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Abstract

Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and orientation of the coil or
peak stimulating electric field to elicit motor responses in a target muscle. This target search is laborious, and the result is user-dependent.
Here, we present a closed-loop search method that utilizes automatic electronic adjustment of the stimulation based on the previous
responses. The electronic adjustment is achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the
principles of Bayesian optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search
method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on five healthy volunteers
and further offline simulations showed that our adaptively guided search method needs only a relatively small number of stimuli to
provide outcomes with good accuracy and precision. The automated method enables fast and user-independent optimization of

stimulation parameters in research and clinical applications of TMS.

1 Introduction

Neurons in the brain can be excited by transcranial magnetic
stimulation (TMS). In TMS, a strong current pulse is fed into a
coil placed on the scalp to induce an electric field (E-field) in the
cortex (Barker et al. 1985). In addition to its use in neuroscience
(Lisanby et al. 2000, Valero-Cabré et al. 2017), TMS s
increasingly used in clinical applications ranging from
preoperative mapping of motor and speech areas to treatment of
various brain disorders such as depression and pain (see, e.g.,
Lefaucheur and Picht 2016, Lefaucheur et al. 2014).

A typical TMS session starts with searching for the optimal
stimulation parameters, such as location and orientation of the coil
or the E-field maximum, to activate a muscle under investigation
most effectively. These optimal stimulation parameters are often
referred to as the motor hotspot and defined as the stimulation
location and orientation that elicit the largest motor evoked
potentials (MEP) measured by electromyography (EMG) (Rossini
et al. 2015), but the shortest MEP latency or the lowest motor
threshold can also be used in the definition (Rossini et al. 1994).
The motor threshold (MT) is often defined as the stimulation
intensity that produces an MEP exceeding a predefined amplitude
with a probability of 50%. The E-field at the cortical motor hotspot
due to stimulation with MT intensity may serve as a reference
when adjusting the stimulation intensity at any cortical site.
Therefore, the target search in the motor cortex is often performed
even when the actual stimulation site is outside the primary motor
cortex.

Optimal stimulation parameters are often searched for by
measuring a collection of MEPs when stimulating the cortex
around the expected motor representation area, with manually

varied stimulation parameters: the location, intensity, and
direction of the maximum E-field. The challenge is that, even with
fixed stimulation parameters, the MEP amplitude is a random
variable, i.e., it varies significantly from stimulation to stimulation
due to, for example, excitability fluctuations along the
corticospinal tract (Kiers et al. 1993). Therefore, target search is
laborious and time-consuming. The target search involves also
subjective decision making based on the operator’s experience,
which makes its accuracy and repeatability (over operators)
questionable. Sometimes the target may reside in an unexpected
location (Ahdab et al. 2016, Bulubas et al. 2016), in which case
the operator’s expert opinion may lead to biased localization
results.

To make the target search less user-dependent, Meincke et al.
(2016) and Harquel et al. (2017) automated the process with a
robotically controlled TMS coupled in a closed loop with EMG
feedback. Meincke et al. (2016) defined the target as the
stimulation coil location leading to the lowest MT; their algorithm
started with finding an MEP-positive area within a search grid and
continued with evaluating the MT at each MEP-positive site. They
reported millimeter-scale repeatability in target localization with
an automated protocol that took approximately an hour to
complete. Harquel et al. (2017) developed an algorithm to find the
location maximizing the MEP amplitude using a probabilistic
Bayesian approach in which MEP amplitudes were modeled with
a 2-dimensional Gaussian function and choosing stimulation sites
based on the estimated decrease in entropy. However, both
algorithms require a large number of MEPs and are developed to
search for the target location with a fixed stimulation orientation
(45° from the midsagittal line). The optimal orientation has been
shown to differ between hand muscles (Bashir et al. 2013) and
may also differ by tens of degrees across individuals (Balslev et
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al. 2007). Therefore, in addition to the stimulation location, the
stimulation orientation should be optimized in the target search.
Moreover, the performance of both of the above-mentioned
algorithms was tested by varying the coil location in a grid with a
7-mm spacing. Such a grid is relatively sparse, and it might be
beneficial to carry out the target search in a denser grid.

To overcome these limitations, we developed an algorithm we
named BOOST (Bayesian Optimization Of Stimulation Targeting)
to automatically find the optimal stimulation parameters, location
and orientation, eliciting the largest MEPs. The automated search
with BOOST is an iterative process, in which the search result, i.e.,
the estimate of the optimal target, is updated in each iteration
based on the already collected MEPs. Due to the probabilistic
nature of the target search, we approach it with Bayesian
optimization (see, e.g., Shahriari et al. 2016). More specifically,
we apply Gaussian process regression (Rasmussen and Williams
2006) to model the MEP responses as a function of the stimulation
location and orientation. An advantage of this model is that we
make no strong assumptions about the shape of the MEP response
function. We present two versions of the BOOST algorithm: (1) in
KG-BOOST, the stimulation is adaptively guided with a
knowledge-gradient method (Frazier et al. 2009, Scott et al. 2011,
Frazier and Wang 2016), which efficiently optimizes noisy
functions (Picheny et al. 2013); (2) in Grid-BOOST, MEPs are
sampled in a predetermined grid without adaptive guiding. KG-
BOOST is the method that we recommend, whereas Grid-BOOST
was implemented for comparison.

We evaluated the performance of different versions of the BOOST
algorithm in one-dimensional cases with multi-locus TMS
(mTMS), which allows electronic adjustment of the stimulation
location and orientation without moving the transducer (Koponen
et al. 2018a, Nieminen et al. 2019), making closed-loop
stimulation fast end effortless. We hypothesized that, to achieve a
given level of performance in the target search, intelligent
sampling with knowledge gradient (KG-BOOST) requires less
samples than systematic stimulation (Grid-BOOST) in an evenly
spaced grid. We also expected KG-BOOST to perform better than
Grid-BOOST when the same number of stimuli are used.

2 Methods

In this section, we describe the BOOST algorithm for an
automated search for the optimal TMS parameters. In addition, we
present the experimental set-up and the measurement protocol
used to test the performance of the algorithm.

2.1 Algorithm

First, we present the BOOST algorithm and underlying
mathematical models in a general form that allows the search of
TMS targets in a multidimensional space. Then, we present a one-
dimensional version of the algorithm in detail and the model
parameters we used to validate it.

2.1.1 Bayesian optimization with Gaussian processes

Our algorithm is designed to find stimulation parameters that
produce the largest motor responses. We model the nth MEP
amplitude as

Y = f(Xp) + &n, 1)

where f(x) is an unknown MEP response function that depends
on D variables x = [xy, ..., xp]T. Here, x can include, for example,
the estimated location and orientation of the E-field maximum in
the cortex. &, represents additive noise and is assumed to follow
the normal distribution as &, ~ N (0,4%2), with variance A2
describing the variability of the MEP responses. Furthermore,
&, for different n are assumed to be statistically independent of
each other and, for simplicity, also of x,. The measured MEP
response, y,, can be considered to be a random variable, f(x,)
being the mean or expected value of this noisy sample of f at x,,.
Mathematically, the problem of finding the maximum of the MEP
response function can be formulated as

XM = arg max f(X), (2

where x™a* contains the stimulation parameters that maximize f.
We assume that f(x) is a smooth function that indicates the effect
of the E-field distribution on the neuronal pool responsible for the
muscle contraction. The non-zero part of f informs us about the
motor map of the investigated muscle.

The algorithm is based on modeling f with Gaussian process
regression (Rasmussen and Williams 2006) given N noisy MEP
responses y = [yy,..,yy]T. For stimulation parameters X =
[x4, ..., Xy], We assume that the unknown values of f are jointly
Gaussian

f~ N(HO' K)! (3)

where f = [f(xy), ... fXW)]T) Bo = [0 (K1), s o (Xp)]" i @
prior mean vector, and the covariance matrix K contains
information on the a priori correlation of f(x,,) and f(x,,). In this
context, we use a squared exponential covariance kernel defined
as

K(n,m) = k(X,,X,) = a, exp (— Y aya|xng — xm,d|2) (4)

The model parameter a, determines how much f can vary from
the prior mean p,, as one can see by setting m = n and observing
that k(x,,X,) = a, is the variance of f(x,,). The second set of
model parameters a, 4 (d = 1, ..., D) determines the smoothness
of f, i.e.,, how quick changes there can be in each dimension d.
The exponential term in Eq. (4) ensures that the correlation of
f(x,,) and f(x,,) is large when the stimulation parameters x,, and
X, (with the elements x, 4 and x,, 4, respectively) are close to
each other and a, 4 are small. On the other hand, as a, 4 get large,
K tends to a diagonal matrix, the samples f(x,) becoming
mutually less correlated.

With the help of the described model and Bayesian inference, one
can formulate the posterior probability distribution of f(x) at any
point x given the measured N responses in vector y and the
corresponding stimulation parameters X:

fG) 1y, X~ N (uy (%), 05 (%)). ®)

In this formula, the so-called posterior mean u,(x) can be
calculated as

iy (X) = pto(x) + K(x,X)(K+ A) ' (y — Ho), (6)

where k(x,X) = [k(X,X;), ..., k(X,Xy)] contains the covariances
between x and x4, ..., Xy Similarly to Eq. (4), and A is a diagonal
matrix with A2, ..., 2% on its diagonal. The location of the posterior
mean maximum un'®* = max(uy (x)) provides an estimate of the
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Figure 1. Bayesian optimization of stimulation targeting. A: Algorithm flowchart. B: Example of the estimation of the optimal stimulation target after
10 MEP responses (black dots). The purple solid line shows the posterior mean curve, and the shaded area depicts its 95% credible interval. The
current estimate of the optimal stimulation target is where this curve reaches its maximum (downward-facing arrow). The black dashed line, being the
mean of the posterior mean curve, depicts the prior mean for the next iteration. The next stimulus in KG-BOOST would be given with the parameter
that maximizes the knowledge-gradient curve (gray dotted line; upward-facing arrow). C: Three placements (L1-L3) of the translation transducer over
the primary motor cortex for 1D location search. The coil windings of the transducer are visualized in the top-right corner. D: The transducer
placements for the orientation search (01-03) and the coil windings of the rotation transducer. In C and D, the dashed lines show the search space
and the arrows indicate the location and orientation of the E-field maximum in the reference origin for each transducer placement. In each case, the
stimulation of the reference origin is realized with the lower coil (orange or purple), and the stimulation of the other targets is achieved by feeding

suitable current combinations to both of the overlapping coils.

optimal stimulation parameters x™2*, One can also estimate the
variance of ¢2(x) in Eq. (5):

o2(x) = k(x,x) — k(x,X)(K + A)7'k(x,X)T. 0]

The sampling in the optimization process can be performed
systematically in a grid of stimulation parameters as we do in the
Grid-BOOST version of the algorithm. Another option is to utilize
so-called acquisition functions that provide suggestions for the
next sampling parameters x, .., and help finding the optimum with
a smaller number of samples than with the pre-determined grid
approach. For this purpose, we apply the knowledge gradient (KG)
that guides KG-BOOST optimization and is computed as

KG(xy+1) = E[unii Xn+1)] — un™ )
where uN% (Xy41) represents the maximum of the posterior mean
function if we get one extra sample yy,, corresponding to the
parameters Xy.,. In EQ. (8), uyex(Xy4+1) IS @ random variable
depending on the random variable yy ., and E stands for the mean
operator. KG(xy,1) thus tells us how much the maximum of the
posterior mean is expected to change if a new sample were
collected with parameters x,,,. The optimally chosen next
stimulation parameters lie where KG(x ;) reaches its maximum.
More details about the knowledge-gradient computation can be
found in the Appendix. Note that there are also other methods to
guide adaptive sampling, but we chose the knowledge-gradient
method due to its reported good performance in optimizing noisy
functions (Picheny et al. 2013).

2.1.2 Algorithm for finding an optimal stimulation target in
one dimension

The algorithm presented above works in multiple dimensions;
here, we describe its one-dimensional version to find
automatically either the optimal location of the peak E-field on a
line segment or the optimal E-field orientation. Figure 1A depicts
the flowchart of the algorithm. Several choices for the algorithm,
such as the method for choosing the first stimulation parameters,
were made intuitively. Most of these choices are justified by the
fact that they resulted in a well-working algorithm. The automated
search begins with determining the stimulation parameters for two
initial samples within the search space [—L/2, L /2] that covers the
selected range of stimulation locations or orientations (Step 1).
The first initial sample is randomly chosen within the first half of
the search space, i.e., x; € [-L/2,0]. The second one is taken at
location x, = x; + L/2. Next, a TMS pulse (or two pulses
directly after Step 1) is given according to the determined
stimulation parameter (Step 2), and the resulting MEP is measured
from the target muscle (Step 3). For our analysis, we define the
MEP amplitude y,, as the base-10 logarithm of the measured peak-
to-peak amplitude (in microvolts), to meet better the Gaussian
assumption of the MEP variability and to suppress large outlier
MEPs, which could otherwise lead to an erroneous final result.
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In Step 4, we compute the estimate for the posterior mean with Eq.
(6). Since the MEP variability differs between individuals, we
adjust most of the model parameters adaptively based on the data
gathered in the optimization process. As a prior mean for the first
iteration, i.e., after the two initial samples, we use a constant
function, the output value of which is the average of the two initial
responses. After the first iteration, the prior mean is still constant
but now with an output value that is the average of the current
posterior mean curve: py(x) = uy(x), where uy(x) denotes the
mean of the posterior mean curve (see the black dashed line in
Fig. 1B). In the first iteration, we set the variability parameter as
ap = Trlrlzg(lyn — ¥1%), where y denotes the mean of the gathered

MEPs. If the two initial responses happen to have the same value,
we set a, = (log;,5)% = 0.49. In the subsequent iterations, we
define ao = max (| max(Clgge,y (X)) — o (X)|?, |1 (X) —

min(Clgs%’l(x))F), where  Clgsg; (%) = py(x) + 196 o5 (x)

and Clgse,) (%) = uy(x) — 1.96,/ 0 (x) are the upper and lower
limits of the 95% Bayesian credible interval of the posterior mean
estimate, respectively (see an example of the credible interval in
Fig. 1B). We define the smoothness parameter as a;, = k?m?/
(21?), where k tells how many times f is expected to cross its
mean value within the search space (see Rasmussen and Williams
2006, page 81). Here, we assume that k = 2. The MEP variance
22 is chosen to be constant everywhere. In the first iteration, 12 =
A2 =1/2%2%_, |y, — ¥|?, which is the variance of the elements
iny. In the following iterations, A2 =22 =1/NYN_, |y, —
uy(x,)|?, i.e., the variance of the differences between the
measured MEPs and the posterior mean curve. In each iteration,
the estimate of the optimal stimulation target is where the posterior
mean reaches its maximum.

In Step 5, the algorithm checks the stopping criteria. If they are not
met, the next sampling point is determined (Step 6). The KG-
BOOST algorithm stops if at least 14 responses have been
collected and if, during the past eight iterations, the estimate of the
optimal stimulation target has changed no more than 2 mm or 12°
for the location and orientation search, respectively, or when 30
responses have been collected. These stopping criteria were
formed based on preliminary convergence evaluations on test data.
If the stopping criteria are not met, the next sampling point is
chosen by evaluating the knowledge-gradient function (Eq. (8))
and by finding its maximum. If the knowledge gradient has the
same value for all sampling points, we randomly pick the next
stimulation parameter from 2-5 mm or 12-30° distance from the
current estimate of the optimal stimulation target. We repeat Steps
2-6 until the stopping criteria are met. In Grid-BOOST, we take
one sample in each point of an equally spaced grid in random order
with no adaptive stopping criteria, sampling until the whole search
space is covered systematically.

2.2 Data acquisition

Five healthy subjects volunteered for the study (aged 2635 years,
two males). All subjects were right-handed according to the
Edinburgh inventory (Oldfield 1971). Prior to the measurements,
each subject signed an informed consent. The study was approved
by the Coordinating Ethics Committee of the Helsinki University
Hospital and was carried out in accordance with the Declaration
of Helsinki.

TMS was administered with two different transducers connected
to our in-house-developed mTMS system (Koponen et al. 2018a).
One of the transducers comprises a figure-of-eight coil and an
overlapping oval coil (Fig. 1C; Koponen et al. 2018a). With this
translation transducer, we could electronically shift the location of
the calculated E-field maximum along a 30-mm-long line segment
in the cortex. The E-field in the cortex was calculated using a
spherical head model with an 85-mm radius, the cortex assumed
to be at 15-mm depth from the head surface. We had 31 possible
locations (symmetrically around the reference origin with 1-mm
spacing) of the E-field maximum along this line segment. The
other transducer, with two overlapping figure-of-eight coils
(Fig. 1D), allows electronic adjustment of the orientation of the
maximum E-field (de Oliveira e Souza 2018). We restricted the
possible stimulation orientations in the spherical head model to be
within a 180° interval centered around the reference origin, with
neighboring orientations separated by 1°. Here, the reference
origin (0 mm/0°) means the location or orientation of the
maximum E-field resulting from the stimulation with only the
lower of the two overlapping coils (Figs. 1C, D). Thus, the
reference origin moves together with the transducer. The applied
pulse waveforms were monophasic (60-us rise time, 30-us hold
period; Koponen et al. 2018b) and the interstimulus interval was
randomized between 4 and 6 s.

The position of the mTMS transducers and the head of the subject
were tracked with a neuronavigation system (eXimia 3.2, Nexstim
Plc, Finland). For image-based guiding, we had T1-weighted
magnetic resonance images of each subject. When needed, the
position of the transducer with respect to the subject’s head was
kept fixed with the help of the neuronavigation system, which
allowed stimulation only when the transducer location was within
2 mm and all rotation angles less than 2° from their target values.

The motor responses were measured with surface EMG integrated
in the eXimia 3.2 system (500-Hz low-pass filtering, 3-kHz
sampling frequency). The silver/silver-chloride surface electrodes
(Ambu Neuroline 720, Ambu A/S, Denmark) were in a bipolar
arrangement with the active electrode placed over the muscle belly
of the right first dorsal interosseus (FDI) and the reference
electrode on the second proximal phalange. The ground electrode
was placed on the back of the hand. The eXimia system analyzed
the evoked responses and displayed the peak-to-peak amplitudes
and latencies of the MEPs in real time. To get the MEP data into
our algorithms programmed with Matlab (The MathWorks, Inc.,
USA), we imported the video stream of the eXimia system to our
control computer in real time with a USB video grabber
(DVI2USB 3.0, Epiphan Systems Inc., Canada). From the video
stream, we extracted the MEP-amplitude and MEP-latency values
as reported by the eXimia system. We also analyzed the baseline
EMG signal 5-200 ms before the TMS pulse for real-time
rejection of responses with muscle preactivation. We accepted an
MEP if its onset latency was 15-30 ms and if the baseline EMG
signal was within £10 pV (when determining the MT) or £15 pV
(when running the KG-BOOST or Grid-BOOST algorithms). If
these conditions were not met, we repeated the stimulation with
the same parameters until the MEP response was acceptable. Since
the automatic MEP analyzer of the eXimia system sometimes
missed small responses, giving just 0 uV as their amplitude, we
replaced for data analysis each 0-uV MEP amplitude with a
random amplitude drawn from a uniform distribution with an
interval of 5-15 pV.
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Each subject had two measurement sessions, conducted on
different days. At the beginning of the first session, we manually
located the optimal stimulation target of the FDI muscle with the
figure-of-eight coil of the translation transducer. For this, we
delivered TMS pulses to the left primary motor cortex, varying the
target location with millimeter-level steps around the hand-knob
area. The stimulation intensity was first about 70 V/m, then
adjusted so that the maximal MEP amplitude would be
approximately 1 mV. The ISI was about 5s. After delivering
several tens of pulses around the hand-knob region to outline the
MEP-positive area, we visually evaluated the distribution of the
MEP responses and selected one target approximately from the
center of the area showing the largest MEPs. During the manual
search, the estimated orientation of the peak E-field was kept
perpendicular to the overall orientation of the precentral gyrus.
Next, we determined the resting MT (rMT) for the FDI muscle
with a maximum-likelihood method (Awiszus 2003), applying 20
pulses with different intensities while having 50 pV as a threshold
for MEP acceptance. For the rest of the two sessions, the
stimulation intensity was set to 110% rMT.

In the first session, we performed the automated search for the
optimal stimulation location with the KG-BOOST and Grid-
BOOST algorithms described in Section 2.1.2. We positioned the
transducer in three different locations to test whether the algorithm
can locate the optimal stimulation site regardless of its placement
within the search space. The first placement corresponded to the
manually found FDI target (placement L1), the second was ~5 mm
to the medial (placement L2) and the third ~8 mm to the lateral
direction (placement L3) from L1 (see Fig. 1C). The transducer
was kept fixed at L1-L3 and the peak E-field was electronically
adjusted to one of the 31 possible locations according to the
algorithm. We repeated both KG-BOOST and Grid-BOOST seven
times for each transducer placement (L1-L3), resulting in 21
repetitions per subject. The transducer placements and the utilized
version of the algorithm were applied in a pseudorandom order.
The experimenters were aware of the transducer placement as well
as the applied algorithm version during the experiments. With both
KG-BOOST and Grid-BOOST, the estimated posterior mean
curve computed with Gaussian process regression (Eqg. (6)) was
calculated on the 30-mm line segment with a grid spacing of
0.25 mm.

In the second session, we conducted the automated search for the
optimal stimulation orientation. We set three transducer
placements as follows: the placement O1 corresponded to L1, the
placement O2 was oriented ~30° counterclockwise, and the
placement O3 ~45° clockwise with respect to O1 (see Fig. 1D).
The sampling in Grid-BOOST consisted of 31 pulses with 6° steps
ranging from —90° to 90° around the reference origin. In KG-
BOOST, we had the same 180°-wide search space with the
possible stimulation orientations separated by 1° steps. We
repeated both KG-BOOST and Grid-BOOST seven times with
transducer placements O1-03, resulting in 21 repetitions for each
subject. The posterior mean curve was computed with a grid
spacing of 0.5°.

2.3 Data analysis

In this Section, we first explain how we simulated other search
methods using the measured data. Then, we show how we
evaluated the accuracy of different search methods by comparing
the optimization results with the ground truth and how we

determined the precision as the deviation in the search outcomes.
In addition, we present details of the statistical testing comparing
the performance of KG-BOOST with the other methods. The
investigators were not blinded when analyzing the data.

2.3.1 Other search methods

To complement the results obtained directly from our
experiments, we simulated the performance of three other
sampling methods using the MEPs collected in the KG-BOOST
and Grid-BOOST searches, sampling from these data without
replacement.

First, we conducted sparser grid sampling (sparse Grid-BOOST)
with the data collected in the original Grid-BOOST searches (that
we call dense Grid-BOOST from now on). In sparse Grid-
BOOST, the number of samples collected was equal to that of the
corresponding KG-BOOST search repetition (14-30 samples per
search). We selected every other sample from the denser grid and
sampled from this subset of the data in random order until the total
number of samples was the same as in the KG-BOOST search. If
needed, we took extra samples from the unused half of the data.
Since the two data subsets could be constructed in two ways, with
the first one including either even or odd indices, we randomized
the order in which the two subsets were used. The posterior mean
curve corresponding to the sparse Grid-BOOST sampling was
computed in the same way as with KG-BOOST and dense Grid-
BOOST, i.e., with the parameters presented in Section 2.1.2.

To mimic the target search without any modeling of the MEP
responses, we also evaluated a search strategy in which the
estimate of the optimal stimulation target coincided with the
location of the maximum MEP response. For this, we used the data
sampled in the sparse Grid-BOOST searches. We refer to this
search strategy as the maximum-MEP method.

For comparison, we simulated the previously reported AutoHS
method by Harquel et al. (2017) to find the optimal stimulation
site. We made three adjustments to the AutoHS method due to
differences in the MEP-sampling schemes: (1) Our sampling grid
spacing was 1-mm (cortical grid) as opposed to 7 mm (grid of coil
locations on the scalp) used in the original study. (2) Our search
space was one-dimensional instead of two-dimensional. (3) We
allowed sampling at each stimulation site at most once, whereas in
Harquel et al. (2017) the same location was targeted at most twice.
Because AutoHS gathers five MEPs at each iteration at the
selected stimulation target and because for some targets we had
collected only seven MEPs, we run the method only once for each
subject and transducer placement. When searching for the optimal
stimulation location with AutoHS, the possible values for the
maximum MEP amplitude, the Gaussian width, and the center
point of the Gaussian were {100 uV, 300 uV, ..., 3900 uV},
{2mm, 4 mm, .., 20 mm}, and {-15mm, —-14.75mm, ...,
15 mm}, respectively. For defining the next stimulation target in
each iteration, the grid spacing was 1 mm. The first stimulation
target and the center point of the prior distribution were always set
in the middle of the search space (the reference origin).

We also performed the search for the optimal stimulation
orientation with AutoHS although such an application was not
described in the original article. Indeed, the shape of the Gaussian
function could be expected to model the MEP distribution as a
function of the stimulation orientation, too. Here, the possible
values for the maximum MEP amplitude, the Gaussian width, and
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the center point of the Gaussian were {100 uV, 300 uV, ...,
3900 puV}, {12°, 24°, ..., 120°}, and {—90°, —89.5°, ..., 90°},
respectively. The spacing of the sampling grid was 6°. The prior
for the optimal angle was centered around the reference origin as
in the location search. The width of the prior distribution was 30°.

2.3.2 Estimation of accuracy and precision

To estimate the bias in the results (i.e., the accuracy) obtained with
different search strategies, we first defined the best estimate for
the optimal stimulation target (hereafter, the ground truth) for each
transducer placement and subject. This was done by first pooling
the data from the seven repetitions of the KG-BOOST and Grid-
BOOST searches. Each data pool included at least 315 MEP
responses from the same spatial/angular distribution. For each of
the 30 cases (five subjects, two transducers, three transducer
placements), we computed a median curve in a grid with a 1-
mm/1° spacing using a sliding window that took into account the
responses that were closer than 5 mm (location search) or 30°
(orientation search) from the computation point. We defined the
ground truth as the location of the maximum of the median curve.
If several points of this curve had the same maximum value, we
defined the ground truth as their mean location. When calculating
the ground truth, we replaced the amplitudes of those MEPs that
the eXimia system had originally identified as 0-uV MEPs with
the peak-to-peak amplitude of the EMG signal in the time interval
of 15-45 ms after the TMS pulse.

We computed the average location/orientation of the search results
over the seven repetitions, separately for each search strategy
(KG-BOOST, dense and sparse Grid-BOOST, the maximum-
MEP method), and compared it with the corresponding ground
truth. To determine the group-level accuracy, we computed the
mean of these differences in 15 cases (3 transducer placements x
5 subjects). This accuracy measure tells us how close the average
result was to the ground truth. With AutoHS, we had in each case
only one simulated search result and used its difference from the
ground truth when computing the mean accuracy.

To assess the precision (degree of scatter) of each search method,
we computed the standard deviation of the corresponding seven
final search results and averaged these standard deviations over
the transducer placements and subjects. This precision measure
describes the repeatability of the outcome of each search method.

2.3.3 Statistical analysis

The difference between the precision/accuracy of KG-BOOST
and the other search methods with the same number of search
repetitions (i.e., dense and sparse Grid-BOOST, the maximum-
MEP method) was tested by permutation statistics as follows.
Altogether, 30 test values (5 subjects x 3 transducer placements x
2 search methods under comparison) were randomly divided into
two groups 1,000,000 times. The accuracy and precision for both
the location and the orientation search were treated separately. For
each permutation, we computed the mean value for both groups.
We obtained a two-tailed p-value as the proportion of
permutations for which the absolute value of the difference of
means of the permuted groups exceeded the absolute value of the
corresponding original difference of means between the sampling
methods. The level of statistical significance was set at 0.01. After
Bonferroni correction for multiple comparisons (12 comparisons),
the corrected significance level was 0.00083.

3 Results

Results of the location and orientation searches are visualized in
Fig. 2. Figure 2A shows how the search results for a representative
subject with the three different transducer placements L1-L3 are
distributed with respect to the ground truth. The three smaller
graphs on the right side of Fig. 2A depict an example of a single
run with each of the four search methods (KG-BOOST, dense and
sparse Grid-BOOST, the maximum-MEP method). Figure 2B
shows similar example results for the orientation search. Figures
2C and 2D illustrate the error distributions of the search outcomes,
i.e., how far the optimized parameters are from the ground truth,
for each subject.

The convergence of the adaptively guided KG-BOOST in the
search for the optimal location and orientation is presented in
Figs. 3A and 3B, respectively. Figure 3C depicts the performance
metrics of the location search over subjects. The mean accuracy
(i.e., how far the average search result is from the ground truth) of
KG-BOOST was 1.4 mm (range: 0.04-5.1 mm) which is similar
to the mean accuracy of 1.5 mm (range: 0.2-5.0 mm) of dense
Grid-BOOST (p = 0.87). The accuracies of sparse Grid-BOOST
(mean: 2.0 mm; range: 0.04-4.4 mm) and the maximum-MEP
method (mean: 2.1 mm; range: 0.3-5.3 mm) were slightly worse,
although the differences were not statistically significant when
compared to the accuracy of KG-BOOST (p = 0.32 for the sparse
Grid-BOOST and p = 0.21 for the maximum-MEP method). The
precision, expressing how repeatable the results are, was best with
dense Grid-BOOST (mean: 2.7 mm; range: 1.2-5.2 mm). The
mean precision of KG-BOOST (mean 3.2 mm; range 1.6-
5.3 mm), the maximum-MEP method (mean: 3.4 mm; range: 1.9-
6.6 mm) and sparse Grid-BOOST (mean: 3.4 mm; range: 1.7
6.2 mm) were comparable to each other. When comparing KG-
BOOST with dense or sparse Grid-BOOST or the maximum-MEP
method, the p-values were 0.23, 0.68, and 0.72, respectively. With
KG-BOOST, sparse Grid-BOOST and the maximum-MEP
method, the average number of samples collected was 18 (range:
14-30), which means that on average the search took 1.5 min.
With dense Grid-BOOST, we always gathered 31 samples per
search, corresponding to an average time of 2.6 min. Moreover,
the manually found optimal stimulation location, which
corresponds to the reference origin with the transducer position
L1, varied on average 3.5mm (range: 0-6 mm) from the
corresponding ground truth. The average number of stimuli in the
manual search was 59 (range: 37-78), administered on average in
11 minutes (range: 4-18 min).

The performance metrics of the orientation search can be found in
Fig. 3D. The mean accuracy of KG-BOOST (mean: 5.4°; range
1.4-13.6°) was close to the ones of dense Grid-BOOST (mean:
5.1°; range: 0.6-10.3°; p = 0.82), sparse Grid-BOOST (mean:
5.8°; range: 0.9-18.8°; p = 0.78) and the maximum-MEP method
(mean: 7.5°; range; 0-17.1°; p = 0.21). The mean precisions of
KG-BOOST (mean: 9.7°; range 5.5-15.4°), dense Grid-BOOST
(mean: 11.3°; range: 4.2-19.8°), sparse Grid-BOOST (mean:
19.1°; range: 8.3-48.8°) and the maximum-MEP method (mean:
20.2°; range: 10.4-32.9°) varied from each other. We found
statistically significant differences in precision between KG-
BOOST and both sparse Grid-BOOST (p = 0.000031) and the
maximum-MEP method (p = 0.000001). The difference in
precision between KG-BOOST and dense Grid-BOOST was not
statistically significant (p = 0.25). The average number of samples
acquired in the orientation search was 16 (range: 14-30; average
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Figure 2. Results of the location and orientation searches. A: Location search with Subject 3 and transducer placements L1-L3. B: Orientation search
with Subject 1 and transducer placements O1-03. The transducer placements with respect to the hand-knob area in the pre-central gyrus are shown in
the boxes on the top (the arrows indicate the location/orientation of the manually found target), with the corresponding results panels below them. The
black dots show the MEP responses measured during all KG-BOOST and dense Grid-BOOST searches. The black line shows the moving median of these
responses, and the location of its maximum (black dashed arrow) is the ground truth. The asterisks show the estimates of the optimal stimulation
locations/orientations of the seven repetitions with KG-BOOST (orange/purple), dense (gray) and sparse (light gray) Grid-BOOST and the maximum-
MEP method (dark gray), respectively. The three smaller graphs on the right visualize single runs of different search methods with L3/O3. In these
graphs, the black dots illustrate the MEP responses, the solid lines depict the posterior mean curves, and the circles indicate the estimated optimal
stimulation locations/orientations (the corresponding asterisks in the L3/O3 results panel are circled). C-D: Violin plots visualizing the error (difference
from the ground truth) in the search of the optimal location (C) and orientation (D) for each subject, with the data of all transducer placements combined.
The asterisks show the error of each search run, and the black lines indicate the mean errors.
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Figure 3. The convergence of KG-BOOST and the performance of the different search methods. A-B: The convergence of KG-BOOST in the search
for the optimal stimulation location (A) and orientation (B). The light curves show how far from the ground truth the single runs are as a function of
the number of samples. The solid dark curve depicts the average error from the ground truth until the minimum number of samples (14, black vertical
line) has been reached. After 14 samples, as many of the runs have already finished, the average error curve (dashed line) includes only the remaining
runs (until three or more left). C-D: Accuracy and precision of the different search methods in the search for the optimal stimulation location (C) and
orientation (D). The bars depict the mean accuracy/precision of the search results with the black whiskers showing the minimum and maximum
accuracy/precision over subjects and transducer placements. In D, the asterisks indicate the statistically significant differences in the precision of
sparse Grid-BOOST and the maximum-MEP method compared to the precision of KG-BOOST.

time: 1.3 min) for KG-BOOST, sparse Grid-BOOST, and the
maximum-MEP method. With dense Grid-BOOST, the number of
samples was always 31 (average time: 2.6 min). In addition, the
reference origin of the transducer placement O1, which was set to
be perpendicular to the global orientation of the precentral gyrus,
varied on average 6.7° (range: 1-13°) from the ground truth.

Our version of the AutoHS algorithm yielded an average error of
1.5 mm (range: 0.04—4.6 mm) and 19.7° (range: 2.1-37.9°) with
respect to the ground truth for the location and orientation search,
respectively. These values are not directly comparable with the
accuracy values presented in Figs. 3C and 3D, since only one
iterative search could be simulated for each subject and coil
placement with the data available. Therefore, the results of
AutoHS are excluded from Figs.2 and 3 and the statistical
analysis. With the AutoHS algorithm, the number of responses
required for convergence was on average 53 (range: 20-110) and
62 (range: 20-163) for the location and orientation search,
respectively, being about three to four times the number of stimuli
used by KG-BOOST.

4 Discussion

We demonstrated that multi-locus TMS and Bayesian
optimization can be successfully combined into an automated
search of TMS targets. In this context, mTMS enables adjusting
the stimulation location and orientation in a closed-loop setting
without the need to move a coil, which significantly reduces the
laboriousness of TMS. Bayesian optimization provides means to
model and guide the stimulation in an effective and user-
independent manner.

4.1 Performance of the automated target search

The automated online searches and further offline comparisons
revealed that the mean accuracy in the location search was almost
the same with all three versions of the BOOST algorithm (KG-
BOOST guided with knowledge gradient and Grid-BOOST with
dense and sparse sampling grids), when choosing the optimal
target based on the maximal MEP response only, and with the
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AutoHS method (Harquel et al. 2017) (accuracies in the range of
1.4-2.1 mm). In the orientation search, the accuracy of the
AutoHS method (19.7°) was worse than that of the other methods
(5.1-7.5°). The small accuracy values indicate that the search
results were centered almost symmetrically around the ground
truth, which is expected behavior for any sensible search method.

The average precision of the location search was similar (2.7—
3.4 mm) among the four search strategies for which we were able
to compute the precision (for AutoHS, we did not have enough
samples for retrieving several independent search results). Thus,
there were no statistically significant differences in precision in
the location search between KG-BOOST and the other search
methods. This can be explained by the fact that the motor maps
extended over a large portion of the 30-mm-long search space and
the median curves were relatively flat around their maximum
(Fig. 2A). Instead, we found differences in the average precision
of the optimal orientation search. KG-BOOST and dense Grid-
BOOST had similar precisions (9.7° and 11.3°, respectively),
while the precision of sparse Grid-BOOST and the maximum-
MEP method were significantly worse (19.1° and 20.2°,
respectively). These differences in the degree of scatter are not
surprising, since the MEP-positive part of the median curve in the
search space appeared narrower in the orientation search
compared to the corresponding part in the location search. In the
orientation search, KG-BOOST and dense Grid-BOOST got
enough samples from the maximum area and the slopes of the
mean MEP curve whereas sparse Grid-BOOST and the maximum-
MEP method got fewer responses around the maximum, leading
to larger deviation and, thus, worse precision in the search results.

Considering the efficiency of different search strategies, dense
Grid-BOOST always used 31 samples, and AutoHS needed on
average 53 and 62 samples, whereas the other methods used 18
and 16 samples on average in the location and orientation search,
respectively. Sampling with KG-BOOST resulted in accuracy and
precision similar to those of dense Grid-BOOST, but with
approximately half of the number of samples. Also, the accuracies
were similar (location search) or worse (orientation search) with
AutoHS than with KG-BOOST, and AutoHS needed on average
three to four times more samples for convergence. These findings
indicate that KG-BOOST was more efficient than AutoHS and
dense Grid-BOOST, and that sampling in a dense evenly spaced
grid wastes samples especially in areas that produce no MEP
responses. Results of the orientation search show that adaptive
sampling with KG-BOOST led to better precision than placing the
same number of samples evenly in the search space. Based on
these results, we suggest using intelligent sampling, such as
sampling with knowledge gradient (Frazier et al. 2009) that we
used in KG-BOOST. This would allow one to avoid gathering too
much data in areas with no MEPs while sampling adaptively
around the maximum of the MEP curve to efficiently get enough
information about the optimal target. We anticipate that even
larger differences between the sampling methods are expected
with larger or higher-dimensional search spaces (such as a two-
dimensional location grid with additional variation in orientation),
when non-guided grid sampling becomes very time-consuming.

Although the accuracy and precision values are generally good for
almost all the search strategies, a single search outcome may still
be several millimeters or degrees off from the ground truth
regardless of the search method (see examples in Fig. 2). This is
mainly due to the unavoidable high variability of the MEP

responses that is present also in manual searches. Setting more
strict stopping criteria would likely increase the accuracy and
precision of KG-BOOST with the trade-off of increasing the
number of samples needed and, thus, the measurement time. The
stopping criteria can be chosen based on the needed accuracy and
precision, which may differ between applications of the method.

4.2 Gaussian processes in target optimization

This study also demonstrated that Gaussian process regression is
suitable for modeling the MEP response function (i.e., motor
map). Gaussian processes allow taking into account the
uncertainties of the problem, the biggest source of uncertainty
being the MEP variability. Another advantage of Gaussian process
regression is its suitability for modeling a response function of any
smooth shape as opposed to, e.g., parametric Gaussian curve
fitting, which assumes that the underlying function is a symmetric
Gaussian distribution as in Harquel et al. (2017). We consider
nonparametric fitting of MEP curves advantageous, since the
motor maps can be asymmetric (see example maps in Weiss et al.
2013, Julkunen 2014, and van de Ruit et al. 2015). Sampling in a
dense grid, as we did, is beneficial, since it assists in revealing the
shape and, thus, the location of the peak of the response curve
better than sampling in a coarse grid. Furthermore, as the Gaussian
process regression model links the data of neighboring points, the
expected convergence speed of a sampling in a dense grid is
similar to that of a sampling in a sparse grid.

When modeling with Gaussian processes, one needs to ensure that
the responses are handled on a suitable scale. We chose a
logarithmic scale to satisfy better the assumption of
location/orientation-independent MEP variance included in the
model. The BOOST algorithm seems to tolerate well the
variability in the MEP variance that occurs in practice. Note that
on a logarithmic scale, the peaks of the MEP response curves
(Fig. 2) appear broader than on a linear scale. For ensuring a
sufficient number of samples and for placing them optimally, we
suggest adaptively guiding the sampling with, e.g., knowledge
gradient (as in KG-BOOST) or entropy-based methods (as
implemented by Harquel et al. (2017)). There are also other
methods that could suit for efficient guiding of the sampling, such
as the expected-improvement method (Mockus et al. 1978) or the
use of confidence bounds as sampling criteria (Cox and John
1992), but these were not tested in this study.

Even though Gaussian process regression is a nonparametric
method, it includes several model parameters that need to be tuned
case-specifically. Our suggestion for determining the parameters
in the case of TMS-target optimization are presented in
Section 2.1.2, but there are also other ways to determine these
parameters. To adapt the posterior adequately to the data while
avoiding overfitting, it was crucial to correctly tune the
smoothness parameter a; ; (see Eq. (4)) to be of a reasonable
magnitude. We chose to set this parameter with the simple zero-
crossings formula and to keep it constant during the whole
optimization procedure. Another option would be to tune a; 4
among the other model parameters adaptively and to teach the
model with the acquired data. For this purpose, we also tested
maximume-likelihood estimation and cross-validation (see Chapter
5 of Rasmussen and Williams 2005). However, in our experience,
these approaches tended to overestimate a,,, leading to
overfitting the model to the data.
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4.3 Future development and applications

Automated stimulation targeting could be further extended to
adaptively adjust also the stimulation intensity (here, we used a
predefined intensity, 110% rMT). In this case, the motor responses
gathered during the target optimization might also be used in the
rMT estimation, or the rMT could be determined separately after
the target optimization with, e.g., the adaptive algorithm presented
by Awiszus (2003). In the future, the KG-BOOST algorithm can
be applied for multi-dimensional problems, e.g., to optimize
simultaneously the location and orientation of the E-field, for
example, with a 5-coil mMTMS system similar to the one depicted
by Koponen et al. (2018a). In principle, KG-BOOST can be
implemented with any TMS system that allows automatic
adjustment of the stimulation location and orientation, e.g., with a
robotically controlled stimulator. Furthermore, with a suitable
software implementation, the algorithm could even guide the
manual target search performed with a conventional navigated
TMS system. With a multi-dimensional search space and a larger
coverage of the cortex, one will be able to avoid the initial manual
search, which we needed to place the transducer appropriately, and
identify the optimal target even if it were situated abnormally.

The benefits of automated target optimization are applicable in
several settings, from basic research to therapeutic uses of TMS.
The automated target optimization could be used, e.g., for
studying the plasticity of motor cortex in a user-independent way.
After modifying the function that guides the sampling, the BOOST
algorithm may find applications in efficient and automated
mapping of motor areas. If the actual cortical activation sites are
of interest, one may combine the BOOST algorithm with
individualized E-field modeling. In addition to finding the optimal
stimulation parameters based on MEP amplitudes, the BOOST
algorithm could be used to find an optimal stimulation target with
respect to other available measures. For example, TMS targeting
outside the motor cortex could be automatically optimized with
respect to evoked cortical activity measured by electro-
encephalography (Tremblay et al. 2019).

5 Conclusion

We demonstrated that electronically adjusted multi-locus TMS
and Bayesian optimization provide a valid basis for automated
search of TMS targets. The presented adaptively guided target
search (KG-BOOST) gave results with good accuracy and
precision, needing only a relatively small number of stimuli for
convergence. We conclude that KG-BOOST enables fast, easy and
user-independent target optimization, and that its benefits are
applicable from basic research to therapeutic uses of TMS.

Acknowledgements

We thank Emma Skarstein for contributing to the literature search
and investigating different aspects of modeling with Gaussian
process regression. We thank Selja Vaalto and UIf Ziemann for
useful comments on the manuscript. This project has received
funding from the Academy of Finland (Decisions No. 294625,
306845, and 327326), the Finnish Cultural Foundation, and the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 810377).

10

Declaration of interests

RJI is an advisor and a minority shareholder of Nexstim Plc. The
other authors declare no competing interests.

Appendix

Here, we present further details for computing the knowledge
gradient. Assume that we have N noisy samplesy = [y, ..., yn]"
that correspond to the sampling parameters X = [Xq,...,Xy]-
Knowing them, we choose the next sampling parameters Xy,
with a knowledge-gradient sampling policy (Frazier et al. 2009,
Frazier and Wang 2015). For getting the maximum of KG(x)
(approximately), we choose an appropriately dense subset X*
{x;,;m =1, ..., M} in the search space. For a fixed x;,, we form
sequences A(r) and B(r), r = 1, ..., M, by setting for each x;. €
X*, A(r) = uy(xy) asin Eq. (6) and

(x5, X5n) — k(x5 X) (K + A) K (X, X
[ Xin) — KX, X) (K + A) TR (X, X)T + 227

where  k(x;,X) = [k(x),Xq), ..., k(X Xxy)] and k(x;,X) =
[k (X, X1), ..., kK(X5y, Xy)] coOntain the covariances between x;. or
Xy, and X4, ..., X (formula for k in Eq. (4)), A is a diagonal matrix
with 22, ..., 1% on its diagonal, and A2 is the noise variance at
location x;,,. As in Frazier et al. (2009), we choose subsequences
a(s) and B(s) of A(r) and B(r) and an additional sequence y(s),
s=1,..,5, by Matlab codes AffinebreakpointsPrep.m and
Affinebreakpoints.m given in Frazier (2010). With these
sequences, we get the knowledge-gradient function as

KG(X;) = 2523 [(BGs + 1) = B(5)) (0 (v()) -
() D(=Iy (ID)] + max(a(s)) - u,

where ¢(t) = (2m) *exp(—t?/2) and ®(t) = [ p(u)du are
the probability density function and the cumulative density
function of a normalized Gaussian random variable, respectively.
Finally, we get the next sampling point as

B(r) =

Xy4+1 = arg max KG(x},) .
Xm
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