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Many neurophysiological signals exhibit slow continuous trends over time. Because standard correlation analyses
assume that all samples are independent, they can yield apparently significant "nonsense correlations" even for

signals that are completely unrelated.

Here we compare the performance of several methods for assessing

correlations between timeseries, using simulated slowly drifting signals with and without genuine correlations. The
best performance was obtained from a "pseudosession method", which relies on one of the signals being randomly
generated by the experimenter, or a "session perturbation” method which requires multiple recordings under the
same conditions. If neither of these is applicable, a "linear shift" method can be used when one of the signals is
stationary. Methods based on cross-validation, circular shifting, phase randomization, or detrending gave up to 100%
false positive rates in our simulations. We conclude that analysis of neural timeseries is best performed when
stationarity and randomization is built into the experimental design.

In neuroscience we often aim to find
correlations between variables that depend on
time. For example, we might -correlate
neuronal population activity on each trial of a
task with behavioral variables such as choices.
The statistical analysis of such data is difficult
because the recorded variables often show
slow changes in activity, which can lead to
apparent correlations between them even if
they are completely unrelated.

This phenomenon was given the memorable
name “nonsense correlation” by statistician G.
Udny Yule (Yule, 1926). Yule illustrated this
problem with an apparent correlation between
mortality rates and the fraction of marriages
conducted by the Church of England. A more
recent illustration describes an apparent
correlation between cryptocurrency prices and
activity in the brains of mice (Meijer, 2021).

The problem of nonsense correlations has been
discussed extensively in fields such as
econometrics (Box, 2008; Granger and
Newbold, 1974; Haugh, 1976; Phillips, 1986),
but despite its importance to understanding
neurophysiology data, has seen little
discussion in this field (but see Elber-Dorozko
and Loewenstein, 2018).

Here, we evaluate ten possible solutions to the
problem, by applying them to simulated neural
data. Two methods (the pseudosession and
session permutation methods) do not produce
nonsense correlations, however they cannot be
used in all situations. The conservative linear
shift method does not produce nonsense
correlations if one of the series is stationary.
The remaining methods (naive correlation,

circular ~ shiftt phase and  wavelet
randomization, cross-validation, auto-
decorrelation) can all produce nonsense

correlations. We end with suggestions for how
to design experiments on which pseudosession
and session permutation methods can be used.

What are nonsense correlations?

To illustrate the phenomenon of nonsense
correlations, we consider a simulated
experiment (Figure 1). Imagine we have
recorded a population of C = 10cells and
computed their firing rate on T = 200
behavioral trials. To simulate the case that the
neurons encode no information about
behavior, we generate their rates randomly,
independent of each other and of the simulated
behavioral variables. We simulate slow rate

drifts by summing logistic sigmoid functions
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Figure 1 | Naive correlation method. A1-A4: firing rates of 3 out of 10 simulated

neurons as a function of trial number. In columns 1 and 2 the sim
are uncorrelated with the behavioral variable. In columns 3 and 4,

weighted copy of the behavioral variable has been added to the firing rates to produce
a correlation. B1-B4: behavioral variable (black) and prediction of it from neural firing
(red dots), using multiple linear regression with weights constant across the
simulation. C1-C4: histogram of F-test p-values measuring significance of the linear

rearession over 1000 simulations.

centered on random times, together with pink
noise (Methods; Figure 1A1,1A2).

We consider two types of simulated behavioral
variable. First, we consider a binary “block”
variable, which switches pseudo-randomly
during the experiment; for example, this could
indicate which of two stimuli or actions is most
likely to be rewarded (Figure 1B1). Even
though the block variable was generated
independently of the neural activity, it is
possible to predict it accurately from neural
activity, since by chance some of the neurons
showed rate shifts at times close to the block
switches (e.g. the green cell in Figure 1A1).

The second type of simulated behavioral
variable was a continuous one, simulated the
same way as the neural variables (Figure 1B2);
for example this could measure running speed
on each trial. Again, this variable could be
predicted almost perfectly from the simulated

0.0 0.5

i 1.0
F test p value

the
behavioral variable correlated

To measure how well
ulated firing rates
e with neural activity on each
trial, we predicted it by multiple
linear regression. (Other
methods could be used but this
would not change the basic results.) Naively
applying the usual test of significance for
multiple linear regression (the F-test), we find
statistical significance in each of our four
scenarios, for each of 1000 simulations (Figure
1C).

Naive correlation thus always produced a
false-positive error even when there was no
genuine relationship between neural activity
and the behavioral variable. This is because the
F test assumes that the data on each timestep
are statistically independent. However, both
the predictor firing rates, and the target
behavioral variable are correlated across
timesteps, and the test gives false significance.

Defining correlation between time series

Before considering potential solutions to the
problem of nonsense correlations, we must
first clearly define what we mean by a
correlation between time series. To do so, we
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recall some basic concepts of probability
theory, working here within the classical
“frequentist” framework.

A fundamental concept in probability theory is
the sample space. The sample space defines the
set of all possible outcomes of an experiment,
and a point in the sample space determines the
value of everything measured in the
experimental session. Throughout this paper
we consider a simultaneous recording of
C cells and one behavioral variable, both
measured on T trials. A point in the sample
space is therefore defined by (C+ 1)T
numbers: the firing rate of each neuron and the
behavioral variable on each trial. We will
denote the firing rate of cell c on trial t as x.,
and gather them together into an CT-
dimensional vector x; and we will denote the
behavioral variable on trial t as y,, gathered
together into a T-dimensional vector Y.
Importantly, the sample space is defined by the
entire history of these variables on all trials, not
by their values on a single trial.

In the frequentist framework, we consider
experiments to be repeatable, at least in
principle: even if we only performed the
experiment once, we consider it as part of an
ensemble of repeats we could have performed.
A probability distribution P(x, y) measures the
frequency with which the experiment yields a
particular outcome, over the infinite ensemble
of possible repetitions of the experiment.

We say that neural activity is uncorrelated with
behavior if the entire history of neural activity
in an experiment (summarized by the vector x)
is statistically independent of the history of
behavioral variables summarized in y, i.e. if

P(x,y) = PX)P(y).

Importantly, this definition allows neural
activity to be autocorrelated: the firing rate of
neuron n on trial t can be correlated with the

firing rate of neuron m on trial u. Behavior can
the value of the
behavioral variable at one time can be
correlated with the value at another. Instead,
independence requires that there be no cross-

also be autocorrelated:

correlation: the activity of any neuron at any
time is independent of behavior at any time.
Thus, P(x¢, ) = P(xe)P(y,), for any cell ¢
and any pair of times t and u.

A correlation between timeseries is therefore
defined as a relationship that holds
consistently across multiple repeats of the
experiment, rather than across timepoints
within a single experimental session.
Predicting behavior from neural activity
within a single session (Figure 1) does not
show that neural activity is correlated with
behavior. Instead, it must be possible to predict
behavior from activity for all experimental
sessions, using the same set of prediction
weights for each session.

Does this mean that to show a correlation
between neural activity and behavior one must
record from the same neural population over
multiple experimental sessions? Luckily, the
answer is no, provided we make certain further
assumptions. We next discuss how different
assumptions allow different methods for
detecting true correlations between time series.
We focus on the simple case of testing whether
neural and behavioral variables are correlated:
more complex questions such as testing
whether neural activity correlates with some
behavioral variables after taking others into
account, are discussed elsewhere (Harris, 2021)
and summarized briefly at the end of this
manuscript.

Pseudosession method

The “pseudosession method” is simple,
requires only a single experimental session,
and is the only method we describe here that
can show a causal relationship between two
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Figure 2 | Pseudosession method. A: a test statistic V(x,y) is computed that generate random histories y’i
measures the strength of relationship between the neural and behavioral data for an 1:
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value as the quantile of V(x,y)
relative to the null ensemble {V(x,y’;)}. This
method therefore rejects the null hypothesis of

timeseries. However it has the strongest
requirement: that one of the timeseries is
randomly generated by the experimenter
according to a known probability distribution.
This method could be used for example to test

no correlation if we can predict the actual
behavioral history significantly better than we

whether neural activity differs between could predict a randomly generated one.

behavioral blocks, in an experiment where the Applying the method to our four scenarios
block structure is generated randomly without  (Figure 2), we observe that p-values are evenly
dependence on the subject’s choices. distributed when there is no true correlation
e but trated hen there is. W
Let x and y denote the histories of neural Ut concentrated near zero w en‘ ere is. e
conclude that the pseudosession method

activity and of the behavioral variable in a . : ] )
works reliably when the behavioral variable is

single session. The pseudosession method
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the null hypothesis is true, and a
sharp peak near 0 when the null
is false (Figure 3).

Session permutation does not

generated randomly from a known

distribution.

Session permutation method

Because the pseudosession method requires
the behavioral variable to have been randomly
generated by the experimenter, it cannot be
used to correlate neural activity with variables
such as the subject’s choices or running speed,
which are not under the experimenter’s
control. The session permutation method can
analyze these cases but requires data from
multiple sessions recorded under identical
conditions.

The session permutation method asks whether
neural activity predicts the behavioral variable
on the same session more accurately than on
other sessions. We denote the vectors
containing the history neural activity and
behavioral variables on the s** session as xg

require that the same neurons
be recorded in each session, provided one can
consider the experiments to be statistically
independent. The statistic V(x;,y;) measures
the degree to which the recorded population
predicts behavior, and this can be computed
using different neural populations on different
sessions. If one cannot return to the same
neurons on each session, however, it is not
possible to say which neurons correlate with
the behavioral variables; it is only possible to
conclude that the population as a whole does.

Some caution is required in interpreting results
of the session permutation method. Without a
randomized experimental design, one cannot
infer causality as there may be a third factor
affecting the neural and behavioral recordings.
For example, if the S sessions were recorded
sequentially from the same subject, and
consecutive experiments showed both a
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invariant to time shifting: for any
T, t, by, o ty,

]P(xt1+‘r' Xtptr ---xtn+‘r) =

Figure 4 | Linear shift method. A: Neural data as in Figure 1. Red bar
indicates time segment used to make unshifted prediction; blue shows one
example shift. B: the central segment of the behavioral data is predicted
from unshifted (red) or shifted (blue) neural data. For correlated series, the
unshifted predictor is more accurate (B3, B4). C: Prediction error as a
function of shift. D,E: histogram of p-values obtained using the conservative
or approximate methods, over 1000 simulations. The peak at p=0.5 in panel
E2 reflects cases where the prediction error depends monotonically on shift.

IP’(xtl,xtz, ...xtn). Stationarity is a
property of the ensemble of all
possible histories, rather than of any one
session. Stationarity does not mean that the
data have a temporally consistent character
during a single experiment; rather, it means
that absolute time is irrelevant to the ensemb]e.
For example, our ensemble of simulated block
histories (Figure 2B1) is not stationary, since
the first trial of any session is always in block
0; it could be made stationary by first
generating a long block history, then starting at
a random point. Experimentally measured
data such as behavioral and neural timeseries

The four columns refer to the four scenarios of Figure 1.

will be nonstationary if they show consistent
trends from the beginning to end of all
experiments. For example, if subjects typically
respond faster at the beginning of a session
experiment than at the end, then the timeseries
of reaction times would be nonstationary.

The linear shift method (Harris, 2020) tests the
null hypothesis that two time series are
independent, and one of them is stationary (in
this case we assume x). It is based on the idea
that if the series are correlated, it should be
easier to predict a segment of one them from a
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Figure 5 | Circular shift method. A,B: To create a null distribution, the neural
data is circularly time shifted and used to predict behavioral data. The example

argument is true, 0 if false). We
reject the null hypothesis at

shows a circular shift of 75 trials, where a discontinuity is visible. C: Prediction
error as a function of circular shift magnitude. D: histogram of p-values obtained
for the method, over 1000 simulations. Columns refer to the four scenarios of
Figure 1.

significance level a if m < a(N +

1). This is a conservative test: for any function
V, the probability that a valid null will be
rejected is guaranteed to be less than « if x and
y are independent and x is stationary. An
approximate test rejecting the null if m <
p(2N + 1) becomes approximately valid in the
limit N — oo, but for any finite N there exist
(increasingly strange) counterexamples for
which the approximate test rejects a valid null
with probability more than a (Harris, 2020).
Note that previous version of the present
manuscript suggested using an initial rather
than central segment of y, but that approach
does not allow a conservative test and is not
recommended.

We evaluated the linear shift method on the
same four scenarios as before (Figure 4). We

applied the test with N =19, for which the
conservative test will reject the null at p=0.05 if
m = 1, meaning the unshifted central segments
of x and y are more strongly associated than
any of the shifted segments, the
approximate test will reject the null at p=0.051
if m <2, meaning that at most one shifted

and

value can have a stronger association. For
uncorrelated data, the conservative test falsely
rejected the null in 2.7% and 29% of
simulations of the block and continuous y; the
approximate test rejected in 4.2% and 5.1% of
simulations. When a genuine correlation was
present, both tests rejected the null in 100% of
block simulations; for continuous simulations,
rejection rates were 89% and 91%. Thus, the
approximate test did not produce excess false
positive errors in these simulations, although it
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Figure 6 | Phase randomization method. A,B: To create a null
distribution, the neural data is randomly phase-shifted to create a
surrogate timeseries with the same frequency content, and used to
predict behavioral data. C: histogram of p-values obtained for the
method, over 1000 simulations. Columns refer to the four scenarios of
Figure 1.

conservative method is not a high price
to pay for the increased safety it
provides from false positive errors.

Circular shift method

An alternative to the linear shift method is to
generate a null ensemble by circularly shifting
one of the timeseries: to replace x[0: T] with the
concatenation of x[s: T] and x[0: s]. This has the
advantage of using all the data, unlike the
linear shift method which discards some.
However, in our simulations circular shifting
showed much greater inflation of false-positive
errors than linear shifting (Figure 5).

The reason for this problem is that the circular
shift method makes an assumption that is
unlikely to hold. It tests the null hypothesis
that not only are the series independent, but
one of them is also cyclo-stationary: i.e. the
probability of observing a particular history is
the same as the probability of observing a
cyclic shift of it. The reason this is unlikely to
hold is that unless the start and end values of
the timeseries are identical, cyclic shifting will

introduce a discontinuity (Figure 5A), which
then renders the prediction of the behavioral
series worse.

Phase/wavelet randomization

Another alternative to linear shifting, which
has been suggested in the fMRI literature
(Bullmore et al., 2001; Laird et al., 2004) is phase
or wavelet randomization.

In the phase randomization method, a null
distribution is obtained by applying a Fourier
transform to one of the timeseries, multiplying
each Fourier coefficient by a random phase and
reverse transforming.

Our simulations suggested that this method
inflates false-positive errors much more than
the linear shift method (Figure 6). Whereas the
circular shift method transforms continuous
timeseries into discontinuous ones, phase

randomization instead imposes cyclic


https://doi.org/10.1101/2020.11.29.402719
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.29.402719; this version posted June 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY 4.0 International license.

Nonsense Correlations in Neuroscience

No correlation Correlation
A4

15 15

10 10

05 051 f/

0.0 0.0

Predictors (3 of 10)

v~ —0.5%4 + T
0 100 200
time

|
o
n

. - -~ =05
0 100 200

15 i 100
0.75

5 :
) 0.50
505 H
. \ 0.25 i
0.0 i
0.00 \
Y

0 100 200 o 100 200 0 100 200 0 100 200
time time time time
c4

06 15
i ‘ b 06

|| W, |

| 0.4+ .

0.2 0.5

0.25{ — target
- prediction

density

0.0 0.0 0.0 0.0

-2 -1 -6 -4 -4 -2 -10 -5

log prediction error log prediction error log prediction error log prediction error
D1 D2 D3 D4

15 |15
> 75 10

10 | 10
5.0

B

25 5 | 5
0.0 0 0 0

0.0 05 1.0 0.0 0.5 1.0 0:0 0.5 1.0 0.0 0.5 1.0
waverand p value waverand p value waverand p value waverand p value

10.0 i

it

densi

Figure 7 | Wavelet randomization method. A,B: To create a null
distribution, a Daubechies(4) wavelet transform is applied to the
neural data, the wavelet coefficients are permuted within each
scale, and inverse transformed create a surrogate timeseries with
the same frequency content, and used to predict behavioral data.
C: histogram of p-values obtained for the method, over 1000
simulations. Columns refer to the four scenarios of Figure 1.

continuity: after phase randomization the last
sample is always close to the first.
Furthermore, the phase-randomized signals
have more high-frequency activity than the
original, as the high-frequency energy
resulting from the cyclic discontinuity in the
original data has now been spread throughout
time. As a result, the phase randomized data
tends to predict the behavioral data worse,
resulting in inflated false-positive errors.

An  alternative = method is  wavelet
randomization (Bullmore et al., 2001), which
creates a null distribution by performing a
wavelet transform on one of the timeseries,
permuting the coefficients at each scale, and
then inverse transforming. We found that this
method performed better than Fourier
randomization, but still gave substantially
more false positives than linear shift (Figure 7).

Cross validation

Cross validation does not solve nonsense
correlations: slow autocorrelations mean that
a predictor function learned on one part of
the data will still be valid on another part of
the data, even if these training and test sets
are temporally segregated.

To demonstrate this, we applied 10-fold
cross-validation to our four scenarios (Figure
8). When the training and test sets consisted
of random time points, performance was
abysmal: test-set predictions of the
behavioral variable were more accurate than
predictions made without access to the
simulated neural variables in 100% of
simulations, even when the neural and
behavioral variables were unrelated (Figure
8A,B). When training and test sets consisted
of blocks of sequential trials, false-positives
errors were less common but still occurred in
54% of simulations of the block behavioral
variable and 92% of simulations of the
continuous variable (Figure8C,D).

An alternative approach to time series cross-
validation is forecasting (Tashman, 2000). In
the approach, we predict the target timeseries
in the n'" block using a predictor learned only
from temporally prior blocks. As such
predictions are extrapolation rather than an
interpolation, one might expect false
predictability to therefore be lower. This
approach worked for the block variable,
reducing the false positive rate to 1%; but it did
not work for the continuous target, for which
false-positives still occurred 61% of the time.
(Figure 8C,D).

We conclude that cross-validation does not in
general avoid nonsense correlations, although
forecasting cross-validation can help in some
circumstances. The use of cross-validation to
avoid nonsense correlations must therefore be
justified on a case-by-case basis.
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standard F-test to measure
significance (Figure 9). Because
these timeseries are nonlinear,

dots). Black dots indicate a null prediction made without access to the neural

variables (the training set mean). B: histogram of predictability (mean error of
prediction without neural variables minus mean error with them), over 1000
simulated sessions. C,D: same analysis, with blocks chosen to be temporally
continuous. E,F: forecasting method, where the training set (green) is strictly
before the test set (red). Columns correspond to the four scenarios in Figure 1.

Auto-decorrelation

A commonly-suggested approach to eliminate
nonsense correlations is to preprocess the data
to correlations within a single
timeseries (Haugh, 1976). If we could remove
these autocorrelations, then standard statistical

remove

tests that assume independent samples could
safely be applied to the auto-decorrelated
timeseries.

The usual way to perform auto-decorrelation is
with an autoregressive model: one predicts the

10

however, the autoregressive
model did not fully decorrelate
the data: slow trends were still
observed in the neural data
(Figure 9A,B) although smaller
than prior to preprocessing. For the binary
block variable, auto-decorrelation replaced the
step functions with impulses at the start and
end of each block. Even  after
autodecorrelation, the F-test produced inflated
false positive rates, although this was less bad
for the block variable (Figure 9C).

Thus, it is not safe to apply statistical tests that
assume independence after
decorrelation, unless one has evidence that the

even auto-
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significance of the linear regression, over 1000 simulations.

auto-decorrelation method really works to
high accuracy. In practice, this can be assessed
by measuring how often the null hypothesis is
rejected in synthetic data where there is known
to be no genuine association. This approach
has been used to validate auto-decorrelation in
fMRI data (Afyouni et al., 2019; Cliff et al.,
2021). Nevertheless, auto-decorrelation should
be tested before applying
neurophysiological  data they

substantially less linear than fMRI data. Linear

carefully to

as are
timeseries are filtered independent noise;
while fMRI timeseries look like filtered noise,
neuronal unit recordings usually do not. For
example, recorded cells can disappear halfway
through an experiment due to technical issues
such as electrode drift, which would not be
corrected by a linear autoregressive model.

When auto-decorrelation does not fully
decorrelate the data, it cannot be followed by
statistical tests assuming independence of

1
timeseries, such as neural

F test p value

activity and a behavioral
variable. One often wants to ask
more complex questions. For
example, a subject’'s choices
differ = between  behavioral
blocks. If neural activity
with behavioral block, is this
correlation stronger than if the neuron encoded
of choice alone? In other words, is there a
partial correlation of neural activity and block,
after accounting for the common correlate of
choice? With autocorrelated timeseries, this is

a much harder problem than simply testing for

correlates

independence.

We must first carefully define what we mean
by partial correlation for autocorrelated
timeseries. Suppose we are predicting a vector
timeseries Y from another vector timeseries X,
and we also measure a third confounder
timeseries Z which is not independent of X. For
example, Y might contain population activity
on each trial, X might contain the behavioral
block on each trial, and Z the choice on each
trial. Because the subject learns from previous
trials, Z and X are not independent, but we do
not have an equation accurately modeling their
relationship.

11
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We would like to test a null hypothesis that Y
has no correlation with X beyond that
explained by dependence on Z. This can be
formalized as amodel Y = ZW + E, where W is
a non-random but unknown weight matrix,
and E is independent of X (Harris, 2021). As
before, this means independence of the entire
histories over repeats of the experiment:
P(ect, xqu) = P(ec)P(xgy), for any cell ¢, any
dimension d of the confounding variable, and
any pair of times t and u.

Even if we know the probability distribution of
P(X), we cannot use the pseudosession
method to test independence of E and X, since
we do not measure E directly and we do not
know P(Z|X). We also cannot use session
permutation, since no one of our three
observed series X,Y,Z is independent of the
other two under the null.

We recently described an approximate test for
partial correlations between autocorrelated
timeseries null where one has observed
multiple experiments (Harris, 2021). Let X;, ¥;
and Z; be the timeseries observed on
experiment i, and let P;; be the T XT
projection matrix orthogonal to all columns of
both Z; and Z;. Given a user-supplied
measure p(X; Y) of association between two
timeseries (for example Pearson correlation),
we define the statistics

N
1
G, = Nz p(Xi; PijYi) — p(Xj; Py;Y;)
j=1

Under the null, the g; mutually
independent and their sum has mean 0 (Harris,
2021). If their distributions are close to
symmetric (which can be checked with
histograms or QQ plots), the null can be tested
using a t-test that the mean of G; is 0 (Cressie,
1980; Efron, 1969).

are
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Implications for experimental design

This survey of methods for establishing
genuine correlations between neural and
behavioral timeseries yields a familiar lesson
for experimental design: whenever possible,
use a randomized experiment.

The power of randomized experiments to
enable statistical analysis has long been
recognized (Fisher, 1935). Of the methods
described above, the one that is most reliable,
powerful, and accurate is the pseudosession
method, which can only be applied when one
of the timeseries to be correlated is randomly
controlled by the Thus,
whenever possible, experiments should be
designed with randomized covariates. To test
if neural population activity differs between
behavioral blocks, the timing of these blocks
should be randomized between sessions. To
test if neural activity correlates with running,

experimenter.

the best experimental design would be one that
requires the subject to run at random times
controlled by the experimental apparatus.

Summary

We have reviewed and simulated methods for
detecting  correlations between  neural
timeseries. Statistical tests that assume

independence between timepoints result in
“nonsense correlations” of erroneous statistical
significance, due to autocorrelations within
timeseries. The most reliable method for
detecting genuine correlations, the
pseudosession method, requires that one of the
timeseries be randomly generated by the
The
method requires the experiment be replicated
at least 5 times, and can provide reliable results
although correlations could reflect a common
effect of session-to-session variability. The
conservative linear shift method works if one
of the series is stationary. Other methods

experimenter. session  permutation

reduce but do not eliminate the risk of false
positive errors. If possible, experiments should
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be designed so that time series of interest are
randomized.

Methods

To generate a firing rate sequence, we added
together a random number of logistic sigmoid
functions. The center times t;,...t, of these
functions were drawn from a homogeneous
Poisson process of rate 1/100, so the mean
number of sigmoids in T=200 trials was 2; their
widths were always 10, and directions o; were
random signs +1 with equal probability. A
pink noise sequence p, was added, generated
by passing white Gaussian noise through an
IIR filter with parameters a = [1, —\/C_l],b =
[V1—a|, where @ = e%/* and T = 5000. The
final sequence was

n
1
xt = Olpt + z 1 + e(t—ti)/loo'i
i=1

To simulate behavioral binary blocks (column
1 of the figures), we generated alternating
blocks of Os and 1s, of lengths independently
uniformly distributed between 50 and 70; the
first 0 block always began at the first sample.
To make a stationary block sequence (Figure 5),
we generated a longer sequence (1000 blocks)
and started it at a random time. To simulate
continuous behavioral signal (column 2 of the
figures), we generated another sequence from
from the same distribution as the neural
activity.

To simulate the case where the neurons
encoded information about the behavioral
variables (columns 3 and 4), the behavioral
signal was added to each neuron’s activity,
with  weight drawn from Gaussian
distribution of mean 0, SD 0.1.

a

Finally, each neuron’s activity timeseries
scaled between 0 and 1, although this will not
have affected the linear regressions.
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Code to perform the simulations is available at
https://github.com/kdharris101/nonsense-
correlations/ and can be run online at
https://colab.research.google.com/github/kdha
rris101/nonsense-
correlations/blob/main/nonsense.ipynb
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