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Abstract 

How do we encode our continuous life experiences for later retrieval? Theories of event segmentation and 

integration suggest that the hippocampus binds separately represented events into an ordered narrative. 

Using an open-access functional Magnetic Resonance Imaging (fMRI) movie watching-recall dataset, we 

quantified two types of neural similarities (i.e., activation pattern similarity and within-region voxel-based 

connectivity pattern similarity) between separate events during movie watching and related them to 

subsequent retrieval of events as well as retrieval of sequential order. We demonstrate that distinct 

activation patterns of the hippocampus and medial prefrontal cortex form event memories. By contrast, 

similar within-region connectivity patterns between events facilitate memory formation and are relevant 

for the retention of events in the correct sequential order. We applied the same approaches to an 

independent movie watching fMRI dataset and replicational analyses highlighted again the role of 

hippocampal activation pattern and connectivity pattern in memory formation. We propose that distinct 

activation patterns represent neural segmentation of events while similar connectivity patterns encode 

context information, and therefore integrate events into a narrative. Our results provide novel evidence for 

the role of hippocampal-medial prefrontal event segmentation and integration in episodic memory 

formation of real-life experience. 

Keywords: subsequent memory effect; hippocampus; medial prefrontal cortex; event segmentation; event 

integration 
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MAIN TEXT 

Introduction 

How we form memories of our life experiences is a fundamental scientific question with broad 

implications. In the past two decades, human neuroimaging and electrophysiology studies using the 

subsequent memory effect paradigm have implicated a distinct set of brain regions involved in successful 

memory formation (Brewer et al. 1998; Wagner et al. 1998; Fernández et al. 1999; Kim 2011). In these 

subsequent memory studies, increased neural activity of the hippocampus, parahippocampal gyrus, and the 

prefrontal cortex during memory encoding is associated with successful subsequent retrieval. However, 

real-world memories are formed based on a continuous stream of information rather than the sequentially 

presented, isolated items used in most subsequent memory studies (Kim 2011). Potentially, continuous 

sensory experience is segmented into distinct events (i.e., event segmentation) (Baldassano et al. 2017; 

Zacks 2020) that are then bound together into a coherent narrative, preserving their sequential 

relationships (i.e., event integration) (Griffiths and Fuentemilla 2020). To examine episodic memory 

formation of real-life-like experiences in humans, we analysed brain activity using functional Magnetic 

Resonance Imaging (fMRI) while participants were watching a movie. Based on subsequent memory 

recall, we aimed at identifying brain regions and neural representational processes underlying event 

segmentation and integration during episodic memory formation.  

Thanks to recent advances in statistical analysis of ongoing neural activity (Hermans et al. 2011; Cohen et 

al. 2017; Xue 2018; Nastase et al. 2019), naturalistic stimuli (e.g., movie, spoken narratives, music) have 

been increasingly used in neuroscience (Hasson et al. 2004; Hermans et al. 2011; Huk et al. 2018; 

Sonkusare et al. 2019). This is especially valuable for memory research because naturalistic stimuli can 

greatly enhance the ecological validity of experimental studies (Hasson et al. 2008; Baldassano et al. 2017; 

Chen et al. 2017; Montchal et al. 2019). Hasson and colleagues first investigated memory formation with 

cinematographic stimuli and demonstrated that brain activity was more correlated among participants for 

later remembered than forgotten events (Hasson et al. 2008). While that study uncovered regions that 
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encode continuous experiences, the nature of representations in those regions remained unclear, 

particularly with regard to how episodes are segmented into separate events and then integrated into a 

coherent sequence.   

Event segmentation theory suggests that continuous experiences need to be segmented into discrete event 

representations, and thereafter they can be better understood and encoded (Zacks et al. 2001, 2007; Zacks 

2020). Two recent studies provided novel perspectives into segmentation theory. Using Multi-Voxel 

Pattern Analysis (MVPA) and a movie watching-recall dataset, Chen and colleagues showed similar 

activation patterns of the same events across individuals and event-specific reinstatements of activation 

patterns between encoding and retrieval (Chen et al. 2017). Following this, Baldassano and colleagues 

demonstrated a nested processing hierarchy of events (‘hierarchical memory system’, (Hasson et al. 2015)) 

from fine-grained segmentation in early sensory regions to coarse segmentation in regions of the higher-

order default-mode network (e.g., medial prefrontal cortex (mPFC) and posterior medial cortex (PMC)). 

Importantly, boundaries of long events at the top of the hierarchy matched with event boundaries 

annotated by human observers and were coupled to increased hippocampal activity (Baldassano et al. 

2017). These results demonstrated that human brains spontaneously used different activation patterns to 

represent events during continuous movie watching, and how these activation patterns reactivated during 

recall. Also, it may suggest that regions such as mPFC, PMC, and hippocampus encode events at the same 

level that we consciously perceive boundaries between events. However, it remains unclear how exactly 

this event segmentation at the neural level relates to subsequent memory recall. 

Event segmentation alone is not sufficient for episodic memory formation of continuous real-life 

experiences. Temporal context theory suggests that it is essential to integrate segmented events into a 

coherent narrative via time, meaning, or other abstract features (Howard et al. 2005; Howard and 

Eichenbaum 2013). Therefore, a non-exhaustive list of questions are: (1) what are the neural 

underpinnings of event integration during continuous memory formation, (2) does integration occur in the 

same brain regions as segmentation, and (3) how does integration relate to subsequent memory recall. A 
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promising approach to answer these questions is to examine local connectivity patterns (also called multi-

voxel correlation structure), which may represent a brain signal that integrates events (Tambini and 

Davachi 2019). This method was derived from rodent electrophysiology (Qin et al. 1997; Kudrimoti et al. 

1999; Lansink et al. 2008) and has been used in human fMRI studies (Tambini and Davachi 2013; 

Hermans et al. 2017) to quantify distributed memory representations in neuronal assemblies. Recently, 

Tambini and Davachi (Tambini and Davachi 2019) proposed that activation patterns are the 

representations of specific perceptual inputs (e.g., stimuli), while local connectivity patterns reflect 

particular encoding contexts or states. However, the different mnemonic functions of activity patterns and 

connectivity patterns have yet to be compared empirically within a single study. If local connectivity 

patterns represent encoding context, they may facilitate integration across events. Examination of 

connectivity patterns alongside activation patterns would help to characterise how the brain 

simultaneously performs event segmentation and integration. 

Recently, a hippocampal neural code that simultaneously tracked subdivisions of a continuous experience 

(i.e., events) and their sequential relationship was described in rodents’ CA1 region (Sun et al. 2020). This 

neural code could be a fundamental neural correlate by which episodic experience is integrated, but has 

yet to be revealed in humans. Hippocampal activity was found to increase at the boundaries between two 

events during continuous experience (Ben-Yakov and Dudai 2011; Ben-Yakov et al. 2013; DuBrow and 

Davachi 2013; Baldassano et al. 2017; Ben-Yakov and Henson 2018), but what these hippocampal signals 

represent in terms of event segmentation and integration is not clear. Theoretical models proposed that 

increased hippocampal signal may reflect a rapid shift in mental representations (e.g., temporal and/or 

contextual information of an event) (Ranganath and Ritchey 2012; DuBrow and Davachi 2016; DuBrow et 

al. 2017). Therefore, it can be regarded as the neural signature of event segmentation. Alternatively, this 

increase may link to the integration of episodic memories across event boundaries, as suggested by scalp 

electrocorticography (EEG) studies (Sols et al. 2017; Silva et al. 2019) and the event conjunction 
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framework (Griffiths and Fuentemilla 2020). However, fMRI evidence for the role of hippocampal signals 

in integration across events is still limited. 

The current study aimed to reveal the neural underpinnings of the two processes in question – event 

segmentation and event integration - during memory formation of naturalistic experiences. To that end, we 

first analyzed an existing dataset (Baldassano et al. 2017; Chen et al. 2017) where participants watched a 

movie while being scanned (Figure 1A) and afterwards were instructed to freely recall the story of the 

movie (Figure 1B). This design allowed us to associate different neural measures during episodic 

encoding with subsequent memory retrieval (Figure 1C-D). We extracted voxel-wise Blood Oxygenation 

Level Dependent (BOLD) time courses during movie watching (encoding) from six predefined regions-of-

interest (ROI) in the ‘hierarchical memory system’ (Hasson et al. 2015) including early auditory and 

visual areas, posterior medial cortex, medial prefrontal cortex, hippocampus, and posterior 

parahippocampal gyrus (Figure 2A; Figure S1). To probe the role of a broader set of regions in event 

segmentation and integration, we repeated all analyses in each region of a neocortical parcellation 

(Schaefer et al. 2018) (Figure 2B). We first examined the relationship between ROI-based activity time 

courses and subsequent memory recall and replicated the classical subsequent memory effects (i.e., 

greater activation for remembered compared to forgotten events) in regions including the hippocampus as 

well as the posterior parahippocampal gyrus (Figure S2-3, details in Supplementary Materials). To 

dissociate the two event processes, we used voxel-wise activity (Figure 2C) from each ROI to quantify 

the similarity between neural representations of events by two different multivariate methods (i.e., 

activation and connectivity patterns) (Figure 2D-E). Before linking neural pattern similarities with 

subsequent memory, we first compared between-event and within-event pattern similarities. We predicted 

that if our multivariate methods capture event representations, within-event pattern shifts should be 

smaller than between-event pattern shifts. Then we reasoned that if the neural representation (activation or 

connectivity pattern) shows a large transition (i.e., lower neural similarity value) between two adjacent 

events, and if this dissimilarity associates with better subsequent memory for events, then this 
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representation might be involved in event segmentation (Figure 2E). By contrast, if the neural 

representation remains stable (i.e., higher similarity) across two or more neighboring events, and this 

stability relates to event memory as well as retention of the correct order for those events (i.e., order 

memory), then this representation may underlie event integration (Figure 2F). The relationship between 

neural event processing (i.e., segmentation and event integration) and memory formation was further 

cross-validated in an independent movie watching-recall dataset (replication dataset) that used a different 

experimental protocol with alternative movie stimuli.  

 

Figure 1. Experimental procedure and behavioural performance in the discovery dataset. (A) Each participant watched a 
50-min audiovisual movie, BBC’s Sherlock (season 1, episode 1), while brain activity was recorded with fMRI. The movie was 
divided into 50 events based on major narrative shifts. Blurred images are shown here due to copyright reasons. However, the 
movie was shown in high resolution during the experiment. (B) Immediately after movie-watching, participants verbally recalled 
the movie content in as much detail as possible without any visual or auditory cues. Speech was recorded using a microphone and 
then transcribed. Critically, speech was also segmented into events and matched with the events segmented from the movie. All 
events mentioned in the speech were labelled as remembered while missing events were labelled as forgotten. In addition, among 
those remembered events, the ones that were recalled in the correct sequential order were labelled as in-order events (e.g., event 6
was recalled after event 5). Out-of-order events were those that were recalled in an incorrect sequential order (e.g., event 4 was 
recalled after event 6). We labelled the first recalled event and all forgotten events as not available because no sequential 
information can be accessed. (C) Illustration of all remembered and forgotten events during movie-watching in all participants. (D
Illustration of all in-order and out-of-order events during movie watching in all participants. Each row of the heatmap is a 
different event, and each column represents a participant.  
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Figure 2. Neural similarities between separate events and their link with subsequent memory recall. (A) Six predefined 
regions-of-interest (ROIs): early auditory (green) and visual area (red), posterior medial cortex (brown), medial prefrontal cortex 
(pink), hippocampus (blue), and posterior parahippocampal gyrus (orange). See also Supplementary Figure 1. (B) Neocortical 
parcellation (1000 parcels) used in searchlight analysis. (C) For each region (ROI or parcel), voxel-wise signal during movie 
watching was extracted and then segmented into 50 events based on the event annotations. (D) We first generated event-specific 
activation patterns by averaging over all time points in that event. Then activation pattern similarity was calculated by Pearson’s 
correlation between activation patterns of two sequential events. If a region encodes two events separately, we expect two distinct 
neural representations and therefore a lower pattern similarity. (E) Event-specific within-region connectivity patterns were 
represented by voxel-by-voxel pairwise correlation matrices. Connectivity pattern similarity across event boundaries was also 
calculated using Pearson’s r between two sequential events. Stable neural representations across two events should yield a higher 
pattern similarity in the corresponding region. (F) fMRI evidence for event segmentation. For a certain multivariate neural 
measure, if it can be found that two distinct neural representations are used to encode the adjacent events while the neural patterns 
for remembered (‘R’) events are more dissimilar compared to forgotten (‘F’) events, this measure is likely to be associated with 
event segmentation. (G) fMRI evidence for event integration. If the multivariate neural measure remains stable across the 
boundary of two neighboring events and remembered (‘R’) events have higher neural similarity compared to forgotten (‘F’) 
events, this measure may relate to event integration. 
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Methods 
 
1. Participants and procedure 

1.1 Participants 

Discovery dataset 

Twenty-two healthy young adults (10 female, age range 18-26, mean age 20.8 years) participated in the 

experiment. All participants were native English speakers and naïve to the BBC crime drama Sherlock. 

Data were discarded from participants with excessive motion (> 1 voxel; n = 2), low recall duration (< 10 

min; n = 2), or sleeping during the experiment (n = 1). This leaves 17 participants in total for our analyses. 

Due to a technical problem, one participant (s5) is missing data for the last 75 s (part of event 49 and all of 

event 50) and the affected two events were excluded in the analyses. 

Replication dataset 

In total 52 healthy adults (40 older adults (mean age=69 years) and 12 young adults (mean age=23 years)) 

from the St. Louis community or Washington University’s Psychology Department participant pool 

participated in this study. No participant reported current physical or mental health disorders. All of them 

were right-handed and had normal or corrected to normal vision. This research was approved by the 

Human Research Protection Office at Washington University 

1.2 Procedure 

Discovery dataset 

All our analyses are based on the Sherlock Movie Dataset (Baldassano et al. 2017; Chen et al. 2017); see 

Data availability below) acquired and pre-processed at Princeton Neuroscience Institute. No similar 

analysis or results (excluding behavioural results of recall accuracy) have been reported in previous 

studies using this dataset.  
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Participants were informed that they would watch a movie and would later be required to recall its content. 

They were then presented with a 48-min segment of the first episode of the Sherlock series (encoding 

phase), split into two parts of approximately equal length (23 min and 25 min) and presented in two 

consecutive blocks. A 30 s introductory cartoon clip was prepended before each block. Immediately after 

the movie presentation, participants were instructed to verbally describe the movie in as much detail as 

they could and for as long as they wished (recall phase). They were asked to recall the episode in the 

correct sequential order but were permitted to return to earlier points in the narrative if they remembered 

further content. Audio was simultaneously recorded by a customized MR-compatible recording system 

throughout the recall phase.  

Replication dataset 

A detailed description of the procedure can be found in the previous publication (Kurby and Zacks 2018). 

Participants finished two sessions with an interval of around 3.4 days (SD=2.3 days, min=0, max=14, 

mode=2). In session 1 (fMRI session), participants watched five movie clips in the same order. They were 

instructed to remember movie contents as much as possible. In session 2 (i.e., Behavioral session), two 

kinds of behavioral testing were performed. The first was the segmentation task, where participants were 

instructed to “press a button to press a button when, in their opinion, one meaningful unit of activity ended 

and another began” (Kurby and Zacks 2018). They produced both coarse (i.e., largest meaningful units) 

and fine (i.e., smallest meaningful units) segmentation for the same clip and we used the coarse 

segmentation as event boundaries in our neuroimaging analyses. Second, they performed memory tests. 

Recognition, recall, and order memory was tested for each movie clip. Recognition memory was tested 

using a 20-item two-alternative forced-choice test where participants were instructed to choose the visual 

image they saw in the movie instead of the distracter. Recall memory was assessed by asking participants 

to describe the movie content in as much detail as possible. Order memory was tested by reordering 12 

visually distinctive images from the movie according to when they appeared. 
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2. Behavioural data analysis 

Discovery dataset 

Event annotations of the movie and verbal speech recording 

The movie was segmented into 48 events by an independent observer who was blind to the experimental 

purpose, design, or results, following major shifts in the narrative (e.g., changes in location, topic, and/or 

time). Each event was given a descriptive label (e.g., “press conference”). Including the two introductory 

cartoon clips, 50 scenes were analysed in total. The timestamps for both the onset and offset of identified 

scenes were recorded and aligned across all participants. Both the onset and offset are referred to as the 

boundaries of the respective event. This is a widely used method for event segmentation and has been 

validated by a data-driven approach (Baldassano et al., 2017). The length of the events ranges from 11 to 

180s (Mean ± SD: 57.5 ± 41.7 s). The distribution of event length is visualized in Figure S1, and the 

duration of each event is presented in Table S1. Each subject's verbal speech was transcribed, segmented, 

and matched to the events that were recalled from the movie.  

Situational variables of movie events 

For each movie event, several situational variables including both semantic (e.g., location) and affective 

features (e.g. arousal) were analyzed together with the subsequent recall of that event in both correlational 

analyses and mixed-effect modeling (see validation analysis below). Firstly, the entire movie was divided 

into 1000 time segments (mean duration=3.0s, s.d.=2.2s) by a human rater. Each of the 1000 segments 

was then labeled for variables including arousal (excitement/engagement/activity level), music (whether or 

not there is music playing), location (whether the location is indoor or outdoor), and valence (Positive or 

negative mood). For subjective rating (i.e., arousal and valence), assessments were collected from four 

different raters (arousal: Cronbach’s α = 0.75; valence: Cronbach’s α = 0.81). In the event-specific 

analyses, a score was derived for each of the 50 events for each of the variables mentioned by 

averaging/adding up ratings across time segments. The event-level scores are displayed in Table S1. These 
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analyses were performed and data were shared by Chen and colleagues (Chen et al. 2017). We correlated 

these variables (along with event duration) with the mean recall rate in all participants (Figure S5) and 

found that arousal and event duration positively correlated with memory recall (p<0.05). Other situational 

variables did not show significant correlations with memory (p>0.05). 

Event and order memory 

For each participant, we first asked whether events were successfully recalled or not, as in the classical 

subsequent memory paradigm (Brewer et al. 1998; Wagner et al. 1998; Fernández et al. 1999). An event 

was labeled as ‘remembered’ if any part of the event was described during the recall. ‘Forgotten’ events 

are the ones that were not mentioned throughout the recall phase.  

Secondly, out-of-order events were identified as a measure of order memory. Among all remembered 

events, an event was labelled as out-of-order if it was not described immediately after its preceding event 

in the original movie. For example, if event 3 is described immediately after event 1 without mentioning 

event 2, then event 3 is an out-of-order event. By contrast, if a participant described event 4, 5, 6 

sequentially during the recall phase, since event 5, 6 correctly followed their preceding event, event 5, 6 

were counted as in-order events. The first event verbally described in the recall phase was always labelled 

as ‘not available’ in the order memory analysis since it is not preceded by any event. It was possible that a 

single scene was mentioned multiple times (in different parts) during the recall, in which case the position 

of its first recall was used in the event and order memory analyses.  

Replication dataset 

All of the behavioral results were performed and shared by authors (C.K and J.Z) of the original 

publication (Kurby and Zacks 2018). Coarse event boundaries for our neural pattern similarity analyses. 

Recognition memory was measured as the percent of correct responses during the forced-choice test. 

Action recall memory was scored by how many of each type of action was mentioned (e.g., man drinking 

coffee). This scoring procedure was based on the Action Coding System (ACS: (Schwartz et al. 1991)). 
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Raw order memory was assessed as the number of errors made in the reordering test. To generate the 

(final) order memory measure, we multiplied each raw order memory measure by -1 and Z-normalized 

across all participants. This transformation made the measure intuitive (i.e., larger values indicate better 

order memory). 

3. fMRI data analysis 

3.1 fMRI data acquisition and pre-processing 

Discovery dataset 

fMRI data were acquired using a T2*-weighted EPI sequence on a 3T Siemens Skyra scanner (20-channel 

head coil; TR 1,500 ms; TE 28 ms; flip angle 64, spatial resolution 3*3*4 mm3). Only data from the 

encoding phase were analysed and reported in the current study.  

A standard pre-processing pipeline was followed using FSL (Jenkinson et al. 2012), which includes slice 

timing correction, motion correction, linear detrending, high-pass filtering (140 s cutoff), co-registration 

and affine transformation into 3 mm MNI standard space (Chen et al. 2017). The time series were shifted 

3 TRs (4.5 s) to account for the Haemodynamic response function (HRF). Data were z-scored across time 

at every voxel and a 6 mm smoothing kernel was applied. 

All subsequent analyses were performed on the pre-processed voxel-wise BOLD signal, in units of 

functional volume (TR = 1.5 s). Custom MatLab (R2018b, The Mathworks, Natick, MA) and Python 

(version 3.6) scripts were used for both Region of Interest and parcellation-based searchlight analysis. 

Replication dataset 

Neuroimaging data were acquired with a Siemens Trio 3T scanner. Functional data (i.e., movie watching 

data) were acquired in five runs using a T2* weighted EPI sequence (TR =2000 ms, TE =27 ms) in 35 

transverse slices (voxel size=4.0 mm). We re-ran the preprocessing according to the pipeline used in the 
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discovery dataset. Subsequent neuroimaging data analyses were performed on the preprocessed voxel-vise 

BOLD signal for each ROI. 

3.2 Region of interest (ROI) selection  

The six ROIs used in this study were independently defined by Chen and colleagues, in correspondence to 

the timescale hierarchy of the event segmentation model (Hasson et al. 2015; Baldassano et al. 2017). 

Early visual and early auditory cortex were functionally defined based on inter-subject correlation during 

an audio-visual movie and an audio narrative, respectively (Chen et al. 2016; Simony et al. 2016). ROIs 

for medial prefrontal cortex (mPFC) and posterior medial cortex (PMC) were taken from the functional 

atlas derived from resting-state default mode network (https://findlab.stanford.edu/functional_ROIs.html) 

from FIND lab at Stanford University (Shirer et al. 2012). The hippocampus and posterior 

parahippocampal gyrus were anatomically defined from the probabilistic Harvard-Oxford Subcortical 

Structural Atlas (Desikan et al. 2006). Chen and colleagues manually adjust the threshold of around 50% 

to ensure better anatomical coverage during the visual check. 

3.3 Whole-brain parcellation  

Alongside the ROI-based analysis, we performed a parcel-based searchlight analysis on the basis of 1000 

functionally parcellated cerebral regions 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_L

ocalGlobal). The parcellation was based on a gradient-weighted Markov Random Field (gwMRF) model, 

which integrated local gradient and global similarity approaches (Schaefer et al., 2018). Using both task 

and resting-state fMRI acquired from 1489 participants, parcels with functional and connectional 

homogeneity within cerebral cortex were generated (hippocampus and subcortical regions were not 

included). In this fashion, each of these biologically meaningful and non-overlapping parcels can be 

treated in the same way as an independent region similar to an ROI in the following analyses. The 
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parcellation was provided in both volume and surface space, and the volume-based parcellation space was 

used in our searchlight analyses. 

3.4 fMRI-based neural responses to event boundaries 

3.4.1 Univariate response 

BOLD signals were first averaged for each TR across all voxels in an ROI. Then the time series were z-

scored and segmented based on the event annotations mentioned above. We selected the time window of 

the univariate response analysis based on the shortest event duration. Among all events, the shortest event 

was 7 volumes (10.5 s), therefore we focused on BOLD signals 6 volumes before and after the event 

boundaries (i.e., in total 13 volumes around event boundaries). 

3.4.2 Activation patterns 

Voxel-wise BOLD time series from separate events were first extracted based on the onset and offset 

timestamps derived from the movie. Multivariate patterns of brain activation were generated for each 

event by averaging across all volumes within this event. To assess the similarity between two neighboring 

events, the activation pattern for each event of interest was correlated with its following event. The 

resulting Pearson’s correlation coefficient depicted the extent to which similar representational activity 

patterns were elicited by neighboring scenes. Lower similarity between two events represented a greater 

change in neural patterns across the event boundary. 

3.4.3 Connectivity patterns 

Intra-regional connectivity pattern analyses were conducted based on a method originally used in rodent 

electrophysiology studies to quantify the reactivation of sparsely distributed neuron assemblies (Qin et al. 

1997; Lansink et al. 2008), and recently used in human fMRI (Tambini and Davachi 2013, 2019; Hermans 

et al. 2017). For each event within each brain region, Pearson’s correlations were performed on the 

extracted m*n (volumes*voxels) BOLD-fMRI time series, between each of the n voxel time series. This 
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yielded an n-by-n pairwise correlation matrix (containing p values indicating the significance of the 

Pearson’s correlations), representing the within-region connectivity structure for each scene. For two 

neighboring events, the Pearson’s correlation coefficient of their correlation matrices was calculated to 

quantify the similarity for connectivity patterns. Lower similarity between two connectivity patterns 

represented a greater change in the intra-region connectivity patterns across the event boundary. 

3.4.4 Activation/Connectivity pattern similarity within and between movie events 

We compared within-event and between-event activation/connectivity pattern similarities to reveal the 

effects of event boundaries on neural pattern shifts. First, we generated “middle-point boundaries” for 

within-event neural similarities calculation. Specifically, for each of the fifty original events, an additional 

middle-point boundary was located at the middle points of the corresponding time series. Thus, one 

original event can be divided into two “half events” with equal duration. This created 100 “half events” 

defined by both human-annotated boundaries and “middle-point boundaries”. Then, we quantified neural 

similarities of activation/connectivity patterns between two neighbouring “half events”. If two “half events” 

were segmented by a human-annotated boundary, then the similarity was defined as the “between-event” 

pattern similarity, whereas if the two “half events” were segmented by a middle-point boundary, the 

similarity was defined as the “within-event” pattern similarity. 

3.5 Relationship between neural responses during encoding and subsequent memory  

Discovery dataset 

3.5.1 Remembered and forgotten events comparisons 

We first compared our neural pattern similarities (i.e., activation pattern similarity and connectivity 

pattern similarity) at the single-subject level explained above for each brain region (ROI or brain parcel). 

The similarity indices (Pearson’s r between two matrices) for both activation and connectivity patterns 

were averaged for the two types of event pairs (remembered and forgotten) for each participant. If the first 

event of the pair was retrieved during the recall phase, the event pair was labeled as remembered. 
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Remembered and forgotten event pairs were then compared in two separate t-tests for activity and 

connectivity pattern transitions (indexed by pattern similarity). 

We further examined the relationship between connectivity pattern transitions and order memory (i.e., 

temporal order of event recall). More specifically, connectivity patterns were averaged for another two 

types of event pairs (i.e., In-order or Out-of-order) for each participant. If the second event of the pair was 

recalled in an incorrect sequential order (e.g., event 4 was recalled immediately after event 6), the event 

pair was labeled as Out-of-order. Connectivity pattern transitions for In-order and Out-of-order event 

pairs were then compared with t-tests.  

3.5.2 Validation analyses of subsequent memory effects  

Beyond the paired t-tests between neural similarities of Remembered and Forgotten events, in total six 

additional statistical tests were performed to further validate reported subsequent memory effects 

(Detailed methods and results can be found in Supplementary Materials). In brief, (1) neighboring event 

pairs were divided into four categories based on memory for both the first and second event of the event 

pair (i.e., both Forgotten (FF), first Forgotten and second Remembered (FR), first remembered and 

second forgotten (RF), and both remembered (RR)). We then compared neural similarities across these 

four categories. (2) To confirm that the subsequent memory effect on pattern similarity was only present 

for actual event boundaries but not shuffled boundaries, we generated a null distribution of subsequent 

memory effects using the event boundary permutation analysis. During each permutation, event 

boundaries were re-located within events to create the same number of pseudo-events. The sequence of 

memory labels remain unchanged, and subsequent memory effects were qualified based on pseudo-events 

and corresponding memory labels. We asked whether subsequent memory effects based on the actual 

boundaries were larger than effects based on shuffled boundaries. (3) Memory labels (i.e., R and F) were 

shuffled across events, then neural pattern similarities were compared between shuffled memory labels 

instead of real labels. (4) For each event, we examined whether the likelihood of an event being 

remembered among all participants correlated with its mean neural pattern similarity with the previous 
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event. (5) We also performed a cross-participant correlation: we asked whether participants who 

demonstrated better memory showed lower/higher activation/connectivity pattern similarity during movie 

watching. (6) We further used a mixed-effects model to examine the relationship between neural similarity 

and memory, considering both participants and events as random effects and incorporating multiple event-

specific situational variables (e.g., event duration, location, music, arousal…). 

Replication dataset 

Subsequent memory for each movie clip was assessed by three different memory measures (i.e., 

recognition, recall, and order memory). Their relationships with event processing during encoding were 

investigated as a conceptual replication of findings from the discovery dataset. We calculated neural 

pattern similarities using the “within-movie” and “between-movie” method separately. For the “within-

movie” method, participant-specific boundaries generated during the segmentation task were used as event 

boundaries to calculate event-specific fMRI activation patterns and connectivity patterns during movie 

watching. Similarities of these activation/connectivity patterns were calculated across boundaries and then 

averaged for each movie clip at the participant level. To probe the memory relevances of these mean 

similarities, they were correlated with all three memory measures. For the connectivity pattern similarity 

analyses, we additionally used the “between-movie” method to enable meaningful connectivity analyses 

with enough TRs. Each movie clip was regarded as an event, and the connectivity pattern was estimated 

within the entire clip. Then connectivity pattern similarities were calculated across different movie clips 

and correlated with memory measures. 

3.6 Relationship between hippocampal pattern similarity and event distance 

The above analyses focused on neural pattern similarities between two neighboring events. Here, we 

examined the hippocampal pattern similarities between events with variable distances. Event distance was 

defined as the number of event boundaries between two events (the event distance between event 1 and 

event 3 is 2). For each event, we first calculated its activation and connectivity pattern. Then, we 
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calculated the activation and connectivity pattern similarity between all possible combinations of event A-

B pairs (‘Event A’ is the event which appeared earlier in the temporal sequence, and ‘Event B’ is the one 

presented later) within all 50 events. Finally, for each participant, and each event distance, two mean 

similarities for activation and connectivity pattern were calculated separately. Note that the number of 

available pairs decreases as the distance increases (e.g., events 1-50 are the only event pair with a distance 

of 49). To ensure a well-powered analysis for every event distance, we only compared event pairs with a 

distance less than or equal to 40, meaning at least 10 event pairs contributed to the event distance 

calculation. Analysis of all distances (d ≤ 49) can be found in the Supplementary Materials.  

Next, we used linear regression to examine the relationship between pattern similarity and event distance. 

In addition, to investigate how the subsequent memory of the preceding event (event A) modulates the 

relationship between event distance and pattern similarity, we ran a two-way ANOVA (memory * event 

distance) using the memory performance (remembered or forgotten) of the preceding event and event 

distance (range from 1 to 40) as two independent variables. The relationship between memory and event 

distance was validated with the permutation test, in which memory labels (i.e., R and F) were shuffled 

randomly 1000 times to generate null comparisons between two kinds of events. 

4. Statistical analysis 

For parametric hypothesis tests involved in the fMRI data analyses, the significance level was set to p  =  

0.05 (two-tailed). For permutation tests, p-values were estimated by comparing real results with null 

distributions generated by shuffling event boundaries or memory labels, and their significance levels were 

also set to p  =  0.05 (two-tailed). To account for the multiple comparisons problem that comes with 

multiple ROIs or brain regions, all reported p values in the main text were FDR-corrected (pFDR) 

(Genovese et al. 2002) unless otherwise stated (praw). Specifically, this means correction was made for six 

tests in ROI analyses, and 1000 tests for the whole-brain analyses. All significant p values were reported 

together with the effect sizes (Cohen’s d or partial η²). The custom modified version of DABEST 
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(https://github.com/ACCLAB/DABEST-python) was used to plot individual data points alongside 

otstrapping-based resampled distributions of the mean difference between conditions (Ho et al. 2019).  

5. Data and code availability 

ROI data are available at http://datasets.datalad.org/?dir = /workshops/mind-2017/sherlock. Whole-brain 

neuroimaging data are available at https://dataspace.princeton.edu/jspui/handle/88435/dsp01nz8062179.  

The replication dataset was stored at The Central Neuroimaging Data Archive (CNDA), Washington 

University, Saint Louis (https://cnda.wustl.edu/) and can be requested from Dynamic Cognition 

Laboratory (https://dcl.wustl.edu/people/jzacks/). Custom code used in this study will be publicly 

available via the Open Science Framework (OSF) (Link: 

https://osf.io/p68cv/?view_only=483703873dae4cfd8b36e9d6df6b8c92) upon publication. Further 

requests for scripts should be directed to the corresponding author. 

 

Results 

Subsequent memory performance measured by spoken recall  

We first calculated recall accuracies for each participant. On average, 68.7% (SD = 12%, range 48% - 

94%) of the 50 events (Mean = 34.4 events, SD = 6) were retrieved successfully (Figure 1C). Among 

these remembered events, we further defined in-order and out-of-order events based on whether they were 

recalled in the correct sequential order. On average, 58.8% (SD = 8%, range 40% - 71%) of the 

remembered events were in-order (Figure 1D).  

Neural pattern shifts were larger for between-event transitions compared to within-event transitions 

Before linking neural pattern shifts to subsequent memory recall, we investigated how event boundaries 

modulated neural pattern shifts of both activation and connectivity patterns. More specifically, we 

compared the effect of between-event transitions compared to within-event transitions on neural pattern 
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shifts (Figure S6A). Paired t-tests between within-event and between-event similarities revealed that in all 

six ROIs: (1) within-event activation similarities were significantly higher than between-event activation 

similarities; (2) higher connectivity pattern similarities were found for within-event transitions compared 

to between-event transitions (Figure S6B; Table S2). These results suggest that neural patterns are 

relatively stable within each event, but shift significantly across events. 

Distinct activation pattern-mediated event segmentation is associated with subsequent retrieval 

success 

We quantified neural similarities of event-specific activation patterns before and after event boundaries 

(i.e., two neighbouring events). Specifically, we generated a voxel-wise activation pattern per event by 

averaging over all time points in that event. This time-averaged activation pattern of all voxels within an 

ROI for an event was compared to the pattern of its subsequent event using Pearson’s correlation. A lower 

Pearson’s r indicates two more separateble activation patterns and thus more distinct neural 

representations for two distinct events. We investigated whether activation pattern similarities relate to 

memory formation by contrasting the pattern similarities of remembered with forgotten events in six ROIs. 

That is, pattern similarity between two events was compared to subsequent memory for the first of those 

events. We found that subsequently remembered events were associated with lower activation pattern 

similarities than subsequently forgotten events in early auditory cortex (t = -3.56, pFDR = 0.007, Cohen’s d 

= 0.92, Figure 3B), hippocampus (t = -3.62, pFDR = 0.007, Cohen’s d = 0.92, Figure 3E), mPFC (t = -2.79, 

pFDR = 0.01, Cohen’s d = 0.80, Figure 3C) and posterior parahippocampal gyrus (pPHG) (t = -2.85, pFDR = 

0.01, Cohen’s d = 0.89, Figure 3F). This finding suggests that distinct activation patterns for two 

sequential events are beneficial for the memory of the first event in that sequence. Early visual areas (t = -

1.13, pFDR = 0.27, Cohen’s d = 0.35, Figure 3A) and PMC (t = -1.91, pFDR = 0.08, Cohen’s d = 0.65, 

Figure 3D) did not show this marked effect.  

Beyond the main contrasts above (i.e., paired t-tests) between activation pattern similarity of remembered 

and forgotten events, we ran several additional statistical tests to further examine the relationship between 
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activation pattern similarity and memory. Detailed methods and results from each ROI can be found in the 

Supplementary Materials. 

(1) In our main analyses above, we labeled an event pair as "remembered" if the first event of the pair was 

remembered. In control analyses, we probed the potential effects of the second event and/or the interaction 

between the first and second event: event pairs were divided into four categories based on memory (i.e., 

both Forgotten (FF), first Forgotten and second Remembered (FR), first remembered and second 

forgotten (RF), and both remembered (RR))), and compared neural similarities across these four categories. 

Consistent with main contrasts, hippocampal activation pattern similarities tended to be lower for RR pairs 

compared to FF pairs (t=-1.89, praw=0.07). Significant effects were found for the early auditory area (t=-

2.32, praw=0.03), mPFC (t=-3.32, praw=0.005), and pPHG (t=-3.36, praw=0.004). Full comparations of four 

categories can be found in the Figure S7.   

(2) To test whether presented results only existed for the actual event structure, we generated shuffled 

event boundaries and re-ran the same contrasts on activation pattern similarity. Permutation tests 

demonstrated that presented subsequent memory effects only existed for the actual event boundaries, but 

not shuffled boundaries (Figure S8).  

(3) The percentage of remembered events was higher than forgotten events, leading to the potential power 

issue when comparing the two. To counter this, we evaluated the current statistical results by performing a 

second kind of permutation test: for each permutation, memory labels were shuffled across events, then 

activation pattern similarities were compared between shuffled memory labels instead of real labels. All 

ROIs showed inseparable distribution between shuffled R and F events in terms of (mean) activation 

pattern similarity values, while similarity values of real R and F events differed in an ROI-specific manner 

as reported (Figure S9).  

(4) So far, within-participant comparisons between remembered and forgotten events revealed that 

differences in activation pattern similarities of several ROIs were related to subsequent memory. Next, we 
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examined whether a similar relationship was evident across different events. Specifically, we investigated 

the relationship between the event-specific recall rate (the percentage of participants that successfully 

recalled a particular event) and the averaged activation pattern similarity for the corresponding event (the 

first one in the pair) across all participants. Consistent with our main contrasts, this analysis revealed that 

the recall rate negatively correlated with activation pattern similarity in the hippocampus (r = -0.292, praw 

= 0.042) and pPHG (r = -0.344, praw = 0.015), suggesting that events showing lower activation pattern 

similarity with the subsequent event were more likely to be recalled (Figure S10).  

(5) We further performed cross-participant individual differences analysis between activation pattern 

similarity and memory, but found no significant associations. There was a trend for those participants with 

average lower activation pattern similarity in the early auditory (r=-0.37, praw=0.13) and pPHG (r=-0.40, 

praw=0.11) during movie watching performed better at the memory test (Figure S11; Table S3), which is 

consistent with results from our main contrast analyses. 

(6) Finally, we used a mixed-effects model for statistical analysis to examine the relationship between 

activation pattern similarity and memory, considering both participants and events as random effects. The 

relationship between memory and hippocampal activation pattern similarity (F=3.48, praw=0.06, R2=0.004) 

failed to reach significance but demonstrated the same tendency as results from the paired t-test. In a 

second model, event-specific situational variables (e.g., event duration, location, music…) were further 

modeled as fixed effects to be controlled as confounds. Again, hippocampal activation pattern similarity 

(F=2.80, praw=0.09) showed the same tendency of memory effects but failed to reach significance (Table 

S4). 
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Figure 3. Association between activation pattern similarities of six ROIs and subsequent memory recall. We compared 
activation pattern similarities of sequential event pairs based on subsequent memory performance of the first event (Remembered 
vs. Forgotten) across six ROIs. For panel A-F, activation pattern similarities for Remembered events are displayed on the left 
(green), while similarities for Forgotten events are displayed on the right (red). For each comparison, a separate axis displays the 
mean difference. The curve (gray) indicates the resampled distribution of the mean difference generated via bootstrapping. The 
solid vertical line attached to the curve represents the mean difference as a 95% bootstrap confidence interval. We found 
significantly lower activation pattern similarity for Remembered vs. Forgotten event pairs in the early auditory area (t = -3.56, 
pFDR = 0.007, Cohen’s d = 0.92; panel B), mPFC (t = -2.79, pFDR = 0.01, Cohen’s d = 0.80; panel C), hippocampus (t = -3.62, pFDR

= 0.007, Cohen’s d = 0.92; panel E), and pPHG (t = -2.85, pFDR = 0.01, Cohen’s d = 0.89; panel F). No significant differences 
were found in early visual areas (t = -1.13, pFDR = 0.27, Cohen’s d = 0.35; panel A) and PMC (t = -1.91, pFDR = 0.08, Cohen’s d = 
0.65; panel D). NS=Not significant; * pFDR<0.05; ** pFDR<0.01. 
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Similar connectivity pattern-mediated event integration is correlated with subsequent retrieval 

success 

Next, we investigated the association between connectivity patterns – a different multivariate method to 

characterise neural representations – and subsequent memory retrieval. Within-region multi-voxel 

connectivity patterns were calculated by a voxel-by-voxel pairwise correlation matrix resulting from the 

correlations between time courses of all voxels within a given region. This represents the relative 

correlation structure between all voxels in a certain region during event processing. We first calculated the 

event-specific within-region connectivity patterns for two sequential events, and then we quantified the 

similarity between connectivity patterns across event boundaries also using Pearson’s r. Contrasting 

similarities of connectivity patterns of subsequently remembered and forgotten events allowed us to 

examine how transitions in connectivity patterns contribute to memory formation. We found higher 

connectivity pattern similarity for subsequently remembered compared to forgotten events in the early 

auditory area (t = 2.9, pFDR = 0.02, Cohen’s d = 0.72, Figure 4B), visual areas (t = 3.34, pFDR = 0.01, 

Cohen’s d = 0.74, Figure 4A), hippocampus (t = 3.39, pFDR = 0.01, Cohen’s d = 0.73, Figure 4E), and 

PMC (t = 2.79, pFDR = 0.02, Cohen’s d = 0.47, Figure 4D). The same contrast was not significant for 

mPFC (t = 1.22, pFDR = 0.23, Cohen’s d = 0.25, Figure 4C) and pPHG (t = 1.36, pFDR = 0.22, Cohen’s d = 

0.30, Figure 4F).  

The same set of additional statistical tests was applied to the connectivity pattern analyses. (1) Event pairs 

were divided into four categories based on memory (i.e., FF, FR, RF, RR), and connectivity pattern 

similarities were compared between these four categories. Consistent with our main analyses, 

hippocampal connectivity pattern similarities are higher for RR pairs compared to FF pairs (t=3.85, 

praw=0.002). This is also true for early auditory area (t=2.56, praw=0.02), early visual area (t=3.70, 

praw=0.002) and PMC (t=2.11, praw=0.05) (Figure S12). (2) Permutation tests examined the specificity of 

subsequent memory effects to actual event boundaries (as opposed to randomly generated pseudo 

boundaries) (Figure S13). (3) When memory labels were assigned randomly to connectivity patterns, the 
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reported subsequent memory effects disappeared (Figure S14). (4) The event-specific correlational 

analysis demonstrated that the recall rate positively correlated with connectivity pattern similarity in the 

early auditory area (r = 0.327, praw = 0.022), visual areas (r = 0.35, praw = 0.014), hippocampus (r = 0.301, 

praw = 0.036), PMC (r = 0.341, praw = 0.017), and pPHG (r = 0.341, praw = 0.017) (Figure S15). This 

supports our main findings, suggesting that events with higher connectivity pattern similarity with the 

subsequent event in these ROIs were more likely to be recalled. (5) Individual difference analyses 

revealed the same trends in the same direction as within-subject the within-subject contrast analyses: 

participants with higher connectivity pattern similarity in the early auditory (r=0.45, praw=0.06) and 

hippocampus (r=0.40, praw=0.10) were more likely to perform better at the memory test (Figure S11). (6) 

Mixed-effects models without (F=3.68, praw=0.05, R2=0.003) and with covariates  (F=2.81, praw=0.09) 

showed the same tendency that higher hippocampal pattern connectivity was associated with better 

memory (Table S3). 
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Figure 4. Association between connectivity pattern similarities of six ROIs and subsequent memory recall. We compared 
connectivity pattern similarities of sequential event pairs  based on subsequent memory performance of the first event 
(Remembered vs. Forgotten) across six ROIs. For panel A-F, connectivity pattern similarities for Remembered events are 
displayed on the left (green), while similarities for Forgotten events are displayed on the right (red). For each comparison, a 
separate axis displays the mean difference. The curve (gray) indicates the resampled distribution of the mean difference generated 
via bootstrapping. The solid vertical line attached to the curve represents the mean difference as a 95% bootstrap confidence 
interval. We found significantly higher connectivity pattern similarity for Remembered (green) vs. Forgotten (red) event pairs in 
the early auditory area (t = 2.9, pFDR = 0.02, Cohen’s d = 0.72, panel B), visual areas (t = 3.34, pFDR = 0.01, Cohen’s d = 0.74, 
panel A), hippocampus (t = 3.39, pFDR = 0.01, Cohen’s d = 0.73, panel E), and PMC (t = 2.79, pFDR = 0.02, Cohen’s d = 0.47, 
panel D). No significant differences were found in mPFC (t = 1.22, pFDR = 0.23, Cohen’s d = 0.25, panel C) and  pPHG (t = 1.36, 
pFDR = 0.22, Cohen’s d = 0.30, panel F). NS=Not significant; * pFDR<0.05. 
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Similar connectivity pattern-mediated event integration preserves sequential memory of events in 

later retrieval 

So far we have shown the opposite association between our two multivariate neural pattern measures and 

subsequent memory performance: distinct activation patterns, but similar within-region connectivity 

patterns across events in the early auditory cortex and hippocampus predict retrieval success. This pattern 

of results suggests that the connectivity pattern may integrate events into a continuous sequence. To 

directly test this hypothesis, we examined the relationship between connectivity pattern similarity and 

sequential order of subsequent recall. We reasoned that if the connectivity patterns remain stable across 

event boundaries, events should tend to be recalled in the correct sequential order. We compared the mean 

connectivity pattern similarities for in-order and out-of-order events. Controlling for multiple 

comparisons, we found that connectivity pattern similarity in early visual cortex to be larger for in-order 

compared to out-of-order events (t = 3.16, pFDR = 0.03, Cohen’s d = 0.47, Figure 5A). Similar trends that 

did not survive correction for multiple comparisons were detected in the hippocampus (t = -2.43, praw = 

0.026, pFDR = 0.08, Cohen’s d = 0.53, Figure 5E), auditory area (t = -2.08, praw = 0.053, pFDR = 0.084, 

Cohen’s d = 0.46, Figure 5B) and posterior parahippocampal gyrus (t = -2.05, praw = 0.056, pFDR = 0.084, 

Cohen’s d = 0.36, Figure 5F). No such effect was observed in the mPFC (t = -1.35, pFDR = 0.19, Cohen’s 

d = 0.19, Figure 5C), and PMC (t = -2.05, pFDR = 0.12, Cohen’s d = 0.33, Figure 5D). It is worth 

mentioning that our method cannot completely disentangle the neural effects of “event memory” and 

“order memory”. When we further fully control for the “event memory” by restricting analyses on two 

neighboring events that were both recalled, we did not found the different connectivity pattern similarity 

levels between “in-order” and “out-of-order” events among six ROIs (Supplemental Materials-alternative 

order memory analysis).  
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Figure 5. Association between connectivity pattern similarities of six ROIs and sequential order of memory recall. We 
compared connectivity pattern similarities of sequential event pairs (In-order vs. Out-of-order) based on sequential memory 
performance of the first event across six ROIs. For panel A-F, connectivity pattern similarities for In-order events are displayed 
on the left (BLUE), while similarities for Out-of-order events are displayed on the right (BROWN). Early visual areas (t = 3.16, 
pFDR = 0.03, Cohen’s d = 0.47, panel A) demonstrated higher connectivity pattern similarity for the In-order events compared to 
Out-of-order events. A similar trend was also detected in the hippocampus (t = -2.43, praw = 0.026, Cohen’s d = 0.53, panel E), 
but it did not survive FDR correction (pFDR = 0.08). We also found modest, non-significant trends in the early auditory area (t = -
2.08, praw = 0.053, pFDR = 0.084, Cohen’s d = 0.46, panel B) and posterior parahippocampal gyrus (t = -2.05, praw = 0.056, pFDR = 
0.084, Cohen’s d = 0.36, panel F). No similar effects were detected in mPFC (t = -1.35, pFDR = 0.19, Cohen’s d = 0.19, panel C), 
and PMC (t = -2.05, pFDR = 0.12, Cohen’s d = 0.33, panel D). NS=Not significant; * pFDR<0.05; # praw<0.05. 
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Hippocampal activation and connectivity patterns change differently with event distance  

Among our six ROIs, we found converging evidence for a dissociation of event segmentation and 

integration in the hippocampus: lower activation pattern similarity, but higher connectivity pattern 

similarity was beneficial for memory formation. Building on these findings, we hypothesized that 

hippocampal activation patterns of neighboring events should be less similar than events that occur far 

apart. By contrast, hippocampal connectivity patterns of close events should be more similar than events 

with a long interval in between. Thus, we calculated the activation and connectivity pattern similarity 

between all possible combinations of event pairs (‘Event A’ and ‘Event B’) within all 50 events (Figure 

6A and 6D). For all pairs of events with the same event distance (e.g., separated by four events), we 

calculated the mean similarity measure for activation pattern and connectivity pattern separately. This 

calculation was repeated for all possible event distances. To ensure reliable estimations of pattern 

similarities, we only present the similarities of distances with at least ten event pairs (d ≤ 40) in the main 

text. (Complete calculations can be found in Figure S16) 

We analysed the hippocampal activation and connectivity patterns separately. First, our activation pattern 

analysis found that the shorter the event distance, the more distinct the hippocampal activation patterns (r 

= 0.21, praw = 1.8 × 10-8; Figure 6B and S16A). This positive correlation was largely driven by the 

negative similarity values between events that occurred close to each other (i.e., events with a distance 

smaller than four). Furthermore, we found that subsequent memory recall of Event A modulated the 

relationship between event distance (d = 1 - 4) and activation pattern similarity (ANOVA with event A × 

distance interaction: F (3,48) = 10.1, p < 0.001; Figure 6C). That is, hippocampal activation pattern 

similarities increased as the event distance changes from 1 to 4, but only if event A was later recalled 

(Fremembered (3,48) = 9.54, p < 0.001; Fforgotten (3,48) = 1.35, p = 0.268).  

Second, our connectivity pattern analysis found that the shorter the event distance, the more similar the 

hippocampal connectivity patterns (r = -0.439, praw = 1.8 × 10-33; Figure 6E and S16B). Furthermore, we 

found a significant interaction between event A recall and distance (F (19, 304) = 2.37, p = 0.001), and a 
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significant main effect of event A (F (1, 16) = 7.53, p = 0.014). That is, if event A was recalled later, its 

hippocampal connectivity pattern was more similar to any other event in the sequence, compared to when 

event A was not successfully recalled (Figure 6F). This suggests that if connectivity patterns between 

pairs of events are more similar, for both short and long distances, then events are more likely to be 

successfully encoded. 

Several time-dependent artifacts may contribute to signals in hippocampal event distance analyses (e.g., 

temporal distance, temporal filtering). These are unlikely to explain the subsequent memory effects we 

observed, but we ran several further analyses to limit their influence. First, (1) evaluate the effects of these 

potential artifacts (i.e., temporal distance, and temporal filtering) on the event distance analysis (Figure 

S18-S19). We investigated how hippocampal pattern similar change with event distance when the 

temporal distance between events (i.e., the number of TRs) was controlled and when different cutoffs (i.e., 

140s, 280s, 420s, 560s, 600s) for high-pass filtering were applied to the time-series; Second, we 

performed a permutation test to validate the subsequent memory effects in the event distance analysis. We 

shuffled memory labels  (i.e., R and F) randomly and performed the event distant analysis for each 

permutation. Third, event distance analysis was also applied to ROIs beyond the hippocampus to probe 

whether presented effects are hippocampal-specific. Results can be found in Figure S20-S21. These 

control analyses together demonstrated that (1) main findings were robust to artifacts, (2) relationship 

between event distance and neural similarity was indeed modulated by memory,  (3) similar relationship 

between event distance and neural similarity were presented in other ROIs as well but it interacted with 

subsequent memory in a region-specific manner. 
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Figure 6. Hippocampal pattern similarity changes with event distance. (A) Hippocampal activation patterns were generated 
for all 50 events. We calculated activation pattern similarities between sequential events (event distance = 1) and all possible 
combinations of non-sequential event pairs (event distance > 1). (B) Hippocampal activation patterns between pairs of events 
were significantly dissimilar for events separated by a distance of less than 4 (red shadow). (C) Memory performance modulated 
the distance-activation pattern similarity relationship. If the first event (Event A) of the pair was successfully encoded, activation 
pattern similarities of the event pair increased with event distance (green line). (D) Hippocampal connectivity patterns were 
generated for all possible combinations of event pairs. (E) Event pairs with shorter event distance had more similar hippocampus 
connectivity patterns. At the same time, similarities of hippocampus connectivity patterns are higher than 0 regardless of event 
distance. (F) Memory performance modulated distance-connectivity pattern similarity relationship. If the first event (Event A) of 
the event pair was successfully encoded, connectivity pattern similarities of the event pair are enhanced regardless of their event 
distance. For panel B-F, error bands (i.e., light shadow around the solid line) represent the 95% confidence interval of the mean. 

 

Subregions of the prefrontal cortex perform event segmentation and integration 

Our ROI-level analyses found that (1) distinct hippocampal activation patterns were associated with better

event memory; (2) similar hippocampal connectivity patterns were beneficial for event memory; (3) 

although not surviving multiple comparison correction, similar hippocampal connectivity patterns tended 

to preserve the sequential order of events (Figure 7A). To investigate whether these relationships are 
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present in other brain regions beyond our six ROIs, we ran a region-based searchlight version of our 

pattern similarity analysis to identify overlapping event segmentation and integration computations across 

neorcortical regions. In sum, we investigated three potential relationships between neural pattern 

similarity and subsequent retrieval separately. First, we identified brain regions whose lower activation 

pattern similarities across events were associated with retrieval success (Figure S22A). Next, we mapped 

the association between higher connectivity pattern similarities and retrieval success in each region 

(Figure S22B). Then, we identified the regions, which demonstrated a positive association between 

connectivity pattern similarities and order memory (Figure S22C).  

To identify brain regions that may support all three neural computations (like the hippocampus), we 

overlapped spatial patterns for these three effects (all pFDR < 0.05). This revealed a set of brain regions 

including relatively large clusters (at least 50 voxels) in the mPFC, right inferior frontal gyrus (IFG), 

anterior/middle cingulate cortex and supplementary motor area (SMA), left inferior temporal gyrus (ITG) 

and left insular (Figure 7B). These results suggest that this network of cortical regions may use the same 

neural processes to perform event segmentation and integration as the hippocampus during continuous 

memory encoding. 
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Figure 7. Identifying overlapping event segmentation and integration computations across the neocortex. (A) We identified 
three relationships between neural pattern similarity and subsequent memory in the hippocampus. (B) Similar to the hippocampus,
overlapping event segmentation and integration computations were found in a network of brain regions including the medial 
prefrontal cortex (mPFC), right inferior frontal gyrus (IFG), anterior/middle cingulate cortex and supplementary motor area 
(SMA), left inferior temporal gyrus (ITG), and left insular (pFDR < 0.05 across 1000 parcels, cluster size >= 50). 
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Hippocampal neural pattern similarities were correlated with memory formation in a replication 

dataset  

We analyzed an independent movie watching-recall dataset (Kurby and Zacks 2018) (i.e., replication 

dataset) to conceptually replicate reported associations between neural similarity and memory formation 

in the discovery dataset. Discovery dataset and replication differed in several aspects in terms of data 

acquisition protocol (See Methods), and therefore, provides the opportunity to test the generalization. 

Participants watched five short movies inside the MRI scanner and returned to the lab several days 

(mean=3.4 days) later for behavioral testing. During the behavioral session, participants also performed 

the segmentation task to generate participant-specific event boundaries for each movie clip (Figure 8A). 

These participant-specific boundaries were used as onsets/offsets of events to calculate event-specific 

fMRI activation patterns and connectivity patterns, and then neural similarities across boundaries within 

each movie clip (i.e., “within-movie” method). The estimation of neural similarities using the “within-

movie” method is identical to the counterpart used in the discovery dataset. Furthermore, neural 

similarities were also calculated across different movie clips (i.e., “between-movie” method) (Figure 8B).  

We correlated clip-specific neural similarity measures with all three different memory measures (i.e., 

recognition, recall, and order memory). Results from the replication dataset that survived FDR-correction 

are summarized in Figure 8C alongside the discovery dataset results in Figure 8D (for full results see 

Figure S23-S24 and Table S6-S7). 

Using the “within-movie” method, we found that lower activation pattern similarity in the hippocampus 

during movie watching correlated with better recognition memory (r=-0.14, praw=0.028, pFDR=0.033). 

Similar correlations were found in early auditory cortex (r=-0.17, praw=0.007, pFDR=0.021), mPFC (r=-0.14, 

praw=0.025, pFDR=0.033), PMC (r=-0.17, praw=0.006, pFDR=0.021), and pPHG (r=-0.16, praw=0.01, 

pFDR=0.022). Thus, the relationship between subsequent retrieval success and lower activation pattern 

similarity in the hippocampus as well as early auditory cortex, mPFC, and pPHG was replicated across our 

two datasets (Figure 8C-D).  
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Activation pattern similarity in the mPFC and PMC also correlated with additional memory measures 

(mPFC: with order memory (r=-0.19, praw=0.002, pFDR=0.012); PMC: with order memory (r=-0.16, 

praw=0.009, pFDR=0.027) and recall (r=-0.17, praw=0.006, pFDR=0.036)). However, connectivity pattern 

similarities estimated by the “within-movie” method did not associate with any memory measures. 

This may because durations were too short based on participants’ segmentation: event durations were 

around 60s in the discovery dataset, compared with 6-10s in the replication dataset. We propose that 3-5 

TRs are insufficient to be viewed as “encoding context” and enable meaningful connectivity analyses. To 

explore further, we next regarded each movie clip (2 to 6 min) as an event and performed the calculation 

of connectivity patterns using the “between-movie” method. We found that higher connectivity pattern 

similarity across movie clips in the hippocampus (r=0.17, praw=0.013, pFDR=0.019), early auditory cortex 

(r=0.2, praw=0.003, pFDR=0.006), mPFC (r=0.15, praw=0.036, pFDR=0.043), PMC (r=0.26, praw<0.001, 

pFDR<0.006), and pPHG (r=0.21, praw=0.002, pFDR=0.006) was associated with better recall performance. 

Therefore, the “between-movie” method showed that the relationship between retrieval success and higher 

connectivity pattern similarity in the hippocampus, PMC, and early auditory cortex was also replicated 

across two datasets (Figure 8C-8D). 

Furthermore, we found modest evidence  (i.e., praw value around 0.05) to support that higher connectivity 

pattern similarity in these ROIs tended to associated with better order memory performance (early 

auditory cortex (r=-0.137, praw=0.048), mPFC (r=-0.12, praw=0.08), PMC (r=-0.135, praw=0.052) and pPHG 

(r=-0.12, praw=0.08)). Across two datasets, connectivity pattern similarities of the early auditory cortex and 

pPHG were associated with better order memory. 

In sum, the relationships between hippocampal activation and connectivity pattern similarity and episodic 

memory formation were replicated across two datasets. However, higher hippocampal connectivity pattern 

similarity was associated with better order memory only in the discovery dataset, but not in the replication 

dataset. Also, our “within-movie” connectivity analysis did not reveal the subsequent memory effect, but 

that could be due to experimental design (ie., short events). When we analyzed connectivity patterns on a 

longer timescale with “between-movie” analysis, then memory effects got replicated. 
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Figure 8 Experimental design as well as data analyses in the replication dataset, and comparison between results 
from two datasets. (A) In the replication dataset, participants watched movie clips inside the MRI scanner (session1) 
and returned to the lab several days (mean=3.4 days) later for behavioral testing (session2) including both 
segmentation and memory tests. (B) Two methods (i.e., within-movie and between-movie) were used to estimate 
neural pattern similarity. For the within-movie method, participant-specific boundaries were used to define events 
within movies while for the between-movie method, each movie clip was regarded as an individual event. (C) 
Correlations between ROI-specific neural pattern similarity and memory measures in the replication dataset. 
Correlation coefficients are presented for significant tests that survived FDR-correction. Full results from the 
replication dataset can be found in Figure S22-S23 and Table S5-S6. (D) Significant tests in the discovery dataset, 
with solid blocks for those that survived FDR-correction. Act.=Activation pattern; Con.=Connectivtiy pattern; 
Recog.=Recognition; Contrast=contrast between Remembered and Forgotten; Shuffle=test with shuffled event 
boundaries; Cross=cross-event analyses.  
Discussion 
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To successfully form memories of our life experiences, we need to segregate continuous experience into 

events (Baldassano et al. 2017; Zacks 2020) and integrate those events across their boundaries into a 

coherent narrative (Griffiths and Fuentemilla 2020). Here we show that distinct hippocampal activation 

patterns, but similar hippocampal connectivity patterns across event boundaries, facilitate these two vital 

episodic memory functions. We propose that distinct activation patterns reflect event segmentation while 

similar connectivity patterns integrate separately represented events into a narrative. Supporting this role 

of connectivity patterns for event integration, we found that similar hippocampal connectivity patterns 

were relevant for the correct sequential order of subsequent retrieval. Our whole-brain analysis 

demonstrates that similar neurocomputations were performed by a network of cortical regions, in 

particular for the mPFC. Finally, these results were further validated using an independent movie-

watching recall dataset, in which different stimuli and memory measures were utilized. Among the same 

set of ROIs, hippocampal activation and connectivity pattern similarity showed consistent relationships 

with memory across these two datasets. Overall, these results suggest that both hippocampal and medial 

prefrontal event segmentation and integration support memory formation of continuous experience.  

Using multivoxel pattern analysis, we found that distinct local activation patterns across event boundaries 

in the early auditory area, mPFC, posterior parahippocampal gyrus, and hippocampus, were associated 

with better subsequent memory, indexed by more distinct activation patterns between two adjacent events. 

The ability to segment continuous experience at the behavioral level has been linked to successful memory 

encoding (Sargent et al. 2013) and compelling evidence suggested that the hippocampus is activated 

around event boundaries (Ben-Yakov and Dudai 2011; Ben-Yakov et al. 2013; DuBrow and Davachi 2013; 

Ben-Yakov and Henson 2018). This hippocampal activity has been proposed to be associated with a 

hippocampal segmentation process, but how the hippocampus represents two separate events, and whether 

the corresponding neural representations are relevant for memory remained unclear. Our findings suggest 

that the hippocampus and other brain regions (e.g., mPFC) segment events by representing them with two 

distinct patterns of activity. This is similar to the role of the hippocampus in pattern separation: when 
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similar experiences need to be discriminated and encoded, the underlying hippocampal neural 

representations tend to be dissimilar (Bakker et al. 2008; Yassa and Stark 2011). This neural phenomenon 

has typically been studied to show how the brain separates perceptually similar stimuli (i.e., images). Here, 

our findings indicate that a similar pattern separation occurs for events during the continuous experience 

and this determines subsequent memory for those events. That is to say, the episodic memory system may 

use ‘orthogonalized’ neural representations to encode two events for the purpose of event segmentation. 

Further, we show these ‘orthogonalized’ neural representations are potentially event-distance dependent: 

the hippocampus only generates consecutive dissimilar patterns when events occur relatively close in time. 

Taken together, this suggests the existence of a brain network (mainly hippocampus and mPFC) for the 

continuous segmentation of ongoing experience, and the degree of separate neural event representation for 

nearby events is relevant for memory formation. 

Complementing this, we found that more similar within-region connectivity patterns of several regions 

across event boundaries, including again the early auditory area and hippocampus, were associated with 

the better subsequent recall. Compared to local activation patterns (Cohen et al. 2017; Xue 2018), within-

region connectivity patterns are a less used multivariate approach. Recently, Tambini and Davachi 

proposed that both activation and connectivity patterns could be used to capture neural states during 

memory encoding and reactivation, but connectivity patterns tend to encode contexts or states instead of 

particular perceptual inputs (Tambini and Davachi 2019). Our results support this notion: activation 

patterns were event-specific (Chen et al. 2017) and dissimilar for neighboring events, while connectivity 

patterns were relatively stable across event boundaries. Importantly, the stability of connectivity patterns 

positively associated with memory formation. Therefore, the function of similar connectivity patterns 

could be to integrate segmented and separately represented events into a coherent narrative. To provide 

further support for this idea, we examined the relationship between connectivity pattern similarity and 

sequential order during memory recall and found that higher cross-event connectivity pattern similarity 

(mainly in the hippocampus and pPHG) was associated with better retrieval of the sequential order of 
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individual events. Results from the replication dataset, in which a more accurate order memory measure 

was adopted, still demonstrated the role of pPHG’s connectivity pattern in promoting order memory. In 

general, these results revealed that the multi-voxel connectivity pattern can be used to predict how 

temporal sequences are represented in the human medial temporal lobe memory system. Interestingly, our 

activation and connectivity pattern measures were both modulated by event boundaries in a similar way 

(ie., greater within-event similarity compared with between-event similarity). But the way they interact 

with memory was different/opposite, with dissimilar patterns being better for activation, and similar 

patterns being better for connectivity. 

Remembering the sequence of events is not only one of the critical features of episodic memory (Davachi 

and DuBrow 2015) but also highly relevant for other forms of sequence learning, for example, spatial 

memory and encoding of temporal information (Eichenbaum 2014; Bellmund et al. 2020). Animal studies 

have revealed the existence of hippocampal neurons (i.e., time cells (Manns et al. 2007), event-specific 

rate remapping cells (Sun et al. 2020)) that are causally involved in representing temporally structured 

experience. Single-cell recordings in the hippocampus of patients with pharmacologically intractable 

epilepsy showed that as a result of repeated viewing of the same video clips, neuronal activity in 

successive time segments became gradually correlated, and this potential measure of temporal binding 

predicted subsequent recall (Paz et al. 2010). This study revealed how the temporal relationship between 

current hippocampal activity and hippocampal activity that follows in time can be used to link successive 

events in humans. Other recent human fMRI studies revealed the role of the human hippocampal-

entorhinal region in representing the temporal sequence of experience across different paradigms and 

stimuli (Lositsky et al. 2016; Bellmund et al. 2019; Montchal et al. 2019; Thavabalasingam et al. 2019). 

Adding to this, our study tested the role of a new multivariate measure, connectivity pattern similarity, 

which could reflect the internal stability of neural states, in temporal sequence coding. We provided 

preliminary evidence that connectivity pattern similarity across event boundaries in the medial temporal 

lobe is involved in sequential memory. Future studies are needed to further investigate the precise 
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mnemonic functions of different neural measures (e.g., activity pattern, within-region connectivity pattern, 

and system-level interaction between regions) during memory formation, in particular for encoding 

temporal structure during the continuous experience (Tambini and Davachi 2019).  

Our ROI analysis highlights the two functions of the hippocampus in the separate representation of 

segmented events and the binding function that linked events into a narrative, and region-based searchlight 

analysis identified the role of subregions of the prefrontal cortex (e.g., mPFC, IFG), insular, and inferior 

temporal gyrus in event segmentation and integration during memory formation. The role of the mPFC in 

event integration is particularly thought-provoking. The mPFC is generally implicated in encoding and 

retrieval of episodic memories (Kim 2010; Rugg and Vilberg 2013). Among its variety of functions in 

learning and memory (Fernández 2017), the online integration of events we observed here is consistent 

with its function in the facilitation of associative inference (Zeithamova et al. 2012; Preston and 

Eichenbaum 2013; Schlichting et al. 2014; Schlichting and Preston 2015; Spalding et al. 2018), 

accumulation of knowledge (Kumaran et al. 2009; Berkers et al. 2018), and integration of new and prior 

knowledge (van Kesteren et al. 2010, 2013, 2014). We propose that the general mnemonic function of 

mPFC is to establish links between separate elements across time and space. Taken together, we found 

that the hippocampus-mPFC circuit performs event segmentation and integration during memory 

formation of continuous experience. These findings demonstrate the contribution of two complementary 

event processing mechanisms and underlying neural representations in episodic memory formation. The 

hierarchical network model of event segmentation proposes that higher-order regions receive event 

representations from lower-order perceptual regions, and then transfer these representations to the 

hippocampus for storage (Hasson et al. 2015; Baldassano et al. 2017). Our study suggested that event 

integration is another key cognitive process involved in event memory by showing how distinct event 

representations are integrated by similar connectivity patterns of hippocampus and mPFC. 

Beyond the hippocampus, the role of sensory regions in event segmentation was also predicted by the 

hierarchical theory of event processing and supported by initial empirical evidence (Baldassano et al. 2017) 
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and our analyses. As predicted by the theoretical model of event segmentation (Hasson et al. 2015), event 

segmentation signals could exist in multiple brain regions (including different levels of sensory regions), 

but interestingly, the continuous experience is represented at different time scales along with the 

hierarchical structure. The hippocampus may represent the event structure that aligns best to human-labels 

while lower-level sensory regions not only respond to this coarse segmentation but also create fine-scale 

segmentations within the individual event. This model was supported by human fMRI data (Baldassano et 

al. 2017): although sensory regions demonstrated more frequent transitions of activation patterns (i.e., 

more event boundaries) than higher-level regions, there are always some transitions matched with 

boundaries based on human labels(i.e., close to hippocampal segmentation). Therefore, it is not surprising 

that, when we choose human-labeled boundaries to analyses signals from sensory regions, we can still link 

their event segmentation measures to subsequent memory. 

Our study, together with previous studies also combining human fMRI with naturalistic stimuli (Hasson et 

al. 2008; Baldassano et al. 2017; Chen et al. 2017), demonstrates the potential of this approach to advance 

our understanding of the human memory system, in particular for the formation of real-life memories. 

Similar paradigms and analyses can be easily adapted in clinical (e.g., memory and affective disorders) 

and developmental neuroimaging studies (e.g., children and older adults) to reveal changes related to 

disease or (mal)development. For example, fMRI-based event segmentation and integration measures 

could be used to probe how these processes are impaired in Alzheimer's disease and mild cognitive 

impairment, how they develop from childhood to adulthood and diminish in normal aging. In addition, 

connectivity patterns have the potential to inform our understanding of other cognitive operations that 

require integration of information, such as inferential reasoning (Preston and Eichenbaum 2013). However, 

due to the low temporal resolution of fMRI, the directionality of information flow between the neocortical 

regions of the ‘hierarchical memory system’ (Hasson et al. 2015) and the hippocampus remains unclear. 

Future application of deep-source magnetoencephalography (MEG) (e.g., Backus, Schoffelen, Szebényi, 
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Hanslmayr, & Doeller, 2016) or intracranial electroencephalography (iEEG) (e.g., Jafarpour, Griffin, Lin, 

& Knight, 2019) with naturalistic memory paradigms may bridge this gap. 

Despite the mentioned advantages of combining neuroimaging, naturalistic stimuli, and subsequent 

memory design to study episodic memory formation, there are also disadvantages worth noting, especially 

concerning the discovery dataset. For example, all participants viewed the same movie in the same order, 

therefore, memory for individual event and their sequential relationship cannot be isolated. Furthermore, 

in the discovery dataset, memory performance was relatively high, which means subsequent memory 

contrasts in some participants may not be well-powered. The inclusion of the replication dataset could 

potentially mitigate these concerns, revealing rather consistent neural effects in the hippocampus and 

parahippocampus across two datasets. Another disadvantage of naturalistic stimuli is that situational 

variables could influence how memorable each event is (ie., duration, music, location……). Some of them 

were indeed positively correlated with memory (e.g., event duration and arousal). We accounted for this 

in our mixed model analysis that included these situational factors, but the results were consistent with our 

main analyses. Therefore, our proposed mnemonic functions of the hippocampus are not likely to be the 

result of external factors. 

In sum, we show that the hippocampus and mPFC may perform a dual function during naturalistic 

memory formation. Both regions segment events by representing them with distinct activation patterns, 

while also integrating those events by retaining similar connectivity patterns across events, enabling the 

representation of a coherent narrative. The ability to measure segmentation- and integration-related neural 

operations using fMRI opens new opportunities to investigate the mechanisms of memory encoding for 

real-life experience. 
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