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Abstract 

Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and orientation of the coil or 

peak stimulating electric field to elicit motor responses in a target muscle. This target search is laborious, and the result is user-dependent. 

Here, we present a closed-loop search method that utilizes automatic electronic adjustment of the stimulation based on the previous 

responses. The electronic adjustment is achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the 

principles of Bayesian optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search 

method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on five healthy volunteers 

and further offline simulations showed that our adaptively guided search method needs only a relatively small number of stimuli to 

provide outcomes with good accuracy and precision. The automated method enables fast and user-independent optimization of 

stimulation parameters in research and clinical applications of TMS. 

 

1 Introduction 

Neurons in the brain can be excited by transcranial magnetic 

stimulation (TMS). In TMS, a strong current pulse is fed into a 

coil placed on the scalp to induce an electric field (E-field) in the 

cortex (Barker et al. 1985). In addition to its use in neuroscience 

(Lisanby et al. 2000, Valero-Cabré et al. 2017), TMS is 

increasingly used in clinical applications ranging from 

preoperative mapping of motor and speech areas to treatment of 

various brain disorders such as depression and pain (see, e.g., 

Lefaucheur and Picht 2016, Lefaucheur et al. 2014). 

A typical TMS session starts with searching for the optimal 

stimulation parameters, such as location and orientation of the coil 

or the E-field maximum, to activate a muscle under investigation 

most effectively. These optimal stimulation parameters are often 

referred to as the motor hotspot and defined as the stimulation 

location and orientation that elicit the largest motor evoked 

potentials (MEP) measured by electromyography (EMG) (Rossini 

et al. 2015), but the shortest MEP latency or the lowest motor 

threshold can also be used in the definition (Rossini et al. 1994). 

The motor threshold (MT) is often defined as the stimulation 

intensity that produces an MEP exceeding a predefined amplitude 

with a probability of 50%. The E-field at the cortical motor hotspot 

due to stimulation with MT intensity may serve as a reference 

when adjusting the stimulation intensity at any cortical site. 

Therefore, the target search in the motor cortex is often performed 

even when the actual stimulation site is outside the primary motor 

cortex. 

Optimal stimulation parameters are often searched for by 

measuring a collection of MEPs when stimulating the cortex 

around the expected motor representation area, with manually 

varied stimulation parameters: the location, intensity, and 

direction of the maximum E-field. The challenge is that, even with 

fixed stimulation parameters, the MEP amplitude is a random 

variable, i.e., it varies significantly from stimulation to stimulation 

due to, for example, excitability fluctuations along the 

corticospinal tract (Kiers et al. 1993). Therefore, target search is 

laborious and time-consuming. The target search involves also 

subjective decision making based on the operator’s experience, 

which makes its accuracy and repeatability (over operators) 

questionable. Sometimes the target may reside in an unexpected 

location (Ahdab et al. 2016, Bulubas et al. 2016), in which case 

the operator’s expert opinion may lead to biased localization 

results. 

To make the target search less user-dependent, Meincke et al. 

(2016) and Harquel et al. (2017) automated the process with a 

robotically controlled TMS coupled in a closed loop with EMG 

feedback. Meincke et al. (2016) defined the target as the 

stimulation coil location leading to the lowest MT; their algorithm 

started with finding an MEP-positive area within a search grid and 

continued with evaluating the MT at each MEP-positive site. They 

reported millimeter-scale repeatability in target localization with 

an automated protocol that took approximately an hour to 

complete. Harquel et al. (2017) developed an algorithm to find the 

location maximizing the MEP amplitude using a probabilistic 

Bayesian approach in which MEP amplitudes were modeled with 

a 2-dimensional Gaussian function and choosing stimulation sites 

based on the estimated decrease in entropy. However, both 

algorithms require a large number of MEPs and are developed to 

search for the target location with a fixed stimulation orientation 

(45° from the midsagittal line). The optimal orientation has been 

shown to differ between hand muscles (Bashir et al. 2013) and 

may also differ by tens of degrees across individuals (Balslev et 
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al. 2007). Therefore, in addition to the stimulation location, the 

stimulation orientation should be optimized in the target search. 

Moreover, the performance of both of the above-mentioned 

algorithms was tested by varying the coil location in a grid with a 

7-mm spacing. Such a grid is relatively sparse, and it might be 

beneficial to carry out the target search in a denser grid. 

To overcome these limitations, we developed an algorithm we 

named BOOST (Bayesian Optimization Of Stimulation Targeting) 

to automatically find the optimal stimulation parameters, location 

and orientation, eliciting the largest MEPs. The automated search 

with BOOST is an iterative process, in which the search result, i.e., 

the estimate of the optimal target, is updated in each iteration 

based on the already collected MEPs. Due to the probabilistic 

nature of the target search, we approach it with Bayesian 

optimization (see, e.g., Shahriari et al. 2016). More specifically, 

we apply Gaussian process regression (Rasmussen and Williams 

2006) to model the MEP responses as a function of the stimulation 

location and orientation. An advantage of this model is that we 

make no strong assumptions about the shape of the MEP response 

function. We present two versions of the BOOST algorithm: (1) in 

KG-BOOST, the stimulation is adaptively guided with a 

knowledge-gradient method (Frazier et al. 2009, Scott et al. 2011, 

Frazier and Wang 2016), which efficiently optimizes noisy 

functions (Picheny et al. 2013); (2) in Grid-BOOST, MEPs are 

sampled in a predetermined grid without adaptive guiding. KG-

BOOST is the method that we recommend, whereas Grid-BOOST 

was implemented for comparison. 

We evaluated the performance of different versions of the BOOST 

algorithm in one-dimensional cases with multi-locus TMS 

(mTMS), which allows electronic adjustment of the stimulation 

location and orientation without moving the transducer (Koponen 

et al. 2018a, Nieminen et al. 2019), making closed-loop 

stimulation fast end effortless. We hypothesized that, to achieve a 

given level of performance in the target search, intelligent 

sampling with knowledge gradient (KG-BOOST) requires less 

samples than systematic stimulation (Grid-BOOST) in an evenly 

spaced grid. We also expected KG-BOOST to perform better than 

Grid-BOOST when the same number of stimuli are used. 

2 Methods 

In this section, we describe the BOOST algorithm for an 

automated search for the optimal TMS parameters. In addition, we 

present the experimental set-up and the measurement protocol 

used to test the performance of the algorithm. 

2.1 Algorithm 

First, we present the BOOST algorithm and underlying 

mathematical models in a general form that allows the search of 

TMS targets in a multidimensional space. Then, we present a one-

dimensional version of the algorithm in detail and the model 

parameters we used to validate it. 

2.1.1 Bayesian optimization with Gaussian processes 

Our algorithm is designed to find stimulation parameters that 

produce the largest motor responses. We model the 𝑛th MEP 

amplitude as  

𝑦𝑛 = 𝑓(𝐱𝑛) + 𝜀𝑛,      (1) 

where 𝑓(𝐱) is an unknown MEP response function that depends 

on D variables 𝐱 = [𝑥1, … , 𝑥𝐷]T. Here, 𝐱 can include, for example, 

the estimated location and orientation of the E-field maximum in 

the cortex. 𝜀𝑛 represents additive noise and is assumed to follow 

the normal distribution as 𝜀𝑛 ~ 𝒩(0, 𝜆𝑛
2 ), with variance 𝜆𝑛

2  

describing the variability of the MEP responses. Furthermore, 

𝜀𝑛 for different 𝑛 are assumed to be statistically independent of 

each other and, for simplicity, also of 𝐱𝑛. The measured MEP 

response, 𝑦𝑛, can be considered to be a random variable, 𝑓(𝐱𝑛) 

being the mean or expected value of this noisy sample of 𝑓 at 𝐱𝑛. 

Mathematically, the problem of finding the maximum of the MEP 

response function can be formulated as 

𝐱max = arg max
𝐱

𝑓(𝐱),        (2) 

where 𝐱max contains the stimulation parameters that maximize 𝑓. 

We assume that 𝑓(𝐱) is a smooth function that indicates the effect 

of the E-field distribution on the neuronal pool responsible for the 

muscle contraction. The non-zero part of 𝑓 informs us about the 

motor map of the investigated muscle. 

The algorithm is based on modeling 𝑓 with Gaussian process 

regression (Rasmussen and Williams 2006) given 𝑁 noisy MEP 

responses 𝐲 =  [𝑦1, … , 𝑦𝑁]T. For stimulation parameters 𝐗 =
[𝐱1, … , 𝐱𝑁], we assume that the unknown values of 𝑓 are jointly 

Gaussian 

𝐟 ~ 𝒩(𝛍0, 𝐊),                (3) 

where 𝐟 =  [𝑓(𝐱1), … , 𝑓(𝐱𝑁)]T, 𝛍0 =  [𝜇0(𝐱1), … , 𝜇0(𝐱𝑁)]T is a 

prior mean vector, and the covariance matrix 𝐊 contains 

information on the a priori correlation of 𝑓(𝐱𝑛) and 𝑓(𝐱𝑚). In this 

context, we use a squared exponential covariance kernel defined 

as 

𝐊(𝑛, 𝑚) =  𝑘(𝐱𝑛, 𝐱𝑚) = 𝑎0 exp (− ∑ 𝑎1,𝑑|𝑥𝑛,𝑑 − 𝑥𝑚,𝑑|
2𝐷

𝑑=1 ) .(4) 

The model parameter 𝑎0 determines how much 𝑓 can vary from 

the prior mean 𝜇0, as one can see by setting 𝑚 = 𝑛 and observing 

that 𝑘(𝐱𝑛, 𝐱𝑛) = 𝑎0 is the variance of 𝑓(𝐱𝑛). The second set of 

model parameters 𝑎1,𝑑 (𝑑 = 1, … , 𝐷) determines the smoothness 

of 𝑓, i.e., how quick changes there can be in each dimension 𝑑. 

The exponential term in Eq. (4) ensures that the correlation of 

𝑓(𝐱𝑛) and 𝑓(𝐱𝑚) is large when the stimulation parameters 𝐱𝑛 and 

𝐱𝑚 (with the elements 𝑥𝑛,𝑑 and 𝑥𝑚,𝑑, respectively) are close to 

each other and 𝑎1,𝑑 are small. On the other hand, as 𝑎1,𝑑 get large, 

𝐊 tends to a diagonal matrix, the samples 𝑓(𝐱𝑛) becoming 

mutually less correlated. 

With the help of the described model and Bayesian inference, one 

can formulate the posterior probability distribution of 𝑓(𝐱) at any 

point 𝐱 given the measured 𝑁 responses in vector 𝐲 and the 

corresponding stimulation parameters 𝐗: 

𝑓(𝐱) | 𝐲, 𝐗 ~ 𝒩(𝜇𝑁(𝐱), 𝜎𝑁
2(𝐱)).                    (5) 

In this formula, the so-called posterior mean 𝜇𝑁(𝐱) can be 

calculated as 

𝜇𝑁(𝐱) = 𝜇0(𝐱) + 𝐤(𝐱, 𝐗)(𝐊 + 𝚲)−1(𝐲 − 𝛍0),          (6) 

where 𝐤(𝐱, 𝐗) = [𝑘(𝐱, 𝐱1), … , 𝑘(𝐱, 𝐱𝑁)] contains the covariances 

between 𝐱 and 𝐱1, … , 𝐱𝑁 similarly to Eq. (4), and 𝚲 is a diagonal 

matrix with 𝜆1
2, … , 𝜆𝑁

2  on its diagonal. The location of the posterior 

mean maximum 𝜇𝑁
max = max (𝜇𝑁(𝐱)) provides an estimate of the 
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optimal stimulation parameters 𝐱max. One can also estimate the 

variance of 𝜎𝑁
2(𝐱) in Eq. (5): 

𝜎𝑁
2(𝐱) = 𝑘(𝐱, 𝐱) − 𝐤(𝐱, 𝐗)(𝐊 + 𝚲)−1𝐤(𝐱, 𝐗)T.         (7) 

The sampling in the optimization process can be performed 

systematically in a grid of stimulation parameters as we do in the 

Grid-BOOST version of the algorithm. Another option is to utilize 

so-called acquisition functions that provide suggestions for the 

next sampling parameters 𝐱𝑁+1 and help finding the optimum with 

a smaller number of samples than with the pre-determined grid 

approach. For this purpose, we apply the knowledge gradient (KG) 

that guides KG-BOOST optimization and is computed as  

KG(𝐱𝑁+1) = 𝐸[𝜇𝑁+1
max(𝐱𝑁+1)] − 𝜇𝑁

max ,       (8) 

where 𝜇𝑁+1
max(𝐱𝑁+1) represents the maximum of the posterior mean 

function if we get one extra sample 𝑦𝑁+1 corresponding to the 

parameters 𝐱𝑁+1. In Eq. (8), 𝜇𝑁+1
max(𝐱𝑁+1) is a random variable 

depending on the random variable 𝑦𝑁+1 and 𝐸 stands for the mean 

operator. KG(𝐱𝑁+1) thus tells us how much the maximum of the 

posterior mean is expected to change if a new sample were 

collected with parameters 𝐱𝑁+1. The optimally chosen next 

stimulation parameters lie where KG(𝐱𝑁+1) reaches its maximum. 

More details about the knowledge-gradient computation can be 

found in the Appendix. Note that there are also other methods to 

guide adaptive sampling, but we chose the knowledge-gradient 

method due to its reported good performance in optimizing noisy 

functions (Picheny et al. 2013).  

2.1.2 Algorithm for finding an optimal stimulation target in 

one dimension 

The algorithm presented above works in multiple dimensions; 

here, we describe its one-dimensional version to find 

automatically either the optimal location of the peak E-field on a 

line segment or the optimal E-field orientation. Figure 1A depicts 

the flowchart of the algorithm. Several choices for the algorithm, 

such as the method for choosing the first stimulation parameters, 

were made intuitively. Most of these choices are justified by the 

fact that they resulted in a well-working algorithm. The automated 

search begins with determining the stimulation parameters for two 

initial samples within the search space [−𝐿/2, 𝐿/2] that covers the 

selected range of stimulation locations or orientations (Step 1). 

The first initial sample is randomly chosen within the first half of 

the search space, i.e., 𝑥1 ∈ [−𝐿/2, 0]. The second one is taken at 

location 𝑥2 = 𝑥1 +  𝐿/2. Next, a TMS pulse (or two pulses 

directly after Step 1) is given according to the determined 

stimulation parameter (Step 2), and the resulting MEP is measured 

from the target muscle (Step 3). For our analysis, we define the 

MEP amplitude 𝑦𝑛 as the base-10 logarithm of the measured peak-

to-peak amplitude (in microvolts), to meet better the Gaussian 

assumption of the MEP variability and to suppress large outlier 

MEPs, which could otherwise lead to an erroneous final result.  

Figure 1. Bayesian optimization of stimulation targeting. A: Algorithm flowchart. B: Example of the estimation of the optimal stimulation target after 

10 MEP responses (black dots). The purple solid line shows the posterior mean curve, and the shaded area depicts its 95% credible interval. The 

current estimate of the optimal stimulation target is where this curve reaches its maximum (downward-facing arrow). The black dashed line, being the 

mean of the posterior mean curve, depicts the prior mean for the next iteration. The next stimulus in KG-BOOST would be given with the parameter 

that maximizes the knowledge-gradient curve (gray dotted line; upward-facing arrow). C: Three placements (L1–L3) of the translation transducer over 

the primary motor cortex for 1D location search. The coil windings of the transducer are visualized in the top-right corner. D: The transducer 

placements for the orientation search (O1–O3) and the coil windings of the rotation transducer. In C and D, the dashed lines show the search space 

and the arrows indicate the location and orientation of the E-field maximum in the reference origin for each transducer placement. In each case, the 

stimulation of the reference origin is realized with the lower coil (orange or purple), and the stimulation of the other targets is achieved by feeding 

suitable current combinations to both of the overlapping coils. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.05.978445doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978445
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

4 

 

In Step 4, we compute the estimate for the posterior mean with Eq. 

(6). Since the MEP variability differs between individuals, we 

adjust most of the model parameters adaptively based on the data 

gathered in the optimization process. As a prior mean for the first 

iteration, i.e., after the two initial samples, we use a constant 

function, the output value of which is the average of the two initial 

responses. After the first iteration, the prior mean is still constant 

but now with an output value that is the average of the current 

posterior mean curve: 𝜇0(𝐱) = 𝜇𝑁(𝐱)̅̅ ̅̅ ̅̅ ̅̅ , where 𝜇𝑁(𝐱)̅̅ ̅̅ ̅̅ ̅̅  denotes the 

mean of the posterior mean curve (see the black dashed line in 

Fig. 1B). In the first iteration, we set the variability parameter as 

𝑎0 = max
𝑛=1,2

(|𝑦𝑛 − 𝑦̅|2), where 𝑦̅ denotes the mean of the gathered 

MEPs. If the two initial responses happen to have the same value, 

we set 𝑎0 = (log105)2 = 0.49. In the subsequent iterations, we 

define 𝑎0 = max(| max(CI95%,u(𝐱)) − 𝜇0(𝐱)|2, |𝜇0(𝐱) −

min(CI95%,l(𝐱))|2), where CI95%,u(𝐱) = 𝜇𝑁(𝐱) + 1.96√𝜎𝑁
2(𝐱) 

and CI95%,l(𝐱) = 𝜇𝑁(𝐱) − 1.96√𝜎𝑁
2(𝐱) are the upper and lower 

limits of the 95% Bayesian credible interval of the posterior mean 

estimate, respectively (see an example of the credible interval in 

Fig. 1B). We define the smoothness parameter as 𝑎1 = 𝑘2π2/
(2𝐿2), where 𝑘 tells how many times 𝑓 is expected to cross its 

mean value within the search space (see Rasmussen and Williams 

2006, page 81). Here, we assume that 𝑘 = 2. The MEP variance 

𝜆𝑛
2  is chosen to be constant everywhere. In the first iteration, 𝜆𝑛

2 =
𝜆2 = 1/2 ∑ |𝑦𝑛 − 𝑦̅|22

𝑛=1 , which is the variance of the elements 

in 𝐲. In the following iterations, 𝜆𝑛
2 = 𝜆2 = 1/𝑁 ∑ |𝑦𝑛 −𝑁

𝑛=1

𝜇𝑁(𝐱𝑛)|2, i.e., the variance of the differences between the 

measured MEPs and the posterior mean curve. In each iteration, 

the estimate of the optimal stimulation target is where the posterior 

mean reaches its maximum. 

In Step 5, the algorithm checks the stopping criteria. If they are not 

met, the next sampling point is determined (Step 6). The KG-

BOOST algorithm stops if at least 14 responses have been 

collected and if, during the past eight iterations, the estimate of the 

optimal stimulation target has changed no more than 2 mm or 12° 

for the location and orientation search, respectively, or when 30 

responses have been collected. These stopping criteria were 

formed based on preliminary convergence evaluations on test data. 

If the stopping criteria are not met, the next sampling point is 

chosen by evaluating the knowledge-gradient function (Eq. (8)) 

and by finding its maximum. If the knowledge gradient has the 

same value for all sampling points, we randomly pick the next 

stimulation parameter from 2–5 mm or 12–30° distance from the 

current estimate of the optimal stimulation target. We repeat Steps 

2–6 until the stopping criteria are met. In Grid-BOOST, we take 

one sample in each point of an equally spaced grid in random order 

with no adaptive stopping criteria, sampling until the whole search 

space is covered systematically. 

2.2 Data acquisition 

Five healthy subjects volunteered for the study (aged 26–35 years, 

two males). All subjects were right-handed according to the 

Edinburgh inventory (Oldfield 1971). Prior to the measurements, 

each subject signed an informed consent. The study was approved 

by the Coordinating Ethics Committee of the Helsinki University 

Hospital and was carried out in accordance with the Declaration 

of Helsinki. 

TMS was administered with two different transducers connected 

to our in-house-developed mTMS system (Koponen et al. 2018a). 

One of the transducers comprises a figure-of-eight coil and an 

overlapping oval coil (Fig. 1C; Koponen et al. 2018a). With this 

translation transducer, we could electronically shift the location of 

the calculated E-field maximum along a 30-mm-long line segment 

in the cortex. The E-field in the cortex was calculated using a 

spherical head model with an 85-mm radius, the cortex assumed 

to be at 15-mm depth from the head surface. We had 31 possible 

locations (symmetrically around the reference origin with 1-mm 

spacing) of the E-field maximum along this line segment. The 

other transducer, with two overlapping figure-of-eight coils 

(Fig. 1D), allows electronic adjustment of the orientation of the 

maximum E-field (de Oliveira e Souza 2018). We restricted the 

possible stimulation orientations in the spherical head model to be 

within a 180° interval centered around the reference origin, with 

neighboring orientations separated by 1°. Here, the reference 

origin (0 mm/0°) means the location or orientation of the 

maximum E-field resulting from the stimulation with only the 

lower of the two overlapping coils (Figs. 1C, D). Thus, the 

reference origin moves together with the transducer. The applied 

pulse waveforms were monophasic (60-µs rise time, 30-µs hold 

period; Koponen et al. 2018b) and the interstimulus interval was 

randomized between 4 and 6 s. 

The position of the mTMS transducers and the head of the subject 

were tracked with a neuronavigation system (eXimia 3.2, Nexstim 

Plc, Finland). For image-based guiding, we had T1-weighted 

magnetic resonance images of each subject. When needed, the 

position of the transducer with respect to the subject’s head was 

kept fixed with the help of the neuronavigation system, which 

allowed stimulation only when the transducer location was within 

2 mm and all rotation angles less than 2° from their target values. 

The motor responses were measured with surface EMG integrated 

in the eXimia 3.2 system (500-Hz low-pass filtering, 3-kHz 

sampling frequency). The silver/silver-chloride surface electrodes 

(Ambu Neuroline 720, Ambu A/S, Denmark) were in a bipolar 

arrangement with the active electrode placed over the muscle belly 

of the right first dorsal interosseus (FDI) and the reference 

electrode on the second proximal phalange. The ground electrode 

was placed on the back of the hand. The eXimia system analyzed 

the evoked responses and displayed the peak-to-peak amplitudes 

and latencies of the MEPs in real time. To get the MEP data into 

our algorithms programmed with Matlab (The MathWorks, Inc., 

USA), we imported the video stream of the eXimia system to our 

control computer in real time with a USB video grabber 

(DVI2USB 3.0, Epiphan Systems Inc., Canada). From the video 

stream, we extracted the MEP-amplitude and MEP-latency values 

as reported by the eXimia system. We also analyzed the baseline 

EMG signal 5–200 ms before the TMS pulse for real-time 

rejection of responses with muscle preactivation. We accepted an 

MEP if its onset latency was 15–30 ms and if the baseline EMG 

signal was within ±10 μV (when determining the MT) or ±15 μV 

(when running the KG-BOOST or Grid-BOOST algorithms). If 

these conditions were not met, we repeated the stimulation with 

the same parameters until the MEP response was acceptable. Since 

the automatic MEP analyzer of the eXimia system sometimes 

missed small responses, giving just 0 μV as their amplitude, we 

replaced for data analysis each 0-µV MEP amplitude with a 

random amplitude drawn from a uniform distribution with an 

interval of 5–15 μV. 
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Each subject had two measurement sessions, conducted on 

different days. At the beginning of the first session, we manually 

located the optimal stimulation target of the FDI muscle with the 

figure-of-eight coil of the translation transducer. For this, we 

delivered TMS pulses to the left primary motor cortex, varying the 

target location with millimeter-level steps around the hand-knob 

area. The stimulation intensity was first about 70 V/m, then 

adjusted so that the maximal MEP amplitude would be 

approximately 1 mV. The ISI was about 5 s. After delivering 

several tens of pulses around the hand-knob region to outline the 

MEP-positive area, we visually evaluated the distribution of the 

MEP responses and selected one target approximately from the 

center of the area showing the largest MEPs. During the manual 

search, the estimated orientation of the peak E-field was kept 

perpendicular to the overall orientation of the precentral gyrus. 

Next, we determined the resting MT (rMT) for the FDI muscle 

with a maximum-likelihood method (Awiszus 2003), applying 20 

pulses with different intensities while having 50 µV as a threshold 

for MEP acceptance. For the rest of the two sessions, the 

stimulation intensity was set to 110% rMT. 

In the first session, we performed the automated search for the 

optimal stimulation location with the KG-BOOST and Grid-

BOOST algorithms described in Section 2.1.2. We positioned the 

transducer in three different locations to test whether the algorithm 

can locate the optimal stimulation site regardless of its placement 

within the search space. The first placement corresponded to the 

manually found FDI target (placement L1), the second was ~5 mm 

to the medial (placement L2) and the third ~8 mm to the lateral 

direction (placement L3) from L1 (see Fig. 1C). The transducer 

was kept fixed at L1–L3 and the peak E-field was electronically 

adjusted to one of the 31 possible locations according to the 

algorithm. We repeated both KG-BOOST and Grid-BOOST seven 

times for each transducer placement (L1–L3), resulting in 21 

repetitions per subject. The transducer placements and the utilized 

version of the algorithm were applied in a pseudorandom order. 

The experimenters were aware of the transducer placement as well 

as the applied algorithm version during the experiments. With both 

KG-BOOST and Grid-BOOST, the estimated posterior mean 

curve computed with Gaussian process regression (Eq. (6)) was 

calculated on the 30-mm line segment with a grid spacing of 

0.25 mm. 

In the second session, we conducted the automated search for the 

optimal stimulation orientation. We set three transducer 

placements as follows: the placement O1 corresponded to L1, the 

placement O2 was oriented ~30° counterclockwise, and the 

placement O3 ~45° clockwise with respect to O1 (see Fig. 1D). 

The sampling in Grid-BOOST consisted of 31 pulses with 6° steps 

ranging from −90° to 90° around the reference origin. In KG-

BOOST, we had the same 180°-wide search space with the 

possible stimulation orientations separated by 1° steps. We 

repeated both KG-BOOST and Grid-BOOST seven times with 

transducer placements O1–O3, resulting in 21 repetitions for each 

subject. The posterior mean curve was computed with a grid 

spacing of 0.5°. 

2.3 Data analysis 

In this Section, we first explain how we simulated other search 

methods using the measured data. Then, we show how we 

evaluated the accuracy of different search methods by comparing 

the optimization results with the ground truth and how we 

determined the precision as the deviation in the search outcomes. 

In addition, we present details of the statistical testing comparing 

the performance of KG-BOOST with the other methods. The 

investigators were not blinded when analyzing the data. 

2.3.1 Other search methods 

To complement the results obtained directly from our 

experiments, we simulated the performance of three other 

sampling methods using the MEPs collected in the KG-BOOST 

and Grid-BOOST searches, sampling from these data without 

replacement.  

First, we conducted sparser grid sampling (sparse Grid-BOOST) 

with the data collected in the original Grid-BOOST searches (that 

we call dense Grid-BOOST from now on). In sparse Grid-

BOOST, the number of samples collected was equal to that of the 

corresponding KG-BOOST search repetition (14–30 samples per 

search). We selected every other sample from the denser grid and 

sampled from this subset of the data in random order until the total 

number of samples was the same as in the KG-BOOST search. If 

needed, we took extra samples from the unused half of the data. 

Since the two data subsets could be constructed in two ways, with 

the first one including either even or odd indices, we randomized 

the order in which the two subsets were used. The posterior mean 

curve corresponding to the sparse Grid-BOOST sampling was 

computed in the same way as with KG-BOOST and dense Grid-

BOOST, i.e., with the parameters presented in Section 2.1.2. 

To mimic the target search without any modeling of the MEP 

responses, we also evaluated a search strategy in which the 

estimate of the optimal stimulation target coincided with the 

location of the maximum MEP response. For this, we used the data 

sampled in the sparse Grid-BOOST searches. We refer to this 

search strategy as the maximum-MEP method. 

For comparison, we simulated the previously reported AutoHS 

method by Harquel et al. (2017) to find the optimal stimulation 

site. We made three adjustments to the AutoHS method due to 

differences in the MEP-sampling schemes: (1) Our sampling grid 

spacing was 1-mm (cortical grid) as opposed to 7 mm (grid of coil 

locations on the scalp) used in the original study. (2) Our search 

space was one-dimensional instead of two-dimensional. (3) We 

allowed sampling at each stimulation site at most once, whereas in 

Harquel et al. (2017) the same location was targeted at most twice. 

Because AutoHS gathers five MEPs at each iteration at the 

selected stimulation target and because for some targets we had 

collected only seven MEPs, we run the method only once for each 

subject and transducer placement. When searching for the optimal 

stimulation location with AutoHS, the possible values for the 

maximum MEP amplitude, the Gaussian width, and the center 

point of the Gaussian were {100 μV, 300 μV, …, 3900 μV}, 

{2 mm, 4 mm, ..., 20 mm}, and {−15 mm, −14.75 mm, …, 

15 mm}, respectively. For defining the next stimulation target in 

each iteration, the grid spacing was 1 mm. The first stimulation 

target and the center point of the prior distribution were always set 

in the middle of the search space (the reference origin). 

We also performed the search for the optimal stimulation 

orientation with AutoHS although such an application was not 

described in the original article. Indeed, the shape of the Gaussian 

function could be expected to model the MEP distribution as a 

function of the stimulation orientation, too. Here, the possible 

values for the maximum MEP amplitude, the Gaussian width, and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2020. ; https://doi.org/10.1101/2020.03.05.978445doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978445
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

6 

 

the center point of the Gaussian were {100 μV, 300 μV, …, 

3900 μV}, {12°, 24°, …, 120°}, and {−90°, −89.5°, …, 90°}, 

respectively. The spacing of the sampling grid was 6°. The prior 

for the optimal angle was centered around the reference origin as 

in the location search. The width of the prior distribution was 30°. 

2.3.2 Estimation of accuracy and precision 

To estimate the bias in the results (i.e., the accuracy) obtained with 

different search strategies, we first defined the best estimate for 

the optimal stimulation target (hereafter, the ground truth) for each 

transducer placement and subject. This was done by first pooling 

the data from the seven repetitions of the KG-BOOST and Grid-

BOOST searches. Each data pool included at least 315 MEP 

responses from the same spatial/angular distribution. For each of 

the 30 cases (five subjects, two transducers, three transducer 

placements), we computed a median curve in a grid with a 1-

mm/1° spacing using a sliding window that took into account the 

responses that were closer than 5 mm (location search) or 30° 

(orientation search) from the computation point. We defined the 

ground truth as the location of the maximum of the median curve. 

If several points of this curve had the same maximum value, we 

defined the ground truth as their mean location. When calculating 

the ground truth, we replaced the amplitudes of those MEPs that 

the eXimia system had originally identified as 0-µV MEPs with 

the peak-to-peak amplitude of the EMG signal in the time interval 

of 15–45 ms after the TMS pulse. 

We computed the average location/orientation of the search results 

over the seven repetitions, separately for each search strategy 

(KG-BOOST, dense and sparse Grid-BOOST, the maximum-

MEP method), and compared it with the corresponding ground 

truth. To determine the group-level accuracy, we computed the 

mean of these differences in 15 cases (3 transducer placements × 

5 subjects). This accuracy measure tells us how close the average 

result was to the ground truth. With AutoHS, we had in each case 

only one simulated search result and used its difference from the 

ground truth when computing the mean accuracy.  

To assess the precision (degree of scatter) of each search method, 

we computed the standard deviation of the corresponding seven 

final search results and averaged these standard deviations over 

the transducer placements and subjects. This precision measure 

describes the repeatability of the outcome of each search method. 

2.3.3 Statistical analysis 

The difference between the precision/accuracy of KG-BOOST 

and the other search methods with the same number of search 

repetitions (i.e., dense and sparse Grid-BOOST, the maximum-

MEP method) was tested by permutation statistics as follows. 

Altogether, 30 test values (5 subjects × 3 transducer placements × 

2 search methods under comparison) were randomly divided into 

two groups 1,000,000 times. The accuracy and precision for both 

the location and the orientation search were treated separately. For 

each permutation, we computed the mean value for both groups. 

We obtained a two-tailed p-value as the proportion of 

permutations for which the absolute value of the difference of 

means of the permuted groups exceeded the absolute value of the 

corresponding original difference of means between the sampling 

methods. The level of statistical significance was set at 0.01. After 

Bonferroni correction for multiple comparisons (12 comparisons), 

the corrected significance level was 0.00083. 

3 Results 

Results of the location and orientation searches are visualized in 

Fig. 2. Figure 2A shows how the search results for a representative 

subject with the three different transducer placements L1–L3 are 

distributed with respect to the ground truth. The three smaller 

graphs on the right side of Fig. 2A depict an example of a single 

run with each of the four search methods (KG-BOOST, dense and 

sparse Grid-BOOST, the maximum-MEP method). Figure 2B 

shows similar example results for the orientation search. Figures 

2C and 2D illustrate the error distributions of the search outcomes, 

i.e., how far the optimized parameters are from the ground truth, 

for each subject. 

The convergence of the adaptively guided KG-BOOST in the 

search for the optimal location and orientation is presented in 

Figs. 3A and 3B, respectively. Figure 3C depicts the performance 

metrics of the location search over subjects. The mean accuracy 

(i.e., how far the average search result is from the ground truth) of 

KG-BOOST was 1.4 mm (range: 0.04–5.1 mm) which is similar 

to the mean accuracy of 1.5 mm (range: 0.2–5.0 mm) of dense 

Grid-BOOST (p = 0.87). The accuracies of sparse Grid-BOOST 

(mean: 2.0 mm; range: 0.04–4.4 mm) and the maximum-MEP 

method (mean: 2.1 mm; range: 0.3–5.3 mm) were slightly worse, 

although the differences were not statistically significant when 

compared to the accuracy of KG-BOOST (p = 0.32 for the sparse 

Grid-BOOST and p = 0.21 for the maximum-MEP method). The 

precision, expressing how repeatable the results are, was best with 

dense Grid-BOOST (mean: 2.7 mm; range: 1.2–5.2 mm). The 

mean precision of KG-BOOST (mean 3.2 mm; range 1.6–

5.3 mm), the maximum-MEP method (mean: 3.4 mm; range: 1.9–

6.6 mm) and sparse Grid-BOOST (mean: 3.4 mm; range: 1.7–

6.2 mm) were comparable to each other. When comparing KG-

BOOST with dense or sparse Grid-BOOST or the maximum-MEP 

method, the p-values were 0.23, 0.68, and 0.72, respectively. With 

KG-BOOST, sparse Grid-BOOST and the maximum-MEP 

method, the average number of samples collected was 18 (range: 

14–30), which means that on average the search took 1.5 min. 

With dense Grid-BOOST, we always gathered 31 samples per 

search, corresponding to an average time of 2.6 min. Moreover, 

the manually found optimal stimulation location, which 

corresponds to the reference origin with the transducer position 

L1, varied on average 3.5 mm (range: 0–6 mm) from the 

corresponding ground truth. The average number of stimuli in the 

manual search was 59 (range: 37–78), administered on average in 

11 minutes (range: 4–18 min). 

The performance metrics of the orientation search can be found in 

Fig. 3D. The mean accuracy of KG-BOOST (mean: 5.4°; range 

1.4–13.6°) was close to the ones of dense Grid-BOOST (mean: 

5.1°; range: 0.6–10.3°; p = 0.82), sparse Grid-BOOST (mean: 

5.8°; range: 0.9–18.8°; p = 0.78) and the maximum-MEP method 

(mean: 7.5°; range; 0–17.1°; p = 0.21). The mean precisions of 

KG-BOOST (mean: 9.7°; range 5.5–15.4°), dense Grid-BOOST 

(mean: 11.3°; range: 4.2–19.8°), sparse Grid-BOOST (mean: 

19.1°; range: 8.3–48.8°) and the maximum-MEP method (mean: 

20.2°; range: 10.4–32.9°) varied from each other. We found 

statistically significant differences in precision between KG-

BOOST and both sparse Grid-BOOST (p = 0.000031) and the 

maximum-MEP method (p = 0.000001). The difference in 

precision between KG-BOOST and dense Grid-BOOST was not 

statistically significant (p = 0.25). The average number of samples 

acquired in the orientation search was 16 (range: 14–30; average 
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Figure 2. Results of the location and orientation searches. A: Location search with Subject 3 and transducer placements L1–L3. B: Orientation search 

with Subject 1 and transducer placements O1–O3. The transducer placements with respect to the hand-knob area in the pre-central gyrus are shown in 

the boxes on the top (the arrows indicate the location/orientation of the manually found target), with the corresponding results panels below them. The 

black dots show the MEP responses measured during all KG-BOOST and dense Grid-BOOST searches. The black line shows the moving median of these 

responses, and the location of its maximum (black dashed arrow) is the ground truth. The asterisks show the estimates of the optimal stimulation 

locations/orientations of the seven repetitions with KG-BOOST (orange/purple), dense (gray) and sparse (light gray) Grid-BOOST and the maximum-

MEP method (dark gray), respectively. The three smaller graphs on the right visualize single runs of different search methods with L3/O3. In these 

graphs, the black dots illustrate the MEP responses, the solid lines depict the posterior mean curves, and the circles indicate the estimated optimal 

stimulation locations/orientations (the corresponding asterisks in the L3/O3 results panel are circled). C–D: Violin plots visualizing the error (difference 

from the ground truth) in the search of the optimal location (C) and orientation (D) for each subject, with the data of all transducer placements combined. 

The asterisks show the error of each search run, and the black lines indicate the mean errors. 
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time: 1.3 min) for KG-BOOST, sparse Grid-BOOST, and the 

maximum-MEP method. With dense Grid-BOOST, the number of 

samples was always 31 (average time: 2.6 min). In addition, the 

reference origin of the transducer placement O1, which was set to 

be perpendicular to the global orientation of the precentral gyrus, 

varied on average 6.7° (range: 1–13°) from the ground truth. 

Our version of the AutoHS algorithm yielded an average error of 

1.5 mm (range: 0.04–4.6 mm) and 19.7° (range: 2.1–37.9°) with 

respect to the ground truth for the location and orientation search, 

respectively. These values are not directly comparable with the 

accuracy values presented in Figs. 3C and 3D, since only one 

iterative search could be simulated for each subject and coil 

placement with the data available. Therefore, the results of 

AutoHS are excluded from Figs. 2 and 3 and the statistical 

analysis. With the AutoHS algorithm, the number of responses 

required for convergence was on average 53 (range: 20–110) and 

62 (range: 20–163) for the location and orientation search, 

respectively, being about three to four times the number of stimuli 

used by KG-BOOST. 

4 Discussion 

We demonstrated that multi-locus TMS and Bayesian 

optimization can be successfully combined into an automated 

search of TMS targets. In this context, mTMS enables adjusting 

the stimulation location and orientation in a closed-loop setting 

without the need to move a coil, which significantly reduces the 

laboriousness of TMS. Bayesian optimization provides means to 

model and guide the stimulation in an effective and user-

independent manner. 

4.1 Performance of the automated target search 

The automated online searches and further offline comparisons 

revealed that the mean accuracy in the location search was almost 

the same with all three versions of the BOOST algorithm (KG-

BOOST guided with knowledge gradient and Grid-BOOST with 

dense and sparse sampling grids), when choosing the optimal 

target based on the maximal MEP response only, and with the 

Figure 3. The convergence of KG-BOOST and the performance of the different search methods. A–B: The convergence of KG-BOOST in the search 

for the optimal stimulation location (A) and orientation (B). The light curves show how far from the ground truth the single runs are as a function of 

the number of samples. The solid dark curve depicts the average error from the ground truth until the minimum number of samples (14, black vertical 

line) has been reached. After 14 samples, as many of the runs have already finished, the average error curve (dashed line) includes only the remaining 

runs (until three or more left). C–D: Accuracy and precision of the different search methods in the search for the optimal stimulation location (C) and 

orientation (D). The bars depict the mean accuracy/precision of the search results with the black whiskers showing the minimum and maximum 

accuracy/precision over subjects and transducer placements. In D, the asterisks indicate the statistically significant differences in the precision of 

sparse Grid-BOOST and the maximum-MEP method compared to the precision of KG-BOOST. 
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AutoHS method (Harquel et al. 2017) (accuracies in the range of 

1.4–2.1 mm). In the orientation search, the accuracy of the 

AutoHS method (19.7°) was worse than that of the other methods 

(5.1–7.5°). The small accuracy values indicate that the search 

results were centered almost symmetrically around the ground 

truth, which is expected behavior for any sensible search method. 

The average precision of the location search was similar (2.7–

3.4 mm) among the four search strategies for which we were able 

to compute the precision (for AutoHS, we did not have enough 

samples for retrieving several independent search results). Thus, 

there were no statistically significant differences in precision in 

the location search between KG-BOOST and the other search 

methods. This can be explained by the fact that the motor maps 

extended over a large portion of the 30-mm-long search space and 

the median curves were relatively flat around their maximum 

(Fig. 2A). Instead, we found differences in the average precision 

of the optimal orientation search. KG-BOOST and dense Grid-

BOOST had similar precisions (9.7° and 11.3°, respectively), 

while the precision of sparse Grid-BOOST and the maximum-

MEP method were significantly worse (19.1° and 20.2°, 

respectively). These differences in the degree of scatter are not 

surprising, since the MEP-positive part of the median curve in the 

search space appeared narrower in the orientation search 

compared to the corresponding part in the location search. In the 

orientation search, KG-BOOST and dense Grid-BOOST got 

enough samples from the maximum area and the slopes of the 

mean MEP curve whereas sparse Grid-BOOST and the maximum-

MEP method got fewer responses around the maximum, leading 

to larger deviation and, thus, worse precision in the search results.  

Considering the efficiency of different search strategies, dense 

Grid-BOOST always used 31 samples, and AutoHS needed on 

average 53 and 62 samples, whereas the other methods used 18 

and 16 samples on average in the location and orientation search, 

respectively. Sampling with KG-BOOST resulted in accuracy and 

precision similar to those of dense Grid-BOOST, but with 

approximately half of the number of samples. Also, the accuracies 

were similar (location search) or worse (orientation search) with 

AutoHS than with KG-BOOST, and AutoHS needed on average 

three to four times more samples for convergence. These findings 

indicate that KG-BOOST was more efficient than AutoHS and 

dense Grid-BOOST, and that sampling in a dense evenly spaced 

grid wastes samples especially in areas that produce no MEP 

responses. Results of the orientation search show that adaptive 

sampling with KG-BOOST led to better precision than placing the 

same number of samples evenly in the search space. Based on 

these results, we suggest using intelligent sampling, such as 

sampling with knowledge gradient (Frazier et al. 2009) that we 

used in KG-BOOST. This would allow one to avoid gathering too 

much data in areas with no MEPs while sampling adaptively 

around the maximum of the MEP curve to efficiently get enough 

information about the optimal target. We anticipate that even 

larger differences between the sampling methods are expected 

with larger or higher-dimensional search spaces (such as a two-

dimensional location grid with additional variation in orientation), 

when non-guided grid sampling becomes very time-consuming. 

Although the accuracy and precision values are generally good for 

almost all the search strategies, a single search outcome may still 

be several millimeters or degrees off from the ground truth 

regardless of the search method (see examples in Fig. 2). This is 

mainly due to the unavoidable high variability of the MEP 

responses that is present also in manual searches. Setting more 

strict stopping criteria would likely increase the accuracy and 

precision of KG-BOOST with the trade-off of increasing the 

number of samples needed and, thus, the measurement time. The 

stopping criteria can be chosen based on the needed accuracy and 

precision, which may differ between applications of the method. 

4.2 Gaussian processes in target optimization 

This study also demonstrated that Gaussian process regression is 

suitable for modeling the MEP response function (i.e., motor 

map). Gaussian processes allow taking into account the 

uncertainties of the problem, the biggest source of uncertainty 

being the MEP variability. Another advantage of Gaussian process 

regression is its suitability for modeling a response function of any 

smooth shape as opposed to, e.g., parametric Gaussian curve 

fitting, which assumes that the underlying function is a symmetric 

Gaussian distribution as in Harquel et al. (2017). We consider 

nonparametric fitting of MEP curves advantageous, since the 

motor maps can be asymmetric (see example maps in Weiss et al. 

2013, Julkunen 2014, and van de Ruit et al. 2015). Sampling in a 

dense grid, as we did, is beneficial, since it assists in revealing the 

shape and, thus, the location of the peak of the response curve 

better than sampling in a coarse grid. Furthermore, as the Gaussian 

process regression model links the data of neighboring points, the 

expected convergence speed of a sampling in a dense grid is 

similar to that of a sampling in a sparse grid. 

When modeling with Gaussian processes, one needs to ensure that 

the responses are handled on a suitable scale. We chose a 

logarithmic scale to satisfy better the assumption of 

location/orientation-independent MEP variance included in the 

model. The BOOST algorithm seems to tolerate well the 

variability in the MEP variance that occurs in practice. Note that 

on a logarithmic scale, the peaks of the MEP response curves 

(Fig. 2) appear broader than on a linear scale. For ensuring a 

sufficient number of samples and for placing them optimally, we 

suggest adaptively guiding the sampling with, e.g., knowledge 

gradient (as in KG-BOOST) or entropy-based methods (as 

implemented by Harquel et al. (2017)). There are also other 

methods that could suit for efficient guiding of the sampling, such 

as the expected-improvement method (Mockus et al. 1978) or the 

use of confidence bounds as sampling criteria (Cox and John 

1992), but these were not tested in this study. 

Even though Gaussian process regression is a nonparametric 

method, it includes several model parameters that need to be tuned 

case-specifically. Our suggestion for determining the parameters 

in the case of TMS-target optimization are presented in 

Section 2.1.2, but there are also other ways to determine these 

parameters. To adapt the posterior adequately to the data while 

avoiding overfitting, it was crucial to correctly tune the 

smoothness parameter 𝑎1,𝑑 (see Eq. (4)) to be of a reasonable 

magnitude. We chose to set this parameter with the simple zero-

crossings formula and to keep it constant during the whole 

optimization procedure. Another option would be to tune 𝑎1,𝑑 

among the other model parameters adaptively and to teach the 

model with the acquired data. For this purpose, we also tested 

maximum-likelihood estimation and cross-validation (see Chapter 

5 of Rasmussen and Williams 2005). However, in our experience, 

these approaches tended to overestimate 𝑎1,𝑑, leading to 

overfitting the model to the data. 
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4.3 Future development and applications 

Automated stimulation targeting could be further extended to 

adaptively adjust also the stimulation intensity (here, we used a 

predefined intensity, 110% rMT). In this case, the motor responses 

gathered during the target optimization might also be used in the 

rMT estimation, or the rMT could be determined separately after 

the target optimization with, e.g., the adaptive algorithm presented 

by Awiszus (2003). In the future, the KG-BOOST algorithm can 

be applied for multi-dimensional problems, e.g., to optimize 

simultaneously the location and orientation of the E-field, for 

example, with a 5-coil mTMS system similar to the one depicted 

by Koponen et al. (2018a). In principle, KG-BOOST can be 

implemented with any TMS system that allows automatic 

adjustment of the stimulation location and orientation, e.g., with a 

robotically controlled stimulator. Furthermore, with a suitable 

software implementation, the algorithm could even guide the 

manual target search performed with a conventional navigated 

TMS system. With a multi-dimensional search space and a larger 

coverage of the cortex, one will be able to avoid the initial manual 

search, which we needed to place the transducer appropriately, and 

identify the optimal target even if it were situated abnormally. 

The benefits of automated target optimization are applicable in 

several settings, from basic research to therapeutic uses of TMS. 

The automated target optimization could be used, e.g., for 

studying the plasticity of motor cortex in a user-independent way. 

After modifying the function that guides the sampling, the BOOST 

algorithm may find applications in efficient and automated 

mapping of motor areas. If the actual cortical activation sites are 

of interest, one may combine the BOOST algorithm with 

individualized E-field modeling. In addition to finding the optimal 

stimulation parameters based on MEP amplitudes, the BOOST 

algorithm could be used to find an optimal stimulation target with 

respect to other available measures. For example, TMS targeting 

outside the motor cortex could be automatically optimized with 

respect to evoked cortical activity measured by electro-

encephalography (Tremblay et al. 2019). 

5 Conclusion 

We demonstrated that electronically adjusted multi-locus TMS 

and Bayesian optimization provide a valid basis for automated 

search of TMS targets. The presented adaptively guided target 

search (KG-BOOST) gave results with good accuracy and 

precision, needing only a relatively small number of stimuli for 

convergence. We conclude that KG-BOOST enables fast, easy and 

user-independent target optimization, and that its benefits are 

applicable from basic research to therapeutic uses of TMS. 
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Appendix 

Here, we present further details for computing the knowledge 

gradient. Assume that we have 𝑁 noisy samples 𝐲 =  [𝑦1, … , 𝑦𝑁]T 

that correspond to the sampling parameters 𝐗 =  [𝐱1, … , 𝐱𝑁]. 
Knowing them, we choose the next sampling parameters 𝐱𝑁+1 

with a knowledge-gradient sampling policy (Frazier et al. 2009, 

Frazier and Wang 2015). For getting the maximum of KG(𝐱) 

(approximately), we choose an appropriately dense subset 𝐗∗ =
 {𝐱𝑚

∗ ; 𝑚 = 1, … , 𝑀} in the search space. For a fixed 𝐱𝑚
∗ , we form 

sequences 𝐴(𝑟) and 𝐵(𝑟), 𝑟 = 1, … , 𝑀, by setting for each 𝐱𝑟
∗ ∈

 𝐗∗, 𝐴(𝑟) = 𝜇𝑁(𝐱𝑟
∗ ) as in Eq. (6) and 

𝐵(𝑟) =  
𝑘(𝐱𝑟

∗ , 𝐱𝑚
∗ ) − 𝐤(𝐱𝑟

∗ , 𝐗)(𝐊 + 𝚲)−1𝐤(𝐱𝑚
∗ , 𝐗)T

[𝑘(𝐱𝑚
∗ , 𝐱𝑚

∗ ) − 𝐤(𝐱𝑚
∗ , 𝐗)(𝐊 + 𝚲)−1𝐤(𝐱𝑚

∗ , 𝐗)T + 𝜆∗
2]½

 , 

where 𝐤(𝐱𝑟
∗ , 𝐗) = [𝑘(𝐱𝑟

∗ , 𝐱1), … , 𝑘(𝐱𝑟
∗ , 𝐱𝑁)] and 𝐤(𝐱𝑚

∗ , 𝐗) =
[𝑘(𝐱𝑚

∗ , 𝐱1), … , 𝑘(𝐱𝑚
∗ , 𝐱𝑁)] contain the covariances between 𝐱𝑟

∗  or 

𝐱𝑚
∗  and 𝐱1, … , 𝐱𝑁 (formula for 𝑘 in Eq. (4)), 𝚲 is a diagonal matrix 

with 𝜆1
2, … , 𝜆𝑁

2  on its diagonal, and 𝜆∗
2 is the noise variance at 

location 𝐱𝑚
∗ . As in Frazier et al. (2009), we choose subsequences 

𝛼(𝑠) and 𝛽(𝑠) of 𝐴(𝑟) and 𝐵(𝑟) and an additional sequence 𝛾(𝑠), 

𝑠 = 1, … , 𝑆, by Matlab codes AffinebreakpointsPrep.m and 

Affinebreakpoints.m given in Frazier (2010). With these 

sequences, we get the knowledge-gradient function as 

KG(𝐱𝑚
∗ ) =  ∑ [(𝛽(𝑠 + 1) − 𝛽(𝑠)) (𝜑(γ(𝑠)) −𝑆−1

𝑠=1

|𝛾(𝑠)|Φ(−|𝛾(𝑠)|))] + max (𝛼(𝑠)) − 𝜇𝑁
max,  

where 𝜑(𝑡) = (2𝜋)−½exp (−𝑡2/2) and Φ(t) = ∫ 𝜑(𝑢)𝑑𝑢
𝑡

−∞
 are 

the probability density function and the cumulative density 

function of a normalized Gaussian random variable, respectively. 

Finally, we get the next sampling point as 

𝐱𝑁+1 = arg max
𝐱𝑚

∗
KG(𝐱𝑚

∗ ) . 
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