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Abstract 21 

Comparative analysis of 162 (nearly) complete genomes of Asgard archaea, including 75 not reported 22 

previously, substantially expands the phylogenetic and metabolic diversity of the Asgard superphylum, 23 

with six additional phyla proposed. Phylogenetic analysis does not strongly support origin of eukaryotes 24 

from within Asgard, leaning instead towards a three-domain topology, with eukaryotes branching outside 25 

archaea. Comprehensive protein domain analysis in the 162 Asgard genomes results in a major expansion 26 

of the set of eukaryote signature proteins (ESPs). The Asgard ESPs show variable phyletic distributions 27 

and domain architectures, suggestive of dynamic evolution via horizontal gene transfer (HGT), gene loss, 28 

gene duplication and domain shuffling. The results appear best compatible with the origin of the 29 

conserved core of eukaryote genes from an unknown ancestral lineage deep within or outside the extant 30 

archaeal diversity. Such hypothetical ancestors would accumulate components of the mobile archaeal 31 

‘eukaryome’ via extensive HGT, eventually, giving rise to eukaryote-like cells.   32 
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Introduction 33 

The Asgard archaea are a recently discovered archaeal superphylum that is rapidly expanding, thanks to 34 

metagenomic sequencing (1–5). The Asgard genomes encode a diverse repertoire of eukaryotic signature 35 

proteins (ESPs) that far exceeds the diversity of ESPs in other archaea. The Asgard ESPs are particularly 36 

enriched in proteins involved in membrane trafficking, vesicle formation and transport, cytoskeleton 37 

formation and the ubiquitin network, suggesting that these archaea possess a eukaryote-type cytoskeleton 38 

and an intracellular membrane system (2).  39 

The discovery of the Asgard archaea rekindled the decades old but still unresolved fundamental debate on 40 

the evolutionary relationship between eukaryotes and archaea that has shaped around the ‘2-domain (2D) 41 

versus 3-domain (3D) tree of life’ theme (6–8). The central question is whether the eukaryotic nuclear 42 

lineage evolved from a common ancestor shared with archaea, as in the 3D tree, or from within the 43 

archaea, as in the 2D tree. The discovery and phylogenomic analysis of Asgard archaea yielded strong 44 

evidence in support of the 2D tree, in which eukaryotes appeared to share common ancestry with one of 45 

the Asgard lineages, Heimdallarchaeota (1, 2, 5). However, the debate is not over as arguments have been 46 

made for the 3D topology, in particular, based on the phylogenetic analysis of RNA polymerases, some of 47 

the most highly conserved, universal proteins (9, 10). 48 

Molecular phylogenetic methods alone might be insufficient to resolve the ancient ancestral relationship 49 

between archaea and eukarya. To arrive at a compelling solution, supporting biological evidence is crucial 50 

(11), because, for example, the transition from archaeal, ether-linked membrane lipids to eukaryotic, 51 

ester-linked lipids that constitute eukaryotic (and bacterial) membranes (12) and the apparent lack of the 52 

phagocytosis capacity in Asgard archaea (13) are major problems for scenarios of the origin of eukaryotes 53 

from Asgard or any other archaeal lineage. Some biochemical evidence indicates that Asgard archaea 54 

possess an actin cytoskeleton regulated by accessory proteins, such as profilins and gelsolins, and the 55 

endosomal sorting complex required for transport machinery (ESCRT) that can be predicted to function 56 

similarly to the eukaryotic counterparts (14–16). Generally, however, the biology of Asgard archaea 57 

remains poorly characterized, in large part, because of their recalcitrance to growth in culture (17). To 58 

date, only one Asgard archaeon, Candidatus Prometheoarchaeum syntrophicum strain MK-D1, has been 59 

isolated and grown in culture (17). This organism has been reported to form extracellular protrusions that 60 

are involved in its interaction with syntrophic bacteria, but no visible organelle-like structure and, 61 

apparently, little intracellular complexity.  62 

The only complete, closed genome of an Asgard archaeon also comes from Candidatus P. syntrophicum 63 

strain MK-D1 (17) whereas all other genome sequences were obtained by binning multiple metagenomics 64 
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contigs. Furthermore, these genome sequences represent but a small fraction of the Asgard diversity that 65 

has been revealed by 16S rRNA sequencing (18, 19).An additional challenge to the study of the 66 

relationship between archaea and eukaryotes is that identification and analysis of the archaeal ESPs are 67 

non-trivial tasks due to the high sequence divergence of many if not most of these proteins. At present, 68 

the most efficient, realistic approach to the study of Asgard archaea and their eukaryotic connections 69 

involves obtaining high quality genome sequences and analyzing them using the most powerful and 70 

robust of the available computational methods. 71 

Here we describe metagenomic mining of the expanding diversity of the superphylum Asgard, including 72 

the identification of six additional phylum-level lineages that thrive in a wide variety of ecosystems and 73 

are inferred to possess versatile metabolic capacities. We show that these uncultivated Asgard groups 74 

carry a broad repertoire of ESPs many of which have not been reported previously. Our in depth 75 

phylogenomic analysis of these genomes provides insights into the evolution of Asgard archaea but calls 76 

into question the origin of eukaryotes from within Asgard.  77 

 78 

Results 79 

Reconstruction of Asgard archaeal genomes from metagenomics data  80 

We reconstructed 75 metagenome-assembled genomes (MAGs) from the Asgard superphylum that have 81 

not been reported previously. These MAGs were recovered from various water depths of the Yap trench, 82 

intertidal mangrove sediments of Mai Po Nature Reserve (Hong Kong, China) and Futian Mangrove 83 

Nature Reserve (Shenzhen, China), seagrass sediments of Swan Lake Nature Reserve (Rongcheng, 84 

China) and petroleum samples of Shengli oilfield (Shandong, China) (Supplementary Table 1, 85 

Supplementary Figure 1). For all analyses described here, these 75 MAGs were combined with 87 86 

publicly available genomes, resulting in a set of 162 Asgard genomes. The 75 genomes reconstructed here 87 

were, on average, 82% complete and showed evidence of low contamination of about 3%, on average 88 

(Supplementary Figure 2).  89 

 90 

Classification of Asgard genes into clusters of orthologs  91 

The previous analyses of Asgard genomes detected a large fraction of “dark matter” genes (20). For 92 

example, in the recently published complete genome of Candidatus Prometheoarchaeum syntrophicum, 93 

45% of the proteins are annotated as “hypothetical”. We made an effort to improve the annotation of 94 

Asgard genomes by investigating this dark matter in greater depth, and developing a dedicated platform 95 
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for Asgard comparative genomics. To this end, we constructed Asgard Clusters of Orthologous Genes 96 

(asCOGs) and used the most sensitive available methods of sequence analysis to annotate additional 97 

Asgard proteins, attempting, in particular, to expand the catalogue of Asgard homologs of ESPs (see 98 

Materials and Methods for details). 99 

Preliminary clustering by sequence similarity and analysis of the protein cluster representation across the 100 

genomes identified the set of 76 most complete Asgard MAGs (46 genomes available previously and 30 101 

ones reported here) that cover most of the group diversity (Supplementary Table 1). The first version of 102 

the asCOGs presented here consists of 14,704 orthologous protein families built for this 76-genome set. 103 

The asCOGs cover from 72% to 98% (92% on average) of the proteins in these 76 genomes (additional 104 

data file 1). Many asCOGs include individual domains of large, multidomain proteins.  105 

The gene commonality plot for the asCOGs shows an abrupt drop at the right end, which reflects a 106 

surprising deficit of nearly universal genes (Fig. 1). Such shape of the gene commonality curve appears 107 

anomalous compared to other major groups of archaea or bacteria with many sequenced genomes (21). 108 

For example, in the case of the TACK superphylum of archaea, for which the number of genomes 109 

available is similar to that for Asgard, with a comparable level of diversity, the commonality plot shows 110 

no drop at the right end, but instead, presents a clear uptick, which corresponds to the core of genes 111 

represented in (almost) all genomes (Fig. 1). Apparently, most of the Asgard genomes remain incomplete, 112 

such that conserved genes were missed randomly. Currently, there are only three gene families that are 113 

present in all Asgard MAGs, namely, a Zn-ribbon domain, a Threonyl-tRNA synthetase and an 114 

aminotransferase (additional data file 1).  115 

We employed the asCOG profiles to annotate the remaining 86 Asgard MAGs, including those that were 116 

sequenced in the later stages of this work (Supplementary Table 1). On average, 89% of the proteins 117 

encoded in these genomes were covered by asCOGs (Supplementary Table 1). Thus, the asCOGs 118 

database appears to be an efficient tool for annotation and comparative genomic analysis of Asgard 119 

MAGs and complete genomes.  120 

 121 

Expanding the phylogenetic diversity of Asgard archaea 122 

Phylogenetic analysis of the Asgard MAGs based on a concatenated alignment of 209 core asCOGs (see 123 

Methods and additional data file 2) placed many of the genomes reported here into the previously 124 

delineated major Asgard lineages (Fig. 2a, Supplementary Table 1, additional data file 2), namely, 125 

Thorarchaeota (n=20), Lokiarchaeota (n=18), Hermodarchaeota (n=9), Gerdarchaeota (n=3), 126 
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Helarchaeota (n=2), and Odinarchaeota (n=1). Additionally, we identified 6 previously unknown major 127 

Asgard lineages that appear to be strong candidates to become additional phyla (Fig. 2a and b, 128 

Supplementary Table 1; see also Taxonomic description of new taxa in the Supplementary Information 129 

and additional data file 1). A clade formed by As_085 and As_075 is a deeply branching sister group to 130 

the previously recognized Heimdallarchaeota(2). Furthermore, our phylogenetic analysis supported the 131 

further split of “Heimdallarchaeota” into 4 phylum-level lineages according to the branch length in the 132 

concatenated phylogeny (see Materials and Methods; see also Taxonomic description of new taxa in the 133 

Supplementary Information and additional data file 1). The putative phyla within the old 134 

Heimdallarchaeota included the previously defined Gerdarchaeota (4), and three additional phyla that 135 

could be represented by As_002 (LC2) , As_003 (LC3) and AB_125 (As_001), respectively. Another 3 136 

previously undescribed lineages were related, respectively, to Hel-, Loki-, Odin- and Thorarchaeota. 137 

Specifically, As_181, As_178 and As_183 formed a clade that was deeply rooted at the Hel-Loki-Odin-138 

Thor clade; As_129 and As_130 formed a sister group to Odinarchaeota; and a lineage represented by 139 

As_086 was a sister group to Thorarchaeota. These results were buttressed by the 16S rRNA gene 140 

phylogeny, comparisons of the mean amino acid identity and 16S rRNA sequence identity (Fig. 2b, 141 

Supplementary Figure 3, Supplementary Figure 4, Supplementary Table 2 and Supplementary Table 3).  142 

We propose the name Wukongarchaeota after Wukong, a Chinese legendary figure who caused havoc in 143 

the heavenly palace, for the putative phylum represented by MAGs As_085 and As_075 (Candidatus 144 

Wukongarchaeum yapensis), and names of Asgard deities in the Norse mythology for the other 5 145 

proposed phyla: (1) Hodarchaeota, after Hod, the god of darkness, for MAG As_027 (Candidatus 146 

Hodarchaeum mangrove); (2) Kariarchaeota, after Kari, the god of the North wind, for MAG As_030 147 

(Candidatus Kariarchaeum pelagius); (3) Borrarchaeota after Borr, the creator god and father of Odin, for 148 

MAG As_133 (Candidatus Borrarchaeum yapensis); (4) Baldrarchaeota, after Baldr, the god of light and 149 

brother of Thor, for MAG As_130 (Candidatus Baldrarchaeum yapensis); (5) and Hermodarchaeota after 150 

Hermod, the messenger of the gods, son of Odin and brother of Baldr, for MAG As_086 (Candidatus 151 

Hermodarchaeum yapensis) (Fig. 2a). For details, see Taxonomic Description of new taxa in the 152 

Supplementary Information. 153 

The gene content of Asgard MAGs agrees well with the phylogenetic structure of the group. The phyletic 154 

patterns of the asCOG form clusters that generally correspond to the clades identified by phylogenetic 155 

analysis (Fig. 3a), suggesting that gene gain and loss within Asgard archaea largely proceeded in a clock-156 

like manner and/or that horizontal gene exchange preferentially occurred between genomes within the 157 

same clade. 158 

 159 
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Phylogenomic analysis and positions of Asgard archaea and eukaryotes in the tree of life  160 

The outcome of phylogenetic reconstruction, especially, when deep branchings are involved, such as 161 

those that are relevant for the 3D vs 2D conundrum, depends on the phylogenetic methods employed, the 162 

selection of genes for phylogeny construction and, perhaps most dramatically, on the species sampling 163 

(22–24). In many cases, initially uncertain positions of lineages in a tree settle over time once more 164 

representatives of the groups in question and their relatives become available.  165 

In our analysis of the universal phylogeny, we aimed to make the species set for phylogenetic 166 

reconstruction as broadly representative as possible, while keeping its size manageable, to allow the use 167 

of powerful phylogenetic methods. The tree was constructed from alignments of conserved proteins of 168 

162 Asgard archaea, 286 other archaea, 98 bacteria and 72 eukaryotes (see Supplementary Material and 169 

Methods for details of the procedure including the selection of a representative species set and 170 

Supplementary Table 4). Members of 30 families of (nearly) universal proteins that appear to have 171 

evolved without much HGT and have been previously employed for the reconstruction of the tree of life 172 

(25) were used to generate a concatenated alignment of 7411 positions, after removing low information 173 

content positions (Supplementary Table 4). For the phylogenetic reconstruction, we used the IQ-tree 174 

program with several phylogenetic models (see Methods and Supplementary Table 5 for details). 175 

Surprisingly, the resulting trees had the 3D topology, with high support values for all key bifurcations 176 

(Fig. 2c, additional data file 2).  177 

A full investigation of the effects of different factors, in particular, the marker gene selection, on the tree 178 

topology is beyond the scope of this work. Nonetheless, we addressed the possibility that the 3D topology 179 

resulted from the model used for the tree reconstruction and/or the species selection. To this end, we 180 

constructed 100 trees from the same alignment by randomly sampling 5 representatives of Asgard 181 

archaea, other archaea, bacteria and eukaryotes each. For these smaller sets of species, the best model 182 

identified by Williams et al. (LG+C60+G4+F) could be employed, resulting in 50 3D and 50 2D trees 183 

(Supplementary Table 5, additional data file 2). Because IQ-tree identified this model as over-specified 184 

for such a small alignment, we also tested a more restricted model (LG+C20+G4+F), obtaining 58 3D and 185 

42 2D trees for the same set of 100 samples (Supplementary Table 5, additional data file 2).  186 

The results of our phylogenetic analysis indicate that: 1) species sampling substantially affects the tree 187 

topology; 2) even the set of most highly conserved genes that appear to be minimally prone to HGT, 188 

yields conflicting signals for different species sets. Additional markers, less highly conserved and more 189 

prone to HGT, are unlikely to improve phylogenetic resolution and might cause systematic error. Notably, 190 

the topology of our complete phylogenetic tree (Fig. 2a) within the archaeal clade is mostly consistent 191 
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with the tree obtained in a preliminary analysis of a larger set of archaeal genomes and a larger marker 192 

gene set (26). Taking into account these observations and the fact that we used the largest set of Asgard 193 

archaea and other archaea compared to all previous phylogenetic analyses, the appearance of the 3D 194 

topology in our tree indicates that the origin of eukaryotes from within Asgard cannot be considered a 195 

settled issue. Various factors affecting the tree topology, including further increased species 196 

representation, particularly, of Asgard and the deep branches of the TACK superphylum, such as 197 

Bathyarchaeota and Korarchaeota, remain to be explored in order to definitively resolve the evolutionary 198 

relationship between archaea and eukaryotes. 199 

 200 

The core gene set of Asgard archaea 201 

We next analyzed the core set of conserved Asgard genes which we arbitrarily defined as all asCOGs that 202 

are present at least in one third of the MAGs in each of the 12 phylum-level lineages, with the mean 203 

representation across lineages >75%. Under these criteria, the Asgard core includes 378 asCOGs 204 

(Supplementary Table 6). As expected, most of these protein families, 293 (77%), are universal (present 205 

in bacteria, other archaea and eukaryotes), 62 (16%) are represented in other archaea and eukaryotes, but 206 

not in bacteria, 15 (4%) are found in other archaea and bacteria, but not in eukaryotes, 7 (2%) are archaea-207 

specific, and only 1 (0.003%) is shared exclusively with eukaryotes (Supplementary Figure 5). Most of 208 

the core asCOGs show comparable levels of similarity to homologs from two or all three domains of life. 209 

The second largest fraction of the core asCOGs shows substantially greater sequence similarity (at least, 210 

25% higher similarity score) to homologous proteins from archaea than to those from eukaryotes and/or 211 

bacteria (Supplementary Table 6). Compared with the 219 genes that comprise the pan-archaeal core (27), 212 

the Asgard core set lacks 12 genes, each of which, however, is present in some subset of the Asgard 213 

genomes. These include three genes of diphthamide biosynthesis and 2 ribosomal proteins, L40E and 214 

L37E. The intricate evolutionary history of gene encoding translation elongation factors and enzymes of 215 

diphthamide biosynthesis in Asgard has been analyzed previously (28). Also of note is the displacement 216 

of the typical archaeal glyceraldehyde-3-phosphate dehydrogenase (type II) by a bacterial one (type I) in 217 

most of the Asgard genomes (cog.001204, additional data file 1).  218 

Functional distribution of the core asCOGs is shown in Fig. 3b (also see additional data file 1). For 219 

comparison, we also derived an extended gene core for the TACK superphylum, using similar criteria (at 220 

least 50% in each of the 6 lineages and 75% of the genomes overall, Fig 3b). For at least half of the 221 

Asgard core genes, across most functional classes, there were no orthologs in the TACK core. The most 222 

pronounced differences were found, as expected, in the category U (intracellular trafficking, secretion, 223 
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and vesicular transport). In Asgard archaea, this category includes 19 core genes compared with 7 genes 224 

in TACK; 13 of these genes are specific to the Asgard archaea and include components of ESCRT I and 225 

II, 3 distinct Roadblock/longin families, 2 distinct families of small GTPases, and a few other genes 226 

implicated in related processes (Supplementary Table 6). 227 

We compared the protein annotation obtained using asCOGs with the available annotation of ‘Candidatus 228 

Prometheoarchaeum syntrophicum’ and found that using asCOGs allowed at least a general functional 229 

prediction for 649 of the 1756 (37%) ‘hypothetical proteins’ in this organism, the only one in Asgard with 230 

a closed genome. We also identified 139 proteins, in addition to the 80 described originally, that can be 231 

considered Eukaryotic Signature Proteins, or ESPs (see next section). 232 

 233 

Eukaryotic features of Asgard archaea gleaned from genome analysis 234 

The enrichment of Asgard proteomes with homologs of eukaryote signature proteins (ESPs), such as 235 

ESCRTs, components of protein sorting complexes including coat proteins, complete ubiquitin 236 

machinery, actins and actin-binding proteins gelsolins and profilins, might be the strongest argument in 237 

support of a direct evolutionary relationship between Asgard archaea and eukaryotes (2, 29). However, 238 

the definition of ESPs is fuzzy because many of these proteins, in addition to their occurrence in Asgard, 239 

are either scattered among several other archaeal genomes, often, from diverse groups (30), or consist of 240 

promiscuous domains that are common in archaea, bacteria and eukaryotes, such as WD40 (after the 241 

conserved terminal amino acids of the repeat units, also known as beta-transducin repeats), LRR 242 

(Leucine-Rich Repeats), TPR (TetratricoPeptide Repeats), HEAT (Huntingtin-EF3-protein phosphatase 243 

2A-TOR1) and other, largely, repetitive domains (31, 32). Furthermore, the sequences of some ESPs have 244 

diverged to the extent that they become hardly detectable with standard computational methods. Our 245 

computational strategy for delineating an extensive yet robust ESP set is described under Materials and 246 

Methods. The ESP set we identified contained 505 asCOGs, including 238 that were not closely similar 247 

(E-value=10-10, length coverage 75%) to those previously described by Zaremba-Niedzwiedzka et al. 248 

(2)(Supplementary Table 7). In a general agreement with previous observations, the majority of these 249 

ESPs, 329 of the 505, belonged to the ‘Intracellular trafficking, secretion, and vesicular transport’ (U) 250 

functional class, followed by ‘Posttranslational modification, protein turnover, chaperones’ (O), with 101 251 

asCOGs (Supplementary Table 7). Among the asCOGs in the U class, 130 were Roadblock/LC7 252 

superfamily proteins, including longins, sybindin and profilins, and 94 were small GTPases of several 253 

families, such as RagA-like, Arf-like and Rab-like ones, as discussed previously (33). 254 
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The phyletic patterns of ESP asCOGs in Asgard archaea are extremely patchy and largely lineage-specific 255 

(Fig. 4), indicating that most of the proteins in this set are not uniformly conserved throughout Asgard 256 

evolution, but rather, are prone to frequent HGT, gene losses and duplications. These evolutionary 257 

processes are correlated in prokaryotes, resulting in the overall picture of highly dynamic evolution (34). 258 

Even the most highly conserved ESP asCOG are missing in some Asgard lineages but show multiple 259 

duplications in others (Fig. 4 and Supplementary Table 7). Surprisingly, many gaps in the ESPs 260 

distribution were detected in the Heimdallarchaeota that include the suspected ancestors of eukaryotes. 261 

Characteristically, many ESPs are multidomain proteins, with 37% assigned to more than one asCOG, 262 

compared to 17% among non-ESP proteins (Supplementary Table 7). Some multidomain ESPs in Asgard 263 

archaea have the same domain organizations as their homologs in eukaryotes, but these are a minority and 264 

typically contain only two domains. Examples include the fusion of two EAP30/Vps37 domains (35), and 265 

Vps23 and E2 domains (35) in ESCRT complexes, multiple Rag family GTPases, in which longin domain 266 

is fused to the GTPase domain, and several others. By contrast, most of the domain architectures of the 267 

multidomain ESP proteins were not detected in eukaryotes and often are found only in a narrow subset of 268 

Asgard archaea, suggesting extensive domain shuffling during Asgard evolution (Fig. 5a). For example, 269 

we identified many proteins containing a fusion of Vps28/Vps23 from ESCRT I complex (35) with C-270 

terminal domains of several homologous subunits of adaptin and COPI coatomer complexes (36, 37), and 271 

E3 UFM1-protein ligase 1, which is involved in the UFM1 ubiquitin pathway (38) (Fig. 5a). Generally, a 272 

protein with such a combination of domains can be predicted to be involved in ubiquitin-dependent 273 

membrane remodeling but, because its domain architecture is unique, the precise function cannot be 274 

inferred. 275 

The majority of the ESP genes of Asgard archaea do not belong to conserved genomic neighborhoods, but 276 

several such putative operons were detected. Perhaps, the most notable one is the ESCRT neighborhood 277 

which includes genes coding for subunits of ESCRT I, II and III, and often, components of the ubiquitin 278 

system (2), suggesting an ancient link between the two systems that persists in eukaryotes (35). We 279 

predicted another operon that is conserved in most Asgard archaea and consists of genes encoding a 280 

LAMTOR1-like protein of the Roadblock superfamily, a Rab-like small GTPase, and a protein containing 281 

the DENN (differentially expressed in normal and neoplastic cells) domain that so far has been identified 282 

only in eukaryotes (Fig. 5b). Two proteins consisting of a DENN domain fused to longin are subunits of 283 

the folliculin (FLCN) complex that is conserved in eukaryotes. The FLCN complex is the sensor of amino 284 

acid starvation interacting with Rag GTPase and Ragulator lysosomal complex, and a key component of 285 

the mTORC1 pathway, the central regulator of cell growth in eukaryotes (39). Some Heimdallarchaea 286 

encode several proteins with the exact same domain organization as FLCN (Fig. 5b). Ragulator is a 287 
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complex that consists of 5 subunits, each containing the Roadblock domain. In Asgard archaea, however, 288 

the GTPase present in the operon is from a family that is distinct from the Rag GTPases, which interact 289 

with both FLCN and Ragulator complexes in eukaryotes, despite the fact that Rag family GTPases are 290 

abundant in Asgards (33) (Supplementary Table 7). Nevertheless, this conserved module of Asgard 291 

proteins is a strong candidate to function as a guanine nucleotide exchange factor for Rab and Rag 292 

GTPases, analogously to the eukaryotic FLCN. In eukaryotes, the DENN domain is present in many 293 

proteins with different domain architectures that interact with different partners and perform a variety of 294 

functions (40, 41). The Asgard archaea also encode other DENN domain proteins, and the respective 295 

genes form expanded families of paralogs in Loki, Hel and Heimdall lineages, again, with domain 296 

architectures distinct from those in eukaryotes (Fig. 5b) (42).  297 

Prompted by the identification of a FLCN-like complex, we searched for other components of the 298 

mTORC1 regulatory pathway in Asgard archaea. The GATOR1 complex that consists of three subunits, 299 

Depdc5, Nprl2, and Nprl3, is another amino acid starvation sensor that is involved in this pathway in 300 

eukaryotes (43). Nitrogen permease regulators 2 and 3 (NPRL2 and NPRL3) are homologous GATOR1 301 

subunits that contain a longin domain and a small NPRL2-specific C-terminal domain (43). We identified 302 

a protein family with this domain organization in most Thor MAGs and a few Loki MAGs. Several other 303 

ESP asCOGs include proteins with high similarity to the longin domain of NPRL2. Additionally, we 304 

identified many fusions of the NPRL2-like longin domain with various domains related to prokaryotic 305 

two-component signal transduction system (Fig. 5c). Considering the absence of a homolog of 306 

phosphatidylinositol 3-kinase, the catalytic domain of the mTOR protein, it seems likely that, in Asgard 307 

archaea, the key growth regulation pathway remains centered at typical prokaryotic two-component signal 308 

transduction systems whereas at least some of the regulators and sensors in this pathway are “eukaryotic”. 309 

The abundance of NPRL2-like longin domains in Asgard archaea implies that the link between this 310 

domain and amino acid starvation regulation emerged at the onset of Asgard evolution if not earlier.  311 

 312 

Diverse metabolic repertoires, ancestral metabolism of Asgard archaea, and syntrophic evolution 313 

Examination of the distribution of the asCOGs among the 12 Asgard archaeal phyla showed that the 314 

metabolic pathway repertoire was conserved among the MAGs of each phylum but differed between the 315 

phyla (Fig. 3a). Three distinct lifestyles were predicted by the asCOG analysis for different major 316 

branches of Asgard archaea, namely, anaerobic heterotrophy, facultative aerobic heterotrophy, and 317 

chemolithotrophy (Fig. 6, Supplementary Figure 9). For the last Asgard archaeal common ancestor 318 

(LAsCA), a mixotrophic life style, including both production and consumption of H2, can be inferred 319 
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from parsimony considerations (Fig. 6, Supplementary Table 8; see Materials and Methods for further 320 

details). Loki-, Thor-, Hermod-, Baldr- and Borrarchaeota encode all enzymes for the complete (archaeal) 321 

Wood-Ljungdahl pathway (WLP) and are predicted to oxidize organic substrates, likely, by using the 322 

reverse WLP, given the lack of enzymes for oxidation of inorganic compounds (e.g., hydrogen, 323 

sulfur/sulfide and nitrogen/ammonia). The genomes of these five Asgard phyla encode homologues of 324 

membrane-bound respiratory H2-evolving Group 4 [NiFe] hydrogenase (Supplementary Figure 6) and/or 325 

cytosolic cofactor-coupled bidirectional Group 3 [NiFe] hydrogenase (44) (Supplementary Figure 7). 326 

Phylogenetic analysis of both group 3 and group 4 [NiFe] hydrogenases showed that Asgard archaea form 327 

distinct clades well separated from the functionally characterized hydrogenases, hampering the prediction 328 

of their specific functions in Asgard archaea. The functionally characterized group 4 [NiFe] hydrogenases 329 

in the Thermococci are involved in the fermentation of organic substrates to H2, acetate and carbon 330 

dioxide (45, 46). The presence of group 3 [NiFe] hydrogenases suggests that these Asgard archaea cannot 331 

use H2 as an electron donor because they lack the enzyme complex coupling H2 oxidation to membrane 332 

potential generation. Thus, in these organisms, bifurcate electrons from H2 are likely to be used to support 333 

the fermentation of organic substrates exclusively (45–47). 334 

Both Wukongarchaeota genomes (As_075 and As_085) encode a bona fide membrane-bound Group 1k 335 

[NiFe] hydrogenase that could mediate hydrogenotrophic respiration using heterodisulfide as the terminal 336 

electron acceptor (48, 49) (Fig. 6, Supplementary Figure 8, Supplementary Figure 10). The group 1k 337 

[NiFe] hydrogenase is exclusively found in methanogens of the order Methanosarcinales (Euryarchaoeta) 338 

(50), and it is the first discovery of the group 1 [NiFe] hydrogenase in the Asgard archaea. 339 

Wukongarchaeota also encode all enzymes for a complete WLP and a putative ADP-dependent acetyl-340 

CoA synthetase for acetate synthesis. Unlike all other Asgard archaea, Wukongarchaeota lack genes for 341 

citrate cycle and beta-oxidation. Thus, Wukongarchaeota appear to be obligate chemolithotrophic 342 

acetogens. The genomes of Wukongarchaeota were discovered only in seawater of the euphotic zone of 343 

the Yap trench (0 m and 125 m). Dissolved H2 concentration is known to be the highest in surface 344 

seawater, where the active microbial fermentation, compared to deep sea (51), could produce sufficient 345 

amounts of hydrogen for the growth of Wukongarchaeota. Hodarchaeota, Gerdarchaeota, Kariarchaeota, 346 

and Heimdallarchaeota share a common ancestor with Wukongarchaeota (Fig. 6). However, genome 347 

analysis implies different lifestyles for these organisms. Hod-, Gerd- and Kariarchaeota encode various 348 

electron transport chain components, including heme/copper-type cytochrome/quinol oxidase, nitrate 349 

reductase, and NADH dehydrogenase, most likely, allowing the use of oxygen and nitrate as electron 350 

acceptors during aerobic and anaerobic respiration, respectively (44). In addition, Hod-, Gerd- and 351 

Heimdallarchaeota encode phosphoadenosine phosphosulfate (PAPS) reductase and adenylylsulfate 352 

kinase for sulfate reduction, enabling the use of sulfate as electron acceptor during anaerobic respiration. 353 
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Gerd-, Heimdall-, and Hodarchaeota are only found in coastal and deep-sea sedimentary environments, 354 

whereas Kariarchaeota were found also in marine water. The versatile predicted metabolic capacities of 355 

these groups suggest that Hod-, Gerd- and Kariarchaeota might occupy both anoxic and oxic niches. In 356 

contrast, Heimdallarchaeota appear to be able to thrive only in anoxic environments. 357 

In the widely considered syntrophy scenarios (52), eukaryogenesis has been proposed to involve 358 

metabolic symbiosis (syntrophy) between an archaeon and one or two bacterial partners which, in the 359 

original hydrogen/syntrophy hypothesis, were postulated to donate H2 for methane or hydrogen sulfide 360 

production by the consortium (53, 54). The syntrophic scenarios were boosted by the discovery of 361 

apparent syntrophy between Candidatus P. syntrophicum and Deltaproteobacteria which led to the 362 

proposal of the Etangle-Engulf-Endogenize (E3) model of eukaryogenesis (17, 55). Reconstruction of the 363 

Lokiarchaeon metabolism has suggested that this organism was hydrogen-dependent, in accord with the 364 

hydrogen-syntrophic scenarios (54). In contrast, subsequent analysis of the metabolic potentials of 4 365 

Asgard phyla has led to the inference that these organisms were primarily organoheterotrophic and H2-366 

producing, the ‘reverse flow model’ model of protoeukaryote energy metabolism that involves electron or 367 

hydrogen flow from an Asgard archaeon to the alphaproteobacterial ancestor of mitochondria, in the 368 

opposite direction from that in the original hydrogen-syntrophy hypotheses (44). Here, we discovered a 369 

deeply branching Asgard group, Wukongarchaeota, which appears to include obligate hydrogenotrophic 370 

acetogens, suggesting the possibility of the LAsCA being a hydrogen-dependent autotroph (Fig. 6). This 371 

finding suggests that LAsCA both produced and consumed H2. Thus, depending on the exact relationship 372 

between Asgard archaea and eukaryotes that remains to be elucidated, our findings could be compatible 373 

with different syntrophic scenarios that postulate H2 transfer from bacteria to the archaeal symbiont or in 374 

the opposite direction.  375 

 376 

Conclusions 377 

The Asgard archaea that were discovered only 5 years ago as a result of the painstaking assembly of 378 

several Loki Castle metagenomes have grown into a highly diverse archaeal superphylum. The most 379 

remarkable feature of the Asgards is their apparent evolutionary affinity with eukaryotes that has been 380 

buttressed by two independent lines of evidence: phylogenetic analysis of highly conserved genes and 381 

detection of multiple ESPs that are absent or far less common in other archaea. The 75 MAGs added here 382 

substantially expand the phylogenetic and metabolic diversity of the Asgard superphylum. The extended 383 

set of Asgard genomes provides for a phylogeny based on a far more representative species sampling than 384 

available previously and a substantially expanded ESP analysis employing powerful computational 385 
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methods. This extended analysis reveals 6 putative additional Asgard phyla but does not immediately 386 

clarify the Asgard-eukaryote relationship. Indeed, phylogenetic analysis of conserved genes in an 387 

expanded set of archaea, bacteria and eukaryotes yields conflicting 3D and 2D signals, with an 388 

unexpected preference for the 3D topology. Thus, the conclusion that eukaryotes emerged from within 389 

Asgard archaea, in particular, from the Heimdall lineage, appears to be premature. Further phylogenomic 390 

study with an even broader representation of diverse archaeal lineages as well as, possibly, even more 391 

sophisticated evolutionary models are required to clarify the relationships between archaea and 392 

eukaryotes.  393 

Our analysis of Asgard genomes substantially expanded the set of ESPs encoded by this group of archaea 394 

and revealed numerous, complex domain architectures of these proteins. These results further emphasize 395 

the excess of ESPs in Asgards compared to other archaea and provide additional support to the conclusion 396 

that most of the Asgard ESPs are involved in membrane remodeling and intracellular trafficking. 397 

However, in parallel with the phylogenomic results, detailed analysis of the ESPs reveals a complex 398 

picture. Most of the multidomain Asgard ESPs possess domain architectures distinct from typical 399 

eukaryotic ones and some of these arrangements include signature prokaryotic domains, suggesting 400 

substantial functional differences from the respective eukaryotic systems. Furthermore, virtually all the 401 

ESPs show patchy distributions in Asgard and other archaea, indicative of a history of extensive HGT, 402 

gene losses and paralogous family expansion. All these findings seem to be best compatible with the 403 

model of a dispersed, dynamic archaeal ‘eukaryome’ (30) that widely spreads among archaea via HGT, so 404 

far reaching the highest ESP density in the Asgard archaea.  405 

The results of this work cannot rule out the possibility of the emergence of eukaryotes from within the 406 

Asgard but seem to be better compatible with a different evolutionary scenario under which the conserved 407 

core of eukaryote genes involved in informational processes originates from an as yet unknown ancestor 408 

group that might be a deep archaeal branch or could lie outside the presently characterized archaeal 409 

diversity. These hypothetical ancestral forms might have accumulated components of the mobile archaeal 410 

‘eukaryome’ to an even greater extent than the Asgards archaea, eventually, giving rise to eukaryote-like 411 

cells, likely, via a form of syntrophy with one or more bacterial partners. Combined genomic and 412 

(undoubtedly, far more challenging) biological study of diverse archaea is essential for further advancing 413 

our understanding of eukaryogenesis.  414 
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 584 

Figures 585 

 586 

Figure 1. Gene commonality plots for Asgard archaea and the TACK superphylum.  587 

The gene commonality plot showing the number of asCOGs in log scale (Y-axis) that include the given 588 

fraction of analyzed genomes (X-axis). The Asgard plot is compared with the TACK superphylum plot 589 

based on assignment of TACK genomes to arCOGs. 590 

 591 

Figure 2. Phylogenetic analysis of Asgard archaea and their relationships with eukaryotes.  592 

(a) Maximum likelihood tree, inferred with IQ-tree and LG+F+R10 model, constructed from 593 

concatenated alignments of the protein sequences from 209 core Asgard Clusters of Orthologs (asCOGs). 594 

Only the 12 phylum-level clades are shown, with species within each clade collapsed. See supplementary 595 

Methods and Supplementary Table 5 for details.  596 

(b) Maximum likelihood tree, inferred with IQ-tree and SYM+R8 model, based on 16S rRNA gene 597 

sequences. Red stars in (b) denote MAGs reconstructed in the current study.  598 

(c) Phylogenetic tree of bacteria, archaea and eukaryotes, inferred with IQ-tree under LG+R10 model, 599 

constructed from concatenated alignments of the protein sequences of 30 universally conserved genes 600 

(see Material and Methods for details). The tree shows the relationships between the major clades.  601 

The trees are unrooted and are shown in a pseudorooted form for visualization purposes only. The actual 602 

trees and alignments are in Additional data file 2 and list of the trees are provided in the Supplementary 603 

Table 4 and 5. 604 

 605 

Figure 3. Phyletic patterns of asCOGs and functional distribution of Asgard core genes. 606 

(a) Classical Multidimensional Scaling analysis of binary presence-absence phyletic patterns for 13,939 607 

asCOGs that are represented in at least two genomes (see Material and Methods for details). 608 

(b) Functional breakdown of Asgard core genes (378 asCOGs) compared with TACK superphylum core 609 

genes (489 arCOGs). The values were normalized as described in Materials and Methods. Functional 610 

classes of genes: J, Translation, ribosomal structure and biogenesis; K, Transcription; L, Replication, 611 
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recombination and repair; D, Cell cycle control, cell division, chromosome partitioning; V, Defense 612 

mechanisms; T, Signal transduction mechanisms; M, Cell wall/membrane/envelope biogenesis; N, Cell 613 

motility; U, Intracellular trafficking, secretion, and vesicular transport; O, Posttranslational modification, 614 

protein turnover, chaperones; X, Mobilome: prophages, transposons; C, Energy production and 615 

conversion; G, Carbohydrate transport and metabolism; E, Amino acid transport and metabolism; F, 616 

Nucleotide transport and metabolism; H, Coenzyme transport and metabolism; I, Lipid transport and 617 

metabolism; P, Inorganic ion transport and metabolism; Q, Secondary metabolites biosynthesis, transport 618 

and catabolism; R, General function prediction only; S, Function unknown; 619 

 620 

Figure 4. Phyletic patterns of Eukaryotic Signature Proteins (ESPs) encoded in Asgard genomes. 621 

All 505 ESP asCOGs are grouped by distance between binary presence-absence phyletic patterns. The 622 

most highly conserved ESP asCOGs are shown within the red rectangle. Below the plot of the number of 623 

ESP domains in each genome is shown. For details, see Supplementary Table 7. 624 

 625 

Figure 5. Domain architectures of selected Asgard ESPs. 626 

(a) ESPs with unique domain architectures. The schematic of each multidomain protein is roughly 627 

proportional to the respective protein length. The identified domains are shown inside the arrows 628 

approximately according to their location and are briefly annotated. Homologous domains are shown by 629 

the same color or pattern.  630 

(b) DENN domain proteins in Asgards. Upper part of the figure above the dashed line shows putative 631 

operon encoding DENN domain proteins. Genes are shown by block arrows with the length proportional 632 

to the size of the corresponding protein. For each protein, the nucleotide contig or genome partition 633 

accession number, Asgard genome ID and lineage are indicated. The part of the figure below the dashed 634 

line shows domain organization of diverse proteins containing DENN domain. Homologous domains are 635 

shown by the same color. The inset on the right side explains identity of the domains 636 

(c) NPRL2-like proteins in Asgards. Designations are the same as in Figure 4a. 637 

 638 

Figure 6. Reconstruction and evolution of the key metabolic processes in Asgard archaea. 639 

The schematic phylogeny of Asgard archaea is from Figure 1a.  640 

LAsCA, Last Asgard Common Ancestor; WLP, Wood-Ljungdahl pathway. 641 
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Supplementary Materials 642 

Taxonomic description 643 

Materials and Methods 644 

Supplementary References 645 

Tables S1-S8 646 

Figures S1-S10 647 

Additional Data files are available at ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/asgard20/ 648 

Additional data file 1 (Additional_data_file_1.tgz): Complete asCOG data archive 649 

Additional data file 2 (Additional_data_file_2.tgz): Phylogenetic trees and alignments archive 650 

 651 
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3 
 

Taxonomic Description of new taxa 25 

‘Candidatus Wukongarchaeum’ (Wu.kong.ar.chae’um. N. L. n. Wukong a legendary Chinese figure, 26 
also known as Monkey King, who caused havoc in the heavenly palace); N.L. neut. N. archaeum (from 27 
Gr. adj. archaios ancient) archaeon; N. L. neut. N. Wukongarchaeum. 28 

‘Candidatus Wukongarchaeum yapensis’ (yap’ensis N. L. masc. adj. pertaining to Yap trench, which is 29 
the geographical position where the first type material of this species was obtained). Type material is the 30 
genome designated as As_085 (Yap4.bin4.70) representing ‘Candidatus Wukongarchaeum yapensis’. The 31 
genome “As_085” represents a MAG consisting of 2.16 Mbps in 277 contigs with an estimated 32 
completeness of 92.52%, an estimated contamination of 4.05%, a 16S and 23S rRNA gene and 14 tRNAs. 33 
The MAG recovered from a marine water metagenome (Yap trench, Western Pacific), with an estimated 34 
depth of coverage of 31.4, has a GC content of 38%.  35 

‘Candidatus Hodarchaeum’ (Hod.ar.chae’um. N. L. n. Hod a son of Odin in Norse mythology); N.L. 36 
neut. N. archaeum (from Gr. adj. archaios ancient) archaeon; N. L. neut. N. Hodarchaeum. 37 

‘Candidatus Hodarchaeum mangrovi’ (man.gro’vi N.L. fem. n. of a mangrove, referring to the isolation 38 
of the type material from mangrove soil). Type material is the genome designated as As_027 39 
(FT2_5_011) representing ‘Candidatus Hodarchaeum mangrovi’. The genome “As_027” represents a 40 
MAG consisting of 4.01 Mbps in 348 contigs with an estimated completeness of 93.61%, an estimated 41 
contamination of 0.93%, a 23S rRNA gene and 14 tRNAs. The MAG recovered from mangrove sediment 42 
metagenomes (Futian Nature Reserve, China), with an estimated depth of coverage of 17.9, has a GC 43 
content of 32.9%. 44 

‘Candidatus Kariarchaeum’ (Ka.ri.ar.chae’um. N. L. n. Kari the god of wind and brother to Aegir in 45 
Norse mythology); N.L. neut. N. archaeum (from Gr. adj. archaios ancient) archaeon; N. L. neut. N. 46 
Kariarchaeum. 47 

‘Candidatus Kariarchaeum pelagius’ (pe.la’gi.us. L. masc. adj. of or belonging to the sea, referring to 48 
the isolation of the type material from the Ocean). Type material is the genome designated as As_030 49 
(RS678) representing ‘Candidatus Kariarchaeum pelagius’. The genome “As_030” represents a MAG 50 
consisting of 1.41 Mbps in 76 contigs, an estimated completeness of 83.18%, with an estimated 51 
contamination of 1.87%, a 23S, 16S and 5S rRNA genes and 18 tRNAs. The MAG recovered from a 52 
marine metagenome (Saudi Arabia: Red Sea) has a GC content of 30.11%. 53 

‘Candidatus Borrarchaeum’ (Borr.ar.chae’um. N. L. n. Borr a creator god and father of Odin); N.L. 54 
neut. N. archaeum (from Gr. adj. archaios ancient) archaeon; N. L. neut. N. Borrarchaeum. 55 

‘Candidatus Borrarchaeum yapensis’ (yap’ensis N. L. masc. adj. pertaining to Yap trench, which is the 56 
geographical position where the first type material of this species was obtained). Type material is the 57 
genome designated as As_181 (Yap2000.bin9.141) representing ‘Candidatus Borrarchaeum yapensis’. 58 
The genome “As_181” represents a MAG consisting of 3.63 Mbps in 125 contigs, with an estimated 59 
completeness of 95.02%, an estimated contamination of 5.61% and 11 tRNAs. The MAG, recovered from 60 
a marine water metagenome (Yap trench, Western Pacific) with an estimated depth coverage of 15.04, has 61 
a GC content of 37.1%.  62 
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‘Candidatus Baldrarchaeum’ (Bal.dr.ar.chae’um. N. L. n. Baldr the god of light and son of Odin and 63 
borther of Thor in Norse mythology); N.L. neut. N. archaeum (from Gr. adj. archaios ancient) archaeon; 64 
N. L. neut. N. Baldrarchaeum. 65 

‘Candidatus Baldrarchaeum yapensis’ (yap’ensis N. L. masc. adj. pertaining to Yap trench, which is the 66 
geographical position where the first type material of this species was obtained). Type material is the 67 
genome designated as As_130 (Yap30.bin9.72) representing ‘Candidatus Baldrarchaeum yapensis’. The 68 
genome “As_130” represents a MAG consisting of 2.27 Mbps in 100 contigs, with an estimated 69 
completeness of 93.93%, an estimated contamination of 3.74%, a 23S and 16S rRNA gene and 15 tRNAs. 70 
The MAG, recovered from a marine water metagenome (Yap trench, Western Pacific) with an estimated 71 
depth coverage of 39.99, has a GC content of 45.95%. 72 

‘Candidatus Hermodarchaeum’ (Her.mod.ar.chae’um. N. L. n. Hermod, messengers of the gods in the 73 
Norse mythology and son of Odin and brother of Baldr in the Norse mythology); N.L. neut. N. archaeum 74 
(from Gr. adj. archaios ancient) archaeon; N. L. neut. N. Hermodarchaeum.  75 

‘Candidatus Hermodarchaeum yapensis’ (yap’ensis N. L. masc. adj. pertaining to Yap trench, which is 76 
the geographical position where the first type material of this species was obtained). Type material is the 77 
genome designated as As_086 (Yap4.bin9.105) representing ‘Candidatus Hermodarchaeum yapensis’. 78 
The genome ‘As_086’ represent a MAG consisting of 2.71 Mbps in 77 contigs, with an estimated 79 
completeness of 92.99%, an estimated contamination of 1.87%, a 23S and 16S rRNA gene and 16 tRNAs. 80 
The MAG, recovered from a marine water metagenome (Yap trench, Western Pacific) with an estimated 81 
depth coverage of 19.24, has a GC content of 44.69%. 82 

Candidatus Wukongarchaeaceae (Wu.kong.ar.chae.a.ce’ae. N.L. neut. n. Wukongarchaeum a 83 
(Candidatus) type genus of the family; -aceae ending to denote the family; N.L. fem. pl. n. 84 
Wukongarchaeaceae the Wukongarchaeum family).  85 

The family is delineated based on 209 concatenated Asgard Cluster of Orthologs (AsCOGs) and 16S 86 
rRNA gene phylogeny. The description is the same as that of its sole genus and species. Type genus is 87 
Candidatus Wukongarchaeum.  88 

Candidatus Wukongarchaeales (Wu.kong.ar.chae.a’les. N.L. neut. n. Wukongarchaeum a (Candidatus) 89 
type genus of the order; -ales ending to denote the order; N.L fem. pl. n. Wukongarchaeales the 90 
Wukongarchaeum order). 91 

The order is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 92 
description is the same as that of its sole genus and species. Type genus is Candidatus Wukongarchaeum.  93 

Candidatus Wukongarchaeia (Wu.kong.ar.chae’i.a. N.L. neut. n. Wukongarchaeum a (Candidatus) type 94 
genus of the order of the class; -ia ending to denote the class; N.L fem. pl. n. Wukongarchaeia the 95 
Wukongarchaeum class). 96 

The class is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 97 
description is the same as that of its sole and type order Candidatus Wukongarchaeales.  98 
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Candidatus Wukongarchaeota (Wu.kong.ar.chae.o’ta. N.L. neut. n. Wukongarchaeum a (Candidatus) 99 
type genus of the class of the phylum; -ota ending to denote the phylum; N.L neut. pl. n. 100 
Wukongarchaeota the Wukongarchaeum phylum) 101 

The phylum is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 102 
description is the same as that of its sole and type class Candidatus Wukongarchaeia. 103 

Candidatus Hodarchaeaceae (Hod.ar.chae.a.ce’ae. N.L. neut. n. Hodarchaeum a (Candidatus) type 104 
genus of the family; -aceae ending to denote the family; N.L. fem. pl. n. Hodarchaeaceae the 105 
Hodarchaeum family).  106 

The family is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 107 
description is the same as that of its sole genus and species. Type genus is Candidatus Hodarchaeum.  108 

Candidatus Hodarchaeales (Hod.ar.chae.a’les. N.L. neut. n. Hodarchaeum a (Candidatus) type genus of 109 
the order; -ales ending to denote the order; N.L fem. pl. n. Hodarchaeales the Hodarchaeum order). 110 

The order is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 111 
description is the same as that of its sole genus and species. Type genus is Candidatus Hodarchaeum.  112 

Candidatus Hodarchaeia (Hod.ar.chae’i.a. N.L. neut. n. Hodarchaeum a (Candidatus) type genus of the 113 
order of the class; -ia ending to denote the class; N.L fem. pl. n. Hodarchaeia the Hodarchaeum class). 114 

The class is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 115 
description is the same as that of its sole and type order Candidatus Hodarchaeales.  116 

Candidatus Hodarchaeota (Hod.ar.chae.o’ta. N.L. neut. n. Hodarchaeum a (Candidatus) type genus of 117 
the class of the phylum; -ota ending to denote the phylum; N.L neut. pl. n. Hodarchaeota the 118 
Hodarchaeum phylum) 119 

The phylum is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 120 
description is the same as that of its sole and type class Candidatus Hodarchaeia. 121 

Candidatus Hodarchaeaceae (Hod.ar.chae.a.ce’ae. N.L. neut. n. Hodarchaeum a (Candidatus) type 122 
genus of the family; -aceae ending to denote the family; N.L. fem. pl. n. Hodarchaeaceae the 123 
Hodarchaeum family).  124 

The family is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 125 
description is the same as that of its sole genus and species. Type genus is Candidatus Hodarchaeum.  126 

Candidatus Hodarchaeales (Hod.ar.chae.a’les. N.L. neut. n. Hodarchaeum a (Candidatus) type genus of 127 
the order; -ales ending to denote the order; N.L fem. pl. n. Hodarchaeales the Hodarchaeum order). 128 

The order is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 129 
description is the same as that of its sole genus and species. Type genus is Candidatus Hodarchaeum.  130 

Candidatus Hodarchaeia (Hod.ar.chae’i.a. N.L. neut. n. Hodarchaeum a (Candidatus) type genus of the 131 
order of the class; -ia ending to denote the class; N.L fem. pl. n. Hodarchaeia the Hodarchaeum class). 132 
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The class is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 133 
description is the same as that of its sole and type order Candidatus Hodarchaeales.  134 

Candidatus Hodarchaeota (Hod.ar.chae.o’ta. N.L. neut. n. Hodarchaeum a (Candidatus) type genus of 135 
the class of the phylum; -ota ending to denote the phylum; N.L neut. pl. n. Hodarchaeota the 136 
Hodarchaeum phylum) 137 

The phylum is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 138 
description is the same as that of its sole and type class Candidatus Hodarchaeia. 139 

Candidatus Kariarchaeaceae (Ka.ri.ar.chae.a.ce’ae. N.L. neut. n. Kariarchaeum a (Candidatus) type 140 
genus of the family; -aceae ending to denote the family; N.L. fem. pl. n. Kariarchaeaceae the 141 
Kariarchaeum family).  142 

The family is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 143 
description is the same as that of its sole genus and species. Type genus is Candidatus Kariarchaeum.  144 

Candidatus Kariarchaeales (Ka.ri.ar.chae.a’les. N.L. neut. n. Kariarchaeum a (Candidatus) type genus of 145 
the order; -ales ending to denote the order; N.L fem. pl. n. Kariarchaeales the Kariarchaeum order). 146 

The order is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 147 
description is the same as that of its sole genus and species. Type genus is Candidatus Kariarchaeum.  148 

Candidatus Kariarchaeia (Ka.ri.ar.chae’i.a. N.L. neut. n. Kariarchaeum a (Candidatus) type genus of the 149 
order of the class; -ia ending to denote the class; N.L fem. pl. n. Kariarchaeia the Kariarchaeum class). 150 

The class is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 151 
description is the same as that of its sole and type order Candidatus Kariarchaeales.  152 

Candidatus Kariarchaeota (Ka.ri.ar.chae.o’ta. N.L. neut. n. Kariarchaeum a (Candidatus) type genus of 153 
the class of the phylum; -ota ending to denote the phylum; N.L neut. pl. n. Kariarchaeota the 154 
Kariarchaeum phylum) 155 

The phylum is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 156 
description is the same as that of its sole and type class Candidatus Kariarchaeia. 157 

Candidatus Borrarchaeaceae (Borr.ar.chae.a.ce’ae. N.L. neut. n. Borrarchaeum a (Candidatus) type 158 
genus of the family; -aceae ending to denote the family; N.L. fem. pl. n. Borrarchaeaceae the 159 
Borrarchaeum family).  160 

The family is delineated based on 209 concatenated AsCOGs phylogeny. The description is the same as 161 
that of its sole genus and species. Type genus is Candidatus Borrarchaeum.  162 

Candidatus Borrarchaeales (Borr.ar.chae.a’les. N.L. neut. n. Borrarchaeum a (Candidatus) type genus of 163 
the order; -ales ending to denote the order; N.L fem. pl. n. Borrarchaeales the Borrarchaeum order). 164 

The order is delineated based on 209 concatenated AsCOGs phylogeny. The description is the same as 165 
that of its sole genus and species. Type genus is Candidatus Borrarchaeum.  166 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.19.343400doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.343400
http://creativecommons.org/licenses/by-nd/4.0/


7 
 

Candidatus Borrarchaeia (Borr.ar.chae’i.a. N.L. neut. n. Borrarchaeum a (Candidatus) type genus of the 167 
order of the class; -ia ending to denote the class; N.L fem. pl. n. Borrarchaeia the Borrarchaeum class). 168 

The class is delineated based on 209 concatenated AsCOGs phylogeny. The description is the same as 169 
that of its sole and type order Candidatus Borrarchaeales.  170 

Candidatus Borrarchaeota (Borr.ar.chae.o’ta. N.L. neut. n. Borrarchaeum a (Candidatus) type genus of 171 
the class of the phylum; -ota ending to denote the phylum; N.L neut. pl. n. Borrarchaeota the 172 
Borrarchaeum phylum) 173 

The phylum is delineated based on 209 concatenated AsCOGs phylogeny. The description is the same as 174 
that of its sole and type class Candidatus Borrarchaeia. 175 

 176 

Candidatus Baldrarchaeaceae (Bal.dr.ar.chae.a.ce’ae. N.L. neut. n. Baldrarchaeum a (Candidatus) type 177 
genus of the family; -aceae ending to denote the family; N.L. fem. pl. n. Baldrarchaeaceae the 178 
Baldrarchaeum family).  179 

The family is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 180 
description is the same as that of its sole genus and species. Type genus is Candidatus Baldrarchaeum.  181 

Candidatus Baldrarchaeales (Bal.dr.ar.chae.a’les. N.L. neut. n. Bladrarchaeum a (Candidatus) type 182 
genus of the order; -ales ending to denote the order; N.L fem. pl. n. Baldrarchaeales the Baldrarchaeum 183 
order). 184 

The order is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 185 
description is the same as that of its sole genus and species. Type genus is Candidatus Baldrarchaeum.  186 

Candidatus Baldrarchaeia (Bal.dr.ar.chae’i.a. N.L. neut. n. Baldrarchaeum a (Candidatus) type genus of 187 
the order of the class; -ia ending to denote the class; N.L fem. pl. n. Baldrarchaeia the Baldrarchaeum 188 
class). 189 

The class is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 190 
description is the same as that of its sole and type order Candidatus Baldrarchaeales.  191 

Candidatus Baldrarchaeota (Bal.dr.ar.chae.o’ta. N.L. neut. n. Baldrarchaeum a (Candidatus) type genus 192 
of the class of the phylum; -ota ending to denote the phylum; N.L neut. pl. n. Baldrarchaeota the 193 
Baldrarchaeum phylum) 194 

The phylum is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 195 
description is the same as that of its sole and type class Candidatus Baldrarchaeia. 196 

 197 

Candidatus Hermodarchaeaceae (Her.mod.ar.chae.a.ce’ae. N.L. neut. n. Hermodarchaeum a 198 
(Candidatus) type genus of the family; -aceae ending to denote the family; N.L. fem. pl. n. 199 
Hermodarchaeaceae the Hermodarchaeum family).  200 
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The family is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 201 
description is the same as that of its sole genus and species. Type genus is Candidatus Hermodarchaeum.  202 

Candidatus Hermodarchaeales (Her.mod.ar.chae.a’les. N.L. neut. n. Hermodarchaeum a (Candidatus) 203 
type genus of the order; -ales ending to denote the order; N.L fem. pl. n. Hermodarchaeales the 204 
Hermodarchaeum order). 205 

The order is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 206 
description is the same as that of its sole genus and species. Type genus is Candidatus Hermodarchaeum.  207 

Candidatus Hermodarchaeia (Her.mod.ar.chae’i.a. N.L. neut. n. Hermodarchaeum a (Candidatus) type 208 
genus of the order of the class; -ia ending to denote the class; N.L fem. pl. n. Hermodarchaeia the 209 
Hermodarchaeum class). 210 

The class is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 211 
description is the same as that of its sole and type order Candidatus Hermodarchaeales.  212 

Candidatus Hermodarchaeota (Her.mod.ar.chae.o’ta. N.L. neut. n. Hermodarchaeum a (Candidatus) 213 
type genus of the class of the phylum; -ota ending to denote the phylum; N.L neut. pl. n. 214 
Hermodarchaeota the Hermodarchaeum phylum) 215 

The phylum is delineated based on 209 concatenated AsCOGs and 16S rRNA gene phylogeny. The 216 
description is the same as that of its sole and type class Candidatus Hermodarchaeia. 217 

  218 
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Materials and Methods 219 

Sampling collections and DNA sequencing 220 

YT samples were obtained from the Rongcheng Nation Swan Nature Reserve (Rongcheng, China) in 221 
November 2018. The sediment cores were collected using columnar samplers at depth intervals of 0–2, 222 
21–26, and 36–41 cm at a seagrass meadow and a non-seagrass–covered site nearby. After collection, 223 
bulk sediments were immediately sealed in plastic bags, placed in a pre-cooled icebox, and transported to 224 
laboratory within 4 hours. For each sample, DNA was extracted from 10 g sediment using PowerSoil 225 
DNA Isolation kit (QIAGEN, Germany), according to the manufacturer’s protocol. Following extraction, 226 
nucleic acids were sequenced using Illumina HiSeq2500 (Illumina, USA) PE150 by Novogene (Nanjing, 227 
China). 228 

MP5 samples were obtained from Mai Po Nature Reserve (Hong Kong, China) in September 2014. Three 229 
subsurface sediment samples were collected from a site covering with mangrove forest at depth intervals 230 
of 0-2, 10-15 and 20-25 cm. Two subsurface sediment samples were taken at an intertidal mudflat with 231 
depths of 0-5 and 13-16 cm. Samples were transported back to laboratory as described for YT 232 
metagenomes. DNA was extracted from 5g wet sediment per sample using the PowerSoil DNA Isolation 233 
Kit (MO BIO, USA) following the manufacturer’s protocol. Metagenomic sequencing data were 234 
generated using Illumina HiSeq2500 (Illumina, USA) PE150 by Novogene (Tianjin, China). 235 

FT samples were taken from Futian Nature Reserve (Shenzhen, Guangdong, China) in April 2017. 236 
Sediment samples were collected as described for YT samples at depth intervals of 0-2, 6-8, 12-14, 20-22, 237 
and 28-30 cm. DNA was extracted from 5g wet sediment per sample using DNeasy PowerSoil kit 238 
(Qiagen, Germany) as per manufacturer’s instructions. Nucleic acids were sequenced using Illumina 239 
HiSeq2000 (Illumina, USA) PE150 by Novogene (Tianjin, China).  240 

The surface sediment sample of the CJE metagenome was collected from Changjiang estuary during a 241 
cruise in August 2016. The sample was grabbed from the water bed, sealed immediately in a 50 ml tubes 242 
and stored in liquid nitrogen onboard. After transportation to laboratory, 10g wet sediments were used for 243 
DNA extraction as per manufacturer’s protocol. Nucleic acids were sequenced using Illumina HiSeq2000 244 
(Illumina, USA) PE150 by Novogene (Tianjin, China).  245 

An oil sand sample was collected from Shengli Oilfield (Shandong, China) into bottles and they were 246 
transported to laboratory where they were stored at 4 䉝. The sample was used as inoculum to perform 247 
enrichment with anaerobic medium in vials as described elsewhere (1). After 253d of enrichment, the 248 
genomic DNA was extracted as described elsewhere (2). Nucleic acids were sequenced Illumina 249 
HiSeq2000 (Illumina, USA) PE150 by Novogene (Tianjin, China). 250 

The seawater samples of Yap metagenomes were collected at Yap trench region by CTD SBE911plus 251 
(Sea-Bird Electronics, USA) during the 37th Dayang cruise in 2016. 8L of seawater per sample was 252 
filtered through a 0.22 µm-mesh membrane filter immediately after recovery onboard. The membrane 253 
was then cut into ~0.2 cm2 pieces with a flame-sterilized scissors and added to a PowerBead Tube (MO 254 
BIO, USA) and the subsequent steps were implemented according to the manufacturer’s protocol to 255 
extract DNA. The DNA per sample was amplified in five separative reactions using REPLI-g Single Cell 256 
Kits (Qiagen, Germany) following the manufacturer's protocol, given to the challenging nature of sample 257 
retrieval and DNA recovery. The products were pooled together and purified using QIAamp DNA Mini 258 
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Kit (Qiagen, Germany) according to the manufacturer’s recommendations. Parallel blank controls were 259 
set for sampling, DNA extraction and ampliation with 0.22 µm-mesh membrane filtering Milli-Q water 260 
������0ȍ��0LOOLSRUH��86$���1XFOHLF�DFLGV�ZHUH�VHTXHQFHG�XVLQJ�+L6HT�;�7HQ��,OOXPLQD��86$��3(����� 261 

Metagenomic assembly, binning and gene calling 262 

FT, MP5 and YT metagenomes. These three sets of metagenomes were assembled and binned using the 263 
same method. Raw shotgun metagenomic sequencing reads were trimmed with “read_qc” module from 264 
metaWRAP (v.1.1) (3). All clean reads from the same set were pooled together prior to de novo assemble 265 
to one co-assembly. Clean reads were sent out to MEGAHIT (v1.1.2) with flag “--presets meta-large” for 266 
co-assembling job (4). Sequencing coverage was determined for each assembled scaffold by mapping 267 
reads from each sample to the co-assembly using Bowtie2 (5). The binning analysis was carried out 8 268 
times with 8 different combinations of specificity and sensitivity parameters using MetaBAT2(52) (“--269 
maxP 60 or 95” AND “--minS 60 or 95” AND “--maxEdges 200 or 500”) on the assembly with a 270 
minimum length of 2000 bp (6). DAS Tool (v1.0) was used as a dereplication and aggregation strategy on 271 
those eight binning results to construct accurate bins (7). Manual curation was used for reducing the 272 
genome contamination based on differential coverages, GC contents, and the presence of duplicate genes.  273 

The depth coverage and N50 statistics of 38 Asgard MAGs recovered from YT metagenomes range from 274 
7.72 to 298.86 (median: 21.77) and from 6658 to 381755 bps (median: 26337.5 bps) respectively; for 13 275 
Asgard MAGs recovered from FT metagenomes, the values range from 6.98 to 33.22 (median 16.89) and 276 
from 3889 to 8957 bps (median: 5000 bps), respectively; and for 11 Asgard MAGs recovered from MP5 277 
metagenomes, the values range from 7.06 to 54.42 (median: 10) and from 3898 to 19362 bps (median: 278 
7581 bps) respectively. (Supplementary Figure 2).  279 

CJE metagenome. Raw metagenomic shotgun sequencing reads were trimmed using Sickle 280 
(https://github.com/najoshi/sickle) with default settings. The trimmed reads were de novo assembled 281 
using IDBA-UD (v 1.1.1) with the parameters: “-mink 65, -maxk 145, -step 10” (8). Sequencing coverage 282 
was determined as described above. The binning analysis were performed with MetaBAT2 12 times, with 283 
12 combinations of specificity and sensitivity parameters (--m 1500, 2000, or 2500” AND “--maxP 85 or 284 
90” AND “--minS 80, 85 and 90”) for further refinement (6). All binning results were merged and refined 285 
using DAS Tool (v1.0) (7). 286 

2 Asgard MAGs recovered from CJE metagenome have a depth coverage of 19.16 and 20.56, and a N50 287 
statistics of 8740 and 5246 bps (Supplementary Figure 2). 288 

J65 metagenome. Raw metagenomic shotgun sequencing reads were trimmed with Trimmomatic (v0.38) 289 
(9). The clean reads were then fed to SPAdes (v 3.12.0) for de novo assembly with the parameters: “--290 
meta -k 21, 33, 55, 77” (10). Sequencing coverage was determined using BBMap (v 38.24) toolkit with 291 
the parameters: “bbmap.sh minid=0.99” (https://github.com/BioInfoTools/BBMap). MetaBAT2 (v 2.12.1) 292 
was used to perform binning analysis with the parameter: “-m 2000” (6).  293 

One Asgard MAG recovered from J65 metagenome had a depth coverage of 14.52 and a N50 statistics of 294 
10460 bps (Supplementary Figure 2).  295 
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Yap metagenome. For each Yap metagenome, raw metagenomic shotgun sequencing reads were trimmed 296 
with Trimmomatic (v0.38) (9). Assembly and binning analysis were performed as described for CJE 297 
metagenome for each Yap metagenome. 298 

The depth coverage and N50 statistics of 24 Asgard MAGs recovered from Yap metagenomes range from 299 
7.78 to 82.33 (median: 13.91) and from 5097 to 889102 bps (median: 18155.5 bps) respectively. 300 
(Supplementary Figure 2) 301 

A total of 89 Asgard MAGs were reconstructed in this work. Additional 95 Asgard MAGs were 302 
downloaded from public databases (e.g. NCBI FTP site). For all 184 genomes, a uniform gene calling 303 
protocol was applied. Specifically, the completeness, contamination, and strain heterogeneity of the 304 
genomes were estimated by using CheckM (v.1.0.12) (11) and DAS Tool under the taxonomic scope of 305 
domain (i.e., Bacteria and Archaea). Protein-coding genes were predicted using Prodigal (v 2.6.3) (12) 306 
embedded in Prokka (v 1.13) (13). Transfer RNAs (tRNAs) were identified with tRNAscan-SE (v1.23) 307 
using the archaeal tRNA model (14). After quality screening, further analysis focused on 162 high quality 308 
Asgard MAGs. 309 

Genome set  310 

The Asgard archaea genome set analyzed in this work consisted of 161 Asgard MAGs and one complete 311 
Asgard genome (Supplementary Table 1). For comparison, selected representative genomes of archaea 312 
(296), bacteria (100) and eukaryotes (76) were downloaded from Refseq and Genbank using the NCBI 313 
FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/). 314 

Average amino-acid identity 315 

The average amino-acid identity (AAI) across TACK archaeal reference genomes and the 184 Asgard 316 
genomes was calculated using compareM (v0.0.23) with the “aai_wf” at default settings 317 
(https://github.com/dparks1134/CompareM). 318 

asCOGs construction 319 

Initial clustering of 250,634 proteins encoded in 76 Asgard MAGs was performed using two approaches: 320 
first, footprints of arCOG profiles were obtained by running PSI-BLAST (15), initiated with arCOG 321 
alignments, against the set of predicted Asgard proteins. The footprint sequences were extracted and 322 
clustered according to the arCOG best hit. The remaining protein sequences (both full-length proteins and 323 
the sequence fragments outside of the footprints, if longer than 60 aa) were clustered using MMseqs2 324 
(16), with similarity threshold of 0.5. Sequences within clusters were aligned using MUSCLE (17); the 325 
resulting alignments were passed through several rounds of merging and splitting. The merging phase 326 
involved comparing alignments to each other using HHSEARCH (18), finding full-length cluster-to-327 
cluster matches, merging the sequence sets and re-aligning the new clusters. The splitting phase consisted 328 
of the construction of an approximate phylogenetic tree of the sequences using FastTree (19) (gamma-329 
distributed site rates, WAG evolutionary model) with balanced mid-point tree rooting, identification of 330 
subtrees maximizing the fraction of species (MAGs) representation and minimizing the number of 331 
paralogs, and pruning such subtrees as separate clusters of putative orthologs. Clusters, derived from 332 
arCOGs, were prohibited from merging across distinct arCOGs to prevent distant paralogs from forming 333 
mixed clusters. 334 
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Phylogenetic analysis 335 

16S rRNA gene phylogenetic analysis. 16S rRNA gene sequences were identified in 73 genomes of 336 
Asgard archaea (26 generated in this study, 47 from public database) using Barrnap (v 0.9) with the “--337 
kingdom arc” option (https://github.com/tseemann/barrnap). These sequences were combined with 46 338 
published 16S rRNA sequences of Asgard archaea, to assess the novelty of the sequences obtained in this 339 
work. The novelty of 16S rRNA gene sequences was measured in terms of their sequence identity to 340 
previously identified Asgard archaeal 16S rRNA gene and phylogenetic relationships. Specifically, the 341 
pairwise sequence identity of two Asgard archaeal 16S rRNA gene sequences (>1300bp) was obtained by 342 
first globally aligning the sequences with “Stretcher” in EMBOSS package and then calculating the 343 
percent identity excluding gaps (20). The Asgard archaeal 16S rRNA gene sequences were aligned with 344 
311 reference sequences from Euryarchaeota (n=231), DPANN (n=22), Korarchaeota (n=1), 345 
Crenarchaeota (n=41), Bathyarchaeota (n=2), Thaumarchaeota (n=13) and Aigarchaeota (n=1) using 346 
mafft-linsi (v7.471) (21) and trimmed with BMGE (v1.12) (settings: -m DNAPAM250:4, -g 0.5) (22).The 347 
alignment was used for phylogenetic inference with IQ-Tree (v2.0.6) based on SYM+R8 (selected by 348 
ModelFinder) to generate a maximum-likelihood tree (23). 349 

Asgard phylogeny. A set of asCOGs that were considered most suitable as phylogenetic markers for 350 
Asgard archaea was selected using the preliminary classification of the 76 genomes in AsCOGs into 351 
previously described lineages: Loki, Thor, Odin, Hel and Heimdall. The following criteria were adopted: 352 
the asCOG have to be i) present in at least half of the genomes in all lineages, ii) present in at least 75% 353 
among the 76 genomes, iii) the mean number of paralogs per genome not to exceed 1.25. For the 209 354 
asCOGs matching these criteria, the corresponding protein sequences were obtained from the extended set 355 
of 162 MAGs and aligned using MUSCLE (17); the ‘index’ paralog to include in the phylogeny was 356 
selected for each MAG based on the similarity to the alignment consensus. Alignments were trimmed to 357 
exclude columns containing more than 2/3 gap characters and with homogeneity below 0.05 358 
(homogeneity is calculated from the score of the consensus amino acid against the alignment column, 359 
compared to the score of the perfect match (24) and concatenated, resulting in an alignment of 50,706 360 
characters from 162 sequences (one sequence per MAG). Phylogeny was reconstructed using FastTree 361 
(gamma-distributed site rates, WAG evolutionary model) (19) and IQ-Tree (LG+F+R10 model, selected 362 
by ModelFinder) (23), producing very similar tree topologies. 363 

Tree of life. To elucidate the relationships between the Asgard archaea and other major clades of archaea, 364 
bacteria and eukaryotes, 30 families of conserved proteins were selected that appear to have evolved 365 
mostly vertically (25, 26). The set of 162 MAGs of Asgard archaea was supplemented with 66 TACK 366 
archaea and 220 non-TACK archaea (the former, having been described as the closest archaeal relatives 367 
of the Asgard archaea (27), were sampled more densely), 98 bacteria and 72 eukaryotes. Prokaryotic 368 
genomes were sampled from the set of completely sequenced genomes to represent the maximum 369 
diversity within their respective clades (briefly, all proteins, encoded by genomes within a groups were 370 
clustered at 75% identity level; distances between genomes were estimated from the number of shared 371 
proteins within these clusters; UPGMA trees were reconstructed from the distances, and genome sets 372 
maximizing the total tree branch length were selected to represent the groups). The set of eukaryotic 373 
genomes was manually selected to represent the maximum possible variety of eukaryotic taxa. Genomes, 374 
in which more than four markers were missing, were excluded from the bacterial and eukaryotic sets. 375 
When multiple paralogs of a marker were present in a genome, preliminary phylogenetic trees were 376 
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constructed from protein sequence alignments, and paralogs with the shortest branches were selected to 377 
represent the corresponding genomes in the set. Sequences were aligned using MUSCLE (17), and 378 
alignment columns, containing more than 2/3 gap characters or with alignment column homogeneity 379 
below 0.05 were removed (24). The resulting concatenated alignments of the 30 markers consisted of 380 
7411 sites. Phylogeny was reconstructed using FastTree (gamma-distributed site rates, WAG evolutionary 381 
model) (19) and IQ-Tree (23) with three models: LG+R10, selected by IQ-tree ModelFinder as the best 382 
fit, GTR20+F+R10 (following the suggestion of Williams et al. (28) to use GTR, we let IQ-tree to select 383 
the best version of the GTR model), and LG+C20+G4+F (again, the mixture model was used following 384 
the suggestion of Williams et al. (28); we were unable to use the higher-specified C60 model due to 385 
memory limitations of our hardware and used the C20 model instead). 386 

Ordination of asCOG phyletic patterns using Classical Multidimensional Scaling 387 

Binary asCOG presence-absence patterns were compared between pairs of Asgard MAGs using the 388 
following procedure: first, similarity between asCOG sets {A} and {B} was calculated as ஺ܵ,஻ =389 

࡭| ת  the number of shared AsCOGs normalized by the geometric mean of the number of 390) |࡮||࡭|ඥ/|࡮
AsCOGs in the two MAGs); then, the distance between the patterns was calculated as ݀஺,஻ = െln ( ஺ܵ,஻). 391 
The 162x162 distance matrix was embedded into a 2-dimensional space using Classical Multidimensional 392 
Scaling analysis implemented as the cmdscale function in R. The projection retained 89% of the original 393 
datapoint inertia. 394 

Identification and analysis of ESPs 395 

To identify eukaryotic signature proteins (ESPs), several strategies were employed. First, ESPs reported 396 
by Zaremba-Niedzwiedzka et al. (29) were mapped to asCOGs using PSI-BLAST (15). These asCOGs 397 
were additionally examined case by case using HHpred (30) with representative of the respective asCOG 398 
or the respective asCOG alignment used as the query. Second, all asCOGs were mapped to CDD profiles 399 
(31) using PSI-BLAST, hits to eukaryote-specific domains were selected. Most of the putative ESP 400 
asCOGs identified in this search, and all with E-value >1e-10, were additionally examined using HHpred, 401 
with a representative of the respective asCOG or the respective asCOG alignment as the query. Third, we 402 
analyzed frequently occurring asCOGs (present in at least 50% of Asgard genomes and in at least 30% of 403 
Heimdall genomes) that were not annotated automatically with the above two approaches using HHpred 404 
with a representative of the respective asCOG or the respective asCOG alignment as the query . Fourth, 405 
most of the putative ESP asCOGs detected with these approaches were used as queries for a PSI-BLAST 406 
search that was run for three iterations (with inclusion threshold E-value=0.0001) against an Asgard only 407 
protein sequence database. Additional unannotated asCOGs with similarity to the (putative) ESPs 408 
identified in this search were further examined using HHpred. Fifth, the genomic neighborhoods or all 409 
ESPs were examined, and proteins encoded by unannotated neighbor genes were analyzed using HHpred 410 
server. 411 

Metabolic pathway reconstruction 412 

The patterns of gene presence-absence in the asCOGs were used to reconstruct the metabolic pathways of 413 
Asgard archaea (Supplementary Table 8). The asCOGs were linked to the KEGG database and to the list 414 
of predicted metabolic enzymes of Asgard archaea reported by Spang et al. (32) (Supplementary Table 8). 415 
The classification of [NiFe] hydrogenases was performed by comparing the Asgard proteins of 416 
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cog.001539, cog.002254, cog.010021, cog.011939 and cog.012499 to HydDB (33). For phylogenetic 417 
analysis, the reference sequences of group 1, 3 and 4 [NiFe] hydrogenases were retrieved from HydDB. 418 
The sequences were filtered using cd-hit with a sequence identity cut-off of 90% prior to adding 419 
orthologous genes of cog.001539, cog.002254, cog.010021, cog.011939 and cog.012499 of Asgard 420 
archaea. All sequences for group 1, group 3 and group 4 [NiFe] hydrogenases were aligned using mafft-421 
LINSI (21) and trimmed with BMGE (-m BLOSUM30 -h 0.6) (22). Maximum-likelihood phylogenetic 422 
analyses were performed using IQ-tree (23) with the best-fit model (group 1:LG + C60 + R + F, group 3: 423 
LG + C60 + R +F and group 4 LG + C50 + R + F), respectively, according to Bayesian information 424 
criterion (BIC). Support values were estimated using the SH-like approximate-likelihood ratio test and 425 
ultrafast bootstraps, respectively. We adapted a relaxed common denominator approach to determine the 426 
presence of certain pathway in one Asgard phyla (32), and combined with maximum parsimony principle 427 
(34) to infer the metabolisms of major ancestral forms.  428 

 429 

  430 
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Data availability 516 

Asgard archaea genomes generated in this study are available in eLMSG (an eLibrary of Microbial 517 
Systematics and Genomics, https://www.biosino.org/elmsg/index) under accession numbers from 518 
LMSG_G000000521.1 to LMSG_G000000609.1 and NCBI database under the project XXXXX. 519 

Additional Data files are available at ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/asgard20/ 520 

Additional data file 1 (Additional_data_file_1.tgz): Complete asCOG data archive 521 

Additional data file 2 (Additional_data_file_2.tgz): Phylogenetic trees and alignments archive 522 

 523 

  524 

  525 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.19.343400doi: bioRxiv preprint 

https://www.biosino.org/elmsg/index
https://doi.org/10.1101/2020.10.19.343400
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

Supplementary Figures 526 

Supplementary Figure 1 Global distribution of Asgard genomes analyzed in the study. The pie chart 527 
shows the proportion of Asgard genomes found in a biotope. Bold letters in the map show the sampling 528 
locations. 529 

Supplementary Figure 2 a. Distribution of completeness and contamination for 76 Asgard MAGs 530 
assessed by CheckM (v 1.0.12). Distribution of depth coverage (b) and N50 statistics (c) for Asgard 531 
MAGs reconstructed in this study. The numbers in parentheses indicate the number of Asgard genomes 532 
recovered from a given sampling location. The data for this plot can be found in Supplementary Table 1. 533 

Supplementary Figure 3 Comparison of the mean amino-acid identity (AAI) of Asgard and TACK 534 
superphyla. a. Shared AAI across Asgard and TACK lineages. Background: comparing all Asgard and 535 
TACK lineages included in the analyses but excluding archaea belonging to the same lineages and the six 536 
phyla proposed in the current work to investigate the distribution of AAI that defines a phylum. The AAI 537 
comparison of (b) Thorarchaeota, (c) Hermodarchaeota (d) Odinarchaeota, (e) Baldrarchaeota, (f) 538 
Lokiarchaeota, (g) Helarchaeota, (h) Borrarchaeota, (i) Heimdallarchaeota, (j) Kariarchaeota, (k) 539 
Gerdarchaeota, (l) Hodarchaeota and (m) Wukongarchaeota to other Asgad and TACK lineages. The 540 
lower and upper hinges of the boxplot correspond to the first and third quartiles. Data beyond the 541 
whiskers are shown as individual data points. Number in the parenthesis indicates the number of genomes 542 
in the lineages. Data for this plot is included in Supplementary Table 2. 543 

Supplementary Figure 4 Comparison of the 16S rRNA gene sequence (>1300 bp) identity of Asgard 544 
and TACK lineages. a. Shared 16S rRNA gene sequence identity across Asgard and TACK lineages. 545 
Background:comparing all Asgard and TACK lineages included in the analyses but excluding archaea 546 
belonging to the same lineages and the six phyla proposed in the current study to investigate the 547 
distribution of 16S rRNA gene identity that defines a phylum. 16S rRNA gene identity comparison of (b) 548 
Thorarchaeota, (c) Hermodarchaeota (d) Odinarchaeota, (e) Lokiarchaeota, (f) Helarchaeota, (g) 549 
Heimdallarchaeota, (h) Kariarchaeota, (i) Gerdarchaeota, (j) Hodarchaeota and (k) Wukongarchaeota to 550 
other Asgard and TACK lineages. The lower and upper hinges of the boxplot correspond to the first and 551 
third quartiles. Data beyond the whiskers are shown as individual data points. Number in the parenthesis 552 
indicates the number of 16S rRNA gene sequences compared in the lineages. Line represents a 16S rRNA 553 
gene identity of 75%. Data for this plot could be found in Supplementary Table 3.  554 

Supplementary Figure 5 Presence-absence of orthologs of Asgard core genes in other archaea, bacteria 555 
and eukaryotes. 556 

Supplementary Figure 6 Phylogenetic analysis of group 4 [NiFe] hydrogenases in the Asgard archaea. 557 
The unrooted maximum-likelihood phylogenetic tree was built from an alignment of 425 sequences 558 
including 110 sequences of Asgard archaea, with 308 amino-acid positions. 559 

Supplementary Figure 7 Phylogenetic analysis of group 3 [NiFe] hydrogenases in the Asgard archaea. 560 
The unrooted maximum-likelihood phylogenetic tree was built from an alignment of 813 sequences 561 
including 335 sequences of Asgard archaea, 514 amino-acid positions. 562 
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Supplementary Figure 8 Phylogenetic analysis of group 1 [NiFe] hydrogenases in the Asgard archaea. 563 
The unrooted maximum-likelihood phylogenetic tree was built from an alignment of 541 sequences 564 
including 2 sequences of Wukongarchaeaota, with 745 amino-acid positions. 565 

Supplementary Figure 9 A schematic representation of the presence and absence of selected metabolic 566 
features in all (putative) phyla of Asgard archaea. 567 

Supplementary Figure 10 Gene structure of the contig encoding Group 1 [Ni,Fe]-hydrogenase in 568 
Wukongarchaeota. Abbreviations: Ftr, Formylmethanofuran:tetrahydromethanopterin formyltransferase; 569 
FwdD Formylmethanofuran dehydrogenase subunit D; FwdB, Formylmethanofuran dehydrogenase 570 
subunit B; FwdA, Formylmethanofuran dehydrogenase subunit A; FwdC, Formylmethanofuran 571 
dehydrogenase subunit C; HdrC, Heterodisulfide reductase, subunit C; HyaB, Ni,Fe-hydrogenase I large 572 
subunit; HyaA, Ni,Fe-hydrogenase I small subunit. 573 

 574 

  575 
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Supplementary Tables 576 

Supplementary Table 1 Genome information, proposed taxonomy and isolation data 577 

Supplementary Table 2 Mean amino-acid identity values (in %) comparing 66 TACK genomes and 184 578 
Asgard genomes (162 high quality and 22 low-quality) 579 

Supplementary Table 3 The 16S rRNA gene sequence identity (in %) comparing TACK lineages and 580 
Asgard lineages. The identity was calculated using sequences longer than 1300 bps 581 

Supplementary Table 4 Species and phyletic markers used for the tree of life reconstruction 582 

Supplementary Table 5 Data for phylogenetic trees: the trees in the Newick format and the underlying 583 
alignments 584 

Supplementary Table 6 The asCOGs annotation 585 

Supplementary Table 7 Eukaryotic signature proteins in Asgard archaea 586 

Supplementary Table 8 The presence-absence of metabolic enzymes in Asgard archaea. 587 

 588 
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