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Abstract Hypotheses suggest speech segmentation is executed by a hierarchy of oscillators in
auditory cortex, with theta (3-7 Hz) rhythms playing a key role by phase-locking to syllable
boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip
below cortical theta frequencies (down to 1 Hz), requires “flexible" theta oscillators, whose neural
implementation remains unknown. Using biophysical computational models, we found that the
flexibility of phase-locking depends on the types of hyperpolarizing currents that pace neural
oscillators. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these
inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay
further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic
interaction between intrinsic currents, not replicated by synaptic currents at similar timescales. Our
results suggest synaptic and intrinsic inhibition contribute to regular and flexible phase-locking in
neural oscillators, respectively.

Introduction
How the cortex derives robust representations of linguistic objects remains a challenging problem.
Relying on both temporally proximal and distal cues about speech rate and phonology, the brain
decodes the speech stream in parallel at multiple levels of abstraction, producing a hierarchy
of phonemes, syllables, words, and phrases (Christiansen and Chater, 2016), and predicting the
timing and salience of upcoming speech (Dilley and Pitt, 2010; Dilley et al., 2010; Brown et al.,
2011; Baese-Berk et al., 2014; Brown et al., 2015). Psychophysical and neurophysiological evidence
suggests that this sampling, parsing, and prediction rely in part on a hierarchy of brain rhythms
(Ahissar et al., 2001; Luo and Poeppel, 2007; Nourski et al., 2009; Hertrich et al., 2012; Peelle
et al., 2012; Doelling et al., 2014; Ding et al., 2016; Riecke et al., 2017; Zoefel et al., 2018) - periodic
fluctuations in the activity of neuronal populations (Buzsaki, 2006) - that mirror and align both with
the temporal structure of speech and with each other (Lakatos et al., 2005; Schroeder and Lakatos,
2009; Gross et al., 2013; Henry et al., 2014; Mai et al., 2016; Pefkou et al., 2017).

Conventional models of speech processing (Marslen-Wilson, 1987; Luce and CONOR, 2005;
Stevens, 2005) suggest that decoding proceeds by matching chunks of speech of different dura-
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tions with stored linguistic memory patterns or templates. Recent oscillation-based models have
postulated that this template-matching is facilitated by a preliminary segmentation step (Ghitza,
2011; Giraud and Poeppel, 2012; Ghitza, 2016), which determines candidate speech segments for
template matching, in the process tracking speech speed and allowing the adjustment (within limits)
of sampling and segmentation rates (Bosker and Ghitza, 2018; Penn et al., 2018); segmentation
plays a key role in explaining a range of counterintuitive psychophysical data that challenge con-
ventional models of speech perception (Ghitza and Greenberg, 2009; Ghitza, 2012, 2014, 2016). A
number of conceptual hypotheses (Schroeder et al., 2008; Ghitza, 2011; Giraud and Poeppel, 2012;
Arnal and Giraud, 2012; Ghitza, 2013; Lewis and Bastiaansen, 2015; Morillon and Schroeder, 2015)
suggest that ongoing cortical rhythms, entrained to the regular acoustic features of the speech
stream that indicate the boundaries between linguistic units (Rosen, 1992; Hirst and Di Cristo, 1998;
Yang, 2007; Yang et al., 2014), effect this preliminary grouping of auditory input into a hierarchy of
segments, each of which is subject to further phonemic, syntactic, and semantic processing. An
important point (Schroeder et al., 2008) is that the frequencies of endogenous rhythms observed
in auditory cortex - which include § (~1-4 Hz), 6 (~4-8 Hz), and p/y (~15-60 Hz) frequencies (Lakatos
et al., 2005) - have timescales that mirror the timescales of linguistic units - namely, words and
phrases (~250-2000 ms), syllables (~100-250 ms), and phonemes (~20-100 ms, Selkirk (1980)).
The hierarchical organization of auditory cortical brain rhythms, with g/y rhythms nested within
certain phases of the 0 cycle, and 0 rhythms in turn nested within certain phases of the § cycle
(Lakatos et al., 2005), makes rhythm phase information consistent with the hierarchy of linguistic
segmentation.

While speech is a multiscale phenomenon, the modulation spectrum of continuous speech is
dominated by syllabic rate amplitude fluctuations (Ohala, 1975; Chandrasekaran et al., 2009; Elliott
and Theunissen, 2009; Ding et al., 2017), restricted by the motor physiology of the speech apparatus
to 6/6 frequencies (~1-9 Hz, Ohala (1975); Chandrasekaran et al. (2009); Elliott and Theunissen
(2009); Ding et al. (2017)), and critical for speech comprehension (Elliott and Theunissen, 2009;
Ghitza, 2012; Drullman et al., 1994; Miller and Licklider, 1950; Huggins, 1964; Stilp et al., 2010;
Ghitza and Greenberg, 2009). Syllabic frequencies, especially in the 6 range, are central in auditory
processing, as well: attentional entrainment to auditory rhythms operates best over the §/0 range
(Lakatos et al., 2013), perhaps supported by an active segmentation mechanism that operates on
a timescale of ~140-250 ms (~4-7 Hz) to process sound input in syllable-sized chunks (Teng et al.,
2017), and o-frequency speech-brain entrainment is particularly relevant for speech processing
(Ahissar et al., 2001; Luo and Poeppel, 2007; Nourski et al., 2009; Hertrich et al., 2012; Peelle
et al., 2012; Doelling et al., 2014; Ding et al., 2016), with recent experiments suggesting a causal
role (Riecke et al., 2017; Wilsch et al., 2017, 2018; Zoefel et al., 2018). Cortical 8 rhythms - especially
prominent in the spontaneous activity of primate auditory cortex (Lakatos et al., 2005) - seem to
perform an essential function in syllable segmentation (Ghitza and Greenberg, 2009; Ghitza, 2014,
2012; Doelling et al., 2014) by marking the high energy 6-timescale features of speech as putative
syllable boundaries (Ghitza, 2011, 2012; Hyafil et al., 2015; Ten Oever and Sack, 2015). Incorporating
the centrality of the 0 rhythm as “master" of the oscillatory hierarchy, seminal functional (Ghitza
and Greenberg, 2009) and computational (Hyafil et al., 2015; Résdnen et al., 2018) models have
proposed that putative syllables segmented by ¢ rhythmic circuits are encoded by spiking in y
oscillatory circuits, while §-rhythmic circuits may overlay é-timescale prosodic information on this
syllabic parse (Ghitza, 2017).

Syllable lengths vary over syllables, speakers, and languages, within a restricted range of “ac
ceptable" syllable lengths (Ghitza, 2014). This variability places particular demands on the cortical
0 oscillators tasked with syllabic segmentation. To track syllable boundaries occurring quasi-
rhythmically, i.e. at variable intervals, the auditory cortical 8 oscillator must be “flexible" - able to
lock, cycle-by-cycle, to a quasi-rhythmic input with a broad range of instantaneous frequencies,
including frequencies below the oscillator’s intrinsic frequency (Ghitza, 2011, 2012). The canonical
implementation of this flexible oscillator is a voltage controlled oscillator in a phase-locked loop;
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the mechanisms by which neural circuits implement oscillators exhibiting flexibility in phase-locking
remain largely unexplored. If existing phenomenological models provided a complete explanation
of this capability, then any 0 oscillator should be able to perform this function. We show here,
however, that the subtleties of the biophysical mechanisms giving rise to cortical 6 oscillations can
make a difference in their flexibility.

The major functional implication that concerns us is segmentation. For our purposes, segmen-
tation refers to the ability of an oscillator to produce an output only during certain (high-energy)
segments of a periodic or quasi-rhythmic input; and furthermore to produce output during every
such segment. These high-energy segments represent syllable boundaries (occurring during the
high-energy vocalic portion of the syllable). Toward this end, we explored the ability of biophysical
computational models of neural ¢ oscillators to exhibit phase-locked spiking to strong periodic
and quasi-rhythmic inputs having a range of input frequencies. Our 6 oscillators were paced
by (i) 6-timescale synaptic inhibition, or (ii) 6-timescale subthreshold oscillations (STOs) resulting
from intrinsic 6-timescale hyperpolarizing currents, or (iii) both. Half also included intrinsic “super-
slow" (6-timescale) hyperpolarizing currents. While much is known about phase-locking in neural
oscillators (Ermentrout, 1981, 1996; Kopell and Ermentrout, 2002; Achuthan and Canavier, 2009;
Canavier and Achuthan, 2010), few studies have examined the strong forcing regime, in which input
pulses are strong enough to elicit spiking; little is known about how oscillator parameters influence
phase-locking to inputs much slower or faster than an oscillator’s intrinsic frequency; and few
published studies explore oscillators exhibiting intrinsic outward currents on multiple timescales.

While the ability of our models to phase-lock to inputs faster than their intrinsic frequency
was uniformly high and dependent on input strength, our results suggest that different types of
inhibitory currents dramatically change the ability of 6 oscillators to phase-lock to inputs slower
than their intrinsic frequency over a range of input strengths. The central principle revealed by our
models is that frequency flexibility is enabled by a buildup of outward (inhibitory) current during
each input, which is sufficiently long-lasting to silence spiking during the period between successive
inputs. Super-slow currents, having a timescale slower than that of intrinsic periodic spiking, enabled
this buildup for oscillators paced by either synaptic inhibition or STOs. However, STOs interacted
with these adapting currents synergistically to enable extremely flexible spike phase-locking that
was absent from oscillators paced by synaptic inhibition. Thus, while inhibition-based oscillators
phase-locked to rhythms within a relatively restricted frequency range (Cannon and Kopell, 2015;
Sherfey et al., 2018a), 6 oscillators whose dynamics arose from a complex interplay of intrinsic
currents in single cells (Carracedo et al., 2013) exhibited more flexible phase-locking. The features
that facilitate flexible phase-locking come together in a single-compartment Hodgkin-Huxley model,
reproducing in vitro data from layer 5 pyramidal cells with a §-timescale resonance and a unique
pattern of 5-nested ¢-rhythmic spiking (Carracedo et al., 2013). Our computational model of these
cells exhibited spiking entrainment to periodic input pulses with frequencies ranging over a broad
interval, as well as to more realistic quasi-rhythmic inputs. The pattern of spike phase-locking
observed in this oscillator - resulting from a buildup of outward current over the time course of
each input - may contribute to the ability of auditory circuits to effectively segment and parse
quasi-rhythmic signals, such as speech.

Methods

All simulations were run on the MATLAB-based programming platform DynaSim (Sherfey et al.,
2018b), a framework specifically designed by our lab for efficiently prototyping, running, and
analyzing simulations of large systems of coupled ordinary differential equations, enabling in
particular evaluation of their dynamics over large regions of parameter space. DynaSim is open-
source and all models will be made publicly available using this platform.
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Table 1. Currents.

Iy, & Inasom gNam?\]ah (V - ENa)
Tior & Tio.s0Mm gKDRmiDR (V - EK)
Ileak & IIeak,SOM 8leak (V - Eleak)

I, gmn (V = Ey)

INaP 8Nap MNap (V - ENap)

Ic, gCaS2 (V - ECa)

Iy, gKSSfI(V—EK)

Tinn & Texc 8pre—postSpre—post (Vpost ~ Epreapost)

Table 2. Equilibrium Voltages.

RS FS
Ev. | 40 50
E, 80 95
E.. |-65 -70
Ew, |50 -
E, |120 -
Egs_rs 0
Ees gs | -95

Model equations

Our models consisted of at most two cells, a regular spiking (RS) pyramidal cell and an inhibitory
interneuron with a timescale of inhibition like that observed in somatostatin-positive interneurons
(SOM). Each cell was modeled as a single compartment with Hodgkin-Huxley dynamics. In our RS
model, the membrane currents consisted of fast sodium (Iy,), delayed-rectifier potassium (),
leak (1,o4), slow potassium or m- (1,,), and persistent sodium (INaP) currents taken from a model of
a guinea-pig cortical neuron (Gutfreund et al., 1995), and calcium (I.,) and super-slow potassium
(I, calcium-activated potassium in this case) currents with dynamics from a hippocampal model
(Traub et al., 1991). The voltage V (r) was given by the equation

dVv

CE = Iapp —Ina — IKDR —Lieak = Im — INap — I, — IKSS = Linn

where the capacitance C = 2.7 reflected the large size of deep-layer cortical pyramidal cells, and
I,pp the applied current, was given by

Iapp(t) = 8app [( oo Xlt<tyrans) OF 7 (1>Ttrans) (0) + Pno|seW(t)]

with the transition time z,,,; = 500 ms, the noise proportion p,.s = 0.25, and W (r) a white noise
process. For SOM cells, the membrane currents consisted of fast sodium (Iy, som), delayed-rectifier
potassium (I, som), and leak (1,5 som) currents. The voltage V() was given by the equation
dVv
CSOME = Lapp,som — INa,SOM - IKDR,SOM - IIeak,SOM - Iexc

where Csoy = 0.9 and I,,, 5o, the applied current, is constant in time. The form of each current is
given in Table 1; equilibrium voltages are given in Table 2; and conductance values for all six models
that will be introduced in Results: Modeling cortical 6 oscillators (see Figure 1) are given in Table 3.

The dynamics of activation variable x (ranging over h, my__, n, my,,, s, and g in Table 1) were given
either in terms of its steady-state value x_ and time constant z, by the equation

dx _xoo—x
dt T

X

s
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Table 3. Maximal Conductances.

Model M Ml | IS MIS MS
s 125 125 125 125 125 125
. 54 54 54 54 54 54
Sleak 031 027 078 078 027 027
g 14472 1.4472 0 0 1.4472 1.4472
Enan 04307 0.4307 0.4307 0.4307 0.4307 0.4307
ge 054 054 054 054 054 054
£, 0 0 0 041512 0.1512 0.1512
Zapp 7.1 6.5 76 -105 -9.8 -9.2
ZnasOM 0 100 100 100 100 0
Ekgp.50M 0 80 80 80 80 0
Bleak soM 0 0.1 0.1 0.1 0.1 0
Loppsom 0 095 095 095 0095 0
8rssom 0 0075 0075 0075 0075 0
geomns 0 015 015 015 0.5 0

Table 4. Activation variable dynamics.

h @, (V) = 0.07 exp (—(V +30)/20) B, (V) = (exp (=V /10) + 1)~
My, @,(V) = ~ oo B, (V) = 4exp(=(V +41)/18)
my a,(V) = ST B,(V) = 0.125exp (—(V/+ 30)/80)
-1 1000/(3.3%3(34-22)/10)

V) = [1 +exp(—(V +35)/10 V)= W06 )
n (V) = [1 +exp(=(V +35)/10)] | W) = e ()
Myap m,(V) = [1+exp(=(V +40)/5)| 7,=5

V+51.1

s a,(V) = 1.6(1 +exp (—0.072(V +65))) (V) = o.ozexp(VtT)_l
q ,(Cc,) =min (0.1Cc,, 1) B, = 0.002
hsou ho(V) = [1+exp(V +583)/6.)] " 7,(V) =0.225+ 1.125 [1 + exp (V +37)/15)] "'
My asom  Me(V) = [L+exp(=V =2D)/11.5)]  7,(V) =0.25+4.35 [1 +exp (= |V + 10| /10)] .

or in terms of its forward and backward rate functions, «, and g, by the equation

dx
dt_(l_x)a xp,.

Only the expressions for my, differed slightly:

mNa(V) = am/ (am + ﬂm) >
Steady-state values, time constants, and forward and backward rate functions are given in Table 4.
For numerical stability, the backwards and forwards rate constants for g and s were converted to
steady-state values and time constants before integration, using the equations

-1

T, = (ax + ﬂx)
The dynamics of the synaptic activation variable s were given by the equation

ds s 1 Vpre))

-5
—=-= 1 + tanh
dt Tp TR < a <10

with time constants z; = 0.25 Ms, 7pgs_ps = 2.5 MS, and 7p g s = 50 MS.

myasou(V) = [1 +exp(=V —38)/10)] '

Xoo = 0Ty

F-1 curves

For these curves, we varied the level of tonic applied current I, over the range from 0 to 200 Hz,
in steps of 1 Hz. We measured the spiking rate for the last 5 seconds of a 6 second simulation,
omitting the transient response in the first second.
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Table 5. Varied pulse input (Iyp) parameters (see Methods: Phase-locking to rhythmic and quasi-rhythmic inputs:
Inputs for details).

Input Bandwidth

(= frigh = fiow) Siow Shigh diow  dnigh | Stow _ Shigh | Olow _ Ohigh
1 6.5 7.5 0.25 0.3 10 40 0 0.05
1.65 6.175 7.825 | 0.2375 0.325 10 41 0 0.1
2.3 5.85 8.15 0.225 0.35 9 41 0 0.15
13.35 0.325 13.675 | 0.0125 0.775 1 50 0 1

Phase-locking to rhythmic and quasi-rhythmic inputs

Inputs

In addition to the tonic applied current I,g,, to measure phase-locking to rhythmic and quasi-
rhythmic inputs, we introduced time-varying applied currents. These consisted either of periodic
pulses (Ipp) or of variable-duration pulse trains with varied inter-pulse intervals (I,;). Periodic pulse
inputs were given by the expression

Ipp(1) = gPPZi/Y{\r—t;‘|<=w(s—l)/2s}(t) * exp (—(st/w)z) ’ M

where ys(t) is the function that is 1 on set S and 0 otherwise, t* = 2zwi fori = 1,2,... is the set of

times at which pulses occur, w is the frequency, w = 1000d /w is the pulse width given the duty cycle

d € (0,1), = is the convolution operator, and s determines how square the pulse is, with s = 1 being

roughly normal and higher s being more square. For our simulations, we took d = 1/4 and s = 25.
Variable-duration pulse trains were given by the expression

2
Lyp(0) =gvpzi}({|, £t —opl <m0, O l)}(f) * exp< (%) >7 (2)

=3 1000/,

where

the frequencies {o,}} are chosen uniformly from [fi,. frgnl. the pulse width is given by w, =
10004, /w;, the duty cycles {d,}} are chosen uniformly from [di,, dygn], the shape parameters {s;}
are chosen uniformly from [s,,. spignl, @nd the offsets {o,}} are chosen uniformly from [0,4,, 0pign]-
For our simulations, these parameters are given in Table 5.

Phase-locking Value
The (spike rate adjusted) phase-locking value (PLV, Aydore et al. (2013)) of the oscillator to these
inputs was calculated with the expressions

1 < i
PLV = (n[MRVF 1)/ (n,=1), MRV = g;exp (V=14, (1)),

where MRV stands for mean resultant vector, n, is the number of spikes, ¢ is the time of the i
spike, and ¢, (1) is the instantaneous phase of input (Ipp or I,p) at frequency w.

For I, ¢,(r) was obtained as the angle of the complex time series resulting from the convolution
of I,, with a complex Morlet wavelet having the same frequency as the input and a length of 7
cycles. Since I, was composed of pulses and interpulse periods of varying duration, this procedure
did not yield accurate estimates of the instantaneous phase of these inputs. Instead, the following
procedure was used. First, the times that y,, went from zero to greater than zero ({g,}’_,) and
from greater than zero to zero ({bi}f:]) were obtained. Second, we specified the phase of I, on
these points via the function ¢9(1), a piecewise constant function satisfying

G0 =2 (Fo,0+50,0).
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where § is the Dirac delta function. Finally, we determined ¢, () from qb‘}(r) via linear interpolation,
i.e. by setting ¢, (¢) to be the piecewise linear (strictly increasing) function satisfying

$,0=0. ¢, (a)=0%(a). ¢ (b)=¢(b)-

The resulting function ¢, (r) advances by /2 over the support of each input pulse (the support is
the interval of time over which the input pulse is nonzero), and advances by 3z/2 over the time
interval between the supports of consecutive pulses.

Spike-triggered input pulses

To explore the buildup of outward current and delay of subsequent spiking induced by strong
forcing, we probed each model with a single spike-triggered pulse. These pulses were triggered
by the first spike after a transient interval of 2000 ms, had a pulse duration of 50 ms, and had a
form given by the summand in Equation 1 with w = 50 and s = 25 (i was 1 and ¢, was the time of the
triggering spike).

Results

Modeling cortical 9 oscillators
To explore how frequency flexibility in phase-locking depends on the biophysics and dynamics of
inhibitory currents, we employed Hodgkin-Huxley type computational models of cortical 8 oscillators.
In these models, 8 rhythmicity was paced by synaptic inhibition with a fast rise time and a slow decay
time and/or by #-frequency sub-threshold oscillations (STOs) resulting from the interaction of a
pair of intrinsic currents activated at subthreshold membrane potentials - a depolarizing persistent
sodium current and a hyperpolarizing and slowly activating m-current (Gutfreund et al., 1995) (Fig.
1, 2B). A super-slow potassium current introduced a § timescale into the dynamics of some models
(Fig. 1, 2C). Thus, in addition to spiking and leak currents, our models included up to three types of
outward - i.e. hyperpolarizing and thus spike suppressing, and here termed inhibitory - currents:
an m-current or slow potassium current (1,,) with a voltage-dependent time constant of activation
of ~10-45 ms; recurrent synaptic inhibition (1;,,) with a decay time of 60 ms; and a super-slow K
current (Iy.) with (calcium-dependent) rise and decay times of ~100 and ~500 ms, respectively.
The presence of these three hyperpolarizing currents was varied over six models - M, |, MI, MS, IS,
and MIS - whose names indicate the presence or absence of each current: M for the m-current, |
for synaptic inhibition, and S for the super-slow K current (Fig. 1).

To parameterize our models, we began by qualitatively matching in vitro recordings from layer
5 6-resonant pyramidal cells (Carracedo et al., 2013) (Fig. 2D). These RS cells transition from tonic
s-rhythmic spiking to tonic 9-rhythmic spiking through so-called mixed-mode oscillations (MMOs,
here pairs of spikes spaced a 6 period apart occurring at a 6 frequency) as their resting membrane
potential is raised over a few mV (Carracedo et al., 2013), and the in vitro data suggests that this
pattern of spiking is independent of recurrent synaptic inhibition, arising instead from intrinsic
inhibitory currents. To replicate this behavior, we constructed a Hodgkin-Huxley neuron model
paced by both I, and I (Fig. 1, model MS, & Fig. 2A). While in vitro, these cells receive 5-rhythmic
EPSPs, this rhythmic excitation is not required in our model, which exhibited MMOs in response to
tonic input (Fig. 2D).

We then constructed five additional models based on model MS (Fig. 1). First, to obtain model
IS, we replaced I, with I, adjusting the leak current and the conductance of synaptic inhibition to
get a frequency-current (Fl) curve having a rheobase and inflection point similar to that of model MS.
In the remaining models, only the leak current conductance was changed to produce #-rhythmic
spiking at roughly similar values of I,,; all other conductances were identical to those in models MS
and IS. For all remaining simulations, we fixed 1, so that all models exhibit spontaneous rhythmic
spiking at ~7 Hz (Fig. 1, red circles).
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Phase-Locking Under Strong Forcing

We first tested whether these six oscillators entrained to different frequencies of exactly periodic
input, examining their responses to rhythmic input pulses with frequencies ranging from 0.25 to
23 Hz. To mimic the bursts of excitation produced by deep intrinsic bursting (IB) cells projecting to
deep regular spiking (RS) cells (Carracedo et al., 2013), rhythmic inputs were modeled as smoothed
square-wave current injections to the RS cells of all three models, having duty cycles 1/4 of the
input period (see Methods). We varied the strength of input pulses from 0 to 4 pA, and measured
the degree of phase-locking to the input rhythm exhibited by RS cell spikes over 30 seconds (see
Methods). The results of these simulations are shown in Fig. 3, with models ordered by increasing
frequency flexibility of phase-locking. For high enough input strength, all models were able to
phase-lock adequately to inputs faster than 7 Hz, including the fastest frequency we tested (23 Hz).
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the (spike-rate adjusted) phase-locking value (PLV, see Methods) of spiking to input waveform, with vertical
magenta lines indicating intrinsic spiking frequency. Schematics of each model appear above and to the left;
sample traces of each model appear above and to the right (voltage traces in black, input profile in red, two
seconds shown, input frequency 2.5 Hz, input strength —3.4 pA). The bands in these false-color images are
related to the number of spikes generated per input cycle: the highest PLV occurs when an oscillator produces
one spike per input cycle, and PLV decreases (from band to band) as the strength of the input (and the number
of spikes per input cycle) increases.

Models exhibited significantly more diversity in their ability to phase-lock to inputs slower than
their intrinsic frequency, ranging from total inability to phase-lock to input frequencies below 7 Hz
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spiking to input waveform, for inputs varying in bandwidth and regularity having a center frequency of 7 Hz (see
Methods & Table 5) as well as input strength. Schematics of each model appear above and to the left.

255 (model M), to ability to phase lock to input frequencies as low as 1.5 Hz even when input strength
256 was relatively low (model MS). The super-slow K current uniformly increased the frequency range of
257 phase-locking, with every model containing Iy able to phase-lock to slower inputs than any model
258 Without I__. Synaptic inhibition seemed to stabilize the frequency range of phase-locking, with the
259 four models containing I, exhibiting an intermediate frequency range of phase-locking, while the
260 M-current seemed to do the opposite, with both the narrowest and the broadest frequency ranges
261 of phase-locking occurring in the four model 6 oscillators containing I,,, and the very narrowest and
262 broadest ranges occurring in the two of these models that lacked I,,, (models M and MlI). Notably,
263 models Ml and MIS exhibited one-to-one phase-locking to periodic inputs (i.e., a single spike per
264 input cycle occurring within a small window of input phases, appearing in Fig. 3 as a bright yellow
265 band indicative of high PLV) for input strengths twice as high as any other models. In these models,
266 synaptic inhibition and m-current inhibition were both present, making the overall level of inhibition
267 higher, and simulations showed that these phenomena were related: models exhibited one-to-one
268 phase-locking increased over larger ranges of input strengths as the conductances of the m- and
269 Synaptic currents were increased (Fig. S1).

270 Next, we tested whether the frequency selectivity of phase-locking exhibited for periodic inputs
27 would carry over to quasi-rhythmic inputs, by exploring the phase-locking behavior of model ¢
272 oscillators in response to trains of input pulses in which pulse duration, interpulse duration, and
273 pulse waveform varied from pulse to pulse (with a center frequency of 7 Hz). These irregular input
274 pulse trains probed the abilities of our 0 oscillator models to “parse"” irregular inputs. To create these
275 irregular trains of input pulses, pulse and interpulse durations were chosen (uniformly) randomly
276 from ranges of pulse “frequencies" and “duty cycles", respectively, and pulse shape and onset
277 time were similarly randomized (see Methods, Equation 2). To create a gradient of input classes
278 with different degrees of regularity, we systematically varied the intervals from which frequencies
279 (determining cycle lengths), duty cycles, pulse shapes, and pulse onset times were chosen (Table 5);
280 we use “bandwidth" here as a shorthand for this multi-dimensional gradient in input regularity.

281 For “narrowband" (i.e. highly regular) inputs and high input strengths, all six models showed
232 a high degree of phase-locking to the input waveforms, reflecting their ability to phase-lock to
233 periodic inputs at their intrinsic frequency (Fig. 4). In contrast, phase-locking to “broadband" inputs
234 (i.e., irregular inputs with broad ranges of input periods, durations, and shapes) was higher for
255 the models that exhibited broader frequency ranges of phase-locking to strictly periodic inputs -
2866 namely, models exhibiting both I . and I, (i.e., MIS and MS). At high input strengths, model MS in
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particular showed a high level of phase-locking that was nearly independent of input regularity (Fig.
4). Notably, model MIS mirrored the ability of model MS to phase-lock to broadband inputs at high
input intensity, while showing frequency selective phase-locking at low input intensity. Indeed, MIS
phase-locked to weak, narrowband quasi-rhythmic inputs better than any other model, perhaps
due to its large region of one-to-one phase-locking (Fig. 4).

Input Pulse m activation
--------- No Input Pulse Synaptic activation
——KSS activation

No Input Pulse
Input Pulse

Figure 5. Delay of spiking in response to input pulses.
Voltage traces plotted for simulations both with (dotted lines)
and without (solid lines) an input pulse lasting 50 ms. Red bar

indicates the timing of the input pulse; red star indicates the 50 ms. Red bar indicates the timing of the input pulse; red star

first post-input spike.

294
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297
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299

300

301

302
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304

Figure 6. Buildup of outward currents in response to input
pulses. Activation variables (color) plotted for simulations both
with (dotted lines) and without (solid lines) an input pulse lasting

indicates the time of the first post-input spike.

Buildup of Outward Currents

Next, we sought to understand how the dynamics of inhibitory currents contributed to the observed
gradient from selective to flexible phase-locking, and in particular to the observed variations in
entrainment to rhythms with frequencies slower than 6. To begin answering this question, we
discuss the mechanism of phase-locking to periodic input pulse trains in our models. During each
input pulse, strong forcing leads to a burst of spiking, which in turn activates the outward currents
that pace the models’ intrinsic rhythmicity. These inhibitory currents hyperpolarize the models,
causing the cessation of spiking for at least a  period, and in some cases much longer. If the pause
in spiking is sufficiently long to delay further spiking until the next input arrives, phase-locking is
achieved, given that the next strong input pulse causes spiking. Thus, the strength and duration of
the post-input hyperpolarization determines the duration of the pause in spiking, and this in turn
determines the lower (frequency) limit of phase-locking to periodic inputs for the oscillator, which,
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as we have shown, is related to the frequency flexibility of phase-locking to irregular inputs.

The dynamics of intrinsic and synaptic currents determine the length of this pause and its
dependence on input strength. To observe how the dynamics of outward currents contributed to
the length of the delay in spiking following an input pulse, we explored model responses to single
(excitatory) input pulses (Fig. 5). As expected, the delay of spiking in response to a single, strong
input pulse lasting 50 ms corresponded overall to the frequency flexibility of phase-locking in our
models, being shortest in model M and longest in model MS (Fig. 5). The gating variables of the
three outward currents simulated in our models offered an explanation for the observed patterns
of phase-locking frequency flexibility (Fig. 6). We describe the dynamics of these currents during
and after the input pulse, from simple to complex.

The simplest current to understand is I, (Fig. 6, purple), which does not build up during the
input pulse, and by itself (in model 1) delays the spike following the input pulse by very little. This
small delay occurs because the input pulse, by causing the RS and then the SOM cell to spike,
repeatedly resets the synaptic inhibitory “clock” - the time until I;,, has decayed enough for a
spontaneous spike to occur. As soon as spiking stops (at the end of the input pulse or shortly
afterwards - our model SOM interneurons are highly excitable and may exhibit noise-induced
spiking after the input pulse), the level of inhibition begins to decay.

As seen in model M (Fig. 6), the m-current (blue) does build up over the course of the input pulse,
but it quickly decays at the end of the input pulse, as m-current activation continues to oscillate. As
a result, the spike that follows the input pulse is delayed very little, relative to the spiking behavior
of the unforced oscillator (Fig. 5). Thus, the STOs in model M offer an explanation for this model’s
inability to phase-lock to rhythms below its intrinsic frequency. While the buildup of the m-current
during the input pulse seems to change the frequency of the subsequent STOs, this doesn't affect
the model’s phase-locking in the strong forcing regime, which depends primarily on the length of
the pause in spiking following the input pulse.

The super-slow K current builds up dramatically during the input pulse (Fig. 6, green), and decays
slowly, increasing the latency of the first spike following the input pulse substantially (Fig. 5). This
slow-building outward current interacts differently, however, with synaptic and intrinsic -timescale
currents.

In model IS, both Iy, and I decay monotonically following an input pulse, until the total level
of hyperpolarization is low enough to permit another spike. The spike burst in response to the input
pulse means that the effective level of inhibition due to I;,, is much higher than the effective level
of inhibition due to Iy_; thus, the delay in spiking following the input terminates after the synaptic
activation variable s has decayed below the level s « at which the cell spikes spontaneously, but well
before the activation of I, has returned to spontaneous levels (Fig. 6, model IS). Nevertheless, Iy
and I, appear to interact additively to produce hyperpolarization and a pause in spiking in the RS
cell.

In model MS, the conductance of I, is again much higher than the conductance of Iy . However,
in this model, the I activation must decay to levels much lower than “baseline" before the oscillator
spikes again, even though there are times during the delay in spiking following the input pulse at
which both I, and Iy are less active than during baseline spiking (e.g., ~0.45 and ~0.6 seconds,
Fig. 6). Notably, the m-current activation increases for the duration of the delay period, with subtle
oscillatory fluctuations riding the increase. These dynamics suggest a more complex relationship
between I, and I_. While a full analysis is outside the scope of this paper, we hypothesize that
this synergistic effect is due to the STOs present in model MS.

In model MI, buildup of I, decreases SOM cell spiking during the input pulse, interfering with
the “resetting" of I,,, near the end of the input pulse, while the presence of I, damps the STOs
in the RS cell, resulting in behavior intermediate between models M and I. Similarly, model MIS
exhibits behavior intermediate between models MS and IS. Following an input pulse, spiking is
delayed until Iy decays below baseline levels (Fig. ©) - a longer delay than in model IS. It seems
unlikely that the three outward currents interact additively in model MIS, since, as in model MS,
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the first post-input spike occurs at a time at which the activation level of the m-current is elevated
relative to baseline (Fig. 6).

Discussion

Our results show that multiple timescales of synaptic and intrinsic inhibition interact in dynamically
complex ways. In particular, we discovered a complex relationship between §- and ¢-timescale
intrinsic K currents that enables some of our model ¢ oscillators to follow strong periodic forcing
well below their intrinsic spiking frequency. Similar oscillators lacking this pair of intrinsic currents
(including oscillators paced primarily by synaptic inhibition) show markedly less frequency flexibility
in phase-locking to rhythmic and quasi-rhythmic inputs. Thus, synaptic and intrinsic inhibition may
tune neural oscillators to exhibit different levels of phase-locking flexibility, allowing them to play
diverse roles - from reliable timing cues to flexible parsers of sensory inputs.

Mechanisms of phase-locking

Our results show that, for models containing a variety of intrinsic and synaptic currents, buildup
of outward current during strong forcing plays an important role in the ability to phase-lock to
inputs having a wide range of frequencies, especially frequencies below the models’ spontaneous
frequency. A super-slow adapting current, Iy, is key to the ability to phase-lock to slow frequencies
in our models. In general, whether an outward current functions as an adapting current - causing
the time intervals between successive pairs of spikes to decrease during intense stimulation -
depends on the timescale of the current relative to the timescale of spiking during stimulation. If
inhibition or hyperpolarization is activity-dependent and has a timescale slower than the interspike
interval, it can serve this function; for example, in a y oscillator, any current with a timescale below
y (for example, the 0 timescale m-current) could function in this way.

We have also shown, we believe for the first time, a synergy in our models between a slow and a
super-slow K current. While a full analysis is beyond the scope of this paper, we conjecture that
the synergy depends on the subthreshold oscillations (STOs) engendered by the slow K current
(the m-current) in our models, as is suggested by a comparison between our IS, MIS, and MS
models. In model IS, there are no STOs, and the interaction between §-timescale inhibition (which is
synaptic) and I is additive. In models MIS and MS, where STOs result from interactions between
the m-current and the persistent sodium current, the interaction between I, and #-timescale
hyperpolarization (mediated by the m-current) is not additive, but synergistic, producing a longer
delay than would result from the sum of the two phenomena acting in isolation.

The fact that our oscillators can phase-lock to quasi-rhythmic as well as periodic inputs is largely
a consequence of the mechanism of phase-locking in the regime of strong forcing. Since inputs are
generally strong enough to cause spiking, phase-locking is dependent less on the phase at which
an input arrives than on the delay caused by each input. If an input arrives before the end of that
delay, it causes a spike, and phase-locking occurs. However, decreased phase-locking for inputs
having a large range of instantaneous frequencies occurs in our models due to both “missed" spikes
during the high-excitability phase of the input and “extra" spikes during the low-excitability phase of
the input. These “missed" spikes may be due to the properties of our oscillators in the weak-forcing
regime (see Discussion: Relationship to previous work).

Our model MIS is perhaps the most physiologically realistic, in that neurons in deep cortical
layers are likely to exhibit all three outward currents studied in this paper. Significantly, this model
exhibits both frequency selectivity in phase-locking at low input strengths, and frequency flexibility
in phase-locking at high input strengths (Fig. 4). Input gain can depend on a variety of factors,
including attention, stimulus novelty and salience, and whether the input is within- or cross-modality.
A mechanism that allows input gain to determine the degree of phase-locking frequency flexibility
could enable the differential processing of inputs based on these attributes.
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Relationship to previous work

Phase-locking of neural oscillators under weak forcing has been studied extensively (Ermentrout,
1981, 1996; Kopell and Ermentrout, 2002; Achuthan and Canavier, 2009; Canavier and Achuthan,
2010). In this regime, a neural oscillator stays close to a limit cycle during and after forcing, and as
a result the phase of the oscillator is well-defined throughout forcing. Furthermore, the change
in phase induced by an input is small (less than a full cycle), can be calculated, and can be plotted
as a function of the phase at which the input is applied, resulting in a phase-response curve (PRC).
In this work, we have focused on strong and non-instantaneous forcing. Our results pertain to
a dynamical regime in which PRC theory does not apply. Namely, our forcing is strong and long
enough that our oscillators complete multiple cycles during the input pulse, and as a result the
phase at the end of forcing is not guaranteed to be a function of the phase at which forcing begins.
Furthermore, in oscillators which contain Iy the dynamics of this slow current adds an additional
dimension, which makes it impossible to describe the state of these oscillators in terms of a simple
phase variable. Not only the phase of the oscillator, but also its amplitude (which is impacted by
the activation of Iy ), determine its dynamics.

We have focused on the 6 timescale, and our results highlight in particular the properties of
the 6-timescale m-current. Previous work has illuminated many of the dynamical properties of
the m-current. The addition of an m-current (or indeed any slow resonating current, such as an
h-current or a slow, non-inactivating potassium current) changes a neuron from a Type | to a Type
Il oscillator (Ermentrout et al., 2001; Acker et al., 2003). The fact that resonating currents can
generate membrane potential resonance (and subthreshold oscillations) is well-studied (Gutfreund
et al., 1995; Hu et al., 2002; Rotstein and Nadim, 2014). More recently, it has been shown that
the ¢-timescale properties of the M-current allow an E-I network subject to ¢ forcing to precisely
coordinate with external forcing on a y timescale (Zhou et al., 2018). While STOs play a role in the
dynamics of our model oscillators containing the m-current, subthreshold resonance does not
automatically imply suprathreshold resonance or precise response spiking (Rotstein, 2017). Thus,
our results are not predictable (either a priori or a posteriori) from the effects of the m-current on
neuronal dynamics.

It is possible that larger inhibition-paced networks, which have been studied both computa-
tionally and experimentally (Akam and Kullmann, 2012; Tsai et al., 2008; Atallah and Scanziani,
2009; Shin and Cho, 2013; Sherfey et al., 2018a), may exhibit properties distinct from our models
containing synaptic inhibition. Papers attempting to spell out the constraints on selective com-
munication between neuronal oscillators have examined larger networks (Akam and Kullmann,
2012; Sherfey et al., 2018a). Other computational work has shown that the addition of E-E and
I-I connectivity in E-I networks can yield frequency flexibility through potentiation of these recur-
rent connections (Tsai et al., 2008; Shin and Cho, 2013), although the putative timescale of this
potentiation is much slower than the cycle-by-cycle changes in instantaneous frequency seen in
physiologically-relevant quasi-rhythmic inputs. Faster mechanisms may be at play in the brain,
however: experimental results show that amplitude and instantaneous frequency are related in
hippocampal networks, since firing by a larger proportion of excitatory pyramidal cells recruits a
larger population of inhibitory interneurons (Atallah and Scanziani, 2009). In larger E-I networks,
the recruitment of different proportions of neurons by inputs of different sizes may allow more
frequency flexibility in phase-locking; and recent work shows something similar: that heterogeneity
in E- synapses can allow frequency flexibility in phase-locking recruiting different subpopulations
of interneurons (). Finally, in our models, as in published models of §-oscillator driven syllable
segmentation (Hyafil et al., 2015), only the RS cells receive inputs. How feedforward inhibition
affects the frequency specificity of phase-locking, especially in larger networks, is an important
question for future research.
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Functional implications

Our focus on the 0 timescale is motivated by in vitro results on cortical 6 oscillators (Carracedo
et al., 2013), by in vivo results underscoring the prominence of theta rhythms in the spontaneous
activity of primate auditory cortex (Lakatos et al., 2005), and by the potential functional role of
cortical 0 oscillations in segmentation auditory input (Ghitza and Greenberg, 2009; Ghitza, 2011,
2012, 2013, 2014; Riecke et al., 2015b,a, 2017; Teng et al., 2017; Zoefel et al., 2018). Auditory cortical
0 rhythms modulate the stimulus-specific response gain of auditory population activity (Kayser
et al., 2015), and effect a continuous and active segmentation and grouping process for auditory
stimuli (Teng et al., 2017). The phase entrainment between brain rhythms and speech envelope
fluctuations at 6/0 frequencies is associated with speech intelligibility (Ahissar et al., 2001; Luo
and Poeppel, 2007; Nourski et al., 2009; Hertrich et al., 2012; Peelle et al., 2012; Doelling et al.,
2014; Ding et al., 2016; Riecke et al., 2017; Zoefel et al., 2018) and alters auditory perception of
non-speech stimuli (Zoefel and VanRullen, 2015). Recent experiments have shown a causal link
(Riecke et al., 2017; Wilsch et al., 2017, 2018; Zoefel et al., 2018): application of ~3 Hz transcranial
alternating current stimulation at different phases relative to a rhythmically-presented speech
stream phasically modulates behavior and the BOLD response to intelligible speech (Zoefel et al.,
2018).

In terms of speech comprehension, the information in syllabic rate amplitude fluctuations is
critical: removing 1-7 Hz (Elliott and Theunissen, 2009) or 2-9 Hz (Ghitza, 2012) amplitude modu-
lations decreases speech intelligibility dramatically (Drullman et al., 1994), and periodic speech
manipulations including interruption (Miller and Licklider, 1950), alternating monaural sources
(Huggins, 1964), and reversal of short segments (Stilp et al., 2010) affect comprehension most
when interfering with syllabic-rate intervals. Perhaps the strongest evidence supporting syllabic
segmentation by 6 oscillations is the observation that the phase of intrinsic ~6 Hz oscillations at
sound onset determines the categorization of ambiguous syllables (between /da/ and /ga/), by
altering their perceived onset length (Ten Oever and Sack, 2015).

The average spoken syllable lasts about the period of a 3 Hz oscillation, and temporal com-
pression increasing the syllabic rate above 9 Hz results in a sharp drop in speech intelligibility
that can be rescued by “repackaging" - inserting gaps of silence into the speech signal - with the
highest levels of comprehension occurring when 333 ms segments of natural speech are delivered
at rates below 9 Hz (Ghitza and Greenberg, 2009). Recent research shows that cortical speech-brain
entrainment occurs for syllabic rates as high as 13 Hz, a speed at which speech is unintelligible,
while g-frequency activity is abnormal in response to this unintelligible compressed speech (Pefkou
et al., 2017). This suggests that the upper syllabic rate limit on speech intelligibility arises from
the timescale of mnemonic processing (with a g-rhythmic signature) in structures downstream
from the cortical 6 oscillators responsible for syllabic segmentation (Pefkou et al., 2017). This is in
agreement with our finding that the upper frequency boundary on phase-locking for our models
extends well above 9 Hz, and is largely determined by input strength. Nonetheless, it is noteworthy
that task-related auditory cortical entrainment operates most reliably over the 1-9 Hz (syllabic)
ranges (Lakatos et al., 2013).

For the accurate segmentation of syllables, we are not interested in the ability of an oscillator
to phase-lock, per se, to an input quasi-rhythm in the 0 syllable range. Rather, what is required
is a system that can reliably mark every syllable boundary - where syllable boundaries tend to
occur quasi-rhythmically. Thus, we want a cellular oscillator which can reliably generate a single
spike or a spike volley, at every high-energy phase that occurs within a 6 quasi-rhythm. Our model
MS seems capable of performing this task, if sufficiently excited, although it will be important
to test this with actual speech waveforms. However, the phase-locking properties of model MS
depend on the relationship between input strength and tonic excitation, and there is a tradeoff:
at lower levels of tonic excitation, a single spike marks the peak of each low-frequency cycle, but
some peaks of high-frequency inputs go unmarked, while at higher levels of tonic excitation, single
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spikes mark the peaks of high-frequency inputs, but multiple spikes may occur during the peaks of
each low-frequency cycle (Fig. S2). Thus, it seems possible that the brain relies on a bank of such
oscillators with different resting membrane potentials and/or input gains, connected synaptically or
electrically, to more reliable mark syllable transitions across the entire “g-syllable" range. As noted
above, larger E-lI networks may also exhibit more frequency flexibility than the inhibition-paced
oscillators modeled here. The full spectrum of relationships between the properties of these
individual oscillatory units and the activity of the networks in which they participate remains to be
mapped out. These questions are complicated by the possibility that neuromodulators which affect
the conductance of outward currents could change the flexibility vs. selectivity of phase-locking in
individual oscillatory units; acetylcholine is one neuromodulator known to alter the conductance
of the m-current. Nevertheless, we may ask why the brain would select phase-locking flexibility in
single cells vs. networks. One possible answer is energetic efficiency. If flexibility in an inhibition-
paced oscillatory network depends on recruiting large numbers of inhibitory interneurons, it may
be more efficient as well as more reliable to utilize a small number of oscillators, each capable of
segmentation quasi-rhythmic inputs containing a large range of instantaneous frequencies.

Entrainment flexibility does not seem to be ubiquitous in the brain. In the hippocampus, for
example, 6 rhythm is robustly periodic, exhibiting relatively small frequency changes with navigation
speed (McFarland et al., 1975). Interestingly, the mechanisms of hippocampal ¢ and the neocortical
0 rhythmicity discussed in this paper are very different: while the former is dominated by synaptic
inhibition, resulting from an interaction of synaptic inhibition and the h-current in oriens lacunosum
moleculare interneurons (Rotstein et al., 2005), the latter is only modified by it (Carracedo et al.,
2013). Our results suggest that mechanisms like that of hippocampal 6, far too inflexible to
perform the segmentation tasks necessary for speech comprehension, are instead optimized for
a different functional role. One possibility is that imposing a more rigid temporal structure on
population activity may help to sort “signal" from “noise" - i.e., imposing a strict frequency and
phase criterion that inputs must meet to be processed. Another possibility is that more rigidly
patterned oscillations result from a tight relationship to motor sampling routines which operate
over an inherently more constrained frequency range, as, for example, whisking, sniffing, and
running are related to hippocampal 8 (Kleinfeld et al., 2006, 2016).

The auditory cortical 8 oscillator is hypothesized to drive y circuits, and in a phenomenological
model matching psychophysical data (Ghitza, 2011), the frequency of y is required to scale with
the frequency of 6. Meeting this requirement strictly is acausal - the y oscillator would have to
access the duration of a ¢ cycle at the start of that cycle, before the duration of the cycle is, in fact,
determined. However, we suspect it is possible for this requirement to be met with some lag, if
the 0 oscillator excites a y oscillation via synaptic or intrinsic currents having a 6 timescale. In this
case, excitation would build up over multiple 8 cycles when syllables arrive at a frequency faster
than the timescale of excitation, and it would drop when syllables arrive at a frequency slower than
the timescale of excitation. By similar mechanisms, slower oscillations, such as § oscillations, could
affect the intrinsic frequency of our 0 oscillator. The current work is part of a larger research plan to
develop a computational model of the oscillatory hierarchy that contributes to speech segmentation
via phase-locking of brain rhythms to speech stimulus features. We hope this work will shed light
on the biophysical mechanisms used by the brain to parse a complex auditory stimulus evolving on
multiple timescales, namely, human speech.
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Figure S1. Dependence of One-to-One Phase Locking on Inhibitory Conductance. We multiplied the
conductances g, and g;,, in model MIS by factors of 1, 20 4, 1,and 2 7, and then computed plots of PLV for different
input frequencies and strengths, as in Fig. 3. The brlght yellow band in each figure, representing the region of
one-to-one phase-locking, depends on the size of g, and g;,,; both increase from left to right.
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Figure S2. Varying Tonic Input to Model MS. We altered the tonic input strength gz, to model MS, and gave
periodic pulse inputs of strength gpp = 1 at varying frequencies. For lower levels of tonic input, phase-locking is closer
to one-to-one for low frequency inputs, but many high frequency input cycles are “missed"; for higher levels of tonic
input, phase-locking is one-to-one for high frequency inputs, but many-to-one for low frequency inputs.
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