

1 **Distinct subcellular localization of a Type I CRISPR complex and the Cas3**
2 **nuclease in bacteria**

3 Sutharsan Govindarajan^{1#}, Adair Borges¹ and Joseph Bondy-Denomy^{1,2,3*}

4 ¹Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158,
5 USA

6 ²Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA

7 ³Innovative Genomics Institute, Berkeley, CA

8 [#]Department of Biology, SRM University AP, Amaravati, India

9 *Correspondence: joseph.bondy-denomy@ucsf.edu

10 **Abstract**

11 CRISPR-Cas systems are prokaryotic adaptive immune systems that have been well
12 characterized biochemically, but *in vivo* spatiotemporal regulation and cell biology remains largely
13 unaddressed. Here, we used fluorescent fusion proteins to study the localization of the Type I-F
14 CRISPR-Cas system native to *Pseudomonas aeruginosa*. When targeted to an integrated
15 prophage, the crRNA-guided (Csy) complex and a majority of Cas3 molecules in the cell are
16 recruited to a single focus. When lacking a target in the cell, however, the Csy complex is broadly
17 nucleoid bound, while Cas3 is diffuse in the cytoplasm. Nucleoid association for the Csy proteins
18 is crRNA-dependent, and inhibited by expression of anti-CRISPR AcrIF2, which blocks PAM
19 binding. The Cas9 nuclease is also nucleoid localized, only when gRNA-bound, which is
20 abolished by PAM mimic, AcrIIA4. Our findings reveal PAM-dependent nucleoid surveillance and
21 spatiotemporal regulation in Type I CRISPR-Cas that separates the nuclease-helicase Cas3 from
22 the crRNA-guided surveillance complex.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 **Introduction**

26 Bacteria have evolved a wide range of immune mechanisms, including the clustered regularly
27 interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes, to protect
28 from bacteriophages and other mobile genetic elements (Marraffini, 2015). The adaptive CRISPR-
29 Cas system is present in almost 85% of archaea and 40% of bacterial genomes sequenced.
30 Currently, CRISPR-Cas systems are categorized into 2 broad classes, 6 types and 33 subtypes
31 (Makarova *et al.*, 2019). CRISPR-Cas systems acquire foreign DNA into the CRISPR array as
32 new 'spacers', transcribes and processes that array to generate CRISPR RNAs (crRNAs), which
33 complex with Cas proteins. This crRNA-guided complex surveils the cell for a protospacer
34 adjacent motif (PAM), and subsequent complementary base pairing with the crRNA, which
35 triggers cleavage of the invading nucleic acid. In the case of type I CRISPR-Cas systems, which
36 are the most abundant in bacteria (Van Der Oost *et al.*, 2014; Makarova *et al.*, 2019), a multi-
37 subunit crRNA-guided surveillance complex (Cascade in Type I-E, Csy complex in Type I-F)
38 recognizes the PAM and protospacer, and then recruits a *trans*-acting helicase-nuclease (Cas3)
39 for target degradation (Redding *et al.*, 2015).

40 How CRISPR-Cas effectors are organized within cells is currently not well understood. For
41 efficiently functioning as a defense system, CRISPR-Cas must rapidly recognize the incoming
42 foreign DNA and destroy it before it becomes established. Previous *in vitro* studies using single
43 molecule imaging has shown that Type I-E Cascade (which is the crRNA-guided complex of the
44 I-E system) spends between 0.1 and 10 s scanning targets in DNA (Redding *et al.*, 2015; Xue *et*
45 *al.*, 2017; Dillard *et al.*, 2018). A recent *in vivo* study using super resolution microscopy and single
46 molecule tracking of cascade in live *E. coli* suggested a timescale of 30 ms for target probing
47 (Vink *et al.*, 2020), and similar binding kinetics have also been suggested for Cas9 (Jones *et al.*,
48 2017; Martens *et al.*, 2019). Cascade was suggested to spend approximately 50% of its search
49 time on DNA and the rest distributed in the cytoplasm, however, the impact of phage infection
50 and Cas3 localization have not determined. Additionally, ChIP-seq analysis of Cascade-DNA
51 interactions in *E. coli* revealed that less than 5 bp of crRNA-DNA interaction is sufficient to
52 promote association of cascade at numerous sites in the genome (Cooper *et al.*, 2018). Genomic
53 associations of CRISPR-Cas stands in contrast to another important class of defense systems,
54 restriction modification (R-M). Type I R-M complexes (HsdRMS) localize to the inner membrane
55 in such a way that their activities are controlled spatially. The methyltransferase is exposed in the
56 cytoplasmic-side of the inner membrane, for accessing the host DNA, while the restriction enzyme
57 components are positioned in the periplasmic-side of the membrane (Holubová *et al.*, 2000;
58 Holubova *et al.*, 2004).

59 The type I-F CRISPR-Cas system of *P. aeruginosa* has emerged as a powerful model for
60 understanding various aspects of CRISPR-Cas biology, including a mechanistic understanding of
61 type I systems (Wiedenheft *et al.*, 2011; Guo *et al.*, 2017; Rollins *et al.*, 2019), the discovery
62 (Bondy-Denomy *et al.*, 2013) and *in vivo* characterization (Borges *et al.*, 2018; Landsberger *et al.*,
63 2018) of phage-encoded anti-CRISPR proteins (Acrs), and identification of regulatory pathways
64 governing CRISPR-Cas expression (Høyland-Kroghsbo *et al.*, 2017; Lin *et al.*, 2019a; Lin *et al.*,
65 2019b; Ahator *et al.*, 2020; Borges *et al.*, 2020). The I-F system of *P. aeruginosa* PA14 consists
66 of two CRISPR loci and six Cas proteins, namely Csy1-4, which form the Csy complex
67 (surveillance complex of the I-F system), Cas3 (a fusion of Cas2-3), a *trans*-acting

68 nuclease/helicase protein, and Cas1, which drives spacer acquisition (Wiedenheft *et al.*, 2011;
69 Rollins *et al.*, 2017). Structural and biochemical studies have shown that Csy1-4 assemble on a
70 60 nucleotide crRNA to form a 350 kDa sea-horse-shaped crRNA-guided surveillance complex
71 (Chowdhury *et al.*, 2017; Guo *et al.*, 2017; Rollins *et al.*, 2019). The Csy surveillance complex
72 recognizes DNA first via Csy1-PAM interaction (G-G/C-C), leading to destabilization of the DNA
73 duplex, strand invasion, R-loop formation in the seed region, and downstream base pairing.
74 Finally, DNA-bound Csy complex triggers recruitment of Cas3 nuclease, which mediates
75 processive degradation of the target DNA in a 3'-5' direction (Chowdhury *et al.*, 2017; Guo *et al.*,
76 2017; Rollins *et al.*, 2019).

77 Here, we address the cell biology of a naturally active *P. aeruginosa* Type I-F CRISPR-Cas
78 system by directly observing its subcellular localization using live cell microscopy. Using functional
79 fluorescent fusions chromosomally integrated at the native locus, we show that the Csy1 and
80 Csy4 proteins, which are part of the surveillance complex, are largely nucleoid bound, while Cas3
81 nuclease is cytoplasmic, but both can be re-directed to a stable intracellular target (i.e. a
82 prophage). When the Csy complex is formed with a crRNA, it binds the nucleoid even in the
83 absence of a target, but the individual Cas proteins do not. Nucleoid localization of the Csy
84 complex, and Cas9, is mediated at the level of PAM recognition and is specifically disrupted by
85 PAM-mimetic anti-CRISPR proteins. Taken together, our study suggests that the relatively
86 promiscuous PAM-dependent (e.g. 5'-GG-3') DNA search mechanism likely relegates these
87 complexes to predominantly associate with the host genome, without an active mechanism for
88 preventing host genome surveillance.

89 Results

90 The majority of endogenous Cas3 molecules are recruited to CRISPR targets

91 To investigate CRISPR-Cas subcellular localization, we focused on *P. aeruginosa* strain UCBPP-
92 PA14 (denoted PA14), which has a type I-F CRISPR-Cas system (Cady *et al.*, 2012). We
93 constructed PA14 strains in which Csy1 (Cas8), Csy4 (Cas6) and Cas3 are fused with sfCherry
94 at their native locus. We assessed the functionality of the tagged strains using a panel of isogenic
95 phages to read out CRISPR-Cas function: DMS3 (untargeted control), DMS3m (targeted by a
96 natural spacer, CRISPR2 spacer 1), and DMS3m engineered phages that expresses Acr proteins
97 AcrlF1, AcrlF2, AcrlF3 or AcrlF4 (Borges *et al.*, 2018). All three fusions exhibited CRISPR-Cas
98 activity similar to the wild-type and were inhibited by Acr proteins (Fig. S1). Using these strains
99 as reporters, we performed live cell fluorescence microscopy to visualize the distribution of the
100 Cas proteins. We observed that all three proteins appeared diffuse in the cytoplasm under this
101 condition (Fig. 1a). Of note, cells had to be grown to high cell density, which is important for Cas
102 protein expression in *P. aeruginosa* (Fig. 1b) (Høyland-Kroghsbo *et al.*, 2017; Borges *et al.*, 2020).
103 Analysis of fluorescent signal from single cells indicated that Csy1 and Csy4 protein levels are
104 higher than Cas3 (Fig. 1c).

105 To observe fluorescent Cas proteins localizing to target DNA *in vivo*, we generated lysogenic
106 strains containing JBD18 as a prophage in PA14 strains expressing chromosomal Csy1-sfCherry
107 (in dCas3 background) or dCas3-sfCherry. JBD18 naturally has five protospacer sequences with
108 the correct PAM (Cady *et al.*, 2012). Both Csy1-sfCherry and dCas3-sfCherry formed fluorescent
109 foci in the presence of the JBD18 prophage (Fig. 1d). Notably, the foci formed by dCas3-sfCherry

111 were quite discrete, suggesting that most of the cellular dCas3 protein is recruited to the targeted
112 locus. Taken together, the data presented above shows that endogenous levels of tagged I-F Cas
113 proteins are functional, can be visualized, and can read out *bona fide* target DNA binding events
114 *in vivo*, which apparently recruits multiple Cas3 proteins.
115

116 **Csy complex is nucleoid-enriched while the Cas3 nuclease is cytoplasmic**

117 To determine the localization pattern of the Csy complex, we took an approach that can clearly
118 differentiate membrane associated, DNA bound and cytoplasmic proteins (Hershko-Shalev *et al.*,
119 2016). Cells were treated with the DNA-damaging antibiotic nalidixic acid (NA). At the
120 concentration used, *P. aeruginosa* continues to grow slowly and forms long cells with compacted
121 nucleoid (schematic presented in Fig. 2a). In these nucleoid compacted cells, DNA-localized
122 proteins can be clearly differentiated from cytoplasmic and membrane proteins. We observed that
123 Csy1-sfCherry and Csy4-sfCherry are enriched in the nucleoid, as evidenced by their
124 colocalization with DAPI stain, while Cas3-sfCherry appeared diffuse in the cytoplasm (Fig. 2b).
125 To confirm that nucleoid localization of Csy1 and Csy4 did not occur as a result of DNA damage
126 caused by NA treatment, we treated cells with chloramphenicol (200 µg/ml), which causes
127 nucleoid compaction as a result of translation inhibition, leading to translocation inhibition (Van
128 Helvoort *et al.*, 1996; Govindarajan *et al.*, 2013). Also, in these nucleoid compacted cells, Csy1
129 and Csy4, but not Cas3, were found to be nucleoid-enriched (Fig. S2).
130

131 We next asked whether Csy protein nucleoid localization is dependent on crRNA-mediated
132 surveillance complex formation. To test this, the same Csy1-sfCherry and Csy4-sfCherry labels
133 were inserted into the chromosome of a Δ CRISPR strain that lacks all 35 spacers, but still
134 expresses all Cas proteins. Both Csy1-sfCherry and Csy4-sfCherry lost nucleoid localization in
135 the Δ CRISPR mutant (Fig. 2b) suggesting that crRNA-mediated assembly of the surveillance
136 complex is essential for nucleoid localization. Additionally, expression of Csy1-sfCherry or Csy4-
137 sfCherry ectopically from a plasmid in NA-treated cells that lack all components of the CRISPR-
138 Cas system (Δ CRISPR-Cas), showed that they were not enriched in the nucleoid (Fig. 2c).

139 PA14 has a total of 35 distinct crRNAs produced from its two CRISPR loci. It is possible that one
140 or more of these crRNAs with partial match to the genomic DNA is responsible for the surveillance
141 complex nucleoid localization. To determine the importance of crRNAs in nucleoid surveillance,
142 we expressed synthetic crRNAs, which do not have a detectable sequence match in the PA14
143 genome, in Δ CRISPR cells and asked if they can restore Csy1-sfCherry nucleoid localization. All
144 three crRNAs restored Csy1-sfCherry nucleoid localization in Δ CRISPR cells suggesting that the
145 Csy complex, once assembled, is intrinsically capable of binding the nucleoid independent of the
146 crRNA sequence (Fig. 2d). Together, these data indicate that nucleoid-localization of Csy1 and
147 Csy4 is not an intrinsic property of free protein, but occurs as a result of functional surveillance
148 complex formation, while the Cas3 nuclease is spread throughout the cell.

149 **An Anti-CRISPR that blocks PAM binding specifically prevents nucleoid localization**

150 Next, we wanted to determine the mechanism of nucleoid binding and understand whether the
151 surveillance complex binds to the nucleoid directly or through its interaction with other host
152 factors. The surveillance complex recognizes target DNA in two steps: (i) interaction with the 'GG'
153 PAM, which is mediated mostly by residues in Csy1 and (ii) base pairing between the crRNA with

154 target DNA, which is mediated by the spacer region of the crRNA (Chowdhury *et al.*, 2017; Guo
155 *et al.*, 2017; Rollins *et al.*, 2019). Two Type I-F Acr proteins have been identified that distinguish
156 between these two binding mechanisms (Bondy-Denomy *et al.*, 2013; Bondy-Denomy *et al.*, 2015;
157 Maxwell *et al.*, 2016; Chowdhury *et al.*, 2017; Guo *et al.*, 2017). AcrlF1 binds to Csy3, blocking
158 crRNA-DNA target hybridization but does not occlude the PAM binding site, while AcrlF2 binds to
159 the Csy1-Csy2 heterodimer, and specifically competes with PAM binding in target DNA. AcrlF3
160 was also utilized, which binds to Cas3 nuclease and prevents target cleavage but does not have
161 any known effect on surveillance complex (Bondy-Denomy *et al.*, 2015; Wang *et al.*, 2016). Csy1-
162 sfCherry localization was monitored in NA-treated nucleoid compacted cells expressing one of
163 these three anti-CRISPRs, either from a plasmid (Fig. 3a) or from isogenic DMS3m prophages
164 (Borges *et al.*, 2018)(Fig. 3b) integrated in the reporter strain. Csy1-sfCherry localization to
165 nucleoid was not affected when AcrlF1 or AcrlF3 were expressed. However, in cells expressing
166 AcrlF2, nucleoid localization of Csy1-sfCherry is completely disrupted (Fig. 3a and 3b). Of note,
167 prophage containing cells were transformed with a plasmid expressing the C-repressor in order
168 to prevent possible excision during NA treatment. Finally, the expression of recently characterized
169 AcrlF11 (Marino *et al.*, 2018; Niu *et al.*, 2020), an enzyme that ADP-ribosylates Csy1 to prevent
170 PAM binding, also disrupted nucleoid localization (Fig. S3). Together, these results suggest that
171 PAM recognition is the dominant and direct factor that mediates Csy complex localization to
172 nucleoid.

173 **Phage infection does not modulate Csy complex localization**

174 As a defense system against phage, we next wanted to address the important question of whether
175 CRISPR-Cas distribution responds to phage infection. To enable visualization of infecting phage
176 particles, we propagated DMS3 (0 protospacers) and DMS3m (1 protospacer) in a strain that
177 expressed GpT, the major capsid protein, fused with mNeonGreen fluorescent protein. This
178 allowed us to obtain fluorescent mosaic phage particles that contain labelled as well as unlabeled
179 GpT protein. We verified that 100% of fluorescent phages packed viral DNA, as evidenced by
180 colocalization of mNeonGreen and DAPI stain (Fig. 4a). The subcellular localization of Csy1-
181 sfCherry and Cas3-sfCherry were assessed in the presence of labelled DMS3 (untargeted phage)
182 or DMS3m (targeted phage) after 15 minutes of infection. In both cases, the apparent diffuse
183 localization of Csy1-sfCherry was not affected at a gross level, when comparing cells with
184 fluorescent phage particles adjacent to the cell surface to those without (Fig. 4b and 4c). To check
185 whether presence of more protospacers would enable recruitment of Csy complex or Cas3, we
186 infected Csy1-sfCherry (in dCas3 background) and dCas3-sfCherry expressing cells with
187 unlabeled JBD18 under the same conditions (Fig. S4). Also, here we did not observe any change
188 in localization despite this being the same genotype where JBD18 prophage recognition was so
189 striking (Fig. 1d). These data suggest that phage infection, irrespective of presence or absence
190 of a target sequence, does not significantly modulate the distribution of the Csy complex or Cas3.
191

192 **PAM-dependent nucleoid localization is conserved for Spy Cas9**

193 Having observed that the multi-subunit type I-F Csy surveillance complex is nucleoid enriched,
194 we next wondered whether nucleoid localization is a conserved property of Class 2 CRISPR-Cas
195 single protein effectors. For this purpose, we chose Cas9 of *Streptococcus pyogenes* as a model
196 protein, which coincidentally uses the same PAM as the Csy complex. To test the localization of

197 SpyCas9, we used a plasmid that expressed a functional SpyCas9 fused with cherry (Mendoza
198 *et al.*, 2020) in *P. aeruginosa* PA01 and monitored its localization in the presence and absence of
199 a crRNA in NA-treated nucleoid compacted cells. Interestingly, SpyCas9 was found to be diffuse
200 in its Apo form (i.e. lacking a crRNA) and nucleoid localized when complexed with a crRNA,
201 provided as a single guide RNA (Fig. 5). When we expressed AcrlIA4, an anti-CRISPR that
202 inhibits SpyCas9 by competing with the PAM-interacting domain (Dong *et al.*, 2017; Rauch *et al.*,
203 2017), nucleoid localization of guide RNA bound SpyCas9 was abolished (Fig. 5). These data,
204 taken together with previous reports (Jones *et al.*, 2017; Martens *et al.*, 2019; Vink *et al.*, 2020),
205 suggests that genome surveillance via PAM-dependent nucleoid localization appears to be a
206 conserved property of type I and type II CRISPR-Cas systems.
207

208 Discussion

209 In this study, we report on the cell biology and subcellular organization of the *P. aeruginosa* type
210 I-F system in its native host. We show that Csy1 and Csy4, which are used here as markers of
211 the Csy surveillance complex, are enriched in the nucleoid, consistent with studies of Type I-E
212 Cascade (Vink *et al.*, 2020), while the Cas3 nuclease-helicase is distributed in the cytoplasm
213 (schematically illustrated in Fig. 6). Nucleoid localization is not an intrinsic property of these
214 proteins when expressed alone or without crRNAs, but is rather mediated by the assembly of the
215 Csy surveillance complex. This is especially surprising regarding Csy1, as it and other Cas8 family
216 members have been shown to bind DNA non-specifically (Jore *et al.*, 2011; Sashital *et al.*, 2012;
217 Dillard *et al.*, 2018; Vink *et al.*, 2020). These observations indicate that the surveillance complex
218 spends most of its time scanning for a match, not in association with the Cas3 nuclease, perhaps
219 avoiding potential detrimental effects. To the best of our knowledge, this is the first study to
220 examine the *in vivo* subcellular organization of Cas3, a universally conserved nuclease in Type I
221 systems. Our observations reveal a new layer of post-translational spatiotemporal regulation in
222 CRISPR-Cas. However, at first glance, the subcellular organization of CRISPR-Cas seems like
223 an inferior approach compared to Type I R-M complexes which localize in the inner membrane
224 (Holubová *et al.*, 2000; Holubova *et al.*, 2004), likely minimizing host collateral damage and
225 maximizing phage detection. Given this, it remains to be seen whether Csy/Cascade/Cas9
226 surveillance of the genome is adaptive, as opposed to simply being a by-product of the basic PAM
227 surveillance mechanisms of CRISPR-Cas systems, “forcing” these systems to localize in the
228 genome.

229 Our observation of differential localization of the Csy complex and Cas3 might present a
230 regulatory strategy to prevent autoimmunity in type I systems, in a way that is not achievable for
231 Class 2 systems (e.g. Cas9 and Cas12). Type II-A Cas9 of *S. pyogenes*, which mediates target
232 recognition as well as cleavage as a single multidomain protein (Jiang and Doudna, 2017), is also
233 enriched in the nucleoid, only when bound to a crRNA. In contrast to the Cas3 nuclease,
234 localization of Cas9 in the nucleoid could pose autoimmunity risks. In fact, a recent study showed
235 that uncontrolled induction Cas9 in *S. pyogenes*, which occurs in the absence of a natural single
236 guide RNA, results in increased self-targeting and auto immunity (Workman *et al.*, 2020).
237 Anecdotally, we have also observed that activity of *Listeria monocytogenes* Cas9 is very low, at
238 least in laboratory conditions (Rauch *et al.*, 2017). It is possible that because of the single protein
239 mediating DNA-binding and cleavage, that the risks associated with Cas9-mediated toxicity could
240 explain the observed bias towards type I systems in nature.

241 Our efforts to pin down the target recognition step that mediates nucleoid localization of the Csy
242 complex as well as Cas9 were supported by experiments using Acr proteins, such as AcrlF2,
243 AcrlF11, and AcrlIA4, which specifically block PAM-binding, while AcrlF1 and AcrlF3 act
244 downstream. Perhaps most notably, the inability of AcrlF1 to prevent nucleoid localization,
245 together with observations that crRNA sequence is not important, suggests that PAM-binding is
246 important. Some base pairing in the seed region could contribute to binding strength (Cooper *et*
247 *al.*, 2018), but we do not consider it necessary for nucleoid surveillance due to the abundance of
248 PAM sequences in the genome (*P. aeruginosa* PA14 has 1.2×10^6 5'-GG-3' PAM sites). In
249 contrast to our observation, Cascade-DNA interactions were suggested to be mediated by PAM-
250 dependent as well as PAM-independent interactions (Vink *et al.*, 2020) because a mutant Cas8
251 (Csy1 in Type I-F) that is incapable of recognizing PAM decreased, but not completely abolished,
252 its nucleoid localization. In our case, Csy1 nucleoid localization was not observed either in the
253 presence of AcrlF2 or in the absence of crRNA or when Csy1 was expressed alone. Given the
254 divergence of the Cas8 superfamily, it is possible that the mechanistic differences between type
255 I-E and type I-F systems exist.

256 Lastly, while phage infection has been implicated in upregulation of CRISPR-Cas enzymes in
257 some bacteria and archaea (Agari *et al.*, 2010; Young *et al.*, 2012; Quax *et al.*, 2013), we did not
258 observe significant upregulation or re-localization of the Csy complex or Cas3 during phage
259 infection. Intriguingly, JBD18 could promote clustering of Csy complex and Cas3 as a prophage
260 but not as an infecting phage. Notably, the fluorescent foci formed by dCas3 were quite discrete,
261 suggesting that most dCas3 molecules within the cell are recruited, an observation we found
262 surprising. Whether this truly reflects Cas3 recruitment events or is observed due to catalytic
263 inactivation is worth further investigation. One possible reason for the absence of any Csy/Cas3
264 re-localization during lytic infection could be the transient nature of the interaction, with a relatively
265 dynamic target like injected phage DNA (Shao *et al.*, 2015). Additionally, Csy complexes are
266 loaded with 35 distinct crRNAs, likely concealing relocation of a minority of molecules, despite
267 Csy and Cas3 re-localization being observable for a prophage. Dynamic relocation of molecules
268 near the inner membrane during infection may require investigation using more sensitive imaging
269 techniques including single molecule imaging and total internal reflection fluorescence (TIRF)
270 microscopy (Shashkova and Leake, 2017).

271 What is the physiological function of the nucleoid enriched CRISPR-Cas enzymes? Several
272 findings have suggested that CRISPR-Cas enzymes participate in cellular functions other than
273 immunity. These include DNA repair, gene regulation, sporulation, genome evolution and stress
274 response (Weiss and Sampson, 2014; Ratner *et al.*, 2015; Hille and Charpentier, 2016), however
275 there is no strong evidence for these functions with the Csy complex in *P. aeruginosa*. The
276 molecular basis for most of these alternative functions of Cas proteins are not well understood. A
277 recent study showing SpyCas9 can repress its own promoter using a natural single guide opens
278 the possibility that CRISPR-Cas systems can also function as intrinsic transcriptional regulators
279 (Workman *et al.*, 2020). It is therefore possible that crRNAs generated from degenerate self-
280 targeting spacers might direct CRISPR-Cas enzymes in regulating host genes. However, binding
281 of the *E. coli* cascade complex to hundreds of off-target sites does not affect gene expression
282 globally (Cooper *et al.*, 2018). Alternatively, it could be concluded that the intrinsic PAM-sensing
283 mechanism of DNA detection relegates Cascade, the Csy complex, and Cas9, to survey the

284 genome, even if that function is neither directly adaptive for cellular functions or defense. Given
285 that affirmative PAM recognition is important for function (and avoidance of CRISPR locus
286 targeting), as opposed to exclusion mechanisms (e.g. genome-wide methylation to prevent
287 restriction enzyme binding), host genome surveillance likely reflects this limitation. Future studies
288 examining these possibilities will provide important insights on the functions and evolutionary
289 limitations of CRISPR-Cas systems in bacteria.

290 **Materials and methods**

291 Plasmids, phages and growth media

292 Plasmids, and primer sequences used in this study are listed in Supplemental Tables 1-2. *P.*
293 *aeruginosa* UCBPP-PA14 (PA14) strains and *Escherichia coli* strains were grown on lysogeny
294 broth (LB) agar or liquid at 37 °C. To maintain the pHERD30T plasmid, the media was
295 supplemented with gentamicin (50 µg ml⁻¹ for *P. aeruginosa* and 30 µg ml⁻¹ for *E. coli*). Phage
296 stocks were prepared as described previously (Borges *et al.*, 2018). In brief, 3 ml SM buffer was
297 added to plate lysates of the desired purified phage and incubated at room temperature for 15
298 min. SM buffer containing phages was collected and 100 µl chloroform was added. This was
299 centrifuged at 10,000g for 5 min and supernatant containing phages was transferred to a storage
300 tube with a screw cap and incubated at 4 °C. Phages used in this study include DMS3, DMS3m,
301 and engineered DMS3m phage with Acrs (Borges *et al.*, 2018).

302 Construction of plasmids and strains

303 Plasmids expressing sfCherry alone, sfCherry tagged with Cas3 orCas9 were previously
304 reported(Mendoza *et al.*, 2020). Plasmids expressing Csy1-sfCherry and Csy4-sfCherry were
305 constructed by Gibson assembly in pHERD30T plasmid digested with SacI and PstI. These
306 fusions have ggaggcggtggagcc (G-G-G-G-A) linker sequence in between them. sfCherry was
307 amplified from SF-pSFFV-sfCherryFL1M3_TagBFP (kindly provide by Bo Huang lab, UCSF).
308 csy1 and csy4 sequences were amplified from PA14. Csy1 and Cas3 are tagged at the N-terminus
309 and Csy4 is tagged at the C-terminus.

310 Endogenous Csy1-sfCherry and Cas3-sfCherry reporters were previously described (Borges *et*
311 *al.*, 2020). Csy4-sfCherry was constructed in a similar way. The sfCherry gene was inserted with
312 csy4 of PA14 via allelic replacement. The recombination vector pMQ30, which contained sfCherry
313 flanked by homology arms matching csy4 was introduced via conjugation. pMQ30-Csy4-
314 sfCherry, which contains the sfCherry sequence flanked by 123 bp upstream and downstream of
315 csy4 stop codon was cloned in the pMQ30 plasmid between HindIII and BamHI sites using Gibson
316 assembly. Both pMQ30-Csy4-sfCherry contain theGGAGGCGGTGGAGCC sequence
317 (encoding GGGGA) as a linker between sfCherry and csy4. The pMQ30-Csy4-sfCherry construct
318 was introduced into PA14 strains of interest via allelic replacement to generate Csy4-sfCherry.
319 Strains containing the appropriate insertion were verified via PCR.

320 crRNAs suitable for type I-F system were expressed from I-F entry vectors pAB04.
321 Oligonucleotides with repeat-specific overhangs encoding the spacer sequences that does not
322 have sequence homology with PA14 genome are phosphorylated using T4 polynucleotide kinase

323 (PNK) and cloned into the entry vectors using the BbsI sites. Sequences of the spacers are listed
324 in supplementary table 3. crRNAs are expressed without addition of the inducer arabinose.

325 Construction of PA14 lysogens.

326 Lysogens were obtained by first spotting phage onto a bacterial lawn, then streaking out surviving
327 colonies from phage spots. These colonies were screened for phage resistance using a cross-
328 streak method and lysogeny was verified by prophage induction. For maintenance of DMS3m
329 engineered lysogens that expresses Acr proteins AcrlF1, AcrlF2, AcrlF3 during NA treatment, an
330 arabinose inducible plasmid expressing C-repressor of DMS3 was maintained.

331 Live-cell imaging and image processing

332 Fluorescence microscopy was carried out as described previously (Mendoza *et al.*, 2020). Unless
333 indicated, overnight cultures were diluted 1:10 in fresh LB medium and grown for 3 hours. For
334 compaction of nucleoid, Nalidixic acid (200 µg/ml) was added for 3 hours or chloramphenicol (200
335 µg/ml) was added for the last 20 minutes. 0.5 ml cells were centrifuged, washed with 1:10 LB
336 diluted with double-distilled water and finally resuspended in 200–500 µl of 1:10 LB. Cell
337 suspensions were placed on 0.85% 1:10 LB agarose pads with uncoated coverslips. For DNA
338 staining, DAPI (2µg/ml) was added to the cell suspension for 10 minutes and washed twice with
339 1:10 LB and finally resuspended. A Nikon Ti2-E inverted microscope equipped with the Perfect
340 Focus System (PFS) and a Photometrics Prime 95B 25-mm camera were used for live-cell
341 imaging. Time-lapse imaging was performed using Nikon Eclipse Ti2-E equipped with OKOLAB
342 cage incubator. Images were processed using NIS Elements AR software.

343 For measuring of single cell fluorescence, region of interest (ROI) were drawn over the phase
344 contrast images of endogenous sfCherry-tagged reporter strains using NIS Elements AR. After
345 subtracting the background, the sfCherry ROI mean intensity values were obtained. The data was
346 analyzed and presented as a scatterplot using GraphPad prism.

347 For fluorescence intensity maps, an intensity line was drawn over the phase contrast images
348 along the middle long cell axis. Fluorescence values of sfCherry and DAPI along the long axis
349 were extracted. The data was analyzed and presented as a line plot using GraphPad prism.

350

351

352 **Supplementary Table - 1**

Plasmid name	Information	Reference
pSG30T-sfCherry-csy1(IF)	pHERD30T with Csy1-sfCherry	This study
pSG30T-csy4-sfCherry (IF)	pHERD30T with Csy4-sfCherry	This study
pMQ30-csy4-sfCherry		This study
pSG30T-GpT-mNeonGreen	pHERD30T with capsid GpT-mNeonGreen	This study
pHerd30T-C-rep	pHERD30T with DMS3 C-repressor protein	(Borges <i>et al.</i> , 2018)
pAB014	I-F entry vectors	(Mendoza <i>et al.</i> , 2019)
pHerd30T-AcrlF1	Expresses AcrlF1	(Bondy-Denomy <i>et al.</i> , 2013)
pHerd30T-AcrlF2	Expresses AcrlF2	(Bondy-Denomy <i>et al.</i> , 2013)
pHerd30T-AcrlF3	Expresses AcrlF3	(Bondy-Denomy <i>et al.</i> , 2013)
pESN28	Expresses cherry-Cas9	(Mendoza <i>et al.</i> , 2020)

353

354 **Supplementary Table - 2**

Plasmid	Primer name	Sequence
pSG30T-sfCherry-csy1(IF)	F-30T-sfCh_P29	taccatggatctgataagaattcgagctATGGAGGAGGACAACATGGCC
	R-csy1-link-sfCh(TAA-)P30	GTAGGCCTTGGGAGGGAGAGGTggctccaccgcctccGCCGCCGGTGCTGTCTGGC
	F-link-csy1 (ATG-)P31	ggaggcggtggagccACCTCTCCCTCCAACGCCCTAC
	R-30T-csy1_P32	gacggccagtgccaagctgcatgcctgcaTCAGTCACGCTCATCTCGAG
pSG30T-csy4-sfCherry (IF)	F-30T-csy4(TAA-)2_P35	taccatggatctgataagaattcgagctATGGACCACTACCTCGACATT
	R-sfCh-link-csy4_P36	GATGCCATGTTGTCCCTCCTCggctccaccgcctccGAACCAGGAAACGAACCTC
	F-link-sfCh (ATG-)P37	ggaggcggtggagccGAGGAGGACAACATGCCATC
	R-30T-sfCh2_P38	gacggccagtgccaagctgcatgcctgcaTTAGCCGCCGGTGCTGTGTC
pMQ30-csy4-sfCherry	F-pMQ+csy4-orf-(short)	cacgacgttgtaaaacgacggccagtgccaCGCAGCCAGAGCACCGACAGC
	R-sfCherry_P52	TTAGCCGCCGGTGCTGTCTG
	F-Ch-csy4(down)_P53	CAGACACAGCACCGCGGCTAAAGAACCCGTCAGCGCCTTATC
	R-pMQ+csy4 down(SHORT)	atgattacgaattcgagctcggtacccgggCGGCCAGCAGCCCTGAAGTATC

pSG30T-GpT-mNeonGreen	F-30T-gpT_P60	taccatggatctgataagaattcgagctATGCCATCATTACTCCGGC
	R-mNeon-link-gpT_P62	ATCCTCCTGCCCTTGCTCACggctccaccgcctccGTTGAGCCAGGGGGTATCGAG
	F-link-mNeon(ATG-)_P63	ggaggcggtggagccGTGAGCAAGGGCGAGGAGGAT
	R-30T-mNeon_P64	gacggccagtgccaagcttgcatgcctgcaTTACTTGTACAGCTCGTCCATGC

355

356 **Supplementary Table - 3**

Name	Sequence
crRNA 1	CCGTCGCCCTCCTAGGCATCTTCTCTCGGGGCT
crRNA 2	AACCCCAGATACTGACACCGCGGTTGAGATTGG
crRNA 3	GTGCGGCTCGATCAGGGATCGCAGCTTGTCCAGG

357

358

359 **Conflict of interest**

360 J.B.-D. is a scientific advisory board member of SNIPR Biome and Excision Biotherapeutics and
361 a scientific advisory board member and co-founder of Acrigen Biosciences.

362

363 **Acknowledgements**

364 We thank members of the Bondy-Denomy lab for helpful discussions. S.G appreciate helpful
365 discussion and support with Shweta Karambelkar and Bálint Csörgő. This project in the Bondy-
366 Denomy lab was supported by the UCSF Program for Breakthrough Biomedical Research funded
367 in part by the Sandler Foundation and an NIH Director's Early Independence Award DP5-
368 OD021344.

369

370 **References**

371 Agari, Y., Sakamoto, K., Tamakoshi, M., Oshima, T., Kuramitsu, S., and Shinkai, A. (2010)
372 Transcription profile of *Thermus thermophilus* CRISPR systems after phage infection. *J Mol Biol*
373 **395**: 270–281.

374 Ahator, S. Dela, Wang, J., and Zhang, L. (2020) The ECF sigma factor PvdS regulates the type
375 IF CRISPR-Cas system in *Pseudomonas aeruginosa*. *bioRxiv*.

376 Bondy-Denomy, J., Garcia, B., Strum, S., Du, M., Rollins, M.F., Hidalgo-Reyes, Y., *et al.* (2015)
377 Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. *Nature* **526**: 136–
378 139.

379 Bondy-Denomy, J., Pawluk, A., Maxwell, K.L., and Davidson, A.R. (2013) Bacteriophage genes
380 that inactivate the CRISPR/Cas bacterial immune system. *Nature* **493**: 429–432.

381 Borges, A.L., Castro, B., Govindarajan, S., Solvik, T., Escalante, V., and Bondy-Denomy, J.
382 (2020) Bacterial alginate regulators and phage homologs repress CRISPR–Cas immunity. *Nat*
383 *Microbiol* 1–9.

384 Borges, A.L., Zhang, J.Y., Rollins, M.F., Osuna, B.A., Wiedenheft, B., and Bondy-Denomy, J.
385 (2018) Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. *Cell* **174**:
386 917–925.

387 Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R., and O'Toole, G.A. (2012) The
388 CRISPR/Cas adaptive immune system of *Pseudomonas aeruginosa* mediates resistance to
389 naturally occurring and engineered phages. *J Bacteriol* **194**: 5728–5738.

390 Chowdhury, S., Carter, J., Rollins, M.F., Golden, S.M., Jackson, R.N., Hoffmann, C., *et al.*
391 (2017) Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided
392 surveillance complex. *Cell* **169**: 47–57.

393 Cooper, L. A., Stringer, A. M., & Wade, J. T. (2018). Determining the specificity of cascade
394 binding, interference, and primed adaptation *in vivo* in the *Escherichia coli* type IE CRISPR-Cas
395 system. *MBio*, **9**(2).

396 Dillard, K.E., Brown, M.W., Johnson, N. V., Xiao, Y., Dolan, A., Hernandez, E., *et al.* (2018)
397 Assembly and translocation of a CRISPR-Cas primed acquisition complex. *Cell* **175**: 934–946.

398 Elf, J., Li, G.-W., and Xie, X.S. (2007) Probing transcription factor dynamics at the single-
399 molecule level in a living cell. *Science* (80-) **316**: 1191–1194.

400 Dong, D., Guo, M., Wang, S., Zhu, Y., Wang, S., Xiong, Z., *et al.* (2017) Structural basis of
401 CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. *Nature* **546**: 436–439.

402 Govindarajan, S., Elisha, Y., Nevo-Dinur, K., and Amster-Choder, O. (2013) The general
403 phosphotransferase system proteins localize to sites of strong negative curvature in bacterial
404 cells. *MBio* **4**.

405 Guo, T.W., Bartesaghi, A., Yang, H., Falconieri, V., Rao, P., Merk, A., *et al.* (2017) Cryo-EM
406 structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance
407 complex. *Cell* **171**: 414–426.

408 Helvoort, J.M. Van, Kool, J., and Woldringh, C.L. (1996) Chloramphenicol causes fusion of
409 separated nucleoids in *Escherichia coli* K-12 cells and filaments. *J Bacteriol* **178**: 4289–4293.

410 Hershko-Shalev, T., Odenheimer-Bergman, A., Elgrably-Weiss, M., Ben-Zvi, T., Govindarajan,
411 S., Seri, H., *et al.* (2016) Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger
412 RNA Modulates Vital Bacterial Machineries. *PLoS Genet* **12**.

413 Hille, F., and Charpentier, E. (2016) CRISPR-Cas: biology, mechanisms and relevance. *Philos
414 Trans R Soc B Biol Sci* **371**: 20150496.

415 Holubova, I., Vejsadová, Š., Firman, K., and Weiserova, M. (2004) Cellular localization of type I
416 restriction-modification enzymes is family dependent. *Biochem Biophys Res Commun* **319**:
417 375–380.

418 Holubová, I., Vejsadová, Š., Weiserová, M., and Firman, K. (2000) Localization of the Type I
419 restriction-modification enzyme EcoKI in the bacterial cell. *Biochem Biophys Res Commun* **270**:
420 46–51.

421 Høyland-Kroghsbo, N.M., Paczkowski, J., Mukherjee, S., Broniewski, J., Westra, E., Bondy-
422 Denomy, J., and Bassler, B.L. (2017) Quorum sensing controls the *Pseudomonas aeruginosa*
423 CRISPR-Cas adaptive immune system. *Proc Natl Acad Sci* **114**: 131–135.

424 Jiang, F., and Doudna, J.A. (2017) CRISPR–Cas9 structures and mechanisms. *Annu Rev
425 Biophys* **46**: 505–529.

426 Jones, D.L., Leroy, P., Unoson, C., Fange, D., Ćurić, V., Lawson, M.J., and Elf, J. (2017)
427 Kinetics of dCas9 target search in *Escherichia coli*. *Science (80-)* **357**: 1420–1424.

428 Jore, M.M., Lundgren, M., Duijn, E. Van, Bultema, J.B., Westra, E.R., Waghmare, S.P., *et al.*
429 (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. *Nat Struct Mol
430 Biol* **18**: 529.

431 Landsberger, M., Gandon, S., Meaden, S., Rollie, C., Chevallereau, A., Chabas, H., *et al.*
432 (2018) Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. *Cell* **174**: 908–916.

433 Lin, P., Pu, Q., Shen, G., Li, R., Guo, K., Zhou, C., *et al.* (2019a) CdpR Inhibits CRISPR-cas
434 adaptive immunity to lower anti-viral defense while avoiding self-reactivity. *iScience* **13**: 55–68.

435 Lin, P., Pu, Q., Wu, Q., Zhou, C., Wang, B., Schettler, J., *et al.* (2019b) High-throughput screen
436 reveals sRNAs regulating crRNA biogenesis by targeting CRISPR leader to repress Rho
437 termination. *Nat Commun* **10**: 1–12.

438 Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., *et al.*
439 (2019) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived
440 variants. *Nat Rev Microbiol* **1**–17.

441 Marino, N.D., Zhang, J.Y., Borges, A.L., Sousa, A.A., Leon, L.M., Rauch, B.J., *et al.* (2018)
442 Discovery of widespread type I and type V CRISPR-Cas inhibitors. *Science (80-)* **362**: 240–
443 242.

444 Marraffini, L.A. (2015) CRISPR-Cas immunity in prokaryotes. *Nature* **526**: 55–61.

445 Martens, K.J.A., Beljouw, S.P.B. van, Els, S. van der, Vink, J.N.A., Baas, S., Vogelaar, G.A., *et
446 al.* (2019) Visualisation of dCas9 target search in vivo using an open-microscopy framework.
447 *Nat Commun* **10**: 1–11.

448 Maxwell, K.L., Garcia, B., Bondy-Denomy, J., Bona, D., Hidalgo-Reyes, Y., and Davidson, A.R.
449 (2016) The solution structure of an anti-CRISPR protein. *Nat Commun* **7**: 1–5.

450 Mendoza, S.D., Nieweglowska, E.S., Govindarajan, S., Leon, L.M., Berry, J.D., Tiwari, A., *et al.*

451 (2019) A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases.
452 *Nature* 1–5.

453 Mendoza, S.D., Nieweglowska, E.S., Govindarajan, S., Leon, L.M., Berry, J.D., Tiwari, A., et al.
454 (2020) A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases.
455 *Nature* **577**: 244–248.

456 Niu, Y., Yang, L., Gao, T., Dong, C., Zhang, B., Yin, P., et al. (2020) A Type IIF Anti-CRISPR
457 Protein Inhibits the CRISPR-Cas Surveillance Complex by ADP-Ribosylation. *Mol Cell*.

458 Oost, J. Van Der, Westra, E.R., Jackson, R.N., and Wiedenheft, B. (2014) Unravelling the
459 structural and mechanistic basis of CRISPR–Cas systems. *Nat Rev Microbiol* **12**: 479–492.

460 Quax, T.E.F., Voet, M., Sismeiro, O., Dillies, M.-A., Jagla, B., Coppée, J.-Y., et al. (2013)
461 Massive activation of archaeal defense genes during viral infection. *J Virol* **87**: 8419–8428.

462 Ratner, H.K., Sampson, T.R., and Weiss, D.S. (2015) I can see CRISPR now, even when
463 phage are gone: a view on alternative CRISPR-Cas functions from the prokaryotic envelope.
464 *Curr Opin Infect Dis* **28**: 267.

465 Rauch, B.J., Silvis, M.R., Hultquist, J.F., Waters, C.S., McGregor, M.J., Krogan, N.J., and
466 Bondy-Denomy, J. (2017) Inhibition of CRISPR-Cas9 with bacteriophage proteins. *Cell* **168**:
467 150–158.

468 Redding, S., Sternberg, S.H., Marshall, M., Gibb, B., Bhat, P., Guegler, C.K., et al. (2015)
469 Surveillance and processing of foreign DNA by the *Escherichia coli* CRISPR-Cas system. *Cell*
470 **163**: 854–865.

471 Rollins, M.F., Chowdhury, S., Carter, J., Golden, S.M., Miettinen, H.M., Santiago-Frangos, A., et
472 al. (2019) Structure reveals a mechanism of CRISPR-RNA-guided nuclease recruitment and
473 anti-CRISPR viral mimicry. *Mol Cell* **74**: 132–142.

474 Rollins, M.F., Chowdhury, S., Carter, J., Golden, S.M., Wilkinson, R.A., Bondy-Denomy, J., et
475 al. (2017) Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. *Proc
476 Natl Acad Sci* **114**: E5113–E5121.

477 Sashital, D.G., Wiedenheft, B., and Doudna, J.A. (2012) Mechanism of foreign DNA selection in
478 a bacterial adaptive immune system. *Mol Cell* **46**: 606–615.

479 Shao, Q., Hawkins, A., and Zeng, L. (2015) Phage DNA dynamics in cells with different fates.
480 *Biophys J* **108**: 2048–2060.

481 Shashkova, S., and Leake, M.C. (2017) Single-molecule fluorescence microscopy review:
482 shedding new light on old problems. *Biosci Rep* **37**: BSR20170031.

483 Vink, J.N.A., Martens, K.J.A., Vlot, M., McKenzie, R.E., Almendros, C., Bonilla, B.E., et al.
484 (2020) Direct visualization of native CRISPR target search in live bacteria reveals Cascade DNA
485 surveillance mechanism. *Mol Cell* **77**: 39–50.

486 Wang, X., Yao, D., Xu, J.-G., Li, A.-R., Xu, J., Fu, P., et al. (2016) Structural basis of Cas3
487 inhibition by the bacteriophage protein AcrF3. *Nat Struct Mol Biol* **23**: 868–870.

488 Weiss, D., and Sampson, T. (2014) CRISPR-Cas systems: new players in gene regulation and
489 bacterial physiology. *Front Cell Infect Microbiol* **4**: 37.

490 Wiedenheft, B., Duijn, E. van, Bultema, J.B., Waghmare, S.P., Zhou, K., Barendregt, A., et al.
491 (2011) RNA-guided complex from a bacterial immune system enhances target recognition

492 through seed sequence interactions. *Proc Natl Acad Sci* **108**: 10092–10097.

493 Workman, R.E., Pammi, T., Nguyen, B.T.K., Graeff, L.W., Smith, E., Sebald, S.M., *et al.* (2020)
494 A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression. *bioRxiv*
495 .

496 Xue, C., Zhu, Y., Zhang, X., Shin, Y.-K., and Sashital, D.G. (2017) Real-time observation of
497 target search by the CRISPR surveillance complex Cascade. *Cell Rep* **21**: 3717–3727.

498 Young, J.C., Dill, B.D., Pan, C., Hettich, R.L., Banfield, J.F., Shah, M., *et al.* (2012) Phage-
499 induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in
500 *Streptococcus thermophilus*. *PLoS One* **7**.

501 **Figure Legends**

502 **Figure 1. Live-cell fluorescence imaging of *P. aeruginosa* PA14 expressing type I-F Cas**

503 **protein reporters from endogenous locus**

504 (a) Fluorescence microscopy of wild-type PA14 expressing Csy1-sfCherry, Csy4-sfCherry, or
505 Cas3-sfCherry. (b) Comparison of fluorescence in cells expressing Csy1-sfCherry, Csy4-
506 sfCherry, or Cas3-sfCherry at low cell density ($OD_{600} = 0.2 - 0.3$) or high cell density ($OD_{600} = 1 -$
507 1.5). (c) sfCherry fluorescence (AU) in wild-type cells grown to high cell density expressing
508 sfCherry-tagged Csy1, Csy4, or Cas3. More than 200 cells from each genotype were analyzed
509 from two independent experiments. Means and standard deviations are shown. The statistical
510 significance was calculated using unpaired t-test analysis (** p<0.0001). (d) Fluorescence
511 microscopy of PA14 expressing Csy1-sfCherry (in dCas3 background) or dCas3-sfCherry with a
512 JBD18 prophage. sfCherry fluorescence shown in raw as well as deconvolved images. Scale bar,
513 1 μ m.

514 **Figure 2. Csy complex is nucleoid-enriched in a crRNA-dependent manner while Cas3 is**

515 **cytoplasmic**

516 (a) A model for DNA damage induced nucleoid compaction. (b) Fluorescence microscopy of
517 nucleoid compacted wild-type or Δ crRNA cells expressing Csy1-sfCherry or Csy4-sfCherry and
518 nucleoid compacted wild-type cells expressing Cas3-sfCherry. Fluorescence intensity map
519 plotted against the long cell axis are shown. * indicates which cell is plotted in the map. (c)
520 Fluorescence microscopy of nucleoid compacted Δ Cas-crRNA cells expressing Csy1-sfCherry or
521 Csy4-sfCherry from a plasmid. (d) Fluorescence microscopy of nucleoid compacted Δ crRNA cells
522 expressing Csy1-sfCherry and synthetic crRNAs. Scale bars, 1 μ m.

523 **Figure 3. AcrlF2 but not AcrlF1 or AcrlF3 blocks nucleoid localization of the Csy complex**

524 Fluorescence microscopy of nucleoid compacted wild-type cells producing Csy1-sfCherry and
525 expressing anti-CRISPR proteins AcrlF1, AcrlF2 or AcrlF3 from (a) a plasmid or (b) a prophage.

526 **Figure 4. Phage infection does not affect Csy localization**

527 (a) Fluorescence microscopy images of DMS3 phages with capsid labelled with GpT-
528 mNeonGreen and DNA labelled with DAPI. Fluorescence microscopy of Csy1-sfCherry producing
529 cells (in dCas3 background) infected with labelled phages (b) DMS3 (0 protospacers) or (c) or
530 DMS3m (1 protospacer). Scale bar, 1 μ m.

531 **Figure 5. Nucleoid localization is conserved for SpyCas9**

532 Fluorescence microscopy of nucleoid compacted *P. aeruginosa* PA01 cells producing Cas9-
533 sgRNA, ApoCas9, or Cas9-sgRNA co-expressed with anti-CRISPR protein AcrlIA4.
534 Fluorescence intensity map plotted against the long cell axis are shown. Scale bar, 1 μ m.

535 **Figure 6. A model for subcellular organization of Type I and Type II CRISPR-Cas systems**

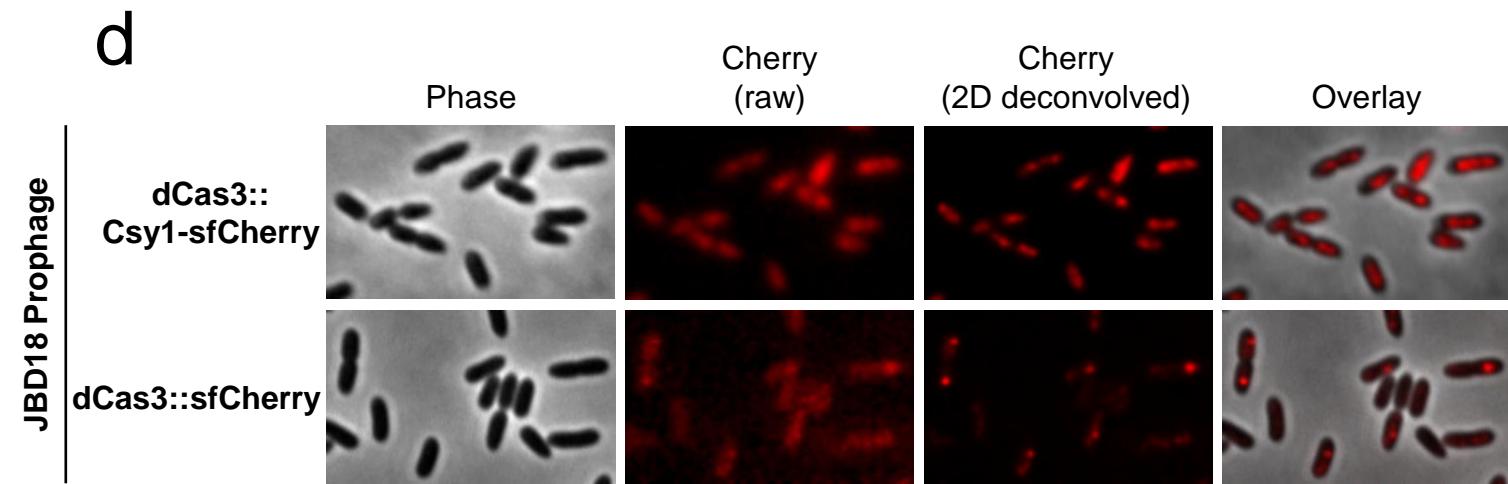
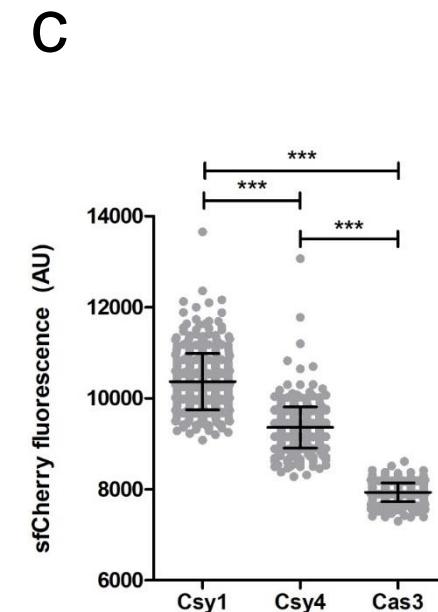
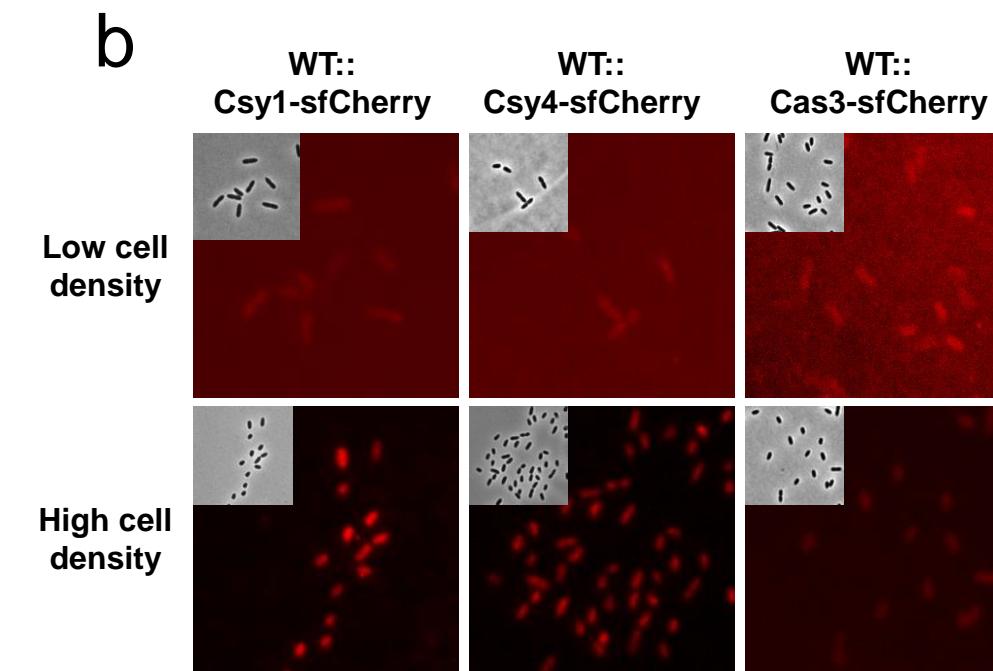
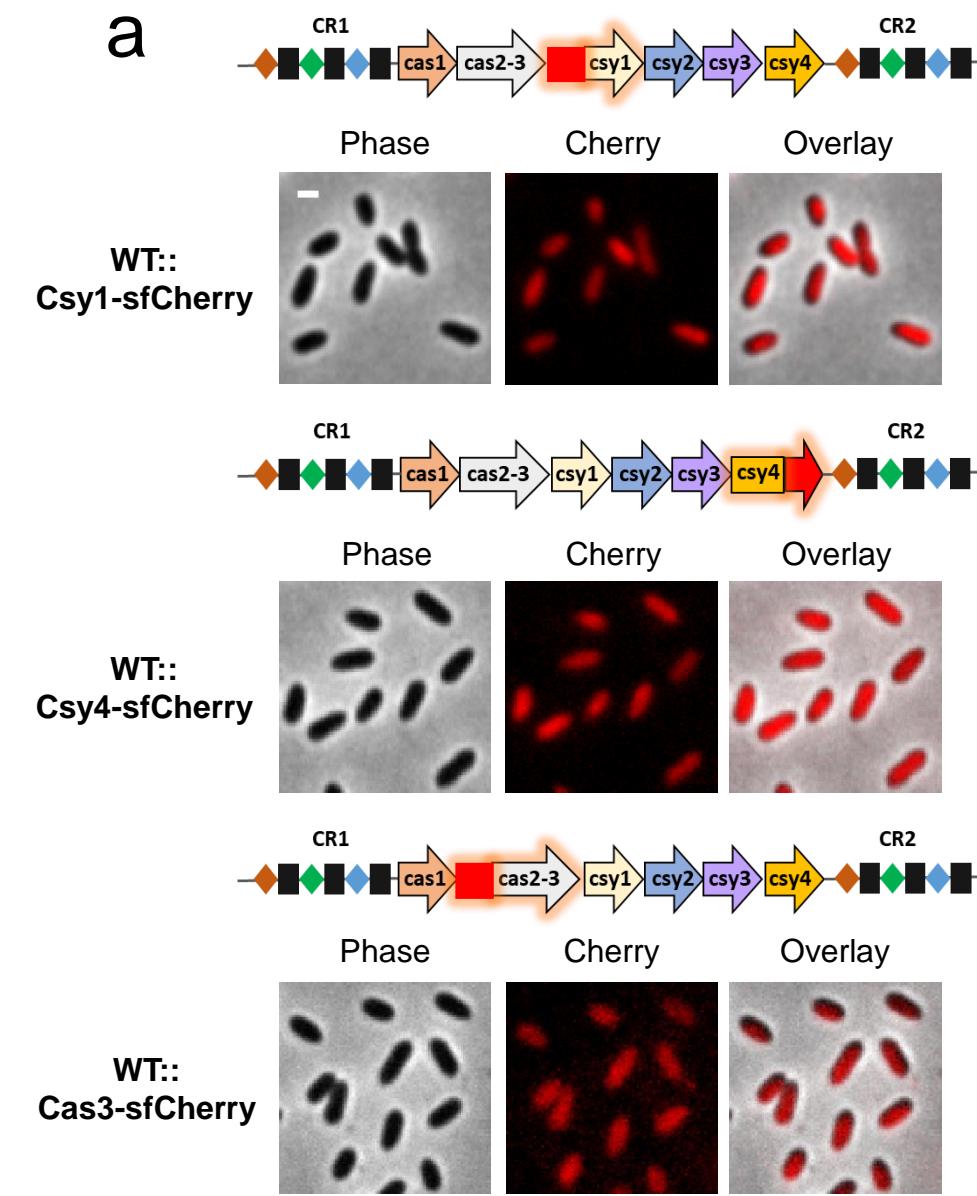
536 **in bacteria**

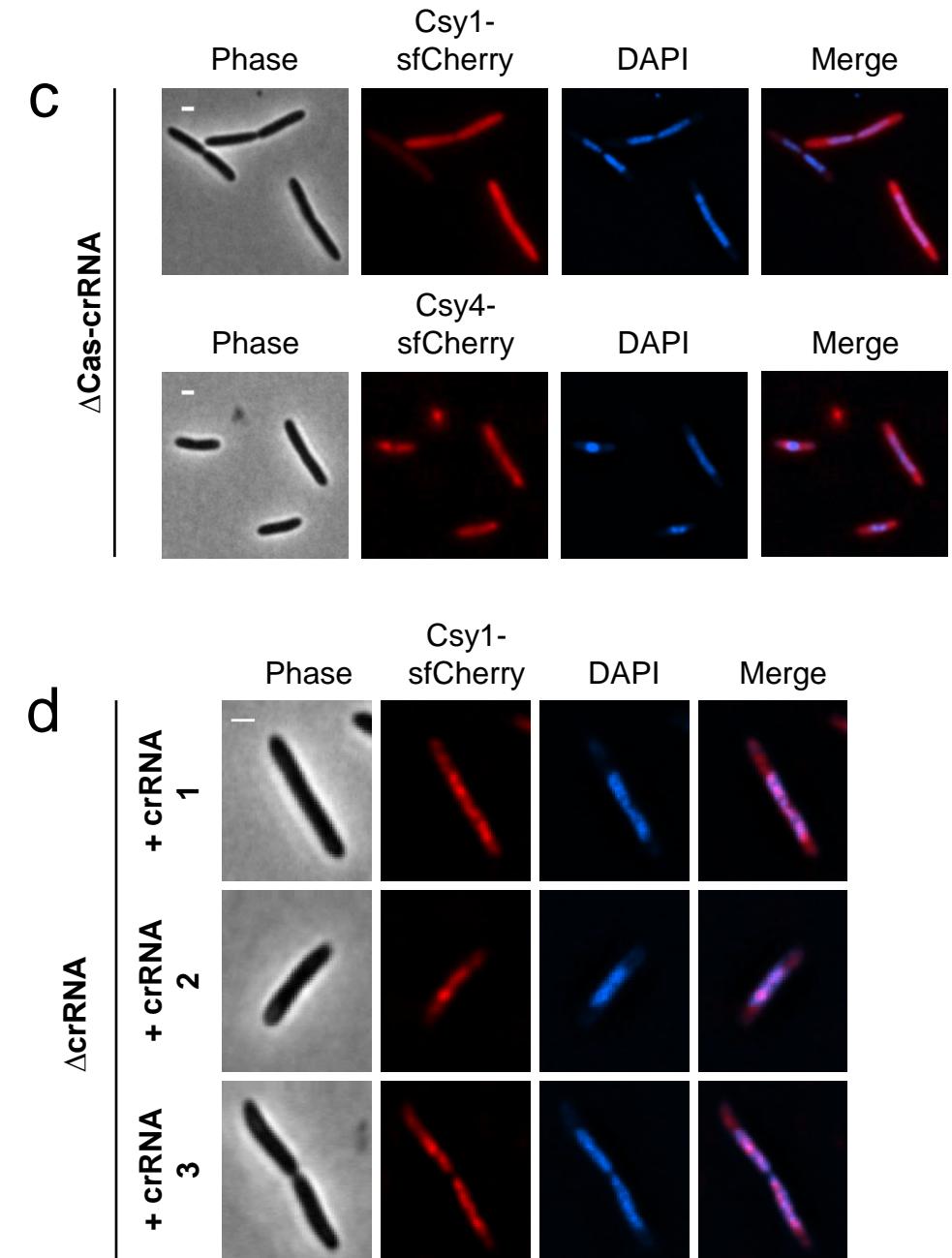
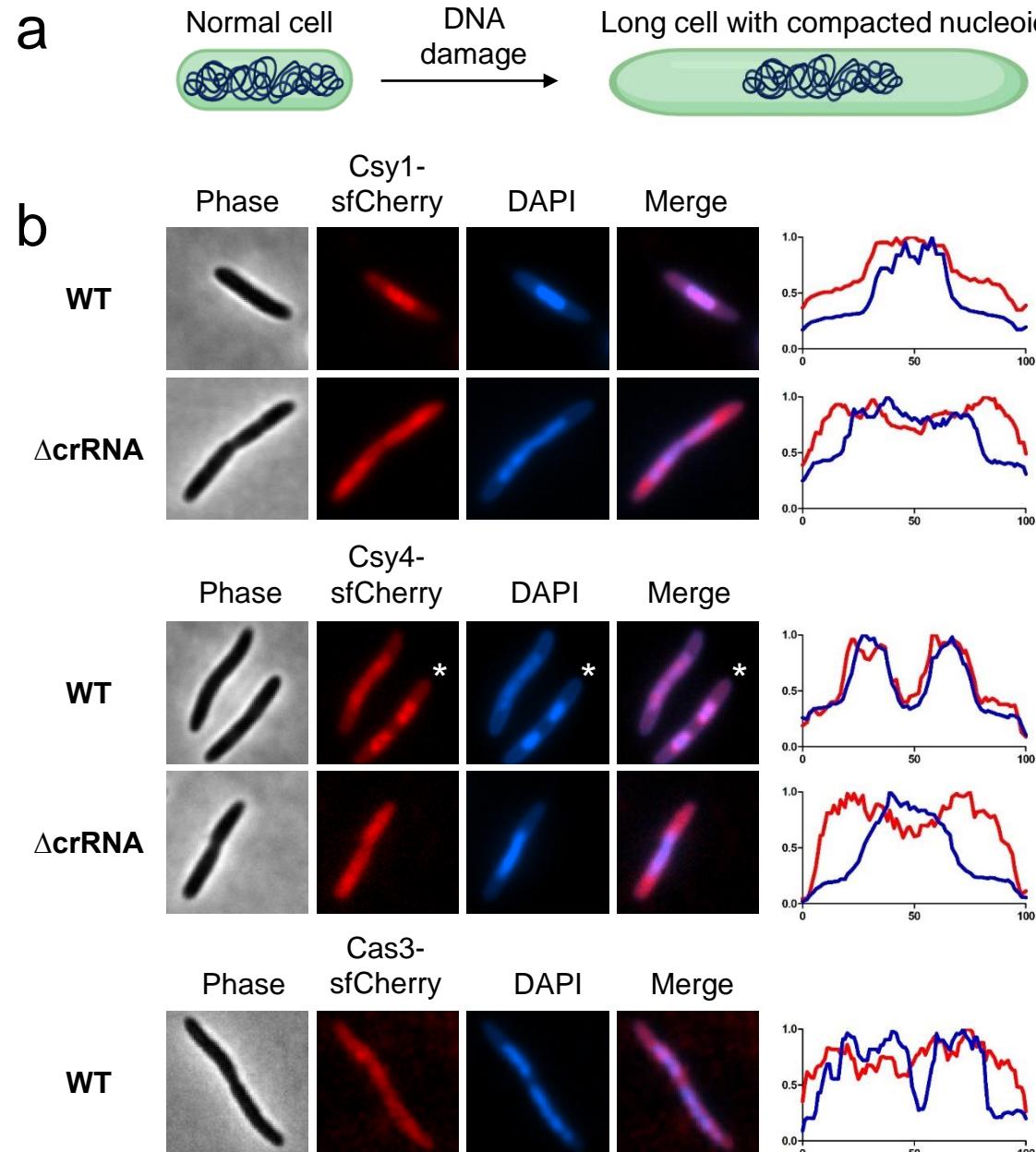
537 The subcellular localization of CRISPR-Cas systems are presented for Type I (left panel) and
538 Type II (right panel) systems.

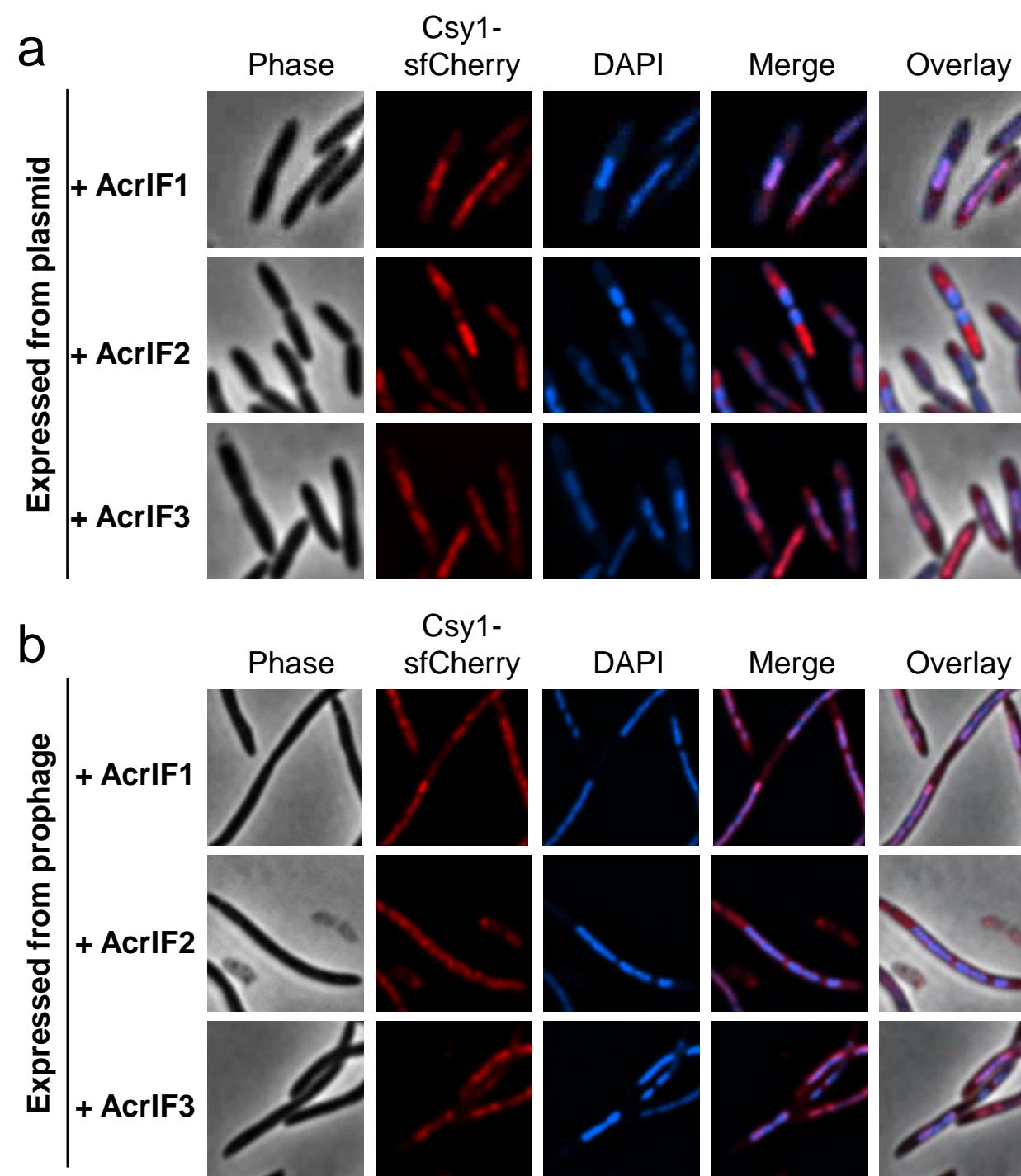
539 **Figure S1. sfCherry-tagged endogenous type I-F reporters are functional**

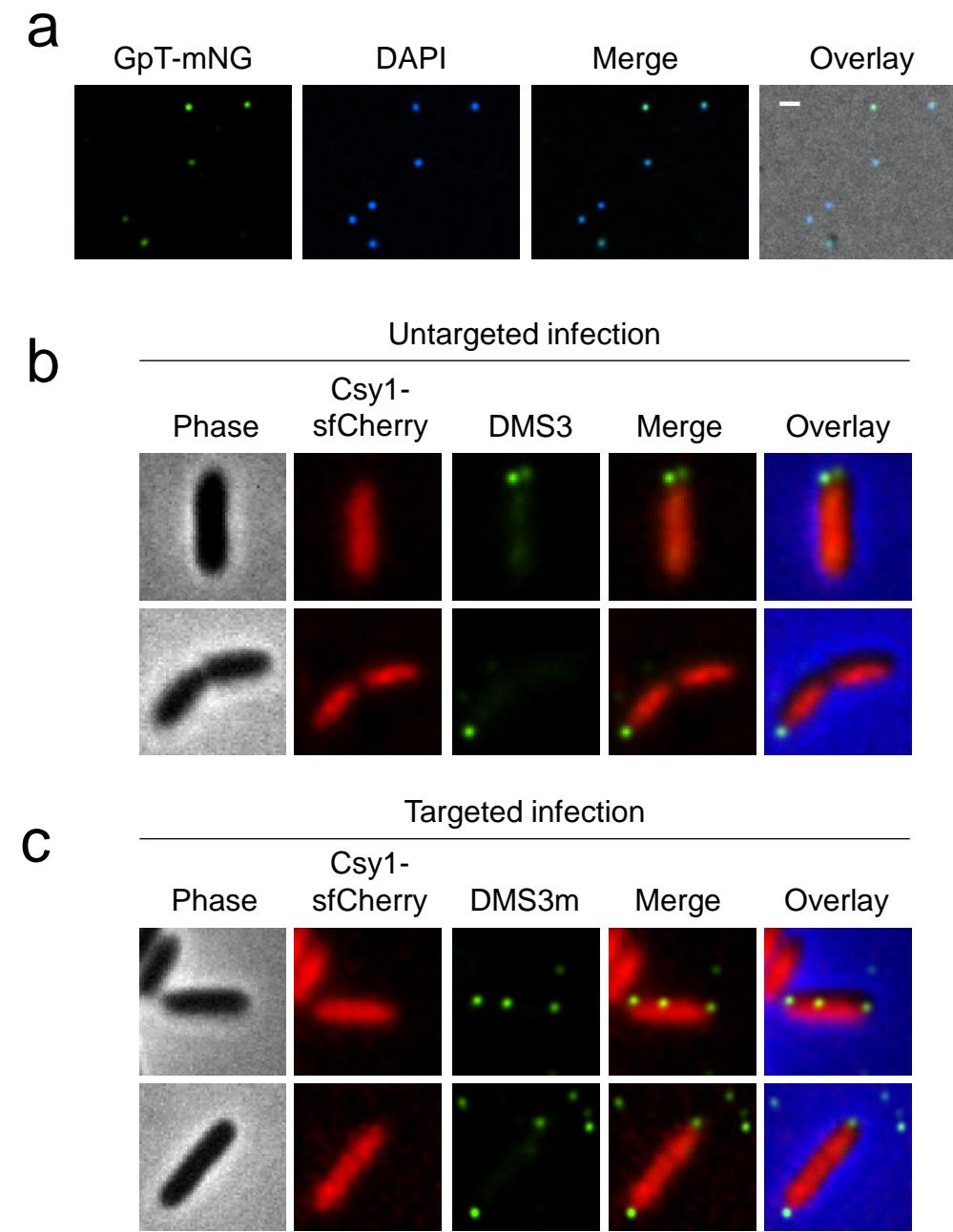
540 A spot titration of DMS3, DMS3m and DMS3m engineered phages that expresses Acr proteins
541 AcrIF1, AcrIF2, AcrIF3 or AcrIF4 on sfCherry-tagged, WT PA14, and crRNA deletion strains.

542 **Fig. S2. Nucleoid enrichment of Csy complex is not due to DNA damage**





543 Fluorescence microscopy of wild-type cells expressing Csy1-sfCherry, Csy4-sfCherry or Cas3-
544 sfCherry in chloramphenicol-treated nucleoid compacted cells.



545 **Fig. S3. AcrIF11 blocks nucleoid localization of the Csy complex**


546 Fluorescence microscopy of nucleoid compacted wild-type cells producing Csy1-sfCherry and
547 expressing anti-CRISPR proteins AcrIF11 from a plasmid.


548 **Fig. S4. Phage infection does not modulate Csy1 localization**

549 Fluorescence microscopy Csy1-sfCherry (in dCas3 background) or dCas3-sfCherry expressing
550 cells infected with JBD18.

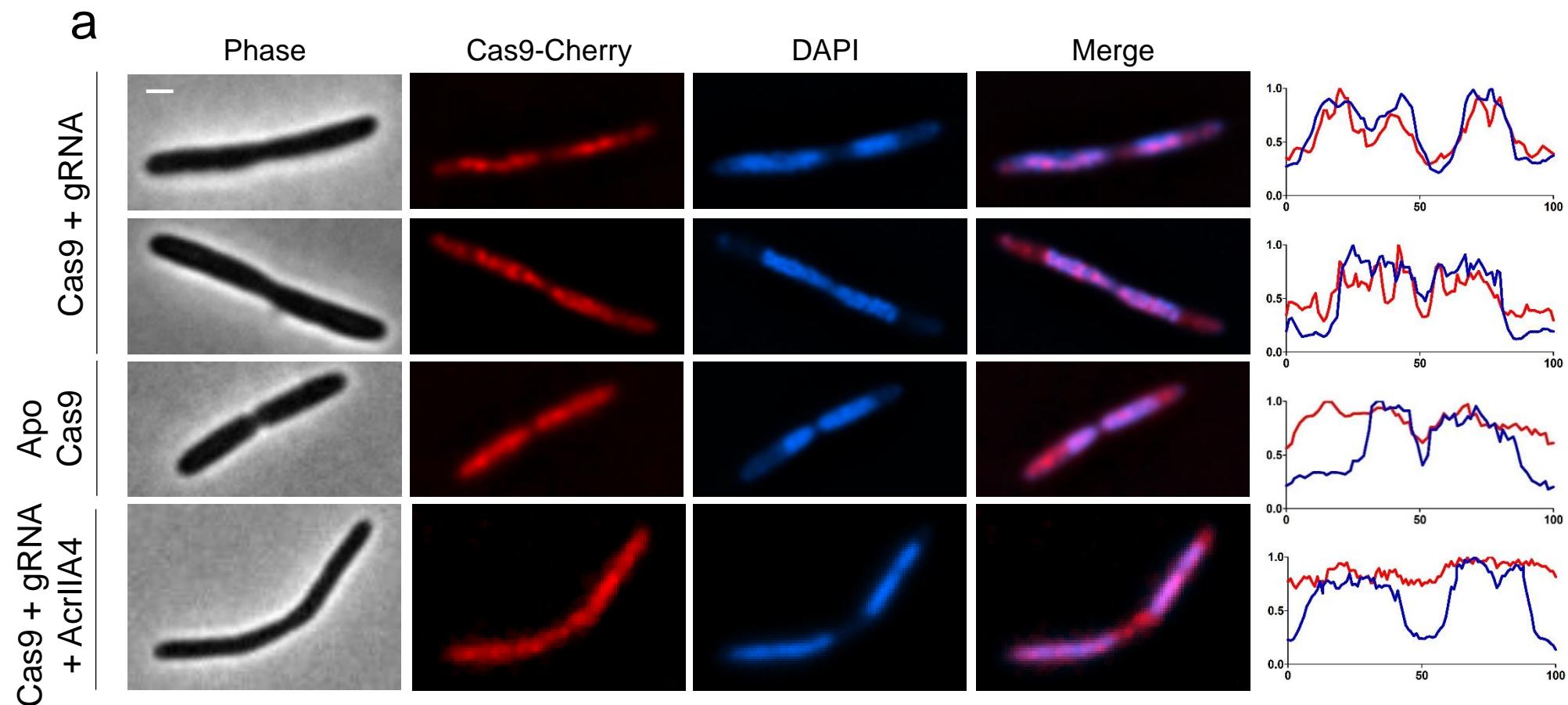
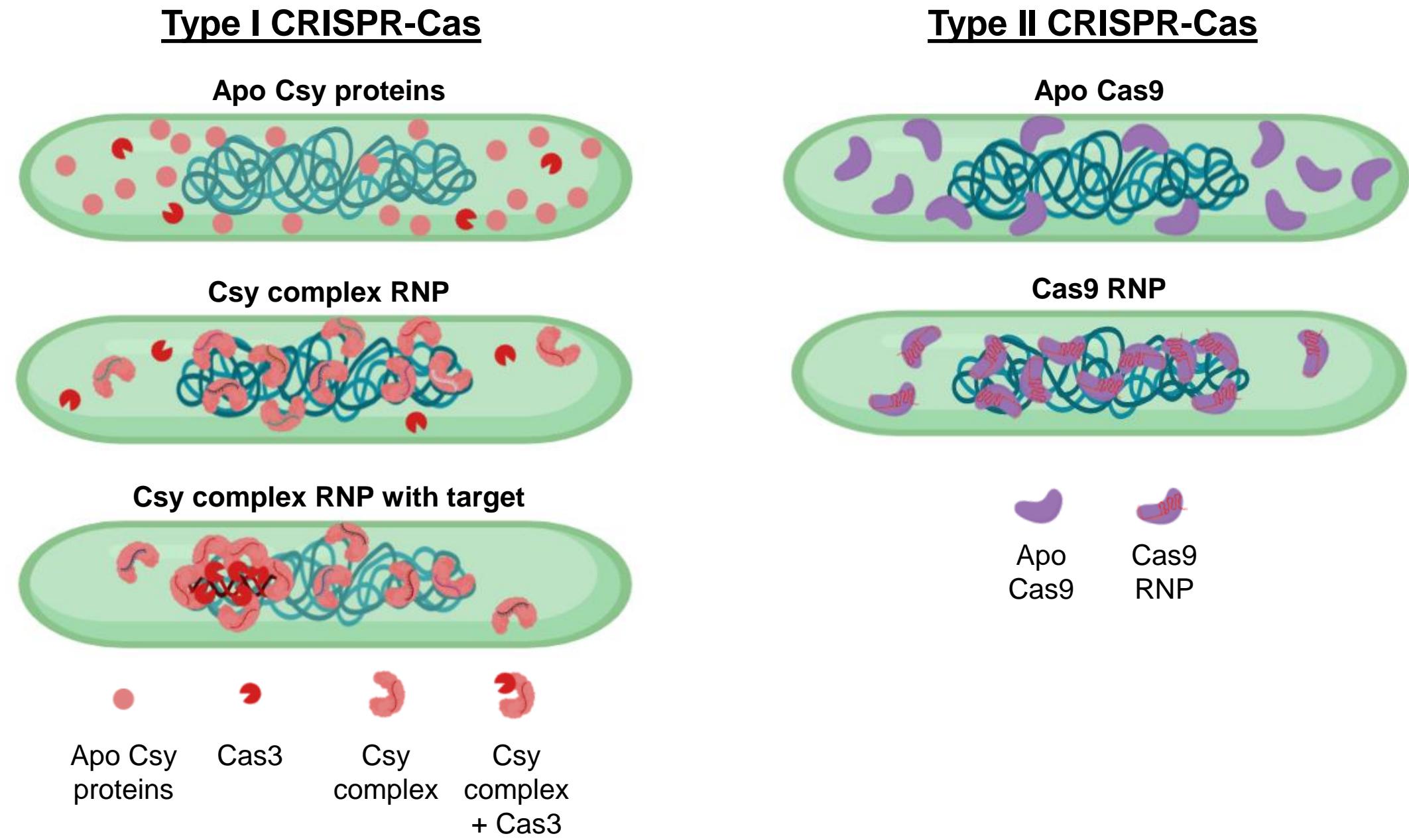
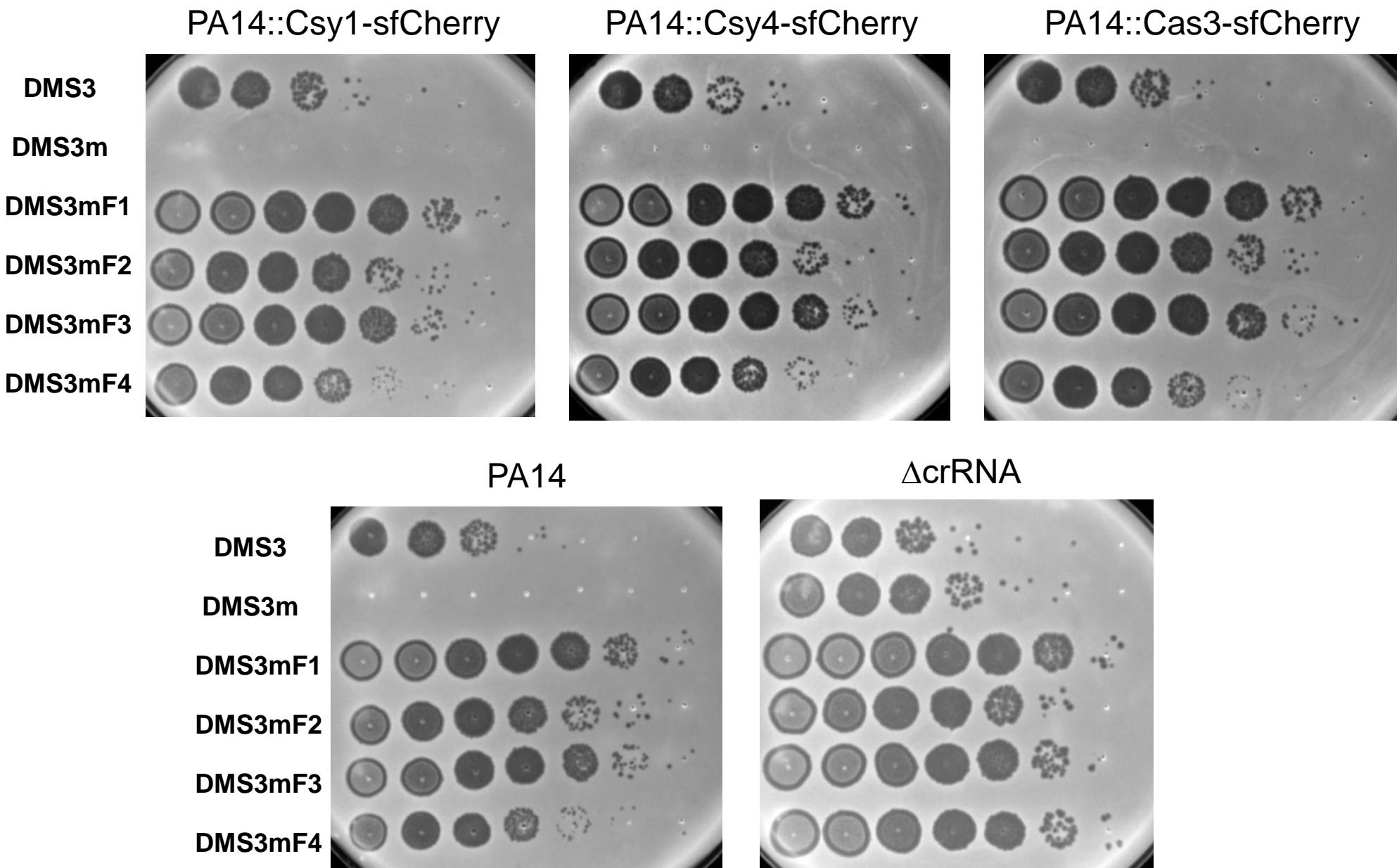
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

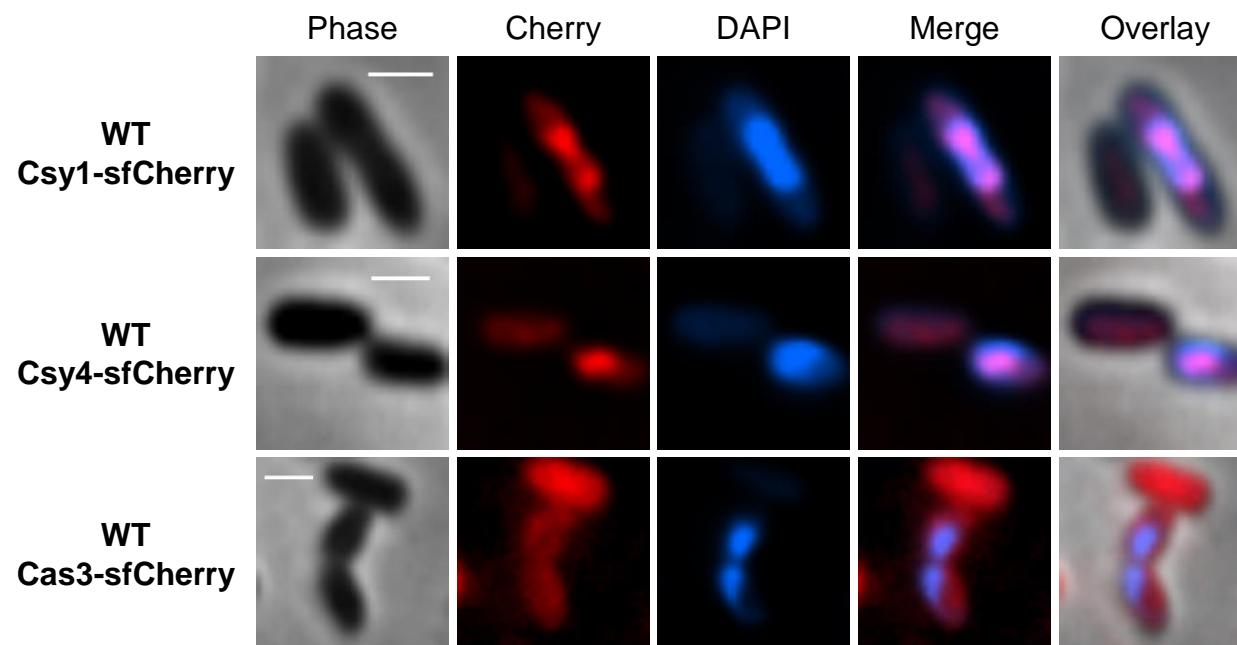

Figure 6

Figure S1

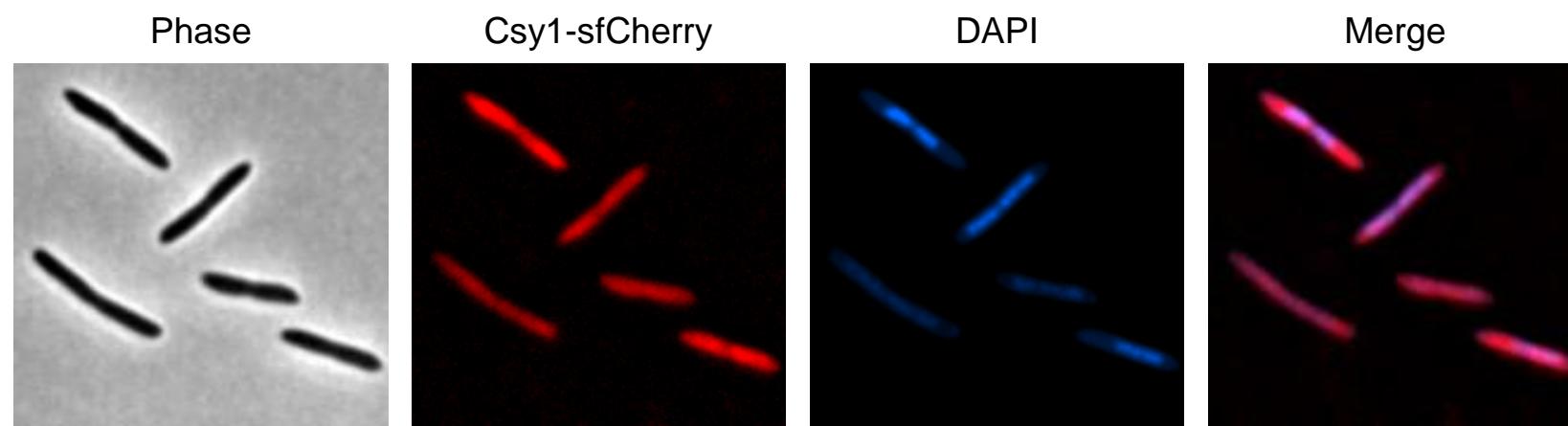


Figure S2

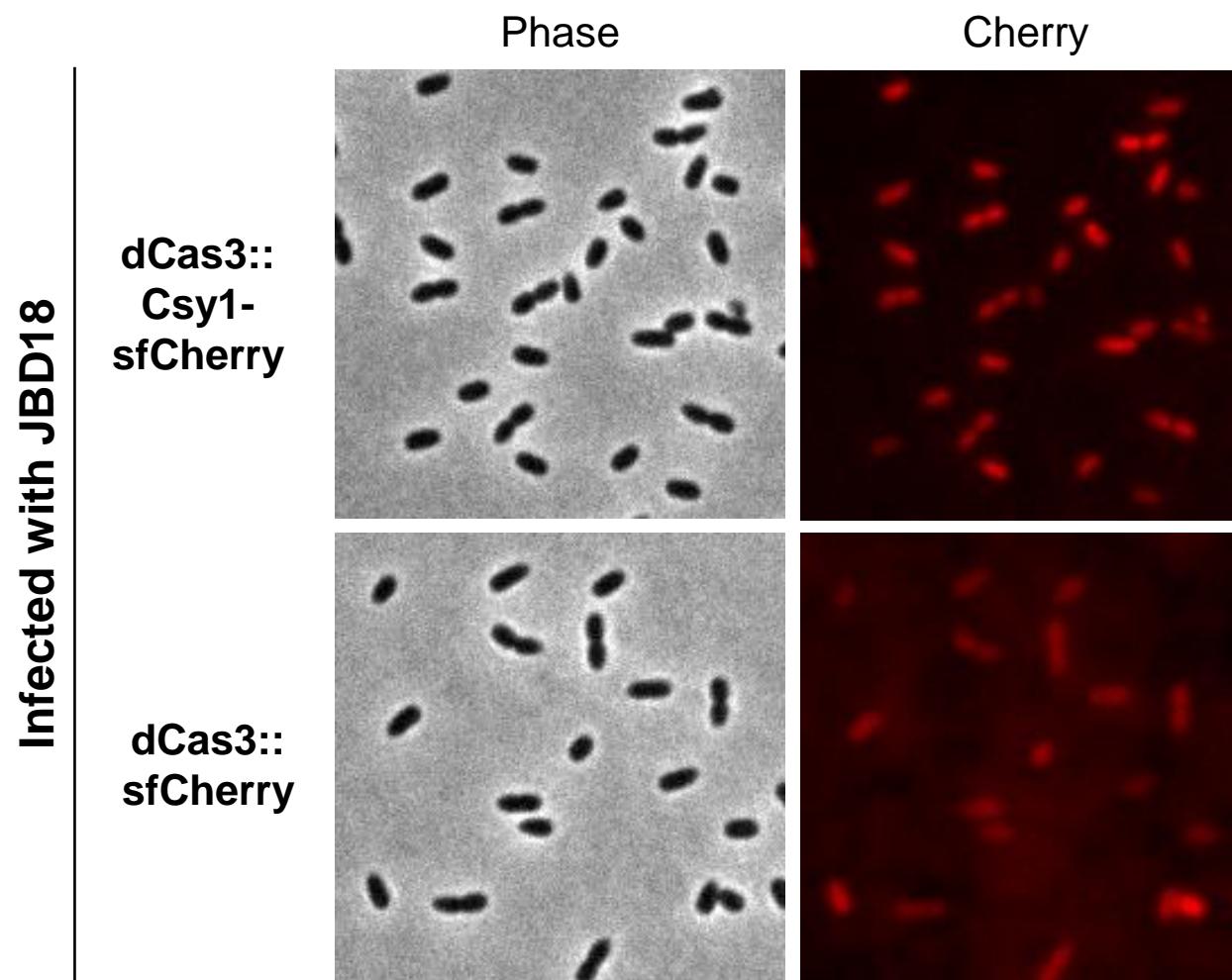


Figure S3

AcrIF11 expressed from plasmid

Figure S4

