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Abstract (< 200 words) 

Dynamic Functional Connectivity (dFC) in the resting state (rs) is considered as a correlate of 
cognitive processing. Describing dFC as a flow across morphing connectivity configurations, our notion 
of dFC speed quantifies the rate at which FC networks evolve in time. Here we probe the hypothesis 
that variations of rs dFC speed and cognitive performance are selectively interrelated within specific 
functional subnetworks. 

In particular, we focus on Sleep Deprivation (SD) as a reversible model of cognitive dysfunction.  We 
found that whole-brain level (global) dFC speed significantly slows down after 24h of SD. However, 
the reduction in global dFC speed does not correlate with variations of cognitive performance in 
individual tasks, which are subtle and highly heterogeneous. On the contrary, we found strong 
correlations between performance variations in individual tasks –including Rapid Visual Processing 
(RVP, assessing sustained visual attention)– and dFC speed quantified at the level of functional sub-
networks of interest. Providing a compromise between classic static FC (no time) and global dFC (no 
space), modular dFC speed analyses allow quantifying a different speed of dFC reconfiguration 
independently for sub-networks overseeing different tasks. Importantly, we found that RVP 
performance robustly correlates with the modular dFC speed of a characteristic frontoparietal 
module. 

 

Highlights 

• Sleep Deprivation (SD) slows down the random walk in FC space implemented by Dynamic 
Functional Connectivity (dFC) at rest. 

• Whole-brain level slowing of dFC speed does not selectively correlate with fine and task-
specific changes in performance 

• We quantify dFC speed separately for different link-based modules coordinated by distinct 
regional “meta-hubs” 

• Modular dFC speed variations capture subtle and task-specific variations of cognitive 
performance induced by SD. 

 

Keywords  

Dynamic Functional Connectivity| Resting-state| fMRI | Sleep Deprivation | cognitive decline | 
cognitive challenge model | attention  

 

Abbreviations  

rs: resting-state; fMRI: functional Magnetic Resonance Imaging; BOLD: blood oxygen level 
dependent; FC: Functional Connectivity; dFC: dynamic Functional Connectivity; MC: Meta-
Connectivity; RTI: simple reaction time; n-back: working memory task; RVP: rapid visual processing 
task 
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Author summary (< 200 words) 

We interpreted dynamic Functional Connectivity (dFC) as a random walk in the space of possible 
FC networks performed with a quantifiable “speed”. 

Here, we analyze a fMRI dataset in which subjects are scanned and cognitively tested both before 
and after Sleep Deprivation (SD), used as a reversible model of cognitive dysfunction. While global dFC 
speed slows down after a sleepless night, it is not a sufficiently sensitive metric to correlate with fine 
and specific cognitive performance changes. To boost the capacity of dFC speed analyses to account 
for fine and specific cognitive decline, we introduce the notion of modular dFC speed. Capitalizing on 
an edge-centric measure of functional connectivity, which we call Meta-Connectivity, we isolate 
subgraphs of FC describing relatively independent random walks (dFC modules) and controlled by 
distinct “puppet masters” (meta-hubs). We then find that variations of the random walk speed of 
distinct dFC modules now selectively correlate with SD-induced variations of performance in the 
different tasks. This is in agreement with the fact that different subsystems – distributed but 
functionally distinct– oversee different tasks. 

The high sensitivity of modular dFC analyses bear promise of future applications to the early 
detection and longitudinal characterization of pathologies such as Alzheimer’s disease. 
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Introduction 

The majority of studies on resting state functional brain connectivity so far have considered time 
averaged resting state Functional Connectivity (rs FC). However, substantial evidence suggest that the 
brain is restless even at rest and that rs FC continually fluctuates in a way which is far from being 
random, displaying non trivial spatiotemporal structures (Hutchison et al., 2013; Calhoun et al., 2014; 
Gonzalez-Castillo & Bandettini, 2018). Such dynamic Functional Connectivity (dFC), during both rest 
and task conditions, has been suggested to be an indicator of cognitive processing (Cohen, 2018). 
Beyond differences of age (Hutchison & Morton, 2015) and gender (Yaesoubi et al., 2015), or changes 
in vigilance (Wang et al., 2016; Shine et al., 2016) and consciousness (Hudetz et al., 2015; Cavanna et 
al., 2018), higher “fluidity” of dFC has been linked to higher mindfulness (Lin et al., 2018), levels of 
attention (Kucyi et al., 2017), faster learning (Bassett et al., 2011), flexibility of executive control 
(Braun et al., 2015) and, more generally, superior performance in several cognitive and behavioral 
domains (Jia et al., 2014). These findings are in line with a view of the human brain as a dynamical 
system, in which flexible communication and large-scale integration between multiple, possibly 
remote, local subnetworks underlies emergent information processing and cognitive operations 
(Mesulam et al. 1990, Varela et al., 2001; Bressler & Kelso, 2016; Kirst et al., 2016). 

The shift to a dynamic chronnectome (Calhoun et al., 2014) perspective is however hampered by 
the lack of a consensus on the best approach to estimate not-artefactual dFC to be chosen amongst 
an increasingly larger spectrum of diverse methods (Preti et al., 2017). In particular, statistical 
concerns have been raised: firstly, about whether resting-state FC is really non-stationary (Zaleski et 
al., 2014; Hindriks et al., 2016) and, secondly, whether discrete connectivity states do exist or can be 
reliably extracted (Shakil et al., 2016; Liégeois et al., 2017). Here we will advance on investigating 
relations between dFC and cognitive performance, by capitalizing on an original methodological 
framework which circumvents both these concerns. In Battaglia et al. (2020) we introduced the notion 
of dFC speed, quantifying in a time-resolved manner the rate at which brain-wide FC networks are 
changing from one time-window to the next. We thus interpret dFC as a random walk in the high-
dimensional space of possible FC network realizations, describing it as a smooth flow across 
continually morphing connectivity configurations, rather than as a non-stationary sequence of sharp 
inter-state transitions. In this study, we go beyond Battaglia et al. (2020) by exploring with more 
precision and detail the hypothesis that variations in resting state dFC speed correlate with cognitive 
performance. Specifically, we substantially extend the approaches of Battaglia et al. (2020) by 
quantifying dFC changes not only at the whole-brain level but also at the level of specific functional 
subnetworks, believing that these modular changes are better at capturing fine cognitive performance 
variations across specific tasks. 

We concentrate,	 as a proof of concept, on Sleep Deprivation (SD) as a model of cognitive 
dysfunction, useful to understand how changes of dFC correlate with reversible cognitive impairment. 
Furthermore, SD is a common condition in modern societies with a significant impact on productivity 
and health (Institute of Medicine Committee on Sleep and Research, 2006), affecting cognitive 
functions such as executive control and attention (Durmer & Dinges, 2005; Krause et al., 2017). Finally, 
investigating dFC in SD may lead to the development of novel predictive markers of early network 
dysfunction in disease. Indeed, SD has also been proposed as a cognitive challenge model of cognitive 
impairment arising in Alzheimer’s Disease (AD), because of both the partially overlapping spectrum of 
induced cognitive deficits and their response to pharmacological treatment (Cheeh & Chuah, 2008; 
Repantis et al., 2010; Wirsich et al., 2018). For this reason, cognitive tests chosen with a sensitivity to 
both SD and cognitive dysfunction in AD were chosen for the present study (Cummings et al. 2012, 
Randall et al. 2005, Dodds et al. 2011, Kirova et al. 2015). 
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Previous investigations have shown that SD affects time-averaged FC at the whole-brain level (Yeo, 
Tandi & Chee, 2015; Kaufmann et al., 2016; Wirsich et al., 2018). However, it is not very clear how 
such changes of static network topology relate to cognitive effects of sleep deprivation. Other studies 
considered classic dFC analyses and found that transition dynamics between global FC states are 
slowed down after SD and during descent from wakefulness into sleep (El-Baba et al., 2019). 
Furthermore changes in state transitions and occupancy could predict the rate of decline of speed of 
processing and working memory after multiple consecutive nights of SD (Patanaik et al., 2018). Here 
we go beyond these promising results by studying how 24 hs of SD affect our novel dFC speed markers 
in relation to cognitive performance looking at changes at not only the global but also the subnetwork 
level. 

Firstly, we observe that the speed of reconfiguration of resting-state whole-brain FC networks 
(global dFC speed) is significantly slowed-down by SD. Secondly, we demonstrate a correlation 
between the modular dFC speed of a specific frontoparietal sub-network –related to well-known 
attentional networks (Corbetta & Shulman, 2002)– and performance on a demanding cognitive test, 
Rapid Visual Processing (RVP), assessing sustained visual attention and central executive control (Coull 
et al., 1996).  

In Battaglia et al. (2020) we found that higher dFC speeds at the whole-brain level were associated 
with higher levels of general cognitive performance. Here, however we refine our analyses going 
beyond rough cognitive assessments –as the MOCA score (Nasreddine et al., 2005) used in Battaglia 
et al. (submitted as a companion paper)–, optimized for diagnosis but able just to detect sizeable 
cognitive deficits affecting several cognitive domains simultaneously. The effects of SD can on the 
contrary be very moderate and diverse for different tasks, requiring a much finer sensitivity and 
selectivity of analysis. Here, we find then that reductions of global dFC speed at the whole brain level 
do not predict these small and specific changes of cognitive performance in different individual tasks. 
Importantly, however, we observe again significant correlations with detailed changes in cognitive 
performance after introducing a novel type of metric, which we call modular dFC speed. Unlike global 
dFC speed analyses – in which information about where network changes are happening, because the 
rate of change is averaged over the whole brain are lost – modular dFC speed allows for the 
quantification of a different speed of dFC reconfiguration independently for each different sub-
network of interest. Correlations with cognitive performance are then highlighted when focusing on 
task-relevant networks, which we extract in an unsupervised manner –through an analysis of Meta-
Connectivity (MC), i.e. correlation between time-dependent functional links (cf. Bassett et al., 2014, 
Brovelli et al., 2017; Faskowitz et al., 2019)–and whose independent dFC fluctuations would have 
otherwise been undetectable by whole-brain dFC speed analyses. 

Our findings suggest that analyses of dFC speed variations are well able to detect the temporal 
reorganization of resting state FC fluctuations after SD. Furthermore, beyond mere changes in reaction 
time or vigilance, our quantifications of dFC variations robustly track the magnitude of changes in 
cognitive performance induced by SD within each specific subject. Importantly, modular dFC speed 
measures are able to detect subtle changes in dFC that are confined to specific sub-networks. This 
makes it possible to capture variations of performance in cognitive function such as attention – relying 
on the interaction between spatially well-defined systems (Corbetta & Shulman, 2002).  
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Material and methods 
 

Participants  

We here re-analyze neuropsychological and fMRI data previously reported by Wirsich et al. (2018). 
Within the framework of a work-package of the EU PharmaCog Innovative Medicine Initiative 
(https://www.imi.europa.eu/projects-results/project-factsheets/pharma-cog), fifteen healthy 
subjects were recruited (all male, 25–40 years old, Body Mass Index, BMI ≤ 27, right-handed) to 
participate in an experiment distributed over ten different days in blocks of two days each. Before 
inclusion, volunteers were checked for their medical history, physical examination, vital signs, results 
of blood chemistry and haematology, urine drug screen, electrocardiogram (ECG) and their visual and 
auditory abilities. Volunteers who received medical treatment, smoked more than five cigarettes per 
day, took more than five caffeine or energy drinks per day or suffered from claustrophobia were not 
included. It was ensured that the volunteers had good regular sleep habits and rhythms using 
questionnaires and clinical interviews (Pittsburgh Quality Index with regular sleep between 6.5 and 9 
h per night, Epworth scale score below 10, Horne and Ostberg scale score above 31 and below 69, 
absence of jet lag and no occupation with time-shifts), no history of clinicalsigns of sleep disorder 
(Berlin sleep apnea scale, Restless Legs Syndrome questionnaire) and no history of psychiatric disorder 
(psychiatric interview with the M.I.N.I-DSM IV). Three days before the session, the subjects wore an 
actigraph and completed a sleep diary to verify their sleep status. Four subjects quit the protocol 
before the end (three withdrawals of consent and one drop-out for an adverse event), which resulted 
in a final group of eleven subjects (age=34±4 years, range 28–40 years).  

In the original experiment, some of the subjects were administered doses of various 
neuroenhancer drugs prior to the fMRI scan and cognitive testing. For more details, see Wirsich et al 
(2018) and Chan Kwong et al. (2020). Here, however, we prefer to focus uniquely on the placebo 
sessions, being more interested in statistical comparisons between dFC speed in different modules, 
than comparisons between dFC speed in different medication conditions. The small number of 
subjects does not provide sufficient statistical power to study all possible comparisons (modules and 
drugs). Therefore, for homogeneity, we consider data acquired during the placebo sessions within the 
first block of two days. Subjects were assessed twice, once before and once after SD with one session 
of rs fMRI and cognitive tests. An additional subject was discarded a posteriori because he slept for 
most of the time during the second day fMRI session.  

 

Cognitive assessment 

Every subject performed seven cognitive tests assessing verbal and visual episodic memory, 
attention, language and working memory. In this study, we focused on three computerized tests, 
known to be affected by SD and selected for the complementarity of the functions they probe. Hence, 
psychomotor speed and attention were assessed via the Simple Reaction Time (RTI) and the Rapid 
Visual Processing (RVP) tests from the Cambridge Neuropsychological Test Automated Battery 
(CANTAB®). For the RTI, during 10 mn, participants, while holding a button on a box, have to react as 
soon as possible to yellow dots that appear on the screen by releasing the button and touching the 
dot on the screen. In the RVP task (12 mn), digits are shown in the centre of the screen in a pseudo-
random order, at the rate of 100 digits per minute. Participants are requested to detect target 
sequences of 3 digits by pressing a button as quickly as possible. The participant must watch for three-
target sequences at the same time. Working memory was assessed through the n-back (0-back, 1-
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back, 2-back, 3-back…) task (Braver et al, 1997). The subject is presented with 3 blocks of 4 continuous 
sequences of 16 letters. The task consists of indicating when the current letter matches the one from 
n steps earlier following the different instructions of each sequence.  We here use as performance 
metric reaction times and accuracies from a 3-back task (n = 3). 

Differences of cognitive performance before and after SD were compared: at the group level, using 
Mann-Whitney-U test or Kruskal-Wallis testing of median differences; at the within-subject level, 
using paired Wilcoxon signed-rank test or Kruskal-Wallis testing of median being different from zero. 
Bonferroni correction was applied on the number of tested cognitive performance scores (ν = 5). 

 

fMRI data recording and processing 

For a detailed description on fMRI data acquisition, see Wirsich et al (2018). All images were 
acquired on a Siemens Magnetom Verio 3T MRI-Scanner (Siemens, Erlangen, Germany) with structural 
T1-weighted images acquired using a MPRAGE-sequence (TR = 2300 ms, TE = 2.98 ms, 1.0 × 1.0 × 1.0 
mm, 176 slices), and 200 BOLD-sensitized EPI T2*-weighted MRI images acquired using a TR of 2.7 s 
(3.0 × 3.0 × 3.0 mm, TE = 30 ms, 40 slices, acquisition time of 9 min 5 s). To process fMRI data we used 
the SPM8 toolbox (revision 4667, http://www.fil.ion.ucl.ac.uk.gate2.inist.fr/spm/software/spm8/) to 
slice time and spatially realign the volumes. The AAL atlas template (N = 86 regions, see Figure 4B for 
the list of enclosed regions (left and right hemisphere; Tzourio-Mazoyer et al. (2002)) was linearly 
transformed into the T1-image of each subject (FSL 5.0 FLIRT, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The 
aligned T1-image and AAL template were then co-registered with the T2*-images (SPM8). Average 
cerebrospinal fluid (CSF) and white matter signal were extracted out of the T2*-images from a 
manually defined spherical ROI (Marsbar Toolbox 0.43, http://marsbar.sourceforge.net/). Movement 
parameters, CSF and white matter signals were regressed out of the fMRI time-courses extracted from 
each regional volume (average of all voxels). The time-series were then band-passed filtered in the 
0.02 - 0.2 Hz range. Simultaneous EEG was acquired during fMRI scan and used to perform 
segmentation into fMRI epochs belonging to different sleep states. The resulting regional BOLD time-
series were used as input to further FC and dFC analyses. Simultaneous EEG 64 electrode EEG-cap 
(BrainCap-MR 3-0, Easycap, Hersching, Germany, using 63 channels in the 10–20 montage plus one 
extra ECG channel, reference placed on the mid-frontal position FCz) was acquired during fMRI 
sessions as described by Wirsich et al. (2018). EEG data was manually sleep staged for consecutive 30 
s blocks by an expert (Awake, N1, N2, N3, according to the AASM sleep scoring scheme, 
http://www.aasmnet.org/ ). The acquired data was then manually sleep staged for consecutive 30 s 
blocks by an expert (Awake, N1, N2, N3, according to the AASM sleep scoring scheme, 
http://www.aasmnet.org/ ). 

 

Control resting state fMRI dataset 

To verify that the key results of our analyses did not apply just to our specific dataset, we also repeated 
some of the analyses on an independent control dataset, selected from rs-fMRI data released as part 
of the Human Connectome Project (HCP), WU-Minn Consortium. We used the same selected subjects 
used for statistical benchmarking of functional network analyses in Termenon et al. (2016). This 
sample includes 100 young healthy adults aged 20 to 35 years (54 females). Each subject underwent 
two rs-fMRI acquisitions on different days and here, not being interested in test-retesting issue, we 
used only data from the first day sessions. For this sessions, TR = 720 ms and resting state scan 
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duration was of 14 min and 24 s. The same parcellation as for the SD dataset was used. More details 
on data acquisition and pre-processing for this control dataset can be found on Termenon et al. (2016). 

 

Extraction of time-dependent Functional Connectivity and dFC matrices 

These methods have first been introduced by Battaglia et al. (2020) and we here provide a brief 
explanation. We estimated time-dependent Functional Connectivity matrices FC(t) by sliding a 
temporal window of fixed duration W (cf. Allen et al., 2012) and by evaluating zero-lag Pearson 
correlations between resting-state BOLD time series from different brain regions i and j:   

FCij(t) = Corr[BOLDi(t’), BOLDj(t’)] over the interval t-W/2 ≤ t’ ≤ t+W/2 

All entries were retained in the matrix, independently of whether the correlation values were 
significant or not or without fixing any threshold (i.e., we treated FCij entries as descriptive features 
operationally defined by the above formula). 

To evaluate the dFC matrices of Figure 2 and S8 we introduced a notion of similarity between FC(t) 
matrices following (Hansen et al., 2015), based on the Pearson correlation between the entries of their 
upper-triangular parts: 

dFC(t1, t2) = Corr[UpperTri(FC(t1)), UpperTri(FC(t2))]  

The dFC matrices thus depend on the window-size W adopted when evaluating the stream of time-
dependent FC(t)’s. To perform the two-dimensional projections of the sequence of FC(t) matrices in 
Figure 2B we fed the vectors UpperTri(FC(t)) as input features into a t-Stochastic Neighborhood 
Embedding algorithm (exact method) as described by Hinton & Van der Maaten (2008), using default 
perplexity = 30 and exaggeration = 4 parameters in the used MATLAB® (MathWorks R2017b) 
implementation.  

 

Analysis of dFC speeds 

Since we used correlation as a measure of similarity between matrices, we naturally chose to use 
the correlation distance between two observations of functional connectivity as a measure of the 
amount of change between two FC(t) observations. By measuring the distance between two FC 
observations separated by a fixed amount of time set to be equal to the window-size W we thus 
defined the instantaneous global dFC speed as: 

VdFC,W (t) = 1 – dFC(t, t+W) 

This dFC speed is termed “global” because evaluated in terms of comparisons of whole-brain FC 
matrices.  

This definition makes dFC speed dependent on the chosen window size W. To improve the 
estimation of dFC speed histograms by increasing the number of sampled speed observations (not 
large for single window-size speed estimation, especially when W is large, given the need to consider 
not-overlapping windows), as well as for avoiding potential aliasing artefacts due to the use of a single 
window (Leonardi & Van de Ville, 2015), we decided to pool window sizes together, observing that 
speed distributions for close enough W were similar. More specifically, we realized that for a vast 
majority of subjects and for most dFC speed bins, binned counts in the histograms extracted at 
contiguous window sizes were statistically indistinguishable. Concretely, for 8 out of the 11 included 
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subjects, the binned dFC speed counts in the histograms extracted at window sizes Wi and Wi+1 were 
statistically indistinguishable (overlapping confidence intervals, Agresti-Coull estimation) for at least 
14 out of 20 bins, where Wi are the window sizes included in our analyses (and the statement holds 
for any of the coinsidered Wi’s, ranging from 3 to 30 TRs). Given this substantial degree of redundancy 
between speed distributions for contiguous window sizes, we chose to pool speed samples to form 
just two histograms, over two (arbitrary) window ranges: a “short” window-size range, 10 < W < 45 s; 
and a “long” window-size range, 45 < W < 80 s. Window pooling reduces the number of independent 
statistical comparisons to avoid the risk of false positive when comparing speeds before and after SD 
and leads to smooth dFC speed histograms (see also Battaglia et al. 2020). In the context of this study, 
however, we only focused on the median of pooled speed samples, evaluated separately for each of 
the two window-size ranges for each subject. For comparison, we nevertheless also show results also 
for single window analyses of global dFC speed prior to pooling in Figure S1. 

As for cognitive performance variations, we evaluated the difference in global dFC speeds before 
and after SD: at the group level, using U-Mann-Whitney test; at the within-subject level, using paired 
Wilcoxon signed-rank test. Bonferroni correction was applied on the number of tested window-size 
ranges (ν = 2). 

Meta-connectivity 

Out of the stream of FC(t) matrices, we extracted M = N(N-1)/2 time series of pairwise FC couplings 
given by the entries FCij(t) for all pairs of regions i and j with i < j ≤ N. We used a very short window-
size of W = ~19 s (7 TR), with a window step of 1 TR. The uncertainty in estimating FCs due to this 
unusually short W was compensated by the larger number of points in obtained FC coupling time-
series, which must be imperatively large in order to reliably compute inter-links correlations. The 
entries of the Meta-Connectivity matrix (MC) were then given by: 

MCij,kl = Corr[FCij(t), FCkl(t)] 

As for the FC analysis, we included all MC entries into the matrix, independently of whether the 
correlation values were significant or not or without fixing any threshold. We compiled all MCij,kl 

entries into a matrix format that allowed us to easily identify the pair of links involved into each meta-
link and the participating brain regions. That is, we built MC matrices of (N2-N)-times-(N2-N) size, 
where different rows correspond to different directed pairs of regions – i.e. both the pair (i,j) and the 
pair (j,i) were included – and only links corresponding to self-loops – i.e. of the type (i,i) – were 
excluded. The MC representation described above had a substantial amount of redundance, since: 

MCij,kl = MCji,kl = MCij,lk = … = MCkl,ij = … = MClk, ji 

For the sake of computational efficiency we computed only P = M(M-1)/2 independent Pearson 
correlations between pairs of possible FC link time series FCij(t) and FCkl(t), with i < j, k < l, i ≤ k, j < l 
and copied this inter-link correlation value into the eight degenerate MC matrix entries, in order to 
allow interpreting MC as an adjacency matrix between links. 

We then defined the meta-strength of a node i as the sum of the meta-connectivity weights 
between all pairs of links incident on node i, i.e.: 

MC(i) = Σkl MCik, il  

Besides the strengths MCij,kl of individual meta-links, we also computed integrated meta-connectivity 
strengths for individual links. A node with particularly large meta-strength is termed a meta-hub. 
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Note that MC matrices, evaluated for each single subject, can then be conveniently averaged over 
groups (analogously to FC matrices). The MC matrices shown in Figures 5A and S4A are thus averaged 
over the entire group of the 10 retained subjects. 

 

Edge Functional Connectivity 

For comparison with MC analyses, we also computed edge-centric Functional Connectivity (eFC) as 
introduced by Faskowitz et al. (2019). Similarly to MC, eFC equally provides a description of 
correlations between link fluctuations, however eFC differs from MC in the way in which the temporal 
stream of dFC is estimated. While in MC we rely on a sliding window approach to extract FC(t), in the 
case of eFC windowing is not used but signal correlation fluctuations are studied at the instantaneous 
level. The time-series BOLDi(t) are first z-scored, then time-series of pairwise products are 
constructed:  

Pij(t) = zscore[BOLDi(t)] ∙ zscore[BOLDj(t)]. 

Finally, eFC is constructed as the correlation matrix of these instantaneous pairwise product time-
series: 

eFCij,kl = Corr[Pij(t), Pkl(t)] 

 

Extraction of dFC modules 

Packaged in the redundant format described, the MC matrix can be considered as the adjacency 
matrix of a graph whose nodes are FC links. Thus, communities of temporally co-varying FC links can 
simply be evaluated by applying any algorithm for node-community detection to the MC matrix. We 
thus extracted modules by applying a standard Louvain algorithm on the group-averaged MC matrix 
(before SD), adapted to weighed undirected graphs with mixed positive and negative entries 
(“symmetric treatment” in the Louvain method’s implementation in the Brain Connectivity Toolbox 
by Rubinov & Sporns (2010)). The Louvain method has one adjustable parameter whose default value 
is Γ = 1. By taking larger (or smaller) values, the algorithm will tend to return modular decompositions 
with a larger (smaller) number of modules. We chose to use Γ = 1.045 at the center of a range reliably 
and robustly returning 5 modules. Larger values of Γ were on the contrary leading to modular 
decompositions with fluctuating numbers of modules. 

Even when Γ is fixed the algorithm still returns different modular decompositions every time it is 
run, because it involves a stochastic optimization procedure. We thus generated 2000 alternative 
modular decompositions to study how variable or robust they were. To compare two modular 
decompositions M1 and M2 we first identified homologous modules, by relabeling the modules in 
order to have minimum Hamming distance – i.e. number of different symbols in an ordered sequence 
– between the module label sequences for M1 and M2 . Then we computed the meta-strengths of 
every region module by module – i.e. restricting the MC matrix to include only rows and columns 
corresponding to links belonging to the considered module – for both modular decompositions M1 
and M2 . Finally, we correlated the sequence of meta-strengths for equally-labelled modules in M1 and 
M2 , to assess how similar modules were in terms of their meta-hubs and node ranking in terms of 
meta-strengths. The large inter-decomposition meta-strength correlations reported in S9A for all 
modules confirm that our choice of decomposing MC into 5 modules leads to robustly preserved 
modules (and their associated meta-hubs). 
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To construct Figure S5E, we extracted 500 alternative modular decompositions of the MC matrix 
mediated from the control HCP dataset and maximally aligned each of them to the reference modular 
decomposition of Figure 4A. For each of these realigned modular partitions a confusion matrix with 
the reference modular decomposition was computed and then averaged this confusion matrix over 
the 500 alternative modular structures. 

 

Modular and RSN-restricted dFC speed analyses 

A dFC module is a collection of functional links and is, therefore, describing a sub-graph of the 
temporal network (Holme & Saramäki, 2012) formed by the stream of whole-brain FC(t). We denote 
as FCα(t) the stream of sub-graphs obtained keeping in the stream FC(t) only the links included in the 
considered dFC module #α. It becomes thus possible to compute modular dFC matrices or dFC speeds 
by adopting precisely the same formulas as for global dFC matrices and speeds, but replacing FC(t) 
with FCα(t).  

For comparison, we also restricted dFC analyses to sub-graphs made by all the links between 
regional nodes assigned to a reference Resting State Network (RSN). For mapping the 86 regions of 
the AAL atlas adopted here to the Yeo7 atlas, including 8 RSNs –visual (V), somato-motor (SM), Dorsal 
and Ventral Attention (A), Fronto-temporal (FT), Fronto-parietal (FP), Default mode (DM) and 
Subcortical (SC)–, we used the correspondence introduced by Amico et al. (2017). Given that the 
Dorsal Attentional Network would include just one link under this mapping, preventing evaluation of 
correlation distance between frames in the dFC network, we merged it with the Ventral Attentional 
Network into a common Attentional RSN. 

As for global dFC speeds and cognition, we evaluated difference in modular or RSN-restricted dFC 
speeds before and after SD at the within-subject level (S8B-C), using paired Wilcoxon signed-rank test. 
Bonferroni correction was applied on the number of tested window-size ranges and dFC modules 
(ν = 2 x 5 = 10) or RSN networks (ν = 2 x 7 = 14). 

 

Correlations between variations of dFC speed and of cognitive performance 

Given the large inter-subject variability of both dFC speed and cognitive performance, we chose to 
correlate the changes of these variables, i.e. the difference or dFC speeds (or cognitive scores) 
measured after and before SD. We then computed Spearman correlation between changes in dFC 
speed and changes in cognitive scores. To assess significance of these correlations we applied a 
conservative Bonferroni correction to the p-values of these correlations. For correlations with global 
dFC speed, we corrected on the number of window ranges and the number of cognitive scores (ν = 2 
x 5 = 10). For correlation with modular dFC speeds, we further corrected for the number of modules 
(ν = 2 x 5 x 5 = 50). 

 

Correlation between variations of dFC speed and EEG 

Only in 4 subjects out of 11, sleep stage N3 was reached (and only in fMRI sessions after sleep 
deprivation). All epochs in sleep stage N3 were rejected from fMRI analyses. For 3 of the 4 subjects 
reaching stage N3 these epochs represented less than 20% of the total scan duration. For the 4th 
subject, the duration of sleep instage N3 reached 80% of scan duration, therefore we had to reject 
this subject for all within-subject analyses of dFC variations between before and after sleep 
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deprivation. We checked that dFC fluctuations were not trivially due to switching between awake, N1 
and N2 states. As shown by Figure S2, genuine BOLD dFC fluctuations were observed in all three brain 
states (not surprisingly, since intrinsic cognitive activities are not suppressed during sleep), with 
overall mild differences of speed. Most likely, the lack of significance of dFC speed comparison 
between sleep stages over most window sizes was due to the small amount of observations of speed 
available when considering sub-segments of already relatively short fMRI scans. Therefore for the 
other analyses of the study and to achieve superior statistical power, we pooled together speed 
observations in awake (overall 69% of analyzed fMRI time points), N1 (overall 13% of analyzed fMRI 
time points) and N2 (18%) epochs. This prevented studying differences of dFC speed within scan 
epochs but allowed a better inter-scan comparison. 

 

dFCwalk toolbox 

 

We have compiled a toolbox of MATLAB ® functions to perform most dFC and MC analysis operations 
described in the present study. It can be downloaded as Support File Sx and will be described in a 
MethodsX paper in preparation. 

 

 

Results 

Sleep deprivation heterogeneously affects cognitive performance 

We first considered how performance in different cognitive tasks is affected by 24 h of SD. We 
studied performance on three different tests: a Reaction Time test (RTI), providing a basic assessment 
of the speed of motor response; an n-back task, assessing working memory using sequences of letters 
(n-back); and a Rapid Visual Processing test (RVP), providing a measure of sustained visual attention 
(see Materials and Methods for details). 

The variations in cognitive performance induced by SD which we observed at both the group and 
the single-subject levels are summarized in Table 1. Relative variations observed at the single-subject 
level are also graphically shown in Figure 1. We found that cognitive change induced by SD was highly 
heterogeneous. While for all three tests, reaction time tended to increase and accuracy to decrease, 
the actual variations could differ from up to two orders of magnitude across the different subjects. As 
a result, none of the comparisons at the group level between performance indicators before and after 
SD remained significant after applying multiple comparison correction (Table 1, left columns). 

However, when considering the variation of performance within every single subject (Table 1, right 
columns), we found that its direction was more consistent across subjects. As a result, all median 
within-subject variations of reaction time were significantly positive (Kruskal-Wallis testing of 
medians; however, only RTI and n-back RT variations were significant under the more conservative 
Wilcoxon Signed Rank test). Furthermore, the median within-subject variation of n-back accuracy was 
also significantly negative. On the contrary, for RVP accuracy the results were more variable and some 
subjects even increased their RVP accuracy after SD. 
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We can thus confirm that sleep deprivation affects cognitive performance in all the considered 
tests. However, the effects of SD were highly heterogeneous and often small, thus providing an 
interesting benchmark for our attempt of predicting variations of cognitive performance with dFC 
speed metrics. 

 

 

 

Sleep deprivation slows down the speed of global dFC 

We then studied how dFC is affected by SD at the whole brain level. We focused in particular on 
quantifying the rate of reconfiguration of brain-wide FC networks during resting state and its 
variations after 24 h of sleep deprivation. 

To estimate time-resolved FC networks, we relied on a simple sliding window approach (Allen et 
al., 2012). We considered the whole time series of the BOLD signal for each of the regions of the 
parcellation, then divided the time series in non-overlapping windows of size W, computing a different 
FC network FC(t) in each of these windows (Figure 2A). To quantify the amount of FC network variation 
from one time window to the next, we calculated the pairwise correlation between subsequent 
functional connectivity matrices and evaluated instantaneous global dFC speed at time t as VdFC, 

W(t) = 1 – Corr[FC(t), FC(t+W)], where Corr denotes the Pearson Correlation Coefficient between the 
weighed FC connectivity matrix entries (see Materials and Methods). In other words, the more (the 
less) the FC network at a given time is correlated with FC after a waiting time equal to the window size 
W, the smaller (the larger) the estimated global dFC speed will be at this time.  

The obtained values of global dFC speed thus necessarily depend on the chosen window size W. 
However, the obtained counts of dFC speed in binned histograms can hardly be statistically 
distinguished (see Materials and Methods) when neighbouring window sizes are considered. We 
therefore chose to refine the estimation of the median speed by pooling dFC speed estimates 
computed for multiple contiguous window sizes together (see Battaglia et al., companion manuscript 
and Materials and Methods). Pooling different windows (with incommensurate sizes) furthermore 
protects against potential aliasing artifacts (Leonardi & Van de Ville, 2015) deriving from the adoption 
of unique fixed window size (see Discussion). In this study, we chose to pool single-window dFC 
estimates into two different ranges, separately estimating dFC speeds for “short” (10 to 40 s) and long 
(40 to 80 s) window lengths. The chosen window lengths included very short windows that are not 
usually adopted when estimating FC. See Discussion and, especially, the companion study by Battaglia 
et al. (2020) for a thorough discussion on the rationale behind this choice.  

As previously mentioned, in contrast with other approaches like clustering (see e.g. Allen et al., 
2012) or Hidden Markov Modeling (Vidaurre et al., 2016), we do not extract “states” of functional 
connectivity in our dFC speed approach. Instead, we quantify the speed of transition between 
sequential ‘snapshots’ of functional connectivity along a random walk in the high-dimensional space 
of FC. The speed of reconfiguration is not constant along this random walk, but there is a stochastic 
alternation between epochs of time in which dFC speed slows down – dFC “knots” –, and other epochs 
in which dFC speeds-up – or “leaps” –, suggesting that the sampling of functional connectivity space 
is not a Brownian-like motion – like a particle of dust floating in the air – but rather a realization of an 
anomalous stochastic process – e.g. like the fast-spreading of epidemics in the modern world or 
animals optimally foraging for food – (see Battaglia et al., 2020, for a thorough discussion).  
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In Figure 2B, we provide two visualizations of these knots and leaps along resting-state dFC for a 
representative subject. In the top row, we show the so-called dFC matrices (Hansen et al., 2015) 
associated to the two resting sessions, performed first before (left) and then after SD (right). In these 
matrices, the entry dFC(t1, t2) provides the correlation between the network FC(t1) observed at a time 
t1 and a second network FC(t2) observed at a second time t2. In such dFC matrix representations, dFC 
knots appear as red-hued (high correlation, hence low speed) squares along the diagonal and dFC 
leaps as crossing blue stripes (low correlation, hence high speed). Even at visual inspection, dFC knots 
are markedly evident in the dFC matrix extracted after SD. 

In the bottom row of Figure 2B, we show dimensionally-reduced representations of the random 
walk in FC network space associated with the same sessions imaged in the dFC matrices plotted above. 
We obtained such two-dimensional projections by adopting a powerful non-linear dimensional 
reduction technique, t-Stochastic Neighborhood Embedding (t-SNE, Hinton & van der Maaten, 2008). 
In these plots, each dot corresponds to the projection of a different time-resolved FC network and 
temporally consecutive dots are linked by a line (see Materials and Methods). The dFC random walk 
before SD appears relatively smooth and continuous, interrupted only by a few cusp points, both 
before and after SD. 

Beyond the visualizations of Figure 2B, we then quantify the variations of global dFC speed before 
and after SD (Figures 2C and 2D). Figure 2C represents a boxplot of the distributions of global dFC 
speed evaluated for pooled short (right) and long (left) time windows. As discussed extensively in 
Battaglia et al. (2020), these distributions are generally skewed and non-Gaussian (i.e. associated to 
non Brownian dFC random walks). For both short and long window sizes, we found, on the group-
level, that global dFC speed slowed down after 24 hs of sleep deprivation (U Mann-Whitney, 
Bonferroni-corrected p-values: p = 0.025 for short windows; p = 0.014 for long windows). Note that 
we would have obtained the same result if global dFC speed for individual window sizes had been 
computed without pooling (Figure S1). Analogously, Figure 2D shows a boxplot of within-subject 
variations, which were also significantly negative (Wilcoxon Signed Rank, Bonferroni-corrected p-
values: p = 0.004 for short windows; p = 0.02 for long windows). The effect of sleep deprivation on 
global dFC speed is thus very robust, slowing occurring also on the subject by subject level – despite 
the heterogeneity of baseline speeds before SD –  and not just at the group median level. 

We finally checked whether the fluctuations of dFC speed along the resting state sessions were 
related to the occurrence of short sleep episodes (detected via simultaneous EEG while in the MRI 
scanner). EEG data was manually sleep-staged for consecutive 30 s blocks by an expert (Awake, N1, 
N2, N3, according to the AASM sleep scoring scheme, http://www.aasmnet.org/ ). Although some of 
the subjects displayed transient sleep episodes, especially after the stress of SD (see Materials and 
Methods for subject inclusion and rejection criteria), we observed that dFC network reconfigurations 
did not stop during sleep but were continually ongoing at a non-vanishing speed. In particular – most 
likely because of the limited amount of data – we could not find a systematic impact of transiently 
entering into sleep stages and the concurrently measured dFC speeds. In Figure S2A, we show that 
median dFC speeds tended to slow down at the single-subject level during sleep stage N1 with respect 
to awake state, however, this effect was only tendentially significant for a few window-sizes belonging 
to the long window sizes range. When considering on the contrary the deeper sleep stage N2, 
significant slowing of median dFC with respect to wake could not anymore be detected (Figure S2B). 
Therefore, the variations of global dFC speed, especially for short window sizes, cannot be explained 
merely in terms of an increased rate of occurrence of transient sleep episodes inside the scanner. 
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Global dFC speed variation does not correlate with cognitive performance 

Both cognitive performance and global dFC speed were affected by SD. We therefore assessed 
whether the cognitive change induced by SD correlated with the monitored dFC speed reductions 
within each subject. However, as compiled in Table 2 (left columns), for short window sizes, global 
dFC speed reductions did not significantly correlate with variations in reaction time or accuracy on 
RTI, n-back or RVP. When considering the long window sizes, none of the correlations between the 
slowing of global dFC speed and cognitive performance survived multiple comparison corrections 
(Table 2, right columns). Figure S3 shows scatter plots revealing lack of correlation (for short window 
sizes, Figure S3A-C) and (for long window sizes, Figure S3D-F) between global dFC speed and cognitive 
performance variation in the three considered tasks.  

Overall, we thus found weak evidence for consistent correlations between global dFC slowing and 
cognitive performance and reaction times. This result is in apparent discrepancy with the positive 
correlation found between global dFC study and a general cognitive performance score (MOCA; 
Nasreddine et al., 2005) in the companion study by Battaglia et al. (2020). While it is possible that this 
result is due to the small number of subjects in our study (see Discussion), we also hypothesized that 
it may reflect the fact that changes in dFC relevant to specific cognitive processes occur uniquely 
within restricted sub-networks which are relevant for the considered tasks. Therefore, these task-
related dFC alterations could be buried under the fluctuations of many other irrelevant networks, 
when computing global speed by averaging dFC over the whole brain. In order to confirm our 
hypothesis, we introduced a novel approach, which allows focusing on dFC fluctuations of specific 
brain sub-networks and their correlations with cognition. 

 

Beyond global dFC: meta-connectivity, dFC modules and meta-hubs 

The fluctuations of FC networks giving rise to dFC can be decomposed into the fluctuations of 
individual pairwise inter-regional correlations. A fluctuating network can thus be seen as a collection 
of fluctuating links (Figure 3A, to be compared with Figure 2A). It thus becomes logical to look for 
groups of links (i.e. sub-graphs of the whole brain FC graph) whose fluctuations in time are more 
correlated between each other than they are with the fluctuations of other groups of links. In order 
to search for such coherently fluctuating sub-networks, we computed a correlation matrix between 
link-fluctuations (Davison et al., 2015; Brovelli et al., 2017; Faskowitz et al., 2019) – which we here call 
meta-connectivity (MC) matrix – and applied to this matrix a standard community detection algorithm 
in order to extract modules of covarying links (dFC modules).  

As a matter of fact –and as discussed as well in Faskowitz et al. (2019), where it is referred to as 
“edge functional connectivity” (eFC)– MC provides a static representation of the spatial organization 
of dynamic fluctuations of FC links overtime. In this sense, it constitutes a generalization of the 
classical notion of Functional Connectivity from nodes to links. The FC matrix provides indeed a static 
representation of the dynamic fluctuations of regional nodes along time. Strong FC between two 
nodes indicates that their fluctuations in time are strongly correlated. Analogously, strong MC 
between two links indicates that their fluctuations in time are strongly correlated. MC analysis thus 
captures the fact that the fluctuations of different links are not independent but are, on the contrary, 
functionally coupled. The static MC matrix epitomizes the underlying statistical coordination structure 
that, any moment in time, constrains the generation of interdependent link fluctuations. 

In conventional FC analyses, one often defines regional hubs, as regional nodes such as the 
fluctuations of their adjacent nodes are strongly correlated between them. Note that two nodes in a 
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graph are commonly defined as “adjacent” if connected by a link (Bollobas, 1998). The definition of 
hubs allows identifying coordination centers in the FC network, which are clearly anatomically 
localized and may correspond to specific functional roles in cognition (Bullmore & Sporns, 2009; 
Sporns & Betzel, 2016). When considering, however, dFC and MC, it is more intricate to generalize this 
notion of hub, because MC is a link-based covariance and a functional link is more widely distributed 
and less “localized” in the cortex, since it spans over distances. We here nevertheless introduce the 
notion of meta-hub, as regional nodes such as the fluctuations of their incident links are strongly 
correlated between them. Note that a link in a graph is commonly defined as “incident” to a node if 
attached to this node (Bollobas, 1998). Meta-hubs can thus be seen as control centers coordinating 
the fluctuations of the links originating from them. Adopting a graph-theoretical jargon, we can 
equivalently define meta-hubs as the centers of star FC sub-graphs (Bollobas, 1998) whose links – the 
rays originating from the center of the star – are strongly meta-connected. As we will see in the next 
section, each of the retrieved dFC modules is dominated by a small number of strongly meta-
connected stars centered on a few module-specific meta-hubs (Figure 4). 

In Figures 4B and 4C, we further elaborate on this notion of meta-hub and its distinction from the 
conventional notion of hub by providing a few cartoon examples. Both these figure panels display 
sequences of snapshots of a fluctuating star sub-network centered on a node of interest. In the 
sequence of Figure 3B, the strength of the central node – i.e. the overall sum of the weights of all it’s 
incident links – is steadily large. Correspondingly, this center node is a FC hub in all the considered 
snapshots. However, the different links incident to it fluctuate in an incoherent manner, some are 
strong when the others are weak, etc. Therefore, in this example, the central node is a hub with a 
large FC strength but not a meta-hub. Conversely, in Figure 3C, the strength of the central node 
fluctuates in time, since sometimes strong and sometimes weak. This central node is thus a hub only 
intermittently (and may not appear as such when considering connectivity averaged along time, as in 
static FC analyses). However, when an incident link is strong (or weak), then all the other incident links 
are strong (or weak) as well. In other words, link fluctuations are correlated – i.e. the plotted links are 
meta-connected – and the center node serves as a meta-hub, with a large dFC meta-strength, defined 
as the sum of the meta-connectivity between all its incident link pairs (see Materials and Methods). 

 

Resting-state dFC modules 

In order to infer dFC modules, we evaluated the MC matrix before and after SD for each subject 
and for different window sizes. For MC estimation, we considered only short window sizes to avoid 
generating exceedingly smoothed time-series of dynamic FC weights with too few independent 
observations (see Discussion). We then averaged MC matrices obtained for different subjects and 
window sizes to obtain a common reference MC and finally ran a community detection algorithm in 
order to identify dFC modules (see Materials and Methods for details of the procedure). 

Figure 4A shows this reference MC matrix for all sessions before SD. The MC matrix averaged over 
sessions after SD is shown in Figure S4A. As evident from the visual comparison of the two MC matrices 
before and after SD and also from the high linear correlation between MC entries (Pearson correlation 
0.97, p < 0.001; see linear fit in Figure S4B), the modular structure is well preserved across the two 
conditions. For further comparison, we also computed the edge Functional Connectivity (eFC) as 
defined by Faskowitz et al. (2019) (see Materials and Methods). Once again, the ensemble averaged 
eFC matrix shown in Figure S5A displays a very similar modular structure as the MC matrix of Figure 
4A. There is furthermore a very strong correlation between MC and eFC, down to the level of 
individual matrix entries (Figure S5B). Given this large degree of similarity, in this study, we, therefore, 
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ignore these small differences and always use the modules extracted from the averaged MC matrix 
before SD of Figure 4A as reference modules. dFC modules can be clearly identified in the reference 
modular decomposition here considered (see below for analyses of the robustness of these modules).  

All the modules include links that are distributed widely through the entire brain. Figure S4C shows 
which regions are incident to at least one link included in each of the five modules. Such 
representations reveal that dFC modules are highly overlapping in their regional reach and are 
essentially not-localized networks. As a matter of fact,Figure S4C reveals that all the modules have a 
“reach”, i.e. a set of regions on which they are exerting an influence, which is very close to… essentially 
the whole brain! In this sense, therefore, they are fundamentally different from conventional FC 
modules, which are internally integrated functional networks, but segregated between them. Here, 
every region is on the contrary “touched”, influenced by most dFC modules (see Discussion). 

Nevertheless, every dFC module is organized around a specific set of localized regional controller 
nodes. When considering links which are strongly meta-connected (i.e. the more correlated), we 
found that each of the dFC modules includes prominent star sub-graphs which are centered on specific 
meta-hubs (cf. Figure 3C), different for each of the dFC modules. Figure 4B shows indeed the total 
meta-strengths of different brain regions within each of the five dFC meta-modules. It is clear that 
meta-strengths are not homogeneous but that each dFC module contains only a few meta-hubs with 
higher meta-strengths. In Figures 5C, we visualize the localization of these meta-hubs for each of the 
five modules. 

A first dFC module (dFC #1) was organized around meta-hubs located bilaterally (i.e. always both 
in left and right hemisphere) in the amygdala and several regions involved in visual sensory processing, 
such as occipital or posterior regions, as calcarine sulcus, cuneus and superior and middle occipital 
gyrus.  

A second dFC module (dFC #2) included a combination of parietal meta-hubs, such as 
supramarginal gyrus and left and right superior parietal lobule, and frontal meta-hubs such as 
superior, medial and middle frontal gyri. 

A third dFC module (dFC #3) was organized around highly dominant meta-hubs in precentral gyrus, 
fusiform gyrus and precuneus. 

A fourth module (dFC #4) was mainly dominated by meta-hubs situated in inferior frontal gyri (pars 
opercularis, pars triangularis and pars orbitalis), rolandic operculum, rectus gyrus and insulae as well 
as, shared with the second dFC module, superior, medial and middle frontal gyrus. 

Finally, a fifth module (dFC #5) was centered on meta-hubs, again, within superior frontal gyrus, 
superior, middle and inferior frontal gyri (orbital parts) as well as medial orbitofrontal cortices. 

Importantly, we could confirm the existence of an analogous modular structure in the resting state 
MC matrix extracted from a completely independent control dataset (see Materials and Methods). In 
Figure S5C, we show a resting MC averaged over 100 cognitively normal subjects mediated from the 
Human Connectome project (see Termenon et al., 2016), displaying a block community structure very 
similar to the one of Figures 4A and S4A). As shown by Figure S5D, the meta-strengths of this HCP-
derived resting state MC of Figure S5C had a correlation of 0.99 (bootstrap 95% c.i., 0.993 < CC < 0.996) 
with the meta-strengths of the reference MC of Figure 4A. Furthermore, the confusion matrix of Figure 
S5E, confirms quantitatively that the modules extracted from the HCP-mediated MC had a substantial 
degree of overlap with the ones displayed in Figure 4B. 
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We note that these dFC modules only have a loose correspondence with modules that could be 
defined at the level of static FC. We show, in Figure S6A, static FC before sleep deprivation, averaged 
over the same group of subjects considered to extract the meta-connectivity of Figure 4A. We then 
extracted five modules even from this matrix, using the same unsupervised community detection 
algorithm (see Materials and Methods) and correlated the strengths of regional nodes within the 
resulting FC modules with the regional meta-strengths within the five dFC modules. The aim of this 
unsupervised analysis was not to extract static FC subnetworks –for this endeavor rather see e.g. Yeo 
et al. (2011)– but rather to check whether how much of the modular structure found at the level of 
MC was trivially redundant with information that could have been extracted with simpler analyses at 
the level of FC. As shown in Figure S6B, the dFC modules #1 and #5 could be put in correspondence 
with associated FC modules, with meta-hubs of dFC overlapping at a large extent with hubs of FC 
(meta-strength vs strength correlations for matched dFC and FC modules were Corr = 0.58 for dFC #1 
and Corr = 0.59 for dFC #5, p < 0.001 after Bonferroni correction). However, for other modules, the 
correspondence was much less clear. Indeed the dFC #2 and #dFC #4 module both had a partial 
overlap with a same FC module (i.e. they could not be separated at the level of static FC analysis) and 
the dFC module #1 did not significantly overlap with any of the FC modules.  

We also compared the localization of meta-hubs for our 5 dFC modules with a partition in standard 
Resting State Networks (RSNs), according to the Yeo7 atlas (Yeo et al., 2011; Amico et al., 2017; see 
Materials and Methods for details of the mapping). As revealed by Figure S7A, meta-hubs for the 
different dFC modules do not perfectly align with classic RSNs. The meta-hubs for the dFC module #1 
has a good overlap with the visual RSN and meta-hubs for dFC module #2 have an imperfect overlap 
with a combination of the Dorsal and ventral attention RSNs, but some other RSNs (or dFC modules) 
do not have a clear counterpart. 

Therefore, our unsupervised modular MC analyses bear some genuinely new information with 
respect to static FC analyses or partition in classic RSNs.  

  

Modular dFC speed variations are heterogeneous across modules 

Each of the dFC modules can be considered, by definition, as a collection of functional links whose 
fluctuations are relatively independent from the fluctuations of links within other dFC modules. As a 
consequence, it is logical to perform independent dFC speed analyses restrained to links belonging to 
each of the dFC modules separately. For each dFC module, we thus extracted different modular dFC 
matrices and distributions of modular dFC speed. S8A shows examples of modular dFC matrices for a 
representative subject. Even at visual inspection, it appears that the red squares associated to dFC 
knots are generally not overlapping in time between the dFC modules. This result was expected since 
these modules have been separated precisely because of the relative independence of their temporal 
fluctuations. S8B-C shows boxplots of the within-subject variations of modular dFC speeds after sleep 
deprivation, for long (S8B) and short (S8C) time windows. We observed for all five dFC modules and 
for both ranges of window sizes a general tendency to a slowing of modular dFC speed, paralleling the 
result already found at the level of global dFC speed (cf. Figure 2D). However, this within-subject 
slowing of modular dFC speed could be proven to be significant only for the dFC #5 module, for both 
short and long time-windows and for the dFC #1 module, only for short time windows (see S8B-C). 
The non-uniformity across the dFC modules of speed variations confirms once again their relative 
degree of dynamic independence. 
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We also computed dFC speed restricted to subnetworks composed of all links between regional 
nodes assigned to each of the different RSNs, under the mapping to Yeo7 atlas (see Materials and 
Methods). As visible in Figures S7B and S7C, respectively for long and short window sizes ranges, also 
these RSN-restricted estimations of dFC speed show a heterogeneous tendency to slow down after 
SD. However, none of these RSN-restricted dFC speed reductions remained significant after corrected 
for multiple comparisons. 

 

 

Modular dFC speed variations correlate with cognitive performance variations 

We then finally assessed if the variations of modular dFC speed after SD correlated with cognitive 
performance. Modular dFC speed variations displayed overall richer and more variegated patterns of 
correlations with cognitive performance than global dFC speed variations (see Discussion). Significant 
correlations were found with RVP accuracy, in a particularly robust way, but also, less robustly, with 
RTI reaction time. Furthermore, correlations with cognitive performance were now also found for 
short time-windows, while global dFC speed variations only showed tendential correlations for long 
time-windows. 

Figure 5A-C shows examples of significant correlations (for the choice of reference modular 
decomposition made in Figure 4B-C). For short window sizes, decreases in the speed of the dFC 
module #4 correlated with increase of reaction time in the RTI task (Figure 5A, p = 0.044, after 
Bonferroni correction) and decreases in accuracy on the RVP task for the speed of dFC module #2  
(Figure 5B, p = 0.0014, after Bonferroni correction). For long window sizes, decreases in the speed of 
dFC module #4 correlated with an increase in RVP accuracy (Figure 5C, p = 0.018, after Bonferroni 
correction). Table 3 reports several other tendential correlations, for both short and long time-
windows. 

When considering variations of RSN-restricted dFC speed, instead of modular dFC speed variations, 
we also found some tendential correlation with cognition (summarized by Table S1). Remarkably, dFC 
speed restricted to the Ventral Attentional RSN showed a tendential correlation with variation of RTI 
reaction time and accuracy in the RVP tasks. However, none of these correlations between cognition 
and RSN-restricted dFC speed survived multiple comparison correction, indicating that decomposition 
of dFC into unsupervised MC-based modules yield a superior description of relations between dFC and 
fine cognitive performance variations than a decomposition into expert-based a priori subnetworks 
of interest. 

 

Correlations between variations of modular dFC speed and of cognitive performance are robust 

The modular decomposition of Figure 4B-C was obtained applying a standard community detection 
algorithm on the MC matrix of Figure 4A. Such algorithms involve stochastic elements (see Materials 
and Methods) and can, as such, produce different solutions when run multiple times. To verify how 
robust our conclusions on the relation between modular dFC speeds and cognition were with respect 
to changes of the detailed decomposition into dFC modules, we extracted a sample of 2000 alternative 
instances of modular decomposition, starting each time from a different initial condition. 

Firstly, we found that the 5 dFC modules described in Figure 4B-C are very robustly retrieved across 
the various modular decomposition instances. As shown in S9A, a large majority of the extracted 
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decompositions give rise to modules which are very highly correlated with the reference ones. 
Secondly, by computing correlations between the dFC modular speed variations associated with the 
alternative instances and cognitive performance, we found patterns of correlations that were highly 
similar to the ones reported in Table 3 for the reference modular decomposition. As shown in S9B, 
indeed, we found a mean similarity of ~86% between the speed variations vs cognitive performance 
variations correlation matrix computed for the reference or the alternative modular decompositions. 

As reported in Figure 5D, ~80% of the extracted modular decompositions led to the detection of at 
least one robustly significant correlation between changes of modular dFC speed and cognitive 
performance (i.e. after Bonferroni correction). Sometimes even 2 or 3 correlations still significant after 
multiple comparison correction were found (as for the reference modular decomposition of Figure 
4B-C, whose associated significant correlations are highlighted by Figures 6A-C). Among the possible 
correlations, the ones that were most frequently assessed as significant were correlations with 
performance on RVP accuracy after SD: overall ~57% of all significant correlations, among which a 
~27% of correlations between dFC #2 speed on the short window sizes and RVP accuracy (cf. Figure 
5E). This correlation between short-window speed variations of the frontoparietal module dFC #2 and 
RVP accuracy was by far the most frequent significant correlation, followed by a ~16% of correlations 
with RVP accuracy with dFC module #4 and a ~15% of dFC module 2 on the long window sizes. We 
also recorded: a ~11% fraction of significant correlations between dFC #4 modular speed on short 
window sizes and RTI reaction time; and a ~3% between dFC #3 modular speed on long windows and 
n-back accuracy. All other correlations were weaker. 

In conclusion, the reference modular decomposition of Figure 4B-C, used for the analyses of Figure 
5A-C, although particularly fortunate (it is rare to display three robustly significant correlations), is 
very well representative of general tendencies present in the entire studied set of 2000 alternative 
modular decompositions. 

 
 
Discussion 

 

We found that 24 h of SD systematically induces slowing of dFC on the whole-brain level, i.e. of the 
speed in which the space of possible functional network configurations are explored. This tendency 
to slow down, analogous to what previously reported for descent from wakefulness to sleep (El-Baba 
et al., 2019), is robust at the single-subject level but did not correlate with performance on cognitive 
tasks. However, when looking at dFC on the local level focusing on metaconnnectivity giving rise to 
dFC modules, correlation with performance on cognitive tasks was found, notably in sustained 
attention, despite the large intersubject variability of the actual impact of SD on both cognition and 
dFC. 

Because of the small number of subjects in our sample, the significance of certain correlations with 
cognitive performance –e.g. global dFC speed with n-back performance variation– or comparisons 
between conditions –e.g., further slowing down due to sleep staging, cf. Fig. S2– did not survive 
multiple comparison correction. Therefore, we were not able to investigate the potential physiological 
mechanisms underlying the observed slowing of dFC speed here. A likely hypothesis (that will have to 
be explored in future studies) is that the observed slowing may be caused by a SD-induced disruption 
of slow-wave oscillations (Massimini et al., 2004) or changes in synaptic homeostatic regulation 
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occurring during normal sleep (Tononi & Cirelli, 2014; Diering et al., 2017), that can also be tracked by 
fMRI studies (Song et al., 2019). 

Analogously, extensions of our approach to larger and better adapted cohorts will be needed to study 
potential confounding sources, such as the impact of having administered a placebo drug to our 
subjects –which may lead to deviations with respect to a standard resting state condition (Wager & 
Atlas, 2015)– or different sensitivities to scanner noise (Gaab et al., 2008) before and after SD. 

Modular dFC: a compromise between ignoring time or ignoring space 

We first introduced the notion of dFC speed in the companion study by Battaglia et al. (2020). In 
this article, we confirmed several of the findings of this study, notably the fact that dFC can be seen 
as a complex random walk in the space of FC network realizations with statistical properties between 
order and disorder, giving rise to an alternation between “knots” and “leaps”.  

The main methodological innovation we introduced here with respect to Battaglia et al. (2020), in 
order to achieve our aim, was the notion of dFC modules – extracted via the MC analysis – and of 
modular dFC speeds. While global dFC analyses consider fluctuations of resting-state FC as a whole 
and quantify how this unique brain-wide network is unspecifically morphing from one time 
observation to the next, modular dFC analyses explicitly endorse the hypothesis that different 
functional subnetworks may fluctuate according to independent choreographies, consistent with well-
established evidence for regional specialization of brain function, within the context of distributed but 
separated networks. Modular dFC analyses are thus intermediate between conventional static FC 
analyses (which describe spatial structure of FC networks at high detail but fully ignore their 
reconfigurations in time) and the previously introduced global dFC analyses (that track the overall 
temporal variations of FC in detail while fully ignoring their spatial structure).  

 

Static MC shapes the structure of dynamic dFC flows 

From a methodological perspective, the endeavor of identifying independently fluctuating sub-
networks is akin to classic Independent Component Analysis (van de Ven et al., 2004) or 
decomposition methods relying on link-covariance estimation. We stress indeed that MC is not a novel 
concept, since edge-based functional connectivities have been previously introduced (Bassett et al., 
2014, Brovelli et al., 2017; Faskowitz et al., 2019). However Bassett et al. (2014) or Brovelli et al. (2017) 
syill considered network components as “hard” reference templates (in a mixture of which whole-
brain FC networks are decomposed at any time instant). By contrast, in modular dFC analyses, dFC 
modules themselves are seen as “soft” dynamic entities, continually reconfiguring in time at changing 
speeds. In Faskowitz et al. (2019) and even more in Betzel et al. (2019), edge-centric functional 
connectivities (eFCs) were already used as a way to seize the spatiotemporal complexity of regional 
co-activation dynamics. Here, dFC as a stochastic exploration of possible functional network 
configurations provides a transparent geometric interpretation of a sophisticate statistical analysis. 
Distinct dFC modules in the MC matrix can indeed be seen as being associated to distinct walkers in 
FC space, performing simultaneously independent random walks. Remarkably, these modules were 
very robust and largely overlapping between our dataset and MC extracted from an independent 
control dataset (Figure S5C-E; Termenon et al. 2016). Furthermore, these modules were also evident 
in the eFC matrix of figure S5B, but MC analysis revealed them even more clearly. Indeed, MC analysis 
applies a smoothing in estimating the dFC temporal network, by sliding a short averaging window. On 
the contrary, eFC analysis appears to be noisier, since directly based on instantaneous signal 
fluctuations. If global dFC speed analyses of Battaglia et al. (2020) describe dFC as a unique flux, 
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according to modular dFC speed analyses, dFC is composed by multiple interlaced streams, smoothly 
flowing between FC configurations without any rigid separation into discrete FC states (unlike e.g. 
Allen et al., 2012 or Vidaurre et al., 2016).  

It is important to stress here that, given this highly stochastic nature of dFC, sequences of FC 
matrices do not repeat identically from one subject to the other or even across multiple resting-state 
sessions for the same subject. In other words, every dFC matrix (Figure 2B top) or, equivalently, its 
low-dimensional projections via t-SNE embedding (Figure 2B bottom) represents a different random 
walk snippet realization. However, we expect these dFC realizations to evolve over time respecting a 
common underlying deterministic structure within a stochastic framework, which is typically 
characterized by structured flows on manifolds (SFMs; Pillai & Jirsa, 2017) and may be quantified by a 
common inter-link covariance structure, here described by the MC matrix. 

 

Modules of dynamic connectivity as cognitive control systems 

From a cognitive perspective, separation into dFC modules revealed that the efficiency of cognitive 
processing in different tasks correlated with the speed of reconfiguration of specific dFC modules but 
not others. Indeed, while global dFC might be a signature of global cognitive function, confirming 
previous studies (Wang et al., 2016; Battaglia et al., 2020), modular dFC speeds may show a closer 
relationship to cognitive performance in different cognitive domains.   

Hence, while performance on sustained attention after sleep deprivation as assessed by the RVP 
task did not correlate with changes of dFC at the whole-brain level, we found a relatively strong 
correlation of RVP accuracy with dFC speed changes of the frontoparietal dFC module #2. This 
correlation is furthermore particularly robust being the most frequently found to be significant (cf. 
Figure 5E) over the large ensemble of alternative dFC modular decompositions that we considered. 
These results are in line with the functional relevance of ventral and dorsal frontoparietal networks in 
covert visual attention (Corbetta & Shulman, 2002), the function of the superior parietal cortex and 
supramarginal gyrus also being associated with visual attention (Coull, Frith, Frackowiak, & Grasby, 
1996). Other studies using task-related paradigms have also shown that performance on rapid visual 
processing, accessing sustained attention, is associated with increased BOLD fMRI activation in frontal 
and parietal regions (Lawrence, Ross, Hoffmann, Garavan, & Stein, 2003). Moreover, decreased 
frontoparietal activation after sleep deprivation has been associated with lapses in attention (Chee & 
Tan, 2010; Chee et al., 2008). Our study is thus in line with previous evidence that frontoparietal 
networks are sensitive to sleep deprivation and that changes are related to attentional deficits (Muto 
et al., 2016), as well as for their wide inter-subject variability (Doran et al. 2001, Van Dongen et al. 
2004). However, the results of the present report go beyond the previous findings as they show that 
dynamic reconfigurations in functional connectivity of the frontoparietal network also play a 
determinant role. 

Previous studies have demonstrated that functional networks highly overlapping with task-related 
networks associated with attentional control are transiently recruited during resting state (Fox et al., 
2006). Here, we additionally show that variations after sleep deprivation in the fluidity of connectivity 
within these intrinsic networks is reduced by sleep deprivation in a way correlating with performance 
variations in a sustained attention task. We thus reconceptualize these networks as veritable 
dynamical systems, with fluidly fluctuating internal links, rather than as frozen static networks. 
Remarkably, the few subjects that improved their RVP performance after sleep deprivation also had 
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an acceleration of their modular speed in the relevant modules, showing that individual cognitive 
vulnerability or resilience to sleep deprivation, can be tracked by modular dFC. 

Finally, while less robust, the significant correlation between dFC #4 modular speed variations and 
RTI reaction time variations (Figure 5A), can be understood in terms of the involvement of frontal and 
premotor meta-hubs of dFC #4 module (in part shared with dFC #2 module) in control of action 
(Passingham 1993). The fact that correlations of modular dFC speeds with RTI and n-back performance 
are weaker than for RVP may speculatively be linked to a more or less centralized control of cognitive 
computations involved in the different tasks. Indeed, as previously indicated, the control of sustained 
attention –probed by the RVP task– relies on the operation of networks which are fairly localized 
(Corbetta & Shulman, 2002). This is in contrast with, e.g., working memory –probed by the n-back 
task–, which relies on much more widely distributed networks (Fuster, 1997).” 

 

dFC and FC modules are qualitatively different entities 

It is important to highlight here once again the fundamental difference between FC and dFC 
modules (cf. Figure 3), although they partially overlap at the level of their hubs and meta-hubs (Figure 
S6) or when some relation with known RSNs exist (Figure S7). The influence of a hub region on its 
neighboring regions is quite direct since it causes the fluctuations of adjacent regions’ activity to 
mirror the ones of its own activity (coordinated node dynamics). On the contrary, a meta-hub region 
will display in general a wide spectrum of activity correlations with its neighboring regions. For 
instance, a meta-hub could be strongly correlated with some of its neighbors and very weakly with 
others. However, these correlations, independently from their strength, will be all boosted up or 
weakened in a synchronized manner along (coordinated link dynamics). We can use a musical 
metaphor to illustrate this fundamental difference between hubs and meta-hubs. Both of them can 
be seen as leading players in an ensemble of musicians. Hubs will force the other musicians to play 
the same melodic line they play, in unison or following a strictly parallel harmony as in a simple canon. 
Meta-hubs could be better described as a jazz band leader precisely giving the groove during written 
sections and then engaging into an improvisation section, in which they still exert an influence on the 
other players, but quite loosened, allowing divergent soloist lines to emerge in a more spontaneous 
and less constrained manner. To a signal of the leader however, the improvisation will stop and all the 
musicians will go back following the prescribed composition. Thus meta-hubs do not necessarily 
establish strong correlations with other regions (during a jazz improvisation, the various musical lines 
– although not random – are relatively free) but rather exert a strong modulatory effect on the time-
dependent strengths of correlation within their associated functional networks (as when engaging 
into an improvised from a composed musical section).  

Furthermore, the influence of regional nodes when considered as dFC meta-hubs transcends 
largely the boundaries of the FC networks into which they can be simultaneously acting as hubs. 
Indeed as revealed by Figure S4, each dFC module includes covarying links that, originating in large 
part from the module’s specific meta-hubs, diverge then to “touch” — or be incident to — widespread 
brain regions. Each module is thus incident to nearly the whole brain and, conversely, every region is 
incident to nearly every module. When a brain region establishes time-dependent correlations with 
its neighboring regions (“computing” its instantaneous pattern of FC, we could say), it does it under 
the competing influence exerted by the meta-hubs of multiple dFC modules, as a marionette put into 
motion by strings pulled simultaneously by different puppeteers. Every meta-hub (“puppeteer”) sends 
co-modulated incident functional links (“pull strings”) toward nearly every brain region 
(“marionette”). Thus, localized meta-hubs have a very distributed influence. In this sense, there is no 
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reason to expect an a priori correspondence between FC and dFC modules and the imperfect 
correspondence between dFC and FC modules in Figure S6 should therefore not appear surprising.  

More generally, nodes touched by links in a MC meta-module may be at certain times coordinated 
(when the co-fluctuating links are in a large strength transient) and thus form a FC(t) module in the 
conventional sense. However, they may be poorly coordinated at other times (when the co-fluctuating 
links are in a weak strength transient) and thus not forming a FC(t) module anymore. The link sets that 
form different meta-modules will fluctuate toward large or weak strengths at different independent 
times. Therefore, the static meta-modular organization of MC will result in a dynamic modular 
organization of FC(t), displaying a transient waxing and waning of changing node-level modules. 
Indeed, FC modules do not invariantly exist at all times but evolve, absorbing and ejecting nodes or by 
interchanging them with other modules (Schlesinger et al., 2017). Future studies may explore how the 
“forces” exerted by multiple competing dFC meta-hub controllers control the dynamic reconfiguration 
of transient FC modules. 

Here, we allow ourselves to summarize in a concise glossary (see Table 4) the main metaphors we 
have introduced to help conceptualizing novel dFC and MC metrics, in the hope to make even more 
transparent their difference with standard FC approaches. 

 

Conclusion 

To summarize, we here introduced a novel framework – modular dFC speed analysis – which allows 
identifying distinct sets of meta-hub nodes which jointly coordinate the stochastic fluctuations of FC 
along time in the resting state. Going beyond detection of global effects, we have used our novel 
analytic framework to correlate speed variations of specific dFC modules to changes in cognitive 
performance following SD, which vary between subjects. It is already known that sleep deprivation 
effects express individual phenotypic diversity, which could be explained by genetic differences (Kuna 
et al. 2012). Furthermore, some of the system-level mechanisms leading to cognitive alterations after 
SD may be shared with Alzheimer’s disease (Mander et al., 2016). Future studies may exploit the 
sensitivity of modular dFC analyses to inter-subject differences to track the development of cognitive 
deficits along Alzheimer’s diseases longitudinal progression. In line with the hypothesis that a superior 
fluidity of dFC is a proxy for enhanced information processing capabilities (Braun et al., 2018), modular 
dFC speed could provide a novel marker of the notion of protective “cognitive reserve” (Stern et al. 
2009), whose neuroimaging characterizations have been explored more often in terms of task-related 
activations (Stern, 2017) or structural aspects (Bartrés-Faz & Arenaza-Urquijo, 2011). However they 
remain less explored at the level of functional connectivity (Martinez et al., 2018) and, especially, 
concerning its dynamic features, while, on the contrary, which are likely to more closely reflect 
ongoing neural computations and their efficiency. 
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Tables 
 

Table 1. Variations of cognitive performance induced by sleep deprivation 

 Group level comparison Within subject comparison 

Performance 
indicator 

Median M.A.D. K-W U Median ∆ M.A.D. K-W WRS 

RTI RT 
Before 319 ms ±28 ms 

n.s. n.s. +48 ms ±30 ms ** * 
After 357 ms ±51 ms 

n-back 
RT 

Before 699 ms ±70 ms 
n.s. (*) +97 ms ±40 ms ** * 

After 764 ms ±76 ms 

n-back 
acc 

Before 96% ±1% 
n.s. (*) -4% ±2% * n.s. (*) 

After 89% ±4% 

RVP 
RT 

Before 359 ms ±26 ms 
n.s. n.s. (*) +28 ms ±26 ms * n.s. (*) 

After 391 ms ±27 ms 

RVP 
acc 

Before 93% ±2% 
n.s. n.s. -2% ±3% n.s. n.s. 

After 87% ±3% 

 

RT = Reaction Time; acc = accuracy; M.A.D. = median absolute deviation. At the group level, median 
differences where tested using the Kruskal-Wallis (K-W) test and the U Mann-Whitney test. Within-
subject variations were tested with the Kruskal-Wallis test and the Wilcoxon signed rank test. 
*,   p’ < 0.05; **, p’ < 0.01; n.s., p’ > 0.05, i.e. non-significant (p’, Bonferroni-corrected p-value, 
corrected on 2 window-size ranges and 5 cognitive tests). We report as well, in brackets, significance 
as assessed from uncorrected p-values to highlight tendential correlations. Values in bold correspond 
to comparisons significant for non-parametric testing after multiple comparison correction, values in 
italic denote tendential variations (significant for non-parametric testing before correction). See also 
Figure 1. 
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Table 2. Spearman correlations between within-subject variations of global dFC speed and cognitive 
change after SD 

 Short window sizes ∆ VdFC Long window sizes ∆ VdFC 

 Correlation p Correlation p 

RTI ∆ RT -0.58 n.s. -0.71 0.028 (*) 

n-back ∆ RT -0.29 n.s. -0.76 0.037 (*) 

n-back ∆ acc 0.63 n.s. 0.75 0.025 (*) 

RVP ∆ RT 0.03 n.s. -0.43 n.s. 

RVP ∆ acc 0.44 n.s. 0.79 0.006 (**) 

 

RT = Reaction Time; acc = accuracy. Spearman correlation values between within-subject variations of 
global dFC speeds and within-subject variations of cognitive performance scores. We report the 
associated uncorrected p-values, as well as significance. *,   p’ < 0.05; **, p’ < 0.01; n.s., p > 0.05, i.e. 
non-significant (p’, Bonferroni-corrected p-value, corrected on 2 window size ranges and 5 cognitive 
tests). We also report (in brackets), significance as assessed from uncorrected p-values to highlight 
tendential correlations (correlation values in italic and light shaded table entry are significant before 
correction, i.e. (*),   p < 0.05; (**), p < 0.01). See also Figure S3. 
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Table 3. Spearman correlations between within-subject variations of modular dFC speed and 
cognitive change after SD 

 Short window sizes ∆ VdFC Long window sizes ∆ VdFC 

 #1 #2 #3 #4 #5 #1 #2 #3 #4 #5 

RTI ∆RT — -0.67 
(*) 

— -0.90          
* 

— — — -0.66 
(*) 

-0.73 
(*) 

— 

n-back ∆ RT — — — — — — — — — 
-0.76 

(*) 

n-back ∆ acc — — — — — — — — 
0.78 
(*) 

— 

RVP ∆RT — — — — — 
-0.82 
(**) 

— — — — 

RVP ∆ acc — 
0.93            
** 

— 
0.71 
(*) 

— — 
0.72 
(*) 

— 
0.89                  

* 
— 

  

 

RT = Reaction Time; acc = accuracy. Spearman correlation values between within-subject variations of 
modular dFC speeds (dFC modules #1 to #5, see Figure 4) and within-subject variations of cognitive 
performance scores. We report values for all significant correlations (bold-face and dark shaded table 
entry) or tendential correlations. The modular decomposition presented in Figure 4B-C and Figure 5A-
C is here used as a reference to compute modular dFC speeds. A ** denotes that p’ < 0.01 (p’, 
Bonferroni-corrected p-value, corrected on 2 window size ranges, 5 dFC modules and 5 cognitive tests). 
We also report(in brackets) significance as assessed from uncorrected p-values to highlight tendential 
correlations (correlation values in italic and light shaded table entry are significant before correction, 
i.e. (*),   p < 0.05; (**), p < 0.01).  
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Table 4. dFC and MC glossary 

dFC stream Sequence of Functional Connectivity networks materializing along time.  
Or “How the brain dances to the music of time” 

dFC knots or leaps Transient slowing down or acceleration of the FC network reconfiguration, 
smooth without clear discrete states 
Or, respectively, “calm pools or rapids along a flowing stream” 

Meta-Connectivity (MC) Correlations between the fluctuations of pairs of dynamic functional links 
Or, “guidelines for improvisation (whom to tune to the unwritten melody)”  

dFC modules Groups of FC links whose fluctuations are correlated between them, but 
uncorrelated with the ones of links in other groups 
Or, “group of players listening to each other in a big jazz band” 

Meta-hubs Brain regional nodes whose incident FC links display correlated fluctuations 
(i.e. centers of FC star subgraphs with strongly meta-connected edges) 
Or, “puppet masters”; “players taking the lead in a jazz band”) 
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Figures 
 

 

Figure 1. Sleep Deprivation affects cognitive performance. We tested cognitive performance in a 
variety of different tests including simple Reaction Time (RTI), working memory (n-back) and Rapid 
Visual Processing (RVP). We then quantified variations of performance (reaction times and accuracy) 
between before and after 24h of Sleep Deprivation (SD). A. Within-subject variations of RTI, n-back 
and RVP reaction times, significant only for RTI and n-back. For all three tests, reaction times tended 
to increase. B. Within-subject variations of n-back and RVP accuracies. Accuracy generally decreases, 
however only tendentially. Stars denote significancy of effect (under Wilcoxon signed rank paired 
test): n.s., not significant; *, p < 0.05; Bonferroni-corrected values outside brackets and Bonferroni-
uncorrected within brackets (tendential variations). 
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Figure 2. Sleep Deprivation slows down global dynamic Functional Connectivity (dFC). A. We reveal 
changes of resting state Functional Connectivity (FC) by adopting a sliding window estimation of time-
resolved BOLD correlations FC(t). We compile the similarity between whole-brain FC matrices 
observed at different times into a dFC matrix, whose (t1, t2) provides the correlation between  FC(t1) 
and FC(t2). Analogously, we evaluate global dFC speeds VdFC, i.e. the rate of reconfiguration of whole-
brain FC matrices, by measuring the decorrelation between FC(t) matrices separated by a fixed time-
interval (equal to the chose window size W). B. On top, dFC matrices for a resting state fMRI session 
before SD and a second resting state fMRI session after SD for a representative subject (window size 
of ~40 s). A stochastic alternation between “knots” of transient FC stabilization and “leaps” of fast FC 
reconfiguration is visible in both cases. Below, each FC(t) matrix is projected into a bi-dimensional 
space by using a non-linear distance preserving t-SNE projection, in such a way to visualize the 
“random walk” followed by FC(t) while it reconfigures along time corresponding to the dFC matrices 
above. C-D. The median global dFC speed VdFC decreases after 24h of SD, as visible both from inter-
group comparisons (panel C) and within-subject variations (panel D), for both long and short window 
sizes. Stars denote significancy of effect: *, p < 0.05; **, p < 0.01; Bonferroni-corrected values). 
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Figure 3. FC connectivity and hubs vs dFC meta-connectivity and meta-hubs. A. Functional 
connectivity describes correlations between fluctuations of network node activity, while dFC meta-
connectivity (MC) describes correlations between fluctuations of network link time-resolved 
strengths. A node is said to be a FC hub if the fluctuations of its adjacent nodes are highly correlated. 
Analogously, a node is said to be a dFC meta-hub if the fluctuations of its incident links are highly 
correlated. The property of FC hubness can be assessed within every frame of a sequence of time-
resolved FC(t) networks. Assessing the property of dFC meta-hubness requires instead to evaluate 
correlations between link fluctuations (compiled in the MC matrix based on an entire sequence of 
FC(t) frames. B-C. We show, for illustration, two short cartoon sequences of time-evolving FC 
subgraphs centered on a central node (in yellow). In the different network frames (time advancing 
from left to right) the thickness of a link is proportional to its instantaneous strength. FC links which 
increase their strength with respect to the previous frame are colored in red (and labeled by a small 
“+” sign), while FC links which decrease their strength are colored in blue (and labeled by a “-“ sign). 
In panel B the sum of the weights of all links incident to the central node remain high at every time. 
Therefore the central node is a FC hub in all the shown time-frames, even if the fluctuations of its 
incident link have inconsistent directions. In panel C, in some of the frames the total strength of the 
central node is low, so that it is not anymore always a FC hub. However its incident links, 
independently on their instantaneous strength, change their strength in a consistent manner (they all 
increase, or decrease), allowing us to describe the central node as a dFC meta-hub (or coordination 
center of dFC). 
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Figure 4. Meta-connectivity (MC) and dFC modules. A. Group-averaged MC matrix (see Figure 3A) for 
resting state fMRI sessions before SD (window-size of ~20 s; see Figure S4A for MC after SD). The order 
of the inter-regional FC links has been rearranged to emphasize the modular structure of the interlink 
correlation matrix. We have identified 5 different dFC modules, corresponding to independently 
fluctuating functional subnetworks. B. Summary plots of the meta-strengths of different brain regions 
restricted to the different dFC modules (symmetrized over the two hemispheres, given the lack of 
robust inter-hemispheric differences). The presence of a few large meta-strength entries for every 
dFC module indicates that different dFC modules are organized around distinct and specific sets of 
meta-hub regional nodes. C. Localization of the strongest meta-hubs within each of the 5 identified 
dFC modules. The color of the dFC module label is matched to the one of the associated strongest 
meta-strength regions in panel B (the region name is written with letters of multiple colors, when the 
region is a meta-hub for more than one dFC module simultaneously). Note that, although dFC modules 
have localized meta-hubs, they all influence nearly the whole brain (see Figure S4C). 
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Figure 5. Modular dFC speed variations after SD correlate with variations of cognitive performance 
in specific tasks. Performing a separate dFC speed analysis for each of the identified dFC modules, we 
extracted modular dFC speeds. A-C. Selected scatter plots of subject-specific variations of cognitive 
performance scores and modular dFC speed. For the here represented decomposition into dFC 
modules, we highlight significant correlations: (A) between variations of RTI reaction time and 
modular speed of dFC module #4 on short window sizes; (B) between variations of RVP accuracy and 
modular speed of dFC module #2 on short window sizes; (C) between variations of RVP accuracy and 
modular speed of dFC module #4 on long window sizes (see Table 3 for other tendential correlations). 
D-E. The algorithm for extracting dFC modules from the MC matrix is stochastic and can yield different 
solutions, associated to potentially different patterns of correlation between modular dFC speed and 
cognition. Stars denote significance: *, p < 0.05; **, p < 0.01; ***, p < 0.001;  Bonferroni-corrected 
values outside brackets (Bonferroni-uncorrected within brackets). D. Among 2000 different instances 
of modular decomposition, 80% displayed at least one robust correlation between variations of 
modular dFC speed and cognitive scores. E. The most robust correlations were the ones between 
fronto-parietal and parietal modules dFC #2 and dFC #4, arising in 60% of cases, in addition to other 
eventual secondary correlations. See S9 for additional analyses on dFC modular speeds. 
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Supplementary Tables  
 
 
Table S1. Spearman correlations between within-subject variations of RSN-restricted dFC speed and 
cognitive change after SD 

 Short window sizes ∆ VdFC Long window sizes ∆ VdFC 

 RTI ∆ 
RT 

n-back 
∆ RT  

n-back 
∆ acc 

RVP 
∆ RT 

RVP 
∆ acc 

RTI ∆ 
RT 

n-back 
∆ RT  

n-back 
∆ acc 

RVP 
∆ RT 

RVP 
∆ acc 

RSN Visual — — 
0.78 
(*) — — — — — — 

0.80 
(**) 

RSN Somato-
motor — — — — — — — — — — 

RSN Attention 
-0.73 

(*) — — — — 
-0.84 
(**) — — — 

0.85 
(**) 

RSN Fronto-
temporal 

— — — — — — — — — — 

RSN Fronto-
parietal 

— — — — — — — — —- — 

RSN Default 
Mode 

-0.72 
(*) 

    
-0.84 
(**) 

   
0.66 
(*) 

  

RT = Reaction Time; acc = accuracy. Spearman correlation values between within-subject variations of 
RSN-restricted dFC speeds and within-subject variations of cognitive performance scores. We report 
values for all tendential correlations. A ** denotes that p < 0.01; *, p < 0.05 (p, Bonferroni-uncorrected 
p-value). No correlation remained significant after multiple comparison correction.  
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Supplementary Figures 
 

 

 
Figure S1. Single window dFC speed analyses. To reduce the number of multiple comparisons and to 
cope against potential aliasing artifacts, we pool window sizes in two (short and long windows) ranges 
to estimate typical dFC speed. Nevertheless, the slowing of dFC speed after 24h of SD (red, after SD; 
green, before SD) is visible even when using individual window sizes. The shaded ranges denote 95% 
confidence intervals on mean single-window dFC speed. Full (empty) dots denote window sizes for 
which (prior to Bonferroni correction) the difference between before and after SD would be (not) 
significant (direct comparison of mean 95% c.i.s). 
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Figure S2. Dependency of global dFC speed on sleep stage. The subjects were monitored for sleep 
episodes occurring inside the scanner during the resting stare fMRI sessions. Especially after SD, some 
of the subjects experienced short episodes of sleep. While in the main text Figure 2, we extracted dFC 
speeds pooling together drowsy with awake epochs, we study here variations in global dFC speed 
across wake and sleep at increasingly deeper stages (stage N1; stage N2). Within-subject percent 
variations of global dFC speed across wake and sleep stage 1 are shown in panel A, while variations 
across wake and sleep stage 2 are shown in panel B. Given the small duration of sleep episodes for 
most subjects, no significant differences could be detected for any of the probed window sizes. Only 
some tendential variations could be detected –speed decrease from wake to sleep stage 1 and speed 
increase from wake to sleep stage 2– for a few window sizes in the long window range. The symbol 
(*) denotes p < 0.05 (before but not after Bonferroni correction). 
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Figure S3. Global dFC speed variations after SD do not correlate with variations of cognitive 
performance in specific tasks. Scatter plots of the subject-specific variations of (A and D) RTI reaction 
time, (B and E) RVP accuracy and (C and F) n-back accuracy against the corresponding subject-specific 
variations of global dFC speed VdFC , on both short (A-C) and long (D-F) window sizes. Both cognitive 
performance and global dFC speed variations are diverse across subjects. However, their correlation 
is not significant for short window sizes and is only tendential for long window sizes. Stars denote 
significancy of effect: n.s., not significant; *, p < 0.05; **, p < 0.01; Bonferroni-corrected values outside 
brackets and Bonferroni-uncorrected within brackets (tendential correlations). 
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Figure S4. Additional information on MC analysis. A. Group-averaged MC matrix for resting state 
fMRI sessions after SD (cf. Figure 4A for MC before SD). The order of the inter-regional FC links have 
been rearranged according to modular structure based on MC before SD. No evident variations in 
modular structure can be detected. B. Comparing meta-link strengths before and after SD (entry-wise 
comparison of MC matrices of Figure 4A and Figure S4A), we find a slight tendency to a decrease in 
meta-connectivity after SD, as revealed by a slope of fit smaller than 1. C. Even if dFC modules have 
clearly localized meta-hubs (cf. Figure 4B-C), this does not mean that they correspond to clearly 
localized networks involving just these meta-hubs. We here report for every dFC module all the 
regions which are incident to at least one FC link belonging to the correspondent dFC meta-module 
(reminder: meta-modules are communities of links!). A majority of regions are incident to most dFC 
modules. Therefore dFC modules should not be seen as segregated FC networks but as co-existent 
systems of influence who independently add up their modulation on the fluctuations of brain-wide 
FC. 
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Figure S5. Comparison between reference MC, eFC and control dataset MC. A. Shown here (right) is 
the edge-based Functional Connectivity (eFC), computed according to the definition by Faskowitz et 
al. (2019) and averaged over all sessions prior to SD. B. Scatter plot of the eFC vs the corresponding 
MC matrix entries. C. MC matrix evaluated over a control dataset mediated from the Human 
Connectome Project (HCP; see Termenon et al., 2016). D. Scatter plot of the total MC meta-strengths 
of different regions in the reference MC vs the HCP-derived MC. The correlation is nearly perfect 
(bootstrap 95% c.i., 0.993 < CC < 0.996). E. Confusion matrix indicating the average overlap between 
link partitions extracted from the HCP-derived MC matrix of panel (C) with the reference link partition. 
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Figure S6. The correspondence between FC and dFC modules is loose. A. Group-averaged FC matrix 
for resting state fMRI sessions before SD. The order of regional nodes have been rearranged to 
emphasize the modular nature of this time-averaged rs FC. B. We extracted 5 modules from the group-
averaged FC matrix of panel A and compared the participation of the different brain regions into these 
FC modules with the one that they have into the dFC modules. The matrix shows the correlations 
between the regional overall FC strengths (restricted to each of 5 FC modules) with the regional overall 
dFC meta-strengths (restricted to each of the 5 dFC modules). In some cases, there is a good 
correspondence between FC strengths and dFC meta-strength: e.g. FC and dFC modules #3 and #5 are 
in good correspondence. However, FC module #2 is related to both dFC modules #2 and #4, failing 
then to separate them. Furthermore, dFC module #1 is not related to any of the FC modules. 
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S7. Mapping to Yeo7 Resting State Networks (RSNs). A. Reported here to the right is the assignment 
of the 86 regions of the used AAL atlas to RSNs of the Yeo7 atlas (Yeo et al., 2011), adapted from Amico 
et al. (2017). Comparison with the integrated meta-strength of different regions within the 5 
unsupervised dFC modules extracted from MC analysis reveal an only loose correspondence between 
dFC module meta-hub systems and RSNs. We combine in the following the unique link included on 
the Dorsal Attentional Network with the Ventral Attentional network, to give rise to a combined 
Attentional Network. B-C. Within subject variations of RSN-restricted dFC speeds after 24h of SD, for 
long (panel B) and short (panel C) window sizes. All modular speeds tend to slow down after SD, 
however none of these reductions remained significant after applying multiple comparison correction. 
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S8. Additional information on modular dFC speed analyses. A. The analysis of dFC speed can be 
restricted to individual modules. We here show representative dFC matrices for each of the 5 
reference dFC modules of Figure 4, together with the global dFC matrix (copied from Figure 2B) for 
comparison (window size of 40 s). The “knots” and “leaps” of these modular dFC matrices are not 
completely similar, indicating a certain degree of independence between the fluctuations of the 
distinct dFC modules. B-C. Within subject variations of modular dFC speeds after 24h of SD, for long 
(panel B) and short (panel C) window sizes. All modular speeds tend to slow down after SD, however 
significantly only in the case of dFC module #5 for both short and long window sizes and for dFC 
module #1 for short window sizes. Stars denote significance of effect: *, p < 0.05, Bonferroni-corrected 
values. 
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S9. Robustness of dFC modular structure and its correlations with cognition. The algorithm for 
extracting dFC modules out of the MC matrix of Figure 4A has a stochastic component and produces 
therefore a different solution for every different run. We chose one specific solution as reference (the 
one whose modules are portrayed in Figures 5B-C) but studied how different 2000 other instances of 
modular decomposition from the same MC matrix can be from the chosen reference one. A. 
Histograms of correlation between regional dFC meta-strengths in alternative modular 
decompositions with the meta-strengths in the chosen reference decomposition. All these histograms 
have a peak centered on correlation values close to one, indicating that dFC modules highly similar to 
the chosen reference one are common. In a minority of the solutions, dFC module #3 reduces to a 
“junk” module without meta-hub regions (hence the secondary peak at near-zero correlation for dFC 
#3 module alternative-to-reference correlations). When a modular structure includes this degenerate 
dFC #3 module, then most of the links of the reference dFC #3 are then absorbed by the module 
analogous to dFC #2 module (hence the secondary peak at near ~0.5 correlation for dFC #2 module 
alternative-to-reference correlations). Module dFC #5 is nearly perfectly preserved across all modular 
decomposition instances. B. For each of the 2000 alternative modular decompositions we then 
computed modular dFC speeds and computed correlations between their variations and the variation 
of cognitive performance. We then computed the similarity between these alternative correlation 
matrices of modular speed variations vs cognitive performance variations and the one computed for 
the reference modular decomposition. The histogram of correlations between the alternative 
correlation matrices and the reference correlation matrix shown in panel B strongly peaks toward high 
similarity values, indicating that correlations between modular dFC speed variations and cognitive 
performance variations are very robust.  
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