

1 Pancreatic α and β cells are globally phase-locked

2
3 Huixia Ren^{1,2,3,5}, Yanjun Li^{1,5}, Chengsheng Han^{2,5}, Yi Yu¹, Bowen Shi³, Xiaohong Peng², Shufang
4 Wu¹, Xiaojing Yang^{1,3}, Sneppen Kim⁴, Liangyi Chen^{2*}, and Chao Tang^{1,3,6*}

5
6 ¹Center for Quantitative Biology, Peking University, Beijing 100871, China

7 ²Institute of Molecular Medicine, Peking University, Beijing 100871, China

8 ³Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China

9 ⁴Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

10 ⁵Equal Contribution

11 ⁶Lead Contact

12 *Correspondence: lychen@pku.edu.cn; tangc@pku.edu.cn

16 SUMMARY

17
18 The Ca^{2+} modulated pulsatile secretion of glucagon and insulin by pancreatic α and β cells plays a
19 key role in glucose homeostasis. However, how α and β cells coordinate via paracrine interaction to
20 produce various Ca^{2+} oscillation patterns is still elusive. Using a microfluidic device and transgenic
21 mice in which α and β cells were labeled with different colors, we were able to record islet Ca^{2+} signals
22 at single cell level for long times. Upon glucose stimulation, we observed heterogeneous Ca^{2+}
23 oscillation patterns intrinsic to each islet. After a transient period, the oscillations of α and β cells were
24 globally phase-locked, i.e., the two types of cells in an islet each oscillate synchronously but with a
25 phase shift between the two. While the activation of α cells displayed a fixed time delay of ~ 20 s to
26 that of β cells, β cells activated with a tunable delay after the α cells. As a result, the tunable phase
27 shift between α and β cells set the islet oscillation period and pattern. Furthermore, we demonstrated
28 that the phase shift can be modulated by glucagon. A mathematical model of islet Ca^{2+} oscillation
29 taking into consideration of the paracrine interaction was constructed, which quantitatively agreed with
30 the experimental data. Our study highlights the importance of cell-cell interaction to generate stable
31 but tunable islet oscillation patterns.

32
33 Keywords: Islet, Ca^{2+} oscillation, β cell, α cell, paracrine regulation, spatial-temporal analysis,
34 synchronization, phase locking, mathematical modeling

36 **INTRODUCTION**

37
38 To precisely regulate the blood glucose level¹⁻³, glucose elevation induces Ca^{2+} oscillation in
39 pancreatic islet cells, which may trigger the pulsatile secretion of insulin and glucagon⁴⁻⁷. Dampening
40 and disappearance of islet Ca^{2+} oscillation is an early biomarker in the pathogenesis of type 2
41 diabetes⁸⁻¹¹. Multiple types of glucose-stimulated oscillation patterns have been observed in islets,
42 including fast (~20 s cycle), slow (~100 s cycle), and mixed oscillations (20~100 s cycle)¹²⁻¹⁴. While
43 different mathematical models have been proposed to explain the underlying mechanism¹⁵⁻²⁰, most
44 focused on the intrinsic properties of single or coupled β cells, such as the endoplasmic reticulum
45 Ca^{2+} buffering capacity¹⁸ and the slow metabolic cycle of ATP/ADP ratio during glucose stimulation¹⁷.
46 These β cell-centric models, however, may not fully explain the observed variety of oscillation patterns
47 in islets. Only slow Ca^{2+} oscillations are mostly seen in isolated β cells²¹⁻²⁴. Furthermore, glucagon
48 accelerates the Ca^{2+} oscillation in isolated β cells²⁵. The islet is a micro-organ in which multiple cell
49 types closely interact. The α and β cells show highly correlated Ca^{2+} oscillation patterns²⁶ and periodic
50 release of insulin and glucagon is temporally coupled both *in vitro*^{4,27} and *in vivo*^{6,7,28,29}. Thus the
51 extensive autocrine and paracrine interactions between α and β cells³⁰⁻³⁵ may modulate or even
52 dictate the islet oscillation modes.

53

54 The challenge to test such a hypothesis lies in resolving the identity of individual cells and monitoring
55 their activity in live islets simultaneously. In addition, because the spatial organization of α and β cells
56 are highly heterogeneous from islet to islet^{36,37}, quantitative comparison of Ca^{2+} oscillations in different
57 islets is necessary. To address these problems, we have developed a microfluidic device attached to
58 the spinning-disc confocal microscope, which allowed individual cells to be imaged under
59 physiological conditions for up to ~2 hrs. By the long-term imaging of islets undergoing repeated
60 glucose stimulation, we found that the oscillation mode represents intrinsic properties of the islet. By
61 constructing a new transgenic mice line, we could identify the cell types in live islets accurately.
62 Quantitative analysis revealed generic features as well as quantitative relationships in the oscillation
63 patterns across many islets. In particular, we found that oscillations of the islet α and β cells are each
64 synchronized but phase shifted, and that the value of the phase shift between α and β cells determines
65 the oscillation mode. Finally, we developed a coarse-grained mathematical model incorporating
66 paracrine interactions between α and β cells. The model reproduced key quantitative features of the
67 experimentally observed oscillations and suggested that different oscillation modes may come from
68 the varied paracrine controls.

69

70 **RESULTS**

71

72 **Glucose-Evoked Ca^{2+} Oscillation Represents an Intrinsic Property of the Islet**

73 To provide a stable and controllable environment for long-term imaging of intact islets, we developed
74 a microfluidic device (Fig. 1A). On one side, we designed an inlet port to load the islet (300 μm in
75 width and 270 μm in height), which could be sealed after loading. The chip could trap islets of different
76 sizes with a descending PDMS ceiling (270, 180, 150, 110, 80, and 50 μm in height). On the side
77 opposite the inlet, five independent input channels merged into one channel upstream of the islet
78 trapping site. Such a device enabled long-term and stable imaging of islets even during the switching
79 of different perfusion solutions. For instance, when glucose concentration in the perfusion solution
80 was increased from 3 to 10 mM (3G to 10G), all islets exhibited an initial rapid rise in cytosolic Ca^{2+} ,
81 followed by a gradual appearance of fast (cycle<60 s, 31 of 46 islets), slow (cycle>60 s, 9 of 46 islets)
82 or mixed (6 of 46 islets) Ca^{2+} oscillations (Fig. 1B). In contrast, although high glucose still evoked the
83 initial increase in cytosolic Ca^{2+} concentration, no following periodic Ca^{2+} oscillations were observed
84 in isolated islets from diabetic *db/db* mice (9 of 9 islets, Fig. 1B lower panel)^{10,11}, suggesting the
85 critical role of Ca^{2+} oscillation in maintaining normal hormone release and glucose homeostasis.
86 While different islets displayed largely variable Ca^{2+} oscillations, the second round of 10G stimulation
87 in the same islet evoked an oscillation frequency nearly identical to the first round (Fig. 1C). The
88 spatial activation profiles were also similar, as almost identical cells lighted up at the designated times
89 of Ca^{2+} cycles during the two rounds of stimulation (Fig. 1D). Quantitatively, sequential activations of
90 islet cells between the two rounds of stimulation showed a significantly higher similarity index than
91 random association (Fig. 1E, See Methods). Therefore, specific oscillation modes represent a robust
92 intrinsic property of individual islets, possibly determined by the fixed spatial organization of the islet.
93

94 **Identification of Islet α and β Cell Types Using Transgenic Mice**

95 To probe the specific micro-organization of an islet and to distinguish the Ca^{2+} activities between α
96 and β cells, we generated *Glu-Cre*⁺; *GCaMP6f*^{fl/fl}; *Ins2-RCaMP1.07* mice in which α and β cells were
97 labeled with the green and red fluorescent Ca^{2+} sensor, GCaMP6f and RCaMP1.07, respectively (Fig.
98 2A, see Methods). Because the vector was randomly inserted into the genome using the PiggyBac
99 transposon system, β cells were sparsely labeled (9.4%, Figs. 2B and S1). RCaMP1.07 is a Ca^{2+}
100 sensor with a fluorescence on-rate similar to GCaMP6f³⁸ and Cal-520 AM (Figs. S2C and S2D). We
101 confirmed the labeling accuracy by immunofluorescence (Figs. 2C and S1). The RCaMP1.07
102 expressing islet cells were 100% insulin-positive, while the GCaMP6f expressing islet cells were 95.5%
103 glucagon positive (Fig. S1A and S1B). This result was also confirmed in intact islets using
104 immunofluorescence labeling (Figs. S1C and S1D) and pharmacology experiments (Figs. S2A and
105 S2B). The GCaMP6f expressing cells responded to both NE and glutamate stimulation, while the
106 RCaMP1.07 expressing cells were silent under both stimuli. These data both reinforced the
107 expression specificity of α and β cells, and non-detectable overlaps in emission spectra between
108 GCaMP6f (525/50 nm) and RCaMP1.07 (600/50 nm) (Figs. 2D and S2E).
109

110 Under resting glucose stimulation, β cells remained silent while α cells demonstrated variable Ca^{2+}
111 transients (Fig. 2E, Video 1), agreeing with the previous reports²⁶. Therefore, the mean Ca^{2+} transients
112 of β cells were flat, while we noticed a fluctuated mean Ca^{2+} trace of α cells. Upon elevated glucose
113 stimulation, β cells always responded with large initial rises in cytosolic Ca^{2+} followed by slow decays.

114 In contrast, α cells demonstrated two opposite Ca^{2+} responses (Fig. 2F): within the first five minutes
115 after the 10G stimulation, the majority of α responder (84%) were significantly inhibited, while the
116 remaining cells (16%) showed evoked Ca^{2+} transients ($n=179$ α cells from 5 islets). Combined with 25
117 mM KCl stimulation, we found that 10G activated more α cells than 3G (Fig. 2H). Although this minor
118 population of α cells did not fit the consensus, glucose-stimulated Ca^{2+} responses in some α cells
119 were also noted previously^{39,40}. Therefore, there exist two types of α cells in intact islets.
120

121 **Islet α and β Cells Are Globally Phase-Locked**

122 At the later stage of 10G stimulation, different pools of α cells in the islet became synchronized,
123 accompanied by synchronized Ca^{2+} oscillations from β cells (Fig. 2E). Indeed, while less than 5% of
124 α cells demonstrated correlated Ca^{2+} transients at the resting and the initial glucose stimulation
125 stages, more than 70% became synchronized later (Figs. 2G, 3A and 3B, Video 2). Unlike β cells
126 interconnected by the gap junction protein Connexin36 to achieve synchronization^{41–45}, α cells do not
127 express gap junction proteins and are thus not physically connected⁴⁶. Because mean Ca^{2+} peaks of
128 α cells displayed a fixed delay to those of β cells (~20 s), we hypothesized that the highly synchronous
129 α cell activity might be due to stable phase-locking to the β cell activity (Figs. 3C and 3D). Consistent
130 with tightly inhibited α cells originating from their neighboring β cells, we observed global α cell
131 activation after the turning-off of β cells (Fig. 3E). Intriguingly, phase-locking with similar temporal
132 characteristics was also present in slow and mixed oscillations (Fig. 3F, Videos 3 and 4), suggesting
133 a common underlying mechanism.
134

135 The existence of phase-locked cells was also found in islets labeled with a non-targeted genetic Ca^{2+}
136 sensor or loaded with the trappable Ca^{2+} dye (Video 5 and 6). In *Ella-Cre*⁺; *GCaMP6f*^{f/+} islets in which
137 all islet cells were labeled with *GCaMP6f*, islet cells could also be classified into two groups that are
138 phase-locked (Video 5). In addition, in the *Glu-Cre*⁺; *tdTomato*^{f/+} islet loaded with Cal-520 AM, we
139 found that one of the two phase-locked cell populations colocalized with the genetically labeled red α
140 cells (Video 6). Therefore, these data demonstrated that α cells are stably and globally phase-locked
141 to β cells under elevated glucose stimulation in general.
142

143 **Variable Delay of β Cell Activation After α Cell Determines the Oscillation Mode**

144 To non-biasedly sort out critical parameters differentiating various Ca^{2+} oscillation patterns, we
145 quantitatively defined features of each oscillation cycle of alternately activated α and β cells (Figs. 4A
146 and S3). The oscillation period T was defined as the time window between one cycle of β cell
147 activation, which was split into two parts divided by the α cell activation: the waiting time for a cell to
148 activate after β cell activation ($T_{\beta\alpha}$) and the waiting time for β cell to activate after α cell activation
149 ($T_{\alpha\beta}$). The phase difference ($\Delta\theta$) of two types of cells was defined as the ratio between $T_{\beta\alpha}$ and T .
150 There were multiple ways to determine these quantities – either using the peak, 25%, 50%, or 75%
151 decrease - and they did not change the outcome of the analysis (Figs. S4B-D). In total, we defined
152 13 features that recapitulated different characteristics of the α and β cell Ca^{2+} dynamics, such as the
153 rise and decay time of the activation for α and β cells, the Full Width at Half Maximum (FWHM) (Table
154 1, and see Methods for detailed definitions). Based on these parameters, the oscillating cycles were

155 vectorized and assembled into a feature matrix. Next, by dimension reduction of these parameters
156 with the UMAP algorithm⁴⁷, oscillations could be classified into the fast and the slow ones (Fig. 4B),
157 in which T , $\Delta\theta$, $T_{\alpha\beta}$ and FWHM of β cells demonstrated significant inter-group differences (Figs. 4C
158 and S4A). The T for the fast oscillations centered at ~ 30 s, threefold smaller than the slow ones (~ 104
159 s). Similarly, the average $\Delta\theta$ for the rapid oscillations was threefold larger than the slow ones (~ 0.6
160 versus ~ 0.2 , Table 1). While the mean $T_{\beta\alpha}$ was almost indistinguishable between fast and slow
161 oscillations, the $T_{\alpha\beta}$ of the former was smaller than the latter (~ 11 s versus ~ 86 s, Table 1). The
162 distribution of β cells' FWHM for the fast oscillations was different from that of the slow ones, with a
163 mean FWHM at ~ 12 s for the fast oscillations and ~ 34 s for the slow oscillations (Fig. 4C and Table
164 1). In contrast, the distributions of FWHM for α cells between the fast and slow oscillations were more
165 similar (Fig. 4C). This implies a higher FWHM ratio of the Ca^{2+} transients of α to β cells in the fast
166 Ca^{2+} oscillations (~ 1.02) than in the slow oscillations (~ 0.44) (Fig. S4A).

167

168 As T , $\Delta\theta$, $T_{\alpha\beta}$ and $T_{\beta\alpha}$ were inter-dependent parameters, we further evaluated their relationship using
169 scatter plots (Fig. 4D). It was apparent that $T_{\beta\alpha}$ remained constant across different T . In contrast, $T_{\alpha\beta}$
170 increased linearly with T . These findings strongly suggest a key role of $T_{\alpha\beta}$ in determining the period
171 (hence the mode) of β cell oscillation. While a short waiting time $T_{\alpha\beta}$ leads to fast oscillations, long
172 waiting time $T_{\alpha\beta}$ confers slow ones. Given the α cells displayed a fixed delay of ~ 20 s to the β cells,
173 the phase-shift between α and β cells varied with the delay of β cells. For example, when the β cells
174 had little delay (~ 0 s) to the α cells (Fig. 4D, $T_{\beta\alpha} \sim 20$ s, $T_{\alpha\beta} \sim 0$ s, $T \sim 20$ s), the α and β cells were
175 nearly in-phase ($\Delta\theta \sim 1$). When the β cell's delay was around ~ 20 s ($T_{\beta\alpha} \sim T_{\alpha\beta} = 20$ s, $T \sim 40$ s), the α
176 and β cells were nearly anti-phase ($\Delta\theta \sim 0.5$). Finally, when the β cells waited much longer than the
177 α cells ($T_{\beta\alpha} \sim 20$ s, $T_{\alpha\beta} \sim 180$ s, $T \sim 200$ s), the α and β cells appeared nearly in-phase again but with
178 Ca^{2+} transient much differed from the first case ($\Delta\theta \sim 0.1$). Note the apparent order of α and β cell
179 activation depended on the relative value of $T_{\alpha\beta}$ and $T_{\beta\alpha}$. The fast oscillation might show a near in-
180 phase locking with α ahead of β cell due to a shorter $T_{\alpha\beta}$ than $T_{\beta\alpha}$, and the slow oscillation might also
181 show a near in-phase locking but with β ahead of α cell due to a shorter $T_{\beta\alpha}$ than $T_{\alpha\beta}$ (Figs. 3B, 3C
182 and 3F). These relationships hold for various oscillation modes as indicated by the different colors in
183 Fig. 4D.

184

185 Interestingly, sometimes we observed that the phase shift between α and β cells underwent an initial
186 transient period during which it changes in time before stabilizing at a steady value. This was usually
187 due to a changing delay of β cell activation after α cell activation. As it is shown in Fig. 4E, while $T_{\beta\alpha}$
188 remained stable at 20 s during the whole process, $T_{\alpha\beta}$ started from 4 s, extended to 15 s in the next
189 ten oscillations, and finally stabilized at 10 s. Correspondingly, α and β cells started from a phase shift
190 $\Delta\theta = 0.78$ ($T_{\beta\alpha} = 20$ s, $T_{\alpha\beta} = 4$ s) at first, then gradually established a phase shift $\Delta\theta = 0.58$ ($T_{\beta\alpha} = 20$ s, $T_{\alpha\beta}$
191 = 15 s), before finally stabilized at $\Delta\theta = 0.66$ ($T_{\beta\alpha} = 20$ s, $T_{\alpha\beta} = 10$ s) (Table S1, n=3 islets). This data
192 corroborated our analysis conducted in multiple islets and pointed to the possibility of dynamic

193 changes in the interactions between α and β cells in the same islet. Because isolated single β cells
194 displayed only slow oscillation with a period of about 6 minutes (Figs. S5A and S5B), we speculate
195 that increased stimulatory effect from α cells to β cells may push β cells to oscillate in the fast mode.
196

197 **Mathematical Modeling**

198 We observed that islets show heterogeneous yet intrinsic oscillation patterns under high glucose
199 stimulation. To better understand the origin of various oscillation modes and the factors controlling
200 them, we developed a mathematical model incorporating interactions between α and β cells.
201

202 **α - β Phase Oscillator Model**

203 Given the fact that both α cells and the β cells in an islet were globally synchronized respectively, we
204 simplified the islet as a model of two coupled "cells" - an α cell and a β cell (Fig. 5A). The oscillation
205 of each cell was described by a phase variable θ , which was driven by an intrinsic force and a
206 paracrine force (Fig. 5B, see Methods). The intrinsic term corresponded to the oscillation frequency
207 of the single isolated cells. As shown by previous and our studies, single β cells oscillate with a period
208 ~3-6 minutes, and single α cells oscillate with a period ~30-60 seconds (Fig. S5). The paracrine term
209 consisted of three parts: $f_s(\theta)$ represented the hormone secretion, $f_{r\alpha}(\theta)$ represented the paracrine
210 inhibition of α cells by β cells and $f_{r\beta}(\theta)$ represented the paracrine stimulation of β cells by α cells.
211 The main results of the model were insensitive to the choice of the specific forms of $f_s(\theta)$, $f_{r\alpha}(\theta)$ and
212 $f_{r\beta}(\theta)$ as long as they were periodic functions resembling the general characteristic of the biology (see
213 Figs. S6 and S7 for details). The coefficients $K_{\alpha\beta}$ and $K_{\beta\alpha}$ represented the coupling strengths between
214 the α and β cells. Note that this is a two-phase model without providing any information on the
215 amplitude of the oscillation. Its behavior can be characterized by the "winding number" defined as the
216 asymptotic ratio of the two phases $w=\theta_\alpha/\theta_\beta$ (Fig. 5C).
217

218 **Slow, Fast, and Mixed Oscillations**

219 By adjusting the coupling strengths ($K_{\alpha\beta}$ and $K_{\beta\alpha}$) between the α and β cells, our model displayed all
220 three types of the oscillation behaviors observed in experiments (cases 1-3, Fig. 5D). When α cell
221 weakly stimulated β cell (small $K_{\alpha\beta}$), the model islet generally showed slow oscillations. When α cell
222 and β cell were strongly coupled with each other (large $K_{\beta\alpha}$ and $K_{\alpha\beta}$), the model islet generally showed
223 fast oscillations. When α cell strongly stimulated β cell and β cell weakly inhibited α cell (large $K_{\alpha\beta}$
224 and small $K_{\beta\alpha}$), the model islet generally showed mixed oscillations. With very weak coupling between
225 α and β cells, the model displayed an oscillation behavior similar to uncoupled single cells but not
226 islet experiments (Fig. 5D, case 4). Further quantification found the phase difference $\Delta\theta$ and the
227 period T displayed an inverse proportional relationship (Fig. 5F, left panel), which was because of a
228 constant waiting time of the α cell regardless of the oscillation modes (Fig. 5F, middle panel), similar
229 to the experimental data (Fig. 4D). The coupling coefficients changed only the waiting time of the β
230 cell, and further determined the period (Fig. 5F, right panel).
231

232 **Phase Locking Between α and β Cells**

233 We next analyzed the model's behavior by systematically varying the coupling strengths between the
234 α and β cells. We found that the α and β cells were generally phase-locked, i.e., their phases were
235 dependent on each other with a fixed relationship characterized by the winding number w (Fig. 5C).
236 By plotting the winding number's dependence on the coupling strengths, we obtained the phase
237 space of the system of two coupled oscillators (Fig. 5E). It formed a two-dimensional Arnold tongues⁴⁸,
238 which could be separated into four regions (Fig. 5E, see Methods). In region 1, the α cell and the β
239 cell are locked on the $w=1/1$ mode. That is, when θ_β finishes one cycle ($[0, 2\pi]$), θ_α will also finish one
240 cycle. An example of this oscillation mode is shown in Fig. 5D (upper panel). In region 2, the two cells
241 are locked in the mode $w=0/1$. That is, when θ_β finishes one cycle ($[0, 2\pi]$), θ_α cannot finish a full cycle
242 before being pushed back (Fig. 5D (middle-upper panel)). Here the strong stimulation from α to β
243 induces a fast oscillation frequency, while the strong repression from β to α prevents the α cell from
244 finishing a full cycle every time it is activated. In region 3, the two cells are locked with $0 < w < 1$. In
245 particular, there exist $w=m/n$ modes, where $m < n$ are both integers. In a mode with $w=m/n$, when θ_β
246 finishes n cycles ($[0, 2n\pi]$), θ_α will finish m cycle(s) ($[0, 2m\pi]$). In the example with $w=1/2$ shown in
247 Fig. 5D (middle-lower panel), while each activation of the β cell can finish one full cycle, the first
248 activation of α cell cannot finish a full cycle before being pushed back, and only the second activation
249 can finish a full cycle. Although only a few modes are shown in region 3 for clarity, it can be proved
250 rigorously that region 3 contains all the modes, with w being a rational number between 0 and 1
251 (unpublished). In region 4, the two phases are locked with $w > 1$, which means that α cell will finish
252 more cycles than β cell. An example of $w=3/1$ is shown in Fig. 5D (lower panel). In this region, α and
253 β cells couple weakly. At the upper left corner $K_{\alpha\beta}=K_{\beta\alpha}=0$, α and β cells completely decouple and beat
254 on their intrinsic frequencies. Note that while w jumps discontinuously with continuously varying
255 parameters, the average period of β cell oscillation changes smoothly (Fig. 5E, heat map). Thus, the
256 paracrine interaction between α and β cells offers robust and tunable oscillation patterns and periods.
257

258 **Model Prediction and Verification**

259 A prediction of the model was that the oscillation period may be tuned with the strengths of paracrine
260 interaction, depending on the original position of the islet system in the phase space (Figs. 5E, heat
261 map, 6B, S8E and S9F). In particular, increasing the activation from α cell to β cell ($K_{\alpha\beta}$) could increase
262 the oscillation period, especially in islets of slow oscillations (Fig. 5E, heat map). We applied glucagon
263 (100 nM) to the islets showing fast and slow oscillations (Figs. 6A and S8A). While adding glucagon
264 did not affect fast oscillating islets, it switched islets harboring slow oscillations into fast ones.
265 According to our model, the change of oscillation period was due to stronger paracrine interactions
266 that reduced the waiting time $T_{\alpha\beta}$ without affecting the waiting time $T_{\beta\alpha}$, which faithfully recapitulated
267 the experimental data (Figs. 6B-D and S8B-E). On the other hand, the model predicted that reducing
268 the effect of glucagon may lead to more autonomous cellular regulation and slow oscillations (Figs.
269 6B, 6F and S9F). Indeed, by combining insulin and the GCGR and GLP-1R antagonists (MK0893 (MK)
270 and Exendin 9-39 (Ex9)) to inhibit glucagon secretion and its downstream target^{30,31}, ~50% of the fast
271 oscillatory islets switched to slow oscillations (Fig. 6A). The change of modes reversed back when the
272 inhibitory agents were removed (Fig. S9A). Islets' fast-to-slow mode switching critically relied on the
273 activation level of glucagon's downstream target. A weaker glucagon receptor antagonist combination

274 prolonged the islet oscillation period without inducing fast-to-slow mode switching (Figs. S9B and
275 S9C). The β -cell-specific GCGR knockout mice (*Ins1-cre; Gcgr^{ff}*⁴⁹) had fewer fast oscillation islets (Fig.
276 S9D). And ~50% of the fast oscillation *Ins1-cre; Gcgr^{ff}* islets turned into slow oscillations with the
277 weaker glucagon receptor antagonist combination (Fig. S9E).

278
279 Finally, our model also predicted that in mixed oscillation modes, decay times of Ca^{2+} transients in α
280 cells were different - only the last Ca^{2+} transient in each cluster of cycles of mixed oscillation was
281 independent of β cells, while all other ones were repressed by β cells and should descend faster (Fig.
282 6G). By analyzing the Ca^{2+} traces of islets with mixed oscillation modes, we confirmed that the decay
283 times of α cell transients fell into two groups: the Ca^{2+} transients in α cells just preceding an uprising
284 of β cell activation decayed faster. In contrast, the ones posterior to β cell transients exhibited a
285 significantly slower decay (Fig. 6H). Overall, the agreement between the model and experiment
286 highlights the importance of α - β interactions in shaping up the oscillation modes.

287
288

289 **DISCUSSION**

290
291 In this study, we developed a microfluidic device that enabled stable and repeatable long-term
292 imaging of Ca^{2+} activities of islets at single-cell resolution. Despite the apparent heterogeneity in Ca^{2+}
293 activities across different islets, individual islets exhibited their own spatial and temporal patterns of
294 Ca^{2+} oscillations that were repeatable under multiple rounds of glucose stimulation. This suggests
295 that the oscillation mode results from some intrinsic properties of the islet, possibly correlated with
296 different cell types and their spatial distributions.

297
298 By using the *Glu-Cre⁺; GCaMP6f^{+/}; Ins2-RCaMP1.07* transgenic mice, we discovered that the α and
299 β cells were globally phase-locked to various oscillation modes. The PiggyBac approach led to the
300 sparse labeling of β cells – it enabled a clear separation of α and β cell Ca^{2+} dynamics. Besides α and
301 β cells, pancreatic islet δ cells have recently received increasing attention in glucose regulation⁵⁰,
302 which are not included in the current model. δ cells are connected to β cells by gap junctions and
303 exhibit Ca^{2+} activities similar to β cells⁵¹. It releases somatostatin to strongly inhibit both α and β cells.
304 Further study about the δ cell Ca^{2+} dynamics and simultaneous α , β , and δ cell Ca^{2+} imaging would
305 be important to understand the role of δ cell in tuning α and β phase-locking patterns. In the current
306 mathematical model, the role of δ cells in regulating the oscillation modes was lump-summed together
307 with that of β cells. It is essential to differentiate the two types of cells in future modeling.

308
309 A key finding in our study is that the time delay for α cells' activation following the activation of β cells
310 ($T_{\beta\alpha}$) was invariant, regardless of the islet-to-islet variations in oscillation frequencies and modes. This
311 observation of invariant $T_{\beta\alpha}$ echoed nicely with the ~20 seconds recovery time of α cells from the
312 relief of optogenetic activation of β and δ cells⁵¹. Therefore, $T_{\beta\alpha}$ is likely to be determined by one or
313 more secretin released by β and δ cells, including insulin, Zn^{2+} , ATP, GABA, and somatostatin⁵².

314

315 In contrast, what varied in different islets under different conditions was the time delay of β cells' activation following that of α cells ($T_{\alpha\beta}$). Our and previous studies suggest that glucagon is a contributing factor in tuning the oscillation mode¹³. Our work showed that increased glucagon level tunes on the oscillation modes by reducing the waiting time of β cells ($T_{\alpha\beta}$). Glucagon may elevate cytosolic Ca^{2+} concentration and increase oscillation frequency, both through cAMP-dependent^{53,54} and independent pathways⁵⁵⁻⁵⁸. On the other hand, blocking glucagon receptors with MK0893 and Exendin 9-39 could not fully slow down WT islets. We speculate that this may be because pharmacological inhibitors cannot completely block the endogenous glucagon function of pancreatic islets. Consistent with this, MK0893 and Exendin 9-39 induced fast-to-slow mode switching in the *Ins1-cre;Gcgr^{ff}* islets, and a combination of insulin, MK0893 and Exendin 9-39 was able to turn fast oscillations into slow ones. The specific molecular mechanism for this synergy effect needs future investigation.

327

328 The fixed α cell delay and glucagon-tuned β cell delay imply that the value of the phase shift depends on the oscillation frequency (Fig. S10). Islet β cell Ca^{2+} oscillation modes are influenced by two regulatory processes – the fast-paracrine stimulation and the slow intrinsic activation. Once α cells release a large amount of glucagon, their stimulatory effects on β cells would significantly reduce the waiting time for β cell activation and the islet would oscillate with a frequency much faster than β cells' intrinsic frequencies (α paracrine dominant). If α cells fail to release enough glucagon, or the downstream effects of glucagon are inhibited, β cells in the islet would oscillate with a frequency close to their intrinsic ones (β intrinsic dominant). Indeed, the α and β cells appeared nearly in-phase for both fast oscillations with periods close to 20s and slow oscillations with period ~180s. There is a continuum between the two extreme cases. E.g., for oscillations with period ~40s, α and β cells appeared nearly anti-phase.

339

340 In our study, both experimental observations and model simulations showed a robust phase-locking phenomenon between α and β cells. It is known that faster islet Ca^{2+} oscillations display more regular oscillation patterns^{13,59}. In light of our findings, the increased regularity may come from the increased stability in phase-locking: more rapid oscillation implies more robust activation from α to β cells and thus a tighter regulation. The Ca^{2+} oscillation of the two types of cells can phase-lock to a variety of modes determined by the paracrine interactions, which not only have different oscillation frequencies, but also display a range of other quantitative features such as the winding number and the ratio of the half-widths for α and β transients. Phase-locking to different frequencies and modes could ensure a stable and tunable secretion of insulin and glucagon. A variety of β cell Ca^{2+} oscillation modes were observed *in vivo*, including those of fast ones⁶⁰⁻⁶². Further studies combining islet Ca^{2+} imaging with real-time detection of α and β cell secretion are needed to investigate the physiological roles of the phase-locking and its dependency on paracrine interactions.

352

353 Previous studies tried to explain the distinct Ca^{2+} oscillation modes in intact islets with single beta-cell models, which did not consider the contribution from other cell types in islets¹⁵⁻¹⁸. Our model

355 emphasized how paracrine interactions may play important roles in various islet Ca^{2+} oscillation
356 modes. It is conceivable that both intrinsic properties of single cells and interactions among different
357 cell types may contribute to the regulation of islet Ca^{2+} oscillation modes. Further investigation using
358 pseudo-islets with varying compositions of α and β cells may help to differentiate the roles of intrinsic
359 and paracrine contributions⁶³.

360
361 **ACKNOWLEDGMENTS**

362
363 We thank Erik Gylfe, Anders Tengholm, Yanmei Liu, Louis Tao and Alexander Valentin Nielsen for
364 helpful discussions. We thank Chunxiong Luo and Shujing Wang for their help with the microfluidic
365 chip design. We thank Daniel Tang and Iain Bruce for manuscript editing. We thank Xiaowei Chen for
366 sharing mice lines. This work was supported by grants from the Chinese Ministry of Science and
367 Technology (2015CB910300), National Natural Science Foundation of China (81925022, 92054301),
368 The National Key Research and Development Program of China (SQ2016YFJC040028,
369 2018YFA0900700), NSFC Innovation group projects (31821091) and the Beijing Natural Science
370 Foundation (L172003, 7152079, 5194026).

371
372 **AUTHOR CONTRIBUTIONS**

373
374 C.T. and L.C. conceived and supervised the study, and wrote the manuscript.
375 H.R. led the project, designed experiments, carried out data analysis and mathematical modeling,
376 and wrote the manuscript.
377 Y.L. designed and manufactured the microfluidic chip, designed and performed experiments, and
378 wrote the manuscript.
379 C.H. designed and performed experiments, and wrote the manuscript.
380 X.Y. contributed to Figure preparation and supervised experiments, Y.Y and K.S. contributed to the
381 mathematical modeling, B.S. and S.W. contributed to data analysis.

382
383 **DECLARATION OF INTERESTS**

384
385 The authors have no competing financial interests to declare.

386

387 **Figure legends**

388

389 **Fig. 1. Islets Show Intrinsic Ca^{2+} Oscillation Modes under High Glucose Stimulation**

390 (A) Experimental flow chart. Islets are isolated from mice. After overnight culture, the islets are loaded
391 onto the microfluidic chip for imaging with confocal microscopy. The chip comprises five reagent
392 channels, an inlet channel and an outlet channel. The islet chamber traps the islet with a gradient
393 height from 270 μm to 50 μm .

394 (B) Representative recordings of whole islet Ca^{2+} signal in Cal-520 AM loaded islets isolated from
395 C57BL/6J mouse. The islet is stimulated with a repeated protocol: 10 min 3 mM glucose (3G), 40
396 min 10 mM glucose (10G), 30 min 3G and 40 min 10G. The first panel, islet displays fast oscillation
397 with a period of \sim 20 s (31 of 46 islets); second panel, slow oscillation at \sim 3.5 min (9 of 46 islets);
398 third panel, mixed oscillation at \sim 20 s and 2.45 min (6 of 46 islets); fourth panel, absence of Ca^{2+}
399 oscillation in a *db/db* mouse islet (9 of 9 islets). Except for the last one, enlarged images of the
400 shaded region are shown on the right.

401 (C) The mean Ca^{2+} oscillation period during the first *versus* the second round of 10G stimulation (n =
402 24 islets).

403 (D) Cell activation sequence in the first and second round of 10G stimulation. We subtract the
404 previous frame from the next frame of the original Ca^{2+} images (frame interval 3 s). Shown is the
405 cell activation sequence averaged across oscillation cycles in a 5 min interval (aligned with the
406 maximum activation frame). Left panels summarize the time sequence shown in the 7 right panels,
407 with the pseudo-color representing the activation time.

408 (E) The same islet shows a high similarity index between the first and the second round of 10G
409 stimulation (n=5 islets).

410

411

412 **Fig. 2. Using *Glu-Cre*⁺; *GCaMP6f*^{ff}; *Ins2-RCaMP1.07* transgenic Mice to Identify Islet α and β
413 Cells**

414 (A) Gene targeting vector designed with *Ins2* 5'-promoter, *RCaMP1.07* and *Ins2* 3'-fragment for the
415 construction of the *Ins2-RCaMP1.07* mice. By crossbreeding *Ins2-RCaMP1.07* mice with *Glu-*
416 *Cre*⁺; *GCaMP6f*^{ff} mice, we generate the *Glu-Cre*⁺; *GCaMP6f*^{ff}; *Ins2-RCaMP1.07* mice.

417 (B) Maximal projection of Ca^{2+} activity from the *Glu-Cre*⁺; *GCaMP6f*^{ff}; *Ins2-RCaMP1.07* mice islet. α
418 cells expressed *GCaMP6f* (Green) and β cells sparsely expressed *RCaMP1.07* (Red) (see
419 Methods).

420 (C) Immunofluorescence co-localization analysis of *Ins2*-RCaMP1.07 and *Glu-Cre*⁺; GCaMP6f^{ff} islet
421 cells. 100% RCaMP1.07 expressing cells are insulin positive (n=281 RCaMP1.07+ cells), 0%
422 glucagon positive (n=10 RCaMP1.07+ cells) and 0% somatostatin positive (n=20 RCaMP1.07+
423 cells). GCaMP6f expressing cells are 95.5% glucagon positive (n=178 GCaMP6f+ cells), 2.2%
424 insulin positive (n=90 GCaMP6f+ cells) and 1.5% (n=772 GCaMP6f+ cells) somatostatin positive.
425 (D) 525 nm and 600 nm emission (single bandpass filter with width 50 nm) signals from single α and
426 β cells under 3G (2.5 min) and 10G (2.5 min) stimulation. The cell positions are marked in (B).
427 Note the GCaMP6f and RCaMP1.07 proteins are exclusively expressed in islet cells.
428 (E) Mean α and β cells Ca^{2+} signal from intact mouse islets exposed to 3–10 mM glucose. Shading
429 corresponds to s.d.. Lower panel is the heat-map of the normalized single-cell Ca^{2+} signal. Green
430 labels are α -cells and red β -cells. Dashed Box shows the stable oscillatory phase.
431 (F) Single α and β cell Ca^{2+} signal from intact mouse islets exposed to 3–10 mM glucose. Note that
432 16% α cells showed evoked Ca^{2+} response to glucose elevation and 84% were silent (n=179 α
433 cells from 5 islets). Dashed Box shows the stable oscillatory phase.
434 (G) Percentage of synchronized α cells (mean Pearson correlation coefficient >0.3) under 3G and
435 10G stimulations (n=21 islets). Note that α cells showed significantly higher correlation under high
436 glucose stimulation.
437 (H) Percentage of active α cells (normalized to 25 mM KCl stimulated α cell number) under 3G and
438 10G stimulations (n=12 islets).

439

440

441 **Fig. 3. α and β Cells Are Globally Phase-Locked During Oscillation**

442 (A) Correlation matrix (Pearson correlation coefficients) for Ca^{2+} activity of *Glu-Cre*⁺; GCaMP6f^{ff}; *Ins2*-
443 RCaMP1.07 islet cells under 10G stimulation. Cells are sorted according to cell types. β cells are
444 indicated by red bar and α cells green bar.
445 (B) The heat-map of time-dependent Ca^{2+} activity for α and β cells under 10G stimulation. Color bar
446 codes the normalized Ca^{2+} intensity. β cells are indicated by red bar and α cells green bar. Each
447 row represents the same cell in (A).
448 (C) Mean Ca^{2+} activity of α and β cells under 10G stimulation for the same islet as A. Single cell traces
449 are shown with light lines. The red trace represents β cells and green trace α cells (n=22 for β cells
450 and n=71 for α cells).
451 (D) Mean Ca^{2+} activity of α and β cells in C, aligned at each β cell peak. Each trace starts from a peak
452 of β cell oscillation and stops in the next peak.
453 (E) Sequential activation of α and β cells under 10G stimulation. We subtract the previous frame from
454 the next frame of the original Ca^{2+} images and average across oscillations (each oscillation is

455 aligned with the maximum activation frame). The mean activation sequence uses 5 min Ca^{2+}
456 images (frame interval is 3 s). The β cells are colored red and α cells green.
457 (F) Representative recordings of slow and mixed oscillations of Ca^{2+} activity of α and β cells under
458 10G stimulation. Top: slow oscillation; bottom: mixed oscillation. The first column, maximal
459 projection of Ca^{2+} masks (α cells green and β cells red); second column, mean Ca^{2+} trace of α and
460 β cells (single cell traces are shown with light lines); third column, heat-map of α and β cells' Ca^{2+}
461 activity. Color bar codes the normalized Ca^{2+} intensity.
462

463

464 **Fig. 4. α Cell Activates After β Cell with a Fixed Time Delay While β Cell Activates After α Cell**
465 **with Variable Time Delay**

466 (A) Left: Each oscillation cycle is defined as the interval between two β cell activations (see Fig. S3
467 for alternative ways to define the period T). Right: 13 features of α - β oscillation cycle are used to
468 construct the feature matrix (columns represent features, rows represent oscillation cycles).

469 (B) Left: Oscillation cycles are separated into two clusters by using UMAP, with the mean oscillation
470 period (T) of each cluster shown ($n=658$ cycles from 21 islets, the fast and slow clusters have 574
471 and 84 oscillation cycles, respectively). Right: Mean Ca^{2+} traces (bold line) and 15 representative
472 traces (thin line) of fast cluster (top panel) and slow cluster (bottom panel), aligned at the peaks of
473 β cell Ca^{2+} activity (arrows).

474 (C) Histogram of phase difference ($\Delta\theta$), oscillation period (T), waiting time of α and β cells ($T_{\beta\alpha}$ and
475 $T_{\alpha\beta}$), and Full Width at Half Maximum of α and β cells (α_{FWHM} , β_{FWHM}) in fast and slow clusters
476 defined in Fig. S3.

477 (D) Top: Scatter plot of $\Delta\theta$ versus T . Dashed lines indicate in-phase and anti-phase α and β
478 oscillations. Middle: Scatter plot of $T_{\beta\alpha}$ versus T . Bottom: Scatter plot of $T_{\alpha\beta}$ versus T . The blue and
479 orange dots represent the fast and slow clusters from all 21 islets in (B). The red, green and dark
480 blue dots represent the oscillations from fast, mixed and slow islets shown in Fig. 5D (right panels).
481 (See Fig. S4 for scatter plots of other ways to define the period).

482 (E) Left: Mean Ca^{2+} traces of α and β cells when the glucose stimulation was shift to 10G from 3G.
483 Rectangle box showed 38 α and β phase-locked oscillations. Right: T , $T_{\beta\alpha}$, $T_{\alpha\beta}$ and $\Delta\theta$ of the 38
484 oscillations.

485

486 **Fig. 5. Mathematical Model of Islet α and β Cells**

487 (A) Two-cell islet model. The state of each cell is described by its phase θ . Cell secretes hormone at
488 phase π . The hormone secreted by α cell stimulates β cell (with strength $K_{\alpha\beta}$), and the effect of β
489 cell activation inhibits α cell (with strength $K_{\beta\alpha}$).
490 (B) Equations for phase dynamics of α and β cells. The phase of each cell is influenced by its own
491 intrinsic frequency and the paracrine stimulation/inhibition. Function $f_s(\theta)$ describes the hormone
492 secretion and function $f_i(\theta)$ describes the cell's response to the hormone.
493 (C) Illustration of winding number (w) definition. Two examples are shown. Solid lines are the actual
494 trajectories of two solutions of the equations in (B), and dotted lines are straight lines representing
495 the asymptotic limits of the trajectories that define the winding number.
496 (D) Left panel: Schematic of α and β cells' interaction strengths. Four cases from the four regions in
497 (E) are shown. Middle panel: Example traces of θ_α and θ_β in the four cases, respectively. The
498 parameters used in these examples are indicated by the four colored dots in (E). Right panel:
499 Corresponding examples of Ca^{2+} traces found experimentally for the first three cases.
500 (E) The phase diagram of the system. Depending on the two coupling constants $K_{\alpha\beta}$ and $K_{\beta\alpha}$, the
501 oscillatory behavior of the two cells falls into one of the four phase-locked regions, characterized
502 by the winding number w . In region 3, any rational winding number $w < 1$ has a stable phase-locking
503 region. For clarity, only the phase-locking regions for lower-order rational numbers (1/3, 1/2 and
504 2/3) are shown. Color bar codes the period of the oscillation. Except for the four colored dots, 7
505 randomly selected grey dots are also shown.
506 (F) Scatter plots of $\Delta\theta$, $T_{\beta\alpha}$ and $T_{\alpha\beta}$ versus T . Each dot represents one oscillation cycle. The color of
507 the dot indicates the parameters used in the simulation, which are shown in the phase diagram
508 (E) with the same color.
509

510

511 **Fig. 6. Model Predictions Verified by Experiments**

512 (A) Top two rows: Representative recordings of β cell Ca^{2+} signal for fast and slow islets in *Glut*
513 *Cre*⁺; *GCaMP6f*^{+/}; *Ins2-RCaMP1.07* mice. (See Fig. S8A for more examples and with both α and β
514 signals). The stimulation used in the experiment is shown above: 3G (10 min), 10G (40 min), 3G
515 + 100nM glucagon (20 min) and 10G + 100nM glucagon (35 min). Bottom three rows:
516 Representative recordings of β cell Ca^{2+} signal for fast and slow islets in *Ins*^{+/}; *GCaMP6f*^{+/} mice.
517 The stimulation is 3G (10 min), 10G (40 min), 3G + 100nM MK (MK0893) + 1uM Ex9 (Exendin (9-
518 39)) + 7uM insulin (20 min) and 10G + 100nM MK + 1uM Ex9 + 7uM insulin (35 min).
519 (B) Modeling results for increasing and decreasing $K_{\alpha\beta}$ and $K_{\beta\alpha}$ on fast and slow islets. First row:
520 $K_{\alpha\beta}=1.5$, $K_{\beta\alpha}=-0.6$ for 0-10 min and $K_{\alpha\beta}=3$, $K_{\beta\alpha}=-0.75$ for 10-20 min. Second row: $K_{\alpha\beta}=0.3$, $K_{\beta\alpha}=-0.6$

521 for 0-10 min and $K_{\alpha\beta}=1.8$, $K_{\beta\alpha}=-0.75$ for 10-20 min. Third row: $K_{\alpha\beta}=3$, $K_{\beta\alpha}=-0.7$ for 0-10 min and
522 $K_{\alpha\beta}=0.05$, $K_{\beta\alpha}=-0.9$ for 10-20 min. Forth row: $K_{\alpha\beta}=3$, $K_{\beta\alpha}=-0.7$ for 0-10 min and $K_{\alpha\beta}=1.1$, $K_{\beta\alpha}=-0.65$
523 for 10-20 min. Fifth row: $K_{\alpha\beta}=0.2$, $K_{\beta\alpha}=-0.7$ for 0-10 min and $K_{\alpha\beta}=0.15$, $K_{\beta\alpha}=-0.9$ for 10-20 min.
524 (C) Mean Ca^{2+} oscillation period from experiments under 10G stimulation without and with glucagon
525 treatment (n=4 fast-to-fast and 3 slow-to-fast islets).
526 (D) Mean period from the model in the top two rows of (B).
527 (E) Mean Ca^{2+} oscillation period from experiment under 10G stimulation without and with the
528 combination of insulin, MK and Ex9 (n=4 fast-to-slow, 5 fast-to-fast and 5 slow-to-slow islets).
529 (F) Mean period from the model in the bottom three rows of (B).
530 (G) Schematic of Ca^{2+} trace in islets of mix oscillations. The solid line shows α cell Ca^{2+} activity and
531 the dashed line β cell. The α cell transients immediately preceding a β cell activation decay faster
532 (colored orange) due to the β cell's repression. The α cell transients away from β cell activation
533 would decay with their own intrinsic dynamics and thus slower (colored blue).
534 (H) The decay time constants (see Fig. S3 for the definition) for the two kinds of α cell transients
535 described in (E) in mixed oscillations. They fall into two groups: fast (yellow) and slow (blue). Data
536 from 4 islets are shown. Bars represent mean \pm SEM (standard error of mean). n.s. $p>0.1$, * $p<0.05$,
537 ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$. Statistical comparisons are conducted using unpaired t test.
538

539

	Fast cluster	Slow cluster	p-value ($\times 1E5$)	Significance
T (s)	29.8	99.9	3E-20	****
$\Delta\theta$	0.67	0.24	5E-111	****
$T_{\beta\alpha}$ (s)	19.9	17.7	1.7	n.s.
$T_{\alpha\beta}$ (s)	9.5	81.2	2E-21	****
α_{FWHM} (s)	11.9	14.8	0.08	n.s.
β_{FWHM} (s)	11.4	31.1	8E-8	****
$\frac{\alpha_{FWHM}}{\beta_{FWHM}}$	1.04	0.48	4E-4	***
τ_{α_up} (s)	5.1	5.0	7E-5	n.s.
τ_{α_decay} (s)	8.8	13.6	8E-7	****
τ_{β_up} (s)	5.1	18.7	7E-5	****
τ_{β_decay} (s)	10.4	20.4	2E-5	****

540

541 **Table 1 The mean value of the features in the fast and slow clusters.**

542 Revised p value: $p^r = p(\times 1E5)$. * $p^r < 0.05$, ** $p^r < 0.01$, *** $p^r < 0.001$, **** $p^r < 0.0001$. Statistical
543 comparisons were conducted using unpaired t test. Sample sizes of fast cluster and slow cluster
544 were 574 pairs and 84 pairs, respectively. For detailed definitions, please see Methods.

545

546 **REFERENCES**

547

548 1. Butler, P. Pulsatile Insulin Secretion Dictates Systemic Insulin Delivery by Regulating Hepatic
549 Insulin Extraction In Humans. *Diabetes* **227**, 190–205 (2005).

550 2. Matveyenko, A. V., Veldhuis, J. D. & Butler, P. C. Adaptations in pulsatile insulin secretion, hepatic
551 insulin clearance, and β -cell mass to age-related insulin resistance in rats. *Am. J. Physiol. -*
552 *Endocrinol. Metab.* **295**, (2008).

553 3. Matveyenko, A. V. *et al.* Pulsatile portal vein insulin delivery enhances hepatic insulin action and
554 signaling. *Diabetes* **61**, 2269–2279 (2012).

555 4. Stagner, J. I., Samols, E. & Weir, G. C. Sustained oscillations of insulin, glucagon, and
556 somatostatin from the isolated canine pancreas during exposure to a constant glucose
557 concentration. *J. Clin. Invest.* **65**, 939–942 (1980).

558 5. Hellman, B., Salehi, A., Gylfe, E., Dansk, H. & Grapengiesser, E. Glucose generates coincident
559 insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic
560 islets. *Endocrinology* **150**, 5334–5340 (2009).

561 6. Lang, D. A., Matthews, D. R., Burnett, M., Ward, G. M. & Turner, R. C. Pulsatile, synchronous
562 basal insulin and glucagon secretion in man. *Diabetes* **31**, 22–26 (1982).

563 7. Goodner, C. J. *et al.* Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in
564 fasting monkeys. *Science* **195**, 177–179 (1977).

565 8. Lang, D. A., Matthews, D. R., Burnett, M. & Turner, R. C. Brief, irregular oscillations of basal
566 plasma insulin and glucose concentrations in diabetic man. *Diabetes* (1981)
567 doi:10.2337/diab.30.5.435.

568 9. Hansen, B. C., Jen, K. C., Belbez Pek, S. & Wolfe, R. A. Rapid oscillations in plasma insulin,
569 glucagon, and glucose in obese and normal weight humans. *J. Clin. Endocrinol. Metab.* **54**, 785–
570 792 (1982).

571 10. Rohrer, S. *et al.* Impaired crosstalk between pulsatile insulin and glucagon secretion in prediabetic
572 individuals. *J. Clin. Endocrinol. Metab.* **97**, (2012).

573 11. Corbin, K. L., Waters, C. D., Shaffer, B. K., Verrilli, G. M. & Nunemaker, C. S. Islet hypersensitivity
574 to glucose is associated with disrupted oscillations and increased impact of proinflammatory
575 cytokines in islets from diabetes-prone male mice. *Endocrinology* **157**, 1826–1838 (2016).

576 12. Valdeolmillos, M., Santos, R. M., Contreras, D., Soria, B. & Rosario, L. M. Glucose-induced
577 oscillations of intracellular Ca^{2+} concentration resembling bursting electrical activity in single
578 mouse islets of Langerhans. *FEBS Lett.* (1989) doi:10.1016/0014-5793(89)81484-X.

579 13. Liu, Y. J., Tengholm, A., Grapengiesser, E., Hellman, B. & Gylfe, E. Origin of slow and fast
580 oscillations of Ca^{2+} in mouse pancreatic islets. *J. Physiol.* **508**, 471–481 (1998).

581 14. Zhang, M., Goforth, P., Bertram, R., Sherman, A. & Satin, L. The Ca^{2+} dynamics of isolated
582 mouse β -cells and islets: Implications for mathematical models. *Biophys. J.* **84**, 2852–2870 (2003).

583 15. Chay, T. R. & Keizer, J. Minimal model for membrane oscillations in the pancreatic beta-cell.
584 *Biophys. J.* **42**, 181–189 (1983).

585 16. Bertram, R., Satin, L. S. & Sherman, A. S. Closing in on the mechanisms of pulsatile insulin
586 secretion. *Diabetes* **67**, 351–359 (2018).

587 17. Wierschem, K. & Bertram, R. Complex bursting in pancreatic islets: A potential glycolytic
588 mechanism. *J. Theor. Biol.* (2004) doi:10.1016/j.jtbi.2004.02.022.

589 18. Zimliki, C. L., Mears, D. & Sherman, A. Three roads to islet bursting: Emergent oscillations in
590 coupled phantom bursters. *Biophys. J.* **87**, 193–206 (2004).

591 19. Pedersen, M. G. Phantom bursting is highly sensitive to noise and unlikely to account for slow
592 bursting in β -cells: Considerations in favor of metabolically driven oscillations. *J. Theor. Biol.* **248**,
593 391–400 (2007).

594 20. Benninger, R. K. P. & Piston, D. W. Cellular communication and heterogeneity in pancreatic islet
595 insulin secretion dynamics. *Trends Endocrinol. Metab.* **25**, 399–406 (2014).

596 21. Dryselius, S., Grapengiesser, E., Hellman, B. & Gylfe, E. Voltage-dependent entry and generation
597 of slow Ca^{2+} oscillations in glucose-stimulated pancreatic β -cells. *Am. J. Physiol. - Endocrinol.*
598 *Metab.* (1999) doi:10.1152/ajpendo.1999.276.3.e512.

599 22. Hellman, B., Gylfe, E., Grapengiesser, E., Lund, P. E. & Berts, A. Cytoplasmic Ca^{2+} oscillations in
600 pancreatic β -cells. *BBA - Reviews on Biomembranes* (1992) doi:10.1016/0304-4157(92)90003-S.

601 23. Gilon, P., Jonas, J. C. & Henquin, J. C. Culture duration and conditions affect the oscillations of
602 cytoplasmic calcium concentration induced by glucose in mouse pancreatic islets. *Diabetologia*
603 (1994) doi:10.1007/BF00400464.

604 24. Tengholm, A. & Gylfe, E. Oscillatory control of insulin secretion. *Mol. Cell. Endocrinol.* **297**, 58–72
605 (2009).

606 25. Grapengiesser, E., Gylfe, E. & Hellman, B. Cyclic AMP as a determinant for glucose induction of
607 fast Ca²⁺ oscillations in isolated pancreatic β -cells. *J. Biol. Chem.* **266**, 12207–12210 (1991).

608 26. Li, J. *et al.* Submembrane ATP and Ca²⁺ kinetics in α -cells: Unexpected signaling for glucagon
609 secretion. *FASEB J.* **29**, 3379–3388 (2015).

610 27. Hellman, B., Salehi, A., Grapengiesser, E. & Gylfe, E. Isolated mouse islets respond to glucose
611 with an initial peak of glucagon release followed by pulses of insulin and somatostatin in
612 antisympathy with glucagon. *Biochem. Biophys. Res. Commun.* **417**, 1219–1223 (2012).

613 28. Meier, J. J., Kjems, L. L., Veldhuis, J. D., Lefèvre, P. & Butler, P. C. Postprandial suppression of
614 glucagon secretion depends on intact pulsatile insulin secretion: Further evidence for the intraislet
615 insulin hypothesis. *Diabetes* **55**, 1051–1056 (2006).

616 29. Menge, B. A. *et al.* Loss of inverse relationship between pulsatile insulin and glucagon secretion in
617 patients with type 2 diabetes. *Diabetes* **60**, 2160–2168 (2011).

618 30. Capozzi, M. E. *et al.* β Cell tone is defined by proglucagon peptides through cAMP signaling. *JCI*
619 *insight* **4**, (2019).

620 31. Svendsen, B. *et al.* Insulin Secretion Depends on Intra-islet Glucagon Insulin Secretion Depends
621 on Intra-islet Glucagon Signaling. *Cell Reports* **25**, 1127–1134.e2 (2018).

622 32. Franklin, I., Gromada, J., Gjinovci, A., Theander, S. & Wollheim, C. B. b-Cell Secretory Products
623 Activate α -Cell ATP-Dependent Potassium Channels to Inhibit Glucagon Release. *54*, (2005).

624 33. Gylfe, E. & Tengholm, A. Neurotransmitter control of islet hormone pulsatility. *Diabetes, Obes.*
625 *Metab.* **16**, 102–110 (2014).

626 34. Watts, M., Ha, J., Kimchi, O. & Sherman, A. Paracrine regulation of glucagon secretion: The $\beta/\alpha/\delta$
627 model. *Am. J. Physiol. - Endocrinol. Metab.* **310**, E597–E611 (2016).

628 35. Hoang, D. T., Hara, M. & Jo, J. Design principles of pancreatic islets: Glucose-dependent
629 coordination of hormone pulses. *PLoS One* **11**, 1–17 (2016).

630 36. Merkowitz, C. *et al.* The ductal origin of structural and functional heterogeneity between pancreatic
631 islets. *Prog. Histochem. Cytochem.* **48**, 103–140 (2013).

632 37. Dybala, M. P. & Hara, M. Heterogeneity of the human pancreatic islet. *Diabetes* **68**, 1230–1239
633 (2019).

634 38. Ohkura, M., Sasaki, T., Kobayashi, C., Ikegaya, Y. & Nakai, J. An improved genetically encoded
635 red fluorescent Ca²⁺ indicator for detecting optically evoked action potentials. *PLoS One* **7**,
636 (2012).

637 39. Shuai, H., Xu, Y., Yu, Q., Gylfe, E. & Tengholm, A. Fluorescent protein vectors for pancreatic islet
638 cell identification in live-cell imaging. *Pflugers Arch. Eur. J. Physiol.* **468**, 1765–1777 (2016).

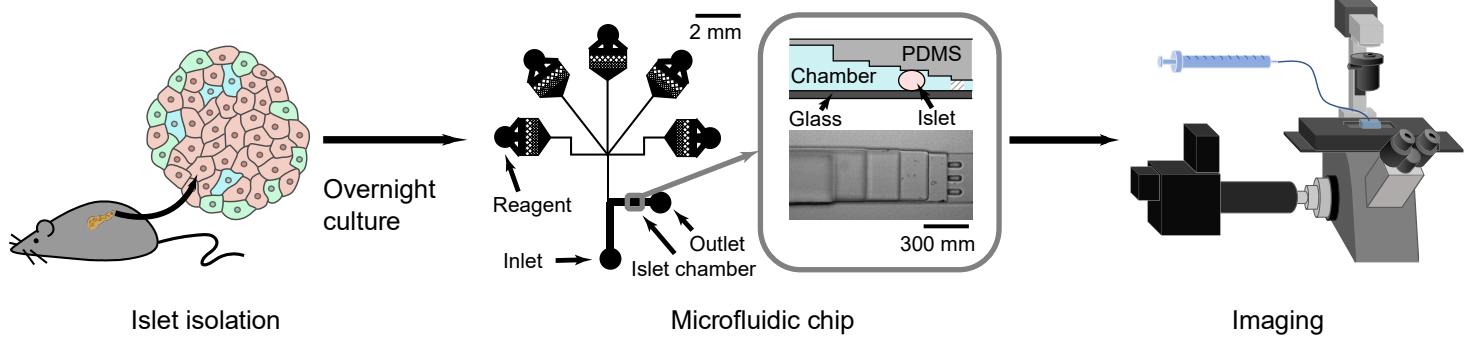
639 40. Le Marchand, S. J. & Piston, D. W. Glucose suppression of glucagon secretion: Metabolic and
640 calcium responses from α -cells in intact mouse pancreatic islets. *J. Biol. Chem.* (2010)
641 doi:10.1074/jbc.M109.069195.

642 41. Ravier, M. a *et al.* Loss of Connexin36 channels alters beta cell coupling islet synchronization of
643 glucose induced α and insulin oscillations and basal insulin release. *Diabetes* **54**, 1798–1807
644 (2005).

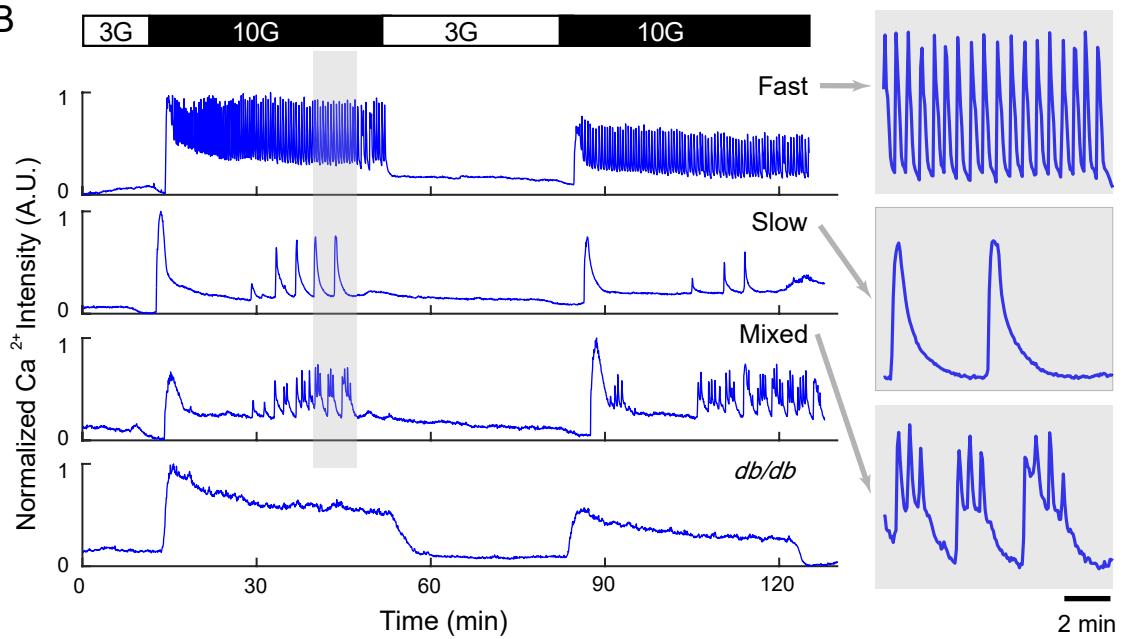
645 42. Benninger, R. K. P. *et al.* Intrinsic islet heterogeneity and gap junction coupling determine
646 spatiotemporal Ca²⁺ wave dynamics. *Biophys. J.* **107**, 2723–2733 (2015).

647 43. Calabrese, A. *et al.* Connexin 36 controls synchronization of Ca²⁺ oscillations and insulin secretion
648 in MIN6 cells. *Diabetes* **52**, 417–424 (2003).

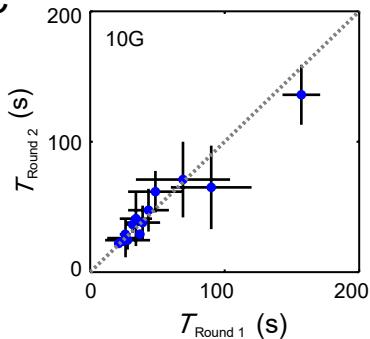
649 44. Benninger, R. K. P., Zhang, M., Steven Head, W., Satin, L. S. & Piston, D. W. Gap junction
650 coupling and calcium waves in the pancreatic islet. *Biophys. J.* **95**, 5048–5061 (2008).

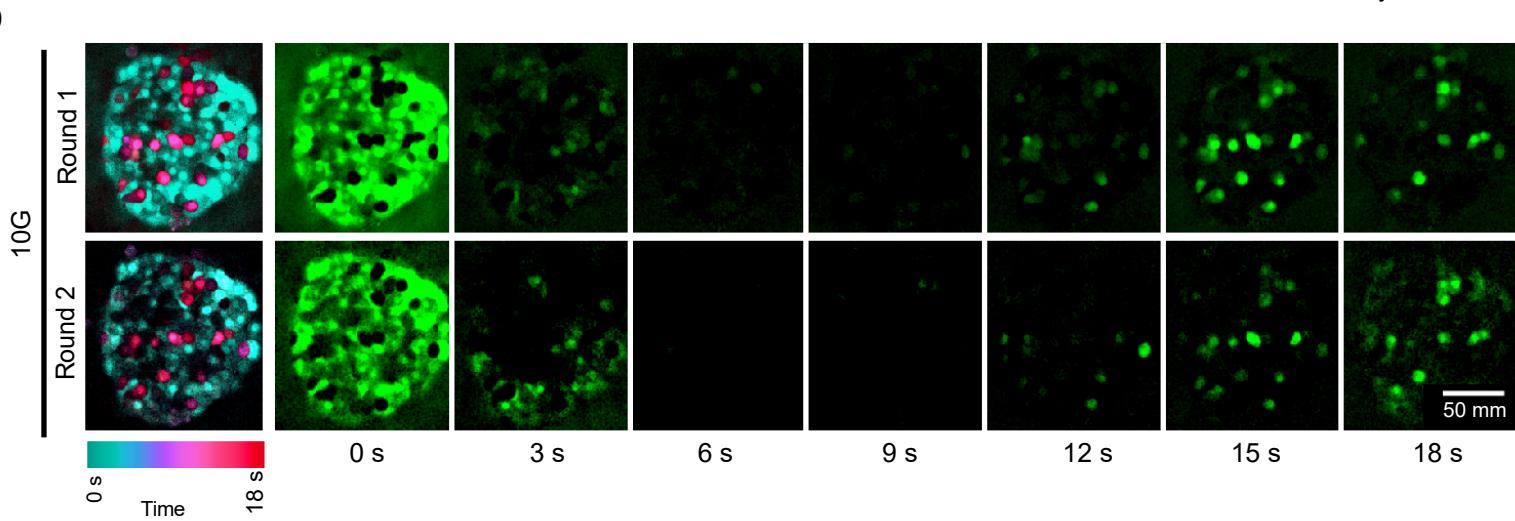

651 45. Hughes, J. W., Ustione, A., Lavagnino, Z. & Piston, D. W. Regulation of islet glucagon secretion:
652 Beyond calcium. *Diabetes, Obes. Metab.* **20**, 127–136 (2018).

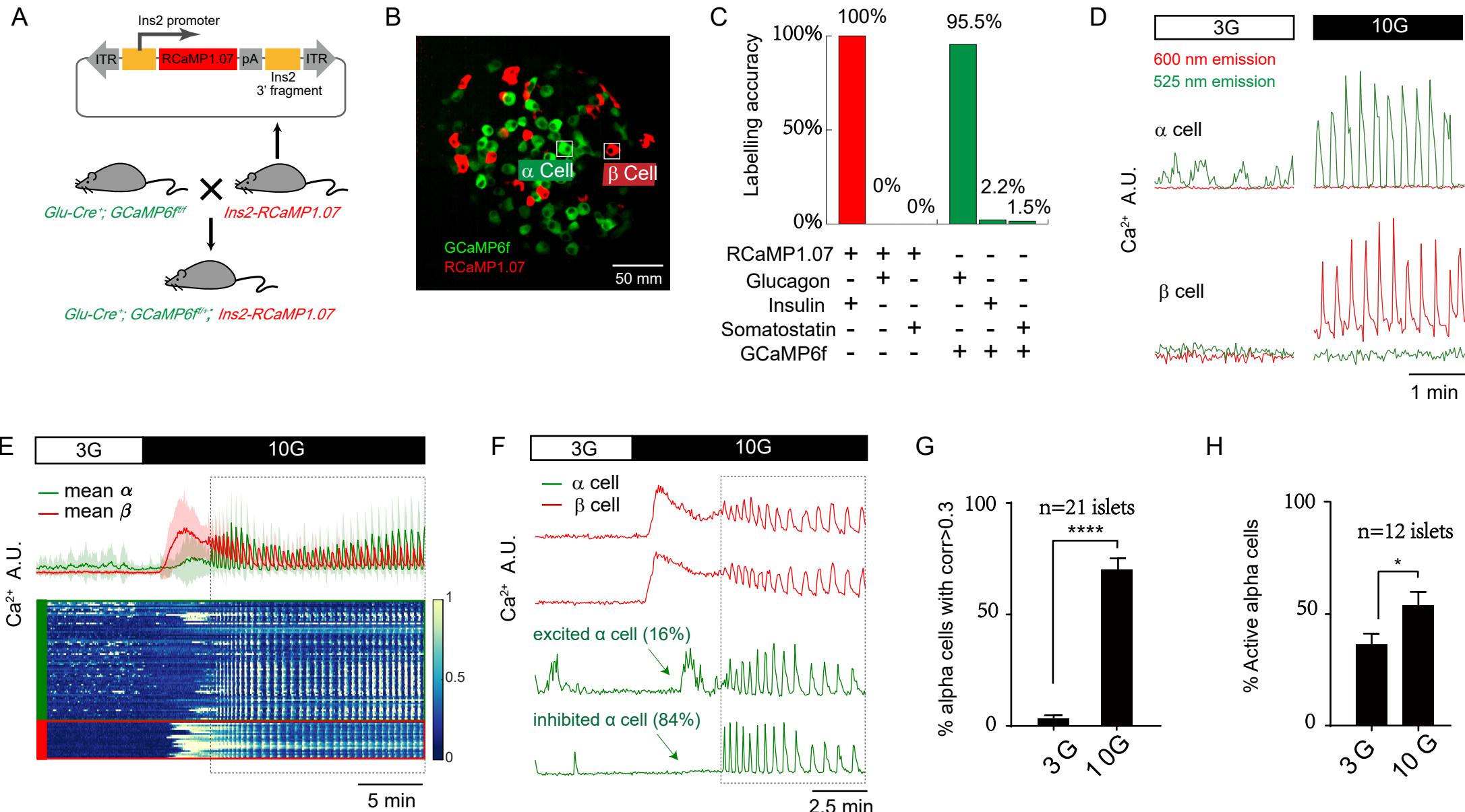
653 46. Qiu, W. L. *et al.* Deciphering Pancreatic Islet β Cell and α Cell Maturation Pathways and
654 Characteristic Features at the Single-Cell Level. *Cell Metab.* **25**, 1194–1205.e4 (2017).

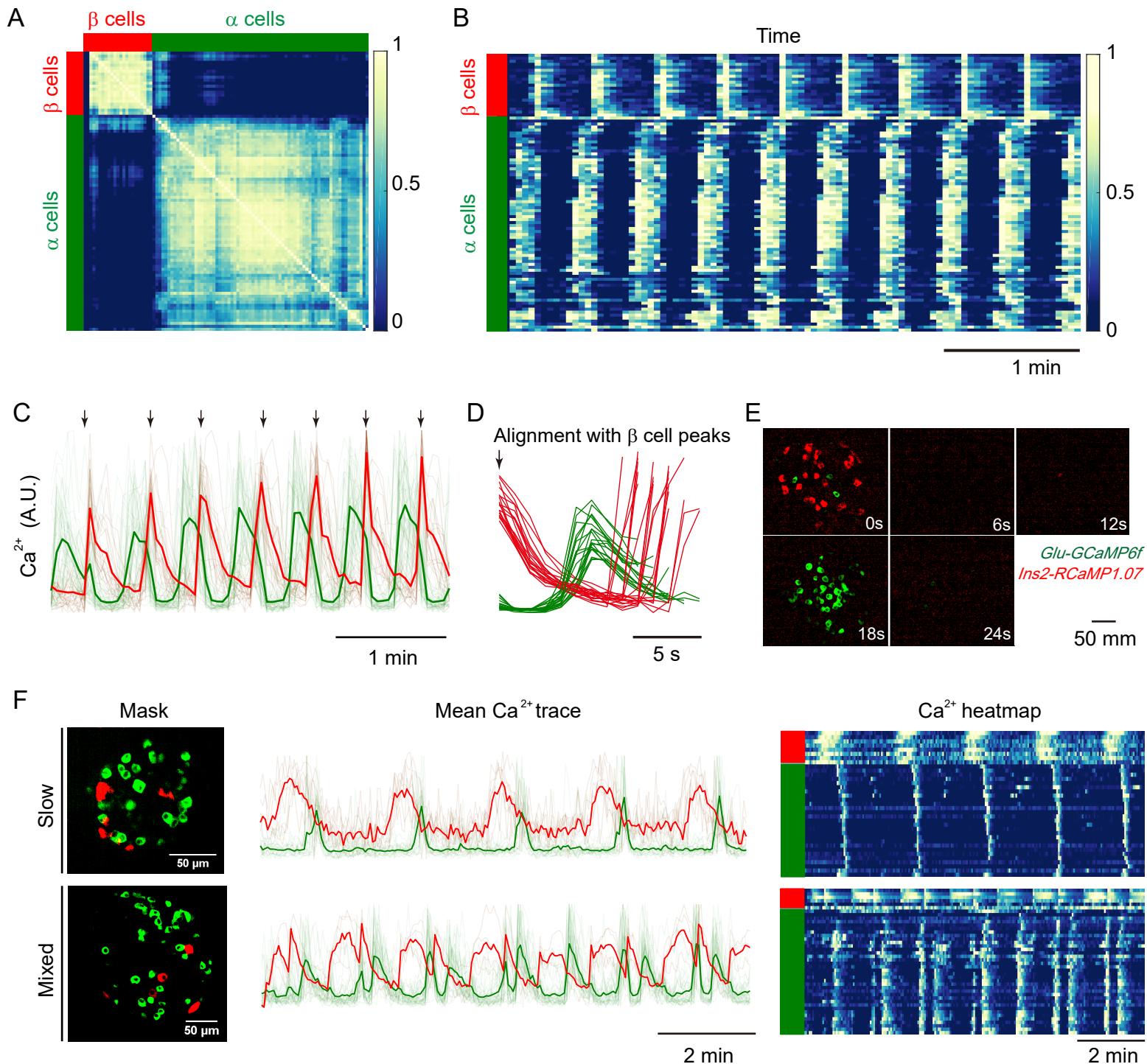

655 47. McInnes, L., Healy, J. & Melville, J. UMAP : Uniform Manifold Approximation and Projection for
656 Dimension Reduction arXiv : 1802.03426v2 [stat . ML] 6 Dec 2018. (2018).

657 48. Kudrewicz, J. & Wasowicz, S. *Equations of Phase-Locked Loops, Dynamics on the Circle, Torus*
658 *and Cylinder*. (Singapore: World Scientific Publishing, 2007).
659 49. Zhang, Y. et al. Glucagon Potentiates Insulin Secretion Via β -Cell GCGR at Physiological
660 Concentrations of Glucose. *Cells* (2021) doi:10.3390/cells10092495.
661 50. Rorsman, P. & Huisings, M. O. The somatostatin-secreting pancreatic δ -cell in health and disease.
662 *Nature Reviews Endocrinology* (2018) doi:10.1038/s41574-018-0020-6.
663 51. Briant, L. J. B. et al. Δ -Cells and B-Cells Are Electrically Coupled and Regulate A-Cell Activity Via
664 Somatostatin. *J. Physiol.* **596**, 197–215 (2018).
665 52. Hughes, J. W., Ustione, A., Lavagnino, Z. & Piston, D. W. Regulation of islet glucagon secretion:
666 Beyond calcium. *Diabetes, Obes. Metab.* **20**, 127–136 (2018).
667 53. Henquin, J. C. & Meissner, H. P. The ionic, electrical, and secretory effects of endogenous cyclic
668 adenosine monophosphate in mouse pancreatic B cells: Studies with forskolin. *Endocrinology* **115**,
669 1125–1134 (1984).
670 54. Bergsten, P., Grapengiesser, E., Gylfe, E., Tengholm, A. & Hellman, B. Synchronous oscillations
671 of cytoplasmic Ca^{2+} and insulin release in glucose-stimulated pancreatic islets. *J. Biol. Chem.*
672 (1994) doi:10.1016/S0021-9258(17)37032-1.
673 55. Authier, F. & Desbuquois, B. Glucagon receptors. *Cellular and Molecular Life Sciences* (2008)
674 doi:10.1007/s00018-008-7479-6.
675 56. Rodgers, R. L. Glucagon and Cyclic AMP : Time to Turn the Page ? 362–381 (2012).
676 57. Xu, Y. & Xie, X. Glucagon receptor mediates calcium signaling by coupling to G α q/11 and G α i/o in
677 HEK293 cells. *J. Recept. Signal Transduct.* (2009) doi:10.3109/10799890903295150.
678 58. Ma, X. et al. Glucagon Stimulates Exocytosis in Mouse and Rat Pancreatic α -Cells by Binding to.
679 **19**, 198–212 (2015).
680 59. Henquin, J. C., Meissner, H. P. & Schmeier, W. Cyclic variations of glucose-induced electrical
681 activity in pancreatic B cells. *Pflügers Arch. Eur. J. Physiol.* **393**, 322–327 (1982).
682 60. Sánchez-Andrés, J. V., Gomis, A. & Valdeolmillos, M. The electrical activity of mouse pancreatic
683 beta-cells recorded in vivo shows glucose-dependent oscillations. *J. Physiol.* **486**, 223–228
684 (1995).
685 61. Fernandez, J. & Valdeolmillos, M. Synchronous glucose-dependent $[\text{Ca}^{2+}]_{\text{i}}$ oscillations in mouse
686 pancreatic islets of Langerhans recorded in vivo. *FEBS Lett.* (2000) doi:10.1016/S0014-
687 5793(00)01631-8.
688 62. Salem, V. et al. Leader β -cells coordinate Ca^{2+} dynamics across pancreatic islets in vivo. *Nat.*
689 *Metab.* **1**, 615–629 (2019).
690 63. Reissaus, C. A. & Piston, D. W. Reestablishment of glucose inhibition of glucagon secretion in
691 small pseudoislets. *Diabetes* **66**, 960–969 (2017).
692


A


B


C


D

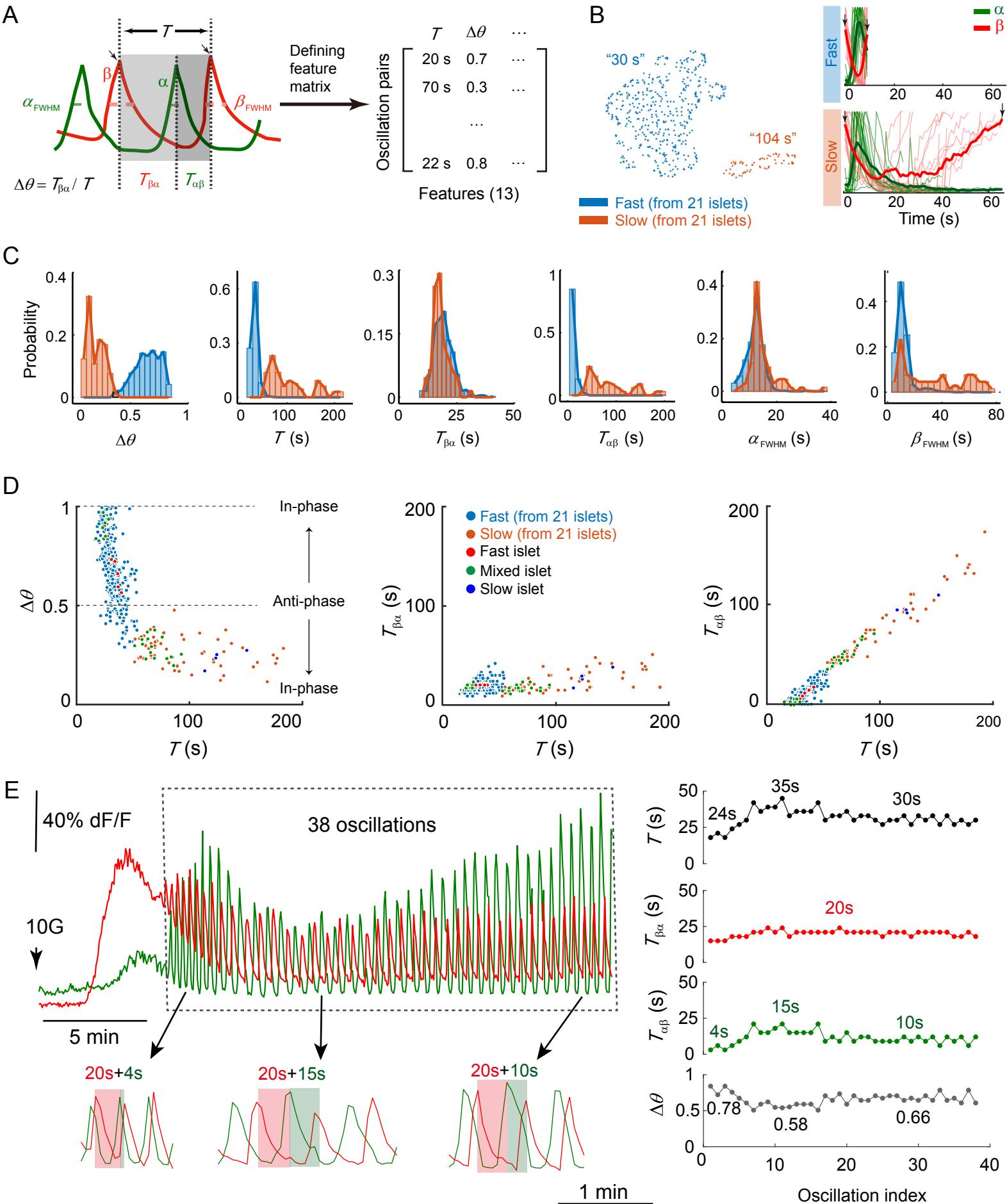

Fig. 1 Islets Show Intrinsic Ca^{2+} Oscillation Modes Under High Glucose Stimulation

Fig. 2 Using *Glu-Cre⁺; GCaMP6f^{+/+}; Ins2-RCaMP1.07* transgenic Mice to Identify Islet α and β Cells

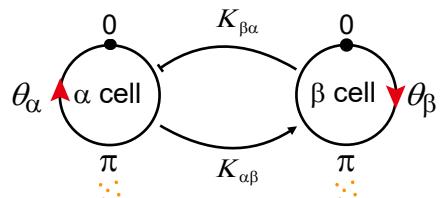
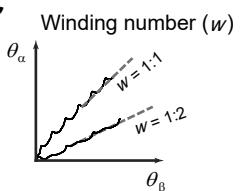
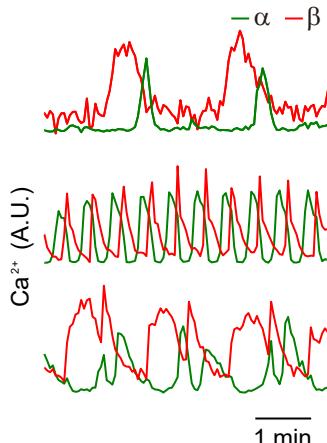
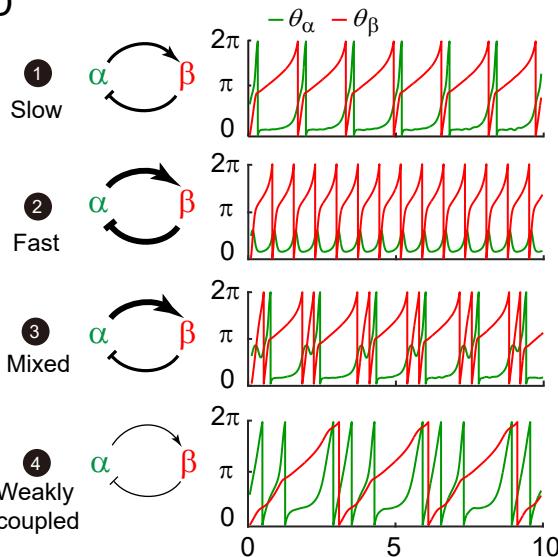


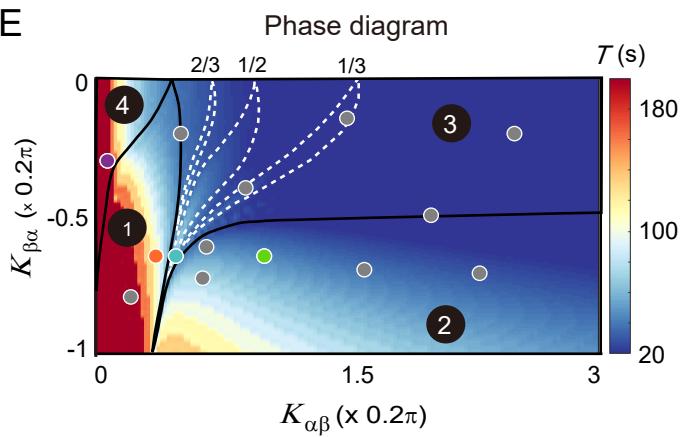
Fig. 3 α and β Cells Are Globally Phase-Locked During Oscillation

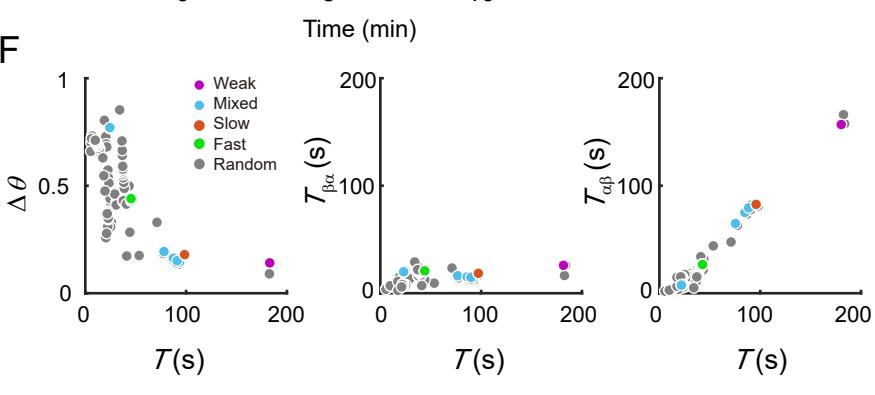
Fig. 4 α Cell Activates after β Cell with a Fixed Time Delay While β Cell Activates after α Cell with Variable Time Delay

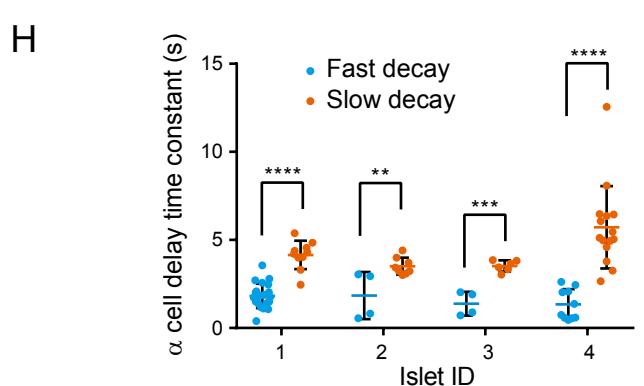
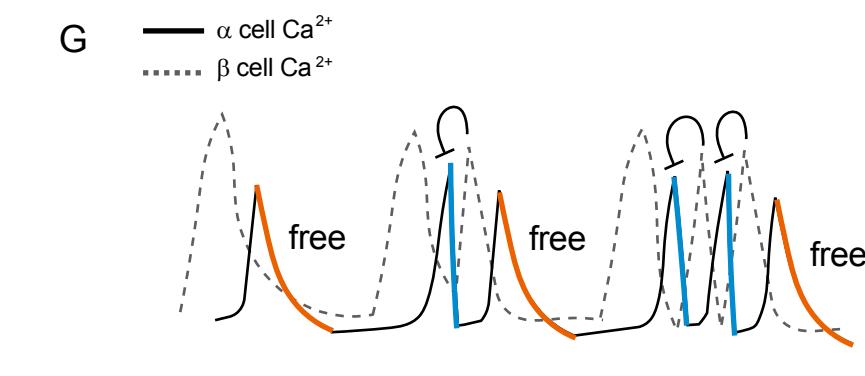
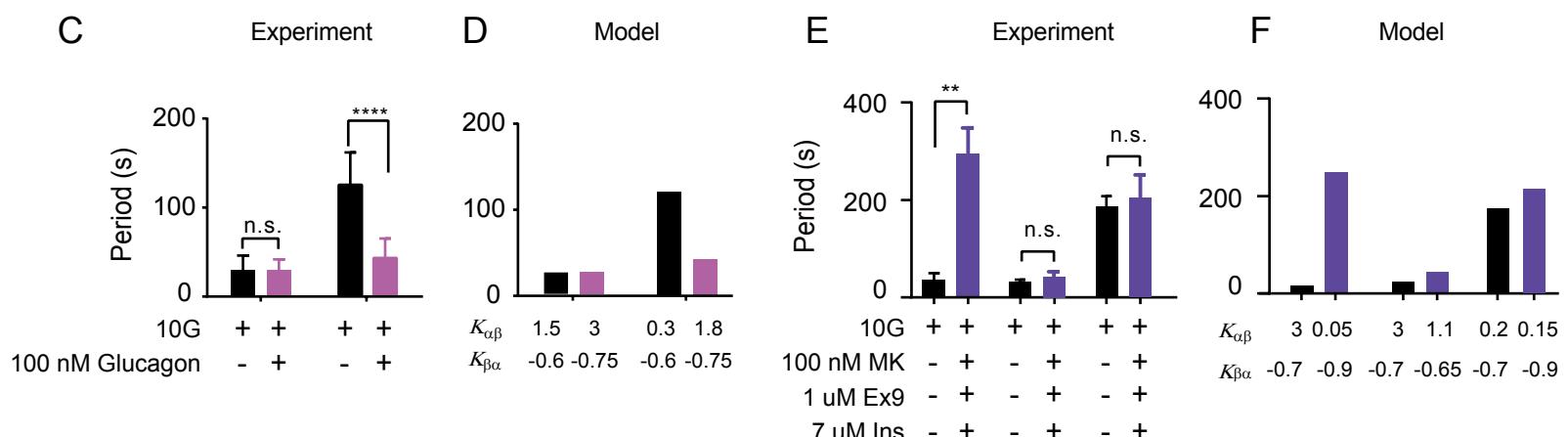
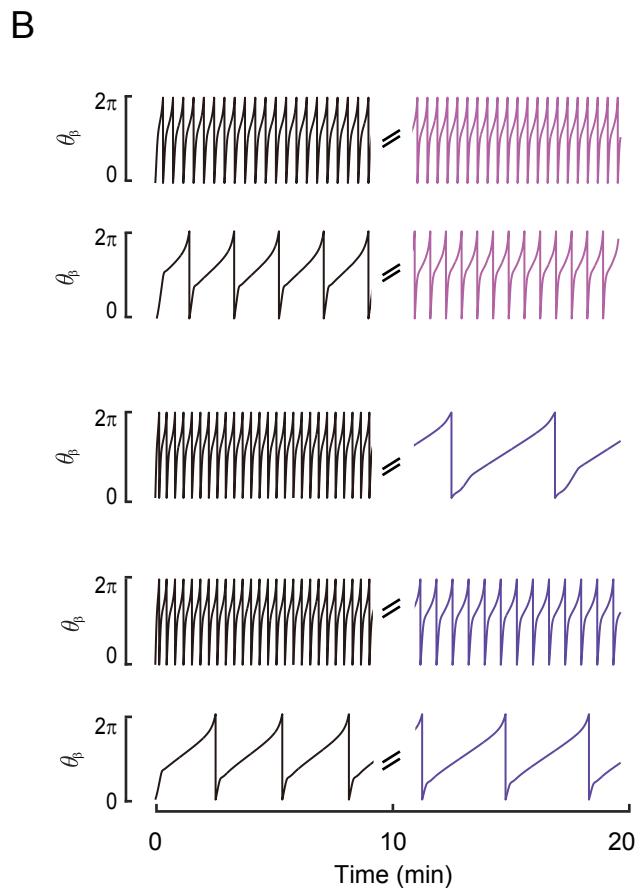
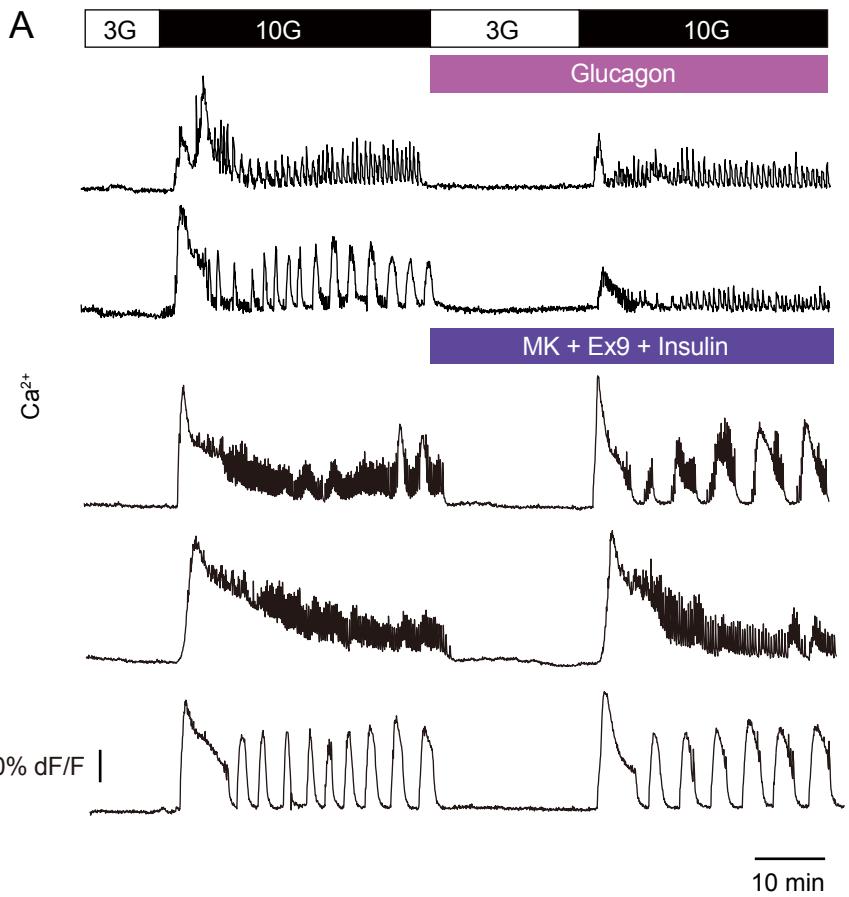

A



B

Intrinsic	Paracrine
$\frac{d\theta_\alpha}{dt} = \omega_\alpha + K_{\beta\alpha} f_s(\theta_\beta) f_{r\alpha}(\theta_\alpha)$	
$\frac{d\theta_\beta}{dt} = \omega_\beta + K_{\alpha\beta} f_s(\theta_\alpha) f_{r\beta}(\theta_\beta)$	


C


D






E

F

Fig. 5 Mathematical Model of Islet α Cell and β Cell

Fig. 6 Model Prediction and Experimental Verification