

1 Does arsenic contamination affect DNA methylation patterns in a wild bird population? An
2 experimental approach

3

4 Veronika N. Laine¹, Mark Verschuur¹, Kees van Oers¹, Silvia Espín^{2,3}, Pablo Sánchez-
5 Virosta^{2,3}, Tapi Eeva³, Suvi Ruuskanen^{3,4}

6

7 ¹Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW),
8 Wageningen, The Netherlands

9 ²Area of Toxicology, Department of Socio-Sanitary Sciences, University of Murcia, Spain

10 ³Department of Biology, University of Turku, Finland

11 ⁴ Department of Biological and Environmental Science, University of Jyväskylä, Finland

12

13 Abstract

14 Pollutants, such as toxic metals, negatively influence organismal health and performance, even
15 leading to population collapses. Studies in model organisms have shown that epigenetic marks,
16 such as DNA methylation, can be modulated by various environmental factors, including
17 pollutants, influencing gene expression and various organismal traits. Yet experimental data
18 on the effects of pollution on DNA methylation from wild animal populations is largely
19 lacking. We here experimentally investigated for the first time the effects of early-life exposure
20 to environmentally relevant levels of a key pollutant, arsenic (As), on genome-wide DNA
21 methylation in a wild bird population. We experimentally exposed nestlings of great tits (*Parus*
22 *major*) to arsenic during their post-natal developmental period (3 to 14 days post-hatching) and
23 compared their erythrocyte DNA methylation levels to those of respective controls. In contrast
24 to predictions, we found no overall hypomethylation in the arsenic group. We found evidence
25 for loci to be differentially methylated between the treatment groups, but for five CpG sites

26 only. Three of the sites were located in gene bodies of zinc finger and BTB domain containing
27 47 (*ZBTB47*), HIVEP zinc finger 3 (*HIVEP3*) and insulin like growth factor 2 mRNA binding
28 protein 1 (*IGF2BPI*). Further studies are needed to evaluate whether epigenetic dysregulation
29 is a commonly observed phenomena in polluted populations, and what the consequences are
30 for organism functioning and for population dynamics.

31

32 **Keywords:** pollution, *Parus major*, environmental epigenetics, ecological epigenetics,
33 ecotoxicology

34 **Running title:** Arsenic pollution and DNA methylation in the wild

35

36 **Introduction**

37 Environmental pollution can negatively affect organisms at multiple level of organization, from
38 molecular and physiological level to performance, and even lead to population collapses (1-4).
39 In wild populations, a largely unexplored mechanism mediating such pollution effects is the
40 potential influence of the epigenome, such as DNA methylation. In human and animal models,
41 the effects of pollution on the epigenome is studied extensively, and it has been discovered that
42 methylation patterns can be changed by various environmental factors, including metal and
43 organic pollutants and other early-life stressors (reviewed by 5-11). DNA methylation is the
44 addition of a methyl (-CH₃) group to the 5' carbon site of cytosines catalyzed by DNA-
45 methyltransferases, and is generally found to be negatively associated with gene expression
46 (12). Variation in DNA methylation is linked to variation in phenotypes and behavior, and
47 associated with the prevalence of various diseases, including cancers in humans and model
48 animals (13-16). Epigenetic changes from early-life environment may persist and affect health
49 throughout life-time and may even be transmitted to future generations (16), which could
50 potentially contribute to explaining delayed or persistent effects of pollutants (e.g. 7). Yet the
51 effects of pollutants on the epigenome have hardly been explored, and epigenetic research in
52 wild animal populations is only emerging (8, 17-24).

53 Arsenic (As) is a global, persistent pollutant, distributed in the environment due to
54 natural and anthropogenic sources such as mining, industrial activities or coal combustion (25)
55 and the most highly ranked hazardous substances for animals and plants (26). Across
56 organisms, arsenic can have negative consequences for basically all organ systems, often via
57 causing oxidative stress, i.e. the imbalance between harmful reactive oxygen species (ROS)
58 and antioxidant defenses, and cancer (27, 28).

59 Arsenic has been repeatedly observed to also modulate patterns of DNA methylation *in*
60 *vitro* (e.g. 29) in laboratory animal models (with levels exceeding environmental levels,

61 reviewed 30) and in studies on human populations (e.g. 31). Arsenic could influence DNA
62 methylation via multiple pathways: (i) arsenic can change the DNA methylation of a cytosine
63 via the depletion of the cellular availability of methyl groups. Biotransformation of arsenic to
64 less toxic forms includes the addition of methyl group(s) (32) with the main methyl-donor for
65 methylation of both arsenic and cytosines being s-adenosylmethionine (SAM). The high
66 demand imposed on this molecule during the biotransformation process can then lead to a
67 global DNA hypomethylation as shown in multiple (bio)medical studies in humans and mice
68 (reviewed e.g. 5, 33). (ii) Arsenic could influence epigenetic signaling by targeting the zinc
69 fingers of Tet proteins and perturbing the Tet-mediated oxidation of 5-mC (*in vitro*: 34-37).
70 (iii) Furthermore, ROS created during arsenic biotransformation have been suggested to
71 influence DNA methylation by creating aberrant modifications (humans: 38).

72 Pre/postnatal exposure to arsenic in humans is associated with epigenetic modifications
73 related to early onset of diseases, which could have long-term consequences (reviewed in 39).
74 For example, in humans, prenatal arsenic exposure led to global hypomethylation of
75 inflammatory and tumor suppressor genes (40) and interfered with de novo methylation (41)
76 in humans. Global hypomethylation can lead to chromosomal abnormalities, contributing to
77 overall genomic instability and malignant transformations (reviewed in 32). Studies have
78 demonstrated that widespread DNA hypomethylation induced by arsenic is also associated with
79 promoter activation and involved in carcinogenesis (reviewed in 32). Arsenic-related
80 hypomethylation of specific sets of genes has also be reported, and these include, for example,
81 genes related to neural development (e.g. 42), mitochondria biogenesis (e.g. 43) and
82 inflammation (e.g. 44). Despite the extensive data on model animals and humans, the potential
83 effects of environmental arsenic on wild animals via epigenetic dysregulation has not been
84 studied up to date.

85 We here investigated the effects of experimental early-life (post-natal) exposure to
86 arsenic on genome-wide DNA methylation status in a wild population of great tits (*Parus*
87 *major*). To our knowledge, this is the first study on the effect of arsenic on epigenetic marks in
88 a wild population. We used a bird model, since birds have been successfully used in
89 biomonitoring of pollution and its effects (e.g. 45). Arsenic exposure has been reported to
90 negatively affect multiple fitness-related traits (growth, physiology, behavior and even egg-
91 laying) in several bird species (reviewed in 28). For great tits specifically, we have previously
92 reported (results from the current experiment) that in nestlings, arsenic exposure increased
93 mortality, reduced wing growth (46) and decreased an intracellular antioxidant, catalase (47),
94 but did not largely influence body mass, plasma biochemistry (vitamins) or other biomarkers
95 of oxidative stress (46, 47). More specifically, we here experimentally exposed nestlings in
96 non-polluted sites to environmentally relevant levels (1 µg/g body mass) of dietary arsenic
97 during the entire post-hatching growth period, and compared their DNA methylation levels to
98 respective controls. We used reduced representation bisulfite sequencing (RRBS) to assess
99 genome-wide methylation and characterized differential methylation across CpG sites between
100 the experimental and the control group. We predict that arsenic exposure will lead to genome-
101 wide hypomethylation, and potentially specifically on gene/hubs related to development.

102

103 **Methods**

104

105 ***Arsenic treatment protocol and sampling***

106 The study was conducted in the breeding season of 2015 (laying dates 4th May – 10th June) in a
107 nest box population of great tits (*Parus major*) in western Finland. Great tit is a small passerine
108 bird and a popular model species in ecological and evolutionary research. Importantly, it is one

109 of the few non-domesticated bird species, for which the genome and methylome are available
110 (18, 48-49).

111 The arsenic exposure, dosages and sampling are described in detail in (46, 47). In short,
112 the experiment was conducted in a nest-box population with known history of relatively low
113 pollution levels (50). There are no air pollution samplers at the study sites but metal
114 biomonitoring studies have been done in this area, for example measuring forest floor moss
115 metal levels (a proxy for atmospheric fallout). In general, metal levels are relatively low in
116 moss samples (e.g. for arsenic <0.5 µg/g in 2014; 51) while this value is exceeded in large areas
117 in Central Europe (52). Mean topsoil arsenic concentration in the study site was 0.76 µg/g in
118 2014 (53).

119 Breeding was monitored, and from day 3 after hatching until day 13 whole broods were
120 subjected to daily oral dosing with the following treatments: arsenic treatment (1 µg arsenic/g
121 body mass in distilled water, N = 16 broods) or control treatment (distilled water, N = 16
122 broods). Dosing volumes were adjusted to estimated nestling mass based on average body
123 masses at different ages from large dataset on long-term averages from the study population
124 (54). Mass of individual nestlings was not measured every day to reduce handling time and
125 disturbance to the nest. The volumes dosed to the controls were exactly the same as for
126 treatments. We dosed the solution directly to the beak of the nestlings with a pipette. The range
127 of volumes was 50–170 µl and did not exceed the recommended volumes (20 ml/kg, e.g. 55).
128 The dose aimed to represent environmentally relevant exposure levels occurring in polluted
129 areas in Europe: It was estimated combining data from several sources, such as (i) the lowest-
130 observed-adverse-effect level for different effects on mammals (2-8µg/kg/day, 56), (ii) fecal
131 arsenic levels reported for great tits at some metal polluted sites (reviewed in 28): In previous
132 data, summarized in (28, Table 1), arsenic concentrations in feces of passerines are within the
133 range of 0.1–1.4 ppm in unpolluted sites and 5–16 ppm in polluted areas. The levels measured

134 in the samples from our experiment (ca 6.5 ppm, see results) overlap with these levels,
135 suggesting that the treatment levels were environmentally relevant, at the lower end of the
136 range. Yet, Sánchez-Virosta et al. (46) and Janssens et al. (57) report that great tit nestlings
137 from polluted areas in Harjavalta and Belgium have arsenic levels up to 48-52 ppm, thus levels
138 even this high are environmentally relevant. Other data sources were (iii) arsenic
139 concentrations of food items (moth larvae, spiders and beetles) collected directly from parent
140 great tits feeding their nestlings in the polluted area (46, 47), and (iv) a pilot experiment, to
141 ensure that the levels were environmentally relevant and were not causing excessive mortality
142 (46). Fecal matter was sampled 8 days after hatching for metal analyses (see below). DNA
143 methylation was analyzed from red blood cells (RBCs, 14 d after hatching) to avoid sacrificing
144 the individuals. Absolute methylation values between e.g. blood and liver or kidney and brain
145 are highly correlated (48, 58, 59), just like changes in methylation in red blood cells and liver
146 are correlated (59) and thus blood can be used as a proxy. Ten samples from the arsenic and
147 ten from control treatment were selected for the DNA methylation analyses. These included
148 five females and five males from each treatment (molecularly sexed, following 60). Only one
149 nestling per nest was selected to avoid pseudoreplication. We made use of the knowledge on
150 the fecal arsenic levels (see below), and selected individuals from 10 broods with highest
151 arsenic concentrations from the arsenic treatment and 10 lowest concentrations from the
152 control. All the dead nestlings found in the nests were collected and frozen at -20°C until
153 necropsies could be performed in July 2015. Carcasses were necropsied to measure arsenic and
154 metal concentrations in liver and bone in order to compare arsenic accumulation among groups
155 and its distribution among tissues (46). The experiment was conducted under licenses from the
156 Animal Experiment Committee of the State Provincial Office of Southern Finland (license
157 number ESAVI/11579/04.10.07/2014) and the Centre for Economic Development, Transport
158 and the Environment, ELY Centre Southwest Finland (license number VARELY/593/2015).

159

160 ***Metal analyses***

161 For detailed analyses, see Sánchez-Virosta et al. (46). Briefly, in both experimental groups,
162 several fecal samples (any sex) from the same brood were combined to assess brood level metal
163 exposure (total N = 32 broods). We determined the concentrations of arsenic, but also other
164 metals to confirm that the levels of other metals were low and similar across the treatment
165 groups (see 46). The determination of pollutants was conducted with inductively coupled
166 plasma optical emission spectrometry (ICP-OES) with detection limit of 1 ppt (ng/l) and below.
167 Calibration standards and certified reference materials were used for method validation. The
168 levels of other measured metals (aluminium, lead, nickel, zinc, manganese, iron, copper) were
169 low, and did not differ among the treatment groups (all $t < 0.88$, all $p < 0.38$).

170

171 ***DNA isolation***

172 DNA isolation was performed at the Center of Evolutionary Applications (University of Turku,
173 Finland). We used RBCs given that previous studies suggest that blood shows similar
174 methylation patterns as brain tissue in the study species (e.g. 80% similarity between brain and
175 blood methylation in CpGs; 48, 49). DNA was extracted from 10-20 μ l RBCs using the salt
176 extraction method modified from (61). Extracted DNA was treated with RNase-I according to
177 the manufacturer's protocol. DNA concentration was measured fluorometrically with a Qubit
178 High Sensitivity kit (ThermoFisher Scientific) and we assessed DNA integrity by running each
179 DNA sample on an agarose gel.

180

181 ***RRBS library preparation***

182 We used a reduced representation bisulfite sequencing (RRBS) approach, which enriches for
183 regions of the genome that have a high CpG content. We chose the RRBS approach because

184 with the use of *MspI* as restriction enzyme, the method targets regions that are enriched for
185 CpG sites. These regions are typically situated in or near the promotor regions, which has the
186 advantage that CpGs in a relatively large proportion of the genes are covered (22, 62) making
187 this a cost-effective method for detecting sites that are likely functional (16). It was previously
188 shown in the study species that a vast majority of methylated Cs (97%) were derived from CpG
189 sites in blood (48). Sequencing was conducted at the Finnish Microarray and Sequencing
190 Center in Turku, Finland. The library preparation was started from 200 ng of genomic DNA
191 and was carried out according to a protocol adapted from (63). The first step in the workflow
192 involved the fragmentation of genomic DNA with *MspI* where the cutting pattern of the
193 enzyme (C^ACGG) was used to systematically digest DNA to enrich for CpG dinucleotides.
194 After a fragmentation step a single reaction was carried out to end repair and A-tail (required
195 for the adapter ligation) the *MspI* digested fragments using Klenow fragment (3' => 5' exo)
196 following the purification of A-tailed DNA with bead SPRI clean-up method (AMPure
197 magnetic beads). A unique Illumina TruSeq indexing adapter was then ligated to each sample
198 during adapter ligation step to be able to identify pooled samples of one flow cell lane. To
199 reduce the occurrence of adapter dimers, a lower concentration of adapters (1:10 dilution) was
200 used than recommended by the manufacturer. These ligated DNA fragments were purified with
201 bead SPRI clean-up method before putting samples through bisulfite conversion to achieve C-
202 to-U conversion of unmethylated cytosines, whereas methylated cytosines remain intact.
203 Bisulfite conversion and sample purification were done according to Invitrogen MethylCode
204 Bisulfite Conversion Kit. Aliquots of converted DNA were amplified by PCR (16 cycles) with
205 Taq/Pfu Turbo Cx Polymerase, a proofreading PCR enzyme that does not stall when it
206 encounters uracil, the product of the bisulfite reaction, in the template. PCR-amplified RRBS
207 libraries were purified using two subsequent rounds of SPRI beadclean-ups to minimize primer
208 dimers in the final libraries. The high quality of the libraries was confirmed with Advanced

209 Analytical Fragment Analyzer and the concentrations of the libraries were quantified with
210 Qubit® Fluorometric Quantitation, Life Technologies. We used an average fragment size of
211 250-350 bp for sequencing.

212

213 ***Sequencing***

214 The samples were normalized and pooled for the automated cluster preparation which was
215 carried out with Illumina cBot station. The 20 libraries were combined in two pools, 10 samples
216 in each pool (treatments and sexes equally distributed between the pools) and sequenced in two
217 lanes. The samples were sequenced with an Illumina HiSeq 2500 instrument using TruSeq v3
218 sequencing chemistry. Paired-end sequencing with 2 x 100 bp read length was used with 6 bp
219 index run.

220

221 ***Sequence data processing and differential methylation expression analysis***

222 All the reads were checked for quality using FastQC (Babraham Bioinformatics) with multiQC
223 (64), and low-quality sequences were trimmed with Trim Galore v. 0.4.4 (Brabraham
224 Bioinformatics) by using --quality 20 --paired --rrbs settings.

225 The trimmed reads were mapped to the *Parus major* reference genome build 1.1.
226 (https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.2) using Bismark (65) with default
227 parameters. Methylation calling was conducted with Bismark, first with default settings with
228 paired-end mode and overlap removal (--p --no_overlap). After this first calling round, we
229 observed a methylation bias for the samples by plotting the methylation proportion across each
230 possible position in the read. Based on the plotting, the three and two first bases of R1 and R2
231 respectively of the 5' prime end were omitted and the first base in the R2 3' prime end was also
232 omitted in the final methylation calling. Thereafter, Methylkit (66) implemented in R was used
233 for filtering and differential methylation analysis. We discarded bases that had coverage below

234 10x. To avoid a possible PCR bias we also discarded bases that had more than 99.9th percentile
235 of coverage in each sample. Before differential methylation analysis we merged read counts
236 from reads covering both strands of a CpG dinucleotide and CpGs needed to be covered with
237 at least 8 samples per group (control and treatment).

238 Samples were thereafter clustered based on the similarity of their overall methylation
239 profile by (i) using the clustering method `ward.D` in `Methylkit`'s `clusterSamples` -function and
240 (ii) using principal component analysis (PCA) with `Methylkit`'s `PCASamples` -function. We
241 also checked for lane and sex effect by using `Methylkit`'s `assocComp` -function where it checks
242 which principal components are statistically associated with the potential batch effects such as
243 the used lane and sex of the individuals. For the former, no missing data is allowed, thus we
244 created a separate data object where all the individuals needed to be covered.

245 For analyzing differential methylation of CpG sites between control and arsenic
246 treatment we used the beta-binomial model from `DSS` package (67) which is also included in
247 `Methylkit` (`calculateDiffMethDSS` - function). `DSS` calculates the differential methylation
248 statistics using a beta-binomial model with parameter shrinkage. Bonferroni correction was
249 applied to account for multiple testing with *q*-value of 0.05. Furthermore, we also did the “tiling
250 window analysis” in `Methylkit` where methylation information is summarized over tiling
251 windows which are then used the in `DSS` analysis. We used the default values, `win.size=1000`,
252 `step.size=1000`, `cov.bases = 10` for the tiling and ran `DSS` again for these regions.

253

254 **Results**

255 *Arsenic exposure*

256 As reported in Sánchez-Virosta et al. (46, 47), dietary arsenic treatment successfully increased
257 arsenic load as fecal arsenic levels were on average 10 times higher in arsenic exposure
258 compared to control group (average \pm SD ppm: control 0.51 ± 0.50 , arsenic exposure 4.92 ± 4.57 ,

259 $t_{15.4} = -3.83$, $p = 0.0015$). In the subsample of nests selected for RRBS, the values were
260 0.47 \pm 0.37 ppm for control nests and 6.50 \pm 5.10 ppm for arsenic treatment, respectively.
261 Furthermore, increased levels were also found in internal tissues: the mean (\pm SD) arsenic
262 concentrations in liver were 4.19 \pm 5.92 μ g/g, d.w. (N=21) for arsenic exposure and 0.058 \pm
263 0.100 μ g/g, d.w. (N= 16) for control group, and in the bone 3.37 \pm 3.85 μ g/g, d.w. and 0.074 \pm
264 0.103 μ g/g, d.w., respectively (see Table 2 in 46). The levels were statistically significantly
265 higher in arsenic exposure group compared to control group ($p <0.001$).

266

267 ***Sequencing and mapping***

268 The total number of read pairs was 341 million (Supplementary Table 1), varying from 14
269 million to 20 million per individual. After QC filtering the final number of read pairs was 337
270 million (Supplementary Table 1). The RRBS individual sequencing data have been deposited
271 in NCBI (Number will be added later). Mapping efficiency was on average 46.15% and on
272 average 3.1 million cytosines were covered before 10x coverage and percentile filtering. After
273 filtering, 1.3 million cytosines were identified in CpG context. When combining the Cs from
274 both strands and restricting our data to at least 8 individuals per group to be covered, we ended
275 up having 652 655 CpGs.

276

277 ***Sample clustering and differential methylation***

278 Both the ward.D and PCA clustering methods showed that sample 14 from the treatment group
279 was an outlier in its methylation profile (Supplementary Figure 1). That particular sample also
280 had a low number of reads and showed lower duplication levels (Supplementary Table 1) and
281 we therefore decided to exclude this sample from further analysis. No lane effect was detected,
282 but PC3 (explained 0.23% of the variance) was associated with sex after Bonferroni correction
283 (Supplementary Table 2, Supplementary Figure 2), mostly driven by two samples, ctrl_3F and

284 test_16F, since after removing these two female samples from the data, PC3 was not significant
285 anymore. Furthermore, when removing the PC3 from the data, three CpG sites were significant
286 in the differential methylation analysis done with DSS: two of them were the same as when
287 including all the PCs (see below, Table 1). The three other significant sites found below were
288 not covered by all individuals as required in this PC-removal analysis.

289

290 In the differential methylation analysis when including all the PCs, five CpG sites showed a
291 significant difference in methylation level with a q-value below 0.05 and percent methylation
292 difference larger than 10% (Table 1, Figure 1, Supplementary Table 3). Lambda estimation
293 was close to 1 ($\lambda = 0.747$, SE 0.000136) (Supplementary Figure 3), suggesting no systematic
294 biases ($\lambda > 1$ indicates bias). Four of these sites were hypermethylated (higher methylation in
295 the arsenic treatment group) and one was hypomethylated (higher methylation in the control
296 group). Three of the sites were located in gene bodies, namely zinc finger and BTB domain
297 containing 47 (*ZBTB47*), HIVEP zinc finger 3 (*HIVEP3*) and insulin like growth factor 2
298 mRNA binding protein 1 (*IGF2BP1*) based on NCBI *P. major* annotation report 102. None of
299 the regions from the tiling windows analysis were differentially methylated between control
300 and treatment samples.

301

302

303

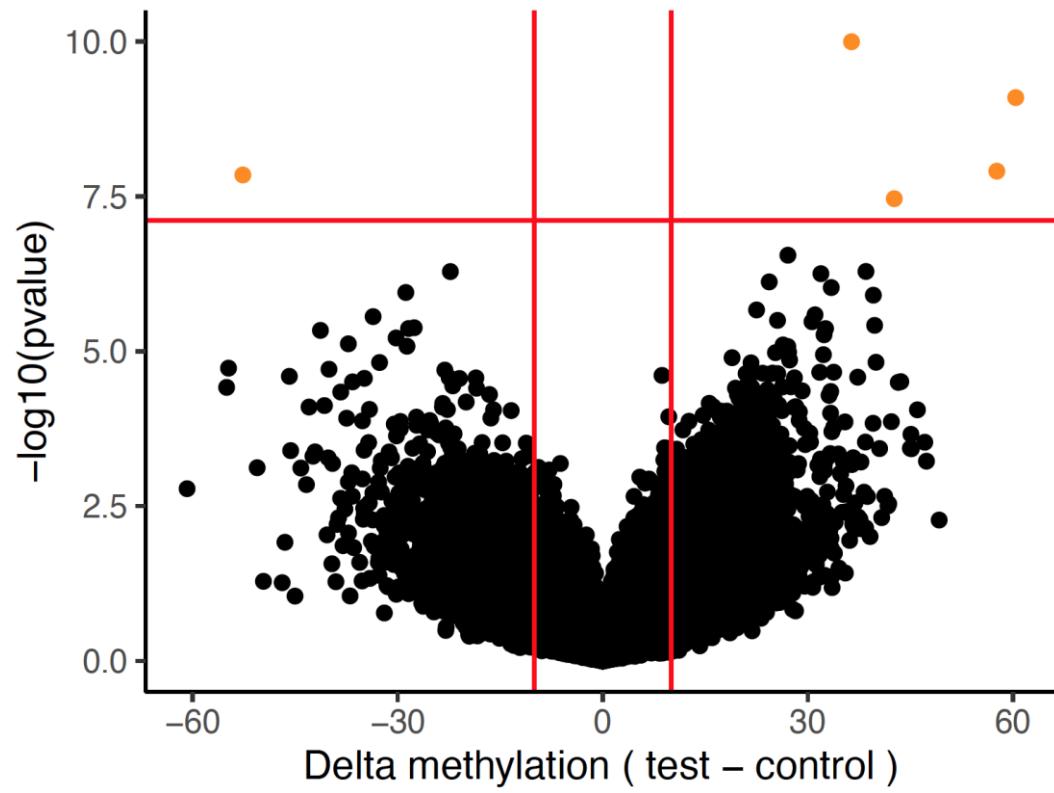
304 **Table 1.** The differentially methylated CpG sites between arsenic exposed and control
305 individuals. Methylation diff% refers to the methylation difference, comparing arsenic exposed
306 to control group. Positive values therefore indicate hypermethylation in the arsenic treatment
307 group compared to the control group. PC3 indicates sites that were significant after PC3
308 removal.

Chr	Chr Genbank	Position	P-value	q-value	Methylation		
					diff %	Gene	PC3
2	NC_031769.1	2,448,788	1.00E-10	6.53E-05	36.40	ZBTB47	
12	NC_031781.1	9,949,364	1.23E-08	8.05E-03	57.66	-	
23	NC_031791.1	5,408,232	3.43E-08	2.24E-02	42.66	HIVEP3	x
UN	NW_015379267.1	107,660	7.99E-10	5.21E-04	60.43	IGF2BP1	
UN	NW_015379318.1	39,910	1.42E-08	9.27E-03	-52.66	-	x
Only in PC3 removed							
14	NC_031783.1	14,025,702	1.34E-07	0.042	27.09	-	x

309

310

311



312

313 **Figure 1.** Plots of significance of CpG sites from the differential methylation analysis
314 conducted with DSS implemented in Methylkit. (a) Manhattan plot with the significance of
315 differential methylation of the arsenic treatment against the control pool, against the great tit
316 reference genome version 1.1. The orange line depicts the genome-wide threshold based on a

317 Bonferroni correction: 7.11. (b) A volcano plot of the significance against the absolute
318 difference in methylation between the two pools, with delta methylation is arsenic treatment –
319 control. Orange points are the genome-wide significant sites after Bonferroni correction and
320 filtering for Delta methylation >10%.

321

322 **Discussion**

323 We investigated whether early-life exposure to environmentally relevant levels of experimental
324 arsenic affects DNA methylation in a wild vertebrate population. The experimental treatment
325 increased arsenic levels significantly, but contrary to predictions, did not lead to overall
326 hypomethylation. We found that treated individuals showed hypermethylation in four CpG
327 sites and hypomethylation in one CpG site, indicating that increased levels of arsenic exposure
328 appears to affect methylation at specific parts of the genome only. Yet also at these sites, the
329 assumption of general hypomethylation was not met.

330 The lack of overall or site-specific hypomethylation may be explained by various
331 factors: first, contrary to our predictions, the methyl donor s-adenosylmethionine needed for
332 methylation may not have been limiting, potentially because oxidative status was not altered
333 dramatically in all individuals. Indeed, as reported from the exact same experiment and samples
334 by Sánchez-Virosta et al. (47), most biomarkers of oxidative status and damage in blood were
335 only slightly (but not statistically significantly) elevated, and only the antioxidant enzyme
336 catalase showed a significant decrease. In the future, sampling before and after exposure to e.g.
337 pollutants may be advised to associate DNA methylation changes directly to changes in
338 oxidative status, for example in adult birds (in contrast to developing animals where
339 measurements are confounded by the changes in growth and associated changes in physiology).

340 Second, the response is likely to depend on the tissue type studied. For example, global
341 hypomethylation in response to arsenic exposure is not consistently reported in blood: in

342 humans, where blood leucocytes have been used to characterize arsenic associated changes no
343 evidence for global hypo or hypermethylation was detected, yet arsenic was repeatedly reported
344 to induce hypermethylation in various genes (especially promoters) (68), whereas global
345 hypomethylation was detected in hepatic cells (69). Given that arsenic metabolism and SAM
346 production mostly takes part in liver, we may expect tissue-dependent hypomethylation
347 especially in liver, but not necessarily in other tissues. Unfortunately, we lack oxidative status
348 measurements from the liver in this experiment. Studies have shown that absolute methylation
349 values between e.g. blood and liver or kidney and brain are highly correlated (48, 58), just like
350 changes in methylation in red blood cells and liver are correlated (59). Nevertheless tissue-
351 specific methylation differences were larger for genes that are expressed in a tissue-specific
352 way (48) and measuring methylation levels from red blood cells might therefore miss tissue-
353 dependent genes whose expression is expected to change (59).

354 Furthermore, contrary to many previous studies in laboratory animals, this experiment
355 was conducted with relatively low doses, mimicking exposure in polluted environments,
356 whereas effects via SAM may only be apparent when levels are higher. Also, we were only
357 interested in short-term, early-life effects while resident species inhabiting polluted
358 environments during their whole life-span may show marked effects due to cumulative arsenic
359 exposure. This is an interesting avenue for further research.

360 As the experiment was conducted in a wild population, in comparison to previous
361 studies in laboratory, the environmental or genetic variability and potential variability across
362 sexes may have masked some effects of the experimental treatments. Arsenic is known to have
363 sex-dependent effects in many model systems (though predominantly in adult animals;
364 reviewed e.g. 32). Furthermore, for example studies on mice report sex differences in DNA
365 methylation patters in response to arsenic (e.g. 70), and general methylation differences among
366 the sexes in young chickens (71). Yet, our initial models suggested that sex explained only a

367 very minor part of the variation in DNA methylation (and was therefore dropped from the final
368 model), which suggests that in our data sex-bias is unlikely to strongly mask the effects. DNA
369 methylation is known to be heavily influenced by the genetic background, for example in van
370 Oers et al. (62), the majority of the variation between individuals was explained by genetic
371 similarity. In the future, split-brood experimental designs may be used to distinguish genetic
372 effects from environmental. The arsenic exposure applied (as measured from the fecal samples)
373 was also at the lower range of variation if compared to polluted environments, which may
374 contribute to the findings of only limited differences – yet mortality was increased with these
375 levels, as reported in (46). We also report large variation in the fecal arsenic levels within the
376 arsenic exposure treatment. Several factors may affect those levels, such as the time elapsed
377 between last dosing and sampling, the times the nestling has been fed in that time and how
378 many droppings they have produced, among others. Feces dropped soon after arsenic
379 administration likely contain higher arsenic levels than later on.

380 We could annotate three of the five differentially methylated sites to genes. One of the
381 genes, *IGF2BP1* is especially interesting as it is associated with development and growth: it
382 has been showed that *IGF2BP1* plays important roles in various aspects of cell function, such
383 as cell proliferation, differentiation, migration, morphology and metabolism (72, 73) but also
384 embryogenesis and potentially even arsenic-related carcinogenesis (74, 75). *IGF2BP1* is
385 abundantly expressed in fetal and neonatal tissues (73). Furthermore, two of the genes, *ZBTB47*
386 and *HIVEP3* are both zinc-finger domains and are associated with transcriptional regulation
387 (76). Epigenetic regulation of both *ZBTB47* and *HIVEP3* is known to be associated cancer (77,
388 78). Because our sample size in combination with a stringent correction for repeated sampling
389 limits the power to detect subtle differences, we do expect to find a fraction of the number of
390 differentially methylated CpGs (79).

391 All the three gene-related differentially methylated CpG sites were found in the gene
392 body region, in both intron (*IGF2BP1*) and exons (*ZBTB47* and *HIVEP3*). Hypermethylation
393 at CpG sites at promoter regions represses transcription of genes which is a well-known
394 mechanism operating in many scenarios. DNA methylation at intergenic regions and gene
395 bodies and its impact on gene expression is gaining more attention especially in cancer studies
396 (80). Interestingly, a recent study on corals showed that gene body methylation was altered by
397 environmental factors, which facilitated acclimatization and adaptation to different habitats
398 (81). However, in great tits the DNA methylation observed in CpGs that are situated within
399 gene bodies do not seem to affect gene expression (48), thus future studies are needed to
400 determine the role of gene body methylation in gene expression control.

401
402 In conclusion, our study shows that early-life exposure to a toxic metal, arsenic, potentially
403 affects fitness via DNA methylation changes in specific pathways, but not via an overall
404 hypomethylation in the red blood cells. The effect might be more profound in other tissues that
405 are more relevant to arsenic metabolism, such as liver. Thus, future studies should inspect other
406 tissues as well. Other pathways of epigenetic alterations, known to be subject to arsenic-related
407 alternations in vitro, such as histone acetylation (29) and micro-RNAs (82) could be further
408 explored.

409
410 ASSOCIATED CONTENT
411 **Figure S1.** Clustering of samples based on ward.D (a) and principal component analysis (PCA)
412 (b) in Methylkit
413 **Table S1.** Number of reads before and after read trimming with mapping and methylation
414 calling success of Bismark. CpG site filtering was done with Methylkit.
415 **Table S2.** Results from the tests on the effects of sequencing lane and sex.

416 **Table S3.** A full description of all differentially methylated sites.

417

418 **AUTHOR INFORMATION**

419 Corresponding author: Suvi Ruuskanen (skruus@utu.fi)

420 **Conflict of interest**

421 We have no conflict of interest to declare.

422

423 **Data accessibility**

424 Data will be deposited in Dryad and in Genbank upon acceptance.

425

426 **Author contributions**

427 SR, SE, PSV, VNL, MV, KvO and TE designed the study. TE, SE and PSV collected the data.

428 SR and KvO designed the sequencing. VNL and MV conducted the bioinformatic analyses. SE

429 and PSV conducted metal analyses. KvO and VNL provided the genome resources. VNL, MV,

430 KvO and SR interpreted the data. VNL and SR wrote the first draft. All authors contributed to

431 writing the manuscript.

432

433 **Funding sources**

434 TE, SE, PSV were funded by Academy of Finland (to TE). SR was funded by Academy of

435 Finland and Turku University Foundation.

436

437

438 **Acknowledgements**

439 We thank Miia Rainio and Jorma Nurmi for their efforts in helping us with fieldwork and Fleur

440 Gawehns-Bruning and William Sies for assistance with the methylation analysis. We also thank

441 the Center for Evolutionary Applications for molecular work and Finnish Functional Genomics
442 Centre for sequencing services. Our study was financed by KONE foundation (SR) and
443 Academy of Finland (TE: project 265859). SE is currently funded by *Ministerio de Ciencia,*
444 *Innovación y Universidades* (IJC-2017-34653 to SE).

445

446

447 **References**

- 448 1. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J.,
449 Leveque, C., . . . Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats,
450 status and conservation challenges. *Biological Reviews*, 81(2), 163-182.
451 doi:10.1017/s1464793105006950
- 452 2. McCrink-Goode, M. (2014). Pollution: A global threat. *Environment International*, 68,
453 162-170. doi:10.1016/j.envint.2014.03.023
- 454 3. Saaristo, M., Brodin, T., Balshine, S., Bertram, M. G., Brooks, B. W., Ehlman, S. M., .
455 . . Arnold, K. E. (2018). Direct and indirect effects of chemical contaminants on the
456 behaviour, ecology and evolution of wildlife. *Proceedings of the Royal Society B-Biological
457 Sciences*, 285(1885), 10. doi:10.1098/rspb.2018.1297
- 458 4. Vos, J. G., Dybing, E., Greim, H. A., Ladefoged, O., Lambre, C., Tarazona, J. V., . . .
459 Vethaak, A. D. (2000). Health effects of endocrine-disrupting chemicals on wildlife,
460 with special reference to the European situation. *Critical Reviews in Toxicology*, 30(1),
461 71-133. doi:10.1080/10408440091159176
- 462 5. Baccarelli, A., & Bollati, V. (2009). Epigenetics and environmental chemicals. *Current
463 Opinion in Pediatrics*, 21(2), 243-251. doi:10.1097/MOP.0b013e32832925cc
- 464
- 465 6. Cheng, T. F., Choudhuri, S., & Muldoon-Jacobs, K. (2012). Epigenetic targets of some
466 toxicologically relevant metals: a review of the literature. *Journal of Applied
467 Toxicology*, 32(9), 643-653. doi:10.1002/jat.2717
- 468 7. Head, J. A. (2014). Patterns of DNA Methylation in Animals: An Ecotoxicological
469 Perspective. *Integrative and Comparative Biology*, 54(1), 77-86.
470 doi:10.1093/icb/icu025
- 471 8. Head, J. A., Dolinoy, D. C., & Basu, N. (2012). Epigenetics for ecotoxicologists.
472 *Environmental toxicology and chemistry / SETAC*, 31(2), 221-227.
473 doi:10.1002/etc.1707
- 474 9. Ray, P. D., Yosim, A., & Fry, R. C. (2014). Incorporating epigenetic data into the risk
475 assessment process for the toxic metals arsenic, cadmium, chromium, lead, and
476 mercury: strategies and challenges. *Frontiers in Genetics*, 5, 201.
477 doi:10.3389/fgene.2014.00201
- 478 10. Ruiz-Hernandez, A., Kuo, C. C., Rentero-Garrido, P., Tang, W. Y., Redon, J., Ordovas,
479 J. M., . . . Tellez-Plaza, M. (2015). Environmental chemicals and DNA methylation in
480 adults: a systematic review of the epidemiologic evidence. *Clinical Epigenetics*, 7, 24.
481 doi:10.1186/s13148-015-0055-7

482 11. Sharavanan, V. J., Sivaramakrishnan, M., Sivarajasekar, N., Senthilrani, N.,
483 Kothandan, R., Dhakal, N., . . . Naushad, M. Pollutants inducing epigenetic changes
484 and diseases. *Environmental Chemistry Letters*, 19. doi:10.1007/s10311-019-00944-3

485 12. Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A landscape takes
486 shape. *Cell*, 128(4), 635-638. doi:10.1016/j.cell.2007.02.006

487 13. Rosenfeld, C. S. (2010). Animal Models to Study Environmental Epigenetics. *Biology*
488 of *Reproduction*, 82(3), 473-488. doi:10.1095/biolreprod.109.080952

489 14. Salameh, Y., Bejaoui, Y., & El Hajj, N. (2020). DNA Methylation Biomarkers in Aging
490 and Age-Related Diseases. *Frontiers in Genetics*, 11, 11. doi:10.3389/fgene.2020.00171

491 15. Skinner, M. K., Manikkam, M., & Guerrero-Bosagna, C. (2010). Epigenetic
492 transgenerational actions of environmental factors in disease etiology. *Trends in*
493 *Endocrinology and Metabolism*, 21(4), 214-222. doi:10.1016/j.tem.2009.12.007

494 16. Horsthemke, B. (2018). A critical view on transgenerational epigenetic inheritance in
495 humans. *Nature Communications*, 9. doi:10.1038/s41467-018-05445-5

496 17. Bossdorf, O., Richards, C. L., & Pigliucci, M. (2008). Epigenetics for ecologists.
497 *Ecology Letters*, 11(2), 106-115. doi:10.1111/j.1461-0248.2007.01130.x

498 18. Laine, V. N., Gossmann, T. I., Schachtschneider, K. M., Garroway, C. J., Madsen, O.,
499 Verhoeven, K. J. F., . . . Great Tit HapMap, C. (2016). Evolutionary signals of selection
500 on cognition from the great tit genome and methylome. *Nature Communications*, 7.
501 doi:10.1038/ncomms10474

502 19. Liebl, A. L., Schrey, A. W., Richards, C. L., & Martin, L. B. (2013). Patterns of DNA
503 Methylation Throughout a Range Expansion of an Introduced Songbird. *Integrative*
504 and *Comparative Biology*, 53(2), 351-358. doi:10.1093/icb/ict007

505 20. Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D., & Senar, J. C. (2015).
506 Combined epigenetic and intraspecific variation of the DRD4 and SERT genes
507 influence novelty seeking behavior in great tit *Parus major*. *Epigenetics*, 10(6), 516-
508 525. doi:10.1080/15592294.2015.1046027

509 21. Rubenstein, D. R., Skolnik, H., Berrio, A., Champagne, F. A., Phelps, S., & Solomon,
510 J. (2016). Sex-specific fitness effects of unpredictable early life conditions are
511 associated with DNA methylation in the avian glucocorticoid receptor. *Molecular*
512 *Ecology*, 25(8), 1714-1728. doi:10.1111/mec.13483

513 22. Sepers, B., van den Heuvel, K., Lindner, M., Viitaniemi, H., Husby, A., & van Oers,
514 K. (2019). Avian ecological epigenetics: pitfalls and promises. *Journal of Ornithology*,
515 160(4), 1183-1203. doi:10.1007/s10336-019-01684-5

516 23. Verhoeven, K. J. F., Vonholdt, B. M., & Sork, V. L. (2016). Epigenetics in ecology and
517 evolution: what we know and what we need to know INTRODUCTION. *Molecular*
518 *Ecology*, 25(8), 1631-1638. doi:10.1111/mec.13617

519 24. Wenzel, M. A., & Piertney, S. B. (2014). Fine-scale population epigenetic structure in
520 relation to gastrointestinal parasite load in red grouse (*Lagopus lagopus scotica*).
521 *Molecular Ecology*, 23(17), 4256-4273. doi:10.1111/mec.12833

522 25. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. *Talanta*,
523 58(1), 201-235. doi:10.1016/s0039-9140(02)00268-0

524 26. ATSDR (2019). The ATSDR 2019 Substance Priority List. In: Agency for Toxic
525 Substances and Disease Registry, U.S. Public Health Service, U.S.A.

526 27. Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., . . . Valko,
527 M. (2011). Arsenic: toxicity, oxidative stress and human disease. *Journal of Applied*
528 *Toxicology*, 31(2), 95-107. doi:10.1002/jat.1649

529

530 28. Sánchez-Virosta, P., Espín, S., García-Fernández, A. J., & Eeva, T. (2015). A review
531 on exposure and effects of arsenic in passerine birds. *Science of the Total Environment*,
532 512, 506-525. doi:10.1016/j.scitotenv.2015.01.069

533 29. Jensen, T. J., Novak, P., Wnek, S. M., Gandolfi, A. J., & Futscher, B. W. (2009).
534 Arsenicals produce stable progressive changes in DNA methylation patterns that are
535 linked to malignant transformation of immortalized urothelial cells. *Toxicology and*
536 *Applied Pharmacology*, 241(2), 221-229. doi:10.1016/j.taap.2009.08.019

537 30. Bjorklund, G., Aaseth, J., Chirumbolo, S., Urbina, M. A., & Uddin, R. (2018). Effects
538 of arsenic toxicity beyond epigenetic modifications. *Environmental Geochemistry and*
539 *Health*, 40(3), 955-965. doi:10.1007/s10653-017-9967-9

540 31. Alegria-Torres, J. A., Carrizales-Yanez, L., Diaz-Barriga, F., Rosso-Camacho, F.,
541 Motta, V., Tarantini, L., & Bollati, V. (2016). DNA Methylation Changes in Mexican
542 Children Exposed to Arsenic From Two Historic Mining Areas in San Luis Potosí.
543 *Environmental and Molecular Mutagenesis*, 57(9), 717-723. doi:10.1002/em.22062

544 32. Minatel, B. C., Sage, A. P., Anderson, C., Hubaux, R., Marshall, E. A., Lam, W. L., &
545 Martinez, V. D. (2018). Environmental arsenic exposure: From genetic susceptibility
546 to pathogenesis. *Environment International*, 112, 183-197.
547 doi:10.1016/j.envint.2017.12.017

548 33. Hubaux, R., Becker-Santos, D. D., Enfield, K. S. S., Rowbotham, D., Lam, S., Lam,
549 W. L., & Martinez, V. D. (2013). Molecular features in arsenic-induced lung tumors.
550 *Molecular Cancer*, 12, 11. doi:10.1186/1476-4598-12-20

551 34. Liu, S., Jiang, J., Li, L., Amato. N.J., Wang, Z., Wang, Y. (2015) Arsenite Targets the
552 Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-
553 Methylcytosine. *Environmental Science & Technology* 49, 11923-11931.

554 35. Zhao, B., Yang, Y., Wang, X., Chong, Z., Yin, R., Song, S-H., ... Wang, H. (2014).
555 Redox-active quinones induces genome-wide DNA methylation changes by an iron-
556 mediated and Tet-dependent mechanism. *Nucleic Acids Research*, 42, 1593-1605.

557 36. Yin, R., Mo, J., Dai, J., Wang, H. (2017). Nickel(II) Inhibits Tet-Mediated 5-
558 Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II). *ACS*
559 *Chemical Biology* 12, 1494-1498.

560 37. Yin, R., Mo, J., Dai, J., Wang, H. (2018). Nickel(II) inhibits the oxidation of DNA 5-
561 methylcytosine in mammalian somatic cells and embryonic stem cells. *Metallomics*,
562 10, 504-512.

563 38. Ziech, D., Franco, R., Pappa, A., & Panayiotidis, M. I. (2011). Reactive Oxygen
564 Species (ROS)-Induced genetic and epigenetic alterations in human carcinogenesis.
565 *Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis*, 711(1-
566 2), 167-173. doi:10.1016/j.mrfmmm.2011.02.015

567 39. Gangopadhyay, S., Sharma, V., Chauhan, A., & Srivastava, V. (2019). Potential facet
568 for prenatal arsenic exposure paradigm: linking endocrine disruption and epigenetics.
569 *Nucleus-India*, 62(2), 127-142. doi:10.1007/s13237-019-00274-3

570 40. Kile, M. L., Houseman, E. A., Baccarelli, A. A., Quamruzzaman, Q., Rahman, M.,
571 Mostofa, G., ... Christiani, D. C. (2014). Effect of prenatal arsenic exposure on DNA
572 methylation and leukocyte subpopulations in cord blood. *Epigenetics*, 9(5), 774-782.
573 doi:10.4161/epi.28153

574 41. Broberg, K., Ahmed, S., Engstrom, K., Hossain, M. B., Mlakar, S. J., Bottai, M., ...
575 Vahter, M. (2014). Arsenic exposure in early pregnancy alters genome-wide DNA
576 methylation in cord blood, particularly in boys. *Journal of Developmental Origins of*
577 *Health and Disease*, 5(4), 288-298. doi:10.1017/s2040174414000221

578 42. Zarazua, S., Rios, R., Delgado, J.M., Santoyo, M.E., Ortiz-Perez, D., Jimenez-
579 Capdeville, M.E. (2010). Decreased arginine methylation and myelin alternations in
580 arsenic exposed rats. *Neurotoxicology* 31, 94-100.

581 43. Sanval, T., Paul, M., Bhattacharjee, S., Bhattacharjee, P. 2020. Epigenetic alternation
582 of mitochondrial biogenesis regulatory genes in arsenic exposure individuals (with and
583 without skin lesions) and skin cancer tissues: A case control study. *Chemosphere* 258,
584 127305.

585 44. Phookphan, P., Navasumrit, P., Waraprasit, S., Promvijit, J., Chaisatra, K.,
586 Ngaotepputaram, T., Ruchirawat, M. 2017. Hypomethylation of inflammatory genes
587 (COX2, ERG1, and SOC23) and increased urinary 8-nitroguanine in arsenic-exposed
588 newborns and children. *Toxicology and Applied Pharmacology* 316, 36-47.

589 45. García-Fernández, A.J., Espín, S., Martínez-López, E., (2013). Feathers as a
590 Biomonitoring Tool of Polyhalogenated Compounds: A Review. *Environmental*
591 *Science & Technology* 47, 3028-3043. DOI: 10.1021/es302758x

592 46. Sánchez-Virosta, P., Espín, S., Ruiz, S., Panda, B., Ilmonen, P., Schultz, S. L., . . . Eeva,
593 T. (2020). Arsenic-related oxidative stress in experimentally-dosed wild great tit
594 nestlings. *Environmental Pollution*, 259, 7. doi:10.1016/j.envpol.2019.113813

595 47. Sánchez-Virosta, P., Espín, S., Ruiz, S., Salminen, J. P., García-Fernández, A. J., &
596 Eeva, T. (2018). Experimental manipulation of dietary arsenic levels in great tit
597 nestlings: Accumulation pattern and effects on growth, survival and plasma
598 biochemistry. *Environmental Pollution*, 233, 764-773.
599 doi:10.1016/j.envpol.2017.10.113

600 48. Derkx, M. F. L., Schachtschneider, K. M., Madsen, O., Schijlen, E., Verhoeven, K. J.
601 F., & van Oers, K. (2016). Gene and transposable element methylation in great tit
602 (*Parus major*) brain and blood. *Bmc Genomics*, 17, 13. doi:10.1186/s12864-016-2653-
603 y

604 49. Verhulst, E. C., Mateman, A. C., Zwier, M. V., Caro, S. P., Verhoeven, K. J. F., & Van
605 Oers, K. (2016). Evidence from pyrosequencing indicates that natural variation in
606 animal personality is associated with DRD4 DNA methylation. *Molecular Ecology*,
607 25(8), 1801-1811. doi:10.1111/mec.13519

608 50. Eeva, T., Ryoma, M., & Riihimaki, J. (2005). Pollution-related changes in diets of two
609 insectivorous passerines. *Oecologia*, 145(4), 629-639. doi:10.1007/s00442-005-0145-
610 x

611 51. Ruuth, J., Toivonen, H., Kuhmonen, I. and Kiljunen, A. (2016). Porin-Harjavallan
612 alueen ilmanlaadun bioindikaattoritutkimus vuosina 2014–2015 - Nab Labs Oy. (in
613 Finnish)

614 52. Harmens, H., Norris, D. A., Steinnes, E., et al. (2010). Mosses as biomonitor of
615 atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. -
616 *Environmental Pollution* 158: 3144-3156.

617 53. Ruiz, S., Espín, S., Sánchez-Virosta, P., Salminen, J.-P., Lilley, T. M. and Eeva, T.
618 (2017). Vitamin profiles in two free-living passerine birds under a metal pollution
619 gradient - a calcium supplementation experiment. - *Ecotoxicology and Environmental*
620 *Safety* 138: 242-252.

621 54. Eeva, T., Ahola, M. and Lehikoinen, E. (2009). Breeding performance of blue tits
622 (*Cyanistes caeruleus*) and great tits (*Parus major*) in a heavy metal polluted area.
623 *Environmental Pollution* 157: 3126–3131.

624 55. Gad, SC , Spainhour CB, Shoemake C, et. al. (2016). Tolerable Levels of Nonclinical
625 Vehicles and Formulations Used in Studies by Multiple Routes in Multiple Species
626 With Notes on Methods to Improve Utility, *International Journal of Toxicology*, 1-84.

627 56. ATSDR (2007). Toxicological profile for arsenic (Agency for Toxic Substances and
628 Disease Registry, U.S. Public Health Service).

629 57. Janssens, E., Dauwe, T., Pinxten, R., Bervoets, L., Blust, R., Eens, M. (2003). Effects
630 of heavy metal exposure on the condition and health of nestlings of the great tit (*Parus*
631 *major*), a small songbird species. *Environmental Pollution* 126, 267–274

632 58. McKay, J. A., Xie, L., Harris, S., Wong, Y. K., Ford, D., & Mathers, J. C. (2011). Blood
633 as a surrogate marker for tissue-specific DNA methylation and changes due to folate
634 depletion in post-partum female mice. *Molecular Nutrition & Food Research*, 55(7),
635 1026-1035. doi:10.1002/mnfr.201100008

636 59. Lindner, M., Verhagen, I., Viitaniemi, H.M. *et al.* 2021. Temporal changes in DNA
637 methylation and RNA expression in a small song bird: within- and between-tissue
638 comparisons. *BMC Genomics* 22, 36. doi:10.1186/s12864-020-07329-9

639 60. Bantock, T. M., Prys-Jones, R. P., & Lee, P. L. M. (2008). New and improved
640 molecular sexing methods for museum bird specimens. *Molecular Ecology Resources*,
641 8(3), 519-528. doi:10.1111/j.1471-8286.2007.01999.x

642 61. Aljanabi, S. M., & Martinez, I. (1997). Universal and rapid salt-extraction of high
643 quality genomic DNA for PCR-based techniques. *Nucleic Acids Research*, 25(22),
644 4692-4693. doi:10.1093/nar/25.22.4692

645 62. Van Oers, K., Sepers, B., Sies, W., Gawehtns, F., Verhoeven, K. J. F., and Laine, V. N.
646 (2020). Epigenetics of animal personality: DNA methylation cannot explain the
647 heritability of exploratory behavior in a songbird. *Integrative and Comparative
648 Biology*. doi:<https://doi.org/10.1093/icb/icaa138>.

649 63. Boyle, P., Clement, K., Gu, H. C., Smith, Z. D., Ziller, M., Fostel, J. L., . . . Meissner,
650 A. (2012). Gel-free multiplexed reduced representation bisulfite sequencing for large-
651 scale DNA methylation profiling. *Genome Biology*, 13(10), 10. doi:10.1186/gb-2012-
652 13-10-R92

653 64. Ewels, P., Magnusson, M., Lundin, S., & Kaller, M. (2016). MultiQC: summarize
654 analysis results for multiple tools and samples in a single report. *Bioinformatics*, 32(19),
655 3047-3048. doi:10.1093/bioinformatics/btw354

656 65. Krueger, F., & Andrews, S. R. (2011). Bismark: a flexible aligner and methylation
657 caller for Bisulfite-Seq applications. *Bioinformatics*, 27(11), 1571-1572.
658 doi:10.1093/bioinformatics/btr167

659 66. Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F. E., Figueroa, M. E., Melnick,
660 A., & Mason, C. E. (2012). methylKit: a comprehensive R package for the analysis of
661 genome-wide DNA methylation profiles. *Genome Biology*, 13(10), 9. doi:10.1186/gb-
662 2012-13-10-R87

663 67. Feng, H., Conneely, K. N., & Wu, H. (2014). A Bayesian hierarchical model to detect
664 differentially methylated loci from single nucleotide resolution sequencing data.
665 *Nucleic Acids Research*, 42(8), 11. doi:10.1093/nar/gku154

666 68. Koestler, D. C., Avissar-Whiting, M., Houseman, E. A., Karagas, M. R., & Marsit, C.
667 J. (2013). Differential DNA Methylation in Umbilical Cord Blood of Infants Exposed
668 to Low Levels of Arsenic in Utero. *Environmental Health Perspectives*, 121(8), 971-
669 977. doi:10.1289/ehp.1205925

670 69. Chen, H., Liu, J., Zhao, C. Q., Diwan, B. A., Merrick, B. A., & Waalkes, M. P. (2001).
671 Association of c-myc overexpression and hyperproliferation with arsenite-induced
672 malignant transformation. *Toxicology and Applied Pharmacology*, 175(3), 260-268.
673 doi:10.1006/taap.2001.9253

674 70. Solomon, E.R., Caldwell, K.K., Allan, A.M. (2020). Developmental arsenic exposure
675 is associated with differences in the epigenetic regulation of stress genes in the adult
676 mouse frontal cortex. *Toxicology and Applied Pharmacology*, 391, 114920.

677 71. Rancourt, R.C., Schellong, K., Tzschenke, B., Henrich, W., Plagemann, A. 2018. DNA
678 methylation and expression of pro-optiomelanocortin (POMC) gene in the
679 hypothalamus of three-week-old chickens show sex-specific differences. *Febs OpenBio*
680 8, 932-939.

681 72. Chen, J. H., Ren, X. Y., Li, L. M., Lu, S. Y., Chen, T., Tan, L. T., . . . Luo, W. (2019).
682 Integrative Analyses of mRNA Expression Profile Reveal the Involvement of IGF2BP1
683 in Chicken Adipogenesis. *International Journal of Molecular Sciences*, 20(12), 15.
684 doi:10.3390/ijms20122923

685 73. Hansen, T. V. O., Hammer, N. A., Nielsen, J., Madsen, M., Dalbaeck, C., Wewer, U.
686 M., . . . Nielsen, F. C. (2004). Dwarfism and impaired gut development in insulin-like
687 growth factor II mRNA-binding protein 1-deficient mice. *Molecular and Cellular
688 Biology*, 24(10), 4448-4464. doi:10.1128/mcb.24.10.4448-4464.2004

689 74. Huang, X. W., Zhang, H., Guo, X. R., Zhu, Z. X., Cai, H. B., & Kong, X. Y. (2018).
690 Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. *Journal of
691 Hematology & Oncology*, 11, 15. doi:10.1186/s13045-018-0628-y

692 75. Noubissi, F. K., Yedjou, C. G., Spiegelman, V. S., & Tchounwou, P. B. (2018). Cross-
693 Talk between Wnt and Hh Signaling Pathways in the Pathology of Basal Cell
694 Carcinoma. *International Journal of Environmental Research and Public Health*,
695 15(7), 13. doi:10.3390/ijerph15071442

696 76. Hicar, M. D., Liu, Y. L., Allen, C. E., & Wu, L. C. (2001). Structure of the human zinc
697 finger protein HIVEP3: Molecular cloning, expression, exon-intron structure, and
698 comparison with paralogous genes HIVEP1 and HIVEP2. *Genomics*, 71(1), 89-100.
699 doi:10.1006/geno.2000.6425

700 77. Lubecka, K., Flower, K., Beetch, M., Qiu, J., Kurzava, L., Buvala, H., . . . Stefanska,
701 B. (2018). Loci-specific differences in blood DNA methylation in HBV-negative
702 populations at risk for hepatocellular carcinoma development. *Epigenetics*, 13(6), 605-
703 626. doi:10.1080/15592294.2018.1481706

704 78. Sarkar, D., Leung, E. Y., Baguley, B. C., Finlay, G. J., & Askarian-Amiri, M. E. (2015).
705 Epigenetic regulation in human melanoma: past and future. *Epigenetics*, 10(2), 103-
706 121. doi:10.1080/15592294.2014.1003746

707 79. Lea, A.J., Vilgalys, T.P., Durst, P.A.P., Tung, J. 2017. Maximizing ecological and
708 evolutionary insight in bisulfite sequencing data sets. *Nat Ecol Evol*. 1(8): 1074-1083

709 80. Jones, P. A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and
710 beyond. *Nature Reviews Genetics*, 13(7), 484-492. doi:10.1038/nrg3230

711 81. Dixon, G., Liao, Y., Bay, L. K., & Matz, M. V. (2018). Role of gene body methylation
712 in acclimatization and adaptation in a basal metazoan. *Proceedings of the National
713 Academy of Sciences of the United States of America*, 115(52), 13342-13346.
714 doi:10.1073/pnas.1813749115

715 82. Cao, Y., Yu, S. L., Wang, Y., Guo, G. Y., Ding, Q. A., & An, R. H. (2011). MicroRNA-
716 dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell
717 line T24. *Tumor Biology*, 32(1), 179-188. doi:10.1007/s13277-010-0111-z

718
719
720
721
722
723 .