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Abstract

How do we encode our continuous life experiences for later retrieval ? Theories of event segmentation and
integration suggest that the hippocampus binds separately represented events into an ordered narrative.
Using an open-access functional Magnetic Resonance Imaging (FMRI) movie watching-recall dataset, we
quantified two types of neural similarities (i.e., activation pattern similarity and within-region voxel-based
connectivity pattern similarity) between separate events during movie watching and related them to
subsequent retrieval of events aswell asretrieval of sequential order. We demonstrate that distinct
activation patterns of the hippocampus and medial prefrontal cortex form event memories. By contrast,
similar within-region connectivity patterns between events facilitate memory formation and are relevant
for the retention of eventsin the correct sequential order. We applied the same approaches to an
independent movie watching fMRI dataset and replicational analyses highlighted again the role of
hippocampal activation pattern and connectivity pattern in memory formation. We propose that distinct
activation patterns represent neural segmentation of events while similar connectivity patterns encode
context information, and therefore integrate events into a narrative. Our results provide novel evidence for
the role of hippocampal-medial prefrontal event segmentation and integration in episodic memory

formation of real-life experience.
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MAIN TEXT

I ntroduction

How we form memories of our life experiencesis afundamental scientific question with broad
implications. In the past two decades, human neuroimaging and electrophysiology studies using the
subsequent memory effect paradigm have implicated a distinct set of brain regionsinvolved in successful
memory formation (Brewer et a. 1998; Wagner et al. 1998; Fernandez et al. 1999; Kim 2011). In these
subsequent memory studies, increased neural activity of the hippocampus, parahippocampal gyrus, and the
prefrontal cortex during memory encoding is associated with successful subsequent retrieval. However,
real-world memories are formed based on a continuous stream of information rather than the sequentially
presented, isolated items used in most subsequent memory studies (Kim 2011). Potentialy, continuous
sensory experience is segmented into distinct events (i.e., event segmentation) (Baldassano et a. 2017,
Zacks 2020) that are then bound together into a coherent narrative, preserving their sequential
relationships (i.e., event integration) (Griffiths and Fuentemilla 2020). To examine episodic memory
formation of real-life-like experiences in humans, we analysed brain activity using functional Magnetic
Resonance Imaging (FMRI) while participants were watching a movie. Based on subsequent memory
recall, we aimed at identifying brain regions and neural representational processes underlying event

segmentation and integration during episodic memory formation.

Thanksto recent advances in statistical analysis of ongoing neural activity (Hermans et a. 2011; Cohen et
al. 2017; Xue 2018; Nastase et al. 2019), naturalistic stimuli (e.g., movie, spoken narratives, music) have
been increasingly used in neuroscience (Hasson et al. 2004; Hermans et a. 2011; Huk et al. 2018;
Sonkusare et al. 2019). Thisis especially valuable for memory research because naturalistic stimuli can
greatly enhance the ecological validity of experimental studies (Hasson et a. 2008; Baldassano et al. 2017,
Chen et al. 2017; Montchal et al. 2019). Hasson and colleagues first investigated memory formation with
cinematographic stimuli and demonstrated that brain activity was more correlated among participants for

later remembered than forgotten events (Hasson et a. 2008). While that study uncovered regions that
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encode continuous experiences, the nature of representations in those regions remained unclear,
particularly with regard to how episodes are segmented into separate events and then integrated into a

coherent sequence.

Event segmentation theory suggests that continuous experiences need to be segmented into discrete event
representations, and thereafter they can be better understood and encoded (Zacks et a. 2001, 2007; Zacks
2020). Two recent studies provided novel perspectives into segmentation theory. Using Multi-V oxel
Pattern Analysis (MVPA) and a movie watching-recall dataset, Chen and colleagues showed similar
activation patterns of the same events across individuals and event-specific reinstatements of activation
patterns between encoding and retrieval (Chen et a. 2017). Following this, Baldassano and colleagues
demonstrated a nested processing hierarchy of events (‘hierarchical memory systent, (Hasson et a. 2015))
from fine-grained segmentation in early sensory regions to coarse segmentation in regions of the higher-
order default-mode network (e.g., medial prefrontal cortex (mPFC) and posterior medial cortex (PMC)).
Importantly, boundaries of long events at the top of the hierarchy matched with event boundaries
annotated by human observers and were coupled to increased hippocampal activity (Baldassano et a.
2017). These results demonstrated that human brains spontaneously used different activation patterns to
represent events during continuous movie watching, and how these activation patter ns reactivated during
recall. Also, it may suggest that regions such as mPFC, PMC, and hippocampus encode events at the same
level that we consciously perceive boundaries between events. However, it remains unclear how exactly

this event segmentation at the neural level relates to subsequent memory recall.

Event segmentation aoneis not sufficient for episodic memory formation of continuous rea-life
experiences. Temporal context theory suggests that it is essentia to integrate segmented eventsinto a
coherent narrative viatime, meaning, or other abstract features (Howard et a. 2005; Howard and
Eichenbaum 2013). Therefore, a non-exhaustive list of questions are: (1) what are the neural
underpinnings of event integration during continuous memory formation, (2) does integration occur in the

same brain regions as segmentation, and (3) how does integration relate to subsequent memory recall. A
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promising approach to answer these questions is to examine local connectivity patterns (also called multi-
voxel correlation structure), which may represent abrain signal that integrates events (Tambini and
Davachi 2019). This method was derived from rodent electrophysiology (Qin et a. 1997; Kudrimoti et al.
1999; Lansink et al. 2008) and has been used in human fMRI studies (Tambini and Davachi 2013;
Hermans et al. 2017) to quantify distributed memory representations in neuronal assemblies. Recently,
Tambini and Davachi (Tambini and Davachi 2019) proposed that activation patterns are the
representations of specific perceptua inputs (e.g., stimuli), while local connectivity patterns reflect
particular encoding contexts or states. However, the different mnemonic functions of activity patterns and
connectivity patterns have yet to be compared empirically within asingle study. If local connectivity
patterns represent encoding context, they may facilitate integration across events. Examination of
connectivity patterns alongside activation patterns would help to characterise how the brain

simultaneously performs event segmentation and integration.

Recently, a hippocampal neural code that simultaneously tracked subdivisions of a continuous experience
(i.e., events) and their sequential relationship was described in rodents’ CA1 region (Sun et a. 2020). This
neural code could be afundamental neural correlate by which episodic experienceis integrated, but has
yet to be revealed in humans. Hippocampal activity was found to increase at the boundaries between two
events during continuous experience (Ben-Y akov and Dudai 2011; Ben-Y akov et a. 2013; DuBrow and
Davachi 2013; Baldassano et a. 2017; Ben-Y akov and Henson 2018), but what these hippocampal signals
represent in terms of event segmentation and integration is not clear. Theoretical models proposed that
increased hippocampal signal may reflect arapid shift in mental representations (e.g., temporal and/or
contextual information of an event) (Ranganath and Ritchey 2012; DuBrow and Davachi 2016; DuBrow et
al. 2017). Therefore, it can be regarded as the neural signature of event segmentation. Alternatively, this
increase may link to the integration of episodic memories across event boundaries, as suggested by scalp

electrocorticography (EEG) studies (Sols et al. 2017; Silvaet al. 2019) and the event conjunction
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framework (Griffiths and Fuentemilla 2020). However, fMRI evidence for the role of hippocampal signals

in integration across eventsis still limited.

The current study aimed to reveal the neural underpinnings of the two processesin question — event
segmentation and event integration - during memory formation of naturalistic experiences. To that end, we
first analyzed an existing dataset (Baldassano et al. 2017; Chen et al. 2017) where participants watched a
movie while being scanned (Figure 1A) and afterwards were instructed to freely recall the story of the
movie (Figure 1B). This design alowed us to associate different neural measures during episodic
encoding with subsequent memory retrieval (Figure 1C-D). We extracted voxel-wise Blood Oxygenation
Level Dependent (BOLD) time courses during movie watching (encoding) from six predefined regions-of-
interest (ROI) in the ‘hierarchical memory system’ (Hasson et al. 2015) including early auditory and
visual areas, posterior medial cortex, media prefrontal cortex, hippocampus, and posterior
parahippocampal gyrus (Figure 2A; Figure S1). To probe therole of abroader set of regionsin event
segmentation and integration, we repeated all analyses in each region of a neocortical parcellation
(Schaefer et al. 2018) (Figure 2B). Wefirst examined the relationship between ROI-based activity time
courses and subseguent memory recall and replicated the classical subsequent memory effects (i.e.,
greater activation for remembered compared to forgotten events) in regions including the hippocampus as
well as the posterior parahippocampal gyrus (Figure S2-3, detailsin Supplementary M aterials). To
dissociate the two event processes, we used voxel-wise activity (Figure 2C) from each ROI to quantify
the similarity between neural representations of events by two different multivariate methods (i.e.,
activation and connectivity patterns) (Figure 2D-E). Before linking neural pattern similarities with
subsequent memory, we first compared between-event and within-event pattern similarities. We predicted
that if our multivariate methods capture event representations, within-event pattern shifts should be
smaller than between-event pattern shifts. Then we reasoned that if the neural representation (activation or
connectivity pattern) shows alarge transition (i.e., lower neural similarity value) between two adjacent

events, and if this dissimilarity associates with better subsequent memory for events, then this
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representation might be involved in event segmentation (Figure 2E). By contrast, if the neura
representation remains stable (i.e., higher similarity) across two or more neighboring events, and this
stability relates to event memory aswell as retention of the correct order for those events (i.e., order
memory), then this representation may underlie event integration (Figure 2F). The relationship between
neural event processing (i.e., segmentation and event integration) and memory formation was further
cross-validated in an independent movie watching-recall dataset (replication dataset) that used a different

experimental protocol with alternative movie stimuli.
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Figure 1. Experimental procedure and behavioural performancein the discovery dataset. (A) Each participant watched a
50-min audiovisual movie, BBC's Sherlock (season 1, episode 1), while brain activity was recorded with fMRI. The movie was
divided into 50 events based on magjor narrative shifts. Blurred images are shown here due to copyright reasons. However, the
movie was shown in high resolution during the experiment. (B) Immediately after movie-watching, participants verbally recalled
the movie content in as much detail as possible without any visual or auditory cues. Speech was recorded using a microphone and
then transcribed. Critically, speech was also segmented into events and matched with the events segmented from the movie. All
events mentioned in the speech were labelled as remembered while missing events were labelled as forgotten. In addition, among
those remembered events, the ones that were recalled in the correct sequential order were labelled as in-order events (e.g., event 6
was recalled after event 5). Out-of-order events were those that were recalled in an incorrect sequential order (e.g., event 4 was
recalled after event 6). We labelled the first recalled event and all forgotten events as not available because no sequential
information can be accessed. (C) Illustration of all remembered and forgotten events during movie-watching in all participants. (D)
[llustration of all in-order and out-of-order events during movie watching in all participants. Each row of the heatmap isa
different event, and each column represents a participant.
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Figure 2. Neural similarities between separate events and their link with subsequent memory recall. (A) Six predefined
regions-of-interest (ROIs): early auditory (green) and visual area (red), posterior medial cortex (brown), medial prefrontal cortex
(pink), hippocampus (blue), and posterior parahippocampal gyrus (orange). See adso Supplementary Figure 1. (B) Neocortical
parcellation (1000 parcels) used in searchlight analysis. (C) For each region (ROI or parcel), voxel-wise signal during movie
watching was extracted and then segmented into 50 events based on the event annotations. (D) We first generated event-specific
activation patterns by averaging over al time pointsin that event. Then activation pattern similarity was calculated by Pearson’s
correlation between activation patterns of two sequential events. If aregion encodes two events separately, we expect two distinct
neural representations and therefore alower pattern similarity. (E) Event-specific within-region connectivity patterns were
represented by voxel-by-voxel pairwise correlation matrices. Connectivity pattern similarity across event boundaries was also
calculated using Pearson’s r between two sequential events. Stable neural representations across two events should yield a higher
pattern similarity in the corresponding region. (F) fMRI evidence for event segmentation. For a certain multivariate neural
measure, if it can be found that two distinct neural representations are used to encode the adjacent events while the neural patterns
for remembered (‘R’) events are more dissimilar compared to forgotten (‘F') events, this measure is likely to be associated with
event segmentation. (G) fMRI evidence for event integration. If the multivariate neural measure remains stable across the
boundary of two neighboring events and remembered (‘' R') events have higher neural similarity compared to forgotten (‘F’)
events, this measure may relate to event integration.
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M ethods

1. Participants and procedure

1.1 Participants

Discovery dataset

Twenty-two healthy young adults (10 female, age range 18-26, mean age 20.8 years) participated in the
experiment. All participants were native English speakers and naive to the BBC crime drama Sherlock.
Datawere discarded from participants with excessive mation (> 1 voxel; n = 2), low recall duration (< 10
min; n = 2), or sleeping during the experiment (n = 1). Thisleaves 17 participantsin total for our analyses.
Due to atechnical problem, one participant (s5) is missing datafor the last 75 s (part of event 49 and al of

event 50) and the affected two events were excluded in the analyses.

Replication dataset

In total 52 healthy adults (40 older adults (mean age=69 years) and 12 young adults (mean age=23 years))
from the St. Louis community or Washington University’ s Psychology Department participant pool
participated in this study. No participant reported current physical or mental health disorders. All of them
were right-handed and had normal or corrected to normal vision. This research was approved by the

Human Research Protection Office at Washington University

1.2 Procedure

Discovery dataset

All our analyses are based on the Sherlock Movie Dataset (Baldassano et a. 2017; Chen et al. 2017); see
Data availability below) acquired and pre-processed at Princeton Neuroscience Institute. No similar
analysis or results (excluding behavioural results of recall accuracy) have been reported in previous

studies using this dataset.
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Participants were informed that they would watch a movie and would later be required to recall its content.
They were then presented with a 48-min segment of the first episode of the Sherlock series (encoding
phase), split into two parts of approximately equal length (23 min and 25 min) and presented in two
consecutive blocks. A 30 sintroductory cartoon clip was prepended before each block. Immediately after
the movie presentation, participants were instructed to verbally describe the movie in as much detail as
they could and for as long as they wished (recall phase). They were asked to recall the episode in the
correct sequential order but were permitted to return to earlier pointsin the narrative if they remembered
further content. Audio was simultaneously recorded by a customized M R-compatible recording system

throughout the recall phase.

Replication dataset

A detailed description of the procedure can be found in the previous publication (Kurby and Zacks 2018).
Participants finished two sessions with an interval of around 3.4 days (SD=2.3 days, min=0, max=14,
mode=2). In session 1 (FMRI session), participants watched five movie clips in the same order. They were
instructed to remember movie contents as much as possible. In session 2 (i.e., Behavioral session), two
kinds of behavioral testing were performed. The first was the segmentation task, where participants were
instructed to “press a button to press a button when, in their opinion, one meaningful unit of activity ended
and another began” (Kurby and Zacks 2018). They produced both coarse (i.e., largest meaningful units)
and fine (i.e., smallest meaningful units) segmentation for the same clip and we used the coarse
segmentation as event boundaries in our neurcimaging analyses. Second, they performed memory tests.
Recognition, recall, and order memory was tested for each movie clip. Recognition memory was tested
using a 20-item two-alternative forced-choice test where participants were instructed to choose the visual
image they saw in the movie instead of the distracter. Recall memory was assessed by asking participants
to describe the movie content in as much detail as possible. Order memory was tested by reordering 12

visually distinctive images from the movie according to when they appeared.

10
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2. Behavioural data analysis

Discovery dataset

Event annotations of the movie and verbal speech recording

The movie was segmented into 48 events by an independent observer who was blind to the experimental
purpose, design, or results, following major shiftsin the narrative (e.g., changesin location, topic, and/or
time). Each event was given adescriptive label (e.g., “press conference”). Including the two introductory
cartoon clips, 50 scenes were analysed in total. The timestamps for both the onset and offset of identified
scenes were recorded and aligned across all participants. Both the onset and offset are referred to as the
boundaries of the respective event. Thisis awidely used method for event segmentation and has been
validated by a data-driven approach (Baldassano et a., 2017). The length of the events ranges from 11 to
180s (Mean = SD: 57.5 £ 41.7 s). The distribution of event length isvisualized in Figure S1, and the
duration of each event is presented in Table S1. Each subject's verbal speech was transcribed, segmented,

and matched to the events that were recalled from the movie.

Situational variables of movie events

For each movie event, several situationa variables including both semantic (e.g., location) and affective
features (e.g. arousal) were analyzed together with the subsequent recall of that event in both correlational
analyses and mixed-effect modeling (see validation analysis below). Firstly, the entire movie was divided
into 1000 time segments (mean duration=3.0s, s.d.=2.2s) by a human rater. Each of the 1000 segments
was then labeled for variables including arousal (excitement/engagement/activity level), music (whether or
not there is music playing), location (whether the location isindoor or outdoor), and valence (Positive or
negative mood). For subjective rating (i.e., arousal and valence), assessments were collected from four
different raters (arousal: Cronbach’s o, = 0.75; valence: Cronbach’s « = 0.81). In the event-specific
analyses, a score was derived for each of the 50 events for each of the variables mentioned by

averaging/adding up ratings across time segments. The event-level scores are displayed in Table S1. These
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analyses were performed and data were shared by Chen and colleagues (Chen et al. 2017). We correlated
these variables (along with event duration) with the mean recall ratein all participants (Figure S5) and
found that arousal and event duration positively correlated with memory recall (p<0.05). Other situational

variables did not show significant correlations with memory (p>0.05).

Event and order memory

For each participant, we first asked whether events were successfully recalled or not, asin the classical
subsequent memory paradigm (Brewer et al. 1998; Wagner et al. 1998; Fernandez et al. 1999). An event
was labeled as ‘remembered’ if any part of the event was described during the recall. ‘ Forgotten' events

are the ones that were not mentioned throughout the recall phase.

Secondly, out-of-order events were identified as a measure of order memory. Among all remembered
events, an event was labelled as out-of-order if it was not described immediately after its preceding event
in the original movie. For example, if event 3 is described immediately after event 1 without mentioning
event 2, then event 3 is an out-of-order event. By contrast, if a participant described event 4, 5, 6
sequentially during the recall phase, since event 5, 6 correctly followed their preceding event, event 5, 6
were counted asin-order events. Thefirst event verbally described in the recall phase was always labelled
as ‘not available’ in the order memory analysis sinceit is not preceded by any event. It was possible that a
single scene was mentioned multiple times (in different parts) during the recall, in which case the position

of itsfirst recall was used in the event and order memory analyses.

Replication dataset

All of the behaviora results were performed and shared by authors (C.K and J.Z) of the original
publication (Kurby and Zacks 2018). Coarse event boundaries for our neural pattern similarity analyses.
Recognition memory was measured as the percent of correct responses during the forced-choice test.
Action recall memory was scored by how many of each type of action was mentioned (e.g., man drinking

coffee). This scoring procedure was based on the Action Coding System (ACS: (Schwartz et al. 1991)).

12
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Raw order memory was assessed as the number of errors made in the reordering test. To generate the
(final) order memory measure, we multiplied each raw order memory measure by -1 and Z-normalized
across al participants. This transformation made the measure intuitive (i.e., larger valuesindicate better

order memory).

3.fMRI data analysis

3.1 fMRI data acquisition and pre-processing
Discovery dataset

fMRI data were acquired using a T2*-weighted EPI sequence on a 3T Siemens Skyra scanner (20-channel
head coil; TR 1,500 ms; TE 28 ms; flip angle 64, spatial resolution 3*3*4 mm?®). Only data from the

encoding phase were analysed and reported in the current study.

A standard pre-processing pipeline was followed using FSL (Jenkinson et al. 2012), which includes slice
timing correction, motion correction, linear detrending, high-pass filtering (140 s cutoff), co-registration

and affine transformation into 3 mm MNI standard space (Chen et al. 2017). The time series were shifted
3 TRs (4.5 s) to account for the Haemodynamic response function (HRF). Data were z-scored acrosstime

at every voxel and a6 mm smoothing kernel was applied.

All subsequent analyses were performed on the pre-processed voxel-wise BOLD signal, in units of
functional volume (TR = 1.5 s). Custom MatLab (R2018b, The Mathworks, Natick, MA) and Python

(version 3.6) scripts were used for both Region of Interest and parcellation-based searchlight analysis.
Replication dataset

Neuroimaging datawere acquired with a Siemens Trio 3T scanner. Functional data (i.e., movie watching
data) were acquired in five runs using a T2* weighted EPI sequence (TR =2000 ms, TE =27 ms) in 35

transverse slices (voxel size=4.0 mm). We re-ran the preprocessing according to the pipeline used in the

13
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discovery dataset. Subsequent neuroimaging data anal yses were performed on the preprocessed voxel-vise

BOLD signal for each ROI.

3.2 Region of interest (ROI) selection

The six ROIs used in this study were independently defined by Chen and colleagues, in correspondence to
the timescal e hierarchy of the event segmentation model (Hasson et al. 2015; Baldassano et a. 2017).
Early visua and early auditory cortex were functionally defined based on inter-subject correlation during
an audio-visual movie and an audio narrative, respectively (Chen et al. 2016; Simony et a. 2016). ROIs
for medial prefrontal cortex (mPFC) and posterior medial cortex (PMC) were taken from the functional

atlas derived from resting-state default mode network (https:/findlab.stanford.edu/functional  ROIs.html)

from FIND lab at Stanford University (Shirer et al. 2012). The hippocampus and posterior
parahippocampal gyrus were anatomically defined from the probabilistic Harvard-Oxford Subcortical
Structural Atlas (Desikan et a. 2006). Chen and colleagues manually adjust the threshold of around 50%

to ensure better anatomical coverage during the visual check.

3.3 Whole-brain parcellation

Alongside the ROI-based analysis, we performed a parcel-based searchlight analysis on the basis of 1000
functionally parcellated cerebral regions

(https://github.com/ThomasY eolL ab/CBI| G/tree/master/stable projects/brain parcellation/Schaefer2018 L

ocal Global). The parcellation was based on a gradient-weighted Markov Random Field (gwMRF) model,
which integrated local gradient and global similarity approaches (Schaefer et al., 2018). Using both task
and resting-state fMRI acquired from 1489 participants, parcels with functional and connectional
homogeneity within cerebral cortex were generated (hippocampus and subcortical regions were not
included). In this fashion, each of these biologically meaningful and non-overlapping parcels can be

treated in the same way as an independent region similar to an ROI in the following analyses. The
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parcellation was provided in both volume and surface space, and the volume-based parcellation space was

used in our searchlight analyses.

3.4 fMRI-based neural responses to event boundaries

3.4.1 Univariate response

BOLD signalswere first averaged for each TR across all voxelsin an ROI. Then the time series were z-
scored and segmented based on the event annotations mentioned above. We selected the time window of
the univariate response analysis based on the shortest event duration. Among all events, the shortest event
was 7 volumes (10.5 s), therefore we focused on BOLD signals 6 volumes before and after the event

boundaries (i.e., in total 13 volumes around event boundaries).

3.4.2 Activation patterns

Voxel-wise BOLD time series from separate events were first extracted based on the onset and offset
timestamps derived from the movie. Multivariate patterns of brain activation were generated for each
event by averaging across al volumes within this event. To assess the similarity between two neighboring
events, the activation pattern for each event of interest was correlated with its following event. The
resulting Pearson’ s correl ation coefficient depicted the extent to which similar representational activity
patterns were elicited by neighboring scenes. Lower similarity between two events represented a greater

changein neural patterns across the event boundary.

3.4.3 Connectivity patterns

Intra-regional connectivity pattern analyses were conducted based on amethod originally used in rodent
electrophysiology studies to quantify the reactivation of sparsely distributed neuron assemblies (Qin et al.
1997; Lansink et a. 2008), and recently used in human fMRI (Tambini and Davachi 2013, 2019; Hermans
et a. 2017). For each event within each brain region, Pearson’s correlations were performed on the

extracted m*n (volumes*voxels) BOLD-fMRI time series, between each of the n voxel time series. This
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yielded an n-by-n pairwise correlation matrix (containing p values indicating the significance of the
Pearson’ s correlations), representing the within-region connectivity structure for each scene. For two
neighboring events, the Pearson’ s correl ation coefficient of their correlation matrices was calculated to
quantify the similarity for connectivity patterns. Lower similarity between two connectivity patterns

represented a greater change in the intra-region connectivity patterns across the event boundary.

3.4.4 Activation/Connectivity pattern similarity within and between movie events

We compared within-event and between-event activation/connectivity pattern similaritiesto reveal the
effects of event boundaries on neural pattern shifts. First, we generated “ middle-point boundaries’ for
within-event neural similarities calculation. Specifically, for each of the fifty original events, an additional
middle-point boundary was located at the middle points of the corresponding time series. Thus, one
original event can be divided into two “half events’ with equal duration. This created 100 “half events’
defined by both human-annotated boundaries and “ middle-point boundaries’. Then, we quantified neural
similarities of activation/connectivity patterns between two neighbouring “half events’. If two “half events’
were segmented by a human-annotated boundary, then the similarity was defined as the “ between-event”
pattern similarity, whereasif the two “half events’ were segmented by a middle-point boundary, the

similarity was defined as the “within-event” pattern similarity.

3.5 Relationship between neural responses during encoding and subsequent memory

Discovery dataset

3.5.1 Remembered and forgotten events comparisons

We first compared our neura pattern similarities (i.e., activation pattern similarity and connectivity
pattern similarity) at the single-subject level explained above for each brain region (ROI or brain parcel).
The similarity indices (Pearson’ s r between two matrices) for both activation and connectivity patterns
were averaged for the two types of event pairs (remembered and forgotten) for each participant. If the first

event of the pair was retrieved during the recall phase, the event pair was labeled as remembered.
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Remembered and forgotten event pairs were then compared in two separate t-tests for activity and

connectivity pattern transitions (indexed by pattern similarity).

We further examined the relationship between connectivity pattern transitions and order memory (i.e.,
temporal order of event recall). More specifically, connectivity patterns were averaged for another two
types of event pairs (i.e., In-order or Out-of-order) for each participant. If the second event of the pair was
recalled in an incorrect sequential order (e.g., event 4 was recalled immediately after event 6), the event
pair was labeled as Out-of-order. Connectivity pattern transitions for In-order and Out-of-order event

pairs were then compared with t-tests.

3.5.2 Validation analyses of subsequent memory effects

Beyond the paired t-tests between neura similarities of Remembered and Forgotten events, in total six
additional statistical tests were performed to further validate reported subsequent memory effects
(Detailed methods and results can be found in Supplementary Materials). In brief, (1) neighboring event
pairs were divided into four categories based on memory for both the first and second event of the event
pair (i.e., both Forgotten (FF), first Forgotten and second Remembered (FR), first remembered and
second forgotten (RF), and both remembered (RR)). We then compared neural similarities across these
four categories. (2) To confirm that the subsequent memory effect on pattern similarity was only present
for actual event boundaries but not shuffled boundaries, we generated anull distribution of subsequent
memory effects using the event boundary permutation analysis. During each permutation, event
boundaries were re-located within events to create the same number of pseudo-events. The sequence of
memory labels remain unchanged, and subsequent memory effects were qualified based on pseudo-events
and corresponding memory labels. We asked whether subsequent memory effects based on the actual
boundaries were larger than effects based on shuffled boundaries. (3) Memory labels (i.e.,, Rand F) were
shuffled across events, then neural pattern similarities were compared between shuffled memory labels
instead of real labels. (4) For each event, we examined whether the likelihood of an event being
remembered among all participants correlated with its mean neural pattern similarity with the previous
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event. (5) We also performed a cross-participant correlation: we asked whether participants who
demonstrated better memory showed lower/higher activation/connectivity pattern similarity during movie
watching. (6) We further used a mixed-effects model to examine the relationship between neural similarity
and memory, considering both participants and events as random effects and incorporating multiple event-

specific situational variables (e.g., event duration, location, music, arousal...).

Replication dataset

Subsequent memory for each movie clip was assessed by three different memory measures (i.e.,
recognition, recall, and order memory). Their relationships with event processing during encoding were
investigated as a conceptual replication of findings from the discovery dataset. We calculated neura
pattern similarities using the “within-movie” and “between-movie’ method separately. For the “within-
movi€’ method, participant-specific boundaries generated during the segmentation task were used as event
boundaries to calcul ate event-specific fMRI activation patterns and connectivity patterns during movie
watching. Similarities of these activation/connectivity patterns were cal culated across boundaries and then
averaged for each movie clip at the participant level. To probe the memory relevances of these mean
similarities, they were correlated with all three memory measures. For the connectivity pattern similarity
analyses, we additionally used the “ between-movie” method to enable meaningful connectivity analyses
with enough TRs. Each movie clip was regarded as an event, and the connectivity pattern was estimated
within the entire clip. Then connectivity pattern similarities were calculated across different movie clips

and correlated with memory measures.

3.6 Relationship between hippocampal pattern similarity and event distance

The above analyses focused on neural pattern similarities between two neighboring events. Here, we
examined the hippocampal pattern similarities between events with variable distances. Event distance was
defined as the number of event boundaries between two events (the event distance between event 1 and

event 3is 2). For each event, we first calculated its activation and connectivity pattern. Then, we
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calculated the activation and connectivity pattern similarity between all possible combinations of event A-
B pairs (‘Event A’ isthe event which appeared earlier in the temporal sequence, and ‘ Event B’ isthe one
presented later) within al 50 events. Finally, for each participant, and each event distance, two mean
similarities for activation and connectivity pattern were calculated separately. Note that the number of
available pairs decreases as the distance increases (e.g., events 1-50 are the only event pair with a distance
of 49). To ensure awell-powered analysis for every event distance, we only compared event pairs with a
distance less than or equal to 40, meaning at least 10 event pairs contributed to the event distance

calculation. Analysis of al distances (d < 49) can be found in the Supplementary Materials.

Next, we used linear regression to examine the relationship between pattern similarity and event distance.
In addition, to investigate how the subsegquent memory of the preceding event (event A) modulates the
relationship between event distance and pattern similarity, we ran atwo-way ANOVA (memory * event
distance) using the memory performance (remembered or forgotten) of the preceding event and event
distance (range from 1 to 40) as two independent variables. The relationship between memory and event
distance was validated with the permutation test, in which memory labels (i.e., R and F) were shuffled

randomly 1000 times to generate null comparisons between two kinds of events.

4. Statistical analysis

For parametric hypothesistestsinvolved in the fMRI data analyses, the significance level wassettop =
0.05 (two-tailed). For permutation tests, p-values were estimated by comparing real results with null
distributions generated by shuffling event boundaries or memory labels, and their significance levels were
asosettop = 0.05 (two-tailed). To account for the multiple comparisons problem that comes with
multiple ROIs or brain regions, all reported p valuesin the main text were FDR-corrected (pror)
(Genovese et a. 2002) unless otherwise stated (pray). Specifically, this means correction was made for six
testsin ROI analyses, and 1000 tests for the whole-brain analyses. All significant p values were reported

together with the effect sizes (Cohen’sd or partia n2). The custom modified version of DABEST
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(https.//github.com/ACCLAB/DABEST -python) was used to plot individual data points alongside

otstrapping-based resampled distributions of the mean difference between conditions (Ho et al. 2019).

5. Data and code availability

ROI data are available at http://datasets.datal ad.ora/2dir = /workshops/mind-2017/sherlock. Whole-brain

neuroimaging data are available at https://dataspace.princeton.edu/j spui/handl e/88435/dsp01nz8062179.

The replication dataset was stored at The Central Neuroimaging Data Archive (CNDA), Washington

University, Saint Louis (https.//cnda.wustl.edu/) and can be requested from Dynamic Cognition

Laboratory (https://dcl.wustl.edu/people/jzacks/). Custom code used in this study will be publicly

available via the Open Science Framework (OSF) (Link:

https.//osf.io/p68cv/View only=483703873daedcfd8b36e9d6df6b8c92) upon publication. Further

requests for scripts should be directed to the corresponding author.

Results

Subsequent memory per for mance measur ed by spoken recall

We first calculated recall accuracies for each participant. On average, 68.7% (SD = 12%, range 48% -
94%) of the 50 events (Mean = 34.4 events, SD = 6) were retrieved successfully (Figure 1C). Among
these remembered events, we further defined in-order and out-of-order events based on whether they were
recalled in the correct sequential order. On average, 58.8% (SD = 8%, range 40% - 71%) of the

remembered events were in-order (Figure 1D).

Neural pattern shiftswerelarger for between-event transitions compar ed to within-event transitions

Before linking neural pattern shifts to subsequent memory recall, we investigated how event boundaries
modulated neural pattern shifts of both activation and connectivity patterns. More specifically, we

compared the effect of between-event transitions compared to within-event transitions on neural pattern
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shifts (Figure S6A). Paired t-tests between within-event and between-event similarities revealed that in all
six ROIs: (1) within-event activation similarities were significantly higher than between-event activation
similarities; (2) higher connectivity pattern similarities were found for within-event transitions compared
to between-event transitions (Figure S6B; Table S2). These results suggest that neural patterns are

relatively stable within each event, but shift significantly across events.

Distinct activation pattern-mediated event segmentation is associated with subsequent retrieval

Success

We quantified neural similarities of event-specific activation patter ns before and after event boundaries
(i.e., two neighbouring events). Specifically, we generated a voxel-wise activation pattern per event by
averaging over all time pointsin that event. This time-averaged activation pattern of al voxelswithin an
ROI for an event was compared to the pattern of its subsequent event using Pearson’s correlation. A lower
Pearson’ s r indicates two more separateble activation patterns and thus more distinct neural

representations for two distinct events. We investigated whether activation pattern similarities relate to
memory formation by contrasting the pattern similarities of remembered with forgotten eventsin six ROIs.
That is, pattern similarity between two events was compared to subsequent memory for the first of those
events. We found that subsequently remembered events were associated with lower activation pattern
similarities than subsequently forgotten eventsin early auditory cortex (t = -3.56, pror = 0.007, Cohen’sd
=0.92, Figure 3B), hippocampus (t = -3.62, pror = 0.007, Cohen’sd = 0.92, Figure 3E), mPFC (t = -2.79,
Pror = 0.01, Cohen’sd = 0.80, Figure 3C) and posterior parahippocampal gyrus (pPHG) (t = -2.85, prpr =
0.01, Cohen’sd = 0.89, Figure 3F). Thisfinding suggests that distinct activation patterns for two
sequential events are beneficial for the memory of the first event in that sequence. Early visual areas (t = -
1.13, prpr = 0.27, Cohen’sd = 0.35, Figure 3A) and PMC (t = -1.91, prpr = 0.08, Cohen’s d = 0.65,

Figure 3D) did not show this marked effect.

Beyond the main contrasts above (i.e., paired t-tests) between activation pattern similarity of remembered
and forgotten events, we ran several additional statistical tests to further examine the relationship between
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activation pattern similarity and memory. Detailed methods and results from each ROI can be found in the

Supplementary Materials.

(1) In our main analyses above, we labeled an event pair as "remembered" if the first event of the pair was
remembered. In control analyses, we probed the potential effects of the second event and/or the interaction
between the first and second event: event pairs were divided into four categories based on memory (i.e.,
both Forgotten (FF), first Forgotten and second Remembered (FR), first remembered and second
forgotten (RF), and both remembered (RR))), and compared neural similarities across these four categories.
Consistent with main contrasts, hippocampal activation pattern similarities tended to be lower for RR pairs
compared to FF pairs (t=-1.89, prav=0.07). Significant effects were found for the early auditory area (t=-
2.32, Prav=0.03), mMPFC (t=-3.32, prax=0.005), and pPHG (t=-3.36, prav=0.004). Full comparations of four

categories can be found in the Figure S7.

(2) To test whether presented results only existed for the actua event structure, we generated shuffled
event boundaries and re-ran the same contrasts on activation pattern similarity. Permutation tests
demonstrated that presented subsequent memory effects only existed for the actual event boundaries, but

not shuffled boundaries (Figur e S8).

(3) The percentage of remembered events was higher than forgotten events, leading to the potential power
issue when comparing the two. To counter this, we evaluated the current statistical results by performing a
second kind of permutation test: for each permutation, memory labels were shuffled across events, then
activation pattern similarities were compared between shuffled memory labels instead of real labels. All
ROIs showed inseparabl e distribution between shuffled R and F eventsin terms of (mean) activation
pattern similarity values, while similarity values of real R and F events differed in an ROI-specific manner

as reported (Figur e S9).

(4) So far, within-participant comparisons between remembered and forgotten events reveal ed that

differencesin activation pattern similarities of several ROIs were related to subsequent memory. Next, we
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examined whether asimilar relationship was evident across different events. Specifically, we investigated
the relationship between the event-specific recall rate (the percentage of participants that successfully
recalled a particular event) and the averaged activation pattern similarity for the corresponding event (the
first onein the pair) across al participants. Consistent with our main contrasts, this analysis revealed that
therecall rate negatively correlated with activation pattern similarity in the hippocampus (r = -0.292, prav
=0.042) and pPHG (r =-0.344, prav = 0.015), suggesting that events showing lower activation pattern

similarity with the subsequent event were more likely to be recalled (Figure S10).

(5) We further performed cross-participant individual differences analysis between activation pattern
similarity and memory, but found no significant associations. There was atrend for those participants with
average lower activation pattern similarity in the early auditory (r=-0.37, pray=0.13) and pPHG (r=-0.40,
prav=0.11) during movie watching performed better at the memory test (Figure S11; Table S3), which is

consistent with results from our main contrast analyses.

(6) Finally, we used a mixed-effects model for statistical analysis to examine the relationship between
activation pattern similarity and memory, considering both participants and events as random effects. The
relationship between memory and hippocampal activation pattern similarity (F=3.48, p.a,=0.06, R?>=0.004)
failed to reach significance but demonstrated the same tendency as results from the paired t-test. In a
second model, event-specific situational variables (e.g., event duration, location, music...) were further
model ed as fixed effects to be controlled as confounds. Again, hippocampal activation pattern similarity
(F=2.80, prav=0.09) showed the same tendency of memory effects but failed to reach significance (Table

).
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Figure 3. Association between activation pattern similarities of six ROlsand subsequent memory recall. We compared
activation pattern similarities of sequential event pairs based on subsequent memory performance of the first event (Remembered
vs. Forgotten) across six ROIs. For panel A-F, activation pattern similarities for Remembered events are displayed on the left
(green), while similarities for Forgotten events are displayed on the right (red). For each comparison, a separate axis displays the
mean difference. The curve (gray) indicates the resampled distribution of the mean difference generated via bootstrapping. The
solid vertical line attached to the curve represents the mean difference as a 95% bootstrap confidence interval. We found
significantly lower activation pattern similarity for Remembered vs. Forgotten event pairsin the early auditory area (t = -3.56,
Pror = 0.007, Cohen’sd = 0.92; panel B), mPFC (t = -2.79, prpr = 0.01, Cohen’sd = 0.80; panel C), hippocampus (t =-3.62, pror
=0.007, Cohen'sd = 0.92; panel E), and pPHG (t = -2.85, prpr = 0.01, Cohen’sd = 0.89; panel F). No significant differences
were found in early visual areas (t = -1.13, prpr = 0.27, Cohen’sd = 0.35; panel A) and PMC (t = -1.91, pgpr = 0.08, Cohen’'sd =
0.65; panel D). NS=Not significant; * prpr<0.05; ** prpr<0.01.
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Similar connectivity pattern-mediated event integration is correlated with subsequent retrieval

SUCcCess

Next, we investigated the association between connectivity patterns — a different multivariate method to
characterise neural representations — and subsequent memory retrieval . Within-region multi-voxel
connectivity patterns were calculated by a voxel-by-voxel pairwise correlation matrix resulting from the
correl ations between time courses of al voxels within a given region. This represents the relative
correlation structure between all voxelsin a certain region during event processing. We first calculated the
event-specific within-region connectivity patterns for two sequential events, and then we quantified the
similarity between connectivity patterns across event boundaries also using Pearson’s r. Contrasting
similarities of connectivity patterns of subsequently remembered and forgotten events allowed us to
examine how transitions in connectivity patterns contribute to memory formation. We found higher
connectivity pattern similarity for subsequently remembered compared to forgotten eventsin the early
auditory area (t = 2.9, pror = 0.02, Cohen’sd = 0.72, Figure 4B), visual areas (t = 3.34, pror = 0.01,
Cohen'sd = 0.74, Figure 4A), hippocampus (t = 3.39, prpr = 0.01, Cohen’sd = 0.73, Figure 4E), and
PMC (t =2.79, pror = 0.02, Cohen’sd = 0.47, Figure 4D). The same contrast was not significant for
mPFC (t = 1.22, prpr = 0.23, Cohen’sd = 0.25, Figure 4C) and pPHG (t = 1.36, prpr = 0.22, Cohen’sd =

0.30, Figure 4F).

The same set of additional statistical tests was applied to the connectivity pattern analyses. (1) Event pairs
were divided into four categories based on memory (i.e., FF, FR, RF, RR), and connectivity pattern
similarities were compared between these four categories. Consistent with our main analyses,
hippocampal connectivity pattern similarities are higher for RR pairs compared to FF pairs (t=3.85,
Prav=0.002). Thisis also true for early auditory area (t=2.56, p;ay=0.02), early visual area (t=3.70,
Prav=0.002) and PMC (t=2.11, p;av=0.05) (Figure S12). (2) Permutation tests examined the specificity of
subsequent memory effects to actual event boundaries (as opposed to randomly generated pseudo

boundaries) (Figure S13). (3) When memory labels were assigned randomly to connectivity patterns, the
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reported subsequent memory effects disappeared (Figure S14). (4) The event-specific correlational
analysis demonstrated that the recall rate positively correlated with connectivity pattern similarity in the
early auditory area (r = 0.327, pray = 0.022), visual areas (r = 0.35, pray = 0.014), hippocampus (r = 0.301,
Prav = 0.036), PMC (r = 0.341, pray = 0.017), and pPHG (r = 0.341, prav = 0.017) (Figure S15). This
supports our main findings, suggesting that events with higher connectivity pattern similarity with the
subsequent event in these ROIs were more likely to be recalled. (5) Individual difference analyses
revealed the same trends in the same direction as within-subject the within-subject contrast analyses:
participants with higher connectivity pattern similarity in the early auditory (r=0.45, pra,=0.06) and
hippocampus (r=0.40, pa,=0.10) were more likely to perform better at the memory test (Figure S11). (6)
Mixed-effects models without (F=3.68, p,2,=0.05, R?>=0.003) and with covariates (F=2.81, p;a,=0.09)
showed the same tendency that higher hippocampal pattern connectivity was associated with better

memory (Table S3).
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Figure 4. Association between connectivity pattern similarities of six ROls and subsequent memory recall. We compared
connectivity pattern similarities of sequential event pairs based on subsequent memory performance of the first event
(Remembered vs. Forgotten) across six ROIs. For panel A-F, connectivity pattern similarities for Remembered events are
displayed on the left (green), while similarities for Forgotten events are displayed on the right (red). For each comparison, a
separate axis displays the mean difference. The curve (gray) indicates the resampled distribution of the mean difference generated
via bootstrapping. The solid vertical line attached to the curve represents the mean difference as a 95% bootstrap confidence
interval. We found significantly higher connectivity pattern similarity for Remembered (green) vs. Forgotten (red) event pairsin
the early auditory area (t = 2.9, prpr = 0.02, Cohen’sd = 0.72, panel B), visual areas (t = 3.34, prpr = 0.01, Cohen’sd = 0.74,
panel A), hippocampus (t = 3.39, peor = 0.01, Cohen’sd = 0.73, panel E), and PMC (t = 2.79, pepr = 0.02, Cohen’'sd = 0.47,
panel D). No significant differences were found in mPFC (t = 1.22, pepr = 0.23, Cohen’sd = 0.25, panel C) and pPHG (t = 1.36,
pror = 0.22, Cohen’s d = 0.30, panel F). NS=Not significant; * prpr<0.05.
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Similar connectivity pattern-mediated event integration preserves sequential memory of eventsin

later retrieval

So far we have shown the opposite association between our two multivariate neural pattern measures and
subsequent memory performance: distinct activation patterns, but similar within-region connectivity
patterns across events in the early auditory cortex and hippocampus predict retrieval success. This pattern
of results suggests that the connectivity pattern may integrate events into a continuous sequence. To
directly test this hypothesis, we examined the relationship between connectivity pattern similarity and
sequential order of subsequent recall. We reasoned that if the connectivity patterns remain stable across
event boundaries, events should tend to be recalled in the correct sequential order. We compared the mean
connectivity pattern similarities for in-order and out-of-order events. Controlling for multiple
comparisons, we found that connectivity pattern similarity in early visual cortex to be larger for in-order
compared to out-of-order events (t = 3.16, pepr = 0.03, Cohen’sd = 0.47, Figure 5A). Similar trends that
did not survive correction for multiple comparisons were detected in the hippocampus (t = -2.43, pray =
0.026, pror = 0.08, Cohen’sd = 0.53, Figure 5E), auditory area (t = -2.08, pray = 0.053, pror = 0.084,
Cohen'sd = 0.46, Figure 5B) and posterior parahippocampal gyrus (t = -2.05, pray = 0.056, prpr = 0.084,
Cohen’sd = 0.36, Figure 5F). No such effect was observed in the mPFC (t = -1.35, pepr = 0.19, Cohen’s
d=0.19, Figure5C), and PMC (t = -2.05, prpr = 0.12, Cohen’sd = 0.33, Figure 5D). It isworth
mentioning that our method cannot completely disentangle the neura effects of “event memory” and
“order memory”. When we further fully control for the “event memory” by restricting analyses on two
neighboring events that were both recalled, we did not found the different connectivity pattern similarity
levels between “in-order” and “out-of-order” events among six ROIs (Supplemental Materials-alter native

order memory analysis).
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Figure 5. Association between connectivity pattern similarities of six ROIsand sequential order of memory recall. We
compared connectivity pattern similarities of sequential event pairs (In-order vs. Out-of-order) based on sequential memory
performance of the first event across six ROIs. For panel A-F, connectivity pattern similarities for In-order events are displayed
onthe left (BLUE), while similarities for Out-of-order events are displayed on the right (BROWN). Early visual areas (t = 3.16,
pror = 0.03, Cohen’sd = 0.47, panel A) demonstrated higher connectivity pattern similarity for the In-order events compared to
Out-of-order events. A similar trend was also detected in the hippocampus (t = -2.43, pray = 0.026, Cohen’sd = 0.53, panel E),
but it did not survive FDR correction (prpr = 0.08). We also found modest, non-significant trends in the early auditory area (t = -
2.08, praw = 0.053, prpr = 0.084, Cohen’s d = 0.46, panel B) and posterior parahippocampal gyrus (t = -2.05, pray = 0.056, prpr =
0.084, Cohen'sd = 0.36, panel F). No similar effects were detected in mPFC (t = -1.35, prpr = 0.19, Cohen’sd = 0.19, panel C),
and PMC (t = -2.05, prpr = 0.12, Cohen’sd = 0.33, panel D). NS=Not significant; * pppr<0.05; # prav<0.05.
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Hippocampal activation and connectivity patter ns change differently with event distance

Among our six ROIs, we found converging evidence for a dissociation of event segmentation and
integration in the hippocampus: lower activation pattern similarity, but higher connectivity pattern
similarity was beneficial for memory formation. Building on these findings, we hypothesized that
hippocampal activation patterns of neighboring events should be less similar than events that occur far
apart. By contrast, hippocampal connectivity patterns of close events should be more similar than events
with along interval in between. Thus, we calculated the activation and connectivity pattern similarity
between all possible combinations of event pairs (‘Event A’ and ‘Event B’) within all 50 events (Figure
6A and 6D). For al pairs of events with the same event distance (e.g., separated by four events), we
calculated the mean similarity measure for activation pattern and connectivity pattern separately. This
calculation was repeated for all possible event distances. To ensure reliable estimations of pattern
similarities, we only present the similarities of distances with at least ten event pairs (d < 40) in the main

text. (Complete cal culations can be found in Figur e S16)

We analysed the hippocampal activation and connectivity patterns separately. First, our activation pattern
analysis found that the shorter the event distance, the more distinct the hippocampal activation patterns (r
=0.21, prav = 1.8 x 10 Figure 6B and S16A). This positive correlation was largely driven by the
negative similarity values between events that occurred close to each other (i.e., events with adistance
smaller than four). Furthermore, we found that subsequent memory recall of Event A modulated the

rel ationship between event distance (d = 1 - 4) and activation pattern similarity (ANOV A with event A x
distance interaction: F (3,48) = 10.1, p < 0.001; Figure 6C). That is, hippocampal activation pattern
similaritiesincreased as the event distance changes from 1 to 4, but only if event A was later recalled

(Fremembered (3,48) = 9.54, p < 0.001; Frorgoten (3,48) = 1.35, p = 0.268).

Second, our connectivity pattern analysis found that the shorter the event distance, the more similar the
hippocampal connectivity patterns (r = -0.439, pray = 1.8 x 10 Figure 6E and S16B). Furthermore, we
found a significant interaction between event A recall and distance (F (19, 304) = 2.37, p=0.001), and a

30


https://doi.org/10.1101/2020.03.14.990002
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.14.990002; this version posted December 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

significant main effect of event A (F (1, 16) =7.53, p=0.014). That is, if event A was recaled later, its
hippocampal connectivity pattern was more similar to any other event in the sequence, compared to when
event A was not successfully recalled (Figur e 6F). This suggeststhat if connectivity patter ns between
pairs of events are more similar, for both short and long distances, then events are more likely to be

successfully encoded.

Severa time-dependent artifacts may contribute to signalsin hippocampal event distance analyses (e.g.,
temporal distance, temporal filtering). These are unlikely to explain the subsequent memory effects we
observed, but we ran severa further analyses to limit their influence. First, (1) evaluate the effects of these
potentia artifacts (i.e., temporal distance, and temporal filtering) on the event distance analysis (Figure
S18-S19). Weinvestigated how hippocampal pattern similar change with event distance when the
temporal distance between events (i.e., the number of TRs) was controlled and when different cutoffs (i.e.,
140s, 280s, 420s, 560s, 600s) for high-pass filtering were applied to the time-series; Second, we
performed a permutation test to validate the subsequent memory effects in the event distance analysis. We
shuffled memory labels (i.e.,, Rand F) randomly and performed the event distant analysis for each
permutation. Third, event distance analysis was also applied to ROIs beyond the hippocampus to probe
whether presented effects are hippocampal -specific. Results can be found in Figure S20-S21. These
control analyses together demonstrated that (1) main findings were robust to artifacts, (2) relationship
between event distance and neural similarity was indeed modulated by memory, (3) similar relationship
between event distance and neural similarity were presented in other ROIs as well but it interacted with

subsequent memory in aregion-specific manner.
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Figure 6. Hippocampal pattern similarity changes with event distance. (A) Hippocampal activation patterns were generated
for all 50 events. We calculated activation pattern similarities between sequential events (event distance = 1) and all possible
combinations of non-sequential event pairs (event distance > 1). (B) Hippocampal activation patterns between pairs of events
were significantly dissimilar for events separated by a distance of less than 4 (red shadow). (C) Memory performance modulated
the distance-activation pattern similarity relationship. If the first event (Event A) of the pair was successfully encoded, activation
pattern similarities of the event pair increased with event distance (green ling). (D) Hippocampal connectivity patterns were
generated for all possible combinations of event pairs. (E) Event pairs with shorter event distance had more similar hippocampus
connectivity patterns. At the same time, similarities of hippocampus connectivity patterns are higher than O regardless of event
distance. (F) Memory performance modulated distance-connectivity pattern similarity relationship. If the first event (Event A) of
the event pair was successfully encoded, connectivity pattern similarities of the event pair are enhanced regardless of their event
distance. For panel B-F, error bands (i.e., light shadow around the solid line) represent the 95% confidence interval of the mean.

Subregions of the prefrontal cortex perform event segmentation and integration

Our ROI-level analyses found that (1) distinct hippocampal activation patterns were associated with better
event memory; (2) similar hippocampal connectivity patterns were beneficial for event memory; (3)
although not surviving multiple comparison correction, similar hippocampal connectivity patterns tended
to preserve the sequentia order of events (Figure 7A). To investigate whether these relationships are
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present in other brain regions beyond our six ROIs, we ran a region-based searchlight version of our
pattern similarity analysis to identify overlapping event segmentation and integration computations across
neorcortical regions. In sum, we investigated three potential relationships between neural pattern
similarity and subsequent retrieval separately. First, we identified brain regions whose lower activation
pattern similarities across events were associated with retrieval success (Figure S22A). Next, we mapped
the association between higher connectivity pattern similarities and retrieval successin each region
(Figure S22B). Then, we identified the regions, which demonstrated a positive association between

connectivity pattern similarities and order memory (Figure S22C).

To identify brain regions that may support al three neural computations (like the hippocampus), we
overlapped spatial patterns for these three effects (all pror < 0.05). This revealed a set of brain regions
including relatively large clusters (at least 50 voxels) in the mPFC, right inferior frontal gyrus (IFG),
anterior/middle cingulate cortex and supplementary motor area (SMA), left inferior temporal gyrus (ITG)
and left insular (Figure 7B). These results suggest that this network of cortical regions may use the same
neural processes to perform event segmentation and integration as the hippocampus during continuous

memory encoding.
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Figure 7. Identifying overlapping event sesgmentation and integration computations across the neocortex. (A) We identified
three relationships between neural pattern similarity and subsequent memory in the hippocampus. (B) Similar to the hippocampus,
overlapping event segmentation and integration computations were found in a network of brain regions including the medial
prefrontal cortex (mPFC), right inferior frontal gyrus (IFG), anterior/middle cingulate cortex and supplementary motor area
(SMA), left inferior temporal gyrus (ITG), and left insular (pepr < 0.05 across 1000 parcels, cluster size >= 50).
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Hippocampal neural pattern similarities were correlated with memory formation in a replication

dataset

We analyzed an independent movie watching-recall dataset (Kurby and Zacks 2018) (i.e., replication
dataset) to conceptually replicate reported associations between neural similarity and memory formation
in the discovery dataset. Discovery dataset and replication differed in several aspectsin terms of data
acquisition protocol (See Methods), and therefore, provides the opportunity to test the generalization.
Participants watched five short movies inside the MRI scanner and returned to the lab several days
(mean=3.4 days) later for behavioral testing. During the behavioral session, participants also performed
the segmentation task to generate participant-specific event boundaries for each movie clip (Figure 8A).
These participant-specific boundaries were used as onsets/offsets of eventsto calculate event-specific
fMRI activation patterns and connectivity patterns, and then neural similarities across boundaries within
each movieclip (i.e., “ within-movie” method). The estimation of neural similarities using the “within-
movie” method isidentical to the counterpart used in the discovery dataset. Furthermore, neural
similarities were a so calculated across different movie clips (i.e., “between-movie’” method) (Figure 8B).
We correlated clip-specific neural similarity measures with all three different memory measures (i.e.,
recognition, recall, and order memory). Results from the replication dataset that survived FDR-correction
are summarized in Figur e 8C alongside the discovery dataset resultsin Figure 8D (for full results see
Figure S23-S24 and Table S6-S7).

Using the “within-movie” method, we found that lower activation pattern similarity in the hippocampus
during movie watching correlated with better recognition memory (r=-0.14, pray=0.028, prpr=0.033).
Similar correlations were found in early auditory cortex (r=-0.17, prav=0.007, prpr=0.021), mPFC (r=-0.14,
Prav=0.025, prpr=0.033), PMC (r=-0.17, prax=0.006, prpr=0.021), and pPHG (r=-0.16, p;a,=0.01,
Pror=0.022). Thus, the relationship between subsequent retrieval success and lower activation pattern
similarity in the hippocampus as well as early auditory cortex, mPFC, and pPHG was replicated across our

two datasets (Figure 8C-D).

35


https://doi.org/10.1101/2020.03.14.990002
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.14.990002; this version posted December 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Activation pattern similarity in the mPFC and PMC also correlated with additional memory measures
(mPFC: with order memory (r=-0.19, pra,=0.002, prpr=0.012); PMC: with order memory (r=-0.16,
Prav=0.009, prpr=0.027) and recall (r=-0.17, prav=0.006, prpr=0.036)). However, connectivity pattern
similarities estimated by the “within-movie” method did not associate with any memory measures.

This may because durations were too short based on participants' segmentation: event durations were
around 60s in the discovery dataset, compared with 6-10sin the replication dataset. We propose that 3-5
TRsare insufficient to be viewed as “encoding context” and enable meaningful connectivity analyses. To
explore further, we next regarded each movie clip (2 to 6 min) as an event and performed the calculation
of connectivity patterns using the * between-movie’” method. We found that higher connectivity pattern
similarity across movie clipsin the hippocampus (r=0.17, prav=0.013, pror=0.019), early auditory cortex
(r=0.2, prav=0.003, prpr=0.006), MPFC (r=0.15, p;ay=0.036, prpr=0.043), PMC (r=0.26, p;ay<0.001,
Pror<0.006), and pPHG (r=0.21, p:ay=0.002, p-pr=0.006) was associated with better recall performance.
Therefore, the “ between-movie” method showed that the relationship between retrieval success and higher
connectivity pattern similarity in the hippocampus, PMC, and early auditory cortex was also replicated
across two datasets (Figure 8C-8D).

Furthermore, we found modest evidence (i.e., prav Value around 0.05) to support that higher connectivity
pattern similarity in these ROIs tended to associated with better order memory performance (early
auditory cortex (r=-0.137, prav=0.048), mPFC (r=-0.12, p;ay=0.08), PMC (r=-0.135, p;av=0.052) and pPHG
(r=-0.12, prav=0.08)). Across two datasets, connectivity pattern similarities of the early auditory cortex and
pPHG were associated with better order memory.

In sum, the relationships between hippocampal activation and connectivity pattern similarity and episodic
memory formation were replicated across two datasets. However, higher hippocampal connectivity pattern
similarity was associated with better order memory only in the discovery dataset, but not in the replication
dataset. Also, our “within-movie’ connectivity analysis did not reveal the subsequent memory effect, but
that could be due to experimental design (ie., short events). When we analyzed connectivity patterns on a
longer timescale with “between-movie” analysis, then memory effects got replicated.
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Figure 8 Experimental design as well as data analyses in the replication dataset, and comparison between results
from two datasets. (A) In the replication dataset, participants watched movie clipsinside the MRI scanner (sessionl)
and returned to the lab several days (mean=3.4 days) later for behavioral testing (session2) including both
segmentation and memory tests. (B) Two methods (i.e., within-movie and between-movie) were used to estimate
neural pattern similarity. For the within-movie method, participant-specific boundaries were used to define events
within movies while for the between-movie method, each movie clip was regarded as an individual event. (C)
Correlations between ROI-specific neural pattern similarity and memory measures in the replication dataset.
Correlation coefficients are presented for significant tests that survived FDR-correction. Full results from the
replication dataset can be found in Figure S22-S23 and Table S5-S6. (D) Significant testsin the discovery dataset,
with solid blocks for those that survived FDR-correction. Act.=Activation pattern; Con.=Connectivtiy pattern;
Recog.=Recognition; Contrast=contrast between Remembered and Forgotten; Shuffle=test with shuffled event
boundaries; Cross=cross-event analyses.
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To successfully form memories of our life experiences, we need to segregate continuous experience into
events (Baldassano et al. 2017; Zacks 2020) and integrate those events across their boundariesinto a
coherent narrative (Griffiths and Fuentemilla 2020). Here we show that distinct hippocampal activation
patterns, but similar hippocampal connectivity patterns across event boundaries, facilitate these two vital
episodic memory functions. We propose that distinct activation patterns reflect event segmentation while
similar connectivity patterns integrate separately represented events into a narrative. Supporting thisrole
of connectivity patterns for event integration, we found that similar hippocampal connectivity patterns
were relevant for the correct sequential order of subseguent retrieval. Our whole-brain anaysis
demonstrates that similar neurocomputations were performed by a network of cortical regions, in
particular for the mPFC. Finally, these results were further validated using an independent movie-
watching recall dataset, in which different stimuli and memory measures were utilized. Among the same
set of ROIs, hippocampal activation and connectivity pattern similarity showed consistent relationships
with memory across these two datasets. Overall, these results suggest that both hippocampal and medial

prefrontal event segmentation and integration support memory formation of continuous experience.

Using multivoxel pattern analysis, we found that distinct local activation patter ns across event boundaries
in the early auditory area, mPFC, posterior parahippocampal gyrus, and hippocampus, were associated
with better subsequent memory, indexed by more distinct activation patterns between two adjacent events.
The ability to segment continuous experience at the behavioral level has been linked to successful memory
encoding (Sargent et al. 2013) and compelling evidence suggested that the hippocampusis activated
around event boundaries (Ben-Y akov and Dudai 2011; Ben-Y akov et al. 2013; DuBrow and Davachi 2013;
Ben-Y akov and Henson 2018). This hippocampal activity has been proposed to be associated with a
hippocampal segmentation process, but how the hippocampus represents two separate events, and whether
the corresponding neural representations are relevant for memory remained unclear. Our findings suggest
that the hippocampus and other brain regions (e.g., mPFC) segment events by representing them with two

distinct patterns of activity. Thisis similar to the role of the hippocampus in pattern separation: when
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similar experiences need to be discriminated and encoded, the underlying hippocampal neural
representations tend to be dissimilar (Bakker et a. 2008; Y assa and Stark 2011). This neural phenomenon
has typically been studied to show how the brain separates perceptually similar stimuli (i.e., images). Here,
our findings indicate that a similar pattern separation occurs for events during the continuous experience
and this determines subsequent memory for those events. That is to say, the episodic memory system may
use ‘orthogonalized’ neura representations to encode two events for the purpose of event segmentation.
Further, we show these ‘ orthogonalized’ neural representations are potentially event-distance dependent:
the hippocampus only generates consecutive dissimilar patterns when events occur relatively close in time.
Taken together, this suggests the existence of a brain network (mainly hippocampus and mPFC) for the
continuous segmentation of ongoing experience, and the degree of separate neural event representation for

nearby eventsis relevant for memory formation.

Complementing this, we found that more similar within-region connectivity patterns of several regions
across event boundaries, including again the early auditory area and hippocampus, were associated with
the better subsequent recall. Compared to local activation patterns (Cohen et al. 2017; Xue 2018), within-
region connectivity patterns are aless used multivariate approach. Recently, Tambini and Davachi
proposed that both activation and connectivity patterns could be used to capture neural states during
memory encoding and reactivation, but connectivity patterns tend to encode contexts or states instead of
particular perceptual inputs (Tambini and Davachi 2019). Our results support this notion: activation
patter ns were event-specific (Chen et a. 2017) and dissimilar for neighboring events, while connectivity
patterns were relatively stable across event boundaries. Importantly, the stability of connectivity patterns
positively associated with memory formation. Therefore, the function of similar connectivity patterns
could beto integrate segmented and separately represented events into a coherent narrative. To provide
further support for thisidea, we examined the relationship between connectivity pattern similarity and
sequentia order during memory recall and found that higher cross-event connectivity pattern similarity

(mainly in the hippocampus and pPHG) was associated with better retrieval of the sequential order of
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individual events. Results from the replication dataset, in which a more accurate order memory measure
was adopted, still demonstrated the role of pPHG' s connectivity pattern in promoting order memory. In
general, these results revealed that the multi-voxel connectivity pattern can be used to predict how
temporal sequences are represented in the human media temporal lobe memory system. Interestingly, our
activation and connectivity pattern measures were both modulated by event boundaries in a similar way
(ie., greater within-event similarity compared with between-event similarity). But the way they interact
with memory was different/opposite, with dissimilar patterns being better for activation, and similar

patterns being better for connectivity.

Remembering the sequence of eventsis not only one of the critical features of episodic memory (Davachi
and DuBrow 2015) but aso highly relevant for other forms of sequence learning, for example, spatial
memory and encoding of temporal information (Eichenbaum 2014; Bellmund et al. 2020). Animal studies
have reveal ed the existence of hippocampal neurons (i.e., time cells (Manns et a. 2007), event-specific
rate remapping cells (Sun et a. 2020)) that are causally involved in representing temporally structured
experience. Single-cell recordings in the hippocampus of patients with pharmacologically intractable
epilepsy showed that as a result of repeated viewing of the same video clips, neuronal activity in
successive time segments became gradually correlated, and this potential measure of temporal binding
predicted subsequent recall (Paz et a. 2010). This study revealed how the temporal relationship between
current hippocampal activity and hippocampal activity that follows in time can be used to link successive
events in humans. Other recent human fMRI studies revealed the role of the human hippocampal -
entorhinal region in representing the temporal sequence of experience across different paradigms and
stimuli (Lositsky et a. 2016; Bellmund et al. 2019; Montchal et al. 2019; Thavabaasingam et a. 2019).
Adding to this, our study tested the role of a new multivariate measure, connectivity pattern similarity,
which could reflect the internal stability of neural states, in temporal sequence coding. We provided
preliminary evidence that connectivity pattern similarity across event boundaries in the medial temporal

lobeisinvolved in sequential memory. Future studies are needed to further investigate the precise
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mnemonic functions of different neural measures (e.g., activity pattern, within-region connectivity pattern,
and system-level interaction between regions) during memory formation, in particular for encoding

temporal structure during the continuous experience (Tambini and Davachi 2019).

Our ROI analysis highlights the two functions of the hippocampus in the separate representation of
segmented events and the binding function that linked events into a narrative, and region-based searchlight
analysisidentified the role of subregions of the prefrontal cortex (e.g., mPFC, IFG), insular, and inferior
temporal gyrusin event segmentation and integration during memory formation. The role of the mPFC in
event integration is particularly thought-provoking. The mPFC is generally implicated in encoding and
retrieval of episodic memories (Kim 2010; Rugg and Vilberg 2013). Among its variety of functionsin
learning and memory (Fernandez 2017), the online integration of events we observed here is consistent
with its function in the facilitation of associative inference (Zeithamova et al. 2012; Preston and
Eichenbaum 2013; Schlichting et al. 2014; Schlichting and Preston 2015; Spalding et al. 2018),
accumulation of knowledge (Kumaran et al. 2009; Berkers et al. 2018), and integration of new and prior
knowledge (van Kesteren et al. 2010, 2013, 2014). We propose that the general mnemonic function of
mPFC is to establish links between separate el ements across time and space. Taken together, we found
that the hippocampus-mPFC circuit performs event segmentation and integration during memory
formation of continuous experience. These findings demonstrate the contribution of two complementary
event processing mechanisms and underlying neural representations in episodic memory formation. The
hierarchical network model of event segmentation proposes that higher-order regions receive event
representations from lower-order perceptual regions, and then transfer these representations to the
hippocampus for storage (Hasson et al. 2015; Baldassano et al. 2017). Our study suggested that event
integration is another key cognitive process involved in event memory by showing how distinct event

representations are integrated by similar connectivity patterns of hippocampus and mPFC.

Beyond the hippocampus, the role of sensory regionsin event segmentation was also predicted by the

hierarchical theory of event processing and supported by initial empirical evidence (Baldassano et al. 2017)
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and our analyses. As predicted by the theoretical model of event segmentation (Hasson et al. 2015), event
segmentation signals could exist in multiple brain regions (including different levels of sensory regions),
but interestingly, the continuous experience is represented at different time scales along with the
hierarchical structure. The hippocampus may represent the event structure that aligns best to human-labels
while lower-level sensory regions not only respond to this coarse segmentation but also create fine-scale
segmentations within the individual event. This model was supported by human fMRI data (Baldassano et
al. 2017): although sensory regions demonstrated more frequent transitions of activation patterns (i.e.,
more event boundaries) than higher-level regions, there are always some transitions matched with
boundaries based on human labels(i.e., close to hippocampal segmentation). Therefore, it is not surprising
that, when we choose human-labeled boundaries to analyses signals from sensory regions, we can still link

their event segmentation measures to subsequent memory.

Our study, together with previous studies also combining human fMRI with naturalistic stimuli (Hasson et
al. 2008; Baldassano et a. 2017; Chen et a. 2017), demonstrates the potential of this approach to advance
our understanding of the human memory system, in particular for the formation of real-life memories.
Similar paradigms and anal yses can be easily adapted in clinical (e.g., memory and affective disorders)
and developmental neuroimaging studies (e.g., children and older adults) to reveal changes related to
disease or (mal)development. For example, fMRI-based event segmentation and integration measures
could be used to probe how these processes are impaired in Alzheimer's disease and mild cognitive
impairment, how they develop from childhood to adulthood and diminish in normal aging. In addition,
connectivity patterns have the potential to inform our understanding of other cognitive operations that
require integration of information, such as inferential reasoning (Preston and Eichenbaum 2013). However,
due to the low temporal resolution of fMRI, the directionality of information flow between the neocortical
regions of the ‘hierarchical memory system’ (Hasson et al. 2015) and the hippocampus remains unclear.

Future application of deep-source magnetoencephal ography (MEG) (e.g., Backus, Schoffelen, Szebényi,
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Hansimayr, & Doeller, 2016) or intracranial electroencephalography (iEEG) (e.q., Jafarpour, Griffin, Lin,

& Knight, 2019) with naturalistic memory paradigms may bridge this gap.

Despite the mentioned advantages of combining neuroimaging, naturalistic stimuli, and subsequent
memory design to study episodic memory formation, there are also disadvantages worth noting, especially
concerning the discovery dataset. For example, al participants viewed the same moviein the same order,
therefore, memory for individual event and their sequential relationship cannot be isolated. Furthermore,
in the discovery dataset, memory performance was relatively high, which means subsequent memory
contrasts in some participants may not be well-powered. The inclusion of the replication dataset could
potentially mitigate these concerns, revealing rather consistent neural effects in the hippocampus and
parahippocampus across two datasets. Another disadvantage of naturalistic stimuli isthat situational
variables could influence how memorable each event is (ie., duration, music, location......). Some of them
were indeed positively correlated with memory (e.g., event duration and arousal). We accounted for this
in our mixed model analysis that included these situational factors, but the results were consistent with our
main analyses. Therefore, our proposed mnemonic functions of the hippocampus are not likely to be the

result of external factors.

In sum, we show that the hippocampus and mPFC may perform adual function during naturalistic
memory formation. Both regions segment events by representing them with distinct activation patterns,
while also integrating those events by retaining similar connectivity patterns across events, enabling the
representation of a coherent narrative. The ability to measure segmentation- and integration-related neural
operations using fMRI opens new opportunities to investigate the mechanisms of memory encoding for

real-life experience.
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