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As the number of genomics datasets grows rapidly, sample mislabeling has become a high stakes 1 

issue. We present CrosscheckFingerprints (Crosscheck), a tool for quantifying sample-relatedness and 2 

detecting incorrectly paired sequencing datasets from different donors. Crosscheck outperforms 3 

similar methods and is effective even when data are sparse or from different assays. Application of 4 

Crosscheck to 8851 ENCODE ChIP-, RNA-, and DNase-seq datasets enabled us to identify and correct 5 

dozens of mislabeled samples and ambiguous metadata annotations, representing ~1% of ENCODE 6 

datasets. 7 

Introduction 8 

Biomedical research is rapidly embracing large-scale analysis of next-generation sequencing (NGS) 9 

datasets, often by integrating data generated by consortia or many individual research labs. Parallelized 10 

NGS analysis of tissues from many different patients is also commonplace in clinical genomics pipelines.  11 

In these settings, sample or data mislabeling, where datasets are incorrectly associated with a donor, 12 

can lead to erroneous conclusions, misdirect future research, and affect treatment decisions
1-3 

(Fig 1a). 13 

Verifying the relatedness of samples that nominally share a donor is therefore a crucial quality-control 14 

step in any NGS pipeline.  15 

Several methods utilize genetic information from NGS datasets as an endogenous barcode to 16 

verify sample relatedness
4-10

. The common logic behind these tools is that each genome harbors a 17 

unique set of single nucleotide polymorphisms (SNPs) which are shared between datasets originating 18 

from the same donor. A limitation of these methods is their requirement that sequencing reads from 19 

both inputs overlap the exact genomic position of informative SNPs. When insufficient reads satisfy this 20 

condition—for example when the input datasets are shallow or target different genomic regions (i.e 21 

different transcription factors), the power to evaluate sample relatedness is compromised. Many NGS-22 

based studies now integrate multiple types of assays
11-15

 and utilize shallow sequencing to reduce cost at 23 

the expense of read-depth. This is commonly encountered in highly multiplexed experiments, 24 

sequencing spike-ins, and large cohort sequencing efforts in population and cancer genomics (i.e. 1000 25 

Genomes, structural variant calling). We therefore set out to develop a method for quantifying sample-26 

relatedness that was both robust to shallow sequencing depth and that could be systematically applied 27 

to modern large-scale projects incorporating multiple data types. 28 

Linkage disequilibrium (LD) is the non-random association of alleles at different loci within a 29 

given population
16

. This association implies that comparing datasets across SNPs in high LD—termed LD-30 

blocks—would provide more statistical power to compare datasets than using single SNPs alone. 31 
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Because of LD, two non-overlapping reads from different datasets may support (or provide evidence 32 

against) a common genetic background, as long as they overlap SNPs in the same LD block (Fig 1b). For 33 

each input dataset, Crosscheck uses reads overlapping SNPs within each LD block to calculate a block 34 

allele fraction and compute diploid genotype likelihoods, which are then compared (Methods). The 35 

relative likelihood of a shared or distinct genetic background at each block is reported as a log-odds ratio 36 

(LOD score). These scores are combined across all blocks to report a genome-wide LOD score. This 37 

calculation relies on two approximations: that linkage between SNPs in an LD block is perfect, and that 38 

SNPs in distinct blocks are independent. A positive LOD score indicates a higher likelihood that the two 39 

datasets share a donor, while a negative LOD score suggests that the datasets are from distinct donors. 40 

The Crosscheck calculation assumes that the two datasets are a priori equally likely to be from the same 41 

donor as they are from different ones. It is possible to incorporate a different prior expectation for a 42 

mismatch by shifting the LOD scores (Methods). Though the magnitude of the LOD score reflects 43 

genotyping confidence, simplifying assumptions prevent direct interpretation of the LOD score as a true 44 

likelihood ratio (Methods). Crosscheck is implemented as part of Picard-Tools (https://github.com/ 45 

broadinstitute/picard), and is routinely used for quality control by the Broad Institute’s Genomics 46 

Platform, using a small set of LD blocks optimized for use with whole-exome-sequencing data. 47 

We reasoned that applying Crosscheck across a large, genome-wide set of LD-blocks (haplotype 48 

map) would allow us to compare the genotype of diverse datasets and would be robust to low coverage 49 

and sequencing errors. We constructed a map consisting of nearly 60,000 common (minor allele 50 

frequency � 10%� bi-allelic SNPs from the 1000 Genomes
11

 project, the majority of which lie in LD-51 

blocks of two or more SNPs in order to maximize the probability of informative read overlap (Fig 1c, 52 

Methods). SNPs within each block are highly correlated (�� � 0.85�, while SNPs between blocks are 53 

approximately independent ��� � 0.10�. Increasing or decreasing the thresholds for within-block and 54 

between-blocks correlations by 0.05 had no effect on the method's performance on a testing data set 55 

(described in the next paragraph). Finally, in order to reduce bias from donor ancestry, we required that 56 

LD blocks have similar allele frequencies across different human sub-populations. The pipeline for 57 

creating haplotype maps exists as a standalone tool 58 

(https://github.com/naumanjaved/fingerprint_maps) and comes with pre-compiled haplotype maps for 59 

both hg19 and GRCh38. The pipeline can be customized to create LD blocks in specific genomic areas 60 

(i.e. coding regions) and with different parameters (i.e. different intra or inter-block ���. 61 

In the rest of this manuscript we demonstrate that CrosscheckFingerprints, used with the 62 

haplotype map that we generated, can reliably detect donor mislabeling with fewer errors than other 63 

existing methods. It is particularly superior in challenging settings such as low sequencing depth or when 64 

comparing datasets from diverse data types. We demonstrate the suitability of Crosscheck for large 65 

scale production operation by applying it to 8,851 datasets from the ENCODE consortium, and discuss 66 

the misannotations that this analysis uncovered. 67 

Results 68 

Benchmarking 69 

To pilot our method, we calculated LOD scores between donor-matched and donor-mismatched 70 

pairs of public datasets from the ENCODE
12

 database, which hosts data from thousands of diverse NGS 71 

experiments (Methods). Classification performance was measured in terms of the false flag rate (FFR), 72 
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the fraction of donor-matched pairs incorrectly flagged as donor-mismatches, and the false match rate 73 

(FMR), the fraction of donor-mismatched pairs incorrectly identified as donor-matches. Our testing set 74 

comprised of all pairwise comparisons between 281 RNA-, DNase-, and ChIP-seq (targeting histones, 75 

CTCF, or POL2) datasets with verified donor annotations (supplementary table S1), and all donor-76 

mismatched comparisons between 101 ChIP-seq experiments targeting transcription factors and 77 

chromatin modifiers (supplementary table S2). This resulted in a final testing set of 34,336 donor-78 

mismatches, and 9,767 donor-matches. Regardless of the input assay or enrichment target, Crosscheck 79 

correctly classified almost all dataset pairs with 0% FMR and 0.01% FFR, and showed a clear separation 80 

between donor-mismatches (negative LOD) and donor-matches (positive LOD) (Fig. 1d). Our method 81 

therefore confidently detects donor-matched and donor-mismatched dataset pairs.   82 

We next quantified how using LD blocks improves classification performance. We generated two 83 

equally sized subsets of our full haplotype map—one comprised solely of unlinked SNPs and the other 84 

containing only LD blocks with two or more SNPs, and used these to classify the same testing dataset 85 

pairs. To simulate sparse datasets generated by spike-ins and multiplexed sequencing, we conducted 86 

each comparison at a range of sequencing depths, expressed as the percentage of reads subsampled 87 

from the original datasets (Methods, Supplementary Fig 1a).  Using LD blocks significantly decreased 88 

FMR and FFR, particularly at lower read depths and for cross-assay/target comparisons (Fig 1e, 89 

Supplementary Fig 1b). For example, at 5% sub-sampling (
 ~10� reads), using LD blocks decreased the 90 

FMR and FFR by nearly 10% relative to using single SNPs for cross-assay comparisons. 91 

Comparison with other methods 92 

As mentioned above, there are other tools that quantify genetic sample relatedness. For 93 

comparison purposes, we considered only methods that could be applied to the general use case that 94 

Crosscheck is designed to address, namely comparing any two NGS datasets, and that can be deployed 95 

at scale, so that calculating tens-to-hundreds of thousands of comparisons is tractable. Two of the 96 

methods we examined, HYSIS
6
 and BAM-matcher

7
, did not satisfy these criteria. Two other tools, 97 

Conpair
8
 and BAMixChecker

9
, provided inconclusive results for a high percentage of the testing-set 98 

comparisons (Methods). NGSCheckmate
10

 (NGSC) is a model-based method that compares datasets by 99 

correlating allele fractions across a panel of reference SNPs, and was the only other method that could 100 

be directly compared to Crosscheck on the testing dataset. At high and intermediate read-depths, both 101 

methods show similar performance. At lower read depths (
 15% subsampling) however, Crosscheck 102 

outperforms NGSC, as indicated by a consistently lower FMR and FFR (Fig. 1f). Crosscheck is particularly 103 

effective at classifying cross assay dataset pairs, where it shows a 2-3% lower FMR and FFR than NGSC at 104 

5% subsampling. In these use cases, Crosscheck performs better than NGSC due to its use of LD and the 105 

large number of SNPs in the haplotype map. Using LD blocks allows comparison of non-overlapping 106 

reads, while using a large set of SNPs increases the chance that input datasets will contain genetically 107 

informative reads. An illustrative example is a specific comparison between two ChIP-seq datasets, one 108 

targeting H3K27me3 and the other H3K27ac. At 5% subsampling, these datasets cover 8% and 2% of the 109 

genome respectively, and overlap at only 0.02%, which is expected from these mutually exclusive 110 

histone modifications. Given this small set of potentially informative reads, NGSCheckmate wrongly 111 

concludes that the datasets are derived from the same donor, while Crosscheck is still able to make the 112 

correct call (Supplementary Fig. 1e). We have also tested Crosscheck, NGSC, BAMixChecker and Conpair 113 

on sample pairs from 7 donors that are genetically related. We found that Crosscheck can identify all 114 
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pairs of samples from related individuals as donor mismatches, and is superior in this context to the 115 

other tools (Supplementary Fig. 2). 116 

Finally, we used the distribution of LOD scores from incorrectly classified pairs to define an 117 

inconclusive LOD score range of -5 < LOD < 5, in which a dataset pair cannot be confidently classified 118 

(Methods, Supplementary Fig. 1c). Outside of this range, any pair with LOD ≥ 5 is denoted a donor-119 

match, and those with LOD ≤ -5 are flagged as donor-mismatches. The inconclusive range highlights the 120 

interpretability of Crosscheck’s LOD score relative to NGSC’s binary outputs (match or mismatch), since 121 

clear donor-mismatches can be prioritized and investigated separately from inconclusive comparisons. 122 

We conclude that using Crosscheck with a full haplotype map enables more accurate detection of 123 

donor-mismatched pairs in diverse and shallow collections of data. 124 

Crosscheck analysis of ENCODE data 125 

To illustrate the utility of our method on a consortium-scale dataset, we next analyzed the 126 

remaining datasets in ENCODE. We used our method to verify the donor-annotation for all human hg19 127 

aligned DNase-, RNA-, and ChIP-seq datasets in the ENCODE database whose annotated donor was 128 

represented by at least 4 datasets – a total of 8,851 datasets (Fig 2a). To scale our analysis to a database 129 

of this size, we compared each dataset to a set of three representative datasets from its annotated 130 

donor, and flagged any dataset with LOD < 5 for further review (Methods). To exclude the possibility 131 

that the representative set for each donor contained a donor-mismatch, we required that all pairwise 132 

comparisons between representative datasets yield an LOD score ≥ 5. This strategy scales linearly with 133 

the size of the database, and in our case results in a 1000-fold reduction in computation relative to 134 

performing all pairwise comparisons. 135 

Our strategy confirmed the annotated donor for 97% of datasets. The remaining 3% (256 136 

datasets) were flagged as potential donor-mismatches (LOD ≤ -5), and only ~0.1% yielded inconclusive 137 

results (-5 < LOD < 5) (Fig 2b). We next compared each flagged mismatch to the representative datasets 138 

for each of the ENCODE donors in order to nominate a true donor identity. We also compared each 139 

flagged mismatch to all other flagged mismatches in order to identify genetically consistent clusters and 140 

uncover patterns of mislabeling.  141 

This analysis uncovered 3 major categories of mislabeling (as well as a small fraction, 0.4%, of 142 

datasets that exhibited a pattern consistent with cross-sample contamination, as described in Methods 143 

and Supplementary Fig. 3). The first is a straightforward error where cells from one donor are mistakenly 144 

labeled as deriving from a different donor. The likelihood of such a mistake increases when working with 145 

several cell lines that are each used in a large number of experiments. For example, out of 4 flagged 146 

datasets labeled as K562, two were shown to actually derive from GM12878 cells while the other two 147 

derived from HEK293 cells. This type of mislabeling may also occur for primary cells or tissues when 148 

many biological samples from multiple donors are obtained from the same source, as in the case of 300 149 

embryonic tissue samples processed by ENCODE from a single lab.  150 

The second class of mislabeling occurs when biological samples of the same cell type from 151 

multiple donors are incorrectly labeled as deriving from a single donor. This is the case with some of the 152 

commercially available primary cell lines that have been deeply interrogated by the consortium over 153 

more than a decade, and for which cells have been procured multiple times. For example, HUVEC cells 154 

are annotated as being derived from two different donors in the ENCODE metadata. However, our 155 

analysis indicates that HUVEC samples actually derive from at-least 5 distinct donors (Fig 2c). This mis-156 
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annotation went undetected by ENCODE’s previous quality control pipelines because all samples were 157 

of the same cell type and so exhibited similar epigenetic profiles.  158 

The HUVEC example also highlights the third type of labeling inaccuracy, in which a single donor 159 

is accessioned multiple times by dozens of different labs over several years. This results in slight 160 

variations in donor name or description, leading to genetically identical samples being incorrectly 161 

attributed to distinct donors. For example, some samples deriving from putative donor A are attributed 162 

to HUVEC donor 1, while other samples from donor A are attributed to the distinct HUVEC donor 2.  163 

Overall, our analysis of the ENCODE dataset suggested that substantive mislabeling error 164 

occurred at a rate of ~1%. For these datasets, true donor identities were confirmed using ENCODE’s 165 

extensive metadata records and all mislabeled datasets were corrected (Methods).  166 

In conclusion, we present a robust and easy-to-use method for quantifying sample relatedness 167 

which outperforms similar methods. Combined with our method for database analysis and haplotype 168 

map, CrosscheckFingerprints can be readily applied for detecting sample mislabeling in large, diverse 169 

databases without any optimization. We suggest it as a critical component of any NGS quality control 170 

pipeline.  171 

 172 

Methods 173 

LOD Derivation 174 

Here, a basic overview of the fingerprinting LOD score derivation is provided. A more detailed derivation 175 

is available at the Picard repository at:  176 

https://github.com/broadinstitute/picard/raw/master/docs/fingerprinting/main.pdf 177 

Consider a LD block/locus containing a single bi-allelic SNP with major allele � and minor allele B, and 178 

two sequencing datasets � and �. Let � and � denote the diploid haplotype of datasets � and � 179 

respectively at this locus. � and � can each take one of three possible haplotypes: AA, AB, or BB. Let � 180 

be a Bernoulli random variable where � � 1 denotes a sample swap (indicating that � and � arose from 181 

two independent individuals) with posterior probability ��� � 1| �, ��, and � � 0 denotes a shared 182 

genetic origin (the samples came from the same individual). Using Bayes' rule and the prior probability 183 

of no-swap, the posterior odds ratio of a no-swap vs. swap is given by: 184 

 ��� � �| �, ����� � �| �, �� � ���, � | � � �� ��� � �����, � | � � �� ��� � �� (1) 

We assume that in the case of a swap, the distinct individuals are independently sampled from the 185 

population and that samples from the same individual have the same genotype, allowing us to write 186 ���, � | �� � ���� ���� for � � 1, and ���, � | �� � ���� if � �  �. Given that � is conditionally 187 

independent of � and � given �, and � is conditionally independent of � given �, we can also write 188 ���, � | �, �� � ��� | �� ��� | ��. 189 

With these two expressions, we derive that:   190 
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 ���, � | �� �   ���, � |!, ", �� ��!, " |��
�,�

�  
#$%
$& ���|!� ��!�

�

 ���|"�
�

��"� 
 ���|!� ���|"� ��!�

�� �

' 
if � �  � 

if � � � 

(2) 

Substituting the results of equation (2) into equation (1), we rewrite the posterior odds of no-swap as:  191 

 ∑ ���|!� ���|"� ��!����∑ ���|!� ��!�� ∑ ���|"� ��"��

· ��� � ����� � �� (3) 

Next, we consider evidence over multiple blocks * with correspondingly indexed �� , �� , �� , and �� . We 192 

assume that the haplotypes at distinct blocks are independent, and that reads at one block give no 193 

information about another. In practice, this assumption is enforced by guaranteeing that a single read 194 

cannot be used to provide genotype evidence at more than one locus. We calculate: ��� | �� �195  ∏ ����  | ����  and ��� | �� �  ∏ ����  | ���� , and substitute into equation (3) to get:  196 

 , - ∑ ���	 | !	� ���	 | "	� ��!	������∑ ���	 | !	� ��!	���
∑ ���	  | "	� ��"	���

.
	

· ��� � ����� � �� (4) 

Finally, since the odds ratio of no-swap to swap may vary by several orders of magnitude depending on 197 

the input files, we compute the base 10 logarithm in order to facilitate comparison and interpretation:   198 

 /01 � 234 - 566�
��
 	��	�	����566��	��
�
�� 	��	�	����

.
�   758 - ∑ ���	 | !	����	 | "	���!	������∑ ���	 | !	���!	���

∑ ���	  | "	���"	���

· ��� � ����� � ��.
	

  (5) 

The program assumes a conservative prior of 
��
���

��
���
� �  by default. A different prior would result in a 199 

shift of the LOD score by a constant, and users may adjust the LOD score by such a constant as needed 200 

on a case-by-case basis. A positive LOD (log-odds ratio) is interpreted as evidence for the two datasets � 201 

and � arising from the same individual, while a negative LOD is evidence of a sample-swap, i.e. the two 202 

datasets arose from different individuals. Scores close to zero are inconclusive, and tend to result from 203 

low coverage, or poor overlap between the two datasets, at the observed sites.  204 

To see the expected maximal contribution of a single locus, we assume that the likelihoods in (5) are 205 

vanishingly small when the data doesn’t match the genotype. Thus, the LOD for a single locus reduces to 206 9 log ����. The expected LOD contribution needs to be marginalized over the different possible 207 

genotypes, leading to a 9 ∑ ���� log ����� , which obtains a maximal value of 1.5 log�� 2  > 0.45 at an 208 

allele frequency of 0.5(leading to ��� � ��� � 0.25, ��� � �@� � 0.5,  and ��� � @@� � 0.25�. This 209 

means that when creating the haplotype map, it is most informative to choose variants with an allele 210 

frequency close to 0.5. 211 
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There is no theoretical lower limit to the contribution of a single locus. This is because, in theory, 212 

overwhelming evidence (hundreds of genetically-consistent, high-quality reads) of different genotypes 213 

for two datasets at even a single locus is sufficient to rule out that the samples are derived from the 214 

same donor. However, as noted below in the section on the limitations of LOD calculation, there are 215 

multiple factors that this formulation does not account for. Our approach ultimately relies on 216 

cumulative evidence, albeit noisy, from a large number of loci, rather than looking for the small number 217 

of high-confidence cases. It is for this reason that in the implementation of equation (5) in the code, we 218 

have included an explicit lower cap on the possible contribution of any single LD block. The selection of 219 

the specific value at which to cap the negative contribution was guided by the following argument: We 220 

consider a single specific locus, and assume a conservative prior, �� � 0�/��� � 1� � 1 . In addition, we 221 

assume that at that locus one dataset is only compatible with a single genotype, namely  ��� | �� is 222 

nonzero for only one value of �. In this case the contribution to the likelihood ratio for that locus 223 

reduces to:   224 

 225 

��� | !���� | !���!�B∑ ��� | !	���!	���
C��� | !���!� D ��� | !� (6) 

If both samples are in fact from the same donor, and the discrepancy between x and � is due to a 226 

sequencing error, 10�� is a reasonable ballpark estimate of ��� | ��17
. With this, the actual score 227 

calculated by Crosscheck is: 228 

 /01E �   FG� -758 - ∑ ���	 | !	����	  | "	���!	������∑ ���	 | !	���!	���
∑ ���	 | "	���"	���

· ��� � ����� � ��. , H.
	

  (7) 

Where I � 93 by default, and is a parameter that can be set by the user. 229 

Calculation of data likelihoods ��� | �� from sequencing reads 230 

The program assumes that sequencing data arrives in the form of reads from a single individual (i.e. not 231 

contaminated), from a diploid location in the genome, and with no reference bias. Only non-secondary, 232 

non-duplicate reads with mapping quality greater than 20 are used to calculate likelihoods. In addition, 233 

bases must have a quality score of at least 20 and must agree with either the reference or pre-234 

determined alternate base to support observations at haplotype blocks. Since the algorithm assumes 235 

that read evidence is independent, the reads should have been duplicate-marked prior to fingerprinting. 236 

The algorithm doesn’t use SNPs from the same read-pair twice, since this would violate the assumption 237 

of independence.  238 

Consider a dataset � for which we observe K total sequencing reads, denoted by � , at a locus 239 

containing a single bi-allelic SNP with major allele � and minor allele @. The possible block haplotypes 240 

are then � L M��, �@, @@N. For each read �  which overlaps the SNP, let O  L M�, @N denote the observed 241 

SNP allele and let P  L �0,1� denote the probability of error of each observation(the quality score). We 242 

seek to compute the likelihood of the data (the sequencing reads � ) given the haplotypes. The 243 

likelihood of a single base observation ��O� , P�  | �� is expressed by: 244 
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 ��5!, Q! | !� �  RS"�5!�Q! T S#�5!��� 9 Q!��. US#�5!�Q! T S"�5!��� 9 Q!�' ! � VV ! � VW ! � WW 

(8) 

where X is an indicator function such that X$�O� �  Y1 *Z O � �0 *Z O � @' and X%�O� �  Y1 *Z O � @0 *Z O � �' and the 245 

assumption is that an error will cause a switch in the observed allele from A to B. 246 

The likelihood model for all reads � can then be written as:  247 

 ��[ | !� �  ��5, Q | !� �  , ��5!, Q! | !��

!��

  (9) 

Incorporation of Linkage Information 248 

The calculations above assume an LD block containing a single SNP for ease of computation, but the 249 

framework is easily extended to account for LD blocks containing multiple SNPs, which increases power 250 

of comparison. Each LD block used for genotyping contains an “anchor” SNP which is in high linkage with 251 

all other SNPs within the block, and independent of all other anchor SNPs in other blocks. Given that all 252 

SNPs in a block are tightly linked(enforced with a strict �� correlation cutoff), we make the simplifying 253 

assumption that the genotype at any SNP within an LD block is perfectly correlated with the genotype 254 

of the anchor SNP, and that all SNPs within a block have the same allele frequency, equal to that of 255 

the anchor SNP. Then, reads overlapping any SNP within a block can be used to infer a total block 256 

haplotype, which is represented by the possible diploid genotypes of the anchor SNP. For example, 257 

consider an anchor SNPs \�  with major allele � and minor allele @, and a linked SNP \� with major allele 258 ] and minor allele ^. Then any observation of allele ] at SNP \� is taken as evidence of allele � at \�, 259 

and any observations of allele ^ at \� is taken as evidence of allele @ at \�. Using this strategy, evidence 260 

across all SNPs within a block can be used to infer a total block haplotype, which can be represented by 261 

the 3 possible diploid genotypes of the anchor SNP. That is, for an anchor SNP with major allele � and 262 

minor allele @, the possible block haplotypes are ��, �@, and @@, with prior probabilities dependent on 263 

the allele frequencies of � and @. 264 

Limitations of LOD calculation 265 

Though the magnitude of the LOD score reflects greater genotyping confidence, it cannot be directly 266 

interpreted as a likelihood ratio (e.g. an LOD of 200 does not correspond to a 10��� probability of a 267 

shared vs. different genetic origin), as the model does not fully account for sequencing noise, data 268 

quality, contamination, and relatedness. In addition, we did not model the incomplete dependence 269 

between haplotype blocks, nor the incomplete dependence of SNPs within blocks.  270 

Our framework also assumes that the only two sources of a base are the observed allele or a sequencing 271 

error. This assumption can lead to incorrect results in the cases where a sample has particularly noisy 272 

data due to pre-sequencing events (such as PCR or FFPE processing), non-conforming LD blocks, or high 273 

contamination. These samples could be genotyped as heterozygous due to the noisy region or the non-274 

confirming LD block structure. Including these error modes into the model would increase robustness 275 

and accuracy.  276 
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Implementation Details 277 

Crosscheck is implemented as part of the Picard-Tools suite, a set of Java command line tools for 278 

manipulating high-throughput sequencing data. It accepts VCF/BAM/SAM formatted inputs and can 279 

perform comparisons at the level of samples, libraries, read-groups, or files.  Crosscheck is provided 280 

alongside a utility called ExtractFingerprints which for an input bam, outputs a VCF containing the 281 

genotypes and genotype likelihoods across all LD blocks within the supplied haplotype map. This VCF 282 

can be used to store fingerprints for downstream analyses or for use with Crosscheck. More information 283 

is available at https://github.com/broadinstitute/picard 284 

Runtime and Memory requirements 285 

For BAM mode, running Crosscheck requires approximately 2.5 gb RAM for a single input pair of BAMs. 286 

Runtime is dependent on the size of the input file. Based on our benchmarking experiments, runtimes 287 

are < 10 minutes for DNAse-seq, < 30s for ChIP-seq, and are on average about 2 hours for RNA-seq 288 

datasets. For VCF mode, Crosscheck requires approximately 2.5 gb of ram for a single pair of inputs, with 289 

runtimes < 30s using the standard hg19 haplotype map. CrosscheckFingerprints is multi-threading 290 

enabled in order to speed up comparisons and fingerprint generation when multiple input pairs are 291 

provided.  All comparisons were conducted on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz processors.  292 

Map construction overview 293 

Maps are constructed from 1000 Genomes
11

 phase 3(1000GP3) single-nucleotide polymorphisms(SNPs) 294 

which are bi-allelic, phased, and have a minor allele frequency(MAF) � 10%. This MAF threshold is 295 

introduced since the expected maximal LOD contribution is obtained at an allele frequency of 0.50 296 

(intuitively, rare variants are unlikely to be present in either of two samples being compared from 297 

different individuals).  Additionally, SNPs must not differ in their MAF by more than 10% between the 5 298 

ancestral sub-populations(AFR, SAS, EAS, EUR, AMR) present in 1000GP3. This is to correct for potential 299 

sub-population bias due to differing linkage and MAF frequency of SNPs across different populations. 300 

Using PLINK2
18

, we pruned SNPs meeting these criteria in order to create an independent set of 301 

“anchor'' SNPs, between which no pairwise �� correlation exceeded a threshold of 0.10.  A window size 302 

of 10 kilobases(kb) and a slide of 5 SNPs was used for pruning. By creating this set of independent SNPs, 303 

we ensure that individual haplotype blocks are independent from each other. Next, we greedily added 304 

SNPs to the blocks represented by the anchor SNPs. Adding was done in order of LDScore
19

 of the 305 

anchor SNPs, with the highest LDScoring anchor SNP first( LDScore is the sum for the �� correlations of 306 

each SNP with all other SNPs within a 1 centimorgan window on either side).  Recombination maps 307 

containing mappings between genomic coordinates and recombination rates for both the hg19 and 308 

GRCh38 assemblies were obtained from http://bochet.gcc.biostat.washington.edu/beagle/ 309 

genetic_maps/ and http://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3/.  We only added SNPs if 310 

their correlation with the anchor SNP has �� � 0.85 and they were located within a genomic window of 311 

10,000 kb.  In this way, we prioritize the creation of larger, more genetically informative blocks that span 312 

several kb regions. The haplotype maps used for the ENCODE database analysis and benchmarking, 313 

along with the python code used to generate them, are available at: https://github.com/naumanjaved/ 314 

fingerprint_maps. 315 
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Constructing maps only containing LD blocks or single SNPs 316 

The map containing only single SNP blocks was constructed by aggregating all SNPs in the full haplotype 317 

map not in strong linkage��� � 0.85� to other SNPs, resulting in 20792 SNPs. To construct the map 318 

containing only blocks with size � 2 used to quantify the benefits of accounting for linkage, we sub-319 

sampled the full haplotype map. Starting with the largest blocks by number of SNPs, blocks were 320 

successively added to this map until the total number of SNPs approximately reached the number of 321 

SNPs in the map containing only independent SNPs (20801). 322 

Testing set construction 323 

281 ChIP-seq, RNA-seq, and DNase-seq datasets with ground-truth annotation 324 

To create a testing set of files to evaluate our method’s performance and benchmark it against other 325 

tools, we downloaded 281 hg19 bams from RNA-seq, DNase-seq, and ChIP-seq (targeting histone 326 

modifications, CTCF, or POL2) from the ENCODE Tissue Expression (ENTEX) project. The ENTEX project 327 

contains datasets from experiments on samples derived from four different tissue donors, each of which 328 

has whole genome sequencing (WGS) data available. The WGS data for each donor can be used to verify 329 

the nominal donor of each dataset comprising the testing set. For each dataset, the corresponding hg38 330 

alignments were compared to the hg38 WGS alignments for its nominal donor. Only datasets which 331 

yielded a positive LOD score > 5 using  CrosscheckFingerprints (with the full hg38 version of haplotype 332 

map) and a "match" result from NGSCheckMate were included in the testing set. The final testing set of 333 

files and accompanying metadata are included in supplementary table S1.   334 

101 transcription factor and chromatin modifier (CM) ChIP-seq datasets without ground-truth 335 

annotation 336 

To test Crosscheck and other methods on transcription factor and chromatin modifier datasets, we 337 

downloaded 101hg19 ChIP-seq datasets from the ENCODE project. For these datasets, there was no 338 

ground-truth donor sequencing data available for the nominal donor as there was for the ENTEX 339 

datasets.  In this case, the false-mismatch rate (incorrect genotyping call for a donor-matched pair) 340 

cannot be assessed, since there is a non-negligible probability that one of the two datasets with the 341 

same nominal donor annotation is incorrectly annotated. However, the false-match rate can still be 342 

assessed, since we estimate that the probability that two datasets with different donor annotations may 343 

actually share the same true donor is very low. Therefore, we only characterized the ability of 344 

NGSCheckmate and Crosscheckfingerprint’s to accurate classify donor-unmatched pairs for this testing 345 

set. In the context of detecting sample swaps, this performance measure is also more relevant than the 346 

accurate detection of donor-matched datasets. All datasets and accompanying metadata is available in 347 

supplementary table S2. 348 

BAM pre-processing and down-sampling for benchmarking experiments 349 

Datasets were sorted using Samtools
20 

and processed using Picard’s MarkDuplicates tool with default 350 

settings to remove duplicates. We noted that collapsing duplicates was especially important for RNA-seq 351 

datasets since PCR bias can alter allele fractions and lead to incorrect sample classification. 352 

Downsampling was conducted on the duplicate marked, sorted files using the command samtools view –353 

s seed.F with a seed value of 5.  354 
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Benchmarking with NGSC and Crosscheck 355 

To speed up analysis of a large number of bams with NGSCheckmate, we followed the author 356 

recommendations
10

 and created VCFs for each input file using the default provided SNP panel from the 357 

NGSCheckMate github and the command samtools mpileup-I -uf hg19.fasta -l 358 

SNP_GRCh37_hg19_woChr.bed sample.bam | bcftools call -c - > ./sample.vcf. NGSC was then run in 359 

batch mode using default settings with the hg19 reference SNP panel. For Crosscheck, we first used 360 

Picard’s ExtractFingerprint utility with default settings and the standard hg19 haplotype map to pre-361 

compute VCFs for each input bam. Comparisons were then conducted using Crosscheck’s batch mode 362 

with default settings and the standard hg19 map. 363 

Evaluation of other methods that assess genetic similarity between samples  364 

We considered the following methods: 365 

• HYSIS is intended for tumor-normal concordance verification with a priori knowledge of 366 

homozygous germline mutations in the normal tissue
6
. Without considerable modifications, HYSIS is 367 

therefore not suitable to handle the general use case that Crosscheck is intended for. 368 

• Bam-matcher
 
is a tool intended for verifying genotype concordance for whole-genome sequencing, 369 

whole exome sequencing, and RNA-sequencing data
7
. Bam-matcher calls programs such as GATK

21
 370 

to call variants for each input BAM. Though the resulting variants can be cached to speed up future 371 

comparisons, we did not find a way to easily call and store variants for each input bam in the testing 372 

set, and without that, performing the hundreds of thousands of benchmarking comparisons 373 

becomes unfeasible.  374 

• We did apply the tools Conpair and BAMixChecker to the testing set. Conpair was run with default 375 

settings using the standard hg19 SNP panel and the –min-cov parameter set to 1. Pileups were pre-376 

generated using GATK 4.1.7.0 with the recommended settings
8
. BAMixChecker was run with 377 

standard settings for hg19
9
 and using GATK 4.1.6.0 for variant calling. Conpair outputs a genotype 378 

concordance percentage, which should be <50% for different donor and above 80% for same donor 379 

datasets. Any genotype concordance between 50 and 80% is considered inconclusive. 380 

BAMixChecker outputs a concordance score between 0 and 1 with no explicit inconclusive range. 381 

However, we found that BAMixChecker outputs a concordance score of exactly 0 when there is no 382 

overlap between the SNP reference panel that the program uses and the input dataset. Therefore, 383 

we labeled any result from BAMixChecker with a concordance score of 0 as an inconclusive 384 

genotype call. We found that both methods were unable to yield a conclusive result for more than 385 

25% of the comparisons even when the full datasets are considered, and the inconclusive rates 386 

became even higher at the lower subsampling rates (Supplementary Fig. 1d). We reasoned that this 387 

was likely due to poor overlap between the input datasets and the predefined reference panel of 388 

SNPs that both methods use.  389 

 390 

Familial dataset acquisition and processing 391 

Paired fastqs for RNA-seq data from CEPH/Utah Pedigree 1463 were downloaded from the Gene 392 

Expression Omnibus
22

 (accession GSE56961). Datasets for the following accessions were downloaded: 393 

SRR8505344, SRR8505340, SRR8505343, SRR1258219, SRR1258220, SRR1258218, and SRR8505347. 394 

Fastqs were aligned to the GRCh38 reference using STAR
23

 2.6.0c with default parameters. Before 395 

analysis, bams were sorted using samtools and duplicate marked/collapsed using Picard’s 396 

MarkDuplicates. All comparisons were conducted using the default settings and SNP panels for the 397 

GRCh38 assembly for each method.  398 
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 399 

ENCODE data acquisition  400 

ENCODE metadata was downloaded from https://www.encodeproject.org/. Metadata was filtered to 401 

yield accessions for hg19 ChIP-, RNA-, and DNase-seq ENCODE bams from donors with at-least four 402 

datasets. These bams were downloaded from a Broad google bucket and processed(see below)with a 403 

custom Workflow Description Language
24

(WDL) script. All dataset accessions and associated metadata 404 

are available in supplementary table S3.  405 

ENCODE data processing 406 

Files were first sorted using samtools sort, and filtered using BEDTools
25

 in order to only keep reads 407 

overlapping SNPs in the haplotype map. This facilitated efficient storage of files, resulting in 408 

approximate 10-fold reduction in file size. Finally, duplicates were marked and removed for each file 409 

using Picard’s MarkDuplicates function with default settings. All comparisons were conducted using the 410 

version of CrosscheckFingerprints available in commit #078b0ba of Picard.  411 

 412 

ENCODE genotyping strategy 413 

To detect mislabeled samples, each dataset is compared against a reference set of 3 samples that 414 

provide a high quality representation of the “true'' genotype for each ENCODE tissue donor. To 415 

construct this reference set of samples, a self-LOD score is calculated for each sample by “comparing” 416 

each file to itself. This score correlates with the dataset's overlap with the haplotype map, and the 417 

highest self-LOD samples are those containing the most genetic information relevant for genotyping.  To 418 

ensure that the reference set of samples for each tissue donor does not contain any swapped samples, 419 

all reference samples are compared against one another to ensure self-consistency, which is defined as 420 

an LOD score greater than 5 for all three pairwise comparisons between the three samples. In the case 421 

of one swapped sample in this reference set, two negative LOD scores and one positive LOD score will 422 

be obtained.  In this case, the next highest self-LOD scoring bam replaces the putative swap, and 423 

representative concordance is re-assessed. This is repeated until a concordant set is found. More 424 

complex patterns of swaps in the representative set are assessed on a case-by-case basis. Finally, all 425 

reference samples across all nominal donors are compared against one another in order to identify 426 

larger cross-donor swaps and preclude the possibility that all reference samples for a nominal donor are 427 

actually swaps from the same true donor.  428 

Each sample not in the reference set is compared against the top 3 representative samples for its 429 

nominal donor. Samples yielding an LOD ≤ -5 against any of the top 3 representatives are flagged as 430 

swaps for review, while those yielding an LOD score between -5 and 5 are flagged as inconclusively 431 

genotyped.  432 

Contamination tests 433 

Varying numbers of randomly sampled reads from two unrelated ENCODE ChIP-seq datasets, 434 

ENCFF005HON ENCFF007DFB, were mixed together to create simulated contaminated datasets. Each 435 

mixed sample consisted of ~ 5 million reads and contained varying proportions of the original datasets 436 

(at intervals of 10%). Mixed samples were then compared to ENCFF007NTA and ENCFF029GAR, which 437 

are ChIP-seq datasets from the same donor as ENCFF005HON. Comparisons were conducted on VCF files 438 

generated using Picard’s ExtractFingerprint utility using Crosscheck’s VCF mode with default settings.  439 
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 440 

Data availability  441 

All data used for benchmarking and ENCODE analysis are available online at https://encodedcc.org/. 442 

Specific accessions and relevant metadata for each of the benchmarking experiments are available in 443 

tables S1 and S2. Accession IDs and metadata for all datasets from ENCODE analysis are available in 444 

table S3. Haplotype maps used for benchmarking and ENCODE analysis are available at 445 

https://github.com/naumanjaved/fingerprint_maps). RNA-seq data from CEPH/Utah Pedigree 1463 446 

were downloaded from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) from series 447 

GSE56961, using accession IDs: SRR8505344, SRR8505340, SRR8505343, SRR1258219, SRR1258220, 448 

SRR1258218, and SRR8505347. 1000 Genome Phase 3 VCFs for hg19 and GRCh38 liftovers were 449 

obtained from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp. Recombination maps for hg19 and 450 

GRCh38 liftovers were obtained from http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/.  451 

 452 

Code availability 453 

Crosscheck code and documentation is available at https://github.com/broadinstitute/picard. 454 

Fingerprint map generation code, along with pre-compiled maps and documentation are available at 455 

https://github.com/naumanjaved/fingerprint_maps.  456 

 457 
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Figure 1: Incorporating Linkage Information allows robust comparison of sequencing datasets. (a) 
Sample swaps and mis-annotations, where a sample is incorrectly attributed to the wrong donor, are a 
high stakes issue for large consortium projects and clinical science. (b) Our method compares reads from 
two datasets across a genome-wide set of linkage disequilibrium LD blocks (haplotype map). The single 
nucleotide polymorphisms (SNPs) in each block are highly correlated with each other and have low 
correlation with SNPs in other blocks. Reads overlapping any of the SNPs in a given block inform the 
relatedness of the datasets, even when reads from the two datasets do not overlap one another. (c) 
Haplotype maps contain many large LD blocks. LD blocks are created using common, ancestry 
independent SNPs from 1000 Genomes. Most SNPs lie within blocks of size > 2, which boosts the chances 
of reads to be informative.   (d) Distribution of LOD (log-odds ratio) scores for 34336 donor-mismatched 
(red) and 9767 donor-matched pairs (green) of public ChIP-, RNA-, and DNase-seq datasets from the 
ENCODE project. (e) LD-based method can correctly determine sample relatedness even at low 
sequencing coverage. Pairwise comparisons of reference dataset pairs at different sub-sampling 
percentages using two equally sized SNP panels – one panel contained only independent single SNPs, 
while the other contained only LD blocks. Donor-mismatched dataset pairs are colored red while donor-
matched dataset pairs are green. (f) Comparison of NGSC and Crosscheck’s classification of 34336 donor-
mismatched and 9767 donor-matched dataset pairs. Performance was measured in terms of the false flag 
rate (FFR), the fraction of donor-matched pairs incorrectly flagged as donor-mismatches, and the false 
match rate (FMR), the fraction of donor-mismatched pairs incorrectly identified as donor-matches. 
Comparisons are classified as same-assay if the two datasets are from the same assay type, and have the 
same target epitope in the case of ChIP-seq datasets. All other comparisons are classified as cross-assay.   
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Figure 2: Overview of ENCODE database swap detection. (a) Overview of 8851 genotyped datasets from 
ENCODE, partitioned by cell type (top left), assay type (top right), and by target for ChIP-seq (bottom). Cell 
types that had less than 100 datasets derived from them were pooled – so all the datasets from them are 
grouped into one of two categories. All hg19 aligned reads from total RNA-, polyA RNA-, ChIP-, and DNase-
seq experiments performed on samples belonging to donors with at-least four datasets in total were 
included in the analysis. All ChIP-seq targets, including histone modifications(HM), transcription factors 
(TF), chromatin modifiers (CM), CTCF, and control experiments were included. (b) Distribution of LOD 
scores from ENCODE genotyping. Each dataset was compared to three representative datasets from its 
nominal donor. Any dataset scoring negatively against any of the three representatives was flagged for 
further review. A comparison resulting in an LOD score between -5 and 5 was deemed inconclusive 
(insufficient evidence to indicate shared or distinct genetic origin). (c) Each flagged sample was compared 
to all other samples from its nominal donor, as well as the representatives for all other donors in our 
database to nominate true donor identity and identify genetically consistent sub-clusters. Comparisons 
of flagged samples between two HUVEC donors reveals 5 genetically distinct clusters. 
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Supplementary Figure 1. (a) Distribution of number of reads in sub-sampled datasets used for 
benchmarking, broken down by assay type. ChIP datasets were divided into two classes – those which 
targeted transcription factor (TF) and chromatin modifier (CM), and those which targeted broad histone 
modifications (HM), POL2/POL2RA (P), or CTCF. (b) Comparison of percentage false match (FM) and false 
flag (FF) rates for 9767 same-donor and 34336 different donor pairwise comparisons using Crosscheck 
with either linkage blocks, or single SNPs only. Across different (left) and same (right) assay comparisons, 
incorporation of linkage information (orange line) decreases the FF and FM percentage, particularly at 
sub-sampling percentages. Comparisons are classified as same-assay if the two datasets are from the 
same assay type, and have the same target epitope in the case of ChIP-seq datasets. All other comparisons 
are classified as cross-assay.  (c) Distribution of LOD scores from false flags and false matches from 
benchmarking experiments. The distribution of the majority (99%) of LOD scores from these 
misclassifications is used to create an “inconclusive” range of LOD scores, in which donor-match or 
mismatch cannot be confidently called. (d) Percent inconclusive genotype concordance calls for 9767 
same-donor and 29573 different donor pairwise comparisons using Conpair and BAMixChecker. 
“Inconclusive” is defined as pairwise comparisons resulting in genotype concordances between 50 and 
80% for Conpair, and a score of 0 for BAMixChecker.  (e) FMR and FFR for NGSC at 5% subsampling for 
pairwise comparisons between ChIP-seq datasets targeting the non-overlapping histone modifications 
H3K27ac and H3K27me3. NGSC performs worse for comparisons between H3K27ac and H3K27me3 
datasets (n=41 donor-matched, n=85 donor-mismatched) than for comparisons between two H3K27ac 
(n=24 donor-matched, n=67) or two H3K27me3 datasets (n=11 donor-matched, n=25 donor-
mismatched). In contrast, Crosscheck classifies all pairs correctly. 
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Supplementary Figure 2: Performance of NGSC, Crosscheck, BAMixChecker, and Conpair on familial datasets. Each method 
was used to  classify 21 pairwise comparisons between RNA-seq datasets from 7 related individuals (indicated in red) from 
CEPH/Utah pedigree 1463. “Inconclusive” is defined as pairwise comparisons resul�ng in genotype concordance between 
50 and 80% for Conpair, a score of 0 for BAMixChecker, and an LOD score between -5 and 5 for Crosscheck. NGSC incorrectly 
classifies 43% of pairs, while Conpair and BAMixChecker are inconclusive for 76 and 100% of pairs respec�vely. 
In contrast, Crosscheck correctly classifies all dataset pairs as mismatches. 
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Supplementary Figure 3: Demonstra�on of Crosscheck’s performance for contaminated datasets. Simulated contaminated 
datasets were created by combining various propor�ons of two ENCODE ChIP-seq datasets derived from two different 
donors: ENCFF005HON and ENCFF007DFB. Propor�ons of reads deriving from ENCFF005HON and ENCFF007DFB respec�vely 
are indicated in parentheses for each mixture. Each mixture was compared to two datasets derived from the same donor as 
ENCFF005HON, ENCFF007NTA (R1) and ENCFF029GAR (R2). The star indicates a region where a contaminated sample can 
score as a donor match against one dataset (R1), but score as a donor mismatch against a different dataset from the same 
donor (R2).
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