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Abstract  
As stroke mortality rates decrease, there has been a surge of effort to study post-stroke 
dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal 
volume may be an important neuroimaging biomarker in post-stroke dementia, as it has 
been associated with many other forms of dementia. However, studying hippocampal 
volume using MRI requires hippocampal segmentation. Advances in automated 
segmentation methods have allowed for studying the hippocampus on a large scale, 
which is important for robust results in the heterogeneous stroke population. However, 
most of these automated methods use a single atlas-based approach and may fail in the 
presence of severe structural abnormalities common in stroke. Hippodeep, a new 
convolutional neural network-based hippocampal segmentation method, does not rely 
solely on a single atlas-based approach and thus may be better suited for stroke 
populations. Here, we compared quality control and the accuracy of segmentations 
generated by Hippodeep and two well-accepted hippocampal segmentation methods on 
stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal 
subfields). Quality control was performed using a stringent protocol for visual inspection 
of the segmentations, and accuracy was measured as volumetric and spatial 
comparisons to the manual segmentations. Hippodeep performed significantly better than 
both FreeSurfer methods in terms of quality control and spatial accuracy. Overall, this 
study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal 
segmentation in stroke rehabilitation research, but Hippodeep may be more robust to 
stroke lesion anatomy. 
 
Keywords (6): Stroke, Hippocampus, MRI, Image Segmentation, Convolutional Neural 
Network, Lesion 
 

Introduction 
According to the World Health Organization, approximately 10.3 million people 

experience a stroke each year worldwide (Feigin et al., 2017). Post-stroke dementia 
(PSD), defined as any dementia occurring after stroke (including cognitive impairment, 
Alzheimer’s disease (AD), and vascular dementia) presents in roughly 30% of stroke 
survivors (Mok et al., 2017). PSD is one of the leading causes of dependency in stroke 
survivors (Leys et al., 2005) and is of growing concern for patients, families, and health-
care providers as stroke survival rates improve (Dichgans, 2019). Therefore, early 
neuroimaging biomarkers that may contribute to PSD remain important to investigate. 

The hippocampus may be an important biomarker for PSD. The hippocampus, 
essential for memory function, is vulnerable to pathology and atrophy in multiple dementia 
subtypes (Braak & Braak, 1991; Braskie & Thompson, 2014, Halliday, 2017), including 
PSD (Gemmel et al., 2012, Gemmel et al., 2014). The hippocampus is usually not directly 
impacted by an ischemic stroke lesion (Szabo et al., 2009). However, emerging evidence 
suggests that diaschisis, where stroke lesions can cause indirect effects on distant brain 
structures, may contribute to hippocampal atrophy (Klingbeil et al., 2020). Specifically, 
ischemic stroke is associated with reduced hippocampal volume, which is detectable in 
vivo by non-contrast MRI (Werden et al., 2017).  

Robustly studying patterns of hippocampal atrophy after stroke requires large 
datasets, given the vast heterogeneity of stroke lesions in terms of lesion size, location, 
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and presentation. This has incentivized large multi-center worldwide consortia to obtain 
large samples of post-stroke MRI to evaluate robust PSD hippocampal patterns. 
Consortia around the world - such as the Cognition and Neocortical Volume After Stroke 
Consortium (CANVAS; Brodtmann et al., 2014) and the Stroke and Cognition Consortium 
(STROKOG; Sachdev et al., 2017) - have made significant efforts to study the role of 
hippocampal volumes in the context of overall stroke recovery on a large scale. The 
Enhancing Neuroimaging through Meta-Analysis (ENIGMA) Stroke Recovery working 
group (Liew et al., 2020) is also interested in studying the post-stroke hippocampus in the 
context of sensorimotor recovery. Currently, manual segmentations are arguably the gold 
standard for analyzing hippocampal volume in MRI studies (Frisoni et al., 2015), but this 
approach is extremely time consuming and not feasible for large datasets such as these. 
Therefore, efforts to develop and test automated hippocampal segmentation methods 
have been undertaken to provide a more efficient way to study hippocampal volume on a 
large scale.  

Current automated brain structure segmentation algorithms predominantly rely on 
atlas-based approaches, involving machine learning and sophisticated image registration 
to a single probabilistic atlas of pre-labeled regions. FreeSurfer (Fischl et al., 2002; Fischl, 
2012), a robust method to segment both cortical and subcortical structures, is an atlas-
based approach and commonly used to study hippocampal volume in cognitively healthy 
populations (Ritchie et al., 2018; Nobis et al., 2019) as well as in people with 
neurodevelopmental, psychiatric, and neurodegenerative conditions (Schmaal et al., 
2016; Hibar et al., 2017; van Erp et al., 2017; Müller-Ehrenberg et al., 2018; Zhao et al., 
2019). Recent studies by Khlif et al., (2019a, 2019b) compared automated hippocampal 
segmentation methods, such as the gross hippocampal segmentation available in 
FreeSurfer version 5.3, version 6.0, and the ‘sum of subfields’ segmentation available in 
FreeSurfer version 6.0, in stroke populations. Khlif et al., (2019a, 2019b) reported that the 
FreeSurfer version 6.0 ‘sum of subfields’ segmentation was among the most accurate 
methods for estimating hippocampal volume in healthy and ischemic stroke populations 
with lesions outside the hippocampus. 

FreeSurfer was specifically designed to account for structural brain abnormalities 
common to AD and aging (Fischl, 2012), which share some overlapping features with 
stroke populations (Mok et al., 2017; Yousufuddin & Young, 2019); perhaps as a result, 
FreeSurfer has performed relatively well in stroke studies. However, large brain lesions 
are distinct to stroke patients and can introduce large alterations to the expected spatial 
distribution of brain structures, presenting a significant challenge to FreeSurfer. 
FreeSurfer, and most other probabilistic atlas-based automated segmentation methods, 
were not explicitly designed to accommodate significant brain injury pathology (Irimia et 
al., 2012) and are more likely to fail in the presence of large lesions (Yang et al., 2016). 
New methods that do not use single atlas-based automated segmentation methods may 
better accommodate stroke pathology and help improve segmentation accuracies in 
studies of the hippocampus in stroke. Related to this, recently, Hippodeep, a new 
convolutional neural network-based (CNN) algorithm, emerged as a fast and robust 
hippocampal segmentation method (Thyreau et al., 2018).  Hippodeep relies on 
hippocampal ‘appearance’ instead of a single atlas-based approach. Hippodeep has 
better spatial agreement with manual segmentations than FreeSurfer version 6.0 ‘sum of 
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subfields’ segmentation in healthy aging populations but has not yet been evaluated in a 
stroke population (Nogovitsyn et al., 2019).  

Our study sought to expand on previous findings (Khlif et al. 2019a; Khlif et al., 
2019b; Nogovitsyn et al., 2019) and evaluate how Hippodeep compares to previously 
tested methods for hippocampal segmentation in a stroke population. Using the 
Anatomical Tracings of Lesions After Stroke dataset (ATLAS; Liew et al., 2018), we 
compared Hippodeep, FreeSurfer version 6.0 gross hippocampal segmentation, and 
FreeSurfer version 6.0 ‘sum of subfields’ segmentation in terms of 1) quality control (QC) 
and 2) accuracy when compared to expert manual segmentations. QC and accuracy 
provide different but complementary evaluations of hippocampal segmentation. QC was 
done by visually inspecting segmentations to determine which segmentations failed to 
satisfy our predetermined criteria for a good quality segmentation. We measure accuracy 
by calculating two complementary measurements including 1) intra-class correlation, 
which is a measure of how similar the volumes are to their corresponding manual 
segmentations and 2) spatial overlap, which is a measure of the spatial correspondence 
between the labeled hippocampal voxels relative to the voxels of the corresponding 
manual segmentation. We hypothesized that Hippodeep’s CNN-based method would 
perform better on lesioned brain anatomy, resulting in fewer segmentation failures and 
more accurate hippocampal segmentations than either FreeSurfer method.  

 
Methods 

I. Data Acquisition 
For our analyses, we used the ATLAS dataset (N=229), an open source dataset 

of anonymized T1-weighted structural brain MRI scans of stroke patients and 
corresponding manually traced lesion masks (Liew et al., 2018). All 229 scans were 
completed on 3-Tesla MRI scanners at a 1 mm isotropic resolution, intensity normalized 
and registered to the MNI-152 template space. T1-weighted MRIs, lesion masks, and 
metadata are publicly available for download (Liew et al., 2018). We analyzed the 
normalized data from these 229 participants as the input data to test the three automated 
segmentation methods.  
 
II. Hippocampal Segmentation Methods: 
 
II.a FreeSurfer version 6.0 

As mentioned previously, Khlif et al. (2019a, 2019b) found ‘sum of subfields’ 
segmentation available in FreeSurfer version 6.0 to be one of the best performing 
segmentation methods for the stroke data they evaluated. FreeSurfer is an atlas-based 
software that employs a Bayesian statistical approach to segment and label brain regions 
(Fischl, 2012). It involves a series of data preprocessing steps, such as intensity 
normalization, mapping of the input brain to a probabilistic brain atlas, estimation of 
statistical distributions for the intensities of different tissue classes, and labeling of cortical 
and subcortical structures based on known information on the locations and adjacencies 
of specific brain substructures (Fischl et al., 2002).  

FreeSurfer version 6.0 can output segmentations of 13 hippocampal subregions 
using a refined probabilistic atlas (Fischl, 2012). This atlas was built from a combination 
of ultra-high resolution ex vivo and in vivo MRI scans, to identify borders between 
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subregions of the hippocampus (Iglesias et al., 2015). The ex vivo scans included autopsy 
samples of participants with AD and controls scanned with a 7T scanner at 0.13 mm 
isotropic resolution that were then manually segmented by expert neuroanatomists. The 
in vivo data consisted of manual segmentations from 1mm isometric resolution T1-
weighted MRI data acquired using a 1.5 T scanner from controls and participants with 
mild dementia. In vivo and ex vivo segmentations were combined to create one single 
computational atlas of hippocampal subfields. In this study, we combined the volumes of 
the individually labeled hippocampal subfields output by FreeSurfer version 6.0 to create 
a segmentation of the entire hippocampus, which we refer to as FS-Subfields-Sum 
throughout our study.   

FreeSurfer also outputs a separate hippocampal segmentation using a different 
atlas, the Desikan-Killiany atlas (Desikan et al., 2006). The Desikan-Killiany atlas was 
built using 40 T1-weighted 1x1x1.5 mm spatial resolution MRIs acquired on a 1.5T 
scanner. These 40 participants were of ranging age and cognitive status with the intent 
to include a range of anatomical variance common to aging and dementia in the atlas. 
This hippocampal volume from the Desikan-Killiany atlas can be calculated using the 
hippocampus labels of the aseg FreeSurfer output file.  

FreeSurfer outputs segmentations to a FreeSurfer specific image space. The 
FreeSurfer command, mri_label2vol, was used to transform the segmentation back to the 
original MNI space used in the input for both FreeSurfer versions segmentations. 
Segmentations from the aseg output are referred to as FS-Aseg throughout our study.  

Prior studies have reported an inability to run FreeSurfer on certain participants 
with large lesions (Bigler et al., 2013; Khlif et al., 2019a). In an effort to generate the 
maximum number of segmentations, scans that were not segmented on the initial 
FreeSurfer analysis were run a second time through FreeSurfer.  

 
II.b Hippodeep 

Hippodeep is a recent automated hippocampal segmentation algorithm that has 
not yet been tested in stroke populations. Hippodeep does not warp individual images to 
an atlas; instead, it relies on a hippocampal appearance model learned from existing 
FreeSurfer v5.3 labeled online datasets as well as synthetic data (Thyreau et al., 2018). 
Two types of synthetic data are included in training the Hippodeep CNN. The first 
synthetic data is a manual segmentation of a synthetic high-resolution image of the 
hippocampus generated from an average of 35 variations of MRI scans of a single healthy 
participant. The purpose of segmenting the hippocampus on a high-resolution image (0.6 
mm isotropic resolution) is to provide more detailed boundary information to the CNN that 
might not be as clear on a lower resolution image. The second type of synthetic data used 
to train the Hippodeep CNN are artificially geometrically distorted versions of the 
FreeSurfer v5.3 training data. Some of the distortion goes beyond the range of clinically 
plausible values but remains realistic enough to be easily delineated by a human rater. 
The purpose of this distorted data is to provide relevant training guidance to the CNN. By 
training the CNN on unconventional anatomy, Hippodeep may be more robust to severe 
stroke pathology. Details on the specifics of how the synthetic data were generated may      
be found in Thyreau et al. (2018). 

Hippodeep outputs a probabilistic segmentation map calculated using a loss 
function to allow for the uncertainty of voxels along the perimeter of the hippocampus in 
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native space, which can then be optionally thresholded. The probabilistic segmentation 
was converted to a binary mask of the hippocampus, as recommended by Thyreau et al., 
(2018).  
 
II.c Manual Segmentations 

We tested the accuracy of the automated methods by randomly selecting 30 
participants for whom all three automated segmentation algorithms (FS-Aseg, FS-
Subfields-Sum, and Hippodeep) were able to successfully output hippocampal 
segmentations. Only participants with unilateral lesions were considered. The ATLAS 
data was organized by lesion size and divided into thirds; small (range = 0.18 - 4.82 cubic 
centimeters (cc)), medium (range = 4.98 - 22.7cc), and large (range = 23.6 - 291.0cc) 
lesions. From each lesion size group, five participants with right hemisphere lesions and 
five participants with left hemisphere lesions were randomly selected. In this way, we 
examined the influence of lesion size across a broad range of lesion sizes, and with 
lesions equally distributed across hemispheres. In this data sample, all lesions occurred 
outside the medial temporal lobe.  

Hippocampi for the subset of these 30 participants were manually traced by an 
expert rater (AZP), strictly adhering to the EADC-ADNI harmonized protocol for manual 
hippocampal segmentation (Boccardi et al., 2015; Frisoni et al., 2015). Coronal slices 
were used to trace the hippocampi using ITK-Snap (Yushkevich et al., 2006). The sagittal 
view was used to confirm hippocampal boundaries and edit the segmentations. 
Hippocampi were segmented blindly based on participant ID alone, starting with the left 
hippocampus, followed by the right hippocampus. Bilateral hippocampi were never 
overlaid on the T1-weighted image at the same time to avoid using the segmentation from 
one hemisphere to bias the other. The manual segmentations were checked for quality 
by another expert in hippocampal neuroanatomy (MAT). All manual segmentations are 
available for download here: https://github.com/npnl/Hippocampal_Segmentation 
 
III. Analyses 

III.a Quality Control (QC)  
We manually assessed the quality of segmentations produced by each automated 

hippocampal segmentation method in the full ATLAS dataset (N=229) using the ENIGMA 
Stroke Recovery QC protocol (Liew et al., 2020). Briefly, a trained researcher (AZP) 
reviewed nine slices of each brain (3 coronal, 3 axial, and 3 sagittal) with the bilateral 
segmentations overlaid on the T1, which were generated for each participant 
(Supplementary Figure 1). A segmentation failed QC if the segmentation grossly 
underestimated the hippocampus (underestimated), overestimated by including regions 
of the brain outside the hippocampus (overestimated), missed the hippocampus entirely 
(miss), or failed to output a segmentation (no output) (Figure 1).  

QC was reported in two levels of stringency: 1) methods-wise QC and 2) across-
methods QC, similar to Sankar et al. (2017). For methods-wise QC, we calculated a QC 
fail rate for each automated segmentation method by dividing the total number of 
segmentations that failed for each segmentation method by the total number of 
segmentations (229 participants * 2 hippocampi = 458 segmentations).  
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Methods-wise	QC	Fail	Rate=100 *  #	#$	%&'(&)*+*,#)%	*-+*	$+,.&/	01223	4+5*,6,4+)*%	∗	2	-,44#6+(4,  
 
Across-methods QC fail rate was calculated as the total number of participants for which 
all three automated algorithms failed QC on at least one of the hippocampi divided by the 
total number of participants in the analysis (N=229).  
 

Across-methods	QC	Fail	Rate=100 *  #	#$	4+5*,6,4+)*%	*-+*	$+,.&/	01	#)	+*	.&+%*	#)&	(&*-#/223	4+5*,6,4+)*%  
 

QC images and scores for each of the automated hippocampal segmentation 
methods on the 229 participants in ATLAS are available here: 
https://github.com/npnl/Hippocampal_Segmentation.  
 
III.b Statistical Analysis of Accuracy 

All statistical analyses were conducted in R-Studio version 1.1.463. To promote 
open science and reproducibility, all statistical analyses and code used for this study can 
be found here: https://github.com/npnl/Hippocampal_Segmentation 
 
III.b.i Volume Correlation Analysis Comparison of Volumes 

We evaluated the agreement in hippocampal volume across segmentation 
methods in the dataset of 30 participants, by calculating the Pearson’s correlation 
coefficient (R; Pearson, 1895) and the intra-class correlation coefficient (Shrout and 
Fleiss, 1979) in the ipsilesional and contralesional hippocampi separately. We 
predetermined the number of segmentation methods and we assumed no generalization 
to a larger population. Therefore, we assumed fixed judges for the intra-class correlation 
statistical analyses (ICC3). 
 
III.b.ii Spatial Overlap 

To estimate spatial segmentation accuracy, we measured the spatial overlap 
between the 30 manually traced hippocampi and each automated segmentation method 
(FS-Aseg, FS-Subfields-Sum, Hippodeep) using the Dice Coefficient (DC). DC was 
calculated for ipsilesional and contralesional hippocampi separately. DC is commonly 
used to validate segmentation algorithms in neuroimaging (Dice et al., 1945; Zou et al., 
2004) and is defined as: 

9: = 2 ∗ |>?|
|>| + |?| 

Here X represents the set of voxels in the manual segmentation and Y represents the set 
of voxels in the automated segmentation. DC can range from 0 (no spatial overlap) to 1 
(complete overlap). For this study, we calculated DC using the flag DiceandMinDistSum 
of the ImageMath package from the Advanced Normalization Tools (ANTs) software 
(Avants et al., 2011).  

A 2x3x3 Analysis of Variance (ANOVA) was performed to model dependencies of 
DC on the hemisphere with factors of lesion hemisphere (contralesional and ipsilesional), 
lesion size (small, medium, and large), and automated segmentation method (Hippodeep, 
FS-Subfields-Sum, FS-Aseg). A post-hoc paired t-test was used to compare DC between 
automated segmentation methods. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.01.28.924068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.924068
http://creativecommons.org/licenses/by-nd/4.0/


Results 
I. Quality Control  

First, we performed a rigorous quality control analysis for the segmentations 
generated by each automated method. This provided a sense of how robust each method 
was for generating good quality segmentations on the stroke data. The method-wise QC 
fail rate for FS-Aseg was 30.9% (N=144), 23.6% (N=108) for FS-Subfields-Sum, and 
3.3% (N=15) for Hippodeep. The across-methods QC fail rate was 45.0% (N=103). A 
summary of reasons for QC fails by hemisphere for each segmentation algorithm can be 
found in Figure 1.  

FS-Aseg did not output segmentations for 38 participants and FS-Subfields-Sum 
did not output segmentations for 40 participants (the 38 that did not output from FS-Aseg 
plus two additional participants). Of the 80 total hippocampi (40 participants * 2 
hippocampi) that were not segmented by either FS-Aseg or FS-Subfields-Sum, 75 of 
these hippocampi were successfully segmented by Hippodeep and passed QC. 
Hippodeep also successfully segmented the remaining 5 hippocampi, but these did not 
pass QC and were all underestimated ipsilesional hippocampi. QC images of Hippodeep 
segmentations for participants who had no output by FS-Aseg or FS-Subfield-Sum are 
compiled in a file here: https://github.com/npnl/Hippocampal_Segmentation/ 
Hippodeep_QC_for_no_output_FS_scans.pdf 
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Figure 1. Hippocampal segmentations produced by automated segmentation methods 
(Hippodeep, FS-Aseg, and FS-Subfields-Sum) on the 229 ATLAS participants were inspected for 
quality according to the ENIGMA Stroke Recovery Working Group quality control (QC) protocol 
(Liew et al., 2020). Segmentations failed QC for four possible reasons: 1) failing to output a 
segmentation entirely (no output) 2) including voxels in the segmentation that are clearly outside 
of the hippocampus (overestimating) 3) underestimating the hippocampus (underestimating), or 
4) producing a segmentation that misses the hippocampus entirely (miss). In this figure, we report 
the total breakdown of the QC results by hemisphere. The results are further broken down by 
location of lesion (LHL= left hemisphere lesion, RHL= right hemisphere lesion).  Percent fail for 
left and right hippocampi is calculated as the total number of segmentations that failed QC for the 
specified hemisphere divided by 229. Percent fail for total is the number of segmentations divided 
by 458. 
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II. Accuracy 
 
II.a Volume Correlation Analysis 

In the subset of 30 participants with manually segmented hippocampi, we also 
compared hippocampal volume between automated and manual segmentations. All three 
segmentation methods overestimated both ipsilesional and contralesional hippocampal 
volume, compared to the manual gold standard (Figure 2, Figure 3). Hippodeep and FS-
Subfields-Sum segmentations were not significantly different in volume (Figure 3a).  

As expected, volumes from all three segmentation methods were strongly 
correlated with volumes from the manual segmentations (Table 1). Volumes from FS-
Subfields-Sum had the strongest correlation with manual segmentation volumes 
(ipsilesional ICC3 = 0.65; contralesional ICC3 = 0.83).  Hippodeep measures were also 
strongly correlated with manual segmentation volumes (ipsilesional ICC3 = 0.64; 
contralesional ICC3 = 0.75). FS-Aseg was the least correlated with the manual 
segmentation volumes (ipsilesional ICC3 = 0.50; contralesional ICC3 = 0.71). Volumes 
from FS-Subfields-Sum and Hippodeep were strongly correlated with each other 
(ipsilesional ICC3 = 0.91; contralesional ICC3 = 0.90).  However, upper and lower bounds 
for ICC3 indicated there were no significant differences among ICC3 values across 
comparisons (Figure 3b). Volumes from all three segmentation methods were strongly 
correlated with each other (Table 2).   
 
 

 
Figure 2. Automated hippocampal segmentations are overlaid, along with the manual 
segmentation, on MRI data from an example participant. Each row shows the results of a different 
automated segmentation method. The left column shows a sagittal view of the ipsilesional 
hemisphere, the middle column shows a coronal view of the body of bilateral hippocampi, and the 
rightmost column shows a sagittal view of the contralesional hemisphere. 
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Figure 3. A) Mean hippocampal volume is plotted for manual and automated segmentation 
methods in the 30 participants with manually segmented hippocampi. All three automated 
segmentation methods on average overestimated the manually defined segmentation volume. 
This trend is consistently found for scans with small, medium, and large lesions. Error bars 
represent standard deviation. B) Intraclass Correlation Coefficient (ICC3) was calculated 
correlating volumes from each automated segmentation algorithm with manual segmentations. 
The error bars indicate the upper and lower bound of ICC3. FS-Subfields-Sum has the highest 
ICC3 with manual segmentations, although none of the ICC3 results are significantly different 
across automated methods.  
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Table 1. Intraclass correlation coefficient (ICC3), Pearson’s correlation coefficient (R), and p-
values were calculated correlating hippocampal volume from the automated segmentation 
methods to the manual segmentations. Correlations between FS-Subfields-Sum and Hippodeep 
are also shown because the resulting hippocampal volumes were very similar.  
 

  
Ipsilesional Contralesional 

  ICC3 R p-value ICC3 R p-value 

FS-Aseg vs. Manual 0.50 0.59 6.45 x10-4 0.71 0.80 1.21 x10-7 

FS-Subfields-Sum vs. 
Manual  

0.65 0.67 5.71 x10-5 0.83 0.84 5.38 x10-9 

Hippodeep vs. Manual 0.64 0.69 2.18 x10-5 0.75 0.75 1.91 x10-6 

 
Table 2. Intraclass correlation coefficient (ICC3) was calculated to compare 
segmentations from each automated method. Upper and lower boundaries of ICC3 are 
also reported. The volumes for all hippocampal segmentations are highly correlated, 
implying inter-algorithm consistency.  
 
 

Ipsilesional Contralesional 

Method ICC3 Lower Bound Upper Bound ICC3 Lower Bound Upper Bound 

FS-Subfields-Sum 
Vs. 

Hippodeep 

0.91 0.83 0.95 0.90 0.82 0.94 

FS-Subfields-Sum 
vs 

FS-Aseg 

0.89 0.80 0.94 0.92 0.85 0.96 

FS-Aseg 
vs 

Hippodeep 

0.85 0.74 0.92 0.79 0.64 0.88 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.01.28.924068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.924068
http://creativecommons.org/licenses/by-nd/4.0/


II.b Spatial Overlap (DC Analysis) 
We calculated the Dice Coefficient for each automated segmentation compared to 

the manual segmentation to assess the accuracy of each method in the dataset of 30 
participants. This provides a quantitative assessment of the spatial overlap between the 
automated and manual segmentations. We performed an ANOVA to evaluate how DC 
differed across automated segmentation method, lesioned hemisphere, and lesion size. 
The ANOVA revealed that segmentation method was the only significant factor for 
differences in DC (F = 402.3; p-value < 2 x 10-16). Hippodeep had the highest average 
DC (ipsilesional = 0.84 ± 0.03; contralesional = 0.84 ± 0.02), followed by FS-Subfields-
Sum (ipsilesional = 0.73 ± 0.03; contralesional = 0.72 ± 0.03), followed by FS-Aseg 
(ipsilesional = 0.69 ± 0.04; contralesional = 0.68 ± 0.03).  We performed a paired t-test to 
see if DC significantly differed between the automated segmentation methods.  Results 
from the t-test showed that the DC for Hippodeep was significantly higher than the DC for 
FS-Subfields-Sum (ipsilesional p-value = 1.03 x 10-17, t-value= 18.7; contralesional p-
value = 4.68 x 10-21, t-value = 24.8) and FS-Aseg (ipsilesional p-value = 3.34 x 10-21, t-
value = 25.1; contralesional p-value = 1.05 x 10-23, t-value = 30.8) (Figure 4; Table 3).  
 

 
Figure 4. Average Dice Coefficient (DC) for Hippodeep vs. Manual segmentations was 
significantly higher than FS-Subfields-Sum vs. Manual (ipsilesional p-value = 1.03 x 10-17, t-value= 
18.7; contralesional p-value = 4.68 x 10-21, t-value = 24.8) and FS-Aseg vs. Manual (ipsilesional 
p-value = 3.34 x 10-21, t-value = 25.1; contralesional p-value = 1.05 x 10-23, t-value = 30.8). DC 
did not differ significantly across lesion size. 
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Table 3. Here, we show the results from the post-hoc t-tests comparing Dice Coefficients 
between automated methods. 

 
Ipsilesional Contralesional 

 
p-value t-value p-value t-value 

Hippodeep vs. FS-Subfields-Sum 1.03x10-17 18.7 4.68x10-21 24.8 

Hippodeep vs. FS-Aseg 3.34x10-21 25.1 1.05x10-23 30.8 

Subfields-Sum vs. FS-Aseg 3.68x10-12 11.3 2.17x10-15 15.3 

 
Discussion 

In this study, we compared the quality control (QC) and accuracy of three automated 
segmentation algorithms (Hippodeep, FS-Subfields-Sum, FS-Aseg) used to estimate 
hippocampal volume in individuals with stroke. Our study found that Hippodeep was able 
to generate the greatest number of segmentations that passed QC and performed the best 
in terms of accuracy, as measured by the Dice Coefficient, while FS-Subfields-Sum 
performed slightly higher in terms of intraclass correlations (ICC3). This suggests that, while 
both Hippodeep and FS-Subfields-Sum produce good correspondence with manual 
hippocampal segmentations, Hippodeep is more accurate in terms of the actual voxels 
identified as the hippocampus while FS-Subfields-Sum produces a closer match on the 
overall volume of the hippocampus.   

Hippodeep had the smallest methods-wise QC fail rate of the three automated 
segmentations tested (3.3%). FS-Subfields-Sum had the second lowest methods-wise QC 
fail rate (23.6%) followed by FS-Aseg (30.8%). Sankar et al., (2017) report high rates of 
poor-quality hippocampal segmentation across multiple automated segmentation 
algorithms, including FS-Aseg in elderly populations. While a certain amount of 
segmentation failure is expected for automated methods, automated segmentations in 
stroke populations are challenged by stroke pathology. An estimated 10-20% of FreeSurfer 
subcortical segmentations do not pass quality control in the ENIGMA Stroke Recovery 
Working Group data (Liew et al., 2020). In the stroke data we used here, Hippodeep was 
able to generate segmentations of adequate quality for 27.5% more hippocampi than FS-
Aseg and 20.3% more than in FS-Subfields-Sum. Hippodeep generated volume estimates 
for all of the participants whose data could not be run through FreeSurfer in our study, and 
all but 5 of these segmentations passed QC. Therefore, Hippodeep can potentially help to 
maximize the number of participants included in analyses whose data might not run 
successful through FreeSurfer, potentially boosting statistical power, and reducing the bias 
that can come from excluding participants. Obtaining robust statistical power is of keen 
interest to the stroke recovery field, as a recent review by Kim & Winstein (2017) found that 
less than 30% of stroke recovery studies met the appropriate sample size criteria to achieve 
sufficient statistical power for predicting recovery. Our understanding of the role of 
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hippocampal volume in stroke recovery will benefit from studies with larger, more 
representative samples. 

In addition, hippocampal segmentation using Hippodeep resulted in the highest 
similarity index (DC) to manual tracing, indicating a high level of segmentation accuracy. 
Hippodeep performed significantly better in terms of DC than FS-Subfields-Sum and FS-
Aseg. FS-Subfields-Sum also yielded a high similarity index to manual segmentations, 
consistent with prior results (Khlif et al. 2019a; Khlif et al., 2019b). Mean DC values for both 
Hippodeep and FS-Subfields-Sum were above a DC of 0.7, which is a recommended 
threshold for DC to indicate good segmentation overlap (Zou et al., 2004).  

DC was influenced by segmentation method, but not by lesion size or lesion 
hemisphere. There was also a wide range in lesion sizes for scans that failed to output FS-
Aseg and FS-Subfields-Sum segmentations. Although lesion size may not have a 
significant effect on DC in this sample of 30 participants, it may influence the segmentation 
accuracy and merits further investigation.  

FS-Subfields-Sum and Hippodeep were both very competitive in terms of their 
correlations with ipsilesional and contralesional volume estimates. FS-Subfields-Sum 
segmentations were more highly correlated with manual segmentations (ICC3) than 
Hippodeep, although both were high and considered very reliable (Koo & Li, 2016). There 
were no significant differences across methods in ICC3 results. Ipsilesional FS-Aseg 
volume estimates had the lowest ICC3, but this correlation was still high enough to be 
considered moderately reliable (Koo & Li, 2016). For all three automated methods, 
contralesional ICC3 was higher than ipsilesional ICC3. Hippodeep and FS-Subfields-Sum 
may have performed better than FS-Aseg in terms of volumetric accuracy because 
information from a high-resolution hippocampus is included in both the Hippodeep and FS-
Subfield-Sum algorithms. FS-Subfields-Sum is based on an atlas generated using manual 
segmentations on an ultra-high resolution atlas (0.13 mm isotropic resolution; Iglesias et 
al., 2015). Hippodeep uses information from a manually traced hippocampus on a synthetic 
high-resolution image (0.6mm isotropic resolution; Thyreau et al., 2018). In contrast, FS-
Aseg uses the Desikan-Killiany atlas, which was built using only scans of 1x1x1.5mm 
resolution (Desikan et al., 2006). The Desikan-Killiany atlas was designed to segment many 
structures across the brain, many of which are clearly delineated on low resolution scans. 
Including more detailed information on hippocampal boundaries that appear ambiguous on 
a low-resolution MRI may improve segmentation performance. Further exploration of 
methodological aspects of successful automated segmentation methods may be helpful to 
inform future development of methods in populations with irregular neuroanatomy.  

Beyond QCfailure rates and accuracy, there are other technical aspects to consider 
when comparing Hippodeep, FS-Subfields-Sum, and FS-Aseg. Hippodeep requires less 
computational power than FreeSurfer and runs within minutes, whereas FreeSurfer can 
take over 24 hours on a typical CPU (Thyreau et al., 2018; Nogovitsyn et al., 2019). 
However, Hippodeep only outputs estimates of the hippocampus and total intracranial 
volume. In addition to FS-Subfields-Sum and FS-Aseg, FreeSurfer also estimates other 
brain measures beyond hippocampal volume and intracranial volume, such as individual 
subfield volumes (Iglesias et al., 2015), and cortical and subcortical volumes, as well as 
thickness measures, and other vertex based measures and attributes that can be used for 
surface-based statistical analyses (Fischl, 2012). Additionally, FreeSurfer has an extensive 
archive of user questions for troubleshooting, while Hippodeep is a recent method that is 
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not as extensively documented. Therefore, selection of the appropriate hippocampal 
segmentation method should be evaluated within the context of the study requirements and 
constraints (Table 4). 
 
Limitations 

We note that a Dice Coefficient analysis only works as a validation metric to compare 
methods that aim to produce the same segmentation boundaries. A key methodological 
limitation to consider when comparing these segmentation methods is that each 
segmentation method has slightly different criteria for determining hippocampal boundaries 
(Desikan et al., 2006; Frisoni et al., 2015; Thyreau et al., 2018). Certain hippocampal 
boundaries (specifically along the head and the tail) are only visible in high-resolution MRIs 
and consensus on rules for delineating the boundaries of these regions on an MRI has not 
yet been reached (Olsen et al., 2019). Variability in image resolution used to develop each 
algorithm may also contribute mild variability in anatomical boundaries (Table 4). 
Additionally, Hippodeep uses the fimbria of the hippocampus as a boundary and does not 
include it in the segmentation while FS-Aseg and FS-Subfields-Sum both include this 
region. The HARP EADC protocol used to perform the manual segmentations does not 
include the fimbria. Therefore, some mild variability in the resulting correlations and spatial 
overlaps with accuracy versus manual segmentations is expected.  

Another key methodological limitation to consider when comparing these 
segmentation methods is that none of these approaches were designed specifically to 
accommodate severe stroke pathology. The default atlases used in FreeSurfer, including 
FreeSurfer subfields, were created based on data from cognitively healthy elderly adults 
and patients with early AD pathology (Desikan et al., 2006; Iglesias et al., 2015). Stroke 
pathology, such as large lesions, hydrocephalus ex vacuo of the lateral ventricle (Nelson, 
2003), and midline shifts (Liao et al., 2018), can alter expected spatial distribution of brain 
anatomy. As a result, stroke pathology can interfere with templates used by existing atlas-
based approaches, resulting in inaccurate hippocampal segmentations. Although the CNN 
used in Hippodeep was not trained on data with stroke pathology, it is trained to anticipate 
extreme anatomical variability from the synthetic data. Being robust to extreme anatomical 
variability may explain why Hippodeep was able to perform well in stroke participants. 
Stroke-specific CNN hippocampal segmentation models that include stroke pathology in 
training data may further improve automated hippocampal segmentation in this population.  
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Table 4. Here we present a roadmap for using each of the automated hippocampal segmentation method tested in this paper. Study 
requirements and constraints should be considered when selecting which method to apply.  

 How to Run Mean Dice Pros Cons Anatomical Variability 

FS
-A

se
g 

https://surfer.nmr.mgh.harvar
d.edu/ 
 
recon-all -s subject 
 
Use aparc+aseg.mgz in 
subject/mri/ folder to extract 
label 17 for the left 
hippocampus and label 53 for 
the right hippocampus 

Ipsi= 
0.69±0.04 

 
Contra= 

0.68±0.03 
 
 

-Widely used in the literature 
-Provides brain measures beyond the hippocampus 
(cortical and subcortical volumes and thickness, etc; 
Fischl, 2012) 
-Extensive support archive 
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSup
port) 

-Did not output 
segmentations for 
all of the stroke 
data 
-Modest accuracy 
with manual 
segmentation 
-Time consuming 
-Resource 
intensive 
-Low resolution 
atlas 

-Atlas created on 
1x1x1.5 mm 
resolution scan 
 
-Fimbria is included  

FS
-S

ub
fie

ld
s-

S
um

 

https://surfer.nmr.mgh.harvar
d.edu/ 
 
recon-all -s subject -
hippocampal-subfields-T1 
 
rh.hippoSfLabels-
T1.v10.FSvoxelSpace_native.
mgz and lh.hippoSfLabels-
T1.v10.FSvoxelSpace_native.
mgz in subject/mri folder 

 
Ipsi= 

0.73±0.03 
 

Contra= 
0.72±0.03 

 
 
 

-Strong accuracy with manual segmentation 
-Provides brain measures beyond the hippocampus 
(cortical and subcortical volumes and thickness, etc; 
Fischl, 2012) 
-Provides information about individual subfield volumes 
(Iglesias et al. 2015) 
-Widely used in the literature 
-Extensive support archive 
(https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSup
port) 

-Did not output 
segmentations for 
all of the stroke 
data 
-Time consuming 
-Resource 
intensive 

-Atlas created on 0.13 
mm isotropic 
resolution scan  
 
-Fimbria is included 

H
ip

po
de

ep
 

https://github.com/bthyreau/hi
ppodeep 
 
deepseg1.sh subject_t1.nii.gz 
 
example_brain_t1_mask_L.nii
.gz and 
example_brain_t1_mask_R.ni
i.gz 
 

 
Ipsi= 

0.84±0.03 
 

Contra= 
0.84±.02 

 
 

-Strong accuracy with manual segmentation 
-Can help maximize sample size 
• Output segmentations for all of the stroke data 
• Able to produce good segmentations for most of the 

participants that could not run through FreeSurfer  
-Short run-time 

-Only outputs 
hippocampal 
segmentations 
and total brain 
volume 
-Not trained 
specifically on 
stroke data 
-Newer method 
with limited 
support archives 

-Includes a manual 
segmentation built on 
0.6 mm isotropic 
resolution scan 
 
-Fimbria is not 
included 
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Conclusion 

In this study, we demonstrated that most robust hippocampal segmentation method 

(Hippodeep) also provided the most accurate segmentations. Hippodeep had the lowest 

method-wise QC fail, suggesting it may be the most robust to post-stroke anatomical 

distortions. The use of more accurate automated hippocampal segmentation methods may 

reveal clinical associations that are so far undetected.  Additionally, future work should aim 

to extract subfields from the Hippodeep segmentation to further enhance our understanding 

of how the specific regions of the hippocampus are indirectly impacted by stroke lesions. 

Overall, our results suggest that Hippodeep may be an optimal method for accurate and 

robust hippocampal segmentation methods in diverse stroke populations.  

 

Data Availability 
To promote open science and reproducibility, images used for quality control, manual 

segmentations, and all statistical analyses and code used for this study can be found 

here: https://github.com/npnl/Hippocampal_Segmentation. Any issues or feedback can 

be submitted on this page under "issues" on the Github system and a team of researchers 

will address these in a timely manner.  
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