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Abstract Hypotheses suggest speech segmentation is executed by a hierarchy of oscillators in12

auditory cortex, with theta (3-7 Hz) rhythms playing a key role by phase-locking to syllable13

boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip14

below cortical theta frequencies (down to 1 Hz), requires “flexible" theta oscillators, whose neural15

implementation remains unknown. Using biophysical computational models, we found that the16

flexibility of phase-locking depends on the types of hyperpolarizing currents that pace neural17

oscillators. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these18

inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay19

further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic20

interaction between intrinsic currents, not replicated by synaptic currents at similar timescales. Our21

results suggest synaptic and intrinsic inhibition contribute to regular and flexible phase-locking in22

neural oscillators, respectively.23

24

Introduction25

How the cortex derives robust representations of linguistic objects remains a challenging problem.26

Relying on both temporally proximal and distal cues about speech rate and phonology, the brain27

decodes the speech stream in parallel at multiple levels of abstraction, producing a hierarchy28

of phonemes, syllables, words, and phrases (Christiansen and Chater, 2016), and predicting the29

timing and salience of upcoming speech (Dilley and Pitt, 2010; Dilley et al., 2010; Brown et al.,30

2011; Baese-Berk et al., 2014; Brown et al., 2015). Psychophysical and neurophysiological evidence31

suggests that this sampling, parsing, and prediction rely in part on a hierarchy of brain rhythms32

(Ahissar et al., 2001; Luo and Poeppel, 2007; Nourski et al., 2009; Hertrich et al., 2012; Peelle33

et al., 2012; Doelling et al., 2014; Ding et al., 2016; Riecke et al., 2017; Zoefel et al., 2018) – periodic34

fluctuations in the activity of neuronal populations (Buzsaki, 2006) – that mirror and align both with35

the temporal structure of speech and with each other (Lakatos et al., 2005; Schroeder and Lakatos,36

2009; Gross et al., 2013; Henry et al., 2014;Mai et al., 2016; Pefkou et al., 2017).37

Conventional models of speech processing (Marslen-Wilson, 1987; Luce and CONOR, 2005;38

Stevens, 2005) suggest that decoding proceeds by matching chunks of speech of different dura-39
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tions with stored linguistic memory patterns or templates. Recent oscillation-based models have40

postulated that this template-matching is facilitated by a preliminary segmentation step (Ghitza,41

2011; Giraud and Poeppel, 2012; Ghitza, 2016), which determines candidate speech segments for42

template matching, in the process tracking speech speed and allowing the adjustment (within limits)43

of sampling and segmentation rates (Bosker and Ghitza, 2018; Penn et al., 2018); segmentation44

plays a key role in explaining a range of counterintuitive psychophysical data that challenge con-45

ventional models of speech perception (Ghitza and Greenberg, 2009; Ghitza, 2012, 2014, 2016). A46

number of conceptual hypotheses (Schroeder et al., 2008; Ghitza, 2011; Giraud and Poeppel, 2012;47

Arnal and Giraud, 2012; Ghitza, 2013; Lewis and Bastiaansen, 2015;Morillon and Schroeder, 2015)48

suggest that ongoing cortical rhythms, entrained to the regular acoustic features of the speech49

stream that indicate the boundaries between linguistic units (Rosen, 1992; Hirst and Di Cristo, 1998;50

Yang, 2007; Yang et al., 2014), effect this preliminary grouping of auditory input into a hierarchy of51

segments, each of which is subject to further phonemic, syntactic, and semantic processing. An52

important point (Schroeder et al., 2008) is that the frequencies of endogenous rhythms observed53

in auditory cortex – which include � (∼1-4 Hz), � (∼4-8 Hz), and �/
 (∼15-60 Hz) frequencies (Lakatos54

et al., 2005) – have timescales that mirror the timescales of linguistic units – namely, words and55

phrases (∼250-2000 ms), syllables (∼100-250 ms), and phonemes (∼20-100 ms, Selkirk (1980)).56

The hierarchical organization of auditory cortical brain rhythms, with �/
 rhythms nested within57

certain phases of the � cycle, and � rhythms in turn nested within certain phases of the � cycle58

(Lakatos et al., 2005), makes rhythm phase information consistent with the hierarchy of linguistic59

segmentation.60

While speech is a multiscale phenomenon, the modulation spectrum of continuous speech is61

dominated by syllabic rate amplitude fluctuations (Ohala, 1975; Chandrasekaran et al., 2009; Elliott62

and Theunissen, 2009; Ding et al., 2017), restricted by themotor physiology of the speech apparatus63

to �/� frequencies (∼1-9 Hz, Ohala (1975); Chandrasekaran et al. (2009); Elliott and Theunissen64

(2009); Ding et al. (2017)), and critical for speech comprehension (Elliott and Theunissen, 2009;65

Ghitza, 2012; Drullman et al., 1994; Miller and Licklider, 1950; Huggins, 1964; Stilp et al., 2010;66

Ghitza and Greenberg, 2009). Syllabic frequencies, especially in the � range, are central in auditory67

processing, as well: attentional entrainment to auditory rhythms operates best over the �/� range68

(Lakatos et al., 2013), perhaps supported by an active segmentation mechanism that operates on69

a timescale of ∼140-250 ms (∼4-7 Hz) to process sound input in syllable-sized chunks (Teng et al.,70

2017), and �-frequency speech-brain entrainment is particularly relevant for speech processing71

(Ahissar et al., 2001; Luo and Poeppel, 2007; Nourski et al., 2009; Hertrich et al., 2012; Peelle72

et al., 2012; Doelling et al., 2014; Ding et al., 2016), with recent experiments suggesting a causal73

role (Riecke et al., 2017;Wilsch et al., 2017, 2018; Zoefel et al., 2018). Cortical � rhythms – especially74

prominent in the spontaneous activity of primate auditory cortex (Lakatos et al., 2005) – seem to75

perform an essential function in syllable segmentation (Ghitza and Greenberg, 2009; Ghitza, 2014,76

2012; Doelling et al., 2014) by marking the high energy �-timescale features of speech as putative77

syllable boundaries (Ghitza, 2011, 2012;Hyafil et al., 2015; Ten Oever and Sack, 2015). Incorporating78

the centrality of the � rhythm as “master" of the oscillatory hierarchy, seminal functional (Ghitza79

and Greenberg, 2009) and computational (Hyafil et al., 2015; Räsänen et al., 2018) models have80

proposed that putative syllables segmented by � rhythmic circuits are encoded by spiking in 
81

oscillatory circuits, while �-rhythmic circuits may overlay �-timescale prosodic information on this82

syllabic parse (Ghitza, 2017).83

Syllable lengths vary over syllables, speakers, and languages, within a restricted range of “ac-84

ceptable" syllable lengths (Ghitza, 2014). This variability places particular demands on the cortical85

� oscillators tasked with syllabic segmentation. To track syllable boundaries occurring quasi-86

rhythmically, i.e. at variable intervals, the auditory cortical � oscillator must be “flexible" – able to87

lock, cycle-by-cycle, to a quasi-rhythmic input with a broad range of instantaneous frequencies,88

including frequencies below the oscillator’s intrinsic frequency (Ghitza, 2011, 2012). The canonical89

implementation of this flexible oscillator is a voltage controlled oscillator in a phase-locked loop;90
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the mechanisms by which neural circuits implement oscillators exhibiting flexibility in phase-locking91

remain largely unexplored. If existing phenomenological models provided a complete explanation92

of this capability, then any � oscillator should be able to perform this function. We show here,93

however, that the subtleties of the biophysical mechanisms giving rise to cortical � oscillations can94

make a difference in their flexibility.95

The major functional implication that concerns us is segmentation. For our purposes, segmen-96

tation refers to the ability of an oscillator to produce an output only during certain (high-energy)97

segments of a periodic or quasi-rhythmic input; and furthermore to produce output during every98

such segment. These high-energy segments represent syllable boundaries (occurring during the99

high-energy vocalic portion of the syllable). Toward this end, we explored the ability of biophysical100

computational models of neural � oscillators to exhibit phase-locked spiking to strong periodic101

and quasi-rhythmic inputs having a range of input frequencies. Our � oscillators were paced102

by (i) �-timescale synaptic inhibition, or (ii) �-timescale subthreshold oscillations (STOs) resulting103

from intrinsic �-timescale hyperpolarizing currents, or (iii) both. Half also included intrinsic “super-104

slow" (�-timescale) hyperpolarizing currents. While much is known about phase-locking in neural105

oscillators (Ermentrout, 1981, 1996; Kopell and Ermentrout, 2002; Achuthan and Canavier, 2009;106

Canavier and Achuthan, 2010), few studies have examined the strong forcing regime, in which input107

pulses are strong enough to elicit spiking; little is known about how oscillator parameters influence108

phase-locking to inputs much slower or faster than an oscillator’s intrinsic frequency; and few109

published studies explore oscillators exhibiting intrinsic outward currents on multiple timescales.110

While the ability of our models to phase-lock to inputs faster than their intrinsic frequency111

was uniformly high and dependent on input strength, our results suggest that different types of112

inhibitory currents dramatically change the ability of � oscillators to phase-lock to inputs slower113

than their intrinsic frequency over a range of input strengths. The central principle revealed by our114

models is that frequency flexibility is enabled by a buildup of outward (inhibitory) current during115

each input, which is sufficiently long-lasting to silence spiking during the period between successive116

inputs. Super-slow currents, having a timescale slower than that of intrinsic periodic spiking, enabled117

this buildup for oscillators paced by either synaptic inhibition or STOs. However, STOs interacted118

with these adapting currents synergistically to enable extremely flexible spike phase-locking that119

was absent from oscillators paced by synaptic inhibition. Thus, while inhibition-based oscillators120

phase-locked to rhythms within a relatively restricted frequency range (Cannon and Kopell, 2015;121

Sherfey et al., 2018a), � oscillators whose dynamics arose from a complex interplay of intrinsic122

currents in single cells (Carracedo et al., 2013) exhibited more flexible phase-locking. The features123

that facilitate flexible phase-locking come together in a single-compartment Hodgkin-Huxley model,124

reproducing in vitro data from layer 5 pyramidal cells with a �-timescale resonance and a unique125

pattern of �-nested �-rhythmic spiking (Carracedo et al., 2013). Our computational model of these126

cells exhibited spiking entrainment to periodic input pulses with frequencies ranging over a broad127

interval, as well as to more realistic quasi-rhythmic inputs. The pattern of spike phase-locking128

observed in this oscillator – resulting from a buildup of outward current over the time course of129

each input – may contribute to the ability of auditory circuits to effectively segment and parse130

quasi-rhythmic signals, such as speech.131

Methods132

All simulations were run on the MATLAB-based programming platform DynaSim (Sherfey et al.,133

2018b), a framework specifically designed by our lab for efficiently prototyping, running, and134

analyzing simulations of large systems of coupled ordinary differential equations, enabling in135

particular evaluation of their dynamics over large regions of parameter space. DynaSim is open-136

source and all models will be made publicly available using this platform.137
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Table 2. Equilibrium Voltages.
RS FS

E
Na

40 50

E
K

-80 -95

E
leak

-65 -70

E
NaP

50 –

E
Ca

120 –

E
RS→FS 0

E
FS→RS -95

Model equations138

Our models consisted of at most two cells, a regular spiking (RS) pyramidal cell and an inhibitory139

interneuron with a timescale of inhibition like that observed in somatostatin-positive interneurons140

(SOM). Each cell was modeled as a single compartment with Hodgkin-Huxley dynamics. In our RS141

model, the membrane currents consisted of fast sodium (I
Na
), delayed-rectifier potassium (I

KDR
),142

leak (I
leak
), slow potassium or m- (I

m
), and persistent sodium (I

NaP
) currents taken from a model of143

a guinea-pig cortical neuron (Gutfreund et al., 1995), and calcium (I
Ca
) and super-slow potassium144

(I
KSS
, calcium-activated potassium in this case) currents with dynamics from a hippocampal model145

(Traub et al., 1991). The voltage V (t) was given by the equation146

C dV
dt

= I
app

− I
Na
− I

KDR
− I

leak
− I

m
− I

NaP
− I

Ca
− I

KSS
− I

inh

where the capacitance C = 2.7 reflected the large size of deep-layer cortical pyramidal cells, and147

I
app
, the applied current, was given by148

I
app
(t) = g

app

[(

t
�
trans

�{t≤�trans}(t) + �{t>�trans}(t)
)

+ p
noise

W (t)
]

with the transition time �
trans

= 500ms, the noise proportion p
noise

= 0.25, and W (t) a white noise149

process. For SOM cells, the membrane currents consisted of fast sodium (I
Na,SOM

), delayed-rectifier150

potassium (I
KDR ,SOM), and leak (Ileak,SOM) currents. The voltage V (t) was given by the equation151

C
SOM

dV
dt

= I
app,SOM

− I
Na,SOM

− I
KDR ,SOM − Ileak,SOM − Iexc

where C
SOM

= 0.9 and I
app,SOM

, the applied current, is constant in time. The form of each current is152

given in Table 1; equilibrium voltages are given in Table 2; and conductance values for all six models153

that will be introduced in Results: Modeling cortical � oscillators (see Figure 1) are given in Table 3.154

The dynamics of activation variable x (ranging over ℎ, m
KDR
, n, m

NaP
, s, and q in Table 1) were given155

either in terms of its steady-state value x∞ and time constant �x by the equation156

dx
dt

=
x∞ − x
�x

,
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Table 3. Maximal Conductances.
Model M MI I IS MIS MS

g
Na

125 125 125 125 125 125

g
KDR

54 54 54 54 54 54

g
leak

0.31 0.27 0.78 0.78 0.27 0.27

g
m

1.4472 1.4472 0 0 1.4472 1.4472

g
NaP

0.4307 0.4307 0.4307 0.4307 0.4307 0.4307

g
Ca

0.54 0.54 0.54 0.54 0.54 0.54

g
KSS

0 0 0 0.1512 0.1512 0.1512

g
app

-7.1 -6.5 -7.6 -10.5 -9.8 -9.2

g
Na,SOM

0 100 100 100 100 0

g
KDR ,SOM 0 80 80 80 80 0

g
leak,SOM

0 0.1 0.1 0.1 0.1 0

I
app,SOM

0 0.95 0.95 0.95 0.95 0

g
RS→SOM 0 0.075 0.075 0.075 0.075 0

g
SOM→RS 0 0.15 0.15 0.15 0.15 0

Table 4. Activation variable dynamics.
ℎ �ℎ(V ) = 0.07 exp (−(V + 30)∕20) �ℎ(V ) = (exp (−V ∕10) + 1)

−1

m
Na

�m(V ) = −
V +16

10(exp(−(V +16)∕10)−1)
�m(V ) = 4 exp (−(V + 41)∕18)

m
KDR

�m(V ) = −0.01
V +20

exp(−(V +20)∕10)−1
�m(V ) = 0.125 exp (−(V + 30)∕80)

n n∞(V ) =
[

1 + exp (−(V + 35)∕10)
]−1 �n(V ) =

1000∕(3.3∗3(34−22)∕10)

exp
(

V +35
40

)

+exp
(

−(V +35)
20

)

m
NaP

m∞(V ) =
[

1 + exp (−(V + 40)∕5)
]−1 �m = 5

s �s(V ) = 1.6 (1 + exp (−0.072(V + 65))) �s(V ) = 0.02
V +51.1

exp
(

V +51.1
5

)

−1

q �q(CCa) = min
(

0.1C
Ca
, 1

)

�q = 0.002
ℎ
SOM

ℎ∞(V ) =
[

1 + exp ((V + 58.3)∕6.7)
]−1 �ℎ(V ) = 0.225 + 1.125

[

1 + exp ((V + 37)∕15)
]−1

m
KDR ,SOM m∞(V ) =

[

1 + exp ((−V − 27)∕11.5)
]−1 �m(V ) = 0.25 + 4.35

[

1 + exp (− |V + 10| ∕10)
]−1 .

or in terms of its forward and backward rate functions, �x and �x, by the equation157

dx
dt

= (1 − x)�x − x�x.

Only the expressions for m
Na
differed slightly:158

m
Na
(V ) = �m∕

(

�m + �m
)

, m
Na,SOM

(V ) =
[

1 + exp ((−V − 38)∕10)
]−1 .

Steady-state values, time constants, and forward and backward rate functions are given in Table 4.159

For numerical stability, the backwards and forwards rate constants for q and s were converted to160

steady-state values and time constants before integration, using the equations161

x∞ = �x�x, �x =
(

�x + �x
)−1 .

The dynamics of the synaptic activation variable s were given by the equation162

ds
dt
= − s

�
D

+ 1 − s
�
R

(

1 + tanh
(V

pre

10

))

,

with time constants �
R
= 0.25ms, �

D,RS→FS = 2.5ms, and �D,FS→RS = 50ms.163

F-I curves164

For these curves, we varied the level of tonic applied current I
app
over the range from 0 to 200 Hz,165

in steps of 1 Hz. We measured the spiking rate for the last 5 seconds of a 6 second simulation,166

omitting the transient response in the first second.167
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Table 5. Varied pulse input (IVP) parameters (see Methods: Phase-locking to rhythmic and quasi-rhythmic inputs:
Inputs for details).

Input Bandwidth
(

= f
high

− f
low

)

f
low

f
high

d
low

d
high

s
low

s
high

o
low

o
high

1 6.5 7.5 0.25 0.3 10 40 0 0.05

1.65 6.175 7.825 0.2375 0.325 10 41 0 0.1

2.3 5.85 8.15 0.225 0.35 9 41 0 0.15

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

13.35 0.325 13.675 0.0125 0.775 1 50 0 1

Phase-locking to rhythmic and quasi-rhythmic inputs168

Inputs169

In addition to the tonic applied current I
app
, to measure phase-locking to rhythmic and quasi-170

rhythmic inputs, we introduced time-varying applied currents. These consisted either of periodic171

pulses (I
PP
) or of variable-duration pulse trains with varied inter-pulse intervals (I

VP
). Periodic pulse172

inputs were given by the expression173

I
PP
(t) = g

PP
Σi�{|t−t∗i |<=w(s−1)∕2s}(t) ∗ exp

(

−(st∕w)2
)

, (1)

where �
S
(t) is the function that is 1 on set S and 0 otherwise, t∗i = 2�!i for i = 1, 2, ... is the set of174

times at which pulses occur, ! is the frequency, w = 1000d∕! is the pulse width given the duty cycle175

d ∈ (0, 1), ∗ is the convolution operator, and s determines how square the pulse is, with s = 1 being176

roughly normal and higher s being more square. For our simulations, we took d = 1∕4 and s = 25.177

Variable-duration pulse trains were given by the expression178

I
VP
(t) = g

VP
Σi�{

|t−t∗i −oi|<=wi
(si−1)
2si

}(t) ∗ exp

(

−
(

sit
wi

)2
)

, (2)

where179

t∗i = Σ
i
j=11000∕!j ,

the frequencies {!i}n1 are chosen uniformly from [f
low
, f
high

], the pulse width is given by wi =180

1000di∕!i, the duty cycles {di}n1 are chosen uniformly from [d
low
, d
high

], the shape parameters {si}n1181

are chosen uniformly from [s
low
, s
high

], and the offsets {oi}n1 are chosen uniformly from [o
low
, o
high

].182

For our simulations, these parameters are given in Table 5.183

Phase-locking Value184

The (spike rate adjusted) phase-locking value (PLV, Aydore et al. (2013)) of the oscillator to these185

inputs was calculated with the expressions186

PLV =
(

ns|MRV |2 − 1
)

∕
(

ns − 1
)

, MRV = 1
ns

ns
∑

i=1
exp

(
√

−1�I
(

tsi
)

)

,

where MRV stands for mean resultant vector, ns is the number of spikes, tsi is the time of the i
tℎ

187

spike, and �I (t) is the instantaneous phase of input (IPP or IVP) at frequency !.188

For I
PP
, �I (t)was obtained as the angle of the complex time series resulting from the convolution189

of IPP with a complex Morlet wavelet having the same frequency as the input and a length of 7190

cycles. Since I
VP
was composed of pulses and interpulse periods of varying duration, this procedure191

did not yield accurate estimates of the instantaneous phase of these inputs. Instead, the following192

procedure was used. First, the times that �
VP
went from zero to greater than zero

({

ai
}n
i=1

)

and193

from greater than zero to zero
({

bi
}n
i=1

)

were obtained. Second, we specified the phase of I
VP
on194

these points via the function �0I (t), a piecewise constant function satisfying195

d
dt
�0I (t) =

n
∑

i=1

(3�
2
�ai (t) +

�
2
�bi (t)

)

,
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where � is the Dirac delta function. Finally, we determined �I (t) from �0I (t) via linear interpolation,196

i.e. by setting �I (t) to be the piecewise linear (strictly increasing) function satisfying197

�I (0) = 0, �I
(

ai
)

= �0I
(

ai
)

, �I
(

bi
)

= �0I
(

bi
)

.

The resulting function �I (t) advances by �∕2 over the support of each input pulse (the support is198

the interval of time over which the input pulse is nonzero), and advances by 3�∕2 over the time199

interval between the supports of consecutive pulses.200

Spike-triggered input pulses201

To explore the buildup of outward current and delay of subsequent spiking induced by strong202

forcing, we probed each model with a single spike-triggered pulse. These pulses were triggered203

by the first spike after a transient interval of 2000 ms, had a pulse duration of 50 ms, and had a204

form given by the summand in Equation 1 with w = 50 and s = 25 (i was 1 and ti was the time of the205

triggering spike).206

Results207

Modeling cortical � oscillators208

To explore how frequency flexibility in phase-locking depends on the biophysics and dynamics of209

inhibitory currents, we employed Hodgkin-Huxley type computational models of cortical � oscillators.210

In these models, � rhythmicity was paced by synaptic inhibition with a fast rise time and a slow decay211

time and/or by �-frequency sub-threshold oscillations (STOs) resulting from the interaction of a212

pair of intrinsic currents activated at subthreshold membrane potentials – a depolarizing persistent213

sodium current and a hyperpolarizing and slowly activating m-current (Gutfreund et al., 1995) (Fig.214

1, 2B). A super-slow potassium current introduced a � timescale into the dynamics of some models215

(Fig. 1, 2C). Thus, in addition to spiking and leak currents, our models included up to three types of216

outward – i.e. hyperpolarizing and thus spike suppressing, and here termed inhibitory – currents:217

an m-current or slow potassium current (I
m
) with a voltage-dependent time constant of activation218

of ∼10-45 ms; recurrent synaptic inhibition (I
inh
) with a decay time of 60 ms; and a super-slow K219

current (I
KSS
) with (calcium-dependent) rise and decay times of ∼100 and ∼500 ms, respectively.220

The presence of these three hyperpolarizing currents was varied over six models – M, I, MI, MS, IS,221

and MIS – whose names indicate the presence or absence of each current: M for the m-current, I222

for synaptic inhibition, and S for the super-slow K current (Fig. 1).223

To parameterize our models, we began by qualitatively matching in vitro recordings from layer224

5 �-resonant pyramidal cells (Carracedo et al., 2013) (Fig. 2D). These RS cells transition from tonic225

�-rhythmic spiking to tonic �-rhythmic spiking through so-called mixed-mode oscillations (MMOs,226

here pairs of spikes spaced a � period apart occurring at a � frequency) as their resting membrane227

potential is raised over a few mV (Carracedo et al., 2013), and the in vitro data suggests that this228

pattern of spiking is independent of recurrent synaptic inhibition, arising instead from intrinsic229

inhibitory currents. To replicate this behavior, we constructed a Hodgkin-Huxley neuron model230

paced by both I
m
and I

KSS
(Fig. 1, model MS, & Fig. 2A). While in vitro, these cells receive �-rhythmic231

EPSPs, this rhythmic excitation is not required in our model, which exhibited MMOs in response to232

tonic input (Fig. 2D).233

We then constructed five additional models based on model MS (Fig. 1). First, to obtain model234

IS, we replaced I
m
with I

inh
, adjusting the leak current and the conductance of synaptic inhibition to235

get a frequency-current (FI) curve having a rheobase and inflection point similar to that of model MS.236

In the remaining models, only the leak current conductance was changed to produce �-rhythmic237

spiking at roughly similar values of I
app
; all other conductances were identical to those in models MS238

and IS. For all remaining simulations, we fixed I
app
so that all models exhibit spontaneous rhythmic239

spiking at ∼7 Hz (Fig. 1, red circles).240
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Phase-Locking Under Strong Forcing241

We first tested whether these six oscillators entrained to different frequencies of exactly periodic242

input, examining their responses to rhythmic input pulses with frequencies ranging from 0.25 to243

23 Hz. To mimic the bursts of excitation produced by deep intrinsic bursting (IB) cells projecting to244

deep regular spiking (RS) cells (Carracedo et al., 2013), rhythmic inputs were modeled as smoothed245

square-wave current injections to the RS cells of all three models, having duty cycles 1/4 of the246

input period (see Methods). We varied the strength of input pulses from 0 to 4 pA, and measured247

the degree of phase-locking to the input rhythm exhibited by RS cell spikes over 30 seconds (see248

Methods). The results of these simulations are shown in Fig. 3, with models ordered by increasing249

frequency flexibility of phase-locking. For high enough input strength, all models were able to250

phase-lock adequately to inputs faster than 7 Hz, including the fastest frequency we tested (23 Hz).251
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Figure 1. Model � oscillators. Schematics (left) show the
currents present in each model, color-coded according to

timescale, with � in green and � in purple. FI curves (right) show
the transition of spiking rhythmicity through � and �
frequencies as Iapp increases, with � in green, � in purple, and
�-nested � (i.e., mixed-mode oscillations) in gold; the red circle
indicates the applied current giving a firing rate of ∼7 Hz.
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Figure 3. Phase-Locking as a Function of Periodic Input Frequency & Strength. False-color images show
the (spike-rate adjusted) phase-locking value (PLV, see Methods) of spiking to input waveform, with vertical

magenta lines indicating intrinsic spiking frequency. Schematics of each model appear above and to the left;

sample traces of each model appear above and to the right (voltage traces in black, input profile in red, two

seconds shown, input frequency 2.5 Hz, input strength −3.4 pA). The bands in these false-color images are
related to the number of spikes generated per input cycle: the highest PLV occurs when an oscillator produces

one spike per input cycle, and PLV decreases (from band to band) as the strength of the input (and the number

of spikes per input cycle) increases.

Models exhibited significantly more diversity in their ability to phase-lock to inputs slower than253

their intrinsic frequency, ranging from total inability to phase-lock to input frequencies below 7 Hz254
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Figure 4. Phase-Locking to Quasi-Rhythmic Inputs. Plots show the (spike-rate adjusted) phase-locking value of
spiking to input waveform, for inputs varying in bandwidth and regularity having a center frequency of 7 Hz (see

Methods & Table 5) as well as input strength. Schematics of each model appear above and to the left.

(model M), to ability to phase lock to input frequencies as low as 1.5 Hz even when input strength255

was relatively low (model MS). The super-slow K current uniformly increased the frequency range of256

phase-locking, with every model containing I
KSS
able to phase-lock to slower inputs than any model257

without I
KSS
. Synaptic inhibition seemed to stabilize the frequency range of phase-locking, with the258

four models containing I
inh
exhibiting an intermediate frequency range of phase-locking, while the259

m-current seemed to do the opposite, with both the narrowest and the broadest frequency ranges260

of phase-locking occurring in the four model � oscillators containing I
m
, and the very narrowest and261

broadest ranges occurring in the two of these models that lacked I
inh
(models M and MI). Notably,262

models MI and MIS exhibited one-to-one phase-locking to periodic inputs (i.e., a single spike per263

input cycle occurring within a small window of input phases, appearing in Fig. 3 as a bright yellow264

band indicative of high PLV) for input strengths twice as high as any other models. In these models,265

synaptic inhibition and m-current inhibition were both present, making the overall level of inhibition266

higher, and simulations showed that these phenomena were related: models exhibited one-to-one267

phase-locking increased over larger ranges of input strengths as the conductances of the m- and268

synaptic currents were increased (Fig. S1).269

Next, we tested whether the frequency selectivity of phase-locking exhibited for periodic inputs270

would carry over to quasi-rhythmic inputs, by exploring the phase-locking behavior of model �271

oscillators in response to trains of input pulses in which pulse duration, interpulse duration, and272

pulse waveform varied from pulse to pulse (with a center frequency of 7 Hz). These irregular input273

pulse trains probed the abilities of our � oscillator models to “parse" irregular inputs. To create these274

irregular trains of input pulses, pulse and interpulse durations were chosen (uniformly) randomly275

from ranges of pulse “frequencies" and “duty cycles", respectively, and pulse shape and onset276

time were similarly randomized (see Methods, Equation 2). To create a gradient of input classes277

with different degrees of regularity, we systematically varied the intervals from which frequencies278

(determining cycle lengths), duty cycles, pulse shapes, and pulse onset times were chosen (Table 5);279

we use “bandwidth" here as a shorthand for this multi-dimensional gradient in input regularity.280

For “narrowband" (i.e. highly regular) inputs and high input strengths, all six models showed281

a high degree of phase-locking to the input waveforms, reflecting their ability to phase-lock to282

periodic inputs at their intrinsic frequency (Fig. 4). In contrast, phase-locking to “broadband" inputs283

(i.e., irregular inputs with broad ranges of input periods, durations, and shapes) was higher for284

the models that exhibited broader frequency ranges of phase-locking to strictly periodic inputs –285

namely, models exhibiting both I
KSS
and I

m
(i.e., MIS and MS). At high input strengths, model MS in286
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particular showed a high level of phase-locking that was nearly independent of input regularity (Fig.287

4). Notably, model MIS mirrored the ability of model MS to phase-lock to broadband inputs at high288

input intensity, while showing frequency selective phase-locking at low input intensity. Indeed, MIS289

phase-locked to weak, narrowband quasi-rhythmic inputs better than any other model, perhaps290

due to its large region of one-to-one phase-locking (Fig. 4).291
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292

Buildup of Outward Currents293

Next, we sought to understand how the dynamics of inhibitory currents contributed to the observed294

gradient from selective to flexible phase-locking, and in particular to the observed variations in295

entrainment to rhythms with frequencies slower than �. To begin answering this question, we296

discuss the mechanism of phase-locking to periodic input pulse trains in our models. During each297

input pulse, strong forcing leads to a burst of spiking, which in turn activates the outward currents298

that pace the models’ intrinsic rhythmicity. These inhibitory currents hyperpolarize the models,299

causing the cessation of spiking for at least a � period, and in some cases much longer. If the pause300

in spiking is sufficiently long to delay further spiking until the next input arrives, phase-locking is301

achieved, given that the next strong input pulse causes spiking. Thus, the strength and duration of302

the post-input hyperpolarization determines the duration of the pause in spiking, and this in turn303

determines the lower (frequency) limit of phase-locking to periodic inputs for the oscillator, which,304
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as we have shown, is related to the frequency flexibility of phase-locking to irregular inputs.305

The dynamics of intrinsic and synaptic currents determine the length of this pause and its306

dependence on input strength. To observe how the dynamics of outward currents contributed to307

the length of the delay in spiking following an input pulse, we explored model responses to single308

(excitatory) input pulses (Fig. 5). As expected, the delay of spiking in response to a single, strong309

input pulse lasting 50 ms corresponded overall to the frequency flexibility of phase-locking in our310

models, being shortest in model M and longest in model MS (Fig. 5). The gating variables of the311

three outward currents simulated in our models offered an explanation for the observed patterns312

of phase-locking frequency flexibility (Fig. 6). We describe the dynamics of these currents during313

and after the input pulse, from simple to complex.314

The simplest current to understand is I
inh
(Fig. 6, purple), which does not build up during the315

input pulse, and by itself (in model I) delays the spike following the input pulse by very little. This316

small delay occurs because the input pulse, by causing the RS and then the SOM cell to spike,317

repeatedly resets the synaptic inhibitory “clock" - the time until I
inh
has decayed enough for a318

spontaneous spike to occur. As soon as spiking stops (at the end of the input pulse or shortly319

afterwards - our model SOM interneurons are highly excitable and may exhibit noise-induced320

spiking after the input pulse), the level of inhibition begins to decay.321

As seen in model M (Fig. 6), the m-current (blue) does build up over the course of the input pulse,322

but it quickly decays at the end of the input pulse, as m-current activation continues to oscillate. As323

a result, the spike that follows the input pulse is delayed very little, relative to the spiking behavior324

of the unforced oscillator (Fig. 5). Thus, the STOs in model M offer an explanation for this model’s325

inability to phase-lock to rhythms below its intrinsic frequency. While the buildup of the m-current326

during the input pulse seems to change the frequency of the subsequent STOs, this doesn’t affect327

the model’s phase-locking in the strong forcing regime, which depends primarily on the length of328

the pause in spiking following the input pulse.329

The super-slow K current builds up dramatically during the input pulse (Fig. 6, green), and decays330

slowly, increasing the latency of the first spike following the input pulse substantially (Fig. 5). This331

slow-building outward current interacts differently, however, with synaptic and intrinsic �-timescale332

currents.333

In model IS, both I
inh
and I

KSS
decay monotonically following an input pulse, until the total level334

of hyperpolarization is low enough to permit another spike. The spike burst in response to the input335

pulse means that the effective level of inhibition due to I
inh
is much higher than the effective level336

of inhibition due to I
KSS
; thus, the delay in spiking following the input terminates after the synaptic337

activation variable s has decayed below the level s ∗ at which the cell spikes spontaneously, but well338

before the activation of I
KSS
has returned to spontaneous levels (Fig. 6, model IS). Nevertheless, I

KSS
339

and I
inh
appear to interact additively to produce hyperpolarization and a pause in spiking in the RS340

cell.341

In model MS, the conductance of I
m
is again much higher than the conductance of I

KSS
. However,342

in thismodel, the I
KSS
activationmust decay to levelsmuch lower than “baseline" before the oscillator343

spikes again, even though there are times during the delay in spiking following the input pulse at344

which both I
m
and I

KSS
are less active than during baseline spiking (e.g., ∼0.45 and ∼0.6 seconds,345

Fig. 6). Notably, the m-current activation increases for the duration of the delay period, with subtle346

oscillatory fluctuations riding the increase. These dynamics suggest a more complex relationship347

between I
m
and I

KSS
. While a full analysis is outside the scope of this paper, we hypothesize that348

this synergistic effect is due to the STOs present in model MS.349

In model MI, buildup of I
m
decreases SOM cell spiking during the input pulse, interfering with350

the “resetting" of I
inh
near the end of the input pulse, while the presence of I

inh
damps the STOs351

in the RS cell, resulting in behavior intermediate between models M and I. Similarly, model MIS352

exhibits behavior intermediate between models MS and IS. Following an input pulse, spiking is353

delayed until I
KSS
decays below baseline levels (Fig. 6) - a longer delay than in model IS. It seems354

unlikely that the three outward currents interact additively in model MIS, since, as in model MS,355
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the first post-input spike occurs at a time at which the activation level of the m-current is elevated356

relative to baseline (Fig. 6).357

Discussion358

Our results show that multiple timescales of synaptic and intrinsic inhibition interact in dynamically359

complex ways. In particular, we discovered a complex relationship between �- and �-timescale360

intrinsic K currents that enables some of our model � oscillators to follow strong periodic forcing361

well below their intrinsic spiking frequency. Similar oscillators lacking this pair of intrinsic currents362

(including oscillators paced primarily by synaptic inhibition) show markedly less frequency flexibility363

in phase-locking to rhythmic and quasi-rhythmic inputs. Thus, synaptic and intrinsic inhibition may364

tune neural oscillators to exhibit different levels of phase-locking flexibility, allowing them to play365

diverse roles – from reliable timing cues to flexible parsers of sensory inputs.366

Mechanisms of phase-locking367

Our results show that, for models containing a variety of intrinsic and synaptic currents, buildup368

of outward current during strong forcing plays an important role in the ability to phase-lock to369

inputs having a wide range of frequencies, especially frequencies below the models’ spontaneous370

frequency. A super-slow adapting current, I
KSS
, is key to the ability to phase-lock to slow frequencies371

in our models. In general, whether an outward current functions as an adapting current – causing372

the time intervals between successive pairs of spikes to decrease during intense stimulation –373

depends on the timescale of the current relative to the timescale of spiking during stimulation. If374

inhibition or hyperpolarization is activity-dependent and has a timescale slower than the interspike375

interval, it can serve this function; for example, in a 
 oscillator, any current with a timescale below376


 (for example, the � timescale m-current) could function in this way.377

We have also shown, we believe for the first time, a synergy in our models between a slow and a378

super-slow K current. While a full analysis is beyond the scope of this paper, we conjecture that379

the synergy depends on the subthreshold oscillations (STOs) engendered by the slow K current380

(the m-current) in our models, as is suggested by a comparison between our IS, MIS, and MS381

models. In model IS, there are no STOs, and the interaction between �-timescale inhibition (which is382

synaptic) and I
KSS
is additive. In models MIS and MS, where STOs result from interactions between383

the m-current and the persistent sodium current, the interaction between I
KSS
and �-timescale384

hyperpolarization (mediated by the m-current) is not additive, but synergistic, producing a longer385

delay than would result from the sum of the two phenomena acting in isolation.386

The fact that our oscillators can phase-lock to quasi-rhythmic as well as periodic inputs is largely387

a consequence of the mechanism of phase-locking in the regime of strong forcing. Since inputs are388

generally strong enough to cause spiking, phase-locking is dependent less on the phase at which389

an input arrives than on the delay caused by each input. If an input arrives before the end of that390

delay, it causes a spike, and phase-locking occurs. However, decreased phase-locking for inputs391

having a large range of instantaneous frequencies occurs in our models due to both “missed" spikes392

during the high-excitability phase of the input and “extra" spikes during the low-excitability phase of393

the input. These “missed" spikes may be due to the properties of our oscillators in the weak-forcing394

regime (see Discussion: Relationship to previous work).395

Our model MIS is perhaps the most physiologically realistic, in that neurons in deep cortical396

layers are likely to exhibit all three outward currents studied in this paper. Significantly, this model397

exhibits both frequency selectivity in phase-locking at low input strengths, and frequency flexibility398

in phase-locking at high input strengths (Fig. 4). Input gain can depend on a variety of factors,399

including attention, stimulus novelty and salience, and whether the input is within- or cross-modality.400

A mechanism that allows input gain to determine the degree of phase-locking frequency flexibility401

could enable the differential processing of inputs based on these attributes.402
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Relationship to previous work403

Phase-locking of neural oscillators under weak forcing has been studied extensively (Ermentrout,404

1981, 1996; Kopell and Ermentrout, 2002; Achuthan and Canavier, 2009; Canavier and Achuthan,405

2010). In this regime, a neural oscillator stays close to a limit cycle during and after forcing, and as406

a result the phase of the oscillator is well-defined throughout forcing. Furthermore, the change407

in phase induced by an input is small (less than a full cycle), can be calculated, and can be plotted408

as a function of the phase at which the input is applied, resulting in a phase-response curve (PRC).409

In this work, we have focused on strong and non-instantaneous forcing. Our results pertain to410

a dynamical regime in which PRC theory does not apply. Namely, our forcing is strong and long411

enough that our oscillators complete multiple cycles during the input pulse, and as a result the412

phase at the end of forcing is not guaranteed to be a function of the phase at which forcing begins.413

Furthermore, in oscillators which contain I
KSS
, the dynamics of this slow current adds an additional414

dimension, which makes it impossible to describe the state of these oscillators in terms of a simple415

phase variable. Not only the phase of the oscillator, but also its amplitude (which is impacted by416

the activation of I
KSS
), determine its dynamics.417

We have focused on the � timescale, and our results highlight in particular the properties of418

the �-timescale m-current. Previous work has illuminated many of the dynamical properties of419

the m-current. The addition of an m-current (or indeed any slow resonating current, such as an420

h-current or a slow, non-inactivating potassium current) changes a neuron from a Type I to a Type421

II oscillator (Ermentrout et al., 2001; Acker et al., 2003). The fact that resonating currents can422

generate membrane potential resonance (and subthreshold oscillations) is well-studied (Gutfreund423

et al., 1995; Hu et al., 2002; Rotstein and Nadim, 2014). More recently, it has been shown that424

the �-timescale properties of the M-current allow an E-I network subject to � forcing to precisely425

coordinate with external forcing on a 
 timescale (Zhou et al., 2018). While STOs play a role in the426

dynamics of our model oscillators containing the m-current, subthreshold resonance does not427

automatically imply suprathreshold resonance or precise response spiking (Rotstein, 2017). Thus,428

our results are not predictable (either a priori or a posteriori) from the effects of the m-current on429

neuronal dynamics.430

It is possible that larger inhibition-paced networks, which have been studied both computa-431

tionally and experimentally (Akam and Kullmann, 2012; Tsai et al., 2008; Atallah and Scanziani,432

2009; Shin and Cho, 2013; Sherfey et al., 2018a), may exhibit properties distinct from our models433

containing synaptic inhibition. Papers attempting to spell out the constraints on selective com-434

munication between neuronal oscillators have examined larger networks (Akam and Kullmann,435

2012; Sherfey et al., 2018a). Other computational work has shown that the addition of E-E and436

I-I connectivity in E-I networks can yield frequency flexibility through potentiation of these recur-437

rent connections (Tsai et al., 2008; Shin and Cho, 2013), although the putative timescale of this438

potentiation is much slower than the cycle-by-cycle changes in instantaneous frequency seen in439

physiologically-relevant quasi-rhythmic inputs. Faster mechanisms may be at play in the brain,440

however: experimental results show that amplitude and instantaneous frequency are related in441

hippocampal networks, since firing by a larger proportion of excitatory pyramidal cells recruits a442

larger population of inhibitory interneurons (Atallah and Scanziani, 2009). In larger E-I networks,443

the recruitment of different proportions of neurons by inputs of different sizes may allow more444

frequency flexibility in phase-locking; and recent work shows something similar: that heterogeneity445

in E-I synapses can allow frequency flexibility in phase-locking recruiting different subpopulations446

of interneurons (). Finally, in our models, as in published models of �-oscillator driven syllable447

segmentation (Hyafil et al., 2015), only the RS cells receive inputs. How feedforward inhibition448

affects the frequency specificity of phase-locking, especially in larger networks, is an important449

question for future research.450
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Functional implications451

Our focus on the � timescale is motivated by in vitro results on cortical � oscillators (Carracedo452

et al., 2013), by in vivo results underscoring the prominence of theta rhythms in the spontaneous453

activity of primate auditory cortex (Lakatos et al., 2005), and by the potential functional role of454

cortical � oscillations in segmentation auditory input (Ghitza and Greenberg, 2009; Ghitza, 2011,455

2012, 2013, 2014; Riecke et al., 2015b,a, 2017; Teng et al., 2017; Zoefel et al., 2018). Auditory cortical456

� rhythms modulate the stimulus-specific response gain of auditory population activity (Kayser457

et al., 2015), and effect a continuous and active segmentation and grouping process for auditory458

stimuli (Teng et al., 2017). The phase entrainment between brain rhythms and speech envelope459

fluctuations at �/� frequencies is associated with speech intelligibility (Ahissar et al., 2001; Luo460

and Poeppel, 2007; Nourski et al., 2009; Hertrich et al., 2012; Peelle et al., 2012; Doelling et al.,461

2014; Ding et al., 2016; Riecke et al., 2017; Zoefel et al., 2018) and alters auditory perception of462

non-speech stimuli (Zoefel and VanRullen, 2015). Recent experiments have shown a causal link463

(Riecke et al., 2017;Wilsch et al., 2017, 2018; Zoefel et al., 2018): application of ∼3 Hz transcranial464

alternating current stimulation at different phases relative to a rhythmically-presented speech465

stream phasically modulates behavior and the BOLD response to intelligible speech (Zoefel et al.,466

2018).467

In terms of speech comprehension, the information in syllabic rate amplitude fluctuations is468

critical: removing 1-7 Hz (Elliott and Theunissen, 2009) or 2-9 Hz (Ghitza, 2012) amplitude modu-469

lations decreases speech intelligibility dramatically (Drullman et al., 1994), and periodic speech470

manipulations including interruption (Miller and Licklider, 1950), alternating monaural sources471

(Huggins, 1964), and reversal of short segments (Stilp et al., 2010) affect comprehension most472

when interfering with syllabic-rate intervals. Perhaps the strongest evidence supporting syllabic473

segmentation by � oscillations is the observation that the phase of intrinsic ∼6 Hz oscillations at474

sound onset determines the categorization of ambiguous syllables (between /da/ and /ga/), by475

altering their perceived onset length (Ten Oever and Sack, 2015).476

The average spoken syllable lasts about the period of a 3 Hz oscillation, and temporal com-477

pression increasing the syllabic rate above 9 Hz results in a sharp drop in speech intelligibility478

that can be rescued by “repackaging" – inserting gaps of silence into the speech signal – with the479

highest levels of comprehension occurring when 333 ms segments of natural speech are delivered480

at rates below 9 Hz (Ghitza and Greenberg, 2009). Recent research shows that cortical speech-brain481

entrainment occurs for syllabic rates as high as 13 Hz, a speed at which speech is unintelligible,482

while �-frequency activity is abnormal in response to this unintelligible compressed speech (Pefkou483

et al., 2017). This suggests that the upper syllabic rate limit on speech intelligibility arises from484

the timescale of mnemonic processing (with a �-rhythmic signature) in structures downstream485

from the cortical � oscillators responsible for syllabic segmentation (Pefkou et al., 2017). This is in486

agreement with our finding that the upper frequency boundary on phase-locking for our models487

extends well above 9 Hz, and is largely determined by input strength. Nonetheless, it is noteworthy488

that task-related auditory cortical entrainment operates most reliably over the 1-9 Hz (syllabic)489

ranges (Lakatos et al., 2013).490

For the accurate segmentation of syllables, we are not interested in the ability of an oscillator491

to phase-lock, per se, to an input quasi-rhythm in the � syllable range. Rather, what is required492

is a system that can reliably mark every syllable boundary – where syllable boundaries tend to493

occur quasi-rhythmically. Thus, we want a cellular oscillator which can reliably generate a single494

spike or a spike volley, at every high-energy phase that occurs within a � quasi-rhythm. Our model495

MS seems capable of performing this task, if sufficiently excited, although it will be important496

to test this with actual speech waveforms. However, the phase-locking properties of model MS497

depend on the relationship between input strength and tonic excitation, and there is a tradeoff:498

at lower levels of tonic excitation, a single spike marks the peak of each low-frequency cycle, but499

some peaks of high-frequency inputs go unmarked, while at higher levels of tonic excitation, single500
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spikes mark the peaks of high-frequency inputs, but multiple spikes may occur during the peaks of501

each low-frequency cycle (Fig. S2). Thus, it seems possible that the brain relies on a bank of such502

oscillators with different resting membrane potentials and/or input gains, connected synaptically or503

electrically, to more reliable mark syllable transitions across the entire “�-syllable" range. As noted504

above, larger E-I networks may also exhibit more frequency flexibility than the inhibition-paced505

oscillators modeled here. The full spectrum of relationships between the properties of these506

individual oscillatory units and the activity of the networks in which they participate remains to be507

mapped out. These questions are complicated by the possibility that neuromodulators which affect508

the conductance of outward currents could change the flexibility vs. selectivity of phase-locking in509

individual oscillatory units; acetylcholine is one neuromodulator known to alter the conductance510

of the m-current. Nevertheless, we may ask why the brain would select phase-locking flexibility in511

single cells vs. networks. One possible answer is energetic efficiency. If flexibility in an inhibition-512

paced oscillatory network depends on recruiting large numbers of inhibitory interneurons, it may513

be more efficient as well as more reliable to utilize a small number of oscillators, each capable of514

segmentation quasi-rhythmic inputs containing a large range of instantaneous frequencies.515

Entrainment flexibility does not seem to be ubiquitous in the brain. In the hippocampus, for516

example, � rhythm is robustly periodic, exhibiting relatively small frequency changes with navigation517

speed (McFarland et al., 1975). Interestingly, the mechanisms of hippocampal � and the neocortical518

� rhythmicity discussed in this paper are very different: while the former is dominated by synaptic519

inhibition, resulting from an interaction of synaptic inhibition and the h-current in oriens lacunosum520

moleculare interneurons (Rotstein et al., 2005), the latter is only modified by it (Carracedo et al.,521

2013). Our results suggest that mechanisms like that of hippocampal �, far too inflexible to522

perform the segmentation tasks necessary for speech comprehension, are instead optimized for523

a different functional role. One possibility is that imposing a more rigid temporal structure on524

population activity may help to sort “signal" from “noise" - i.e., imposing a strict frequency and525

phase criterion that inputs must meet to be processed. Another possibility is that more rigidly526

patterned oscillations result from a tight relationship to motor sampling routines which operate527

over an inherently more constrained frequency range, as, for example, whisking, sniffing, and528

running are related to hippocampal � (Kleinfeld et al., 2006, 2016).529

The auditory cortical � oscillator is hypothesized to drive 
 circuits, and in a phenomenological530

model matching psychophysical data (Ghitza, 2011), the frequency of 
 is required to scale with531

the frequency of �. Meeting this requirement strictly is acausal - the 
 oscillator would have to532

access the duration of a � cycle at the start of that cycle, before the duration of the cycle is, in fact,533

determined. However, we suspect it is possible for this requirement to be met with some lag, if534

the � oscillator excites a 
 oscillation via synaptic or intrinsic currents having a � timescale. In this535

case, excitation would build up over multiple � cycles when syllables arrive at a frequency faster536

than the timescale of excitation, and it would drop when syllables arrive at a frequency slower than537

the timescale of excitation. By similar mechanisms, slower oscillations, such as � oscillations, could538

affect the intrinsic frequency of our � oscillator. The current work is part of a larger research plan to539

develop a computational model of the oscillatory hierarchy that contributes to speech segmentation540

via phase-locking of brain rhythms to speech stimulus features. We hope this work will shed light541

on the biophysical mechanisms used by the brain to parse a complex auditory stimulus evolving on542

multiple timescales, namely, human speech.543
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Figure S1. Dependence of One-to-One Phase Locking on Inhibitory Conductance. We multiplied the
conductances gm and ginh in model MIS by factors of

1
3 ,

1
2 ,

3
4 , 1, and

5
4 , and then computed plots of PLV for different

input frequencies and strengths, as in Fig. 3. The bright yellow band in each figure, representing the region of

one-to-one phase-locking, depends on the size of gm and ginh; both increase from left to right.

Figure S2. Varying Tonic Input to Model MS.We altered the tonic input strength gapp to model MS, and gave
periodic pulse inputs of strength gPP = 1 at varying frequencies. For lower levels of tonic input, phase-locking is closer
to one-to-one for low frequency inputs, but many high frequency input cycles are “missed"; for higher levels of tonic

input, phase-locking is one-to-one for high frequency inputs, but many-to-one for low frequency inputs.
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