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Abstract 

The vestibulo-ocular reflex (VOR) stabilizes vision during head motion. Age-related 

changes of vestibular neuroanatomical properties predict a linear decay of VOR function. 

Nonetheless, human epidemiological data show a stable VOR function across the life 

span. In this study, we model cerebellum-dependent VOR adaptation to relate structural 

and functional changes throughout aging. We consider three neurosynaptic factors that 

may codetermine VOR adaptation during aging: the electrical coupling of inferior olive 

neurons, the intrinsic plasticity of Purkinje cell (PC) synapses, and long-term spike 

timing-dependent plasticity at parallel fiber - PC synapses and mossy fiber - medial 

vestibular nuclei synapses. Our cross-sectional aging analyses suggest that long-term 

plasticity acts as a global homeostatic mechanism that underpins the stable temporal 

profile of VOR function. The results also suggest that the intrinsic plasticity of PC 

synapses operates as a local homeostatic mechanism that further sustains the VOR at 

older ages. Importantly, the computational epidemiology approach presented in this 

study allows discrepancies among human cross-sectional studies to be understood in 

terms of interindividual variability in older individuals. Finally, our longitudinal aging 

simulations show that the amount of residual fibers coding for the peak and trough of the 

VOR cycle constitutes a predictive hallmark of VOR trajectories over a lifetime. 

Keywords: vestibulo-ocular reflex (VOR), aging, cerebellar adaptation, spiking neural 

networks, spike timing-dependent plasticity, intrinsic plasticity, electrical synapses.   
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Introduction 

Healthy aging progressively degrades postural control and balance (Brandt et al., 2005; 

Zalewski, 2015; Anson & Jeka, 2016). The consequent loss of static and dynamic 

balance increases the risk of fall in older adults and hinders their autonomy (Tinetti, 2003; 

Piirtola & Era, 2006; Desai et al., 2010). Postural control is an adaptive process that 

relies on the integration of multimodal functions that concurrently mediate body and gaze 

stability (Mergner & Rosemeier, 1998). In this study, we focus on the vestibulo-ocular 

reflex (VOR), which ensures gaze stability during head motion (Grossman & Leigh, 1990) 

by generating rapid contralateral eye movements that stabilize images on the retinal 

fovea (Fig. 1A). The VOR plays a key role in maintaining balance, and VOR deficits can 

lead to oscillopsia (i.e., a perturbing illusory oscillation of the visual scene) during 

locomotion (Demer et al., 1994) . 

The neuroanatomical properties of the vestibular system degenerate with age (Anson & 

Jeka, 2016; Allen et al., 2017). The number of vestibular receptors (i.e., hair cells) 

decreases at a rate of about 6% per decade, tending to degenerate from middle age on, 

independently from pathology. The number of neurons in the vestibular nuclei undergoes 

a 3% loss per decade, starting at approximately 40 years of age (Lopez et al., 1996; 

Alvarez et al., 2000). Thus, fewer primary vestibular afferents reach the brain, in 

particular the downstream areas responsible for VOR adaptation such as the cerebellum 

(Allen et al., 2017). These structural vestibular losses would predict that aging impairs 

the detection and encoding of head motion, with a consequent decline of VOR function 

across the life span. Nevertheless, epidemiological studies report discordant patterns of 

results regarding VOR functional deficits during normal aging (see Smith, 2016, for a 

review). Studies in the early 1990s showed age-dependent impairments of the rotatory 

VOR (r-VOR; Baloh et al., 1993), in response to low-frequency sinusoidal rotations (< 1 
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Hz; Peterka et al., 1990) as well as to high-amplitude and high-velocity sinusoidal 

rotations (Paige, 1992). By contrast, recent studies reported that VOR gain (i.e., the ratio 

between the antagonist eye and head displacements) is preserved even in individuals 

aged 80 to 90 years. Li et al. (2015) conducted a cross-sectional VOR evaluation on a 

population of 110 healthy, community-dwelling individuals aged 26 to 92 years. They 

assessed VOR function with video head-impulse testing (vHIT), which provides a specific 

clinical assessment of the peripheral vestibular system. They reported that the r-VOR 

gain remains stable across participants aged up to approximately 80 years and it 

declines thereafter. McGarvie et al. (2015) measured the VOR gain by using the vHIT 

for all 6 semi-circular canals across a range of head velocities. They conducted a cross-

sectional study on a population of 91 healthy, community-dwelling individuals aged 10 to 

89 years (with about 10 subjects per decade). They reported that the r-VOR gain is 

unaffected by age, because it remained stable even in the group aged 80 to 89 years. 

Finally, Matiño-Soler et al. (2015) used the vHIT in the lateral semicircular canal plane 

to evaluate the r-VOR gain as a function of age and head velocity over a population of 

212 healthy subjects. They observed a steady r-VOR until 90 years of age for low head 

impulse velocities and a decline thereafter. At higher-velocity head impulses, they 

reported a decrease of VOR gain in younger subjects (i.e., from 70 years onwards). 

Hence, although there are discrepancies in the results, these data consistently support 

the evidence that VOR function remains unaffected by age until 80-90 years, despite the 

structural degenerations that impair the vestibular system from middle age on.  

Researchers have suggested that some compensatory processes may counter age-

related vestibular losses, thus preserving the VOR in older adults (Jahn et al., 2003; Li 

et al., 2015; McGarvie et al., 2015) . However, it is unknown what neural mechanisms 

are at stake in the brain to maintain VOR function and how they synergistically do so. In 
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this study, we propose a model of cerebellum-dependent VOR adaptation to relate 

neuroanatomical and functional components of gaze stabilization during head rotations. 

The goal is to reproduce epidemiological data and to make testable predictions about 

the interplay of neuronal and plasticity mechanisms operating throughout aging. We 

hypothesize that three neurosynaptic factors are critical to understand how age affects 

the VOR:  

(i) The first neurosynaptic factor is the electrical coupling between inferior olive (IO) 

neurons through gap junctions (Llinas et al., 1974; Sotelo et al., 1974), which determine 

the synchronicity and the oscillatory dynamics of the IO network (Lefler et al., 2020). We 

model the impact of aging on IO electrical coupling by considering the degradation of 

GABAergic afferents from the medial vestibular nuclei (MVN; Best & Regehr, 2009; Lefler 

et al., 2014). Because we assume that IO cells encode retina slips during gaze 

stabilization (Ito, 2013; Luque et al., 2019; Naveros et al., 2019), we assess the 

consequences of age-related changes in IO electrical coupling on VOR function.  

(ii) The second neurosynaptic factor is the intrinsic plasticity of Purkinje cell (PC) 

synapses (Shim et al., 2018; Jang et al., 2020), which modulates the excitability of PCs 

by adapting their membrane capacitance to morphological changes (Andersen et al., 

2003; Zhang et al., 2010). We study the possible role of intrinsic plasticity of PC synapses 

as a local homeostatic process that operates during aging to compensate for the 

decreasing vestibular inputs as well as for the electro-responsiveness changes in PCs 

(Andersen et al., 2003; Zhang et al., 2010).  

(iii) The third neurosynaptic factor is the long-term synaptic plasticity, both potentiation 

(LTP) and depression (LTD), that drives cerebellar adaptation (Gao et al., 2012; Luque 

et al., 2019) and sensorimotor learning in general (D’Angelo et al., 2016). We explore 
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the role of LTP and LTD as a global homeostatic compensatory process to enhance 

neural sensitivity during aging.  

First, we examine the above neurosynaptic mechanisms independently of one another 

and we assess their individual impact on VOR adaptation as a function of age. Second, 

we simulate cross-sectional and longitudinal studies to explore how these mechanisms 

may codetermine the VOR temporal pattern observed throughout aging. Third, we 

attempt to identify the factors beneath the large interindividual variability of VOR 

performance during aging. We test the hypothesis that accounting for the variance in 

terms of adaptive compensation to residual fibers/connections can help explain the 

discrepancies between the epidemiological results reported in the literature concerning 

VOR function in individuals aged 80 to 90 years and thereafter. 

 

Results 

Cerebellum-dependent VOR adaptation 

We framed VOR adaptation within a cerebellum-dependent forward control scheme (Fig. 

1B; Lorente de Nó, 1933; Santina et al., 2001; Luque et al., 2019). Computationally, the 

model reproduces the main properties of the cerebellar circuit and it consists of five 

neural networks (Fig. 1C). A population of 100 mossy fibers (MFs) conveys primary 

vestibular inputs (signaling head angular accelerations) onto the cerebellar network. MFs 

project excitatory afferents onto 200 medial vestibular nuclei (MVN) and 2000 granular 

cells (GCs). GCs generate a sparse representation of MF inputs and they transmit the 

encoded sensory information to 200 Purkinje cells (PCs) through excitatory projections. 

An intrinsic plasticity mechanism (Shim et al., 2018; Jang et al., 2020) regulates the 

excitability of model PCs, consistently with electrophysiological recordings (Turrigiano et 
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al., 1994; Shim et al., 2017) (see Methods). PCs integrate the afferent signals from PFs 

(i.e., the axons of GCs), which elicit PC simple spikes (i.e., tonic firing mode, see Luque 

et al., 2019). PCs also integrate the error-related signal from climbing fibers (CFs), that 

is inferior olive (IO) cells’ axons. CFs elicit Purkinje complex spikes (i.e., bursting mode). 

PCs’ responses (either simple or complex spiking) inhibit MVN cells. MVN cells also 

integrate inputs from MFs and IOs to generate the cerebellar output controlling eye 

movements (Fig. 1C). The CF-PC-MVN subcircuit comprises two symmetric 

microcomplexes that control leftward and rightward eye compensatory rotations, 

respectively (see Methods). Long-term plasticity (LTP and LTD) modulates PF-PC and 

MF-MVN synapses (Clopath et al., 2014; Badura et al., 2016), whereas the remaining 

synaptic connections are either non-plastic or electrical, as among IO cells (Fig. 1C; see 

Methods).  

***** Fig 1 about here ***** 

We assessed cerebellum-dependent r-VOR adaptation using a 1 Hz sinusoidal head 

rotation protocol (i.e., in the natural head rotation range [0.05-5 Hz]; Leigh & Zee, 2015). 

During 2500 s of simulation (Fig. 2), LTP and LTD plasticity shaped PF-PC and MF-MVN 

synaptic efficacies (which were randomly initialized) to adapt r-VOR gain and reduce 

retina slips (i.e., the error sent by IO cells). After about 1000 s, r-VOR gain (averaged 

over 40 simulated individuals) plateaued at 0.95 (Fig. 2A), a value consistent with 

experimental VOR data in humans during 1 Hz sinusoidal head rotations (Dits et al., 

2013). As encoded by IO cell firing, retina slip errors decreased from 8-9 Hz to 2-3 Hz 

as VOR accuracy improved (Fig. 2B). 

***** Fig 2 about here ***** 
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Impact of age-related vestibular loss on the electrical coupling of IO neurons 

The model IO neurons form an electrically coupled network, whose recurrent dynamics 

are regulated by the PC-MVN-IO cerebellar loop (Fig. 1C). In particular, the inhibitory 

MVN action modulates IO electrical coupling strength, which determines the 

synchronicity of IO firing (Best & Regehr, 2009; Lefler et al., 2014; Najac & Raman, 

2015). A strong IO electrical coupling (i.e., a highly synchronized IO network) would allow 

significant errors to be transmitted to PCs, enabling fast VOR learning (Schweighofer et 

al., 2013; Tokuda et al., 2013). A reduced IO electrical coupling would lead to slower but 

more accurate VOR adaptation (e.g., during late learning).  

We sought to understand how a progressive age-related decrease of the MVN 

GABAergic input to IO neurons (owing to vestibular primary afferent loss) would affect 

the IO network activity (Best & Regehr, 2009; Lefler et al., 2014). We simulated two age 

groups (20 young subjects: 20 years old; 20 older subjects: 100 years old), and we 

linearly decreased the inhibitory MVN input to IO as a function of age (from a maximum 

at 20 years to zero at 100 years; see Methods). We compared the dynamics of IO 

spatiotemporal firing patterns in a 5x5 lattice configuration (Nobukawa & Nishimura, 

2016) after an error-related pulse activated the central IO neuron of the network (e.g., 

neuron 1 in Supp. Fig. 1A). The electrical coupling between IO neurons produced a rapid 

transient propagation within the network, eliciting a sequential bursting of IO cells along 

the lattice’s outward radial direction (Supp. Figs. 1A, B). When comparing the IO network 

propagation patterns of the two age groups, we found that the central stimulation did 

elicit more rapid and pronounced membrane potential variations in the IO lattices of older 

individuals, which resulted in simpler on/off network dynamics as compared to young 

individuals (Fig. 3A and Supp. Figs. 1B, C). These transient on/off patterns produced a 

higher mean activation frequency in older IO networks (Fig. 3A). We quantified the 
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complexity of IO spatiotemporal patterns by using the Discrete Wavelet Transform 

(DWT) (Latorre et al., 2013). We considered these patterns as sequences of images 

(obtained every ms) and we estimated each image’s the compression by calculating the 

DWT coefficients. High (low) DWT values corresponded to complex (simple) spatial 

structures of IO network patterns at a given time. We found that the electrical coupling 

among IO neurons in older individuals gave rise to significantly simpler spatiotemporal 

network activations, as compared to young individuals (Fig. 3B; ANOVA F (294,16)=18, p < 

10-7). This was consistent with a more uniform and synchronized activity of older IO 

neurons and a higher mean frequency (Fig. 3A). The simpler spatiotemporal dynamics 

of older IO networks were likely to induce a poorer capacity to encode retina slips. 

Therefore, we subsequently tested the impact of this less effective error signaling on 

VOR performance. 

***** Fig 3 about here ***** 

Impact of age-related vestibular loss on r-VOR performance 

We first investigated the consequences of age-related vestibular degradations on VOR 

function without any compensatory mechanism in the downstream cerebellar network. 

To do so, we blocked the intrinsic plasticity of PC synapses as well as LTP and LTD at 

MF-MVN and PF-PC synapses. We simulated a cross-sectional study over a large-scale 

study population of 2440 individuals aged 40-100 years, by taking a group of 40 

individuals per each year of age (i.e., uniform distribution). Each individual underwent an 

independent 1 Hz head rotation protocol (during 2500 s, as above). At the beginning of 

the aging simulation, the cerebellar synaptic weights of each 40-year-old individual were 

obtained at the end of r-VOR learning (Fig. 2). Then, we simulated a loss of primary 

vestibular afferents as a function of age, based on a degeneration rate of 3% MVN 

neurons per decade (Lopez et al., 1996; Alvarez et al., 2000). The loss of MVN neurons 
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induced a change in MVN-IO inhibitory action, which gradually increased IO network’s 

electrical coupling (Best & Regehr, 2009; Lefler et al., 2014; Najac & Raman, 2015). The 

age-related degradation of primary vestibular afferents also translated into a loss of 0.3% 

MF-MVN connections per year, as well as 0.3% MF-GC projections per year (starting at 

40 years). In addition, the simulated aging process accounted for a loss of approximately 

6% of GCs per decade (Bergström, 1973; Baloh et al., 1993; Renovell et al., 2001; 

Viswasom et al., 2013), which engendered a degradation of 0.6% of PF-PC connections 

per year. Each of the 2440 individuals independently lost several randomly selected 

fibers and neurons as a function of age, based on the aforementioned degeneration 

rates. The aging simulation results showed a steady decline of VOR function (Figs. 3C-

E), with the accuracy of r-VOR gain significantly impaired with aging. Across the study 

population, VOR gain declined quasi-linearly as a function of age (-0.25 %/year; Fig. 3E). 

Intrinsic plasticity at PC synapses as a local homeostatic mechanism  

The detailed PC model reproduced the three characteristic spiking patterns observed 

experimentally (Fig. 4A): simple spiking response (i.e., tonic firing at 10-250 Hz), complex 

spiking response (i.e., bursting activity up to 600 Hz), and post-complex spike pauses. 

We previously showed that PC spike burst-pause dynamics are likely to play a key role 

in VOR adaptation and reversal learning (Luque et al., 2019). Here, we investigated the 

consequences of age-dependent changes of PC excitability on VOR function. With 

aging, the number and the surface of PC synapses decrease significantly (Zhang et al., 

2010). We reasoned that intrinsic plasticity could adapt PCs’ response during aging, thus 

operating as a local homeostatic mechanism. The membrane capacitance of modeled 

PCs decreased as a function of age (Li & Li, 2013) (Fig. 4B; see Methods). This led to 

increased tonic firing rates in older PCs (Fig. 4C), consistent with electrophysiological 

data (Zhang et al., 2010). We also assessed the relationship between the duration of 
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post-complex spike pauses and the duration of pre-complex spike ISIs in model PCs. 

We realized this measure by incrementally increasing PF inputs while maintaining the 

CF stimulation constant (i.e., only ISIs immediately following complex spikes were 

considered for this analysis, as in experimental data by Grasselli et al., 2016). The PC 

model with the intrinsic plasticity mechanism predicts that the linear relation between the 

duration of post-complex spike pauses and the duration of pre-complex spike ISIs would 

be preserved during aging (Fig. 4D; R2 = 0.9932; p < 10-4).  

We then ran a second aging simulation to test to what extent PC intrinsic plasticity may 

act when the vestibular loss occurred. We simulated a cross-sectional study by taking a 

sample of 2440 individuals (age range: 40-100 years; 40 individuals for each year of 

age). Each individual underwent the same VOR adaptation protocol (1 Hz sinusoidal 

rotation during 2500 s). The initial conditions (in terms of cerebellar synaptic weights) 

corresponded to those obtained after r-VOR learning per each independent individual 

(Fig. 2A). Age-dependent structural degenerations translated into a loss of 0.3% and 

0.6% MFs and PFs per year, respectively. As a consequence of MVN loss, IO electrical 

coupling progressively increased with age (Best & Regehr, 2009; Lefler et al., 2014; 

Najac & Raman, 2015). LTP and LTD plasticity at MF-MVN and PF-PC synapses were 

blocked to isolate the effect of the local homeostatic mechanism provided by the intrinsic 

plasticity of PCs. We found that PCs’ increasing excitability could only partially 

counterbalance the decreased depolarizing currents elicited by PFs throughout aging. 

This resulted in a quasi-linear decrease of r-VOR gain across lifetime (-0.17 %/year), 

along with an increasing interindividual variability (Fig. 4E). 

***** Fig 4 about here ***** 
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Cerebellar spike-timing dependent plasticity as a global homeostatic 
compensatory mechanism  

We then tested whether LTP and LTD at PF-PC and MF-MVN synapses could enhance 

the sensitivity of PCs and MVN to degraded inputs during aging. First, we analyzed the 

weight distributions at PF-PC and MF-MVN synapses after r-VOR learning as a function 

of age. We compared the synaptic weights of simulated young and older individuals (20 

and 100 years, respectively). In both age groups, cerebellar learning led to antisymmetric 

weight distributions at both PF-PC and MF-MVN synapses (Fig. 5), corresponding to the 

two microcomplexes that controlled rightward and leftward eye movements. As 

expected, PCs’ inhibitory action onto MVN generated opposite weight patterns at PF-PC 

compared to MF-MVN synapses (Figs. 5A, B vs. 5C, D). In older individuals, an increase 

the remaining fibers’ weights compensated for the loss of vestibular afferents (Figs. 5B, 

D). When comparing the distributions obtained by the normalized sums of synaptic 

weights across PFs (i.e., to estimate the input drive received by PCs), we found 

platykurtic-like distributions in older individuals (Figs. 5B, D) as compared to more 

leptokurtic profiles in young individuals (Figs. 5A, C). The ratio between the number of 

saturated synaptic weights and the number of active afferents increased with age: 28% 

in young vs. 64% in older PF-PC synapses (Fig. 5A vs. 5B); and 21% in young vs. 31% 

in older MF-MVN synapses (Fig. 5C vs. 5D). Consequently, the neural drive (defined as 

the area obtained by convolving a unitary impulse signal with the weight distributions) 

increased with age: it was 2.64 times larger in the older PF-PC synaptic distribution and 

1.64 times larger in the older MF-MVN synaptic distribution, as compared to younger 

individuals, respectively.  

***** Fig 5 about here ***** 
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We then ran a third cross-sectional aging simulation to isolate the role of LTP and LTD 

in preserving VOR across a lifetime (i.e., by blocking intrinsic plasticity of PC synapses). 

We considered another study population of 2440 individuals (age range: 40-100 years; 

40 individuals per year of age), and we applied the same VOR adaptation protocol (1 Hz 

head rotation during 2500 s). We found that compensatory LTP and LTD at PF-PC 

synapses and MVN synapses successfully preserved sensorimotor associations 

underpinning VOR until approximately 80 years of age (Fig. 5E). After that, we observed 

increasing performance variance across individuals, and r-VOR gain declined in the 

group aged 85-100 years (-0.9 %/year). 

Impact of aging on the VOR function: Full cross-sectional study 

We then combined all age-related factors and compensatory mechanisms examined so 

far to assess their synergistic impact on r-VOR adaptation. We ran a fourth cross-

sectional analysis on another cohort of 2440 individuals (age range: 40 - 100 years), with 

each individual undertaking the same r-VOR adaptation protocol (1 Hz sinusoidal head 

rotation during 2500 s). Intrinsic plasticity of PC synapses and LTP and LTD at MF-MVN 

and PF-PC synapses provided local and global homeostatic adaptation, respectively. 

The computational epidemiological results suggested that the considered neurosynaptic 

factors concurrently shaped r-VOR function across the life span. VOR gain remained 

unaffected by age until approximately 80-90 years (Fig. 6A). PCs’ intrinsic plasticity 

further sustained VOR function compared to when only LTP and LTD were present (Fig. 

5E). The variability across individuals increased significantly after 90 years (Supp. Fig. 

2), and VOR gain declined steadily thereafter (-0.8 %/year). 

***** Fig 6 about here ***** 
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To compare our results against human cross-sectional data (Li et al., 2015; Matiño-Soler 

et al., 2015; McGarvie et al., 2015), we analyzed VOR gain changes across decade age 

bands (Fig. 6B). Each age band included 400 simulated individuals. A multiple 

comparison post hoc test showed that VOR function began to decline during the 80-89 

age band, and it continued to decrease thereafter (ANOVA F(7,3032)=736.2, p < 10-9). 

Then, given the large interindividual variability observed at older ages (Figs. 6A, B), we 

investigated to what extent the sample size may affect the outcome of multiple 

comparison analyses across age groups. We considered a set of different sample sizes: 

10, 20, 30, etc. For each sample size (e.g., 10), we randomly sampled a corresponding 

number of individuals (e.g., 10) from the population of 400 individuals per each decade 

age band. Then, we ran a multiple comparison post hoc analysis across age groups. We 

repeated this process 10000 times and we computed the overall probability of observing 

a statistically significant difference between VOR gains (Fig. 6C). This model-based 

analysis showed that a sample size of 50, or greater, individuals per decade would 

capture the statistical difference between the 70-79 and 80-89 age groups with a 

probability of 0.95. It also suggested that: for a sample size of 10 individuals per decade 

(as in McGarvie et al., 2015), the probability of observing a significant r-VOR difference 

between 70-79 and 80-89 age groups would be as low as 0.11; for a sample size of 20 

individuals per decade (Matiño-Soler et al., 2015), the predicted statistical significance 

probability would be as low as 0.33; and for a sample size equal to 30 individuals per 

decade (Li et al., 2015), the probability of observing a significant statistical difference 

would be equal to 0.63.  

Impact of aging on the VOR function: Full longitudinal study 

We ran a longitudinal aging simulation by combining all considered age-related factors 

and compensatory mechanisms. We took a study population of 40 individuals, and we 
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simulated a 61-year follow-up for each individual (i.e., from 40 to 100 years). Again, we 

considered a loss of 0.3% and 0.6% of MFs and PFs loss per year, respectively. Also, 

age-related changes of MVN GABAergic inputs to IO shaped the electrical coupling 

within IO network as before. However, in contrast to previous cross-sectional scenarios, 

these neural losses accumulated across each individual’s lifetime. VOR performance 

across the study population remained unchanged by age until approximately 85-90 

years, and it declined afterward (Fig. 7A). The interindividual variability increased 

significantly during the last 15-year period (85-100 years), becoming approximately five 

times larger at 100 years as compared to 85 years (Supp. Fig. 2).  

***** Fig 7 about here ***** 

Finally, we investigated the underlying factors that determined the difference between 

steady and declining VOR trajectories in individuals aged 85-100 years (e.g., thick green 

curve vs. thick red curve in Fig. 7A, respectively). Knowing that: (i) all individuals of the 

same age had the same probability of losing primary vestibular afferents, MVN, MFs, 

and PFs; (ii) the degeneration process affected fibers and neurons based on random 

selection; (iii) the local and global homeostatic mechanisms (i.e., intrinsic plasticity and 

LTP and LTD) operated equally across all individuals, we reasoned that a possible 

determinant of VOR aging trajectory could lie in the distribution of the remaining 

fibers/synaptic connections post-age-related loss. We hypothesized that the activity of 

some subsets of the remaining connections might be more critical than others in terms 

of information content for the encoding of sensorimotor associations and then for 

maintaining VOR function. To test this hypothesis, we first sorted all individuals based 

on their VOR gain performance at 100 years. Then, we compared the subsets of residual 

connections active at specific VOR cycle moments across individuals. We found that the 

number of remaining connections responsible for the encoding of the peak and the 
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trough of the eye velocity function correlated significantly with VOR performances of 100-

year-old individuals (Fig. 7B and Supp. Fig. 3). That is, the sorting of 100-year-old 

individuals based on their residual VOR performance matched the sorting of the same 

individuals based on the number of residual PFs and MF-MVN projections that coded for 

the sinusoid’s peak and trough. This correlation held already at 85 years of age (i.e., the 

cut off age between steady and declining VOR trajectories; Fig. 7B) and even at 60 years 

of age (i.e., numerous years before the discontinuity-time point between “good” and “bad” 

aging trajectories; Fig. 7B). Given that the overall number of lost connections was the 

same across all the study population, this implied that those individuals that by chance 

had most of the remaining connections involved in the encoding of those two critical 

moments in the VOR period (i.e., between 200-300 ms and 700-800 ms) had the best 

chances to preserve their VOR performances throughout aging.  

 

Discussion 

This study presented a computational epidemiological model of cerebellum-dependent 

VOR adaptation. The proposed simulation framework attempted to provide a 

mechanistic insight into the factors that determine the impact of aging on rotatory VOR 

function. The model captured the neural computations at stake in the cerebellar circuit 

and it reproduced the biophysical properties of Purkinje cells (PCs). Importantly, the 

computational cross-sectional and longitudinal analyses presented in this work allowed 

the discrepancies among human VOR aging studies in the literature to be understood in 

terms of interindividual variability (in particular, in individuals over 80 years of age).  

We tested the hypothesis that three neurosynaptic factors are key to relate age-related 

structural and functional VOR changes: the electrical coupling of inferior olive (IO) 
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neurons, the intrinsic plasticity of PC synapses, and LTP and LTD at PF-PC as well as 

MF-MVN synapses. To verify this hypothesis, we first ran a series of simulations to 

isolate the role of these three factors in determining VOR changes throughout aging. We 

found that vestibular structural losses caused by aging have consequences on the 

spatiotemporal activity patterns of the IO network. IO neural activity becomes simpler, 

similar to an on/off ensemble dynamic. This on/off network dynamic reduces the 

accuracy of retina slip coding, which in turn impairs VOR adaptation. We tested the 

consequences on r-VOR aging by running a cross-sectional epidemiological simulation 

that isolated the effect of vestibular loss and IO coupling alteration, while blocking all 

compensatory mechanisms in the downstream cerebellar network. As expected, we 

found a linear decline of r-VOR gain as a function of age, determined by steady vestibular 

losses. This result contrasts with human epidemiological data, which show a well-

preserved VOR function even in individuals aged 80 to 90 years (Li et al., 2015; Matiño-

Soler et al., 2015; McGarvie et al., 2015). We then ran another cross-sectional simulation 

to assess the local homeostatic action of PCs’ intrinsic plasticity, which adaptively 

increases PCs’ neural excitability to signals transmitted by cerebellar granule cells. At 

the level of single PCs, we found that tonic firing rates increased with age, according to 

experimental data (Zhang et al., 2010), whereas the linear relation between the duration 

of post-complex spike pauses and the duration of pre-complex spike ISIs remained 

unchanged (testable prediction). At the level of VOR function, we found that intrinsic 

plasticity of PC synapses could moderately counter the vestibular structural losses, 

resulting in a slower, but still linear decline of VOR accuracy over time. This result again 

contrasts with human epidemiological data. We then investigated the impact of LTP and 

LTD at PF - PC and MF - MVN synapses to study a global homeostatic process to adapt 

cerebellar synaptic weights to degrading vestibular inputs.  
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Our third cross-sectional aging simulation indicated that LTP and LTD can sustain VOR 

function by enhancing the neural sensitivity to residual afferent signals throughout aging 

(i.e., it allowed the full synaptic range to be exploited in order to preserve the neuronal 

drives). However, the compensatory action by LTP and LTD became ineffective in the 

presence of significant levels of vestibular losses (i.e., beyond 85 years) because of 

synaptic weight saturation. This result is consistent with the saturation hypothesis of 

Nguyen-Vu et al. (2017). They showed that a specific type of pre-training that 

desaturates synapses can improve the ability of mutant mice to learn an eye movement 

task. Conversely, they found that a specific procedure that saturates synapses can 

impair the learning ability. In our model, the progressive saturation of PF-PC and MF-

MVN synapses limited VOR adaptation, thus impairing the compensatory action of LTP 

and LTD in the oldest individuals.  

We then ran a fourth cross-sectional simulation to assess how the three neuro-synaptic 

factors would work concurrently during VOR aging. We found that the global homeostatic 

compensation mediated by cerebellar LTP and LTD was indeed primarily responsible for 

preserving VOR gain. The results also showed that the local homeostasis implemented 

by the intrinsic plasticity of PC synapses played a role in further sustaining VOR gain in 

individuals 80-90 years old and in attenuating its decline afterwards. The slope 

attenuation was within the same range as the one recently reported in a study of PCs’ 

intrinsic plasticity during long-term VOR consolidation in mice (Jang et al., 2020). In 

addition, the computational epidemiological results allowed us to evaluate the possible 

role of interindividual variability in biasing human VOR aging analyses, thus leading to 

discordant conclusions among previous studies in the literature (Smith, 2016). The model 

predicted that a sample size of 10 and 20 individuals per decade, as done in Matiño-

Soler et al. (2015) and McGarvie et al. (2015), respectively, would led to very low 
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probabilities of observing statistically significant VOR differences in those aged 70-79 

versus those aged 80-89 (0.11 and 0.33, respectively). Accordingly, both Matiño-Soler 

et al. (2015) and McGarvie et al. (2015) reported a well-preserved VOR function across 

the life span (at least until 90 years of age). Our model also suggested that a sample 

size of 30 individual per decade, as used by Li et al. (2015), would lead to a probability 

of 0.63 of observing a VOR accuracy drop between the 70-79 and 80-89 age groups. 

Accordingly, and in contrast to other epidemiological studies, Li et al. (2015) reported 

some evidence for a decline of VOR function after 80-85 years of age.  

Finally, we further exploited the presented computational epidemiology model to run a 

longitudinal aging simulation. This allowed us to follow individual aging trajectories over 

60 years in an attempt to better understand the factors determining interindividual 

differences across aging (i.e., differentiating steady and declining VOR trajectories). 

Importantly, we found that the number of remaining PFs and MF-MVN projections coding 

for the peak and the trough of the VOR cycle provided a predictive hallmark for the VOR 

aging trajectory on a single-subject basis. That is, individuals who lacked active PF and 

MF-MVN afferents in those precise moments were robustly predicted to have more 

difficulties in VOR adaptation throughout aging. This prediction likely could be tested in 

animal models by seeking those fibers that are most active when the ocular velocity is 

maximal during VOR. For example, the identification of specific cerebellar GCs (and of 

their PFs) that are active upon induction of specific stimulation is possible during in vivo 

mice experiments (Ishikawa et al., 2015).  

The cerebellar model presented here made several assumptions. The first assumption 

was that the GC layer univocally encoded vestibular (related to head motion) signals 

through the temporal activation of non-overlapping cell populations during cerebellar 

VOR adaptation. GCs are thought to encode vestibular signals into sparse 
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representations allowing interferences across tasks to be minimized and neuronal 

resources to be optimized by reducing redundancy (D'Angelo & De Zeeuw, 2009). The 

recurrent inhibitory Golgi cells - GC connections suggest the granular layer may act as 

a recurrent dynamic network (Yamazaki & Tanaka, 2005). Thus, GCs are likely to 

generate a randomly repetitive network response characterized by active/inactive state 

transitions with no repetition of active cell populations (Yamazaki & Tanaka, 2007). The 

model also assumed a progressive degradation of vestibular afferents integrated by the 

GC layer with aging (Bergström, 1973; Baloh et al., 1989), which led to a degradation of 

PFs, which in turn impaired long-term PF-PC synaptic adaptation. Notably, neural 

regeneration can occur at PF-PC synapses thanks to the Gluδ2 receptor (Ichikawa et 

al., 2016), whereas Gluδ2 deficits lead to disruption of LTD at PC synapses and motor 

impairment in VOR tasks (Yuzaki, 2013; Pernice et al., 2019). Some evidence has 

suggested that neural loss can be related to the absence of the Gluδ2 receptor, because 

the deletion of GluRδ2 expression in mutant mice (GluRδ2ho/ho) induces PC and GC 

reduction over a lifetime (Zanjani et al., 2016). A gradual decrease of Gluδ2 with aging 

would compromise Gluδ2-dependent processes that would then reduce intrinsic PC 

excitability and eventually impair LTD at PCs.  

The model also assumed a compromised IO electrical coupling due to degraded 

GABAergic afferents from MVN during aging. The strength of gap junctions among 

olivary neurons was modelled as asymmetric (De Zeeuw et al., 1998; Lefler et al., 2014). 

The level and the direction of this asymmetry were regulated by emulating the 

GABAergic feedback (Lefler et al., 2014). The coupling asymmetry allowed for the 

creation of different spatial configurations of PCs’ complex spike patterns. The 

GABAergic inputs from MVN could directly cause a transient decrement in electrical 

coupling among IO cells (Lefler et al., 2014). GABAergic feedback not only temporarily 
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blocked the transmission of signals through the olivary system but it also could isolate 

IO neurons from the network by shunting the junction current (Loewenstein, 2002). In 

the absence of GABAergic feedback, electrical coupling was not counteracted, and IO 

network oscillations were not mitigated but rather increased. There is only indirect 

evidence for an age-related degeneration of the GABAergic MVN inputs throughout 

aging. The r–aminobutyric acid, GABA, inhibits the formation of lipoxidation end products 

(Deng et al., 2010). The presence and accumulation of lipofuscin with aging, a 

lipoxidation product, are essential parts of the traditional theory of aging (Sulzer et al., 

2008). Lipofuscin accumulates in postmitotic cells with age, impairing their functioning. 

Unbalanced cell metabolic and waste-degradation functions cause its presence. IO 

neurons are relatively immune to apoptosis (Lasn et al., 2001); they preserve their 

function with aging, although they tend to accumulate significant amount of lipofuscin 

with age (Brizzee et al., 1975). It is unclear whether the presence of a large amount of 

lipofuscin is a result of higher lipofuscin generation and/or decelerated removal (Fonseca 

et al., 2005). Because lipofuscin aggregates are unavoidable reactions in biological 

systems, the lack of a cycle involving lipofuscin elimination is more plausible than the 

absence of lipofuscin generation (Yin, 1996). The r-aminobutyric acid scavenging effects 

proposed by Deng et al. (2010) over advanced lipoxidation end products (ALEs) may be 

instrumental in lipofuscin clearance in the olivary system. A gradual decline of r–

aminobutyric acid presence with age may explain the accumulation of lipoxidation 

products in IO neurons. MVN GABAergic afferents are the main source of r–aminobutyric 

acid for the olivary cells, but they also mediate the electrical coupling among them. The 

gradual degeneration of these GABAergic afferents may explain the gradual presence 

of IO lipofuscin as well as the altered activations of IO ensembles with aging.  
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Methods 

Vestibulo-Ocular Reflex (VOR) Model 

The VOR was defined as a continuous-time mathematical model with two poles (Eq. 1), 

whose parameters were adjusted recursively to fit experimental and clinical data (Gordon 

et al., 1989; Gandhi et al., 2000): 

      (1) 

 Where , and  

There were 4 parameters in the model: . The delay parameter  

 captured the delay in communicating the signals from the inner ear to the brain and 

the eyes. This delay is the consequence of the time needed for neurotransmitters to 

traverse the synaptic clefts between nerve cells. Based on the number of synapses 

involved in the VOR, the estimate of this delay is of 5 ms (Skavenski & Robinson, 1973; 

Robinson, 1981). The gain parameter K, assumed to be between 0.6 and 1, modelled 

the fact that the eyes do not perfectly cope with the movement of the head (Skavenski & 

Robinson, 1973; Robinson, 1981). The  parameter represented the dynamics 

associated with the semicircular canals as well as some additional neural processing. 

The canals are high-pass filters, as the neural active membranes in the canals slowly 

relax back to their resting position after rotational experimentation (the canals stop 

sensing motion). Based on the mechanical characteristics of the canals, combined with 

additional neural processing which prolongs this time constant to improve the VOR 
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accuracy, the parameter was estimated to be around 15 sec, in agreement with the 

biologically range which is 10-30 sec (Skavenski & Robinson, 1973; Robinson, 1981). 

Finally, the parameter captured the dynamics of the oculomotor plant, i.e. the eye and 

the muscles and tissues attached to it. Its value was between 0.005 and 0.05 sec.  

To find the temporal response for the VOR transfer function, we needed to calculate the 

inverse Laplace transform (Eq. 2). The outcome of the inverse Laplace transform 

consisted in a differential equation system defined in the same time domain as the 

spiking cerebellar network (see below; note that we modelled the delay and we inserted 

within the sensorimotor delay). 

   (2) 

Where: 

    

VOR analysis and assessment. The periodic functions representing eye and head 

velocities were analyzed through a discrete-time Fourier transform: 
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         (3) 

where  indicates the periodic function, and N the number of samples within the 

considered time window. For each k, the term constituted a harmonic component (the 

complex version) with amplitude and frequency defined as: 

     (4) 

with !" denoting the sampling frequency (0.5 KHz). The harmonic distortion values, which 

indicated the harmonic content of a waveform compared to its fundamental, were 

negligible. We calculated the VOR gain as the ratio between the first harmonic 

amplitudes of the forward Fourier eye- and head-velocity transforms 

       (5) 

VOR protocols. In rotational chair testing, the subject (mouse, monkey, human) is seated 

on a rotatory table (Dumas et al., 2016). Speed and velocity of rotation are controlled 

and measured. The subject’s head is restrained, assuming that the movement of the 

table equals to the subject’s head movement. During normal VOR adaptation, a visual 

target is given in anti-phase with vestibular stimulation. The eyes must follow the visual 

target thus minimizing the retinal slip. In the model, the eye output function was defined 

as: 
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    (6) 

where the ideal VOR experiment values corresponded to    (visual field 

fixed). 

Cerebellar Network Model 

The cerebellar network model consisted of five neural populations (Fig. 1C).  

Mossy fibers (MFs). 100 MFs constituted the input to the cerebellar network. Mossy 

fibers (MFs) conveyed the sensory signals from the vestibular organ and the eye muscles 

onto granule cells (GCs) and medial vestibular nuclei (MVN). MF activity evolved based 

on a sinusoidal function (1Hz with a step size of 0.002 ms) to encode head movements 

consistently with the functional principles of VOR control (Lisberger & Fuchs, 1978; 

Arenz et al., 2008; Clopath et al., 2014; Badura et al., 2016). MF responses consisted of 

non-overlapping activations of equally sized neural subpopulations, which maintained a 

constant overall firing rate (Luque et al., 2016). 

Granular cells (GCs). 2000 GCs operated as a state generator (Yamazaki & Tanaka, 

2005, 2007, 2009). In the presence of a constant MF input, the granular layer generated 

a sequence of non-overlapping spatiotemporal patterns (i.e., states; Fujita, 1982). The 

same sequence of 500 states (each consisting of 4 active GCs per time step of 2 ms) 

repeatedly activated every 1-sec during learning (see below).  

Purkinje cells (PCs). We modelled a population of 200 PCs, divided into 2 groups of 100 

cells to control agonist and antagonist eye muscles, respectively. PCs integrated the 

excitatory input from the parallel fibers (PFs), i.e. the axons of GCs, as well as the input 

from the climbing fibers (CFs), i.e. the axons of inferior olive (IO) cells. PCs projected 
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inhibitory connections onto MVN cells, to close the cerebellar loop and generate the VOR 

output. 

Inferior olive (IO) and climbing fibers (CFs). We modelled 200 IO cells, divided in 2 

groups of 100 IO cells for agonist/antagonist muscles, respectively. Each IO cell 

projected a CF onto one PC and one MVN cell. IO cells were interconnected via 

excitatory gap junctions, whose electrical coupling followed preferred directions (Devor 

& Yarom, 2002). The preferred paths were disposed radially from the center of 5x5 IO 

cell subpopulations, as in a square regular lattice network (Nobukawa & Nishimura, 

2016). The strength of the electrical coupling, which drove the recurrent dynamics of the 

olivary population, was equal between all IO cells of the lattice network (see Table 1). In 

terms of external inputs, the IO population received excitatory afferents coding for retina 

slips (Clopath et al., 2014).This input reached the center of each lattice network and it 

was generated by a Poisson spiking process (Boucheny et al., 2005; Luque et al., 

2011b). The IO population also received an inhibitory external input from MVN cells (Fig. 

1C) whose action regulated the IO network synchronization via electrical coupling 

modulation (Best & Regehr, 2009; Lefler et al., 2014). We assumed a progressive age-

related decrease of this inhibitory action based on the progressive age-loss of MVN 

neurons (Torvik et al., 1986), which modulated the MVN-IO inhibitory synaptic weight 

distribution of each 5x5 IO cell subpopulation. The variance of the Gaussian MVN-IO 

weight distribution varied linearly from 0.4 to 1.75 causing a more homogeneous 

electrical coupling along each 5x5 IO cell subpopulation whilst aging. 

The error-related inputs (coding for retina slips), combined with the recurrent electrical 

coupling modulated by inhibitory MVN inputs, determined the overall activity of the IO 

population, which generated the CF bursting output. The probabilistic spike sampling of 

retina slips ensured an exploration of the whole error space over trials, whilst maintaining 
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the CF activity below 10 Hz per fiber (in agreement with electrophysiological data; 

Kuroda et al., 2001). The evolution of the error could be sampled accurately even at such 

a low frequency (Carrillo et al., 2008; Luque et al., 2011b). A graded representation of 

the error signal (Najafi & Medina, 2013) led to a correlation between the intensity of the 

sampled instantaneous error and the number of the spikes within the CF burst (Eq. 7):  

     (7) 

We assumed a perfect transmission of bursts from CFs to target PCs, i.e. the number of 

spikes in a PC complex spike linearly depended on the number of spikes in the CF burst 

(Mathy et al., 2009). The IO transmitted from 2 to 6 CF stimuli, delivered at inter-stimulus 

intervals of 2 ms, a range representative of inter-spike intervals recorded in olivary axons 

during bursts (Davie et al., 2008; Mathy et al., 2009), depending on the retina slips to be 

compensated. 

Medial Vestibular Nuclei (MVN) cells. We modelled a population of 200 MVN cells, with 

again 2 groups of 100 cells for agonist/antagonist muscles, respectively. Each MVN cell 

received an inhibitory afferent from a PC and an excitatory afferent from the IO cell that 

was also contacting that PC (Uusisaari & De Schutter, 2011; Luque et al., 2014). MVN 

cells also received excitatory projections from all MFs. The subcircuit IO-PC-MVN was 

then organized in a single microcomplex. This circuitry arrangement rested upon the 
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principles of circuit integrity and uniformity on the olivo-cortico-nucleo-olivary loop 

(Uusisaari & De Schutter, 2011).  

Translation of MVN spike trains into analogue eye motor commands. The MVN output 

was translated into analogue output signals by averaging the spiking activity of each 

MVN subpopulation (one for each agonist/antagonist group of muscles) (Eqs. 8, 9): 

      (8) 

    (9) 

where  is the kernel amplitude that normalized the contribution of each MVN cell spike 

to the cerebellar output correction (the  output controlled the agonist muscle, 

whilst the  output controlled the antagonist muscle).  

Table 1 summarizes the parameters of the cerebellar topology used in the model. 

***** Table 1 about here ***** 

Neuronal Models 

MVN cell model. We modelled MVN cells as LIF neurons with excitatory (AMPA and 

NMDA) and inhibitory (GABA) chemical synapses (Eqs. 10-16). 
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      (11) 

  (12) 

   (13)   

   (14) 

   (15) 

      (16) 

where: denoted de membrane capacitance; V the membrane potential;  the leak 

current;  the external currents; EL the resting potential;  the conductance 

responsible for the passive decay term towards the resting potential;  the synaptic 

weight of the synapses between the neuron i and the target neuron. Conductances 

 integrated all the contributions received by each receptor 

(AMPA, NMDA, and GABA) through individual synapses. These conductances were 

defined as decaying exponential functions, which were proportionally incremented via 

upon each presynaptic spike arrival (Dirac delta function). Finally,  stand for 
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the NMDA activation channel. Note that we set the neuron membrane potential to  

during the refractory period (  ), just after reaching  (voltage firing threshold) 

(Gerstner & Kistler, 2002; Gerstner et al., 2014). All the parameters of the neuronal 

models are shown in Table 2. 

***** Table 2 about here ***** 

Inferior olive (IO) neuronal model. We modelled IO cells as LIF neurons with excitatory 

(AMPA) and inhibitory (GABA) chemical synapses as well as with electronic gap 

junctions (Llinas et al., 1974; Sotelo et al., 1974) (Eqs. 17-22):  

      (17) 

      (18) 
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where:  denotes de membrane capacitance;  the membrane potential;  the 

leak current; l the external currents; the resting potential;  the conductance 

responsible for the passive decay term toward the resting potential;  the synaptic 

weight of the synapses between the neuron i and the target neuron. Conductances 

integrated all the contributions received by each chemical receptor 

(AMPA, GABA) through individual synapses. These conductances were defined as 

decaying exponential functions, which were proportionally incremented via  upon 

each presynaptic spike arrival (Dirac delta function) (Gerstner & Kistler, 2002; Ros et al., 

2006).  represented the total current injected through the electrical synapses 

(Schweighofer et al., 1999).  was the membrane potential of the target neuron,  the 

membrane potential of the neuron i, and  was the total number of input synapses of 

the target neuron. Finally, for a correct operation of the electrical synapses, this model 

emulated the depolarization and hyperpolarization phases of an action potential. The LIF 

neuron incorporated a simple threshold process that enabled the generation of a 

triangular voltage function (maximum/minimum value  respectively) each time 

the neuron fired (Bezzi et al., 2004). All the parameters of the IO neuronal model are 

shown in Table 2.  

Purkinje cell model. The PC model was the same as in (Miyasho et al., 2001; Middleton 

et al., 2008; Luque et al., 2019). It reproduced the three spiking modes of Purkinje cells, 

namely tonic, bursting, and spike pauses (Forrest, 2008) . The PC model consisted of a 

single compartment with five ionic currents and two excitatory (AMPA) and inhibitory 

(GABA) chemical synapses (Eqs. 23-27): 
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       (23) 

  (24) 

   (25) 

   (26)   

  (27) 

where  denotes de membrane capacitance,  the membrane potential,  the 

internal currents,  the external currents, and  the synaptic weight of the 

synapses between the neuron i and the target neuron. Conductances  

integrated all the contributions received by each chemical receptor type (AMPA, GABA) 

through individual synapses. These conductances were decaying exponential functions 

that were proportionally incremented via  upon each presynaptic spike arrival (Dirac 

delta function) (Gerstner & Kistler, 2002; Ros et al., 2006) . Finally,  was the delayed 

rectifier potassium current,   the transient inactivating sodium current,  the high-

threshold non-inactivating calcium current,  the leak current, and  the muscarinic 

receptor suppressed potassium current (see Table 3). 
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The dynamics of each gating variable (n, h, c, and M) followed the Eq. 28: 

      (28) 

where x corresponds to variables n, h, c, and M. The equilibrium function was given by 

the term    and the time constant    (see Table 3). 

The sodium activation variable was replaced and approximated by its equilibrium 

function . The M current presented a temporal evolution significantly slower than 

the rest of variables. Each spike in the neuron generated a fast increase of the M current 

that took several milliseconds to return to its stable state. A high M current prevented the 

PC from entering in its tonic mode (when the neuron generated spikes due to PFs 

activity). A complex spike caused a rapid increase of the M current that depended, in 

turn, on the size of the spikelet within the burst. PC tonic mode resumed when the M 

current decreased. 

We first validated the PC model in the NEURON simulator and then we reduced it to 

make it compatible with EDLUT (Luque et al., 2019). In the reduced PC model, we 

implemented the  and  currents through a simple threshold process that triggered 

the generation of a triangular voltage function each time the neuron fired (Bezzi et al., 

2004). This triangular voltage depolarization drove the state of ion channels similarly to 

the original voltage depolarization during the spike generation. The final internal current 

was given by Eq. 29: 
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All the parameters are shown in Table 3. 

***** Table 3 about here ***** 

Mossy fibers (MF) & granule cells (GC) models. MFs and GC neurons were simulated 

as leaky integrate–and–fire (LIF) neurons, with the same excitatory (AMPA) and 

inhibitory (GABA) chemical synapses and parameters as in Luque et al. (2019).  

Synaptic Plasticity Models 

PC Intrinsic Plasticity. We equipped the PC model with a mechanism to update the value 

of the membrane capacitance (Cm) according to Eq. 30: 

     (30) 

where   denotes the intrinsic plasticity time constant set to   sec (this large time 

constant prevented interferences between intrinsic plasticity and other STDP 

mechanisms during the learning process (Garrido et al., 2016);  controls the shape of 

the firing rate distribution and it is equal to 1 (see Garrido et al., 2016) for details about 

all intrinsic plasticity mechanism parameters). Whenever a spike was elicited, the  

variable was updated according to the following equation: 

      (31) 

where  (Garrido et al., 2016) determined the influence of each spike on
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(0.77 ± 0.17 μF cm−2  where mean ± s.d.; range, 0.64-1.00 μF cm−2; Roth & Häusser, 

2001).  

PF-PC synaptic plasticity. The model of long-term depression (LTD) and long-term 

potentiation (LTP) at PF–PC synapses was the same as in Luque et al. (2019), and it 

followed the Eqs. 32 and 33:  

 (32) 

     (33) 

 where  denotes the weight change between the   PF and the target  

PC;   is the time constant that compensates for the sensory motor delay (i.e., about 

100 ms; Sargolzaei et al., 2016);   is the Dirac delta function corresponding to an 

afferent spike from a PF; and the kernel function  is defined as in Eq. 34: 

     (34) 

With this parametric configuration, the effect on presynaptic spikes arriving through PFs 

is maximal over the 100 ms time window before CF spike arrival, thus accounting for the 

sensorimotor pathway delay. For the sake of computational efficiency, note that the 

kernel combines exponential and trigonometric functions that allow for recursive 

computation suitable for an event-driven simulation scheme as EDLUT (Ros et al., 2006; 
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Naveros et al., 2015; Naveros et al., 2017). Computational recursion avoids integrating 

the whole kernel upon each new spike arrival.  

Finally, as shown in Eq. 33, the amount of LTP at PFs was fixed (Kawato & Gomi, 1992; 

Luque et al., 2011a; Luque et al., 2016), with an increase of synaptic efficacy equal to α 

each time a spike arrived through a PF to the targeted PC. This STDP mechanism 

correlated the activity patterns coming through the PFs to PCs with the instructive signals 

coming from CFs to PCs (producing LTD in the activated PF–PC synapses). The 

correlation process at PC level identified certain PF activity patterns and it consequently 

reduced the PC output activity. A decrease of PC activations caused a subsequence 

reduction on the PC inhibitory action over the target MVN. Since the MVN received an 

almost constant gross MF activation, a lack of PC inhibitory action caused increasing 

levels of MVN activation. Conversely, the STDP mechanism increased the PC inhibitory 

activity by potentiating PF-PC synapses in the absence of instructive signal, thus causing 

decreasing levels of MVN activations. Consequently, PC axon activity governed MVN 

activation by shaping their inhibitory action produced onto MVN. This spike-timing-

dependent plasticity (STDP) mechanism, which regulated the LTP/LTD ration at PF-PC 

synapses, shaped the inhibitory action of PCs onto MVN cells.  

MF-MVN synaptic plasticity. The LTD/LTP dynamics at MF-MVN synapses were the 

same as in (Luque et al., 2019)), i.e., they were based on the following rules: 

 (35) 
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with    denotes the weight change between the  MF and the target  

MVN;  the temporal width of the kernel; and   the Dirac delta function that 

defined a MF spike. The integrative kernel function  was taken as: 

     (37) 

Note that there is no need for sensorimotor delay compensation thanks to the previous 

learning rule ( in Eq. 32). This second STDP mechanism accounted for learning 

consolidation at MVN (see Luque et al., 2016). The PC output operated as an instructive 

signal and correlated the activity patterns coming from MFs to MVN (producing LTD in 

the activated MF–MVN synapses upon the arrival of the instructive signal and LTP 

otherwise). Well-timed sequences of increasing/decreasing levels of MVN activation 

ultimately shaped the cerebellar output during VOR adaptation. 

The EDLUT source code is available at the following URL: 

www.ugr.es/~nluque/restringido/CODE_Cerebellar_Ageing_Vestibulo_Ocular_Adaptati

on.rar  
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Figure Captions 

Figure 1. Cerebellum-dependent adaptation of Vestibulo-Ocular Reflex (VOR). (A) 

Horizontal rotational VOR (i.e., r-VOR) stabilizes the visual field during horizontal head 

rotations, x(t), by producing contralateral eye movements, y(t). (B) Cerebellum-

dependent VOR adaptation is modelled as a classic feedforward control loop. Cerebellar 

learning minimizes the error signal ε(t), which is computed by comparing the input and 

output variables, i.e., x(t) and y(t), respectively. (C) Schematic representation of the main 

cerebellar layers, cells, and synaptic connections considered in the model. Mossy fibers 

(MFs) convey vestibular information onto granular cells (GCs) and medial vestibular 

nuclei (MVN). GCs, in turn, project onto Purkinje cells (PCs) through parallel fibers (PFs). 

PCs also receive excitatory inputs from the inferior olivary (IO) system. IO cells are 

electrically coupled and they deliver an error signal through the climbing fibers (CFs). 

MVN are inhibited by PCs and they provide the cerebellar output that drives oculomotor 

neurons. Spike-dependent plasticity occurs at PF-PC and MF-MVN synapses. 

Figure 2. Time course of VOR gain and error during cerebellar adaptation. (A) 

Evolution of the mean VOR gain during 2500 sec of cerebellar learning under a 1-Hz 

sinusoidal vestibular stimulus (head horizontal rotation). The VOR was averaged across 

40 individuals, with each individual obtained by a random initialization of weights at PF-

PC and MF-MVN synapses. (B) Red curve: mean absolute VOR error during adaptation 

averaged over 40 individuals. Green squares: mean frequency of IO neurons throughout 

VOR adaptation.  

Figure 3. Impact of age-related vestibular loss on IO electrical coupling and 

cerebellum-dependent VOR adaptation. (A) Mean frequency, averaged over 20 young 

(20 yo, top) and 20 older (100 yo, bottom) individuals, across a cluster of 5 × 5 IO cells 
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(lattice configuration, (Nobukawa & Nishimura, 2016)) during the first second of VOR 

adaptation under a sinusoidal vestibular stimulus of 1 Hz. (B) Discrete Wavelet 

Transformation (DWT) applied to the snapshot sequence of the IO membrane potentials 

(Supp. Fig. 1A) obtained during the first second of VOR adaptation for a young (20 yo) 

and an older (100 yo) individual. (C) Mean absolute VOR error (red curve) and 

corresponding mean IO frequency (green squares), in the presence of altered electrical 

coupling between IO neurons throughout aging. (D) Compensatory eye velocity function 

in the presence of young (red curve) and older (black curve) IO networks. (E) Cross-

sectional simulation over a study population of 2440 individuals aged from 40 to 100 

years (40 individuals per each year of age). Only the effect of age-related vestibular loss 

and IO coupling alteration was considered in this simulation, with no compensatory 

mechanism operating in the downstream cerebellar network. Each individual underwent 

an independent 1 Hz r-VOR protocol (during 2500 s).  

Figure 4. Intrinsic plasticity of PC synapses acts as a local homeostatic 

mechanism. (A) Trimodal spiking patterns of modeled PCs: tonic firing, corresponding 

to simple spikes elicited by PF inputs; bursting mode, during which complex spikes 

(bursts of spikes) are elicited by CFs (~500 synapses, (Palay & Chan-Palay, 2012)) that 

can even suppress simple spiking; and silent mode, corresponding to an extended 

hyperpolarization period called ‘post-complex spike pause’. (B) Modulation of the 

membrane capacitance of modelled PCs as a function of age by means of intrinsic 

plasticity. (C) Firing rate of PCs in young vs. older individuals measured with PCs 

operating in spiking tonic mode (10-250Hz). (D) Correlation between pause duration and 

pre-complex spike ISI duration in modelled young and older PCs (red and black circles, 

respectively), as well as in real PCs (gray squares, (Grasselli et al., 2016)). (E) Cross-

sectional simulation over a study population of 2440 individuals (aged from 40 to 100 
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years, with 40 individuals per each year of age) accounting for vestibular loss, IO 

electrical coupling chances, and intrinsic plasticity of PC synapses.  

Figure 5. Cerebellar LTP/LTD operates as a global homeostatic compensatory 

mechanism. (A, B) Synaptic weight distributions obtained at PF-PC connections by 

averaging over 20 young individuals (20 yo) and 20 older ones (100 yo). Each individual 

underwent an independent 1 Hz r-VOR adaptation (during 2500 s). The weights that 

correspond to the two cerebellar microcomplexes devoted to the control of rightward and 

leftward eye movements are visible. (C, D) Synaptic weight distributions at MF-MVN 

connections by averaging over 20 young individuals (20 yo) and 20 older ones (100 yo). 

The antisymmetric distributions with respect to (A, B) are caused by the inhibitory PC 

projections onto MVN. (E) Cross-sectional aging simulation accounting for vestibular 

loss, IO electrical coupling alterations, and LTP/LTD at PF-PC and MF-MVN synapses.  

Figure 6. Impact of aging on VOR: cross-sectional study. (A) Cross-sectional aging 

simulation accounting for vestibular loss, IO electrical coupling changes, PC intrinsic 

plasticity, and LTP/LTD at PF-PC and MF-MVN synapses. A study population of 2440 

individuals (age range: 40-100 years; 40 individuals per each year of age) underwent the 

same r-VOR protocol (1 Hz head rotation during 2500 s). (B) Comparison of r-VOR gain 

across decade age bands (with 400 individuals per decade). (C) Probability that r-VOR 

gain in age groups 70-79 and 80-89 is statistically different as a function of sampling size 

(computed over 10 000 random iterations per each sampling size). 

Figure 7. Impact of aging on VOR: longitudinal study. (A) Longitudinal aging 

simulation accounting for vestibular loss, IO electrical coupling changes, PC intrinsic 

plasticity, and LTP/LTD at PF-PC and MF-MVN synapses. A study population of 40 

individuals underwent a follow-up evaluation during 60 years (from 40 to 100 years of 
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age), i.e., age-related changes accumulated longitudinally for each individual. The thick 

green and red curves correspond to the two individuals with best and worst VOR 

performance at 100 years of age, respectively. (B) Top: 1-Hz eye velocity function. The 

colored time windows correspond to the peak and the trough of the sinusoidal profile 

(i.e., between 200-300 ms and 700-800 ms). Center & Bottom: Residual PFs (center) 

and MF-MVN projections (bottom) active at the peak and the trough of the eye velocity 

profile across the study population. Individuals are sorted in ascending order on the basis 

of their VOR performance. The red and green individuals correspond to the worst and 

best 100-year-old individuals in A, respectively. Left column: distribution of residual PFs 

and MF-MVN connections at 60 yo. Central column: at 85 yo. Right column: at 100 yo.  

Supplementary Figure 1. Spatial-temporal evolution of IO network activity patterns 

in young and older individuals. (A) Spike propagation mediated by electrical coupling 

along the diagonal of an IO cell cluster (5x5 lattice configuration). Spike activity was 

induced by an external stimulus delivered at the center of the network. (B) Time course 

of the membrane potentials of IO cells in 5x5 clusters induced by a large input stimulus 

received at the center of the network at 1 ms. Top: young individuals. Bottom: older 

individuals. (C) Temporal profile of the strength of the electrical coupling between IO 

cells in young (red curve) and older (black curve) individuals. 

Supplementary Figure 2. Interindividual variability of r-VOR gain as a function of 

age. Black curve: r-VOR standard deviation of the variance across individuals recorded 

during the cross-sectional aging simulation (Fig. 6A). Light-blue curve: r-VOR standard 

deviation of the variance across individuals recorded during the longitudinal aging 

simulation (Fig. 7A). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2021. ; https://doi.org/10.1101/2020.08.03.233833doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.233833
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

  

Supplementary Figure 3. Correlation matrix between VOR gain and the number of 

residual PFs and MF-MVN projections active at the peak and the trough of the eye 

velocity function. The diagonal represents the histograms of the VOR performance 

values. 
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Tables 

Table 1. Cerebellar network topology parameters 

Neurons Synapses 
Pre-synaptic 
cells (number) 

Post-synaptic 
cells (number) 

Number Type Initial 
weight 

Weight 
range 

2000 GCs 200 PCs 400000 AMPA rand [0, 3.65] 
200 IO 200 PCs 200 AMPA 40 – 
100 MFs 200 MVN 20000 AMPA 0 [0, 1] 
200 PCs 200 MVN 200 GABA 1.5 – 
200 IO 200 MVN 200 NMDA 7 – 
IO to IO (lattice configuration) 320 EC 5 – 

 

Table 2. Neuronal model parameters. 

Parameters MVN IO PC 
Cm (pF) 2 10 7.16 
GL (nS) 0.2 0.15 0.15 
EL (mV) -70 -70 -70 
EAMPA (mV) 0 0 0 
EGABA (mV) -80 -80 -80 
#AMPA (ms) 0.5 1 1 
#NMDA (ms) 14   
#GABA (ms) 10 2 2 
Vthr (mV) -40 -50 -35 
Tref (ms) 1 1.35 1.35 
Vpeak (mV)  31 31 
gca (mS)   0.0075 
gM (mS)   5.65 

 

Table 3. Ionic conductance kinetic parameters. 

Conductance type Steady–state 
Activation/Inactivation 

Time constant (ms) 

  delayed 
rectifier potassium 
current  

 

transient 
inactivating 
sodium current   

Kg [ ]0 V 29.5
10

1
x V

1 e
- -=

+
[ ]

V 10
10

x V 0.25 4.35 et
- +

= + ×

Nag [ ]0 V 59.4
10.7

1
x V

1 e
-=

+
[ ]x V 33.5

15

1.15
V 0.15

1 e
t += +

+
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