2 and θ̃2 = θ1/θ2.
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3.4.3 Practical identifiability

We show MCMC results from four pilot chains in figure 10. The log-likelihood estimate rapidly

stabilises (figure 10a), as do results for θ̃1 and σerr (figure 10b,d). As with the ODE model,

θ̃1 is practically identifiable, but θ̃2 is not. To visualise possible correlations between inferred

parameters, we tune the proposal kernel (equation (15)) and run the MCMC algorithm for

10,000 iterations. The univariate marginal distributions, and MCMC trace plots, show that

θ̃1 (95% CrI: (1.34, 1.67)× 10−5) and σerr (95% CrI: (0.812,1.049)) are practically identifiable,

whereas θ̃2 is not (95% CrI: (8.21,97.79)). No large correlations are seen between the parameters

(ρ(θ̃1, θ̃2) = 0.10), and θ2 is clearly practically non-identifiable as samples cover the entire range

of the prior.
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Figure 9. Kernel density of the bivariate marginal posterior distribution of the biophysical parameters
in the β-insulin-glucose circuit, using the ODE and 100,000 pilot MCMC iterations (the first 3,000 are
discarded as burn-in. (a) The posterior for the untransformed parameters, (θ1, θ2) shows non-identifiability.
(b) The posterior for the transformed parameters, (θ̃1, θ̃2), demonstrates that θ̃1 = θ1θ2 is identifiable,
but θ̃2 = θ1/θ2 is not.
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Figure 10. Pilot MCMC trace plots, and log likelihood estimate, of four chains for the β-insulin-glucose
circuit in the transformed parameter space. The likelihood quickly stabilises, but estimates for θ̃2 do not,
indicating practical non-identifiability. Priors for each parameter are uniform with support corresponding
to the respective axis limits. The target parameter set, used to generate synthetic data, are indicated
(black dashed line).
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Figure 11. Tuned MCMC results for the β-insulin-glucose circuit in the transformed parameter space.
The left-most column shows an MCMC trace from a single chain. Kernel density estimates of the marginal
posterior for each parameter and bivariate scatter plots are produced using every 100th sample from four
independent MCMC chains, after burn-in. The autocorrelation function for a single chain is shown in (c),
indicating that every 20th sample is approximately independent.
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4 Discussion

Mathematical models are routinely calibrated to experimental data, with goals ranging from

building a predictive model to quantifying biophysical parameters that cannot be directly

measured. Much of the usefulness of calibrated models hinges on an assumption that model

parameters are identifiable. Heavily over-parameterised models, with large numbers of practically

non-identifiable parameters, are often referred to as sloppy in the systems biology literature

[72, 152–154]. Worryingly, these issues of parameter identifiability can often go undetected:

models with non-identifiable parameters can still match experimental data (figure 8), but may

have poor predictive power and provide little or no mechanistic insight [28]. Identifiability

analysis is well-developed for deterministic ODE models, but there is little guidance in the

literature to conducting such analysis for the stochastic models that are often vital for interpreting

complex experimental data. In this review, we demonstrate how existing techniques can be

applied to assess both structural and practical identifiability of SDE models in biology.

4.1 Moment dynamics approach

We demonstrate how existing ODE identifiability techniques can be applied directly to stochastic

problems by formulating a system of moment equations. In the birth-death process and the

two-pool model, the derived moment equations are closed and, therefore, exactly describe the

time-evolution of the moments of the SDE. In these two case studies we find that the moment

equations are structurally identifiable. This implies structural identifiability of the corresponding

SDE model, and parameters can be uniquely estimated in the limit of infinite, noise-free data. For

an SDE model this implies an infinite number of observation-noise free trajectories of the SDE,

since the variability, which relates to higher-order moments, contains information. While we find

that the two-pool model of cholesterol distribution is not practically identifiable, establishing

structural identifiability is useful as it suggests to the practitioner that the observation process

(i.e. observe cholesterol in the first pool) is sufficient, in principle, to fully parameterise the

model.

For the epidemic model, the moment equations are not closed, so we study structural

identifiability through an approximate system of second-order moment equations. The idea of

studying identifiability through an approximate system was first suggested by Pohjanpalo [75],

who studies identifiability of ODE systems through a power series expansion. The closed system

of moment equations suggest the epidemic SDE model could be structurally identifiable, and

these results agree, in our case, with practical identifiability detected using MCMC. More

research is needed to establish how identifiability is affected when closing, or truncating, a

system of moment equations. For example, if information required to identify model parameters

is contained in third or higher order moments, results suggesting that a model is practically

non-identifiable from a second order closure will not be indicative of non-identifiability in the

SDE model. Furthermore, if structural identifiability differs between moment closures, such a

preliminary screening tool needs to be interpreted with caution. If this were the case, a conclusion

of structural identifiability is indicative of the model under a particular closure. Recent work

suggests that a finite number of moments often contain the information required to identify
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parameters [155], even for a bimodal distribution and if a closure is applied [156].

Due to the computational constraints placed on analysing structural identifiability of non-

polynomial ODE models, we do not attempt to apply the moment dynamics approach to the

stochastic β-insulin-glucose circuit model. However, for many models, a mean-field closure

corresponds to an ODE description of the system, and studying identifiability of this ODE model

can aid practical identifiability analysis of the corresponding SDE. In our case, the corresponding

ODE model is structurally non-identifiable due to a hyperbolic relationship between the two

parameters of interest: for a fixed θ1θ2, model outputs are indistinguishable [151]. The question

of whether an SDE description can provide enough information to practically identify θ1 and

θ2 can be answered through MCMC, however simple variants of MCMC can struggle when

correlations between parameters are strong and non-linear. Therefore, we work in a transformed

parameter space where, for the ODE model, θ̃1 = θ1θ2 is identifiable but θ̃2 is not (figure 9).

This analysis provides a better sense of whether the SDE model captures enough information to

identify the parameters, and provides more robust results that are less dependent upon choices

made in the MCMC algorithm.

4.2 Particle Markov-chain Monte Carlo

We demonstrate practical identifiability by calibrating each model to synthetic data using particle

MCMC. We observe the MCMC chains to stabilise in a region of high posterior density, after

which time transitions produce samples from the posterior distribution [29]. By visualising

MCMC trace plots, we see that estimates of practically identifiable parameters also stabilise,

but those of practically non-identifiable parameters do not. These results also demonstrate that,

although estimates made of practically identifiable parameters are precise (that is, within a

reasonable level of confidence), they are not necessarily accurate. For example, in figure 7g ,

the rate at which exposed individuals become infectious is practically identifiable, but it is

underestimated compared to the target value, which could hint at model misspecification.

Given that particle MCMC is computationally expensive, our implementation of a standard

technique to detect identifiability from pilot chains carries several advantages. First, pilot

chains are regularly generated in the early stages of many inference procedures to establish

efficient proposal kernels. Practical identifiability can, therefore, be established as part of an

existing workflow. Second, more sophisticated methods are by their very nature more difficult to

implement and dependent on practitioner choices, which could obscure results and require more

algorithmic experimentation. In comparison, we take an automated approach: aside from the

model and choice of prior, the procedure to perform MCMC for each model we consider is identical.

Once identifiability is established, the computational cost of MCMC can be alleviated to some

extent by adopting a more efficient inference technique. For example, adaptive MCMC [157],

sequential Monte-Carlo [158], multi-level methods [159–161], sub-sampling techniques [162]

and model-based proposal methods [163] provide significant performance improvements over

the standard technique we employ. Further, we expect applying higher-order SDE simulation

algorithms, such as a Runge-Kutta method [164], or considering GPU approaches to particle

MCMC [165], to improve performance.

As we calibrate to synthetic data for the purpose of a didactic demonstration, we take a
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pragmatic approach by treating the true values as unknown. Hence, we initiate each chain as a

random sample from the prior distribution. This involves a burn-in phase before the MCMC

chain settles in an area of high posterior density. For computationally expensive models, such as

those found in the cardiac modelling literature [166], synthetic data can be used with pilot chains

initiated at the target values. If models have have already been calibrated to experimental data

using, for example, maximum likelihood estimation, the chain can be initiated at the calibrated

values. MCMC then, relatively cheaply, provides information about the posterior distribution

about this point, akin to the Fisher information for models where it can be calculated [41].

MCMC can be applied to detect identifiability for any stochastic model provided an ap-

proximation to the likelihood is available. Recent developments to particle MCMC have seen

its adoption for more complicated SDE models, such as SDE mixed effects models [167]. For

systems with relatively small populations, it may be more appropriate to work directly with

an SSA with, for example, a tau-leap method [54, 119]. Alternative approximations to the

likelihood, such as those employed by ABC, may be necessary if model complexity requires;

for example, should the model include spatial effects [18]. A major drawback of ABC in the

context of identifiability is that one must typically decide a priori which features of the model

and data to match. Common applications of ABC for SDE models match the mean and variance

of system [103] or the mean square error between simulations and data [168]. Estimating the

likelihood directly, as particle MCMC does, is advantageous when assessing identifiability as it

is not clear a priori which features of the data and model are significant. For example, some

systems might contain the information required for identifiability in higher-order moments or

auto-correlations between time-series observations. If ABC is used, a variant that preserves

features of the model distribution might be desirable [169].

4.3 Modelling noise

In contrast to many studies of identifiability analysis for ODEs, we do not pre-specify parameters

in the observation distribution. In a deterministic modelling framework, it is common to

assume that all the variability in the data is uncorrelated and sourced from the observation

process [41,90, 170]. Therefore, for an ODE model, the observation parameters can be reliably

estimated using the pooled sample variance. For inference on the birth-death ODE model

(figure 4), we see that, because the observation variance must now also account for intrinsic

noise, the identified value of σerr is significantly larger than the target value. For an ODE model

with additive homoscedastic Gaussian noise, the posterior mode (in the case of an improper

uniform prior), maximum likelihood estimate and least-squares estimate are identical and are

independent of the choice of the observed variance. For an SDE model, this is not the case as

the intrinsic component of the noise is also modelled implicitly. Therefore, pre-specifying the

observation variance could lead to biased estimates and obscure parameter identifiability. We

account for this by treating the observation distribution variance as a nuisance parameter that

we infer using MCMC, finding it to be identifiable in every case-study considered.

We have focussed our analysis on SDEs derived through the CLE, where the intrinsic noise

can provide more information about the process. However, for large populations, the information

contained in higher-order moments dissipates: to leading order,
〈
X2
〉
→ 〈X〉2 as X →∞. We
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see this in the epidemic model (figure 3c), where the variance is small compared to the scale of

the mean. This loss of information in higher-order moments will not be detected by structural

identifiability analysis of the moment equations, which is independent of the relative sizes of

each moment. As populations become large, the information tends towards that obtained from

the equivalent ODE system: this is the assumption behind many mean-field models. There are,

however, many other models that contain sources of variability in their own right. For example,

Mummert and Otunuga [61] study identifiability of an epidemic model where the infection rate

varies according to a white noise process. Other external effects, such as seasonal effects, are

often incorporated into epidemic models [171,172]. In other systems, extrinsic noise describing,

for example, the environment, forms a core part of the process and is described by an SDE

independent of the population size [48]. Grey-box models use a diffusion term to characterise

uncertain physiological effects [63] that could obscure inference, rather than contain information.

Making high-level assumptions about which noise process contains information can help with

some of the computational challenges by formulating hybrid models containing a mixture of

ODEs and SDEs. Particle MCMC carries across, trivially, to any Itô SDE, and the moment

equation approach can be applied provided a system of moments be constructed. We have not

considered identifiability of SDE models containing non-diffusion noise, such as coloured noise

or jump noise. These models lend themselves to different inference techniques, such as forms of

rejection sampling [173].

4.4 Approaches to computational challenges

The primary computational cost of working with SDE models stems from the need to simulate

a suite of trajectories at each iteration of the particle MCMC algorithm. This cost increases

not only with the dimensionality of the problem (as for deterministic models) but also with

the amount of data, since the number of particles required for an unbiased likelihood estimate

increases with the sample size [25,100]. We see this, in particular, when conducting practical

identifiability analysis of the two-pool and β-insulin-glucose models. These issues have important

ramifications for identifiability, as it may not always be feasible to increase the amount of

experimental data to rectify practical non-identifiability. Working with a surrogate model, such

as a system of moment equations, can help alleviate some of these challenges. For example,

establishing structural identifiability—which is requisite for parameter estimation [28]—indicates

that the computational investment is worthwhile. Furthermore, such surrogate models can also

form a computationally efficient alternative for assessing practical identifiability and performing

inference [156,174], while still capturing more information than a purely deterministic description.

A large class of high-dimensional stochastic models lend themselves to structural identifiability

analysis through moment equations. For example, CLE descriptions of multi-state ion-channel

systems [57] and cascades with many bimolecular reactions [175], can be analysed in terms of a

surrogate model using moment equations. This approach can be used because the propensity

functions are often polynomial. However, the systems of moment equations are often infinite

and require a moment closure approximation to facilitate this analysis. When a moment

closure assumption is required, we find that newer software, such as GenSSI2 in Matlab, is

computationally advantageous over DAISY (table 3). Further, for larger systems, it may not
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be necessary to consider a full system of second-order moments: a closed system that neglects

covariances is also a potentially useful surrogate model.

Many stochastic problems are both computationally expensive to assess using particle MCMC

and may not directly permit moment dynamics analysis. The β-insulin-glucose model comprises

eight reactions and takes approximately 30 hours to perform 10,000 iterations of a pilot chain2.

These issues are magnified by the quantity of data we consider in this example: five time-series

of 15 observations each. Non-polynomial propensity functions mean that an exact expression

for the moment equations cannot be derived, so it may not be possible to pre-detect structural

non-identifiability through the moment dynamics approach. Fortunately, other approaches,

such as those that use polynomial chaos [176], Gaussian processes [177], or the linear noise

approximation [93] can provide alternative means of deriving surrogate models. This kind

of approximation is already routine in the field of uncertainty quantification, which has deep

connections to identifiability [178,179]. In the future, many of these ideas could allow tractable

structural and practical identifiability analysis of large systems of SDEs and, by extension,

analysis of spatial problems described by stochastic partial differential equations (SPDEs).

The computational cost of MCMC, in particular for stochastic models with many parameters,

has spurred the development of alternatives to explore and exploit the geometry of the likelihood

near parameter estimates. Komorowski et al. [93] apply the linear noise approximation—which

captures first and second order behaviour—to perform sensitivity analysis and calculate the

Fisher information matrix for stochastic chemical kinetics models. The concept of information

geometry [153,180] generalises Fisher information and can be applied to detect identifiability

through local information [181], and improve the performance of MCMC algorithms [182]. For

SDE models in particular, variational Bayesian techniques provide an efficient alternative to

MCMC for parameter estimation [183]. In many cases, mathematical models are calibrated to

experimental data to establish the value of a biophysical parameter, not to fully parameterise a

model. Profile likelihood [92,184] is widely applied to assess identifiability in ODE models by

maximising out parameters that are not of direct interest to reduce the dimensionality of the

analysis. Since the bootstrap particle filter that we employ estimates the likelihood function,

profile likelihood could be applied to SDE problems.

5 Conclusion

It is essential to consider identifiability when performing inference. Yet, there is a scarcity

of methods available for assessing identifiability of the stochastic models that are becoming

increasingly important. We have provided, through this review, an introduction to identifiability

and a guide for performing identifiability analysis of SDE models in systems biology. By

formulating a system of moment equations, we show how existing techniques for structural

identifiability analysis of ODE models can be applied directly to SDE models [28,34,35,150].

Through synthetic data and particle MCMC, we have demonstrated how to establish practical

identifiability for SDE models from data [29,51].

2Runtimes for all results produced are available on Github at https://github.com/ap-browning/

SDE-Identifiability
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The analysis we demonstrate is critical for tailoring model complexity to the available

data [28]. When a structurally identifiable model is found to be practically non-identifiable,

identifiability analysis can guide experiment design to discern the quality and quantity of data

required to estimate model parameters [185]. On the other hand, models found to be structurally

non-identifiable should be re-parameterised, reduced in complexity, or changed [87,186]. Moving

from an ODE to an SDE model can often provide enough information to render an otherwise

structurally non-identifiable parameter identifiable: we demonstrate this with the birth-death

process. As increasing computing power facilitates inference of complex stochastic models, we

expect identifiability to become ever more relevant.

Data availability

This study contains no experimental data. Code used to produce the numerical results is

available as a Julia module on GitHub at github.com/ap-browning/SDE-Identifiability.
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