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23 Accurate microbial identification and abundance estimation are crucial for metagenomics

24 analysis. Various methods for classifying metagenomic data and estimating taxonomic profiles,
25  broadly referred to as metagenomic profilers, have been developed. Yet, benchmarking
26  metagenomic profilers remains challenging because some tools are designed to report relative
27  sequence abundance while others report relative taxonomic abundance. Here, we show how
28  misleading conclusions can be drawn by neglecting this distinction between relative abundance
29  types when benchmarking metagenomic profilers. Moreover, we show compelling evidence that
30 interchanging sequence abundance and taxonomic abundance will influence both per-sample
31  summary statistics and cross-sample comparisons. We suggest that the microbiome research
32 community should pay attention to potentially misleading biological conclusions arising from this
33 issue when benchmarking metagenomic profilers, by carefully considering the type of abundance
34  data that was analyzed and interpreted, and clearly stating the strategy used for metagenomic

35  profiling.
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Identifying microbial species present in complex biological and environmental samples is one
of the major challenges in microbiology'?. By directly interrogating the community
composition in an unbiased and culture-independent manner, metagenomic sequencing is
transforming microbiology by enabling more rapid species detection and discovery?. This has
a wide range of applications from surveying the bacteria in an environmental soil sample to
determining the etiology of an infection from a patient’s blood or stool sample. Such
applications drive the development of various computational methods to analyze genomic data
generated by metagenomic sequencing to identify all of the species contained in the samples
and estimate their relative abundances?®. Those computational methods are broadly referred to
as metagenomic profilers.

Following a previous benchmarking study®, metagenomic profilers can be categorized
based on their reference database type (Fig.1a): (1) DNA-to-DNA methods (e.g., Kraken*?,
Bracken® and PathSeq’), which compare sequence reads with comprehensive metagenome
databases; (2) DNA-to-Protein methods (e.g., Kaiju® and Diamond®), which compare sequence
reads with genomic databases of protein-coding sequences; or (3) DNA-to-Marker methods
(e.g., MetaPhlAn'®!! and mOTU™), which only include specific gene families in their
reference databases. Note that those metagenomic profilers all rely on reference databases.
They should not be confused with de novo assembly-based methods that do not use any
reference databases!**>. Those reference-free binning methods cannot taxonomically classify
sequences'* ** and are not directly comparable with the metagenomic profilers evaluated here.

Many studies have benchmarked metagenomic profilers®®1° finding that the
performance of different profilers varies considerably even on the same benchmark datasets.
For example, in a recent benchmarking study?, the performance of 20 metagenomic profilers
were evaluated based on two key metrics: the area under the precision-recall curve (AUPRC)
for organism presence/absence, and the L2 distance between the observed and true relative
abundance profiles. It was found that DNA-to-DNA methods were among the best-scoring
methods, with typical average L2 distance < 0.1, while DNA-to-Marker methods had much
higher L2 distance, indicating less favorable performance.

Here we show that this apparently high performance variation largely arises because
the methods report one of two fundamentally different types of relative abundances: sequence
abundance or taxonomic abundance. For example, the raw output of DNA-to-DNA methods
is the relative abundance of a given taxon calculated as the proportion of sequences assigned

to it out of the total number of sequences, i.e., the sequence abundance. By contrast, DNA-to-
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69  Marker methods directly output the relative abundance of each microbial taxon calculated as
70  the number of genomes of that taxon relative to the total number of genomes detected, i.e., the
71 taxonomic abundance. For DNA-to-Protein methods, the output type is the relative sequence
72 abundance of protein-coding sequences®®.

73 Unfortunately, the distinction between the two types of relative abundances has rarely
74 been carefully considered in previous benchmarking studies. In this paper, we show that the
75  two types of relative abundances are not related by any simple algebraic relation. Moreover,
76  interchanging them leads to very misleading performance assessments of metagenomic
77  profilers. These results imply that many benchmarking results presented in the literature require
78  re-examination. Beyond examining the previous benchmarking results, we further point out the
79  serious issues in microbiome data analysis based on sequence abundances, which are typically
80 produced by DNA-to-DNA methods and have been applied in thousands of published
81  microbiome studies (e.g., Kraken: 1,283 citations; Kraken2: 95 citations; Bracken: 139
82  citations by November 2020, according to their official websites). We find that microbiome
83  data analysis based on sequence abundance will underestimate (or overestimate) the relative
84  abundances of microbes with smaller (or larger) genome sizes. This will fundamentally affect
85  differential abundance analyses and other analytical methods that rely on accurate counts in
86  their input contingency matrix. Without careful consideration, these issues could impede cross-
87  study comparisons of differentially abundant taxa identified from different methods. We think

88 this point needs more attention from the entire microbiome research community.

89
90  Results
91  llustration of the caveat in benchmarking metagenomic profilers. To illustrate the caveat

92  of confusing sequence abundance and taxonomic abundance in benchmarking metagenomic
93  profilers, we simulated a simple microbial community with only two genomes, where genome
94 A (Bacillus pseudofirmus, GCF_000005825.2, size: 4.2MB) is twice the size of genome B
95  (Lactobacillus salivarius, GCF_000008925.1, size: 2.1MB), corresponding to Fig.1b. In this
96  simulated community, the sequence abundance ratio of genome A: genome B = 1:1, while the
97  taxonomic abundance ratio of genome A: genome B = 1:2. DNA-to-DNA profilers Bracken,
98  Kraken2 and PathSeq reported that this sample contains 49.9% (or 50.1% in Kraken2 and 50.6%
99 in PathSeq) Bacillus pseudofirmus and 50.1% (or 49.9% in Kraken2 and 49.4% in PathSeq)
100  Lactobacillus salivarius, respectively (Fig.1c). DNA-to-Markers profilers MetaPhlAn2 and
101 mOTUs2 reported the relative abundance of Bacillus pseudofirmus as 33.8% (or 33.6%) and
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102  Lactobacillus salivarius as 66.2% (or 66.4%, Fig.1c), respectively. This simple example
103 clearly illustrates how the sequence abundance profile produced by DNA-to-DNA profilers
104  does not represent the true taxonomic abundance of a microbiome sample.

105 Note that for this simple synthetic community, DNA-to-Protein profilers Kaiju and
106 Diamond reported the relative abundance of Bacillus pseudofirmus as 22.8% (or 7.0%) and
107  Lactobacillus salivarius as 19.9% (or 8.0%), respectively (Fig.1c). Besides the false positives
108 (57.3% in Kaiju and 85.0% in Diamond), the ratio between the relative abundances of the two
109  species is roughly 1:1, indicating the methods are indeed reporting sequence abundance.
110  However, these classifiers reported a large number of false positive species identified due to
111 the conservation of protein sequence?. Going forward, we will focus on benchmarking the
112  DNA-to-DNA and DNA-to-Markers methods.

113

114 No simple algebraic relation between the two types of relative abundances. We emphasize
115  that mathematically there is no simple algebraic relation between the two types of relative
116  abundances, even in the ideal case (when all genomes/taxa are known). Denote R; as the
117 number of metagenomic reads assigned to the genome of a microbial taxon i with genome size
118  L; and ploidy P; (i.e., the number of copies of the genome in one cell, however most methods
119  did not consider the ploidy into the abundance estimation as the information is still lacking for
120  many genomes). The number of microbial cells classified as taxon i is then given by C; =
121 R;/(L;P;). Let n be the number of identified taxa in the sample. Then the sequence abundance

122 of taxon i is given by

124 5 = [1]
l ?:1 Ri,

123 and its taxonomic abundance is given by
C; R;/(L;P;

125 Ti _ i — l/( i l) [2]

XL G X R/ (LiP)

126 Egs.[1-2] imply that as long as L; and P; vary across different taxa in a community, S; and T;
127  are not connected by any simple algebraic relation.

128 The variation of genome size L; of different taxa can be very large. Indeed, in the
129  recently updated microbial genome database (NCBI RefSeq, 2020 Nov 6™), the sizes of fully
130  sequenced and assembled microbial genomes vary considerably (Fig.2a). For example, just
131 within the bacteria kingdom, the genome size variation can be more than 100-fold, e.g.,
132  Candidatus Nasuia deltocephalinicola (GCF_000442605.1) with 112,091 bp vs. Sorangium
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133 cellulosum (GCF_000418325.1) with 14,782,125 bp. Therefore, microbial genome sizes could
134  vary radically within a single microbiome sample, including when viruses (which tend to have
135  shorter genomes, Fig. 2a) are analyzed together with bacteria in shotgun metagenomics.

136 Regrading ploidy P;, although prokaryotes are usually thought to contain one copy of a
137  circular chromosome, previous studies have demonstrated that many species of archaea and
138 bacteria are polyploid and can contain more than ten copies of their chromosome?!. In fact,
139  extreme polyploidy has been observed in a large bacterium Epulopiscium, which contains tens
140  of thousands of copies of its genome?,

141 The variations in L; and P; drive the theoretical distinction between sequence
142  abundance and taxonomic abundance. This point can be seen clearly from simulated microbial
143 communities based on the NCBI RefSeq database. As shown in Fig.2b, where we investigate
144 a complex microbial community consisting of all different kingdoms of microbes (fungi,
145  bacteriaand virus), S; tends to overestimate the abundances of species with larger genome sizes
146  (e.g., fungi) and underestimate the abundances of species with smaller genome sizes (e.g.,
147  viruses). This is true even if we investigate a community consisting of microbes from the same
148  kingdom (Fig.2c). Note that here, for the sake of simplicity, in our simulations we did not
149  consider the variation of ploidy, but only focused on the variation of genome sizes. Hence, the
150  demonstrated difference between sequence abundance and taxonomic abundance is
151  conservative.

152 In reality, unknown genomes/taxa will further complicate the relation between S; and
153 T, and affect metagenomic profiler benchmarking on real data (because different profilers
154  handle unknown genomes/taxa differently). Moreover, instead of converting S; to T; through
155  L; and P; correction, DNA-to-Marker methods directly calculate T; as the ratio of sequence
156  coverage of single-copy marker genes of each taxon to that of all taxa. This also affects the
157  metagenomic profiler benchmarking.

158

159  Benchmarking results depend on the abundance type. To further illustrate the problem of
160  mixing sequence abundance and taxonomic abundance in benchmarking metagenomic
161  profilers, we simulated metagenomic sequencing reads for 25 communities from distinct
162  habitats (e.g., gut, oral, skin, vagina and building, five communities for each habitat, see
163  Methods). To avoid database biases of different metagenomic profilers, the selection of
164  genomes for simulated data was based on the intersection between MetaPhlAn2, mOTUs2

165  reference database, and Kraken2 reference database (which was also used by Bracken). Then
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166  we calculated the dissimilarity or distance between the ground truth abundance profiles and the
167  estimated ones from different profilers, based on the following five measures: Bray-Curtis
168  dissimilarity (BC), L1 distance, L2 distance, root Jensen-Shannon divergence (rJSD), and
169  robust Aitchison distance (rAD)?® (Fig.3a,b). Note that the Aitchison distance (based on
170  centered log-ratio transform) is a compositionally aware distance measure?>. However, it
171 suffers from the inflated zero counts in microbiome data because log-transform of zero counts
172 is undefined unless arbitrary pseudocounts are added to each taxon. Here the calculation of
173 rAD does not involve any pseudocounts, and it naturally avoids the issue of dealing with sparse
174 zero counts using the classical Aitchison distance?,

175 We found that for BC, L1, L2 and rJSD, if the sequence abundance is used as the ground
176  truth, Bracken and Kraken2 outperform MetaPhlAn2 and mOTUs2; while if the taxonomic
177  abundance is used as the ground truth, MetaPhlAn2 and mOTUs2 outperform Bracken and
178 Kraken2. Interestingly, with rAD as the evaluation metric, regardless of if sequence or
179  taxonomic abundance profiles were taken as the ground truth, mOTUs2 and MetaPhlan2
180  always outperform Bracken and Kraken. This could be due to the compositionally aware
181  distance measure rAD weighing low-abundance taxa more than the other measures. To test this
182  idea, we sought to rule out the bias introduced by false positives and calculated rAD based on
183  taxonomic profilers where false positives have been removed (Methods). This is denoted as
184  modified rAD in Fig.3. We found that, with the modified rAD as the evaluation metric, the
185  benchmarking result is the same as that of using BC, L1, L2 and rJSD, or their modified
186  versions (Fig.S1). We always found the same pattern: if the sequence abundance is used as the
187  ground truth, Bracken and Kraken2 outperform MetaPhlAn2 and mOTUs2; while if the
188  taxonomic abundance is used as the ground truth, MetaPhlAn2 and mOTUs2 outperform
189  Bracken and Kraken2. This result strongly indicates that the benchmarking result of
190  metagenomic profilers depends on the selected abundance type.

191 We emphasize that the above contradicting performance evaluations due to different
192  abundance types cannot be detected by using the AUPRC metric, because the calculation of
193  the Precision-Recall Curve only concerns the difference of presence/absence patterns in the
194  ground truth and predicted abundance profiles. By definition, the ground truth sequence
195  abundance and taxonomic abundance profiles of our simulated microbiome samples share
196  exactly the same presence/absence pattern.

197 Moreover, we emphasize that even though the five distance/dissimilarity measures (BC,

198 L1, L2, rJSD, and rAD) all showed the similar results in the performance evaluation (after the
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199  removal of false positives), L2 was not designed for compositional data analysis. To investigate
200  whether the discriminating power of these distance measures for the two sequence types
201  persists with varied microbial diversity, we simulated a set of abundance tables (for both
202  taxonomic abundance and sequence abundance) with different species counts ranging from 10
203  to 500 (see Methods). We then calculated the distance or dissimilarity between the sequence
204  abundance and taxonomic abundance profiles (Fig.4). We found that with an increasing
205  number of species, L2 keeps decreasing while L1, BC, rJSD and rAD can still distinguish the
206  two abundance types. This result suggests that L2 distance cannot discriminate the two types
207  of relative abundances in microbiome samples of high species richness. This might be due to
208  the fact that L2 distance is not appropriate for compositional data analysis.

209

210  Impact of abundance type on the alpha diversity calculation. Interchanging sequence
211  abundance and taxonomic abundance strongly influences per-sample summary statistics. To
212 demonstrate this issue, we simulated 500 abundance profiles representing microbiota from
213 distinct habitats (gut, oral, skin, vagina, and building, 100 profiles for each, see Methods) with
214 known sequence abundance and taxonomic abundance profiles. We found that the Shannon
215  and Simpson indices calculated from taxonomic abundances are significantly higher than those
216  calculated from sequence abundances (p<0.001, Wilcoxon rank-sum test) regardless of the
217  habitat (Fig.5). Moreover, when ranking the samples according to their alpha diversity
218  measures calculated from sequence abundance and from taxonomic abundance, the orderings
219  are not fully concordant with each other (Spearman correlation of the rank vectors is 0.929 +
220 0.020 for Shannon index and 0.83540.042 for Simpson index). These results suggest that alpha
221  diversity calculations and comparisons can be strongly affected by the type of relative
222  abundance used.

223

224 Impact of abundance types on the beta diversity and ordination analyses. To check if
225  mixing sequence abundance and taxonomic abundance will also influence between-sample
226  attributes such as beta diversity and ordination analyses, we reanalyzed the 500 samples
227  generated for Fig.5. In order to quantify the influence on beta diversity introduced by
228  abundance type, Mantel test?* 2> was employed to compare the beta-diversity (in terms of BC,
229 rJSD, L1, L2 and rAD) calculated from the taxonomic abundance and sequence abundance
230  profiles of those samples (see Methods). Interestingly, regardless of the species richness in the

231  habitats, the abundance type has some influence on the cross-sample comparisons based on the
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232 BC, rJSD and L1 measures (Spearman coefficient r=0.94440.006, 0.94740.009, 0.94440.006,
233 respectively; p-value =1e-4 for all), but affects the L2 and rAD measures more strongly (r
234  =0.84440.026, 0.51940.137, respectively; p-value=1e-4 for both). Moreover, we found that
235  species richness of samples associates with the correlation coefficient in the rAD calculation.
236  These results demonstrate the inconsistent relative relationships between samples that are
237  introduced by different abundance types in beta diversity calculation.

238 We then performed ordination analyses using four different methods: Non-metric
239  Multidimensional Scaling (NMDS)?, Principal Coordinates Analysis (PCoA)?’, t-distributed
240  stochastic neighbor embedding (t-SNE)?8, and Uniform Manifold Approximation and
241  Projection (UMAP)?. We found that, regardless of the distance/dissimilarity measures used
242  (e.g. rJSD, BC and rAD), taxonomic abundance and sequence abundance profiles are
243  drastically different in all the four ordination results (Fig.6, Figs.S2-S3). Procrustes analysis
244 was then employed to analyze the congruence of two-dimensional shapes produced from
245  superimposition of ordination analyses from two datasets®® 1. Indeed, Procrustes analysis
246  revealed very low similarity between the ordination results calculated from sequence and
247  taxonomic abundance (Fig.6, Figs.S2-S3, Monte Carlo p-value<0.05). These results indicate
248  that both beta diversity (especially for L2 and rAD) and ordination analyses can be heavily
249  affected by the relative abundance type used.

250

251  Discussion

252  Taken together, these analyses emphasize the importance of differentiating between relative
253  sequence abundance and relative taxonomic abundance in metagenomic profiling. Ignoring this
254  distinction can potentially underestimate the relative abundance of organisms with small
255 genome sizes. Sequence abundances are typically produced by DNA-to-DNA or DNA-to-
256  Protein methods, which rely on microbial genomes or genes as the reference database, report
257  relative sequence abundance, i.e. the fraction of sequence reads assigned to each entity in the
258  database. By contrast, DNA-to-Marker methods output relative taxonomic abundance
259  representing the fraction of each detected taxon.

260 Our results demonstrate that misleading performance assessment of metagenomic
261  profilers and spurious alpha and beta diversity patterns can arise from interchanging sequence
262  abundance with taxonomic abundance. For alpha diversity, Shannon index and Simpson index
263 are not simply higher based on taxonomic abundance than that based on sequence abundance,

264  the relative ranking of alpha diversity is not consisting in the two abundance types either.

8


https://doi.org/10.1101/2020.11.14.382994
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.14.382994; this version posted November 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

265  Dramatic changes in the relative position between samples are also shown in the ordination
266  analysis. Therefore, interchanging abundance types could have a deleterious effect on the
267  interpretation of alpha and beta diversity analyses and meta-analyses.

268 The distinction between the two types of relative abundances was known to the field of
269  microbiome research (at least to the developers of various metagenomic profilers), and has
270  been conceptually considered in some benchmark studies (e.g., CAMI®). However, the
271  consequences of ignoring this distinction for benchmarking metagenomic classifiers and per-
272 sample summary statistics have not been quantitatively studied or clearly illustrated so far. In
273  particular, the vast majority of users of those metagenomic profilers should be clearly aware of
274  the distinction between sequence abundance and taxonomic abundance, and of the
275  consequences of ignoring this distinction in selecting metagenomics tools, data interpretation,
276  and cross-study comparison of differentially abundant taxa identified by different tools.

277 In summary, we suggest that the microbiome research community should pay more
278  attention to potentially misleading biological conclusions arising from this issue by carefully
279  considering which type of abundance data was analyzed and interpreted, and, going forward,
280 the strategy used for taxonomy assignment should be clearly represented. We also suggest that,
281 in future development or evaluation of metagenomic profilers, both types of relative abundance
282  should be strictly distinguished, and both should be reported. This would substantially improve
283  the comparison of abundance estimations of metagenomic profilers and enhance the
284  reproducibility and biological interpretation of microbiome studies.

285
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286  Methods

287  Simulation of microbiome profiles. In the simulation of microbiome profiles based on
288  different species counts (from 10 to 500), the abundance was created randomly from a log-
289  normal distribution using “rlnorm” function in R language with parameters: meanlog = 0 and
290 sdlog = 1, and 10 repeats were simulated for each species count. In the simulation of
291  microbiome profiles for alpha diversity calculation, 100 profiles were simulated for each
292  habitat, and species counts in different habitats were set up as: 10-50 (vaginal), 50-100 (skin),
293  100-150 (gut), 150-200 (oral), 200-300 (building). The representative species in each specific
294 habitat were selected based on the set of microbial species identified in the HMP32 and by Hsu
295 etal.®

296

297  Simulation of sequencing reads. Firstly, the 25 microbiome profiles (five for each habitat)
298  were simulated using the above method. Then the simulation of sequencing data is illustrated
299  as the process in Fig.1a: Given a specified species composition (taxonomic abundance), their
300 sequence abundance can be inferred accordingly (taxonomic abundance equals to sequence
301 abundance divide by their genome length) and “Wgsim” (https://github.com/lh3/wgsim) was
302  then used (with default parameters) to simulate the sequences. The selection of genomes for
303 simulated data was based on the intersection between MetaPhlAn2 and mOTUSs2 reference
304  database and Bracken’s database to avoid database biases.

305 Currently, there are many more DNA-to-DNA profilers (e.g., Bracken and Kraken2)
306  than DNA-to-Marker profilers (e.g., MetaPhlAn2 and mOTU2). In this paper we focused on
307 two DNA-to-DNA profilers for the following reasons. First, as representative DNA-to-DNA
308 methods, Bracken and Kraken/Kraken2 demonstrated the best performance in previous
309  benchmarking studies*®3*, and have been cited in more than one thousand microbiome studies.
310  Second, mOTU2 and MetaPhlAn2 do not support custom reference databases, and the
311  reference database is a critical factor affecting profiler performance. As such we decided to use
312  the intersection of organisms in mOTU2, MetaPhlaAn2, and Kraken2 reference databases as
313  the source for our simulation data. Introducing more DNA-to-DNA profilers could further
314  reduce the reference database size of the simulated data and affect the diversity of genome sizes
315  (Fig.S4).

316

317  Alpha and beta diversity calculation. Alpha diversity calculation e.g. Shannon and Simpson

318 indices were performed in R language by the “Vegan 2.5-6” package. As for the beta diversity,
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319  we employed "Vegan 2.5-6" for distance/dissimilarity calculation e.g. L1 (“Manhattan” in
320  vegdist function), L2 (“Euclidean”) and BC (“Bray”), while rJSD and rAD were calculated by
321  self-programmed script (see code availability). In the ordination analyses, R packages “ade4
322 1.7-15”, “Rtsne 0.15”, “ape 5.4-1” and “umap 0.2.6.0” were used to conduct the NMDS, t-SNE,
323  PCoA and UMAP analyses separately. Since the iterative algorithm of NMDS, t-SNE and
324  UMAP find different solutions depending on the starting point of the calculation (which is
325 a randomly chosen configuration) we performed 101 repeats of NMDS, t-SNE, UMAP and
326  their Procrustes test, the median result (sorting by the Mote-Caro test) was selected for
327  presentation of similarity and p-value in Fig.6, Fig.S2 and Fig.S3. The ordination analyses
328  based on the ground truth of the sequence abundance and taxonomic abundance for the 500
329  profiles (from five habitats) were conducted separately before Procrustes analysis.

330

331 Robust Aitchison distance calculation. We applied DEICODE
332  (https://github.com/biocore/DEICODE) to calculate the robust Aitchison distance (rAD) to
333  benchmark the performance of metagenomics profilers. DEICODE represents a form of
334  Aitchison Distance that is robust to high levels of sparsity. It preprocesses the compositional
335 data using the centered log-ratio (CLR) transform only on the non-zero values of the data
336  (hence no pseudo counts are used). Then it performs dimensionality reduction through robust
337 PCA based on the non-zero values of the data. The Euclidean distance of the robust CLR-
338 transformed abundance profiles (i.e., rAD) was finally employed to evaluate the performance
339  of metagenomic profilers. To avoid the impact of false positives on the benchmarking results,
340 we further filtered out false positives in all output taxonomic profiles (Kraken2:
341  29.26%412.13%; Bracken: 36.91%#12.11%; mOTUs2: 11.47%44.62%; MPAZ2:
342 11.29%34.19%) and compared the performance of different profilers using rAD calculated
343  from the true positives only. This is termed as the modified rAD in Fig.3. For other evaluation
344  measures, the same procedure was performed and presented in Fig.S1.

345

346  Mantel Test. Mantel test was used as a correlation test to determine the correlation between
347  two beta diversity (BC, rJSD, L1, L2 and rAD) matrices based on sequence abundance and
348  taxonomic abundance. In order to calculate the correlation, the matrix values of both matrices
349 are ‘unfolded’ into long column vectors, which are then used to determine correlation.
350  Permutations (n=9999) of one matrix are used to determine significance. Whether distances

351  between samples in one matrix are correlated with the distances between samples in the other
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352  matrix is revealed by the p-value.

353

354  Procrustes analysis.

355  Procrustes analysis (by R package “ade4 1.7-157) typically takes as input two coordinate
356  matrices with matched sample points, and transforms the second coordinate set by rotating,
357  scaling, and translating it to maximize the similarity between corresponding sample points in
358  the two shapes. It allows us to determine whether we would come to same conclusions on the
359  beta diversity, regardless of which distance/dissimilarity measure was used to compare the
360 samples. To assess the significance level of observed similarity between two matrices,
361  empirical p-values are calculated using a Monte Carlo simulation. Basically, sample labels are
362  shuffled in one of the coordinate matrices, and then the similarity between them is re-computed
363  for 9999 times. Here, similarity is calculated as the sum of the squared residual deviations
364  between sample points for each measurement. The proportion of similarity values that are equal
365  to or lower than the observed similarity value is then the Monte Carlo or empirical p-value.
366

367 Data availability

368  All the simulated datasets can be downloaded here:

369  https://figshare.com/projects/Challenges_in_Benchmarking_Metagenomic_Profilers/79916.
370

371 Code availability

372 R scripts used in this paper is available at https://github.com/shihuang047/re-benchmarking.
373
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462  Figures

463  Figure 1. Comparison of profiling results. a, Illustration of the reference databases and the default
464  output abundance type for DNA-to-DNA, DNA-to-Protein and DNA-to-Marker profilers on a mixture
465  of two species A (1 cell) and B (2 cells). b, A simulated microbial community with only two genomes:
466  Bacillus pseudofirmus (genome size 4.2MB) and Lactobacillus salivarius (genome size 2.1MB). We
467  merged one copy of Bacillus pseudofirmus genome (genome A) with two copies of Lactobacillus
468  salivarius genome (genome B) sequences into one metagenome file. Then we sheared the merged
469  metagenomic sequences into 150bp to simulate a typical metagenomic dataset. ¢, Profiling results
470  (default output) of different profilers for the simulated microbial community shown in a. The bar plots
471  show the estimated relative abundance of the two microbial members A and B using different
472 metagenomics profilers.

473

474 Figure 2. Correlation between sequence abundance and taxonomic abundance in synthetic
475  profiles based on different kingdoms. a, Genome size distribution of microorganisms calculated from
476  the microbial genome database (NCBI RefSeq 2020 Nov 6™) that includes 171,927 bacteria, 293 fungi,
477 945 archaea, and 9,362 viruses. b, The scatter plot shows the correlation between taxonomic abundance
478  (x axis) and sequence abundance (y axis) of 600 randomly selected species in a simulated profile which
479  includes bacteria (species number=200), fungi (species number=200) and virus (species number=200).
480 ¢, Each scatter plot shows the correlation between taxonomic abundance (X axis) and sequence
481  abundance (y axis) of 200 randomly selected species in three simulated profiles which represent
482  different kingdoms e.g. bacteria, fungi, and virus.

483

484  Figure 3. Differential benchmarking results of four representative metagenomics profilers using
485  two types of relative abundance as ground truth: a, sequence abundance and b, taxonomic
486  abundance. The boxplots indicate the dissimilarities based on L1, L2, root Jensen-Shannon divergence
487  (rJSD), Bray-Curtis (BC), and robust Aitchison distance (rAD) between the ground-truth profiles and
488  the profiles predicted by different metagenomics profilers (Bracken, Kraken2, mOTUs2, and
489  MetaPhlAn2) at the species level. For each metagenomic profiler, we performed the dissimilarity
490  calculations based on 25 simulated microbial communities from five representative environmental
491  habitats (gut, oral, skin, vagina and building) separately. Note that for each profiler based on any
492  evaluation metric, its performance variation across different synthetic communities is due to
493  microbiome complexity difference (e.g. species composition and richness). The asterisks in the boxplots
494 refer to the statistical significance: “*” refers to p-value <0.05, “**” refers to <0.01, “***” refers to <
495  0.001.

496

497  Figure 4. Dissimilarity between sequence abundance and taxonomic abundance with varied
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498  species number measured by different distance measures. For each species number, we simulated
499 10 repeats of profiles. The distance/dissimilarity was then measured by different measures: rAD (red),
500 L1 (blue), L2 (purple), Bray-Curtis (yellow) and rJSD (green). rAD between these types of abundance
501  profiles positively correlated with the species richness when < 200 microbial species presented in a
502  community, yet saturated after the number of species reaching 200. L1, BC and rJSD can also reveal
503  the difference between the two abundance types yet they were not affected by the species-level richness.
504 L2 distance between the two abundance types dramatically dropped with the increase in the species-
505  level richness. In the complex community with the number of species over 200, L2 distance metric
506  almost lost the discriminatory power of these two abundance profiles.

507

508  Figure 5. Alpha diversity based on sequence abundance and taxonomic abundance. Alpha
509  diversity (Shannon index and Simpson index) based on ground truth of simulated data from different
510 habitats revealed the influence of abundance types. The index within sample between two abundance
511  type were connected to illustrate the change trend of the indices, the asterisks representing significantly
512  differences are based on paired Wilcoxon test, “***” refers to P <0.001.

513

514  Figure 6. Ordination analyses of simulated profiles based on rJSD. Scatter plots of NMDS, PCoA,
515 t-SNE and UMAP illustrate the dissimilarities between the sequence abundance (red dots) and
516  taxonomic abundance (blue dots), which are the ground truth of the simulated 100 gut profiles. Root
517  Jensen-Shannon divergence (rJSD) was used to for the ordination analyses. The plots of the ordination
518  analyses based on sequence abundance and taxonomic abundance were adjusted to overlap with each
519  other first, then the similarity was calculated by the Monte-Carlo test. The two abundance types from

520  the same profile were connected using grey lines to show the change of its position.
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