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Abstract 13 

Pollutants, such as toxic metals, negatively influence organismal health and performance, even 14 

leading to population collapses. Studies in model organisms have shown that epigenetic marks, 15 

such as DNA methylation, can be modulated by various environmental factors, including 16 

pollutants, influencing gene expression and various organismal traits. Yet experimental data 17 

on the effects of pollution on DNA methylation from wild animal populations is largely 18 

lacking. We here experimentally investigated for the first time the effects of early-life exposure 19 

to environmentally relevant levels of a key pollutant, arsenic (As), on genome-wide DNA 20 

methylation in a wild bird population. We experimentally exposed nestlings of great tits (Parus 21 

major) to arsenic during their post-natal developmental period (3 to 14 days post-hatching) and 22 

compared their erythrocyte DNA methylation levels to those of respective controls. In contrast 23 

to predictions, we found no overall hypomethylation in the arsenic group. We found evidence 24 

for loci to be differentially methylated between the treatment groups, but for five CpG sites 25 
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only. Three of the sites were located in gene bodies of zinc finger and BTB domain containing 26 

47 (ZBTB47), HIVEP zinc finger 3 (HIVEP3) and insulin like growth factor 2 mRNA binding 27 

protein 1 (IGF2BP1). Further studies are needed to evaluate whether epigenetic dysregulation 28 

is a commonly observed phenomena in polluted populations, and what the consequences are 29 

for organism functioning and for population dynamics.  30 

 31 
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Introduction 36 

Environmental pollution can negatively affect organisms at multiple level of organization, from 37 

molecular and physiological level to performance, and even lead to population collapses (1-4). 38 

In wild populations, a largely unexplored mechanism mediating such pollution effects is the 39 

potential influence of the epigenome, such as DNA methylation. In human and animal models, 40 

the effects of pollution on the epigenome is studied extensively, and it has been discovered that 41 

methylation patterns can be changed by various environmental factors, including metal and 42 

organic pollutants and other early-life stressors (reviewed by 5-11). DNA methylation is the 43 

addition of a methyl (-CH3) group to the 5’ carbon site of cytosines catalyzed by DNA-44 

methyltransferases, and is generally found to be negatively associated with gene expression 45 

(12). Variation in DNA methylation is linked to variation in phenotypes and behavior, and 46 

associated with the prevalence of various diseases, including cancers in humans and model 47 

animals (13-16). Epigenetic changes from early-life environment may persist and affect health 48 

throughout life-time and may even be transmitted to future generations (16), which could 49 

potentially contribute to explaining delayed or persistent effects of pollutants (e.g. 7). Yet the 50 

effects of pollutants on the epigenome have hardly been explored, and epigenetic research in 51 

wild animal populations is only emerging (8, 17-24). 52 

 Arsenic (As) is a global, persistent pollutant, distributed in the environment due to 53 

natural and anthropogenic sources such as mining, industrial activities or coal combustion (25) 54 

and the most highly ranked hazardous substances for animals and plants (26). Across 55 

organisms, arsenic can have negative consequences for basically all organ systems, often via 56 

causing oxidative stress, i.e. the imbalance between harmful reactive oxygen species (ROS) 57 

and antioxidant defenses, and cancer (27, 28).  58 

 Arsenic has been repeatedly observed to also modulate patterns of DNA methylation in 59 

vitro (e.g. 29) in laboratory animal models (with levels exceeding environmental levels, 60 
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reviewed 30) and in studies on human populations (e.g. 31). Arsenic could influence DNA 61 

methylation via multiple pathways: (i) arsenic can change the DNA methylation of a cytosine 62 

via the depletion of the cellular availability of methyl groups. Biotransformation of arsenic to 63 

less toxic forms includes the addition of methyl group(s) (32) with the main methyl-donor for 64 

methylation of both arsenic and cytosines being s-adenosylmethionine (SAM). The high 65 

demand imposed on this molecule during the biotransformation process can then lead to a 66 

global DNA hypomethylation as shown in multiple (bio)medical studies in humans and mice 67 

(reviewed e.g. 5,  33). (ii) Arsenic could influence epigenetic signaling by targeting the zinc 68 

fingers of Tet proteins and perturbing the Tet-mediated oxidation of 5-mC (in vitro: 34-37). 69 

(iii) Furthermore, ROS created during arsenic biotransformation have been suggested to 70 

influence DNA methylation by creating aberrant modifications (humans: 38).  71 

Pre/postnatal exposure to arsenic in humans is associated with epigenetic modifications 72 

related to early onset of diseases, which could have long-term consequences (reviewed in 39). 73 

For example, in humans, prenatal arsenic exposure led to global hypomethylation of 74 

inflammatory and tumor suppressor genes (40) and interfered with de novo methylation (41) 75 

in humans. Global hypomethylation can lead to chromosomal abnormalities, contributing to 76 

overall genomic instability and malignant transformations (reviewed in 32). Studies have 77 

demonstrated that widespread DNA hypomethylation induced by arsenic is also associated with 78 

promoter activation and involved in carcinogenesis (reviewed in 32). Arsenic-related 79 

hypomethylation of specific sets of genes has also be reported, and these include, for example, 80 

genes related to neural development (e.g. 42), mitochondria biogenesis (e.g. 43) and 81 

inflammation (e.g. 44). Despite the extensive data on model animals and humans, the potential 82 

effects of environmental arsenic on wild animals via epigenetic dysregulation has not been 83 

studied up to date.  84 
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 We here investigated the effects of experimental early-life (post-natal) exposure to 85 

arsenic on genome-wide DNA methylation status in a wild population of great tits (Parus 86 

major). To our knowledge, this is the first study on the effect of arsenic on epigenetic marks in 87 

a wild population. We used a bird model, since birds have been successfully used in 88 

biomonitoring of pollution and its effects (e.g. 45). Arsenic exposure has been reported to 89 

negatively affect multiple fitness-related traits (growth, physiology, behavior and even egg-90 

laying) in several bird species (reviewed in 28). For great tits specifically, we have previously 91 

reported (results from the current experiment) that in nestlings, arsenic exposure increased 92 

mortality, reduced wing growth (46) and decreased an intracellular antioxidant, catalase (47), 93 

but did not largely influence body mass, plasma biochemistry (vitamins) or other biomarkers 94 

of oxidative stress (46, 47). More specifically, we here experimentally exposed nestlings in 95 

non-polluted sites to environmentally relevant levels (1 µg/g body mass) of dietary arsenic 96 

during the entire post-hatching growth period, and compared their DNA methylation levels to 97 

respective controls. We used reduced representation bisulfite sequencing (RRBS) to assess 98 

genome-wide methylation and characterized differential methylation across CpG sites between 99 

the experimental and the control group. We predict that arsenic exposure will lead to genome-100 

wide hypomethylation, and potentially specifically on gene/hubs related to development.  101 

 102 

Methods 103 

 104 

Arsenic treatment protocol and sampling 105 

The study was conducted in the breeding season of 2015 (laying dates 4th May –10th June) in a 106 

nest box population of great tits (Parus major) in western Finland. Great tit is a small passerine 107 

bird and a popular model species in ecological and evolutionary research. Importantly, it is one 108 
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of the few non-domesticated bird species, for which the genome and methylome are available 109 

(18, 48-49). 110 

The arsenic exposure, dosages and sampling are described in detail in (46, 47). In short, 111 

the experiment was conducted in a nest-box population with known history of relatively low 112 

pollution levels (50). There are no air pollution samplers at the study sites but metal 113 

biomonitoring studies have been done in this area, for example measuring forest floor moss 114 

metal levels (a proxy for atmospheric fallout). In general, metal levels are relatively low in 115 

moss samples (e.g. for arsenic <0.5 μg/g in 2014; 51) while this value is exceeded in large areas 116 

in Central Europe (52). Mean topsoil arsenic concentration in the study site was 0.76 μg/g in 117 

2014 (53).  118 

Breeding was monitored, and from day 3 after hatching until day 13 whole broods were 119 

subjected to daily oral dosing with the following treatments: arsenic treatment (1 µg arsenic/g 120 

body mass in distilled water, N = 16 broods) or control treatment (distilled water, N = 16 121 

broods). Dosing volumes were adjusted to estimated nestling mass based on average body 122 

masses at different ages from large dataset on long-term averages from the study population 123 

(54). Mass of individual nestlings was not measured every day to reduce handling time and 124 

disturbance to the nest. The volumes dosed to the controls were exactly the same as for 125 

treatments. We dosed the solution directly to the beak of the nestlings with a pipette. The range 126 

of volumes was 50–170 µl and did not exceed the recommended volumes (20 ml/kg, e.g. 55). 127 

The dose aimed to represent environmentally relevant exposure levels occurring in polluted 128 

areas in Europe: It was estimated combining data from several sources, such as (i) the lowest-129 

observed-adverse-effect level for different effects on mammals (2-8µg/kg/day, 56), (ii) fecal 130 

arsenic levels reported for great tits at some metal polluted sites (reviewed in 28): In previous 131 

data, summarized in (28, Table 1), arsenic concentrations in feces of passerines are within the 132 

range of 0.1–1.4 ppm in unpolluted sites and 5–16 ppm in polluted areas. The levels measured 133 
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in the samples from our experiment (ca 6.5 ppm, see results) overlap with these levels, 134 

suggesting that the treatment levels were environmentally relevant, at the lower end of the 135 

range. Yet, Sánchez-Virosta et al. (46) and Janssens et al. (57) report that great tit nestlings 136 

from polluted areas in Harjavalta and Belgium have arsenic levels up to 48-52 ppm, thus levels 137 

even this high are environmentally relevant. Other data sources were (iii) arsenic 138 

concentrations of food items (moth larvae, spiders and beetles) collected directly from parent 139 

great tits feeding their nestlings in the polluted area (46, 47), and (iv) a pilot experiment, to 140 

ensure that the levels were environmentally relevant and were not causing excessive mortality 141 

(46). Fecal matter was sampled 8 days after hatching for metal analyses (see below). DNA 142 

methylation was analyzed from red blood cells (RBCs, 14 d after hatching) to avoid sacrificing 143 

the individuals. Absolute methylation values between e.g. blood and liver or kidney and brain 144 

are highly correlated (48, 58, 59), just like changes in methylation in red blood cells and liver 145 

are correlated (59) and thus blood can be used as a proxy. Ten samples from the arsenic and 146 

ten from control treatment were selected for the DNA methylation analyses. These included 147 

five females and five males from each treatment (molecularly sexed, following 60). Only one 148 

nestling per nest was selected to avoid pseudoreplication. We made use of the knowledge on 149 

the fecal arsenic levels (see below), and selected individuals from 10 broods with highest 150 

arsenic concentrations from the arsenic treatment and 10 lowest concentrations from the 151 

control. All the dead nestlings found in the nests were collected and frozen at -20ºC until 152 

necropsies could be performed in July 2015. Carcasses were necropsied to measure arsenic and 153 

metal concentrations in liver and bone in order to compare arsenic accumulation among groups 154 

and its distribution among tissues (46). The experiment was conducted under licenses from the 155 

Animal Experiment Committee of the State Provincial Office of Southern Finland (license 156 

number ESAVI/11579/04.10.07/2014) and the Centre for Economic Development, Transport 157 

and the Environment, ELY Centre Southwest Finland (license number VARELY/593/2015).  158 
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 159 

Metal analyses 160 

For detailed analyses, see Sánchez-Virosta et al. (46). Briefly, in both experimental groups, 161 

several fecal samples (any sex) from the same brood were combined to assess brood level metal 162 

exposure (total N = 32 broods). We determined the concentrations of arsenic, but also other 163 

metals to confirm that the levels of other metals were low and similar across the treatment 164 

groups (see 46). The determination of pollutants was conducted with inductively coupled 165 

plasma optical emission spectrometry (ICP-OES) with detection limit of 1 ppt (ng/l) and below. 166 

Calibration standards and certified reference materials were used for method validation. The 167 

levels of other measured metals (aluminium, lead, nickel, zinc, manganese, iron, copper) were 168 

low, and did not differ among the treatment groups (all t <0.88, all p <0.38).  169 

 170 

DNA isolation 171 

DNA isolation was performed at the Center of Evolutionary Applications (University of Turku, 172 

Finland). We used RBCs given that previous studies suggest that blood shows similar 173 

methylation patterns as brain tissue in the study species (e.g. 80% similarity between brain and 174 

blood methylation in CpGs; 48, 49). DNA was extracted from 10-20 l RBCs using the salt 175 

extraction method modified from (61). Extracted DNA was treated with RNase-I according to 176 

the manufacturer's protocol. DNA concentration was measured fluorometrically with a Qubit 177 

High Sensitivity kit (ThermoFisher Scientific) and we assessed DNA integrity by running each 178 

DNA sample on an agarose gel. 179 

 180 

RRBS library preparation 181 

We used a reduced representation bisulfite sequencing (RRBS) approach, which enriches for 182 

regions of the genome that have a high CpG content. We chose the RRBS approach because 183 
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with the use of MspI as restriction enzyme, the method targets regions that are enriched for 184 

CpG sites. These regions are typically situated in or near the promotor regions, which has the 185 

advantage that CpGs in a relatively large proportion of the genes are covered (22, 62) making 186 

this a cost-effective method for detecting sites that are likely functional (16). It was previously 187 

shown in the study species that a vast majority of methylated Cs (97%) were derived from CpG 188 

sites in blood (48). Sequencing was conducted at the Finnish Microarray and Sequencing 189 

Center in Turku, Finland. The library preparation was started from 200 ng of genomic DNA 190 

and was carried out according to a protocol adapted from (63). The first step in the workflow 191 

involved the fragmentation of genomic DNA with MspI where the cutting pattern of the 192 

enzyme (C^CGG) was used to systematically digest DNA to enrich for CpG dinucleotides. 193 

After a fragmentation step a single reaction was carried out to end repair and A-tail (required 194 

for the adapter ligation) the MspI digested fragments using Klenow fragment (3’ => 5’ exo) 195 

following the purification of A-tailed DNA with bead SPRI clean-up method (AMPure 196 

magnetic beads). A unique Illumina TruSeq indexing adapter was then ligated to each sample 197 

during adapter ligation step to be able to identify pooled samples of one flow cell lane. To 198 

reduce the occurrence of adapter dimers, a lower concentration of adapters (1:10 dilution) was 199 

used than recommended by the manufacturer. These ligated DNA fragments were purified with 200 

bead SPRI clean-up method before putting samples through bisulfite conversion to achieve C-201 

to-U conversion of unmethylated cytosines, whereas methylated cytosines remain intact. 202 

Bisulfite conversion and sample purification were done according to Invitrogen MethylCode 203 

Bisulfite Conversion Kit. Aliquots of converted DNA were amplified by PCR (16 cycles) with 204 

Taq/Pfu Turbo Cx Polymerase, a proofreading PCR enzyme that does not stall when it 205 

encounters uracil, the product of the bisulfite reaction, in the template. PCR-amplified RRBS 206 

libraries were purified using two subsequent rounds of SPRI beadclean-ups to minimize primer 207 

dimers in the final libraries. The high quality of the libraries was confirmed with Advanced 208 
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Analytical Fragment Analyzer and the concentrations of the libraries were quantified with 209 

Qubit® Fluorometric Quantitation, Life Technologies. We used an average fragment size of 210 

250-350 bp for sequencing. 211 

 212 

Sequencing 213 

The samples were normalized and pooled for the automated cluster preparation which was 214 

carried out with Illumina cBot station. The 20 libraries were combined in two pools, 10 samples 215 

in each pool (treatments and sexes equally distributed between the pools) and sequenced in two 216 

lanes. The samples were sequenced with an Illumina HiSeq 2500 instrument using TruSeq v3 217 

sequencing chemistry. Paired-end sequencing with 2 x 100 bp read length was used with 6 bp 218 

index run.  219 

 220 

Sequence data processing and differential methylation expression analysis 221 

All the reads were checked for quality using FastQC (Babraham Bioinformatics) with multiQC 222 

(64), and low-quality sequences were trimmed with Trim Galore v. 0.4.4 (Brabraham 223 

Bioinformatics) by using --quality 20 --paired --rrbs settings.  224 

The trimmed reads were mapped to the Parus major reference genome build 1.1. 225 

(https://www.ncbi.nlm.nih.gov/assembly/ GCF_001522545.2) using Bismark (65) with default 226 

parameters. Methylation calling was conducted with Bismark, first with default settings with 227 

paired-end mode and overlap removal (--p --no_overlap). After this first calling round, we 228 

observed a methylation bias for the samples by plotting the methylation proportion across each 229 

possible position in the read. Based on the plotting, the three and two first bases of R1 and R2 230 

respectively of the 5’ prime end were omitted and the first base in the R2 3’ prime end was also 231 

omitted in the final methylation calling. Thereafter, Methylkit (66) implemented in R was used 232 

for filtering and differential methylation analysis. We discarded bases that had coverage below 233 
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10x. To avoid a possible PCR bias we also discarded bases that had more than 99.9th percentile 234 

of coverage in each sample. Before differential methylation analysis we merged read counts 235 

from reads covering both strands of a CpG dinucleotide and CpGs needed to be covered with 236 

at least 8 samples per group (control and treatment).  237 

Samples were thereafter clustered based on the similarity of their overall methylation 238 

profile by (i) using the clustering method ward.D in Methylkit’s clusterSamples -function and 239 

(ii) using principal component analysis (PCA) with Methylkit’s PCASamples -function. We 240 

also checked for lane and sex effect by using Methylkit’s assocComp -function where it checks 241 

which principal components are statistically associated with the potential batch effects such as 242 

the used lane and sex of the individuals. For the former, no missing data is allowed, thus we 243 

created a separate data object where all the individuals needed to be covered. 244 

For analyzing differential methylation of CpG sites between control and arsenic 245 

treatment we used the beta-binomial model from DSS package (67) which is also included in 246 

Methylkit (calculateDiffMethDSS - function). DSS calculates the differential methylation 247 

statistics using a beta-binomial model with parameter shrinkage. Bonferroni correction was 248 

applied to account for multiple testing with q-value of 0.05. Furthermore, we also did the “tiling 249 

window analysis” in Methylkit where methylation information is summarized over tiling 250 

windows which are then used the in DSS analysis. We used the default values, win.size=1000, 251 

step.size=1000, cov.bases = 10 for the tiling and ran DSS again for these regions. 252 

 253 

Results 254 

Arsenic exposure 255 

As reported in Sánchez-Virosta et al. (46, 47), dietary arsenic treatment successfully increased 256 

arsenic load as fecal arsenic levels were on average 10 times higher in arsenic exposure 257 

compared to control group (average±SD ppm: control 0.51±0.50, arsenic exposure 4.92±4.57, 258 
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t15.4 = -3.83, p = 0.0015). In the subsample of nests selected for RRBS, the values were 259 

0.47±0.37 ppm for control nests and 6.50±5.10 ppm for arsenic treatment, respectively. 260 

Furthermore, increased levels were also found in internal tissues: the mean (±SD) arsenic 261 

concentrations in liver were 4.19 ± 5.92 µg/g, d.w. (N=21) for arsenic exposure and 0.058 ± 262 

0.100 µg/g, d.w. (N= 16) for control group, and in the bone 3.37 ± 3.85 µg/g, d.w. and 0.074 ± 263 

0.103 µg/g, d.w., respectively (see Table 2 in 46).  The levels were statistically significantly 264 

higher in arsenic exposure group compared to control group (p <0.001).  265 

 266 

Sequencing and mapping 267 

The total number of read pairs was 341 million (Supplementary Table 1), varying from 14 268 

million to 20 million per individual. After QC filtering the final number of read pairs was 337 269 

million (Supplementary Table 1). The RRBS individual sequencing data have been deposited 270 

in NCBI (Number will be added later). Mapping efficiency was on average 46.15% and on 271 

average 3.1 million cytosines were covered before 10x coverage and percentile filtering. After 272 

filtering, 1.3 million cytosines were identified in CpG context. When combining the Cs from 273 

both strands and restricting our data to at least 8 individuals per group to be covered, we ended 274 

up having 652 655 CpGs. 275 

 276 

Sample clustering and differential methylation 277 

Both the ward.D and PCA clustering methods showed that sample 14 from the treatment group 278 

was an outlier in its methylation profile (Supplementary Figure 1). That particular sample also 279 

had a low number of reads and showed lower duplication levels (Supplementary Table 1) and 280 

we therefore decided to exclude this sample from further analysis. No lane effect was detected, 281 

but PC3 (explained 0.23% of the variance) was associated with sex after Bonferroni correction 282 

(Supplementary Table 2, Supplementary Figure 2), mostly driven by two samples, ctrl_3F and 283 
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test_16F, since after removing these two female samples from the data, PC3 was not significant 284 

anymore. Furthermore, when removing the PC3 from the data, three CpG sites were significant 285 

in the differential methylation analysis done with DSS: two of them were the same as when 286 

including all the PCs (see below, Table 1). The three other significant sites found below were 287 

not covered by all individuals as required in this PC-removal analysis. 288 

 289 

In the differential methylation analysis when including all the PCs, five CpG sites showed a 290 

significant difference in methylation level with a q-value below 0.05 and percent methylation 291 

difference larger than 10% (Table 1, Figure 1, Supplementary Table 3). Lambda estimation 292 

was close to 1 ( = 0.747, SE 0.000136) (Supplementary Figure 3), suggesting no systematic 293 

biases (>1 indicates bias). Four of these sites were hypermethylated (higher methylation in 294 

the arsenic treatment group) and one was hypomethylated (higher methylation in the control 295 

group). Three of the sites were located in gene bodies, namely zinc finger and BTB domain 296 

containing 47 (ZBTB47), HIVEP zinc finger 3 (HIVEP3) and insulin like growth factor 2 297 

mRNA binding protein 1 (IGF2BP1) based on NCBI P. major annotation report 102. None of 298 

the regions from the tiling windows analysis were differentially methylated between control 299 

and treatment samples. 300 

  301 
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 302 

 303 

Table 1. The differentially methylated CpG sites between arsenic exposed and control 304 

individuals. Methylation diff% refers to the methylation difference, comparing arsenic exposed 305 

to control group. Positive values therefore indicate hypermethylation in the arsenic treatment 306 

group compared to the control group. PC3 indicates sites that were significant after PC3 307 

removal. 308 

Chr Chr Genbank Position P-value q-value 

Methylation 

diff % Gene PC3 

2 NC_031769.1 2,448,788 1.00E-10 6.53E-05 36.40 ZBTB47  
12 NC_031781.1 9,949,364 1.23E-08 8.05E-03 57.66 -  
23 NC_031791.1 5,408,232 3.43E-08 2.24E-02 42.66 HIVEP3 x 

UN NW_015379267.1 107,660 7.99E-10 5.21E-04 60.43 IGF2BP1  
UN NW_015379318.1 39,910 1.42E-08 9.27E-03 -52.66 - x 

Only in PC3 removed       
14 NC_031783.1 14,025,702 1.34E-07 0.042 27.09 - x 
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 312 

Figure 1.  Plots of significance of CpG sites from the differential methylation analysis 313 

conducted with DSS implemented in Methylkit. (a) Manhattan plot with the significance of 314 

differential methylation of the arsenic treatment against the control pool, against the great tit 315 

reference genome version 1.1. The orange line depicts the genome-wide threshold based on a 316 
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Bonferroni correction: 7.11. (b) A volcano plot of the significance against the absolute 317 

difference in methylation between the two pools, with delta methylation is arsenic treatment – 318 

control. Orange points are the genome-wide significant sites after Bonferroni correction and 319 

filtering for Delta methylation >10%. 320 

 321 

Discussion 322 

We investigated whether early-life exposure to environmentally relevant levels of experimental 323 

arsenic affects DNA methylation in a wild vertebrate population. The experimental treatment 324 

increased arsenic levels significantly, but contrary to predictions, did not lead to overall 325 

hypomethylation. We found that treated individuals showed hypermethylation in four CpG 326 

sites and hypomethylation in one CpG site, indicating that increased levels of arsenic exposure 327 

appears to affect methylation at specific parts of the genome only. Yet also at these sites, the 328 

assumption of general hypomethylation was not met.  329 

 The lack of overall or site-specific hypomethylation may be explained by various 330 

factors: first, contrary to our predictions, the methyl donor s-adenosylmethionine needed for 331 

methylation may not have been limiting, potentially because oxidative status was not altered 332 

dramatically in all individuals. Indeed, as reported from the exact same experiment and samples 333 

by Sánchez-Virosta et al. (47), most biomarkers of oxidative status and damage in blood were 334 

only slightly (but not statistically significantly) elevated, and only the antioxidant enzyme 335 

catalase showed a significant decrease. In the future, sampling before and after exposure to e.g. 336 

pollutants may be advised to associate DNA methylation changes directly to changes in 337 

oxidative status, for example in adult birds (in contrast to developing animals where 338 

measurements are confounded by the changes in growth and associated changes in physiology).  339 

 Second, the response is likely to depend on the tissue type studied. For example, global 340 

hypomethylation in response to arsenic exposure is not consistently reported in blood: in 341 
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humans, where blood leucocytes have been used to characterize arsenic associated changes no 342 

evidence for global hypo or hypermethylation was detected, yet arsenic was repeatedly reported 343 

to induce hypermethylation in various genes (especially promoters) (68), whereas global 344 

hypomethylation was detected in hepatic cells (69). Given that arsenic metabolism and SAM 345 

production mostly takes part in liver, we may expect tissue-dependent hypomethylation 346 

especially in liver, but not necessarily in other tissues. Unfortunately, we lack oxidative status 347 

measurements from the liver in this experiment. Studies have shown that absolute methylation 348 

values between e.g. blood and liver or kidney and brain are highly correlated (48, 58),  just like 349 

changes in methylation in red blood cells and liver are correlated (59). Nevertheless tissue-350 

specific methylation differences were larger for genes that are expressed in a tissue-specific 351 

way (48) and measuring methylation levels from red blood cells might therefore miss tissue-352 

dependent genes whose expression is expected to change (59). 353 

Furthermore, contrary to many previous studies in laboratory animals, this experiment 354 

was conducted with relatively low doses, mimicking exposure in polluted environments, 355 

whereas effects via SAM may only be apparent when levels are higher. Also, we were only 356 

interested in short-term, early-life effects while resident species inhabiting polluted 357 

environments during their whole life-span may show marked effects due to cumulative arsenic 358 

exposure. This is an interesting avenue for further research.  359 

As the experiment was conducted in a wild population, in comparison to previous 360 

studies in laboratory, the environmental or genetic variability and potential variability across 361 

sexes may have masked some effects of the experimental treatments. Arsenic is known to have 362 

sex-dependent effects in many model systems (though predominantly in adult animals; 363 

reviewed e.g. 32). Furthermore, for example studies on mice report sex differences in DNA 364 

methylation patters in response to arsenic (e.g. 70), and general methylation differences among 365 

the sexes in young chickens (71). Yet, our initial models suggested that sex explained only a 366 
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very minor part of the variation in DNA methylation (and was therefore dropped from the final 367 

model), which suggests that in our data sex-bias is unlikely to strongly mask the effects. DNA 368 

methylation is known to be heavily influenced by the genetic background, for example in van 369 

Oers et al. (62), the majority of the variation between individuals was explained by genetic 370 

similarity. In the future, split-brood experimental designs may be used to distinguish genetic 371 

effects from environmental. The arsenic exposure applied (as measured from the fecal samples) 372 

was also at the lower range of variation if compared to polluted environments, which may 373 

contribute to the findings of only limited differences − yet  mortality was increased with these 374 

levels, as reported in (46). We also report large variation in the fecal arsenic levels within the 375 

arsenic exposure treatment. Several factors may affect those levels, such as the time elapsed 376 

between last dosing and sampling, the times the nestling has been fed in that time and how 377 

many droppings they have produced, among others. Feces dropped soon after arsenic 378 

administration likely contain higher arsenic levels than later on.  379 

 We could annotate three of the five differentially methylated sites to genes. One of the 380 

genes, IGF2BP1 is especially interesting as it is associated with development and growth: it 381 

has been showed that IGF2BP1 plays important roles in various aspects of cell function, such 382 

as cell proliferation, differentiation, migration, morphology and metabolism (72, 73) but also 383 

embryogenesis and potentially even arsenic-related carcinogenesis (74, 75). IGF2BP1 is 384 

abundantly expressed in fetal and neonatal tissues (73). Furthermore, two of the genes, ZBTB47 385 

and HIVEP3 are both zinc-finger domains and are associated with transcriptional regulation 386 

(76). Epigenetic regulation of both ZBTB47 and HIVEP3 is known to be associated cancer (77, 387 

78). Because our sample size in combination with a stringent correction for repeated sampling 388 

limits the power to detect subtle differences, we do expect to find a fraction of the number of 389 

differentially methylated CpGs (79). 390 
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All the three gene-related differentially methylated CpG sites were found in the gene 391 

body region, in both intron (IGF2BP1) and exons (ZBTB47 and HIVEP3). Hypermethylation 392 

at CpG sites at promoter regions represses transcription of genes which is a well-known 393 

mechanism operating in many scenarios. DNA methylation at intergenic regions and gene 394 

bodies and its impact on gene expression is gaining more attention especially in cancer studies 395 

(80). Interestingly, a recent study on corals showed that gene body methylation was altered by 396 

environmental factors, which facilitated acclimatization and adaptation to different habitats 397 

(81). However, in great tits the DNA methylation observed in CpGs that are situated within 398 

gene bodies do not seem to affect gene expression (48), thus future studies are needed to 399 

determine the role of gene body methylation in gene expression control.  400 

 401 

In conclusion, our study shows that early-life exposure to a toxic metal, arsenic, potentially 402 

affects fitness via DNA methylation changes in specific pathways, but not via an overall 403 

hypomethylation in the red blood cells. The effect might be more profound in other tissues that 404 

are more relevant to arsenic metabolism, such as liver. Thus, future studies should inspect other 405 

tissues as well. Other pathways of epigenetic alterations, known to be subject to arsenic-related 406 

alternations in vitro, such as histone acetylation (29) and micro-RNAs (82) could be further 407 

explored.  408 
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