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Many neurophysiological signals exhibit slow continuous trends over time. Because standard correlation analyses 
assume that all samples are independent, they can yield apparently significant "nonsense correlations" even for 
signals that are completely unrelated.  Here we compare the performance of several methods for assessing 
correlations between timeseries, using simulated slowly drifting signals with and without genuine correlations.  The 
best performance was obtained from a "pseudosession method", which relies on one of the signals being randomly 
generated by the experimenter, or a "session perturbation" method which requires multiple recordings under the 
same conditions. If neither of these is applicable, a "linear shift" method can be used when one of the signals is 
stationary. Methods based on cross-validation, circular shifting, phase randomization, or detrending gave up to 100% 
false positive rates in our simulations. We conclude that analysis of neural timeseries is best performed when 
stationarity and randomization is built into the experimental design.

In neuroscience we often aim to find 
correlations between variables that depend on 
time. For example, we might correlate 
neuronal population activity on each trial of a 
task with behavioral variables such as choices.  
The statistical analysis of such data is difficult 
because the recorded variables often show 
slow changes in activity, which can lead to 
apparent correlations between them even if 
they are completely unrelated.  

This phenomenon was given the memorable 
name “nonsense correlation” by statistician G. 
Udny Yule (Yule, 1926).  Yule illustrated this 
problem with an apparent correlation between 
mortality rates and the fraction of marriages 
conducted by the Church of England. A more 
recent illustration describes an apparent 
correlation between cryptocurrency prices and 
activity in the brains of mice (Meijer, 2021).  

The problem of nonsense correlations has been 
discussed extensively in fields such as 
econometrics (Box, 2008; Granger and 
Newbold, 1974; Haugh, 1976; Phillips, 1986), 
but despite its importance to understanding 
neurophysiology data, has seen little 
discussion in this field (but see Elber-Dorozko 
and Loewenstein, 2018).  

Here, we evaluate ten possible solutions to the 
problem, by applying them to simulated neural 
data. Two methods (the pseudosession and 
session permutation methods) do not produce 
nonsense correlations, however they cannot be 
used in all situations. The conservative linear 
shift method does not produce nonsense 
correlations if one of the series is stationary. 
The remaining methods (naïve correlation, 
circular shift, phase and wavelet 
randomization, cross-validation, auto-
decorrelation) can all produce nonsense 
correlations. We end with suggestions for how 
to design experiments on which pseudosession 
and session permutation methods can be used.  

What are nonsense correlations? 
To illustrate the phenomenon of nonsense 
correlations, we consider a simulated 
experiment (Figure 1). Imagine we have 
recorded a population of 𝐶 = 10 cells and 
computed their firing rate on 𝑇 = 200 
behavioral trials. To simulate the case that the 
neurons encode no information about 
behavior, we generate their rates randomly, 
independent of each other and of the simulated 
behavioral variables. We simulate slow rate 
drifts by summing logistic sigmoid functions 
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centered on random times, together with pink 
noise (Methods; Figure 1A1,1A2). 

We consider two types of simulated behavioral 
variable.  First, we consider a binary “block” 
variable, which switches pseudo-randomly 
during the experiment; for example, this could 
indicate which of two stimuli or actions is most 
likely to be rewarded (Figure 1B1). Even 
though the block variable was generated 
independently of the neural activity, it is 
possible to predict it accurately from neural 
activity, since by chance some of the neurons 
showed rate shifts at times close to the block 
switches (e.g. the green cell in Figure 1A1).  

The second type of simulated behavioral 
variable was a continuous one, simulated the 
same way as the neural variables (Figure 1B2); 
for example this could measure running speed 
on each trial. Again, this variable could be 
predicted almost perfectly from the simulated 

neural activity, even though it 
was generated independently. 

To simulate a situation where 
neuronal firing rates do encode 
information about the 
behavioral variable, we added a 
small multiple of the behavioral 
variable to each neuron’s firing 
rate, with a random weight 
(Figure 1A3, 1A4). Throughout 
the paper we consider these four 
scenarios: a binary or 
continuous behavioral variable, 
with or without genuine 
correlation to neural activity. 

To measure how well the 
behavioral variable correlated 
with neural activity on each 
trial, we predicted it by multiple 
linear regression. (Other 
methods could be used but this 

would not change the basic results.) Naively 
applying the usual test of significance for 
multiple linear regression (the F-test), we find 
statistical significance in each of our four 
scenarios, for each of 1000 simulations (Figure 
1C).  

Naïve correlation thus always produced a 
false-positive error even when there was no 
genuine relationship between neural activity 
and the behavioral variable. This is because the 
F test assumes that the data on each timestep 
are statistically independent. However, both 
the predictor firing rates, and the target 
behavioral variable are correlated across 
timesteps, and the test gives false significance.  

Defining correlation between time series 
Before considering potential solutions to the 
problem of nonsense correlations, we must 
first clearly define what we mean by a 
correlation between time series. To do so, we 

   
Figure 1 | Naïve correlation method. A1-A4: firing rates of 3 out of 10 simulated 
neurons as a function of trial number. In columns 1 and 2 the simulated firing rates 
are uncorrelated with the behavioral variable. In columns 3 and 4, a small randomly 
weighted copy of the behavioral variable has been added to the firing rates to produce 
a correlation. B1-B4: behavioral variable (black) and prediction of it from neural firing 
(red dots), using multiple linear regression with weights constant across the 
simulation. C1-C4: histogram of F-test p-values measuring significance of the linear 
regression over 1000 simulations. 
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recall some basic concepts of probability 
theory, working here within the classical 
“frequentist” framework.  

A fundamental concept in probability theory is 
the sample space. The sample space defines the 
set of all possible outcomes of an experiment, 
and a point in the sample space determines the 
value of everything measured in the 
experimental session.  Throughout this paper 
we consider a simultaneous recording of 𝐶 cells and one behavioral variable, both 
measured on 𝑇 trials.  A point in the sample 
space is therefore defined by (𝐶 + 1)𝑇 
numbers: the firing rate of each neuron and the 
behavioral variable on each trial. We will 
denote the firing rate of cell 𝑐 on trial 𝑡 as 𝑥௖௧, 
and gather them together into an 𝐶𝑇-
dimensional vector 𝐱; and we will denote the 
behavioral variable on trial 𝑡 as 𝑦௧, gathered 
together into a 𝑇-dimensional vector 𝐲.  
Importantly, the sample space is defined by the 
entire history of these variables on all trials, not 
by their values on a single trial.   

In the frequentist framework, we consider 
experiments to be repeatable, at least in 
principle: even if we only performed the 
experiment once, we consider it as part of an 
ensemble of repeats we could have performed. 
A probability distribution ℙ(𝐱, 𝐲) measures the 
frequency with which the experiment yields a 
particular outcome, over the infinite ensemble 
of possible repetitions of the experiment.   

We say that neural activity is uncorrelated with 
behavior if the entire history of neural activity 
in an experiment (summarized by the vector 𝐱) 
is statistically independent of the history of 
behavioral variables summarized in 𝐲, i.e.  if ℙ(𝐱, 𝐲) = ℙ(𝐱)ℙ(𝐲).   
Importantly, this definition allows neural 
activity to be autocorrelated: the firing rate of 
neuron 𝑛 on trial 𝑡 can be correlated with the 

firing rate of neuron 𝑚 on trial 𝑢. Behavior can 
also be autocorrelated: the value of the 
behavioral variable at one time can be 
correlated with the value at another. Instead, 
independence requires that there be no cross-
correlation: the activity of any neuron at any 
time is independent of behavior at any time. 
Thus, ℙ(𝑥௖௧, 𝑦௨) = ℙ(𝑥௖௧)ℙ(𝑦௨), for any cell 𝑐 
and any pair of times 𝑡 and 𝑢.  
A correlation between timeseries is therefore 
defined as a relationship that holds 
consistently across multiple repeats of the 
experiment, rather than across timepoints 
within a single experimental session.  
Predicting behavior from neural activity 
within a single session (Figure 1) does not 
show that neural activity is correlated with 
behavior. Instead, it must be possible to predict 
behavior from activity for all experimental 
sessions, using the same set of prediction 
weights for each session.  

Does this mean that to show a correlation 
between neural activity and behavior one must 
record from the same neural population over 
multiple experimental sessions? Luckily, the 
answer is no, provided we make certain further 
assumptions.  We next discuss how different 
assumptions allow different methods for 
detecting true correlations between time series. 
We focus on the simple case of testing whether 
neural and behavioral variables are correlated: 
more complex questions such as testing 
whether neural activity correlates with some 
behavioral variables after taking others into 
account, are discussed elsewhere (Harris, 2021) 
and summarized briefly at the end of this 
manuscript. 

Pseudosession method 
The “pseudosession method” is simple, 
requires only a single experimental session, 
and is the only method we describe here that 
can show a causal relationship between two 
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timeseries. However it has the strongest 
requirement: that one of the timeseries is 
randomly generated by the experimenter 
according to a known probability distribution.  
This method could be used for example to test 
whether neural activity differs between 
behavioral blocks, in an experiment where the 
block structure is generated randomly without 
dependence on the subject’s choices. 

Let 𝐱 and 𝐲 denote the histories of neural 
activity and of the behavioral variable in a 
single session. The pseudosession method 

requires a user-specified 
function 𝑉(𝐱, 𝐲), a single real 
number which quantifies the 
degree of association between 𝐱 and 𝐲 in that session. A good 
choice is the error of a 
classifier trained to predict 𝐲 
from 𝐱 or vice versa. This error 
can be cross-validated but 
does not need to be. In fact, 
any choice of 𝑉 gives a valid 
test; poor choices can only 
result in false-negative errors. 
In this paper we use the 
squared error of linear 
regression summed over time 
points. But any classifier can 
be used, including if it uses 
multiple timepoints of one 
series to predict individual 
timepoints of the other.  

To apply the pseudosession 
method, we repeatedly 
generate random histories 𝐲′௜ 
from the same probability 
distribution that generated 𝐲, 
refit the prediction model to 
predict each 𝒚୧ᇱ from 𝐱, and 
recompute the test statistic 𝑉(𝐱, 𝐲′௜).  We then define a p-
value as the quantile of 𝑉(𝐱, 𝐲) 

relative to the null ensemble ሼ𝑉(𝐱, 𝐲′௜)ሽ.  This 
method therefore rejects the null hypothesis of 
no correlation if we can predict the actual 
behavioral history significantly better than we 
could predict a randomly generated one.  

Applying the method to our four scenarios 
(Figure 2), we observe that p-values are evenly 
distributed when there is no true correlation 
but concentrated near zero when there is. We 
conclude that the pseudosession method 
works reliably when the behavioral variable is 

  
Figure 2 | Pseudosession method. A: a test statistic 𝑉(𝐱, 𝐲) is computed that 
measures the strength of relationship between the neural and behavioral data for an 
experiment. This is compared against a null distribution of 𝑉(𝐱, 𝐲௜ᇱ) obtained by 
repeatedly generating other behavioral data 𝐲௜ᇱ drawn from the same distribution as 𝐲. B: ensemble of behavioral variables for 10 pseudosessions, drawn from the same 
probability distribution as the original. C: histogram of log prediction error ሼ𝑉(𝐱, 𝐲௜ᇱ)ሽ of 
null distribution (blue), with 𝑉(𝐱, 𝐲), the value for original data superimposed (orange). 
D: histogram of p-values obtained by comparing the predictability of the actual 
behavioral variable against a null ensemble of predictability of pseudosessions, from 
1000 simulations. Columns 1-4 correspond to the same scenarios as in Figure 1. 
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generated randomly from a known 
distribution. 

Session permutation method 
Because the pseudosession method requires 
the behavioral variable to have been randomly 
generated by the experimenter, it cannot be 
used to correlate neural activity with variables 
such as the subject’s choices or running speed, 
which are not under the experimenter’s 
control. The session permutation method can 
analyze these cases but requires data from 
multiple sessions recorded under identical 
conditions.   

The session permutation method asks whether 
neural activity predicts the behavioral variable 
on the same session more accurately than on 
other sessions. We denote the vectors 
containing the history neural activity and 
behavioral variables on the 𝑠௧௛ session as 𝐱௦ 

and 𝐲௦. We sum the association 
measure over sessions to obtain 
a test statistic 𝑉 = ∑ 𝑉(𝐱௦, 𝐲௦)ௌ௦ୀଵ . 
We compare this test statistic to 
a null ensemble in which the 
neural data of each session is 
compared to behavioral data 
from a randomly chosen 
session: 𝑉గᇱ = ∑ 𝑉൫𝐱௦,  𝐲గ(௦)൯ௌ௦ୀଵ , 
where 𝜋 runs over all of the 𝑆! 
permutations of the 𝑆 sessions. 
To obtain statistical significance 
needs at least 5 sessions (since 5! = 120).  

This method works for all our 
four scenarios, giving a flat 
distribution of p-values when 
the null hypothesis is true, and a 
sharp peak near 0 when the null 
is false (Figure 3).  

Session permutation does not 
require that the same neurons 

be recorded in each session, provided one can 
consider the experiments to be statistically 
independent. The statistic 𝑉(𝐱௦, 𝐲௦) measures 
the degree to which the recorded population 
predicts behavior, and this can be computed 
using different neural populations on different 
sessions. If one cannot return to the same 
neurons on each session, however, it is not 
possible to say which neurons correlate with 
the behavioral variables; it is only possible to 
conclude that the population as a whole does. 

Some caution is required in interpreting results 
of the session permutation method. Without a 
randomized experimental design, one cannot 
infer causality as there may be a third factor 
affecting the neural and behavioral recordings. 
For example, if the 𝑆 sessions were recorded 
sequentially from the same subject, and 
consecutive experiments showed both a 

Figure 3 | Session permutation method. A: a test statistic is computed by 
summing the predictability of behavioral from neural data over each of 𝑆 total 
sessions. This is compared to a null ensemble obtained from each of the 𝑆! possible permutations of the sessions. B: histogram of log prediction error of 
permuted sessions (blue), with value for unpermuted data superimposed (orange).   
C: Histogram of p-values obtained with this method, over 1000 simulations. 
Columns 1-4 correspond to the same scenarios as in Figure 1.
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degradation in both the quality of 
neuronal  recording and in 
behavioral performance, one might 
observe a correlation between neural 
activity and behavior simply for this 
reason. If some sessions were 
recorded from different subjects one 
might observe a correlation between 
neural activity and behavior, simply 
because the subjects used different 
behavioral strategies and their 
recordings contained different 
numbers of neurons. 

Linear shift method 
We have defined correlation 
between neural activity and 
behavior as a relationship holding 
consistently across sessions. 
Nevertheless, we can infer a 
correlation from just one session, if 
we make further assumptions. The 
linear shift method does this by 
assuming stationarity.  

A probability distribution for time 
series is said to be stationary if it is 
invariant to time shifting: for any 𝜏,  𝑡ଵ, 𝑡ଶ, … 𝑡௡,  ℙ൫𝑥௧భାఛ, 𝑥௧మାఛ,  … 𝑥௧೙ାఛ൯ =ℙ൫𝑥௧భ, 𝑥௧మ,  … 𝑥௧೙൯.  Stationarity is a 
property of the ensemble of all 
possible histories, rather than of any one 
session. Stationarity does not mean that the 
data have a temporally consistent character 
during a single experiment; rather, it means 
that absolute time is irrelevant to the ensemble. 
For example, our ensemble of simulated block 
histories (Figure 2B1) is not stationary, since 
the first trial of any session is always in block 
0; it could be made stationary by first 
generating a long block history, then starting at 
a random point. Experimentally measured 
data such as behavioral and neural timeseries 

will be nonstationary if they show consistent 
trends from the beginning to end of all 
experiments. For example, if subjects typically 
respond faster at the beginning of a session 
experiment than at the end, then the timeseries 
of reaction times would be nonstationary.  

The linear shift method (Harris, 2020) tests the 
null hypothesis that two time series are 
independent, and one of them is stationary (in 
this case we assume 𝐱). It is based on the idea 
that if the series are correlated, it should be 
easier to predict a segment of one them from a 

 
Figure 4 | Linear shift method. A: Neural data as in Figure 1. Red bar 
indicates time segment used to make unshifted prediction; blue shows one 
example shift. B: the central segment of the behavioral data is predicted 
from unshifted (red) or shifted (blue) neural data. For correlated series, the 
unshifted predictor is more accurate (B3, B4). C: Prediction error as a 
function of shift. D,E: histogram of p-values obtained using the conservative 
or approximate methods, over 1000 simulations. The peak at p=0.5 in panel 
E2 reflects cases where the prediction error depends monotonically on shift. 
The four columns refer to the four scenarios of Figure 1. 
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simultaneous segment of the 
other, than from a temporally 
shifted segment.  

In detail, let 𝐱ሾ𝑎: 𝑏ሿ denote the 
segment of 𝐱 from trial 𝑎 to trial 
b−1. Given an integer parameter 𝑁 < ଶ்,  the linear shift method 
calculates the association of a 
central segment of 𝐲 with a 
shifted segment of 𝐱. For all 𝑠 =−𝑁 … 𝑁, it computes 𝑉௦ =𝑉(𝐱ሾ𝑁 + 𝑠: 𝑇 − 𝑁 + 𝑠ሿ, 𝐲ሾ𝑁: 𝑇 −𝑁ሿ), where 𝑉 is again a measure 
of association between neural 
activity and behavior such as the 
error of predicting behavior from 
neural activity. A test statistic 𝑚 = ∑ 𝐼(𝑉௦ ≤ 𝑉଴)ே௦ୀିே  counts 
how many shifts produce an 
association as least as strong as 
the unshifted data (𝐼 is an 
indicator function: 1 if its 
argument is true, 0 if false). We 
reject the null hypothesis at 
significance level 𝛼 if 𝑚 ≤ 𝛼(𝑁 +1). This is a conservative test: for any function 𝑉, the probability that a valid null will be 
rejected is guaranteed to be less than 𝛼 if 𝐱 and 𝐲 are independent and 𝐱 is stationary.  An 
approximate test rejecting the null if 𝑚 ≤𝑝(2𝑁 + 1) becomes approximately valid in the 
limit 𝑁 → ∞, but for any finite 𝑁 there exist 
(increasingly strange) counterexamples for 
which the approximate test rejects a valid null 
with probability more than 𝛼  (Harris, 2020). 
Note that previous version of the present 
manuscript suggested using an initial rather 
than central segment of 𝐲, but that approach 
does not allow a conservative test and is not 
recommended.  

We evaluated the linear shift method on the 
same four scenarios as before (Figure 4). We 

applied the test with 𝑁 = 19, for which the 
conservative test will reject the null at p=0.05 if 𝑚 = 1, meaning the unshifted central segments 
of 𝐱 and 𝐲 are more strongly associated than 
any of the shifted segments, and the 
approximate test will reject the null at p=0.051 
if 𝑚 ≤ 2, meaning that at most one shifted 
value can have a stronger association. For 
uncorrelated data, the conservative test falsely 
rejected the null in 2.7% and 2.9% of 
simulations of the block and continuous 𝐲; the 
approximate test rejected in 4.2% and 5.1% of 
simulations. When a genuine correlation was 
present, both tests rejected the null in 100% of 
block simulations; for continuous simulations, 
rejection rates were 89% and 91%.  Thus, the 
approximate test did not produce excess false 
positive errors in these simulations, although it 

  
Figure 5 | Circular shift method. A,B: To create a null distribution, the neural 
data is circularly time shifted and used to predict behavioral data. The example 
shows a circular shift of 75 trials, where a discontinuity is visible. C: Prediction 
error as a function of circular shift magnitude. D: histogram of p-values obtained 
for the method, over 1000 simulations. Columns refer to the four scenarios of 
Figure 1. 
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provided little advantage. We also 
evaluated the test shifting 𝐲 rather than 𝐱, which in the block scenario is not 
stationary. Nevertheless, the 
conservative and approximate tests 
rejected a valid null in just 1.9% and 
3.0% of simulations, indicating that non-
stationarity did not yield false-positive 
errors in this case. 

Thus, the conservative linear shift test 
can be safely used when one has reason 
to believe that one of the time series 
being compared is stationary. Neither 
the approximate method nor 
nonstationarity produced excess false 
rejections in our simulations, but this 
does not guarantee safety of those 
methods in all situations, and the 
twofold loss in statistical power of the 
conservative method is not a high price 
to pay for the increased safety it 
provides from false positive errors. 

Circular shift method 
An alternative to the linear shift method is to 
generate a null ensemble by circularly shifting 
one of the timeseries: to replace 𝐱ሾ0: 𝑇ሿ with the 
concatenation of 𝐱ሾ𝑠: 𝑇ሿ and 𝐱ሾ0: 𝑠ሿ. This has the 
advantage of using all the data, unlike the 
linear shift method which discards some. 
However, in our simulations circular shifting 
showed much greater inflation of false-positive 
errors than linear shifting (Figure 5). 

The reason for this problem is that the circular 
shift method makes an assumption that is 
unlikely to hold. It tests the null hypothesis 
that not only are the series independent, but 
one of them is also cyclo-stationary: i.e. the 
probability of observing a particular history is 
the same as the probability of observing a 
cyclic shift of it. The reason this is unlikely to 
hold is that unless the start and end values of 
the timeseries are identical, cyclic shifting will 

introduce a discontinuity (Figure 5A), which 
then renders the prediction of the behavioral 
series worse.  

Phase/wavelet randomization  
Another alternative to linear shifting, which 
has been suggested in the fMRI literature 
(Bullmore et al., 2001; Laird et al., 2004) is phase 
or wavelet randomization.  

In the phase randomization method, a null 
distribution is obtained by applying a Fourier 
transform to one of the timeseries, multiplying 
each Fourier coefficient by a random phase and 
reverse transforming.  

Our simulations suggested that this method 
inflates false-positive errors much more than 
the linear shift method (Figure 6). Whereas the 
circular shift method transforms continuous 
timeseries into discontinuous ones, phase 
randomization instead imposes cyclic 

Figure 6 | Phase randomization method. A,B: To create a null 
distribution, the neural data is randomly phase-shifted to create a 
surrogate timeseries with the same frequency content, and used to 
predict behavioral data. C: histogram of p-values obtained for the 
method, over 1000 simulations. Columns refer to the four scenarios of 
Figure 1. 
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continuity: after phase randomization the last 
sample is always close to the first. 
Furthermore, the phase-randomized signals 
have more high-frequency activity than the 
original, as the high-frequency energy 
resulting from the cyclic discontinuity in the 
original data has now been spread throughout 
time. As a result, the phase randomized data 
tends to predict the behavioral data worse, 
resulting in inflated false-positive errors. 

An alternative method is wavelet 
randomization (Bullmore et al., 2001), which 
creates a null distribution by performing a 
wavelet transform on one of the timeseries, 
permuting the coefficients at each scale, and 
then inverse transforming. We found that this 
method performed better than Fourier 
randomization, but still gave substantially 
more false positives than linear shift (Figure 7).  

Cross validation 
Cross validation does not solve nonsense 
correlations: slow autocorrelations mean that 
a predictor function learned on one part of 
the data will still be valid on another part of 
the data, even if these training and test sets 
are temporally segregated.  

To demonstrate this, we applied 10-fold 
cross-validation to our four scenarios (Figure 
8).  When the training and test sets consisted 
of random time points, performance was 
abysmal: test-set predictions of the 
behavioral variable were more accurate than 
predictions made without access to the 
simulated neural variables in 100% of 
simulations, even when the neural and 
behavioral variables were unrelated (Figure 
8A,B). When training and test sets consisted 
of blocks of sequential trials, false-positives 
errors were less common but still occurred in 
54% of simulations of the block behavioral 
variable and 92% of simulations of the 

continuous variable (Figure8C,D).  

An alternative approach to time series cross-
validation is forecasting (Tashman, 2000).  In 
the approach, we predict the target timeseries 
in the 𝑛௧௛ block using a predictor learned only 
from temporally prior blocks. As such 
predictions are extrapolation rather than an 
interpolation, one might expect false 
predictability to therefore be lower. This 
approach worked for the block variable, 
reducing the false positive rate to 1%; but it did 
not work for the continuous target, for which 
false-positives still occurred 61% of the time. 
(Figure 8C,D). 

We conclude that cross-validation does not in 
general avoid nonsense correlations, although 
forecasting cross-validation can help in some 
circumstances. The use of cross-validation to 
avoid nonsense correlations must therefore be 
justified on a case-by-case basis.  

    
Figure 7 | Wavelet randomization method. A,B: To create a null 
distribution, a Daubechies(4) wavelet transform is applied to the 
neural data, the wavelet coefficients are permuted within each 
scale, and inverse transformed create a surrogate timeseries with 
the same frequency content, and used to predict behavioral data. 
C: histogram of p-values obtained for the method, over 1000 
simulations. Columns refer to the four scenarios of Figure 1. 
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Auto-decorrelation 
A commonly-suggested approach to eliminate 
nonsense correlations is to preprocess the data 
to remove correlations within a single 
timeseries (Haugh, 1976). If we could remove 
these autocorrelations, then standard statistical 
tests that assume independent samples could 
safely be applied to the auto-decorrelated 
timeseries.  

The usual way to perform auto-decorrelation is 
with an autoregressive model: one predicts the 

value of 𝐱௧ by linear regression 
from previous values 𝐱௧ି௡ … 𝐱௧ିଵ , and performs all 
further analyses on the residual. 
Simpler approaches are to take 
the time derivative of each 
timeseries, or to detrend (for 
example by subtracting a best fit 
line).   

While auto-decorrelation is in 
principle a solution to nonsense 
correlation, it comes with a 
major caveat: the auto-
decorrelation algorithm must be 
extremely accurate. This cannot 
be guaranteed. For example, 
autoregressive models only 
exactly decorrelate linear 
timeseries (filtered white noise).  

To evaluate auto-decorrelation, 
we fit a first-order 
autoregressive model to our 
simulated neural and behavioral 
variables, then applied a 
standard F-test to measure 
significance (Figure 9). Because 
these timeseries are nonlinear, 
however, the autoregressive 
model did not fully decorrelate 
the data: slow trends were still 
observed in the neural data 
(Figure 9A,B) although smaller 

than prior to preprocessing.  For the binary 
block variable, auto-decorrelation replaced the 
step functions with impulses at the start and 
end of each block. Even after 
autodecorrelation, the F-test produced inflated 
false positive rates, although this was less bad 
for the block variable (Figure 9C).  

Thus, it is not safe to apply statistical tests that 
assume independence even after auto-
decorrelation, unless one has evidence that the 

Figure 8 | Cross-validation method. A: Trials were divided into 10 random sets, 
with 9 used to train a classifier (green dots) and the last to test the prediction (red 
dots). Black dots indicate a null prediction made without access to the neural 
variables (the training set mean). B: histogram of predictability (mean error of 
prediction without neural variables minus mean error with them), over 1000 
simulated sessions. C,D: same analysis, with blocks chosen to be temporally 
continuous. E,F: forecasting method, where the training set (green) is strictly 
before the test set (red). Columns correspond to the four scenarios in Figure 1. 
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auto-decorrelation method really works to 
high accuracy. In practice, this can be assessed 
by measuring how often the null hypothesis is 
rejected in synthetic data where there is known 
to be no genuine association. This approach 
has been used to validate auto-decorrelation in 
fMRI data (Afyouni et al., 2019; Cliff et al., 
2021). Nevertheless, auto-decorrelation should 
be carefully tested before applying to 
neurophysiological data as they are 
substantially less linear than fMRI data. Linear 
timeseries are filtered independent noise; 
while fMRI timeseries look like filtered noise, 
neuronal unit recordings usually do not. For 
example, recorded cells can disappear halfway 
through an experiment due to technical issues 
such as electrode drift, which would not be 
corrected by a linear autoregressive model.  

When auto-decorrelation does not fully 
decorrelate the data, it cannot be followed by 
statistical tests assuming independence of 

samples. Nevertheless, 
autodecorrelation can still be a 
useful tool used in conjunction 
with other approaches such as 
the linear shift method. Even if it 
only works partially, 
decorrelating the data cannot 
increase false positives found by 
the linear shift method, and may 
decrease them. 

More complex analyses: partial 
correlation 
So far, we have discussed the 
simple case of detecting a 
correlation between two 
timeseries, such as neural 
activity and a behavioral 
variable.  One often wants to ask 
more complex questions. For 
example, a subject’s choices 
differ between behavioral 
blocks. If neural activity 

correlates with behavioral block, is this 
correlation stronger than if the neuron encoded 
of choice alone? In other words, is there a 
partial correlation of neural activity and block, 
after accounting for the common correlate of 
choice? With autocorrelated timeseries, this is 
a much harder problem than simply testing for 
independence. 

We must first carefully define what we mean 
by partial correlation for autocorrelated 
timeseries.  Suppose we are predicting a vector 
timeseries 𝐘 from another vector timeseries 𝐗, 
and we also measure a third confounder 
timeseries 𝐙 which is not independent of 𝐗. For 
example, 𝐘 might contain population activity 
on each trial, 𝐗 might contain the behavioral 
block on each trial, and 𝐙 the choice on each 
trial. Because the subject learns from previous 
trials, 𝐙 and 𝐗 are not independent, but we do 
not have an equation accurately modeling their 
relationship. 

 
Figure 9 | Auto-decorrelation. A: the simulated neural data was preprocessed 
by fitting a first-order autoregressive model to each timeseries, and calculating a 
residual at each timestep. Due to the nonlinear nature of these timeseries, this 
does not result in white noise. B: the behavioral variables were preprocessed the 
same way (black) and predicted from the preprocessed neural data (red dots) 
using multiple linear regression. C: histogram of F-test p-values measuring 
significance of the linear regression, over 1000 simulations. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2020.11.29.402719doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402719
http://creativecommons.org/licenses/by/4.0/


 Nonsense Correlations in Neuroscience  

 12 

We would like to test a null hypothesis that 𝐘 
has no correlation with 𝐗 beyond that 
explained by dependence on 𝐙.  This can be 
formalized as a model 𝐘 = 𝐙𝐖 + 𝐄, where 𝐖 is 
a non-random but unknown weight matrix, 
and 𝐄 is independent of 𝐗 (Harris, 2021). As 
before, this means independence of the entire 
histories over repeats of the experiment: ℙ(𝑒௖௧, 𝑥ௗ௨) = ℙ(𝑒௖௧)ℙ(𝑥ௗ௨), for any cell 𝑐, any 
dimension 𝑑 of the confounding variable, and 
any pair of times 𝑡 and 𝑢.  

Even if we know the probability distribution of ℙ(𝐗) , we cannot use the pseudosession 
method to test independence of 𝐄 and 𝐗, since 
we do not measure 𝐄 directly and we do not 
know ℙ(𝐙|𝐗). We also cannot use session 
permutation, since no one of our three 
observed series 𝐗, 𝐘, 𝐙 is independent of the 
other two under the null.  

We recently described an approximate test for 
partial correlations between autocorrelated 
timeseries null where one has observed 
multiple experiments (Harris, 2021). Let 𝑿௜, 𝒀௜ 
and 𝒁௜ be the timeseries observed on 
experiment 𝑖, and let 𝑷௜,௝ be the 𝑇 × 𝑇 
projection matrix orthogonal to all columns of 
both 𝒁௜ and 𝒁௝. Given a user-supplied 
measure 𝜌(𝑿;  𝒀) of association between two 
timeseries (for example Pearson correlation), 
we define the statistics  

𝐺௜ = 1𝑁 ෍  𝜌൫𝑿௜; 𝑷௜,௝𝒀௜൯ − 𝜌൫𝑿௝; 𝑷௜,௝𝒀௜൯ே
௝ୀଵ  

Under the null, the 𝐺௜ are mutually 
independent and their sum has mean 0 (Harris, 
2021). If their distributions are close to 
symmetric (which can be checked with 
histograms or QQ plots), the null can be tested 
using a t-test that the mean of 𝐺୧ is 0 (Cressie, 
1980; Efron, 1969). 

Implications for experimental design 
This survey of methods for establishing 
genuine correlations between neural and 
behavioral timeseries yields a familiar lesson 
for experimental design: whenever possible, 
use a randomized experiment. 

The power of randomized experiments to 
enable statistical analysis has long been 
recognized (Fisher, 1935). Of the methods 
described above, the one that is most reliable, 
powerful, and accurate is the pseudosession 
method, which can only be applied when one 
of the timeseries to be correlated is randomly 
controlled by the experimenter. Thus, 
whenever possible, experiments should be 
designed with randomized covariates.  To test 
if neural population activity differs between 
behavioral blocks, the timing of these blocks 
should be randomized between sessions. To 
test if neural activity correlates with running, 
the best experimental design would be one that 
requires the subject to run at random times 
controlled by the experimental apparatus.  

Summary 
We have reviewed and simulated methods for 
detecting correlations between neural 
timeseries. Statistical tests that assume 
independence between timepoints result in 
“nonsense correlations” of erroneous statistical 
significance, due to autocorrelations within 
timeseries.  The most reliable method for 
detecting genuine correlations, the 
pseudosession method, requires that one of the 
timeseries be randomly generated by the 
experimenter. The session permutation 
method requires the experiment be replicated 
at least 5 times, and can provide reliable results 
although correlations could reflect a common 
effect of session-to-session variability. The 
conservative linear shift method works if one 
of the series is stationary. Other methods 
reduce but do not eliminate the risk of false 
positive errors. If possible, experiments should 
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be designed so that time series of interest are 
randomized. 

Methods 
To generate a firing rate sequence, we added 
together a random number of logistic sigmoid 
functions. The center times 𝑡ଵ, … 𝑡௡ of these 
functions were drawn from a homogeneous 
Poisson process of rate 1/100, so the mean 
number of sigmoids in T=200 trials was 2; their 
widths were always 10, and directions 𝜎௜  were 
random signs ±1 with equal probability. A 
pink noise sequence 𝑝௧ was added, generated 
by passing white Gaussian noise through an 
IIR filter with parameters 𝑎 = ൣ1, −√𝛼൧, 𝑏 =ൣ√1 − 𝛼൧, where 𝛼 = 𝑒ିଶ/ఛ and 𝜏 = 5000.  The 
final sequence was  

𝑥௧ = 0.1𝑝௧ + ෍ 11 + 𝑒(௧ି௧೔)/ଵ଴ఙ೔
௡

௜ୀଵ
To simulate behavioral binary blocks (column 
1 of the figures), we generated alternating 
blocks of 0s and 1s, of lengths independently 
uniformly distributed between 50 and 70; the 
first 0 block always began at the first sample. 
To make a stationary block sequence (Figure 5), 
we generated a longer sequence (1000 blocks) 
and started it at a random time.  To simulate 
continuous behavioral signal (column 2 of the 
figures), we generated another sequence from 
from the same distribution as the neural 
activity. 

To simulate the case where the neurons 
encoded information about the behavioral 
variables (columns 3 and 4), the behavioral 
signal was added to each neuron’s activity, 
with weight drawn from a Gaussian 
distribution of mean 0, SD 0.1.  

Finally, each neuron’s activity timeseries 
scaled between 0 and 1, although this will not 
have affected the linear regressions. 

Code to perform the simulations is available at 
https://github.com/kdharris101/nonsense-
correlations/ and can be run online at 
https://colab.research.google.com/github/kdha
rris101/nonsense-
correlations/blob/main/nonsense.ipynb 
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