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As the number of genomics datasets grows rapidly, sample mislabeling has become a high stakes
issue. We present CrosscheckFingerprints (Crosscheck), a tool for quantifying sample-relatedness and
detecting incorrectly paired sequencing datasets from different donors. Crosscheck outperforms
similar methods and is effective even when data are sparse or from different assays. Application of
Crosscheck to 8851 ENCODE ChIP-, RNA-, and DNase-seq datasets enabled us to identify and correct
dozens of mislabeled samples and ambiguous metadata annotations, representing ~1% of ENCODE
datasets.

| ntroduction

Biomedical research is rapidly embracing large-scale analysis of next-generation sequencing (NGS)
datasets, often by integrating data generated by consortia or many individual research labs. Parallelized
NGS analysis of tissues from many different patients is also commonplace in clinical genomics pipelines.
In these settings, sample or data mislabeling, where datasets are incorrectly associated with a donor,
can lead to erroneous conclusions, misdirect future research, and affect treatment decisions™™ (Fig 1a).
Verifying the relatedness of samples that nominally share a donor is therefore a crucial quality-control
step in any NGS pipeline.

Several methods utilize genetic information from NGS datasets as an endogenous barcode to
verify sample relatedness*°. The common logic behind these tools is that each genome harbors a
unique set of single nucleotide polymorphisms (SNPs) which are shared between datasets originating
from the same donor. A limitation of these methods is their requirement that sequencing reads from
both inputs overlap the exact genomic position of informative SNPs. When insufficient reads satisfy this
condition—for example when the input datasets are shallow or target different genomic regions (i.e
different transcription factors), the power to evaluate sample relatedness is compromised. Many NGS-
based studies now integrate multiple types of assays™ "> and utilize shallow sequencing to reduce cost at
the expense of read-depth. This is commonly encountered in highly multiplexed experiments,
sequencing spike-ins, and large cohort sequencing efforts in population and cancer genomics (i.e. 1000
Genomes, structural variant calling). We therefore set out to develop a method for quantifying sample-
relatedness that was both robust to shallow sequencing depth and that could be systematically applied
to modern large-scale projects incorporating multiple data types.

Linkage disequilibrium (LD) is the non-random association of alleles at different loci within a
given population®®. This association implies that comparing datasets across SNPs in high LD—termed LD-
blocks—would provide more statistical power to compare datasets than using single SNPs alone.
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Because of LD, two non-overlapping reads from different datasets may support (or provide evidence
against) a common genetic background, as long as they overlap SNPs in the same LD block (Fig 1b). For
each input dataset, Crosscheck uses reads overlapping SNPs within each LD block to calculate a block
allele fraction and compute diploid genotype likelihoods, which are then compared (Methods). The
relative likelihood of a shared or distinct genetic background at each block is reported as a log-odds ratio
(LOD score). These scores are combined across all blocks to report a genome-wide LOD score. This
calculation relies on two approximations: that linkage between SNPs in an LD block is perfect, and that
SNPs in distinct blocks are independent. A positive LOD score indicates a higher likelihood that the two
datasets share a donor, while a negative LOD score suggests that the datasets are from distinct donors.
The Crosscheck calculation assumes that the two datasets are a priori equally likely to be from the same
donor as they are from different ones. It is possible to incorporate a different prior expectation for a
mismatch by shifting the LOD scores (Methods). Though the magnitude of the LOD score reflects
genotyping confidence, simplifying assumptions prevent direct interpretation of the LOD score as a true
likelihood ratio (Methods). Crosscheck is implemented as part of Picard-Tools (https://github.com/
broadinstitute/picard), and is routinely used for quality control by the Broad Institute’s Genomics
Platform, using a small set of LD blocks optimized for use with whole-exome-sequencing data.

We reasoned that applying Crosscheck across a large, genome-wide set of LD-blocks (haplotype
map) would allow us to compare the genotype of diverse datasets and would be robust to low coverage
and sequencing errors. We constructed a map consisting of nearly 60,000 common (minor allele
frequency = 10%) bi-allelic SNPs from the 1000 Genomes'! project, the majority of which lie in LD-
blocks of two or more SNPs in order to maximize the probability of informative read overlap (Fig 1c,
Methods). SNPs within each block are highly correlated (r% > 0.85), while SNPs between blocks are
approximately independent (72 < 0.10). Increasing or decreasing the thresholds for within-block and
between-blocks correlations by 0.05 had no effect on the method's performance on a testing data set
(described in the next paragraph). Finally, in order to reduce bias from donor ancestry, we required that
LD blocks have similar allele frequencies across different human sub-populations. The pipeline for
creating haplotype maps exists as a standalone tool
(https://github.com/naumanjaved/fingerprint_maps) and comes with pre-compiled haplotype maps for
both hgl9 and GRCh38. The pipeline can be customized to create LD blocks in specific genomic areas
(i.e. coding regions) and with different parameters (i.e. different intra or inter-block r2).

In the rest of this manuscript we demonstrate that CrosscheckFingerprints, used with the
haplotype map that we generated, can reliably detect donor mislabeling with fewer errors than other
existing methods. It is particularly superior in challenging settings such as low sequencing depth or when
comparing datasets from diverse data types. We demonstrate the suitability of Crosscheck for large
scale production operation by applying it to 8,851 datasets from the ENCODE consortium, and discuss
the misannotations that this analysis uncovered.

Results

Benchmarking

To pilot our method, we calculated LOD scores between donor-matched and donor-mismatched
pairs of public datasets from the ENCODE" database, which hosts data from thousands of diverse NGS
experiments (Methods). Classification performance was measured in terms of the false flag rate (FFR),
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73 the fraction of donor-matched pairs incorrectly flagged as donor-mismatches, and the false match rate
74  (FMR), the fraction of donor-mismatched pairs incorrectly identified as donor-matches. Our testing set
75  comprised of all pairwise comparisons between 281 RNA-, DNase-, and ChIP-seq (targeting histones,
76  CTCF, or POL2) datasets with verified donor annotations (supplementary table S1), and all donor-

77 mismatched comparisons between 101 ChlIP-seq experiments targeting transcription factors and

78  chromatin modifiers (supplementary table S2). This resulted in a final testing set of 34,336 donor-

79 mismatches, and 9,767 donor-matches. Regardless of the input assay or enrichment target, Crosscheck
80  correctly classified almost all dataset pairs with 0% FMR and 0.01% FFR, and showed a clear separation
81 between donor-mismatches (negative LOD) and donor-matches (positive LOD) (Fig. 1d). Our method
82  therefore confidently detects donor-matched and donor-mismatched dataset pairs.

83 We next quantified how using LD blocks improves classification performance. We generated two
84  equally sized subsets of our full haplotype map—one comprised solely of unlinked SNPs and the other
85 containing only LD blocks with two or more SNPs, and used these to classify the same testing dataset

86 pairs. To simulate sparse datasets generated by spike-ins and multiplexed sequencing, we conducted

87 each comparison at a range of sequencing depths, expressed as the percentage of reads subsampled

88  from the original datasets (Methods, Supplementary Fig 1a). Using LD blocks significantly decreased

89 FMR and FFR, particularly at lower read depths and for cross-assay/target comparisons (Fig 1e,

90  Supplementary Fig 1b). For example, at 5% sub-sampling (< ~107 reads), using LD blocks decreased the
91 FMR and FFR by nearly 10% relative to using single SNPs for cross-assay comparisons.

92  Comparison with other methods

93 As mentioned above, there are other tools that quantify genetic sample relatedness. For

94  comparison purposes, we considered only methods that could be applied to the general use case that

95 Crosscheck is designed to address, namely comparing any two NGS datasets, and that can be deployed

96 at scale, so that calculating tens-to-hundreds of thousands of comparisons is tractable. Two of the

97 methods we examined, HYSIS® and BAM-matcher’, did not satisfy these criteria. Two other tools,

98  Conpair® and BAMixChecker’, provided inconclusive results for a high percentage of the testing-set

99 comparisons (Methods). NGSCheckmate'® (NGSC) is a model-based method that compares datasets by
100  correlating allele fractions across a panel of reference SNPs, and was the only other method that could
101 be directly compared to Crosscheck on the testing dataset. At high and intermediate read-depths, both
102 methods show similar performance. At lower read depths (< 15% subsampling) however, Crosscheck
103  outperforms NGSC, as indicated by a consistently lower FMR and FFR (Fig. 1f). Crosscheck is particularly
104  effective at classifying cross assay dataset pairs, where it shows a 2-3% lower FMR and FFR than NGSC at
105 5% subsampling. In these use cases, Crosscheck performs better than NGSC due to its use of LD and the
106  large number of SNPs in the haplotype map. Using LD blocks allows comparison of non-overlapping
107 reads, while using a large set of SNPs increases the chance that input datasets will contain genetically
108 informative reads. An illustrative example is a specific comparison between two ChIP-seq datasets, one
109  targeting H3K27me3 and the other H3K27ac. At 5% subsampling, these datasets cover 8% and 2% of the
110  genome respectively, and overlap at only 0.02%, which is expected from these mutually exclusive
111 histone modifications. Given this small set of potentially informative reads, NGSCheckmate wrongly
112 concludes that the datasets are derived from the same donor, while Crosscheck is still able to make the
113 correct call (Supplementary Fig. 1e). We have also tested Crosscheck, NGSC, BAMixChecker and Conpair
114  onsample pairs from 7 donors that are genetically related. We found that Crosscheck can identify all
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115 pairs of samples from related individuals as donor mismatches, and is superior in this context to the
116  other tools (Supplementary Fig. 2).

117 Finally, we used the distribution of LOD scores from incorrectly classified pairs to define an

118 inconclusive LOD score range of -5 < LOD < 5, in which a dataset pair cannot be confidently classified
119  (Methods, Supplementary Fig. 1c). Outside of this range, any pair with LOD > 5 is denoted a donor-

120 match, and those with LOD < -5 are flagged as donor-mismatches. The inconclusive range highlights the
121 interpretability of Crosscheck’s LOD score relative to NGSC’s binary outputs (match or mismatch), since
122 clear donor-mismatches can be prioritized and investigated separately from inconclusive comparisons.
123 We conclude that using Crosscheck with a full haplotype map enables more accurate detection of

124  donor-mismatched pairs in diverse and shallow collections of data.

125  Crosscheck analysis of ENCODE data

126 To illustrate the utility of our method on a consortium-scale dataset, we next analyzed the

127 remaining datasets in ENCODE. We used our method to verify the donor-annotation for all human hgl9
128  aligned DNase-, RNA-, and ChIP-seq datasets in the ENCODE database whose annotated donor was

129 represented by at least 4 datasets — a total of 8,851 datasets (Fig 2a). To scale our analysis to a database
130  of this size, we compared each dataset to a set of three representative datasets from its annotated

131  donor, and flagged any dataset with LOD < 5 for further review (Methods). To exclude the possibility
132 that the representative set for each donor contained a donor-mismatch, we required that all pairwise
133 comparisons between representative datasets yield an LOD score 2 5. This strategy scales linearly with
134  the size of the database, and in our case results in a 1000-fold reduction in computation relative to

135 performing all pairwise comparisons.

136 Our strategy confirmed the annotated donor for 97% of datasets. The remaining 3% (256

137  datasets) were flagged as potential donor-mismatches (LOD < -5), and only ~0.1% yielded inconclusive
138 results (-5 < LOD < 5) (Fig 2b). We next compared each flagged mismatch to the representative datasets
139 for each of the ENCODE donors in order to nominate a true donor identity. We also compared each

140  flagged mismatch to all other flagged mismatches in order to identify genetically consistent clusters and
141 uncover patterns of mislabeling.

142 This analysis uncovered 3 major categories of mislabeling (as well as a small fraction, 0.4%, of
143 datasets that exhibited a pattern consistent with cross-sample contamination, as described in Methods
144  and Supplementary Fig. 3). The first is a straightforward error where cells from one donor are mistakenly
145 labeled as deriving from a different donor. The likelihood of such a mistake increases when working with
146 several cell lines that are each used in a large number of experiments. For example, out of 4 flagged

147 datasets labeled as K562, two were shown to actually derive from GM12878 cells while the other two
148  derived from HEK293 cells. This type of mislabeling may also occur for primary cells or tissues when

149  many biological samples from multiple donors are obtained from the same source, as in the case of 300
150  embryonic tissue samples processed by ENCODE from a single lab.

151 The second class of mislabeling occurs when biological samples of the same cell type from

152 multiple donors are incorrectly labeled as deriving from a single donor. This is the case with some of the
153 commercially available primary cell lines that have been deeply interrogated by the consortium over
154 more than a decade, and for which cells have been procured multiple times. For example, HUVEC cells
155  are annotated as being derived from two different donors in the ENCODE metadata. However, our

156  analysis indicates that HUVEC samples actually derive from at-least 5 distinct donors (Fig 2c). This mis-
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157 annotation went undetected by ENCODE’s previous quality control pipelines because all samples were
158  of the same cell type and so exhibited similar epigenetic profiles.

159 The HUVEC example also highlights the third type of labeling inaccuracy, in which a single donor
160 is accessioned multiple times by dozens of different labs over several years. This results in slight

161 variations in donor name or description, leading to genetically identical samples being incorrectly

162 attributed to distinct donors. For example, some samples deriving from putative donor A are attributed
163 to HUVEC donor 1, while other samples from donor A are attributed to the distinct HUVEC donor 2.

164 Overall, our analysis of the ENCODE dataset suggested that substantive mislabeling error
165  occurred at a rate of ~1%. For these datasets, true donor identities were confirmed using ENCODE’s
166 extensive metadata records and all mislabeled datasets were corrected (Methods).

167 In conclusion, we present a robust and easy-to-use method for quantifying sample relatedness
168 which outperforms similar methods. Combined with our method for database analysis and haplotype
169 map, CrosscheckFingerprints can be readily applied for detecting sample mislabeling in large, diverse
170  databases without any optimization. We suggest it as a critical component of any NGS quality control
171 pipeline.

172
173  Methods

174  LOD Derivation

175 Here, a basic overview of the fingerprinting LOD score derivation is provided. A more detailed derivation
176 is available at the Picard repository at:

177 https://github.com/broadinstitute/picard/raw/master/docs/fingerprinting/main.pdf

178  Consider a LD block/locus containing a single bi-allelic SNP with major allele A and minor allele B, and
179 two sequencing datasets x and y. Let 8 and ¢ denote the diploid haplotype of datasets x and y

180  respectively at this locus. 8 and ¢ can each take one of three possible haplotypes: AA, AB, or BB. Let s
181 be a Bernoulli random variable where s = 1 denotes a sample swap (indicating that x and y arose from
182 two independent individuals) with posterior probability p(s = 1| x,y), and s = 0 denotes a shared
183  genetic origin (the samples came from the same individual). Using Bayes' rule and the prior probability
184  of no-swap, the posterior odds ratio of a no-swap vs. swap is given by:

p(s =0|xy) =zr)(x,yls =0)p(s=0)
pis=1lxy) pxyls=1)p(s=1)

(1)

185  We assume that in the case of a swap, the distinct individuals are independently sampled from the
186 population and that samples from the same individual have the same genotype, allowing us to write
187  p(0,¢|s) =p(0) p(p) fors =1,and p(0,¢ | s) = p(0) if @ = ¢@. Given that x is conditionally
188 independent of ¢ and y given 8, and y is conditionally independent of 8 given ¢, we can also write
189 p(yl60,0)=px|0)py|e).

190 With these two expressions, we derive that:
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P9 = ) pxY10,0,5p0,99)
0.9

ifs=1
%fz p(x|0) p(B)ZP(Y|‘P)p(‘P) o (2)
2] ¢

= ifs=0

> p0) pyl9) p(6)
k 0=¢

Substituting the results of equation (2) into equation (1), we rewrite the posterior odds of no-swap as:

Zo-oP(x10) p(yl@) ()  p(s=0)
2o (x10) p(8) X p(¥l@) p(@) P(s=1)

3)

Next, we consider evidence over multiple blocks i with correspondingly indexed 8;, ¢;, x;, and y;. We
assume that the haplotypes at distinct blocks are independent, and that reads at one block give no
information about another. In practice, this assumption is enforced by guaranteeing that a single read
cannot be used to provide genotype evidence at more than one locus. We calculate: p(x | 8) =

[Tip(x;i 1 6;) and p(y | @) = [lip(y; | @), and substitute into equation (3) to get:

n( Y0,=0, PXi 1 0) Py | @) P(6)) ) p(s=0)
20, 0(x;i |0)P(0) Xy, pyi | @) P(@))) P(s=1) @

i

Finally, since the odds ratio of no-swap to swap may vary by several orders of magnitude depending on
the input files, we compute the base 10 logarithm in order to facilitate comparison and interpretation:

LOD = log( Oddssame individual )

odds different individual

Z < Y00, P(xi | 0DD(: | 0P(8)) p(s=0)> (5)
= log

Y0, P(x: 1 00P(0) T, P | @)D (0) P(s = 1)

p(s=0)
p(s=1)
shift of the LOD score by a constant, and users may adjust the LOD score by such a constant as needed
on a case-by-case basis. A positive LOD (log-odds ratio) is interpreted as evidence for the two datasets x
and y arising from the same individual, while a negative LOD is evidence of a sample-swap, i.e. the two
datasets arose from different individuals. Scores close to zero are inconclusive, and tend to result from
low coverage, or poor overlap between the two datasets, at the observed sites.

The program assumes a conservative prior of = 1 by default. A different prior would result in a

To see the expected maximal contribution of a single locus, we assume that the likelihoods in (5) are
vanishingly small when the data doesn’t match the genotype. Thus, the LOD for a single locus reduces to
—logp(8). The expected LOD contribution needs to be marginalized over the different possible
genotypes, leading to a — Y, p(6) log p(0), which obtains a maximal value of 1.5log;q 2 ~ 0.45 atan
allele frequency of 0.5(leading to p(6 = AA) = 0.25, p(6 = AB) = 0.5, and p(6 = BB) = 0.25). This
means that when creating the haplotype map, it is most informative to choose variants with an allele
frequency close to 0.5.
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212 There is no theoretical lower limit to the contribution of a single locus. This is because, in theory,

213  overwhelming evidence (hundreds of genetically-consistent, high-quality reads) of different genotypes
214  for two datasets at even a single locus is sufficient to rule out that the samples are derived from the
215 same donor. However, as noted below in the section on the limitations of LOD calculation, there are
216 multiple factors that this formulation does not account for. Qur approach ultimately relies on

217  cumulative evidence, albeit noisy, from a large number of loci, rather than looking for the small number
218  of high-confidence cases. It is for this reason that in the implementation of equation (5) in the code, we
219 have included an explicit lower cap on the possible contribution of any single LD block. The selection of
220  the specific value at which to cap the negative contribution was guided by the following argument: We
221  consider a single specific locus, and assume a conservative prior, (s = 0)/p(s = 1) = 1. In addition, we
222 assume that at that locus one dataset is only compatible with a single genotype, namely p(y | ) is

223 nonzero for only one value of 6. In this case the contribution to the likelihood ratio for that locus

224 reduces to:

225

px|)ply| 6)p(6) < (x| 0)
(Z6,p(x 1 8)P(8))p(y | O)p(8) ~ (6)

226 If both samples are in fact from the same donor, and the discrepancy between x and @ is due to a
227  sequencing error, 1073 is a reasonable ballpark estimate of p(x | 8)". With this, the actual score
228 calculated by Crosscheck is:

, Zo=p P(xi | 8P(yi | 9)P(6:)  p(s = 0)> )
Lob= Z"‘“"("’g <zeip(xi 100P(6) g p i [ 00P(0) ps=1)7)

229 Where 0 = —3 by default, and is a parameter that can be set by the user.
230 Calculation of data likelihoods p(x | 8) from sequencing reads

231 The program assumes that sequencing data arrives in the form of reads from a single individual (i.e. not
232 contaminated), from a diploid location in the genome, and with no reference bias. Only non-secondary,
233 non-duplicate reads with mapping quality greater than 20 are used to calculate likelihoods. In addition,
234 bases must have a quality score of at least 20 and must agree with either the reference or pre-

235 determined alternate base to support observations at haplotype blocks. Since the algorithm assumes
236  thatread evidence is independent, the reads should have been duplicate-marked prior to fingerprinting.
237  The algorithm doesn’t use SNPs from the same read-pair twice, since this would violate the assumption
238  of independence.

239 Consider a dataset x for which we observe n total sequencing reads, denoted by 13, at a locus

240  containing a single bi-allelic SNP with major allele A and minor allele B. The possible block haplotypes
241  arethen 6 € {AA, AB, BB}. For each read r;, which overlaps the SNP, let 0, € {4, B} denote the observed
242  SNP allele and let e, € (0,1) denote the probability of error of each observation(the quality score). We
243 seek to compute the likelihood of the data (the sequencing reads 1) given the haplotypes. The

244 likelihood of a single base observation p(o;, ¢; | 8) is expressed by:
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Ig(op)ey + 14(0;)(1 — ey) 0 =44
p(oy. e; | 0) = 0.5 6=AB (8)
I,(or)e + 1g(0)(1 — ey) 6 = BB
. - _ _(lifo=A _(lifo=B
245  where [ is an indicator function such that I,(0) = {0 ifo=B and Iz(0) = {0 ifo=A and the
246 assumption is that an error will cause a switch in the observed allele from A to B.
247  The likelihood model for all reads r can then be written as:
n
p(r|6) = poe|6)= | [plorenl 0) o)
k=0

248  Incorporation of Linkage Information

249  The calculations above assume an LD block containing a single SNP for ease of computation, but the

250 framework is easily extended to account for LD blocks containing multiple SNPs, which increases power
251  of comparison. Each LD block used for genotyping contains an “anchor” SNP which is in high linkage with
252 all other SNPs within the block, and independent of all other anchor SNPs in other blocks. Given that all
253 SNPs in a block are tightly linked(enforced with a strict 72 correlation cutoff), we make the simplifying
254  assumption that the genotype at any SNP within an LD block is perfectly correlated with the genotype
255 of the anchor SNP, and that all SNPs within a block have the same allele frequency, equal to that of
256  the anchor SNP. Then, reads overlapping any SNP within a block can be used to infer a total block

257 haplotype, which is represented by the possible diploid genotypes of the anchor SNP. For example,

258 consider an anchor SNPs S; with major allele A and minor allele B, and a linked SNP S, with major allele
259 € and minor allele D. Then any observation of allele C at SNP S, is taken as evidence of allele 4 at S,
260  andany observations of allele D at S, is taken as evidence of allele B at S,. Using this strategy, evidence
261 across all SNPs within a block can be used to infer a total block haplotype, which can be represented by
262  the 3 possible diploid genotypes of the anchor SNP. That is, for an anchor SNP with major allele A and
263 minor allele B, the possible block haplotypes are AA, AB, and BB, with prior probabilities dependent on
264  the allele frequencies of A and B.

265 Limitations of LOD calculation

266  Though the magnitude of the LOD score reflects greater genotyping confidence, it cannot be directly
267 interpreted as a likelihood ratio (e.g. an LOD of 200 does not correspond to a 102°° probability of a
268  shared vs. different genetic origin), as the model does not fully account for sequencing noise, data
269 quality, contamination, and relatedness. In addition, we did not model the incomplete dependence
270 between haplotype blocks, nor the incomplete dependence of SNPs within blocks.

271 Our framework also assumes that the only two sources of a base are the observed allele or a sequencing
272 error. This assumption can lead to incorrect results in the cases where a sample has particularly noisy
273 data due to pre-sequencing events (such as PCR or FFPE processing), non-conforming LD blocks, or high
274  contamination. These samples could be genotyped as heterozygous due to the noisy region or the non-
275  confirming LD block structure. Including these error modes into the model would increase robustness
276 and accuracy.
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277  Implementation Details

278  Crosscheck is implemented as part of the Picard-Tools suite, a set of Java command line tools for

279 manipulating high-throughput sequencing data. It accepts VCF/BAM/SAM formatted inputs and can

280 perform comparisons at the level of samples, libraries, read-groups, or files. Crosscheck is provided

281 alongside a utility called ExtractFingerprints which for an input bam, outputs a VCF containing the

282  genotypes and genotype likelihoods across all LD blocks within the supplied haplotype map. This VCF
283 can be used to store fingerprints for downstream analyses or for use with Crosscheck. More information
284 s available at https://github.com/broadinstitute/picard

285  Runtime and Memory requirements

286 For BAM mode, running Crosscheck requires approximately 2.5 gb RAM for a single input pair of BAMs.
287 Runtime is dependent on the size of the input file. Based on our benchmarking experiments, runtimes
288 are < 10 minutes for DNAse-seq, < 30s for ChIP-seq, and are on average about 2 hours for RNA-seq

289  datasets. For VCF mode, Crosscheck requires approximately 2.5 gb of ram for a single pair of inputs, with
290 runtimes < 30s using the standard hg19 haplotype map. CrosscheckFingerprints is multi-threading

291 enabled in order to speed up comparisons and fingerprint generation when multiple input pairs are

292 provided. All comparisons were conducted on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz processors.

293  Map construction overview

294  Maps are constructed from 1000 Genomes'' phase 3(1000GP3) single-nucleotide polymorphisms(SNPs)
295  which are bi-allelic, phased, and have a minor allele frequency(MAF) = 10%. This MAF threshold is

296  introduced since the expected maximal LOD contribution is obtained at an allele frequency of 0.50

297  (intuitively, rare variants are unlikely to be present in either of two samples being compared from

298  different individuals). Additionally, SNPs must not differ in their MAF by more than 10% between the 5
299 ancestral sub-populations(AFR, SAS, EAS, EUR, AMR) present in 1000GP3. This is to correct for potential
300 sub-population bias due to differing linkage and MAF frequency of SNPs across different populations.
301 Using PLINK2'®, we pruned SNPs meeting these criteria in order to create an independent set of

302 “anchor" SNPs, between which no pairwise 2 correlation exceeded a threshold of 0.10. A window size
303  of 10 kilobases(kb) and a slide of 5 SNPs was used for pruning. By creating this set of independent SNPs,
304  we ensure that individual haplotype blocks are independent from each other. Next, we greedily added
305 SNPs to the blocks represented by the anchor SNPs. Adding was done in order of LDScore™ of the

306  anchor SNPs, with the highest LDScoring anchor SNP first( LDScore is the sum for the 2 correlations of
307  each SNP with all other SNPs within a 1 centimorgan window on either side). Recombination maps

308 containing mappings between genomic coordinates and recombination rates for both the hgl9 and

309  GRCh38 assemblies were obtained from http://bochet.gcc.biostat.washington.edu/beagle/

310  genetic maps/ and http://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3/. We only added SNPs if
311  their correlation with the anchor SNP has 72 > 0.85 and they were located within a genomic window of
312 10,000 kb. In this way, we prioritize the creation of larger, more genetically informative blocks that span
313  several kb regions. The haplotype maps used for the ENCODE database analysis and benchmarking,

314  along with the python code used to generate them, are available at: https://github.com/naumanjaved/
315  fingerprint_maps.
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316  Constructing maps only containing LD blocks or single SNPs

317  The map containing only single SNP blocks was constructed by aggregating all SNPs in the full haplotype
318  map not in strong linkage(r? = 0.85) to other SNPs, resulting in 20792 SNPs. To construct the map

319  containing only blocks with size = 2 used to quantify the benefits of accounting for linkage, we sub-
320  sampled the full haplotype map. Starting with the largest blocks by number of SNPs, blocks were

321 successively added to this map until the total number of SNPs approximately reached the number of
322  SNPs in the map containing only independent SNPs (20801).

323  Testing set construction
324 281 ChIP-seq, RNA-seq, and DNase-seq datasets with ground-truth annotation

325  To create a testing set of files to evaluate our method’s performance and benchmark it against other
326  tools, we downloaded 281 hg19 bams from RNA-seq, DNase-seq, and ChIP-seq (targeting histone

327 modifications, CTCF, or POL2) from the ENCODE Tissue Expression (ENTEX) project. The ENTEX project
328  contains datasets from experiments on samples derived from four different tissue donors, each of which
329  has whole genome sequencing (WGS) data available. The WGS data for each donor can be used to verify
330 the nominal donor of each dataset comprising the testing set. For each dataset, the corresponding hg38
331  alignments were compared to the hg38 WGS alignments for its nominal donor. Only datasets which

332 yielded a positive LOD score > 5 using CrosscheckFingerprints (with the full hg38 version of haplotype
333 map) and a "match" result from NGSCheckMate were included in the testing set. The final testing set of
334  files and accompanying metadata are included in supplementary table S1.

335 101 transcription factor and chromatin modifier (CM) ChiP-seq datasets without ground-truth
336 annotation

337  To test Crosscheck and other methods on transcription factor and chromatin modifier datasets, we

338 downloaded 101hg19 ChlP-seq datasets from the ENCODE project. For these datasets, there was no
339 ground-truth donor sequencing data available for the nominal donor as there was for the ENTEX

340  datasets. In this case, the false-mismatch rate (incorrect genotyping call for a donor-matched pair)

341 cannot be assessed, since there is a non-negligible probability that one of the two datasets with the
342  same nominal donor annotation is incorrectly annotated. However, the false-match rate can still be
343  assessed, since we estimate that the probability that two datasets with different donor annotations may
344  actually share the same true donor is very low. Therefore, we only characterized the ability of

345 NGSCheckmate and Crosscheckfingerprint’s to accurate classify donor-unmatched pairs for this testing
346 set. In the context of detecting sample swaps, this performance measure is also more relevant than the
347 accurate detection of donor-matched datasets. All datasets and accompanying metadata is available in
348 supplementary table S2.

349 BAM pre-processing and down-sampling for benchmarking experiments

350 Datasets were sorted using Samtools*°and processed using Picard’s MarkDuplicates tool with default
351 settings to remove duplicates. We noted that collapsing duplicates was especially important for RNA-seq
352  datasets since PCR bias can alter allele fractions and lead to incorrect sample classification.

353 Downsampling was conducted on the duplicate marked, sorted files using the command samtools view —
354  sseed.F with a seed value of 5.
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355  Benchmarking with NGSC and Crosscheck

356  To speed up analysis of a large number of bams with NGSCheckmate, we followed the author

357 recommendations'® and created VCFs for each input file using the default provided SNP panel from the
358 NGSCheckMate github and the command samtools mpileup-I -uf hg19.fasta -/

359  SNP_GRCh37_hg19 woChr.bed sample.bam | bcftools call -c - > ./sample.vcf. NGSC was then run in
360  batch mode using default settings with the hg19 reference SNP panel. For Crosscheck, we first used
361 Picard’s ExtractFingerprint utility with default settings and the standard hg19 haplotype map to pre-
362 compute VCFs for each input bam. Comparisons were then conducted using Crosscheck’s batch mode
363  with default settings and the standard hg19 map.

364 Evaluation of other methods that assess genetic similarity between samples
365  We considered the following methods:

366 e HYSIS is intended for tumor-normal concordance verification with a priori knowledge of

367 homozygous germline mutations in the normal tissue®. Without considerable modifications, HYSIS is
368 therefore not suitable to handle the general use case that Crosscheck is intended for.

369 e Bam-matcheris a tool intended for verifying genotype concordance for whole-genome sequencing,
370 whole exome sequencing, and RNA-sequencing data’. Bam-matcher calls programs such as GATK™
371 to call variants for each input BAM. Though the resulting variants can be cached to speed up future
372 comparisons, we did not find a way to easily call and store variants for each input bam in the testing
373 set, and without that, performing the hundreds of thousands of benchmarking comparisons

374 becomes unfeasible.

375 e We did apply the tools Conpair and BAMixChecker to the testing set. Conpair was run with default
376 settings using the standard hgl9 SNP panel and the —min-cov parameter set to 1. Pileups were pre-
377 generated using GATK 4.1.7.0 with the recommended settingsg. BAMixChecker was run with

378 standard settings for hg19® and using GATK 4.1.6.0 for variant calling. Conpair outputs a genotype
379 concordance percentage, which should be <50% for different donor and above 80% for same donor
380 datasets. Any genotype concordance between 50 and 80% is considered inconclusive.

381 BAMixChecker outputs a concordance score between 0 and 1 with no explicit inconclusive range.
382 However, we found that BAMixChecker outputs a concordance score of exactly O when there is no
383 overlap between the SNP reference panel that the program uses and the input dataset. Therefore,
384 we labeled any result from BAMixChecker with a concordance score of 0 as an inconclusive

385 genotype call. We found that both methods were unable to yield a conclusive result for more than
386 25% of the comparisons even when the full datasets are considered, and the inconclusive rates

387 became even higher at the lower subsampling rates (Supplementary Fig. 1d). We reasoned that this
388 was likely due to poor overlap between the input datasets and the predefined reference panel of
389 SNPs that both methods use.

390

391  Familial dataset acquisition and processing

392  Paired fastgs for RNA-seq data from CEPH/Utah Pedigree 1463 were downloaded from the Gene

393 Expression Omnibus® (accession GSE56961). Datasets for the following accessions were downloaded:
394  SRR8505344, SRR8505340, SRR8505343, SRR1258219, SRR1258220, SRR1258218, and SRR8505347.
395 Fastgs were aligned to the GRCh38 reference using STAR? 2.6.0c with default parameters. Before
396 analysis, bams were sorted using samtools and duplicate marked/collapsed using Picard’s

397 MarkDuplicates. All comparisons were conducted using the default settings and SNP panels for the
398 GRCh38 assembly for each method.
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399

400 ENCODE data acquisition

401 ENCODE metadata was downloaded from https://www.encodeproject.org/. Metadata was filtered to
402  vyield accessions for hg19 ChIP-, RNA-, and DNase-seq ENCODE bams from donors with at-least four
403  datasets. These bams were downloaded from a Broad google bucket and processed(see below)with a
404  custom Workflow Description Language®*(WDL) script. All dataset accessions and associated metadata
405 are available in supplementary table S3.

406 ENCODE data processing

407 Files were first sorted using samtools sort, and filtered using BEDTools*> in order to only keep reads
408  overlapping SNPs in the haplotype map. This facilitated efficient storage of files, resulting in

409  approximate 10-fold reduction in file size. Finally, duplicates were marked and removed for each file
410 using Picard’s MarkDuplicates function with default settings. All comparisons were conducted using the
411 version of CrosscheckFingerprints available in commit #078b0ba of Picard.

412

413 ENCODE genotyping strategy

414  To detect mislabeled samples, each dataset is compared against a reference set of 3 samples that

415  provide a high quality representation of the “true" genotype for each ENCODE tissue donor. To

416  construct this reference set of samples, a self-LOD score is calculated for each sample by “comparing”
417 each file to itself. This score correlates with the dataset's overlap with the haplotype map, and the

418 highest self-LOD samples are those containing the most genetic information relevant for genotyping. To
419 ensure that the reference set of samples for each tissue donor does not contain any swapped samples,
420  all reference samples are compared against one another to ensure self-consistency, which is defined as
421 an LOD score greater than 5 for all three pairwise comparisons between the three samples. In the case
422 of one swapped sample in this reference set, two negative LOD scores and one positive LOD score will
423  be obtained. In this case, the next highest self-LOD scoring bam replaces the putative swap, and

424  representative concordance is re-assessed. This is repeated until a concordant set is found. More

425 complex patterns of swaps in the representative set are assessed on a case-by-case basis. Finally, all
426 reference samples across all nominal donors are compared against one another in order to identify

427 larger cross-donor swaps and preclude the possibility that all reference samples for a nominal donor are
428 actually swaps from the same true donor.

429 Each sample not in the reference set is compared against the top 3 representative samples for its
430  nominal donor. Samples yielding an LOD < -5 against any of the top 3 representatives are flagged as
431  swaps for review, while those yielding an LOD score between -5 and 5 are flagged as inconclusively
432 genotyped.

433  Contamination tests

434  Varying numbers of randomly sampled reads from two unrelated ENCODE ChlIP-seq datasets,

435 ENCFFOO5HON ENCFFOQ7DFB, were mixed together to create simulated contaminated datasets. Each
436 mixed sample consisted of ~ 5 million reads and contained varying proportions of the original datasets
437 (at intervals of 10%). Mixed samples were then compared to ENCFFOO7NTA and ENCFFO29GAR, which
438 are ChlP-seq datasets from the same donor as ENCFFOO5HON. Comparisons were conducted on VCF files
439 generated using Picard’s ExtractFingerprint utility using Crosscheck’s VCF mode with default settings.
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440

441  Data availability

442 All data used for benchmarking and ENCODE analysis are available online at https://encodedcc.org/.
443  Specific accessions and relevant metadata for each of the benchmarking experiments are available in
444  tables S1 and S2. Accession IDs and metadata for all datasets from ENCODE analysis are available in
445 table S3. Haplotype maps used for benchmarking and ENCODE analysis are available at
446  https://github.com/naumanjaved/fingerprint maps). RNA-seq data from CEPH/Utah Pedigree 1463
447  were downloaded from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) from series
448 GSE56961, using accession IDs: SRR8505344, SRR8505340, SRR8505343, SRR1258219, SRR1258220,
449 SRR1258218, and SRR8505347. 1000 Genome Phase 3 VCFs for hgl9 and GRCh38 liftovers were
450  obtained from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp. Recombination maps for hgl9 and
451  GRCh38 liftovers were obtained from http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/.
452

453  Code availability

454  Crosscheck code and documentation is available at https://github.com/broadinstitute/picard.

455 Fingerprint map generation code, along with pre-compiled maps and documentation are available at
456  https://github.com/naumanjaved/fingerprint maps.

457
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Figure 1: Incorporating Linkage Information allows robust comparison of sequencing datasets. (a)
Sample swaps and mis-annotations, where a sample is incorrectly attributed to the wrong donor, are a
high stakes issue for large consortium projects and clinical science. (b) Our method compares reads from
two datasets across a genome-wide set of linkage disequilibrium LD blocks (haplotype map). The single
nucleotide polymorphisms (SNPs) in each block are highly correlated with each other and have low
correlation with SNPs in other blocks. Reads overlapping any of the SNPs in a given block inform the
relatedness of the datasets, even when reads from the two datasets do not overlap one another. (c)
Haplotype maps contain many large LD blocks. LD blocks are created using common, ancestry
independent SNPs from 1000 Genomes. Most SNPs lie within blocks of size > 2, which boosts the chances
of reads to be informative. (d) Distribution of LOD (log-odds ratio) scores for 34336 donor-mismatched
(red) and 9767 donor-matched pairs (green) of public ChIP-, RNA-, and DNase-seq datasets from the
ENCODE project. (e) LD-based method can correctly determine sample relatedness even at low
sequencing coverage. Pairwise comparisons of reference dataset pairs at different sub-sampling
percentages using two equally sized SNP panels — one panel contained only independent single SNPs,
while the other contained only LD blocks. Donor-mismatched dataset pairs are colored red while donor-
matched dataset pairs are green. (f) Comparison of NGSC and Crosscheck’s classification of 34336 donor-
mismatched and 9767 donor-matched dataset pairs. Performance was measured in terms of the false flag
rate (FFR), the fraction of donor-matched pairs incorrectly flagged as donor-mismatches, and the false
match rate (FMR), the fraction of donor-mismatched pairs incorrectly identified as donor-matches.
Comparisons are classified as same-assay if the two datasets are from the same assay type, and have the
same target epitope in the case of ChIP-seq datasets. All other comparisons are classified as cross-assay.
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Figure 2: Overview of ENCODE database swap detection. (a) Overview of 8851 genotyped datasets from
ENCODE, partitioned by cell type (top left), assay type (top right), and by target for ChIP-seq (bottom). Cell
types that had less than 100 datasets derived from them were pooled — so all the datasets from them are
grouped into one of two categories. All hg19 aligned reads from total RNA-, polyA RNA-, ChIP-, and DNase-
seq experiments performed on samples belonging to donors with at-least four datasets in total were
included in the analysis. All ChlP-seq targets, including histone modifications(HM), transcription factors
(TF), chromatin modifiers (CM), CTCF, and control experiments were included. (b) Distribution of LOD
scores from ENCODE genotyping. Each dataset was compared to three representative datasets from its
nominal donor. Any dataset scoring negatively against any of the three representatives was flagged for
further review. A comparison resulting in an LOD score between -5 and 5 was deemed inconclusive
(insufficient evidence to indicate shared or distinct genetic origin). (c) Each flagged sample was compared
to all other samples from its nominal donor, as well as the representatives for all other donors in our
database to nominate true donor identity and identify genetically consistent sub-clusters. Comparisons
of flagged samples between two HUVEC donors reveals 5 genetically distinct clusters.
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Supplementary Figure 1. (a) Distribution of number of reads in sub-sampled datasets used for
benchmarking, broken down by assay type. ChIP datasets were divided into two classes — those which
targeted transcription factor (TF) and chromatin modifier (CM), and those which targeted broad histone
modifications (HM), POL2/POL2RA (P), or CTCF. (b) Comparison of percentage false match (FM) and false
flag (FF) rates for 9767 same-donor and 34336 different donor pairwise comparisons using Crosscheck
with either linkage blocks, or single SNPs only. Across different (left) and same (right) assay comparisons,
incorporation of linkage information (orange line) decreases the FF and FM percentage, particularly at
sub-sampling percentages. Comparisons are classified as same-assay if the two datasets are from the
same assay type, and have the same target epitope in the case of ChIP-seq datasets. All other comparisons
are classified as cross-assay. (c) Distribution of LOD scores from false flags and false matches from
benchmarking experiments. The distribution of the majority (99%) of LOD scores from these
misclassifications is used to create an “inconclusive” range of LOD scores, in which donor-match or
mismatch cannot be confidently called. (d) Percent inconclusive genotype concordance calls for 9767
same-donor and 29573 different donor pairwise comparisons using Conpair and BAMixChecker.
“Inconclusive” is defined as pairwise comparisons resulting in genotype concordances between 50 and
80% for Conpair, and a score of O for BAMixChecker. (e) FMR and FFR for NGSC at 5% subsampling for
pairwise comparisons between ChlP-seq datasets targeting the non-overlapping histone modifications
H3K27ac and H3K27me3. NGSC performs worse for comparisons between H3K27ac and H3K27me3
datasets (n=41 donor-matched, n=85 donor-mismatched) than for comparisons between two H3K27ac
(n=24 donor-matched, n=67) or two H3K27me3 datasets (n=11 donor-matched, n=25 donor-
mismatched). In contrast, Crosscheck classifies all pairs correctly.
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Supplementary Figure 2: Performance of NGSC, Crosscheck, BAMixChecker, and Conpair on familial datasets. Each method
was used to classify 21 pairwise comparisons between RNA-seq datasets from 7 related individuals (indicated in red) from
CEPH/Utah pedigree 1463. “Inconclusive” is defined as pairwise comparisons resulting in genotype concordance between
50 and 80% for Conpair, a score of 0 for BAMixChecker, and an LOD score between -5 and 5 for Crosscheck. NGSC incorrectly
classifies 43% of pairs, while Conpair and BAMixChecker are inconclusive for 76 and 100% of pairs respectively.

In contrast, Crosscheck correctly classifies all dataset pairs as mismatches.
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Supplementary Figure 3: Demonstration of Crosscheck’s performance for contaminated datasets. Simulated contaminated
datasets were created by combining various proportions of two ENCODE ChlIP-seq datasets derived from two different
donors: ENCFFOO5HON and ENCFFOO7DFB. Proportions of reads deriving from ENCFFOO5SHON and ENCFFOO7DFB respectively
are indicated in parentheses for each mixture. Each mixture was compared to two datasets derived from the same donor as
ENCFFOO5HON, ENCFFOO7NTA (R,) and ENCFFO29GAR (R,). The star indicates a region where a contaminated sample can
score as a donor match against one dataset (R ), but score as a donor mismatch against a different dataset from the same
donor (R,).
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