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Abstract

Pollutants, such as toxic metals, negatively influence organismal health and performance, even
leading to population collapses. Studies in model organisms have shown that epigenetic marks,
such as DNA methylation, can be modulated by various environmental factors, including
pollutants, influencing gene expression and various organismal traits. Yet experimental data
on the effects of pollution on DNA methylation from wild animal populations is largely
lacking. We here experimentally investigated for the first time the effects of early-life exposure
to environmentally relevant levels of a key pollutant, arsenic (As), on genome-wide DNA
methylation in a wild bird population. We experimentally exposed nestlings of great tits (Parus
major) to arsenic during their post-natal developmental period (3 to 14 days post-hatching) and
compared their erythrocyte DNA methylation levels to those of respective controls. In contrast
to predictions, we found no overall hypomethylation in the arsenic group. We found evidence

for loci to be differentially methylated between the treatment groups, but for five CpG sites
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2
only. Three of the sites were located in gene bodies of zinc finger and BTB domain containing
47 (ZBTB47), HIVEP zinc finger 3 (HIVEP3) and insulin like growth factor 2 mRNA binding
protein 1 (IGF2BP1). Further studies are needed to evaluate whether epigenetic dysregulation
is a commonly observed phenomena in polluted populations, and what the consequences are

for organism functioning and for population dynamics.

Keywords: pollution, Parus major, environmental epigenetics, ecological epigenetics,
ecotoxicology

Running title: Arsenic pollution and DNA methylation in the wild
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3
Introduction
Environmental pollution can negatively affect organisms at multiple level of organization, from
molecular and physiological level to performance, and even lead to population collapses (1-4).
In wild populations, a largely unexplored mechanism mediating such pollution effects is the
potential influence of the epigenome, such as DNA methylation. In human and animal models,
the effects of pollution on the epigenome is studied extensively, and it has been discovered that
methylation patterns can be changed by various environmental factors, including metal and
organic pollutants and other early-life stressors (reviewed by 5-11). DNA methylation is the
addition of a methyl (-CH3) group to the 5’ carbon site of cytosines catalyzed by DNA-
methyltransferases, and is generally found to be negatively associated with gene expression
(12). Variation in DNA methylation is linked to variation in phenotypes and behavior, and
associated with the prevalence of various diseases, including cancers in humans and model
animals (13-16). Epigenetic changes from early-life environment may persist and affect health
throughout life-time and may even be transmitted to future generations (16), which could
potentially contribute to explaining delayed or persistent effects of pollutants (e.g. 7). Yet the
effects of pollutants on the epigenome have hardly been explored, and epigenetic research in
wild animal populations is only emerging (8, 17-24).

Arsenic (As) is a global, persistent pollutant, distributed in the environment due to
natural and anthropogenic sources such as mining, industrial activities or coal combustion (25)
and the most highly ranked hazardous substances for animals and plants (26). Across
organisms, arsenic can have negative consequences for basically all organ systems, often via
causing oxidative stress, i.e. the imbalance between harmful reactive oxygen species (ROS)
and antioxidant defenses, and cancer (27, 28).

Arsenic has been repeatedly observed to also modulate patterns of DNA methylation in

vitro (e.g. 29) in laboratory animal models (with levels exceeding environmental levels,
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4
reviewed 30) and in studies on human populations (e.g. 31). Arsenic could influence DNA
methylation via multiple pathways: (i) arsenic can change the DNA methylation of a cytosine
via the depletion of the cellular availability of methyl groups. Biotransformation of arsenic to
less toxic forms includes the addition of methyl group(s) (32) with the main methyl-donor for
methylation of both arsenic and cytosines being s-adenosylmethionine (SAM). The high
demand imposed on this molecule during the biotransformation process can then lead to a
global DNA hypomethylation as shown in multiple (bio)medical studies in humans and mice
(reviewed e.g. 5, 33). (ii) Arsenic could influence epigenetic signaling by targeting the zinc
fingers of Tet proteins and perturbing the Tet-mediated oxidation of 5-mC (in vitro: 34-37).
(iii) Furthermore, ROS created during arsenic biotransformation have been suggested to
influence DNA methylation by creating aberrant modifications (humans: 38).

Pre/postnatal exposure to arsenic in humans is associated with epigenetic modifications
related to early onset of diseases, which could have long-term consequences (reviewed in 39).
For example, in humans, prenatal arsenic exposure led to global hypomethylation of
inflammatory and tumor suppressor genes (40) and interfered with de novo methylation (41)
in humans. Global hypomethylation can lead to chromosomal abnormalities, contributing to
overall genomic instability and malignant transformations (reviewed in 32). Studies have
demonstrated that widespread DNA hypomethylation induced by arsenic is also associated with
promoter activation and involved in carcinogenesis (reviewed in 32). Arsenic-related
hypomethylation of specific sets of genes has also be reported, and these include, for example,
genes related to neural development (e.g. 42), mitochondria biogenesis (e.g. 43) and
inflammation (e.g. 44). Despite the extensive data on model animals and humans, the potential
effects of environmental arsenic on wild animals via epigenetic dysregulation has not been

studied up to date.
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85 We here investigated the effects of experimental early-life (post-natal) exposure to
86  arsenic on genome-wide DNA methylation status in a wild population of great tits (Parus
87  major). To our knowledge, this is the first study on the effect of arsenic on epigenetic marks in
88 a wild population. We used a bird model, since birds have been successfully used in
89  biomonitoring of pollution and its effects (e.g. 45). Arsenic exposure has been reported to
90 negatively affect multiple fitness-related traits (growth, physiology, behavior and even egg-
91 laying) in several bird species (reviewed in 28). For great tits specifically, we have previously
92  reported (results from the current experiment) that in nestlings, arsenic exposure increased
93  mortality, reduced wing growth (46) and decreased an intracellular antioxidant, catalase (47),
94  but did not largely influence body mass, plasma biochemistry (vitamins) or other biomarkers
95  of oxidative stress (46, 47). More specifically, we here experimentally exposed nestlings in
96 non-polluted sites to environmentally relevant levels (1 pg/g body mass) of dietary arsenic
97  during the entire post-hatching growth period, and compared their DNA methylation levels to
98  respective controls. We used reduced representation bisulfite sequencing (RRBS) to assess
99  genome-wide methylation and characterized differential methylation across CpG sites between

100 the experimental and the control group. We predict that arsenic exposure will lead to genome-

101 wide hypomethylation, and potentially specifically on gene/hubs related to development.

102

103  Methods

104

105  Arsenic treatment protocol and sampling

106  The study was conducted in the breeding season of 2015 (laying dates 4™ May —10" June) in a

107  nest box population of great tits (Parus major) in western Finland. Great tit is a small passerine

108  bird and a popular model species in ecological and evolutionary research. Importantly, it is one
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109  of the few non-domesticated bird species, for which the genome and methylome are available
110 (18, 48-49).
111 The arsenic exposure, dosages and sampling are described in detail in (46, 47). In short,
112 the experiment was conducted in a nest-box population with known history of relatively low
113 pollution levels (50). There are no air pollution samplers at the study sites but metal
114  biomonitoring studies have been done in this area, for example measuring forest floor moss
115  metal levels (a proxy for atmospheric fallout). In general, metal levels are relatively low in
116 moss samples (e.g. for arsenic <0.5 ug/g in 2014; 51) while this value is exceeded in large areas
117  in Central Europe (52). Mean topsoil arsenic concentration in the study site was 0.76 pg/g in
118 2014 (53).
119 Breeding was monitored, and from day 3 after hatching until day 13 whole broods were
120  subjected to daily oral dosing with the following treatments: arsenic treatment (1 pg arsenic/g
121 body mass in distilled water, N = 16 broods) or control treatment (distilled water, N = 16
122 broods). Dosing volumes were adjusted to estimated nestling mass based on average body
123 masses at different ages from large dataset on long-term averages from the study population
124  (54). Mass of individual nestlings was not measured every day to reduce handling time and
125  disturbance to the nest. The volumes dosed to the controls were exactly the same as for
126 treatments. We dosed the solution directly to the beak of the nestlings with a pipette. The range
127  of volumes was 50-170 ul and did not exceed the recommended volumes (20 ml/kg, e.g. 55).
128  The dose aimed to represent environmentally relevant exposure levels occurring in polluted
129  areas in Europe: It was estimated combining data from several sources, such as (i) the lowest-
130  observed-adverse-effect level for different effects on mammals (2-8ug/kg/day, 56), (ii) fecal
131 arsenic levels reported for great tits at some metal polluted sites (reviewed in 28): In previous
132 data, summarized in (28, Table 1), arsenic concentrations in feces of passerines are within the

133 range of 0.1-1.4 ppm in unpolluted sites and 5-16 ppm in polluted areas. The levels measured


https://doi.org/10.1101/2020.12.08.415745
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.415745; this version posted April 19, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

7
134  in the samples from our experiment (ca 6.5 ppm, see results) overlap with these levels,
135  suggesting that the treatment levels were environmentally relevant, at the lower end of the
136  range. Yet, Sanchez-Virosta et al. (46) and Janssens et al. (57) report that great tit nestlings
137  from polluted areas in Harjavalta and Belgium have arsenic levels up to 48-52 ppm, thus levels
138 even this high are environmentally relevant. Other data sources were (iii) arsenic
139  concentrations of food items (moth larvae, spiders and beetles) collected directly from parent
140  great tits feeding their nestlings in the polluted area (46, 47), and (iv) a pilot experiment, to
141  ensure that the levels were environmentally relevant and were not causing excessive mortality
142  (46). Fecal matter was sampled 8 days after hatching for metal analyses (see below). DNA
143  methylation was analyzed from red blood cells (RBCs, 14 d after hatching) to avoid sacrificing
144  the individuals. Absolute methylation values between e.g. blood and liver or kidney and brain
145  are highly correlated (48, 58, 59), just like changes in methylation in red blood cells and liver
146  are correlated (59) and thus blood can be used as a proxy. Ten samples from the arsenic and
147  ten from control treatment were selected for the DNA methylation analyses. These included
148  five females and five males from each treatment (molecularly sexed, following 60). Only one
149  nestling per nest was selected to avoid pseudoreplication. We made use of the knowledge on
150 the fecal arsenic levels (see below), and selected individuals from 10 broods with highest
151  arsenic concentrations from the arsenic treatment and 10 lowest concentrations from the
152 control. All the dead nestlings found in the nests were collected and frozen at -20°C until
153  necropsies could be performed in July 2015. Carcasses were necropsied to measure arsenic and
154  metal concentrations in liver and bone in order to compare arsenic accumulation among groups
155  and its distribution among tissues (46). The experiment was conducted under licenses from the
156  Animal Experiment Committee of the State Provincial Office of Southern Finland (license
157  number ESAVI1/11579/04.10.07/2014) and the Centre for Economic Development, Transport

158  and the Environment, ELY Centre Southwest Finland (license number VARELY/593/2015).
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159

160  Metal analyses

161  For detailed analyses, see Sanchez-Virosta et al. (46). Briefly, in both experimental groups,
162  several fecal samples (any sex) from the same brood were combined to assess brood level metal
163  exposure (total N = 32 broods). We determined the concentrations of arsenic, but also other
164  metals to confirm that the levels of other metals were low and similar across the treatment
165  groups (see 46). The determination of pollutants was conducted with inductively coupled
166  plasma optical emission spectrometry (ICP-OES) with detection limit of 1 ppt (ng/l) and below.
167  Calibration standards and certified reference materials were used for method validation. The
168 levels of other measured metals (aluminium, lead, nickel, zinc, manganese, iron, copper) were
169  low, and did not differ among the treatment groups (all t <0.88, all p <0.38).

170

171 DNA isolation

172 DNA isolation was performed at the Center of Evolutionary Applications (University of Turku,
173 Finland). We used RBCs given that previous studies suggest that blood shows similar
174  methylation patterns as brain tissue in the study species (e.g. 80% similarity between brain and
175  blood methylation in CpGs; 48, 49). DNA was extracted from 10-20 ul RBCs using the salt
176  extraction method modified from (61). Extracted DNA was treated with RNase-I according to
177  the manufacturer's protocol. DNA concentration was measured fluorometrically with a Qubit
178  High Sensitivity kit (ThermoFisher Scientific) and we assessed DNA integrity by running each
179  DNA sample on an agarose gel.

180

181  RRBS library preparation

182  We used a reduced representation bisulfite sequencing (RRBS) approach, which enriches for

183  regions of the genome that have a high CpG content. We chose the RRBS approach because
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184  with the use of Mspl as restriction enzyme, the method targets regions that are enriched for
185  CpG sites. These regions are typically situated in or near the promotor regions, which has the
186  advantage that CpGs in a relatively large proportion of the genes are covered (22, 62) making
187 this a cost-effective method for detecting sites that are likely functional (16). It was previously
188  shown in the study species that a vast majority of methylated Cs (97%) were derived from CpG
189  sites in blood (48). Sequencing was conducted at the Finnish Microarray and Sequencing
190  Center in Turku, Finland. The library preparation was started from 200 ng of genomic DNA
191  and was carried out according to a protocol adapted from (63). The first step in the workflow
192  involved the fragmentation of genomic DNA with Mspl where the cutting pattern of the
193  enzyme (C"CGG) was used to systematically digest DNA to enrich for CpG dinucleotides.
194  After a fragmentation step a single reaction was carried out to end repair and A-tail (required
195  for the adapter ligation) the Mspl digested fragments using Klenow fragment (3 => 5’ exo)
196  following the purification of A-tailed DNA with bead SPRI clean-up method (AMPure
197  magnetic beads). A unique Illumina TruSeq indexing adapter was then ligated to each sample
198  during adapter ligation step to be able to identify pooled samples of one flow cell lane. To
199  reduce the occurrence of adapter dimers, a lower concentration of adapters (1:10 dilution) was
200 used than recommended by the manufacturer. These ligated DNA fragments were purified with
201  bead SPRI clean-up method before putting samples through bisulfite conversion to achieve C-
202  to-U conversion of unmethylated cytosines, whereas methylated cytosines remain intact.
203  Bisulfite conversion and sample purification were done according to Invitrogen MethylCode
204  Bisulfite Conversion Kit. Aliquots of converted DNA were amplified by PCR (16 cycles) with
205 Taqg/Pfu Turbo Cx Polymerase, a proofreading PCR enzyme that does not stall when it
206  encounters uracil, the product of the bisulfite reaction, in the template. PCR-amplified RRBS
207 libraries were purified using two subsequent rounds of SPRI beadclean-ups to minimize primer

208  dimers in the final libraries. The high quality of the libraries was confirmed with Advanced
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209  Analytical Fragment Analyzer and the concentrations of the libraries were quantified with
210  Qubit® Fluorometric Quantitation, Life Technologies. We used an average fragment size of
211 250-350 bp for sequencing.
212
213 Sequencing
214  The samples were normalized and pooled for the automated cluster preparation which was
215  carried out with lllumina cBot station. The 20 libraries were combined in two pools, 10 samples
216 ineach pool (treatments and sexes equally distributed between the pools) and sequenced in two
217  lanes. The samples were sequenced with an Illumina HiSeq 2500 instrument using TruSeq v3
218  sequencing chemistry. Paired-end sequencing with 2 x 100 bp read length was used with 6 bp
219  index run.
220
221  Sequence data processing and differential methylation expression analysis
222 All the reads were checked for quality using FastQC (Babraham Bioinformatics) with multiQC
223 (64), and low-quality sequences were trimmed with Trim Galore v. 0.4.4 (Brabraham
224  Bioinformatics) by using --quality 20 --paired --rrbs settings.
225 The trimmed reads were mapped to the Parus major reference genome build 1.1.
226 (https://www.ncbi.nlm.nih.gov/assembly/ GCF_001522545.2) using Bismark (65) with default
227  parameters. Methylation calling was conducted with Bismark, first with default settings with
228  paired-end mode and overlap removal (--p --no_overlap). After this first calling round, we
229  observed a methylation bias for the samples by plotting the methylation proportion across each
230  possible position in the read. Based on the plotting, the three and two first bases of R1 and R2
231 respectively of the 5° prime end were omitted and the first base in the R2 3 prime end was also
232 omitted in the final methylation calling. Thereafter, Methylkit (66) implemented in R was used

233 for filtering and differential methylation analysis. We discarded bases that had coverage below

10
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234  10x. Toavoid a possible PCR bias we also discarded bases that had more than 99.9th percentile
235  of coverage in each sample. Before differential methylation analysis we merged read counts
236  from reads covering both strands of a CpG dinucleotide and CpGs needed to be covered with
237  at least 8 samples per group (control and treatment).
238 Samples were thereafter clustered based on the similarity of their overall methylation
239  profile by (i) using the clustering method ward.D in Methylkit’s clusterSamples -function and
240  (ii) using principal component analysis (PCA) with Methylkit’s PCASamples -function. We
241  also checked for lane and sex effect by using Methylkit’s assocComp -function where it checks
242 which principal components are statistically associated with the potential batch effects such as
243  the used lane and sex of the individuals. For the former, no missing data is allowed, thus we
244  created a separate data object where all the individuals needed to be covered.
245 For analyzing differential methylation of CpG sites between control and arsenic
246  treatment we used the beta-binomial model from DSS package (67) which is also included in
247  Methylkit (calculateDiffMethDSS - function). DSS calculates the differential methylation
248  statistics using a beta-binomial model with parameter shrinkage. Bonferroni correction was
249  applied to account for multiple testing with g-value of 0.05. Furthermore, we also did the “tiling
250  window analysis” in Methylkit where methylation information is summarized over tiling
251  windows which are then used the in DSS analysis. We used the default values, win.size=1000,
252  step.size=1000, cov.bases = 10 for the tiling and ran DSS again for these regions.
253
254  Results
255  Arsenic exposure
256  As reported in Sanchez-Virosta et al. (46, 47), dietary arsenic treatment successfully increased
257 arsenic load as fecal arsenic levels were on average 10 times higher in arsenic exposure

258  compared to control group (averagexSD ppm: control 0.51+0.50, arsenic exposure 4.92+4.57,

11
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259  ti54 = -3.83, p = 0.0015). In the subsample of nests selected for RRBS, the values were
260  0.47+0.37 ppm for control nests and 6.50+5.10 ppm for arsenic treatment, respectively.
261  Furthermore, increased levels were also found in internal tissues: the mean (£SD) arsenic
262 concentrations in liver were 4.19 + 5.92 ug/g, d.w. (N=21) for arsenic exposure and 0.058 +
263  0.100 pg/g, d.w. (N= 16) for control group, and in the bone 3.37 + 3.85 pg/g, d.w. and 0.074 £
264  0.103 pg/g, d.w., respectively (see Table 2 in 46). The levels were statistically significantly

265  higher in arsenic exposure group compared to control group (p <0.001).

266

267  Sequencing and mapping

268  The total number of read pairs was 341 million (Supplementary Table 1), varying from 14
269  million to 20 million per individual. After QC filtering the final number of read pairs was 337
270 million (Supplementary Table 1). The RRBS individual sequencing data have been deposited
271 in NCBI (Number will be added later). Mapping efficiency was on average 46.15% and on
272 average 3.1 million cytosines were covered before 10x coverage and percentile filtering. After
273  filtering, 1.3 million cytosines were identified in CpG context. When combining the Cs from
274  both strands and restricting our data to at least 8 individuals per group to be covered, we ended
275  up having 652 655 CpGs.

276

277  Sample clustering and differential methylation

278  Both the ward.D and PCA clustering methods showed that sample 14 from the treatment group
279  was an outlier in its methylation profile (Supplementary Figure 1). That particular sample also
280 had a low number of reads and showed lower duplication levels (Supplementary Table 1) and
281  we therefore decided to exclude this sample from further analysis. No lane effect was detected,
282  but PC3 (explained 0.23% of the variance) was associated with sex after Bonferroni correction

283  (Supplementary Table 2, Supplementary Figure 2), mostly driven by two samples, ctrl_3F and

12
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284  test_16F, since after removing these two female samples from the data, PC3 was not significant
285 anymore. Furthermore, when removing the PC3 from the data, three CpG sites were significant
286 in the differential methylation analysis done with DSS: two of them were the same as when
287 including all the PCs (see below, Table 1). The three other significant sites found below were
288  not covered by all individuals as required in this PC-removal analysis.
289
290 In the differential methylation analysis when including all the PCs, five CpG sites showed a
291  significant difference in methylation level with a g-value below 0.05 and percent methylation
292  difference larger than 10% (Table 1, Figure 1, Supplementary Table 3). Lambda estimation
293  was close to 1 (A = 0.747, SE 0.000136) (Supplementary Figure 3), suggesting no systematic
294  Dbiases (A>1 indicates bias). Four of these sites were hypermethylated (higher methylation in
295 the arsenic treatment group) and one was hypomethylated (higher methylation in the control
296  group). Three of the sites were located in gene bodies, namely zinc finger and BTB domain
297  containing 47 (ZBTB47), HIVEP zinc finger 3 (HIVEP3) and insulin like growth factor 2
298  mRNA binding protein 1 (IGF2BP1) based on NCBI P. major annotation report 102. None of
299 the regions from the tiling windows analysis were differentially methylated between control
300 and treatment samples.

301

13
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302
303
304 Table 1. The differentially methylated CpG sites between arsenic exposed and control
305 individuals. Methylation diff% refers to the methylation difference, comparing arsenic exposed
306 to control group. Positive values therefore indicate hypermethylation in the arsenic treatment
307 group compared to the control group. PC3 indicates sites that were significant after PC3
308  removal.
Methylation

Chr  Chr Genbank Position P-value  g-value diff % Gene PC3

2 NC_031769.1 2,448,788  1.00E-10 6.53E-05 36.40 ZBTBA47

12 NC_031781.1 9,949,364 1.23E-08 8.05E-03 57.66 -

23 NC_031791.1 5,408,232 3.43E-08 2.24E-02 42.66 HIVEP3 X

UN NW _015379267.1 107,660 7.99E-10 5.21E-04 60.43 IGF2BP1

UN NW_015379318.1 39,910 1.42E-08 9.27E-03 -52.66 - X

Only in PC3 removed

14 NC _031783.1 14,025,702 1.34E-07 0.042 27.09 - X
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Figure 1. Plots of significance of CpG sites from the differential methylation analysis
conducted with DSS implemented in Methylkit. (a) Manhattan plot with the significance of
differential methylation of the arsenic treatment against the control pool, against the great tit

reference genome version 1.1. The orange line depicts the genome-wide threshold based on a
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317  Bonferroni correction: 7.11. (b) A volcano plot of the significance against the absolute
318  difference in methylation between the two pools, with delta methylation is arsenic treatment —
319  control. Orange points are the genome-wide significant sites after Bonferroni correction and
320 filtering for Delta methylation >10%.
321
322 Discussion
323  We investigated whether early-life exposure to environmentally relevant levels of experimental
324  arsenic affects DNA methylation in a wild vertebrate population. The experimental treatment
325 increased arsenic levels significantly, but contrary to predictions, did not lead to overall
326  hypomethylation. We found that treated individuals showed hypermethylation in four CpG
327  sites and hypomethylation in one CpG site, indicating that increased levels of arsenic exposure
328  appears to affect methylation at specific parts of the genome only. Yet also at these sites, the
329  assumption of general hypomethylation was not met.
330 The lack of overall or site-specific hypomethylation may be explained by various
331 factors: first, contrary to our predictions, the methyl donor s-adenosylmethionine needed for
332  methylation may not have been limiting, potentially because oxidative status was not altered
333  dramatically in all individuals. Indeed, as reported from the exact same experiment and samples
334 by Séanchez-Virosta et al. (47), most biomarkers of oxidative status and damage in blood were
335  only slightly (but not statistically significantly) elevated, and only the antioxidant enzyme
336  catalase showed a significant decrease. In the future, sampling before and after exposure to e.g.
337  pollutants may be advised to associate DNA methylation changes directly to changes in
338  oxidative status, for example in adult birds (in contrast to developing animals where
339  measurements are confounded by the changes in growth and associated changes in physiology).
340 Second, the response is likely to depend on the tissue type studied. For example, global

341  hypomethylation in response to arsenic exposure is not consistently reported in blood: in
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342  humans, where blood leucocytes have been used to characterize arsenic associated changes no
343  evidence for global hypo or hypermethylation was detected, yet arsenic was repeatedly reported
344  to induce hypermethylation in various genes (especially promoters) (68), whereas global
345  hypomethylation was detected in hepatic cells (69). Given that arsenic metabolism and SAM
346  production mostly takes part in liver, we may expect tissue-dependent hypomethylation
347  especially in liver, but not necessarily in other tissues. Unfortunately, we lack oxidative status
348  measurements from the liver in this experiment. Studies have shown that absolute methylation
349  values between e.g. blood and liver or kidney and brain are highly correlated (48, 58), just like
350 changes in methylation in red blood cells and liver are correlated (59). Nevertheless tissue-
351 specific methylation differences were larger for genes that are expressed in a tissue-specific
352 way (48) and measuring methylation levels from red blood cells might therefore miss tissue-
353  dependent genes whose expression is expected to change (59).
354 Furthermore, contrary to many previous studies in laboratory animals, this experiment
355 was conducted with relatively low doses, mimicking exposure in polluted environments,
356  whereas effects via SAM may only be apparent when levels are higher. Also, we were only
357 interested in short-term, early-life effects while resident species inhabiting polluted
358 environments during their whole life-span may show marked effects due to cumulative arsenic
359  exposure. This is an interesting avenue for further research.
360 As the experiment was conducted in a wild population, in comparison to previous
361  studies in laboratory, the environmental or genetic variability and potential variability across
362  sexes may have masked some effects of the experimental treatments. Arsenic is known to have
363  sex-dependent effects in many model systems (though predominantly in adult animals;
364 reviewed e.g. 32). Furthermore, for example studies on mice report sex differences in DNA
365 methylation patters in response to arsenic (e.g. 70), and general methylation differences among

366  the sexes in young chickens (71). Yet, our initial models suggested that sex explained only a
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367  very minor part of the variation in DNA methylation (and was therefore dropped from the final
368  model), which suggests that in our data sex-bias is unlikely to strongly mask the effects. DNA
369  methylation is known to be heavily influenced by the genetic background, for example in van
370  Qers et al. (62), the majority of the variation between individuals was explained by genetic
371 similarity. In the future, split-brood experimental designs may be used to distinguish genetic
372 effects from environmental. The arsenic exposure applied (as measured from the fecal samples)
373  was also at the lower range of variation if compared to polluted environments, which may
374  contribute to the findings of only limited differences — yet mortality was increased with these
375 levels, as reported in (46). We also report large variation in the fecal arsenic levels within the
376  arsenic exposure treatment. Several factors may affect those levels, such as the time elapsed
377  between last dosing and sampling, the times the nestling has been fed in that time and how
378 many droppings they have produced, among others. Feces dropped soon after arsenic
379  administration likely contain higher arsenic levels than later on.
380 We could annotate three of the five differentially methylated sites to genes. One of the
381  genes, IGF2BP1 is especially interesting as it is associated with development and growth: it
382  has been showed that IGF2BP1 plays important roles in various aspects of cell function, such
383 as cell proliferation, differentiation, migration, morphology and metabolism (72, 73) but also
384 embryogenesis and potentially even arsenic-related carcinogenesis (74, 75). IGF2BP1 is
385  abundantly expressed in fetal and neonatal tissues (73). Furthermore, two of the genes, ZBTB47
386 and HIVEPS3 are both zinc-finger domains and are associated with transcriptional regulation
387  (76). Epigenetic regulation of both ZBTB47 and HIVEP3 is known to be associated cancer (77,
388  78). Because our sample size in combination with a stringent correction for repeated sampling
389 limits the power to detect subtle differences, we do expect to find a fraction of the number of

390 differentially methylated CpGs (79).
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391 All the three gene-related differentially methylated CpG sites were found in the gene
392  body region, in both intron (IGF2BP1) and exons (ZBTB47 and HIVEP3). Hypermethylation
393 at CpG sites at promoter regions represses transcription of genes which is a well-known
394  mechanism operating in many scenarios. DNA methylation at intergenic regions and gene
395 bodies and its impact on gene expression is gaining more attention especially in cancer studies
396  (80). Interestingly, a recent study on corals showed that gene body methylation was altered by
397 environmental factors, which facilitated acclimatization and adaptation to different habitats
398  (81). However, in great tits the DNA methylation observed in CpGs that are situated within
399  gene bodies do not seem to affect gene expression (48), thus future studies are needed to
400  determine the role of gene body methylation in gene expression control.
401
402  In conclusion, our study shows that early-life exposure to a toxic metal, arsenic, potentially
403  affects fitness via DNA methylation changes in specific pathways, but not via an overall
404  hypomethylation in the red blood cells. The effect might be more profound in other tissues that
405  are more relevant to arsenic metabolism, such as liver. Thus, future studies should inspect other
406  tissues as well. Other pathways of epigenetic alterations, known to be subject to arsenic-related
407  alternations in vitro, such as histone acetylation (29) and micro-RNAs (82) could be further
408  explored.
409
410 ASSOCIATED CONTENT
411  Figure S1. Clustering of samples based on ward.D (a) and principal component analysis (PCA)
412 (b) in Methylkit
413  Table S1. Number of reads before and after read trimming with mapping and methylation
414  calling success of Bismark. CpG site filtering was done with MethyIkit.
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