

1 **Comparative genomics reveals different population structures associated with
2 host and geographic origin in antimicrobial-resistant *Salmonella enterica***

3

4 Jingqiu Liao^{1,2}, Renato Hohl Orsi¹, Laura Carroll^{1†}, Martin Wiedmann^{1*}

5

6 ¹Department of Food Science, Cornell University, Ithaca, New York, 14853, USA

7 ²Graduate Field of Microbiology, Cornell University, Ithaca, New York, 14853, USA

8

9 [†]Present address: Structural and Computational Biology Unit, EMBL, Heidelberg, Germany

10 *For correspondence: Martin Wiedmann (martin.wiedmann@cornell.edu)

11

12 Running title: Population structure of AMR *S. enterica*

13 **Originality/Significance Statement**

14 *Salmonella enterica*, which is the causative agent of salmonellosis, poses a growing public health
15 concern due to the emergence and spread of antimicrobial resistant (AMR) strains. The mechanisms
16 underlying the population structure associated with different hosts and geographic origins of AMR *S.*
17 *enterica* are underexplored due to limited genome-wide studies assessing the impact of ecological
18 niches on genetic variations. By employing comparative genomics, our study provided insights into
19 the genomic profiles of AMR *S. enterica* associated with two distinct hosts and two distant
20 geographic locations, improving the mechanistic understanding of how bacterial population structure
21 is shaped by different ecological niches. Our findings have broad implications for elucidating the
22 impact of ecological and evolutionary forces on the adaptation, antimicrobial resistance, and
23 pathogenicity of bacteria. Also, specific genetic markers we identified may help predict host or
24 geographic origin of AMR *Salmonella* isolates, which could benefit the source tracking (e.g., host
25 and geographic origins) of human disease cases and contamination events caused by AMR *S.*
26 *enterica*.

27

28 **Summary**

29 Genetic variation in a pathogen, including the causative agent of salmonellosis, *Salmonella enterica*,
30 can occur as a result of eco-evolutionary forces triggered by dissimilarities of ecological niches.

31 Here, we applied comparative genomics to study 90 antimicrobial resistant (AMR) *S. enterica*
32 isolates from bovine and human hosts in New York state and Washington state to understand host-
33 and geographic-associated population structure. Results revealed distinct presence/absence profiles of
34 functional genes and pseudogenes (e.g., virulence genes) associated with bovine and human isolates.

35 Notably, bovine isolates contained significantly more transposase genes but fewer transposase
36 pseudogenes than human isolates, suggesting the occurrence of large-scale transposition in genomes
37 of bovine and human isolates at different times. The high correlation between transposase genes and
38 AMR genes, as well as plasmid replicons, highlights the potential role of horizontally transferred
39 transposons in promoting adaptation to antibiotics. By contrast, a number of potentially geographic-
40 associated single-nucleotide polymorphisms (SNPs), rather than geographic-associated genes, were
41 identified. Interestingly, 38% of these SNPs were in genes annotated as cell surface protein-encoding
42 genes, including some essential for antibiotic resistance and host colonization. Overall, different
43 evolutionary forces and limited recent inter-population transmission appear to shape AMR *S.*
44 *enterica* population structure in different hosts and geographic origins.

45

46

47

48

49

50 **Introduction**

51 Dissimilarity of ecological niches formed by different hosts or geographic origins is an important
52 factor that can lead to genetic variation (e.g., gene presence/absence and polymorphism level
53 divergence) and shape population structure, thus contributing to the evolution of pathogens (Strachan
54 *et al.*, 2015; Hoberg and Brooks, 2008; Richards *et al.*, 2011; Strachan *et al.*, 2015). Besides
55 providing insights in adaptation, pathogenesis and host range of pathogens, population structure
56 associated with specific attributes (e.g., disease, host or geographic origin) also provides clues for
57 evolutionary processes (e.g., selection, genetic drift and gene flow) that shaped pathogen diversity (Li
58 *et al.*, 2019; Yue *et al.*, 2015). In addition, understanding of ecological niche-associated population
59 structure is advancing the field of epidemiology by interrogating complex genome information to
60 accurately predict contamination source and transmission patterns of pathogens including *Salmonella*
61 *enterica* (Lupolova *et al.*, 2016; Lupolova *et al.*, 2017; Morgan *et al.*, 2004; Moura *et al.*, 2017).

62 The Gram-negative facultative anaerobe *S. enterica* is one of the major causes of human
63 gastroenteritis, bacteraemia and enteric fever worldwide (Eng *et al.*, 2015; Ao *et al.*, 2015). The
64 emergence and increasing prevalence of antimicrobial-resistant (AMR) *S. enterica* have further
65 raised public health concerns and may increase the mortality rate of infections caused by this
66 pathogen (Hong *et al.*, 2016; Eng *et al.*, 2015). AMR *S. enterica* has been detected in a wide range of
67 animals in the majority of states in the US (Eng *et al.*, 2015; Centers for Disease Control and
68 Prevention, 2017). Among >2,500 recognized serotypes of *S. enterica*, the broad host range serotypes
69 Typhimurium and Newport are frequently associated with the human *Salmonella* infections, while
70 the bovine adapted serotype Dublin is frequently associated with cattle infections. The emergence of
71 AMR strains has been described for all three serotypes (Foley and Lynne, 2008). In our previous
72 study of AMR *S. Typhimurium*, *S. Newport* and *S. Dublin* isolated from human and bovine sources
73 in New York state (NY) and Washington state (WA), we found that it is likely that antimicrobial
74 resistance has emerged independently in multiple *S. Typhimurium* lineages, as compared to single

75 lineages of *S. Newport* and *S. Dublin* (Liao *et al.*, 2019). Also, our initial study of these isolates
76 revealed a strong source and geographic association with antimicrobial resistance (Carroll *et al.*,
77 2017). For example, resistance to sulfamethoxazole-trimethoprim resistance was only observed in
78 human isolates, while resistance to quinolones and fluoroquinolones was only observed in *S.*
79 *Typhimurium* isolated from humans in WA. However, the mechanisms underlying the population
80 structure associated with different hosts and geographic origins of AMR *S. enterica* are still
81 underexplored at a genomic scale.

82 Comparative genomics is now widely used as a tool to study the evolution of bacteria (Chen *et*
83 *al.*, 2006; Richards *et al.*, 2011; Zheng *et al.*, 2017) and can be used to identify genome-wide genetic
84 variants that may be associated with host and geographic origin. Identification of such genetic
85 variants in AMR *S. enterica* allows for a better understanding of genetic basis of pathogenicity and
86 environmental adaptation. Humans and bovines are identified as two major hosts for AMR *S.*
87 *enterica* (Dandekar *et al.*, 2015; Rodriguez-Rivera *et al.*, 2016; Zhao *et al.*, 2003). These two
88 mammals differ in many aspects, e.g., physiology and diet, and hence form two distinct niches for
89 associated microorganisms, including the pathogen *Salmonella*. While geographical origins can also
90 represent distinct habitats and environmental conditions, definition of distinct niches based on
91 geographical origins is more challenging since complex ecological factors (e.g., climate,
92 anthropological activities) shape these niches. In order to assess the effects of both host and
93 geographical origin on AMR *Salmonella* population structure, we selected to study isolates from two
94 distant locations in the US: NY and WA. These two states showed similar incidence rate of reported
95 *Salmonella* cases with 14.87 and 12.12 cases of salmonellosis per 100,000 population in NY and WA
96 in 2015, respectively (Centers for Disease Control and Prevention, 2017). However, they represent
97 distinct environments; NY has a humid continental climate, while the WA climate varies greatly
98 from west to east with a rainy oceanic climate in the western half to an arid climate in the eastern
99 half, where the majority of cattle operations are located. In addition, the management of dairy

100 operations is different between NY and WA (United States Department of Agriculture, 2014). For
101 example, the average dairy cattle herd size of WA is much larger (335 cows) than that of NY (113
102 cows). Consequently, NY and WA may represent distinct niches, particularly for bovine associated
103 *Salmonella*. Hence, genomic comparison of AMR *Salmonella* isolated from bovine and human hosts
104 in NY and WA will not only provide insights into the understanding of the adaption and evolution of
105 this pathogen, but also has practical implications as genetic variation associated with different
106 sources may allow for improved source tracking (e.g., human vs. bovine sources, different
107 geographic sources) of human disease cases and contamination events. Thus, in this study, we used a
108 previously reported WGS data set for 90 AMR *S. Dublin*, *S. Newport*, and *S. Typhimurium* isolates
109 obtained from dairy cattle and humans from NY and WA (Carroll *et al.*, 2017; Liao *et al.*, 2019) to
110 characterize population structure associated with host and geographic origin using comparative
111 genomics.

112

113 **Materials and Methods**

114 **Isolates and whole genome sequence data**

115 A previously reported set of 90 *S. enterica* AMR isolates representing three serotypes including
116 *Dublin* (n=21), *Newport* (n=32) and *Typhimurium* (n=37) collected between 2008 and 2012 (Carroll
117 *et al.*, 2017; Liao *et al.*, 2019) was used for this study. Among those 90 isolates, 45 were collected
118 from NY (*Dublin* (n=8), *Newport* (n=19) and *Typhimurium* (n=18)) and 45 were from WA (*Dublin*
119 (n=13), *Newport* (n=13) and *Typhimurium* (n=19)). Also, among these 90 isolates, 41 were isolated
120 from fecal samples of bovine (*Dublin* (n=10), *Newport* (n=14) and *Typhimurium* (n=17)) and 49
121 were isolated from the stool samples of human patients (*Dublin* (n=11), *Newport* (n=18) and
122 *Typhimurium* (n=20)).

123 Genome sequence data for all 90 isolates have previously been reported (Carroll *et al.*, 2017)
124 and deposited in the National Center for Biotechnology Information's (NCBI) Sequence Read

125 Archive (SRA) under accession number SRP068320. Genome assembly has also been reported
126 previously (Carroll *et al.*, 2017, Liao *et al.*, 2019) and assembled genomes are available at NCBI
127 DDBJ/ENA/GenBank under the accession numbers listed in Additional file 1: Table S4 in Liao *et al.*,
128 2019. Previously reported data (Liao *et al.*, 2019) for (i) genome annotation including identification
129 of pseudogenes by NCBI Prokaryotic Genome Annotation Pipeline (Tatusova *et al.*, 2016), (ii)
130 identification of orthologous genes (non-pseudogenes) by OrthoMCL (Li *et al.*, 2003), (iii)
131 assignment of gene ontology (GO) and enzyme commission (EC) terms by Blast2GO v1.2.1 (Conesa
132 *et al.* 2005), and (iv) high-quality core SNPs for *S. Dublin*, *S. Newport*, and *S. Typhimurium* called
133 by Cortex variant caller (Iqbal *et al.*, 2012) were used here.

134 **Statistics**

135 The Mann-Whitney test was carried out in Prism 7 to determine if the numbers of all pseudogenes as
136 well as pseudogenes and functional genes annotated as encoding transposase differed significantly
137 between bovine isolates and human isolates and if the numbers of all pseudogenes differed
138 significantly between isolates from NY and WA as well. The false-discovery rate procedure (FDR) of
139 Benjamini and Hochberg (BH) (1995) was employed in R version 3.6.0 to correct for multiple testing
140 among isolate groups.

141 Non-metric multidimensional scaling (NMDS) (Kruskal, 1964) was performed using Bray-
142 Curtis dissimilarities and the metaMDS function in R version 3.6.0's vegan package to compare the
143 dissimilarity of gene presence/absence pattern among isolates across serotypes and within each
144 serotype. Permutational multivariate analysis of variance (PERMANOVA) (Anderson and Walsh,
145 2013) was employed using the adonis function in R version 3.6.0's vegan package to test whether the
146 centroids of isolate groups as defined by host or geographic origin are equivalent for all groups based
147 on gene presence/absence among isolates across serotypes and within each serotype. *P*-values and
148 PERMANOVA test statistics (F) were obtained using Bray-Curtis dissimilarities and 999

149 permutations. The FDR of BH was employed in R version 3.6.0 to correct for multiple testing among
150 isolate groups.

151 Enrichment analyses of pseudogene functions, orthologous genes, and GO terms were
152 conducted using Fisher's exact test in R version 3.3.1 for (i) bovine versus human isolates and (ii)
153 isolates from NY versus isolates from WA. FDR of BH was employed using R version 3.6.0 to
154 correct for multiple testing for Fisher's exact tests for pseudogene functions, orthologous genes, and
155 GO terms. Items were defined as significantly enriched in one host or geographic origin when FDR
156 was < 0.05 and odds ratio was > 6.71 . These cut-offs were based on a previous report that odds ratio
157 = 6.71 is equivalent to Cohen's $d = 0.8$ (large), indicating strong association (Chen *et al.*, 2010).

158 Correlations between presence/absence of orthologous genes annotated as encoding
159 transposase in this study and AMR genes as well as plasmid replicons previously reported by Carroll
160 *et al.* (2017), using the same dataset, were assessed by Phi coefficient using the Python
161 sklearn.metrics module. Transposase genes, AMR genes, and plasmid replicons that are present in all
162 90 genomes and less than 5 genomes were excluded from the Phi coefficient analyses. Items with Phi
163 coefficient $r > 0.25$ were defined as having a strong positive correlation and included in heatmap
164 visualization using R version 3.6.0.

165 Custom Python scripts were used to identify SNPs in (i) core genes present in all three
166 serotypes and (ii) core genes defined separately for each of the serotypes. Fisher's exact tests were
167 employed to identify SNPs at which the distribution of nucleotides is dependent on host and/or
168 geographic origin of isolates; these tests were performed in R version 3.3.1 followed by FDR of BH.
169 Potentially geographic- or host-associated SNPs were defined as significant when FDR was < 0.05 .

170

171 **Results**

172 **Orthologous gene and pseudogene profiles differed significantly between bovine and human**
173 **AMR *Salmonella* isolates**

174 Overall, the genomes of the 90 AMR *S. enterica* isolates included 3,637 core genes (i.e., genes
175 present in all 90 isolates) as well as 3,440 accessory genes. NMDS plots showed that across serotypes
176 (Figure 1a) and within each serotype (Figure 1b, 1c, 1d), isolates clustered according to their host
177 based on gene presence/absence, with no evidence for clustering by geographic location.
178 PERMANOVA further showed that bovine and human cluster centroids, based on gene
179 presence/absence, were not equivalent across serotypes and within each serotype (FDR < 0.01; Table
180 1), while no significant difference was observed between isolates from NY and WA in all tests (FDR
181 > 0.05; Table 1).

182 The number of pseudogenes among bovine AMR *S. enterica* isolates were significantly lower
183 than human isolates (Figure 2a, $P < 0.0001$). Across all serotypes, isolates from bovine and human
184 sources had an average of 107 and 160 pseudogenes, respectively. Similarly, for each serotype
185 bovine isolates had lower average numbers of pseudogenes; bovine isolates had 154, 89, and 94
186 pseudogenes, while human isolates had 225, 134 and 148 pseudogenes on average within *S. Dublin*,
187 *S. Newport* and *S. Typhimurium*, respectively. By contrast, for all serotypes and within each
188 serotype, the number of pseudogenes was not significantly different among isolates from NY and
189 WA (Figure 2b); the AMR *S. enterica* isolates from NY and WA had an average of 132 and 140
190 pseudogenes, respectively. Within *S. Dublin*, *S. Newport* and *S. Typhimurium*, isolates from NY had
191 an average number of 207, 109, and 123 pseudogenes, while isolates from WA had 181, 122 and 124
192 pseudogenes on average, respectively.

193 Enrichment analysis identified 55, 35, 33, and 34 pseudogene functions significantly enriched
194 in human isolates across all serotypes, within *S. Dublin*, *S. Newport*, and *S. Typhimurium*,
195 respectively (FDR < 0.05, odds ratio > 6.71; Table S1). Among the human-associated pseudogene
196 functions, 8 (e.g., IS3, IS4, IS5/IS1182, IS630 family transposase), 27 (e.g., MarR family
197 transcriptional regulator, effector protein YopJ), 20 (e.g., type VI secretion lipoprotein/VasD), and 14
198 (e.g., IS66 family transposase) were exclusively present in all human isolates of all serotypes, *S.*

199 Dublin, *S. Newport*, and *S. Typhimurium*, respectively (Table S1). By comparison, enrichment
200 analysis identified fewer pseudogene functions significantly overrepresented among bovine isolates
201 across all serotypes (35 functions), within *S. Dublin* (20 functions), *S. Newport* (20 functions), and *S.*
202 *Typhimurium* (23 functions) (FDR < 0.05, odds ratio > 6.71; Table S1). Among the bovine-
203 associated pseudogene functions, 13 (e.g., arginine:ornithine antiporter, multidrug transporter subunit
204 MdtG), 9 (e.g., acyl carrier protein), and 4 (e.g., PTS fructose transporter subunit EIIBC) were
205 exclusively present in all bovine isolates representing Dublin, Newport, and Typhimurium,
206 respectively (Table S1). By contrast, no significant geographic-associated pseudogene functions were
207 identified except for two (alpha-ketoglutarate transporter and peptide transporter) found enriched in
208 *S. Newport* isolates from NY.

209 **A number of genes were associated with bovine hosts, including 30 genes found exclusively in
210 all bovine isolates**

211 Among the 3,440 accessory genes for all 90 isolates, a total of 118 genes were significantly enriched
212 in bovine isolates (FDR < 0.05, odds ratio > 6.71), including 30 genes found among all 41 bovine
213 isolates regardless of serotype, but not present in any human isolates (Figure S1a; see Table S2 for a
214 list of all genes). Annotated functions associated with these 30 genes predominantly represented the
215 category “hypothetical proteins” (25 of the 30 genes); the remaining 5 genes were annotated as
216 encoding transposase, small toxic polypeptide LdrA/LdrC, aspartate ammonia-lyase,
217 permidine/putrescine ABC transporter substrate-binding protein, and racemase (Table S2).

218 Within *S. Dublin*, *S. Newport*, and *S. Typhimurium*, a total of 79, 64 and 82 genes,
219 respectively, were significantly enriched in bovine isolates (FDR < 0.05, odds ratio > 6.71); these
220 genes included 72, 54, and 46 genes exclusively found in all bovine isolates classified into a given
221 serotype, but not identified in any of the human isolates classified into the same serotype (Figure S1a,
222 Table S2). Based on these data we identified an overall number of 143 bovine-associated genes,
223 which included the 118 genes identified as bovine-associated across all serotypes as well as

224 additional bovine-associated genes found within each serotype. Among all these 143 bovine-
225 associated genes, 60 genes were annotated with known functions; 19 and 11 of these 60 genes were
226 annotated as encoding transposases and cell surface proteins, respectively (Figure 3, Table S3). The
227 annotated functions for 15 bovine-associated genes matched pseudogene functions found here to be
228 over-represented among human isolates; this group included some virulence factors (e.g., effector
229 protein YopJ, type IV secretion protein Rhs) (Table S3), suggesting that these virulence functions are
230 more important in bovine than human hosts.

231 Enrichment analysis of GO/EC terms identified 8 terms that were significantly enriched among the
232 41 bovine isolates representing all three serotypes, including the terms “transposition”
233 (GO:0032196), “double-stranded methylated DNA binding” (GO:0010385), and “hemi-methylated
234 DNA-binding” (GO:0044729) (Figure S1b, Table S4). Within *S. Dublin*, *S. Newport*, and *S.*
235 *Typhimurium*, a total of 9 (e.g., GO:0050545:endopeptidase inhibitor activity, GO:0046148: pigment
236 biosynthetic process, GO:0032196:transposition), 1 (GO:0032196: transposition), and 1
237 (GO:0032196: transposition) GO/EC terms were significantly enriched in bovine isolates,
238 respectively (Table S4).

239 **Bovine isolates exhibited significantly more transposase genes but fewer transposase
240 pseudogenes than human isolates.**

241 As a large number of transposases from different IS families were identified as human-associated
242 pseudogene functions (Table S1) and many active transposase genes were enriched among bovine
243 isolates (Figure 3), further analysis was conducted on the comparison of number of pseudogenes as
244 well as orthologous genes (which represent “non-pseudogenes”) annotated as encoding a transposase
245 between bovine and human isolates. Results showed that there were significantly more transposase
246 pseudogenes in human isolates (14, 20, 11, and 14 on average) than bovine isolates (4, 4, 5, and 4 on
247 average) across all serotypes, within *S. Dublin*, *S. Newport*, and *S. Typhimurium*, respectively
248 (Figure 4a, $P < 0.0001$). By contrast, orthologous genes annotated as transposase showed an opposite

249 pattern. There were significantly more genes annotated as transposase among bovine isolates with an
250 average of 19, 29, 13, and 17 than human isolates with an average of 13, 16, 9, and 15 across all
251 serotypes ($P < 0.0001$), within *S. Dublin* ($P < 0.0001$), *S. Newport* ($P < 0.0001$), and *S.*
252 *Typhimurium* ($P < 0.05$), respectively (Figure 4b). Hence, both pseudogenes and genes annotated as
253 transposases exhibited strong host associations.

254 Among all 69 orthologous transposase genes (i.e., genes present in at least one of the 90
255 isolates studied), 39 showed strong positive correlation with AMR genes, including 16 identified as
256 bovine-associated transposase genes (Phi coefficient $r > 0.25$, Figure 5a; Table S5). Specific
257 examples of high correlations (Phi coefficients $r > 0.8$) between transposase genes and AMR genes
258 include (i) one IS91 family transposase gene (Cluster_3939) and *floR* (resistance to phenicols); (ii)
259 one IS6 family transposase genes (Cluster_3940) and *sulII* (resistance to sulfonamides) as well as
260 *strA-B* (resistance to aminoglycosides); (iii) one IS6 family transposase genes (Cluster_5580) and
261 *tetRG* (resistance to tetracyclines), *tetG* (resistance to tetracyclines) as well as *blaCARB* (resistance to
262 beta-lactam); and (iv) one IS1380 family transposase gene (Cluster_4114) and *sulII* (resistance to
263 sulfonamides).

264 Phi coefficient analysis was further performed to assess the correlation between transposase
265 genes and plasmid replicons. A total of 38 transposase genes showed strong positive correlation with
266 plasmid replicons, including 17 identified as bovine-associated transposase genes (Phi coefficient $r >$
267 0.25, Figure 5b; Table S6). Specific examples of high correlations (Phi coefficients $r > 0.8$) between
268 transposase genes and plasmid replicons include (i) one IS1380 family transposase gene
269 (Cluster_4114) and IncA/C2; (ii) one IS110 family transposase gene (Cluster_5385) and IncX1; (iii)
270 one IS6 family transposase gene (Cluster_5580) and IncFIB(S); (iv) three transposase genes with no
271 specific family annotated (Cluster_4603, Cluster_5335, and Cluster_5596) and IncFII(S), IncX1, and
272 IncI1, respectively. The majority (36) of these 38 transposase genes positively correlated with
273 plasmid replicons were also positively correlated with AMR genes (Figure 5), suggesting plasmid-

274 mediated transposons potentially carrying AMR genes. Notably, 9 transposase genes showing the
275 same pattern in the correlation with AMR genes (all positively correlated with *cmlA* and *aadB*) were
276 very likely located on plasmid IncX1 (these genes are shown on the right-hand side of Figure 5).

277 **A larger number of genes and GO terms were associated with human isolates, as compared to
278 bovine isolates**

279 With the same types of analyses described above for identification of bovine-associated genes, a
280 larger number of human-associated genes were found (Figure S1a, Table S2). As compared to 118
281 bovine-associated genes identified in a combined analysis of all 90 isolates representing the three
282 serotypes, a total of 390 genes were significantly enriched in human isolates across all serotypes
283 (FDR < 0.05, odds ratio > 6.71), including 119 genes present in all 49 human isolates, but absent
284 from all 41 bovine isolates (Figure S1a; see Table S2 for a list of all genes). Annotated functions
285 associated with these 119 genes predominantly represented the category “hypothetical proteins” (99
286 of the 119 genes); examples of annotated functions in this group of genes included genes encoding an
287 arsenic transporter, a ferredoxin, and a secreted effector protein SteB (Table S2).

288 Within *S. Dublin*, *S. Newport*, and *S. Typhimurium*, a total of 249, 244, and 244 genes,
289 respectively, were significantly enriched in human isolates (FDR < 0.05, odds ratio > 6.71), including
290 222, 195, and 188 genes found in all human isolates representing a given serotype, but not found in
291 any bovine isolates with a given serotype (Figure S1a, Table S2). Based on these data, we identified
292 an overall number of 413 human-associated genes, which included the 390 genes identified as
293 human-associated across all serotypes as well additional human-associated genes found within each
294 serotype. These 413 human-associated genes included 278 annotated as “hypothetical proteins” as
295 well as 135 genes with known functions; a large number of genes (n= 42) were annotated as
296 encoding cell surface proteins (e.g., transporters, secretion system proteins), phage-associated
297 proteins (e.g., integrase, phage tail protein), and transcriptional regulators (e.g., LysR, Cro/CI, AraC,
298 LuxR) (Figure 6, Table S7). The annotated functions for 43 human-associated genes matched

299 pseudogene functions found here to be over-represented among bovine isolates. As this group
300 includes genes previously suggested to be involved in host infection (e.g., fimbrial protein FimI,
301 deubiquitinase SseL, heme ABC transporter ATP-binding protein CcmA) (Table S7), our data
302 suggest that these genes may be more important for human than bovine infections.

303 At the gene ontology level, more human-associated GO and EC terms were identified
304 compared to bovine-associated ones (Figure S1b, Table S4). A total of 30 GO/EC terms were
305 significantly enriched in human isolates among all three serotypes, including the GO term “provirus
306 excision” (GO:0032359). While two GO terms were exclusively detected in all 49 human isolates
307 (GO:0071287 cellular response to manganese ion; GO:0030026 cellular manganese ion
308 homeostasis), these GO terms only represent a single protein (the small protein MntS, which is
309 classified into both GO terms) (Table S4). Within *S. Dublin*, *S. Newport*, and *S. Typhimurium*, a total
310 of 17, 11, and 11 GO/EC terms were significantly enriched in human isolates, respectively.

311 **Potentially geographic-and host-associated SNPs were identified within each serotype**

312 No geographic-associated genes or GO/EC terms were identified across all three serotypes and within
313 each serotype. Thus, genetic variants at SNP level were further investigated. A total of 47,913
314 polymorphic sites were identified among all 3,317 core genes of the 90 AMR *S. enterica* isolates. No
315 SNPs were shown to have a distribution significantly dependent on the geographic origin and host of
316 isolates across all serotypes based on Fisher’s exact tests (FDR > 0.05). Potentially geographic- and
317 host-associated SNPs were subsequently investigated within each serotype.

318 Within *S. Dublin*, 342 polymorphic sites were identified in 186 Dublin core genes. Fisher’s
319 exact test identified 13 SNPs at which the distribution of nucleotides was significantly dependent on
320 the geographic origin of isolates (FDR < 0.05). The most prevalent nucleotide differed between
321 isolates from NY and WA for each of these 13 SNPs, and 10 of them resulted in nonsynonymous
322 substitutions (Table 2). Five potentially geographic-associated SNPs in *S. Dublin* were located in
323 genes annotated as encoding cell surface proteins such as conjugal transfer protein, porin, and

324 fimbrial protein SefA (Table 2). By contrast, no potential host-associated SNPs were found within *S.*
325 *Dublin* (FDR > 0.05).

326 Within *S. Newport*, 480 polymorphic sites were identified in 204 *Newport* core genes. Fisher's
327 exact test identified 11 SNPs at which the distribution of nucleotides was significantly dependent on
328 the geographic origin of isolates (FDR < 0.05). The most prevalent nucleotide differed between
329 isolates from NY and WA for each of these 11 SNPs, and 7 of them resulted in nonsynonymous
330 substitutions (Table 2). Among these 11 potentially geographic-associated SNPs in *S. Newport*, 4
331 SNPs were located in the genes annotated as encoding cell surface proteins (e.g., transporter and 4-
332 hydroxyphenylacetate permease; Table 2). By contrast, no potential host-associated SNPs were found
333 within *S. Newport* as well (FDR > 0.05).

334 Within *S. Typhimurium*, 2,590 polymorphic sites were identified in 1,425 *Typhimurium* core
335 genes. While no geographic-associated SNPs were identified within *S. Typhimurium* (FDR > 0.05),
336 537 SNPs were found to have a distribution of nucleotides significantly dependent on the isolate host
337 (FDR < 0.05). All 537 potentially host-associated SNPs of *S. Typhimurium* had the same most
338 prevalent nucleotide among bovine and human isolates, except for one SNP located in a gene
339 annotated as encoding a hypothetical protein. The majority of those SNPs (77%) were found in 3
340 genes annotated as encoding hypothetical proteins and 2 genes annotated as encoding transcriptional
341 regulator and NAD(P)-dependent oxidoreductase, respectively. For a total of 523 of the 537 SNPs
342 (97%) a monophyletic group of 8 human isolates (Figure 5; Liao *et al* (2019)) harbored a different
343 nucleotide compared to 12 other human isolates and all 17 bovine isolates, indicating that the
344 significant host association of these SNPs likely represents a single human host-associated
345 *Typhimurium* lineage.

346 In summary, 24 SNPs potentially associated with geographic origin were identified within *S.*
347 *Dublin* and *S. Newport*; 9 SNPs (38%) were located in genes annotated as encoding cell surface
348 proteins (Table 2). The majority of these SNPs (71%) resulted in nonsynonymous substitutions

349 (Table 2), including one located in a gene (annotated as encoding E3 ubiquitin--protein ligase)
350 showing evidence for positive selection as reported by Liao *et al.*, 2019 using the same set of isolates.
351 While a number of potentially host-associated SNPs were identified within AMR *S. Typhimurium*,
352 those were likely just associated with one lineage of AMR *S. Typhimurium*.

353 **Few closely related isolates were identified between bovine and human and between NY and
354 WA sources based on high-quality core SNPs**

355 Our results provided evidence for associations between genetic variations (e.g., gene
356 presence/absence, SNPs) and isolate sources (e.g. human or bovine), suggesting limited transmission
357 of AMR *Salmonella* between bovine and human populations, and between NY and WA. We thus
358 used high-quality (hq) core SNP data to identify closely related isolates in order to further
359 characterize the frequency of recent transmission events between different sources among the 90
360 isolates characterized here. Overall, isolates from different geographic origins as well as isolates from
361 different hosts were not very closely related. Only 6, 4, and 0 human isolates for the three serotypes
362 (Dublin, Newport, Typhimurium) showed <10 SNP difference to at least one bovine isolate; 7 human
363 *S. Typhimurium* isolates showed <50 SNP difference to at least one bovine *S. Typhimurium* isolate
364 (see Figure S2a, Figure S2c, Figure S2e for hqSNP distance matrices for comparison between the
365 two hosts for each serotype). For comparison between the two geographic locations, only 2, 1, and 0
366 isolates from NY for the three serotypes (Dublin, Newport, Typhimurium) showed <10 SNP
367 difference to at least one WA isolate; 2 *S. Typhimurium* isolates from NY showed <50 SNP
368 difference to at least one *S. Typhimurium* isolate from WA (see Figure S2b, S2d, S2f for hqSNP
369 distance matrices for comparison between the two geographic locations for each serotype).

370

371 **Discussion**

372 *Salmonella* has a broad host range including humans, other mammals, birds, and reptiles (Eng *et al.*,
373 2015; Schleker *et al.*, 2012). *Salmonella* can also survive for a long period of time in water (e.g.,

374 sewage, freshwater, marine coastal water, and groundwater) (Baudart *et al.*, 2000). This ability of
375 *Salmonella* to survive and multiply in a wide range of ecological niches and to cause disease in
376 diverse hosts is not only practically significant (as many sources can be responsible for a human
377 infection), but also makes this organism a relevant model for studying the population genetics and
378 evolution of environmentally transmitted zoonotic pathogens. In addition, the fact that antimicrobial
379 resistance, including multi-drug resistance, has emerged multiple times in different *Salmonella*
380 serotypes, makes studies on the population structure of different AMR *Salmonella* serotypes
381 important to help inform design of control and prevention strategies and to better understand the
382 evolution and potential for inter-species transmission of AMR zoonotic pathogens with wide host
383 ranges. A number of previous studies have identified genetic markers associated with host adaptation
384 in *S. enterica* (Langridge *et al.*, 2015; Lupolova *et al.*, 2017; Thomson *et al.*, 2008; Yue *et al.*, 2015).
385 For example, Thomson *et al.* (2008) reported that chicken-restricted *S. enterica* serovar Gallinarum
386 isolates showed extensive genome degradation through deletion and pseudogene formation, including
387 the loss of flagella or fimbriae. Lupolova *et al.* (2017) demonstrated that, based on gene content, the
388 source hosts including human, bovine, and swine of *S. Typhimurium* can be accurately predicted
389 using machine learning approach. However, only a few studies, typically focused on non-AMR
390 strains, have explored genetic markers associated with geographic origins of *S. enterica* isolates
391 (Sangal *et al.*, 2010, Zheng *et al.*, 2017). While an initial study has shown that AMR genes of *S.*
392 *enterica* exhibited a strong association with both host source and geographic origin (Carroll *et al.*,
393 2017), our study reported here indicates that different evolutionary forces appear to drive AMR *S.*
394 *enterica* population structure in human and bovine hosts and geographic regions. Specifically, our
395 data not only suggests that transposition plays a more important role in genome evolution and
396 antibiotic resistance transmission of contemporary bovine AMR isolates, as compared to human
397 isolates, but also suggests that association of different virulence-associated genes and pseudogenes
398 with bovine and human AMR *Salmonella* could represent a barrier to inter-host transmission.

399 Importantly, our findings also suggest that specific genetic markers may be able to help predict host
400 or geographic origin of AMR *Salmonella* isolates.

401 **The host-transposase association suggests that the occurrence time of large-scale transposition
402 and adaptation strategies differ by AMR *S. enterica* populations from bovine and human.**

403 Transposase is a DNA-binding enzyme that binds to the end of a transposon and catalyzes the
404 movement of the transposon to another location of the genome via ‘cut-and-paste’ or ‘copy-and-
405 paste’ mechanisms (Rice and Baker, 2001). The significant enrichment of intact genes annotated as
406 encoding transposase among bovine isolates suggests ongoing large-scale transposition and genomic
407 rearrangement events in bovine AMR *S. enterica* populations. By contrast, those events probably
408 occurred earlier in human AMR *S. enterica* populations, since a substantial number of genes
409 annotated as encoding transposase represent pseudogenes in genomes of human AMR *S. enterica* and
410 were not functional anymore. Consistent with our findings, bovine *S. agalactiae* genomes showed a
411 significantly elevated number of transposable elements compared to human *S. agalactiae* genomes
412 (Richards *et al.*, 2011), indicating that such distribution patterns of transposase influenced by host is
413 not restricted to *S. enterica*. This phenomenon might be caused by the different stages of host
414 adaptation/restriction pathogens are experiencing in different hosts. As reviewed by Moran and
415 Plague (2004), when bacteria switch from a free-living to host restriction lifestyle, IS elements in
416 genomes are expected to proliferate during the short-term process of host dependence, with the
417 purpose of reducing genome size by disrupting existing regulatory regions and inactivating genes via
418 transposons (Feschotte, 2008); in the long run, mobile elements are gradually deleted or mutated by
419 forming pseudogenes due to lack of exposure to novel element transposition. As such, facultative
420 intracellular species including *S. enterica* normally harbor dramatically more transposase genes than
421 obligate intracellular bacteria (e.g., *Wigglesworthia glossinidiae*, *Buchnera aphidicola*,
422 *Chlamydophila caviae*) (Bordenstein and Reznikoff, 2005). Additionally, high numbers of
423 transposase genes inactivated by forming pseudogenes have been observed in the luminous bacterial

424 symbionts of deep-sea ceratiid anglerfishes (Hendry *et al.*, 2018). Based on these mechanisms of
425 genomic changes and previous findings, our data suggests that AMR *S. enterica* in human
426 populations may be at a later stage of host adaptation than those in bovine populations. Adaptation to
427 a human host has also been observed in other host generalist serotypes of *Salmonella*. Klemm *et al.*
428 (2016) detected substantial genome degradation via pseudogene formation and an elevated
429 substitution rate in *S. Enteritidis* which had infected an immunocompromised human patient for 15
430 years, highlighting the fast within-human evolution of *Salmonella*.

431 Besides potentially taking advantage of transposons to degrade the genome during a likely
432 early stage of host adaptation, it is also possible that bovine AMR *S. enterica* are maintaining a large
433 number of transposase genes in their genomes due to some beneficial mutations responsible for
434 adaptive phenotypic changes brought by transposons (Casacuberta and González, 2013). One such
435 benefit may be promoting bacterial adaptation to antibiotics used in clinical practice and agriculture
436 (Blot, 1994). Our data showed that more than half of the transposase genes identified in this study
437 showed a significant positive correlation with AMR genes. Congruous with our finding, a variety of
438 transposons carrying antimicrobial resistance genes have been identified in *Salmonella* as
439 summarized in Miriagou *et al.*, (2006). For example, the tetracycline resistance gene *tet*(A), which
440 encodes a membrane-associated efflux protein, has been reported to be linked to transposon Tn1721
441 (Pezzella *et al.*, 2004). *bla_{TEM-1}* which encodes β-lactamases that mediate resistance to β-lactam
442 antimicrobial agents, has been shown to be carried by Tn3 (Pasquali *et al.*, 2005). The *strA-strB*
443 genes, which confer streptomycin resistance, have been described as part of a particular Tn5393-
444 derivative transposon (Carattoli *et al.*, 2002). The *armA* gene, which encodes aminoglycoside
445 resistance methylase and confers resistance to 4,6-disubstituted deoxystreptamines and fortimicin,
446 has been described as linked to a composite transposon Tn1548 (Galimand *et al.*, 2005). Class 1 and
447 class 2 integrons, which often harbor gene cassettes encoding aminoglycoside modifying enzymes,
448 are commonly associated with various transposons of the Tn3 family (e.g., Tn21, Tn1696, and

449 Tn1412) and Tn7 transposon, respectively (Miriagou *et al.*, 2006). In our study, *tet*(A) was found to
450 be highly correlated with IS1380 family transposase genes; *bla*_{TEM-1D} was highly correlated with
451 IS200/IS605 family transposase, IS630 family transposase, and other two non-specific family
452 annotated transposase genes; *strA-strB* were highly correlated with IS6 family transposase and
453 IS1380 family transposase genes. Selection of antibiotic resistance genes carried by transposons is a
454 strong force in maintaining transposons in populations (Blot, 1994). Thus, keeping a large number of
455 transposase genes could be a strategy employed by bovine AMR *S. enterica* to better adapt to the
456 antibiotics used in cows.

457 **Identification of host associated genes and pseudogenes encoding presumptive virulence factors
458 suggests adaptation of AMR *S. enterica* to human and bovine hosts.**

459 Our analyses identified a number of host-associated genes, including genes found exclusively in
460 isolates from one host (i.e., human or bovine) as well as genes that more frequently presented
461 premature stop codons (hence forming pseudogenes) in isolates from one host. These findings
462 provide initial evidence for adaptation of AMR *S. enterica* to bovine and human populations, at least
463 in the isolate set analyzed here. More specifically, identification of host-association in genes
464 annotated as encoding potential virulence factors supports such adaptation. We specifically identified
465 a number of putative virulence factor-encoding genes that were overrepresented among human AMR
466 *S. enterica* relative to bovine isolates, suggesting not only a specific role of these genes in human
467 infections, but also indicating the possibility of reduced ability to infect human hosts among at least
468 some bovine isolates. For example, the genes encoding the deubiquitinase SseL and fimbrial protein
469 FimI were found to be significantly enriched in human isolates; on the other hand, *sseL* and *fimI*
470 pseudogenes were significantly enriched in bovine isolates. Deubiquitinase SseL, one of the
471 *Salmonella* SPI-2 Type III secretion system effectors, shows deubiquitinating activity during
472 infection of human and murine cell lines (Rytönen *et al.*, 2007). Jennings *et al.* (2017) furthermore
473 reported that SseL inhibits accumulation of lipid droplets, prevents autophagic clearance of cytosolic

474 aggregates, and induces late macrophage cell death. *fimI* is required for production of normal type 1
475 fimbriae and is located in the *fim* gene cluster (Knight and Bouckaert, 2009). It is currently not clear
476 whether FimI constitutes a subunit of type 1 fimbriae or is a protein regulating the assembly of type 1
477 fimbriae (Knight and Bouckaert, 2009). It has been reported that mannose-sensitive type 1 fimbriae
478 of *S. Typhimurium* promote invasion and appear to play a critical role as an accessory virulence
479 factor (Ernst *et al.*, 1990). As mutations in *fimI* lead to dysfunctional type 1 fimbriae (Valenski *et al.*,
480 2003), absence of functional FimI (e.g., through formation of pseudogenes, as found here among
481 bovine isolates) may lead to reduced virulence at least in some hosts. We also found that the gene
482 encoding SteB is exclusively found in all human isolates but absent from all bovine isolates in this
483 study. SteB is an effector that requires *Salmonella* SPI-1 or SPI-2-encoded T3SS for its translocation
484 (McGhie *et al.*, 2009). SteB has been reported to act as a putative picolinate reductase which is
485 required for efficient mouse spleen colonization in *Salmonella* (McGhie *et al.*, 2009). Identification
486 of putative and well-documented virulence factors encoded by human AMR *S. enterica*, but absent or
487 inactivated in bovine isolates not only indicates that these genes encode host specific virulence
488 factors, but also suggests adaptation of *Salmonella* to human hosts.

489 In addition, we also identified some virulence genes associated with bovine hosts. For example,
490 the genes annotated as encoding the type IV secretion protein Rhs and the effector protein YopJ were
491 not only found to be significantly enriched in bovine isolates, but *rhs* and *yopJ* pseudogenes were
492 also overrepresented among human isolates. *rhs* genes were first described in *E. coli*, and
493 subsequently found in a wide range of Gram-negative bacteria, including other members of the
494 *Enterobacteriaceae* (e.g., *Salmonella*) as well as *Pseudomonadaceae*. Rhs has been shown to be a
495 mammalian virulence determinant in *Pseudomonas aeruginosa*; Rhs was found to be induced during
496 infection of monocyte/macrophage-like cells, was translocated into these cells, and subsequently
497 caused inflammasome-mediated cell death (Kung *et al.*, 2012). YopJ effectors have been found in a
498 variety of animal pathogens including *Yersinia* spp., *S. enterica*, *Vibrio parahaemolyticus* and

499 *Aeromonas salmonicida* (Ma and Ma, 2016). These effectors target proteins in hosts by acetylating
500 specific serine, threonine, and/or lysine residues, thus influencing the function and/or stability of their
501 target proteins and eventually dampening innate immunity of hosts (Ma and Ma, 2016). Our findings
502 suggest that the type IV secretion protein Rhs and the effector protein YopJ may play a more
503 important role in AMR *S. enterica* during infection of bovine hosts than they do in humans.
504 Consistent with our results, *S. Typhimurium* has been shown to use host-specific bacterial factors
505 (e.g., type III secretion systems, cell surface polysaccharides, cell envelope proteins) to colonize
506 calves and chicks (Morgan *et al.*, 2004).

507 Furthermore, we identified a number of genes without likely virulence-associated functions that
508 were associated with either bovine or human isolates. While many annotated bovine-associated genes
509 represented transposases, a number of human-associated genes represented other functions. For
510 example, the small protein MntS, which helps to enlarge the manganese pool when manganese is
511 scarce in *E. coli* (Martin *et al.*, 2015), was encoded by a gene exclusively found in all human AMR *S.*
512 *enterica* isolates but absent from all bovine isolates in this study. *ccmA* was also significantly
513 associated with human isolates, while a *ccmA* pseudogene was overrepresented among bovine
514 isolates; *ccmA* encodes the heme ABC transporter ATP-binding protein CcmA, a putative ATPase
515 essential for TMA/TMAO and nitrite/nitrate as terminal electron acceptors under conditions of
516 reduced oxygen (Batista *et al.*, 2015). Interestingly, all *S. Pullorum* genomes analyzed by Batista *et*
517 *al.* (2015) also carried a *ccmA* pseudogene; *S. Pullorum* is highly adapted to poultry. In addition, a
518 large proportion of human-associated genes in our study reported here were annotated as encoding
519 transcriptional regulators (e.g., AraC, LuxR, Rha family transcriptional regulator) and phage-
520 associated proteins; Lupolova *et al.* (2016) previously also reported that human *E. coli* O157 isolates
521 showed a higher frequency of phage-associated genes relative to bovine isolates. The specific roles of
522 those host-associated genetic variants in differential adaptation in *S. enterica* remain unknown and
523 further exploration is needed.

524 In summary, our findings suggest that AMR *S. enterica* serotypes Dublin, Newport, and
525 Typhimurium show evidence of adaptation to human and bovine hosts, including through
526 development of repertoires of host-specific virulence genes. While this raises the intriguing
527 possibility that genetic mechanisms may restrict the transmission of AMR *Salmonella*, at least for the
528 three serotypes studied here, between human and bovine hosts, further work on larger isolate sets,
529 including those from different regions, are needed to confirm this hypothesis. Importantly, however,
530 our findings are consistent with other studies which show the development of host-specific subgroups
531 within closely related pathogen taxa. For example, different alleles of *fimH* encoding type 1 fimbrial
532 adhesin showed different binding preference to human cells and bovine cells (Yue *et al.*, 2015).
533 Evolution of host specificity has also been well established in a number of other bacterial pathogens,
534 as reviewed by Bäumler and Fang (2013).

535 **The geographic-associated SNPs highlight the role of geographic origin in influencing
536 population structure of AMR *S. enterica* and evolution of cell surface proteins**

537 Potential geographic-associated SNPs were found within AMR *S. Dublin* and AMR *S. Newport*. *S.*
538 *Newport* has been reported to display a geographic structure (Sangal *et al.*, 2010). Specifically,
539 Lineage I strains were more frequently isolated from Europe, while Lineages II and III strains were
540 more likely isolated from North America. Such geographic association of lineages was suggested to
541 be caused by differences in prophage regions, pathogenicity islands and fimbrial operons among
542 strains from different geographic locations (Zheng *et al.*, 2017). AMR *S. Newport* analyzed here
543 belong to Lineage IIC as previously reported by Liao *et al.* (2019). Our findings suggest that within
544 this lineage, *S. Newport* also has a geographic structure at the SNP level.

545 A large proportion of geographic-associated SNPs found in *S. Dublin* and *S. Newport* (38%)
546 were located in genes annotated as encoding cell surface proteins (e.g., cardiolipin synthase B, porin,
547 permease, transporter, fimbrial protein SefA), higher than the proportion of cell surface proteins
548 among the total amount of proteins in eukaryotic and prokaryotic cells in general (20%-30%).

549 Interestingly, cardiolipin synthase B, which catalyzes the synthesis of cardiolipin in bacteria, has
550 been found to be important in modulating the physical properties of membranes in response to
551 environmental stress such as osmotic stress (Mileykovskaya and Dowhan, 2009). Mutation of
552 cardiolipin synthase has been shown to be associated with daptomycin resistance in enterococci.
553 Davlieva *et al.* (2013) reported that when challenging *Enterococcus faecium* and *Enterococcus*
554 *faecalis* with daptomycin, the pool of phosphatidylglycerol was substantially reduced. However,
555 mutations observed in gene encoding cardiolipin synthase were able to compensate for the decreased
556 phosphatidylglycerol and lead to a restoration of the cardiolipin synthase pool. In addition, Peleg *et*
557 *al.*, 2012 found genomic evidence that point mutations in gene coding for cardiolipin synthase were
558 responsible for developing reduced susceptibility to daptomycin in *Staphylococcus aureus*.
559 Daptomycin has been a widely used antibiotic in the treatment of complicated skin and skin structure
560 infections in humans (Steenbergen *et al.*, 2009). While highly speculative, the geographically
561 associated SNPs identified in genes encoding cardiolipin synthase B for *S. Newport* could suggest
562 possible follow-up studies on use of daptomycin in NY and WA.

563 Another interesting gene, annotated as encoding an exported protein, E3 ubiquitin--protein
564 ligase, contained a geographic-associated SNP resulting in a nonsynonymous substitution, and this
565 gene showed evidence of positive selection in a previous study using this same set of isolates (Liao *et*
566 *al.*, 2019). Genes encoding E3 ubiquitin--protein ligase are present in several species of pathogenic
567 bacteria, including *Salmonella* (Quezada *et al.*, 2009), and this protein has been reported to be used
568 as a virulence factor (Maculins *et al.*, 2016). Multiple studies have shown that E3 ubiquitin ligase
569 was used by *Salmonella* to hijack host cells and subvert its ubiquitination pathway (Maculins *et al.*,
570 2016; Quezada *et al.*, 2009). Ubiquitination systems function in a wide range of cellular processes
571 (e.g., cell cycle and division, immune response and inflammation) in eukaryotic organisms, and can
572 lead to cancer and neurodegenerative disorder when ubiquitination is defective (Finley and Chau,
573 1991). Thus, expressing and releasing of E3 ubiquitin ligase by *Salmonella* could promote bacterial

574 survival and pathogenicity in the host. A geographically associated SNP found in a gene encoding E3
575 ubiquitin--protein ligase might be a consequence of positive selection triggered by specific ecological
576 niches associated with NY or WA.

577 Overall, our findings suggest that, in addition to host, geographic origin is also a critical factor
578 contributing to the population structure, antimicrobial resistance, and pathogenicity of AMR *S.*
579 *enterica*, likely due to distinct ecological niches (e.g., represented by climate, dairy operation
580 management, antibiotics use) associated with different geographic origins.

581 **AMR *S. enterica* population structure is likely driven by different evolutionary forces and a low
582 potential of recent transmission among hosts and geographic origins.**

583 It has been demonstrated that ecological niches can change population structure and affect the
584 evolution of bacteria (Vos, 2011; Li *et al.*, 2019). A recent study (Behringer *et al.*, 2018) on the long-
585 term evolution of *E. coli* cultures proposed that the evolution of genetic differentiation resulting in
586 subpopulation structure was facilitated by spatial differentiation followed by metabolic
587 differentiation. To cope with different ecological niches, adaptive evolutionary processes mediated
588 by a mixture of mechanisms - mainly gene flow, mutation, natural selection, and genetic drift – will
589 occur in bacteria, resulting in gene gain/loss and functional divergence of existing genes (Toft and
590 Andersson, 2010; Li *et al.*, 2019; Slatkin, 1987; Strachan *et al.*, 2015). Our data provides evidence in
591 strong association of gene gain/loss with host as well as evidence for SNP level divergence of core
592 genes associated with geographic origin (in at least some AMR *S. enterica* serotypes), suggesting
593 different mechanisms are underlying adaptation of AMR *S. enterica* to host and to geographic
594 location. For example, the strong association between bovine-associated transposases and plasmids
595 (e.g., IncX2 and IncFII(S)) observed in this study indicates that some transposons in bovine AMR *S.*
596 *enterica* were likely obtained via horizontal gene transfer. Consistent with our finding, transposons
597 have been frequently detected on conjugative or mobilizable plasmids in various *Salmonella* obtained
598 from different sources (Miriagou *et al.*, 2006). Most of human-associated pseudogenes are the result

599 of frameshifts and/or premature stop codons caused point mutations, which are common mechanisms
600 in the formation of pseudogenes in bacterial genomes (Lerat and Ochman, 2005). While
601 geographically associated SNPs were not exclusive under positive selection, nonsynonymous SNPs
602 in genes encoding cell surface proteins are potential targets of positive selection, as cell surface
603 proteins have been found to be a major group driven by positive selection in bacteria (Chen *et al.*,
604 2006; Petersen *et al.*, 2007; Wachter and Hill, 2016). By contrast, synonymous geographic-associated
605 SNPs may be a consequence of genetic drift, as genetic drift is the driving force for neutral mutations
606 (Bromham and Penny, 2003). Overall, our findings suggest that gene flow and mutation are playing
607 important but not exclusive roles in shaping host-associated population structure of AMR *S. enterica*,
608 while natural selection and genetic drift are essential, but not exclusive, in shaping geographically
609 associated population structure of AMR *S. enterica*.

610 In addition to different evolutionary forces influencing the population structure of AMR *S.*
611 *enterica*, our data together with previously reported associations between AMR genes and isolate
612 source (Carroll *et al.*, 2017) also suggests a low potential for recent transmission of AMR
613 populations between bovine and human populations and between NY and WA. Transmission of
614 bacteria can promote genetic exchanges, so a more homogenized gene pool and closely related
615 individuals are expected (Slatkin, 1987). In this study, AMR *S. enterica* showed high degree of host-
616 genome and geographic-genome associations at gene, GO terms, pseudogene, and SNP levels, and
617 absence of a large number of closely related isolates between bovine and human populations and
618 between NY and WA. Similarly, Mather *et al.* (2013) demonstrated that *S. Typhimurium* DT104 and
619 its antimicrobial resistance genes were maintained largely separately within animal and human
620 populations in Scotland, with little transmission between animals and humans and vice versa.
621 Overall, these data suggest that transmission of *Salmonella* between bovine and human hosts may be
622 less frequent than sometimes assumed, even though there have been cases of AMR *S. Dublin*
623 (Harvey *et al.*, 2017), *S. Newport* (Centers for Disease Control and Prevention, 2002; Plumb *et al.*,

624 2019), *S. Typhimurium* (McLaughlin *et al.*, 2006; Olsen *et al.*, 2004) outbreaks in humans linked to
625 raw milk, raw beef or cheese. Our findings are also consistent with some studies that indicated
626 geographical association with different *Salmonella* clonal groups; for example, Kovac *et al.* (2017)
627 reported that *S. Cerro* found in Texas and NY represent largely distinct clonal groups. As NY and
628 WA are about 3,500 km apart, it is plausible that such a distance could generate a barrier for
629 *Salmonella* transmission, since microbial dispersal is typically a passive process, which does not
630 likely result in long-distance dispersal events (Nemergut *et al.*, 2013). While contemporary complex
631 food distribution systems may reduce the effectiveness of distance as a barrier for transmission, our
632 data suggest that geographical distance may still represent a barrier to long-distance *Salmonella*
633 dispersal.

634 **Conclusion**

635 The population structure of antimicrobial resistant bacterial pathogens which differs in host and
636 geographic origin could reveal key elements in understanding their evolution in adaptation,
637 pathogenesis, and antimicrobial resistance. Collectively, our study identified a number of genetic
638 variants in AMR *S. enterica* associated with host and geographic origin using comparative genomics.
639 It highlights a vital role of host in shaping genome arrangement and promoting antimicrobial
640 resistance via potentially plasmid-mediated transposons and in developing host adaption via
641 preferred virulence factors. It also highlights a critical role of geographic origin in driving the
642 evolution of cell surface proteins and antimicrobial resistance potentially mediated by positive
643 selection and genetic drift. Even though the advancement of sequencing techniques has allowed for
644 rapid progress in identifying niche-associated genetic variants, our understanding of the evolutionary
645 mechanisms underlying the generation, fixation and function of those variants in populations is still
646 limited. Our study provides a large number of candidate genes, such as secreted effector protein
647 SteB, fimbrial protein FimI, E3 ubiquitin--protein ligase, for future investigations to better
648 understand the adaptation and pathogenesis of AMR *S. enterica*. As AMR *S. enterica* represent a

649 substantial public health concern, focusing on AMR populations allowed us to identify specific
650 genetic markers that could be potentially used in source tracking (e.g., host and geographic origins)
651 of human disease cases and contamination events caused by AMR *S. enterica*. Our data also suggest
652 a low potential for inter-host and long distance-geographic transmission events of AMR *Salmonella*.
653 Despite the benefits of focusing on AMR populations, this study is limited by a relatively small
654 dataset. To fully understand the genetic basis of environmental adaptation and differential virulence
655 associated with host and geographic origin in *S. enterica*, it is necessary for future studies to include
656 non-AMR populations as well.

657

658 **Author Contributions**

659 JL and MW conceived and designed the study. JL wrote the manuscript with input from MW, RHO
660 and LC. JL performed the computational analyses and statistical analyses.

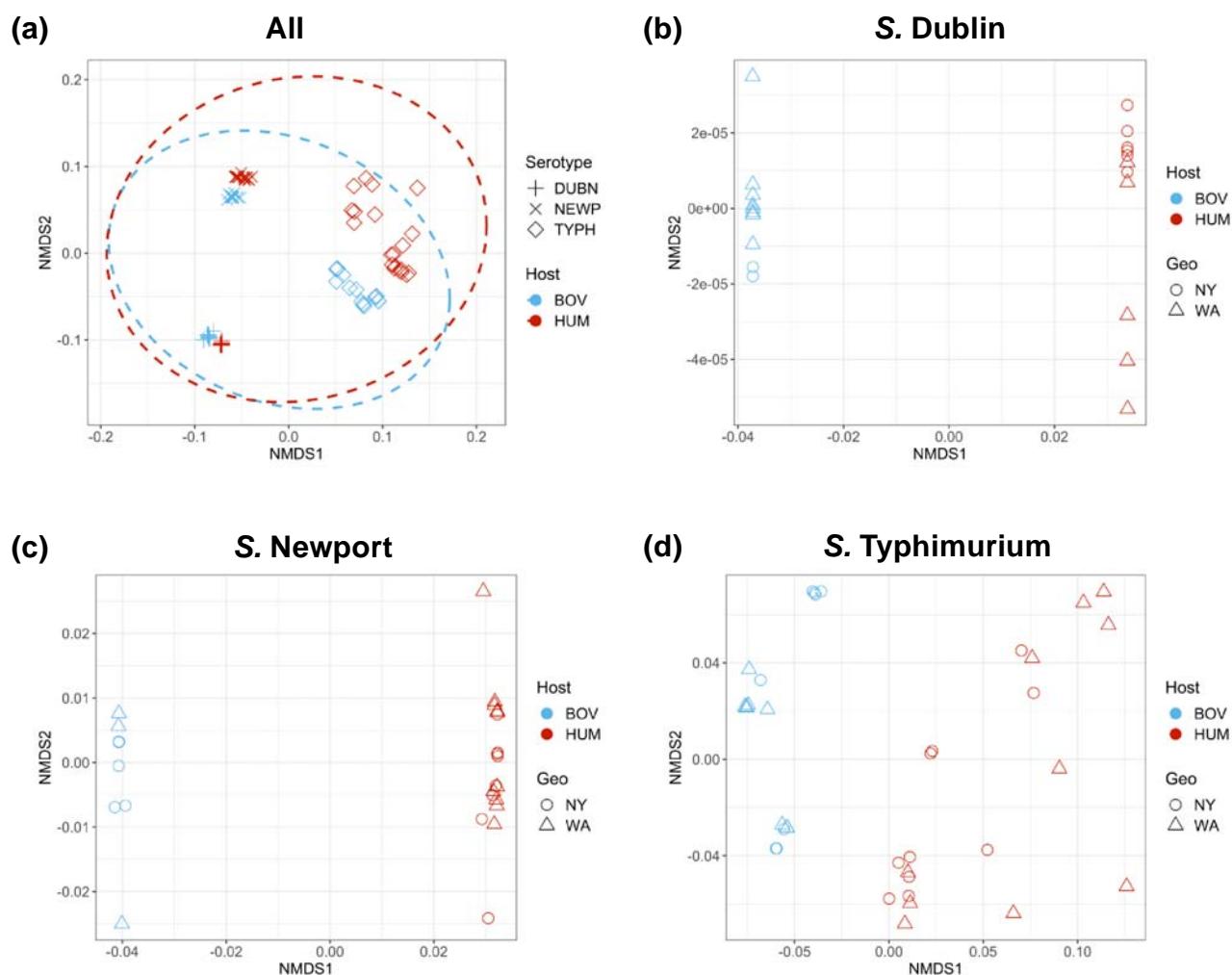
661 **Conflict of Interests Statement**

662 The authors declare that they have no competing interests.

663 **Acknowledgement**

664 This work was partially supported by the USDA National Institute of Food and Agriculture Hatch
665 project NYC-143436. Any opinions, findings, conclusions, or recommendations expressed in this
666 publication are those of the author(s) and do not necessarily reflect the view of the National Institute
667 of Food and Agriculture (NIFA) or the United States Department of Agriculture (USDA). We are
668 grateful to Dr. Rachel A. Cheng for her assistance in interpreting functions of host-associated genes.

669

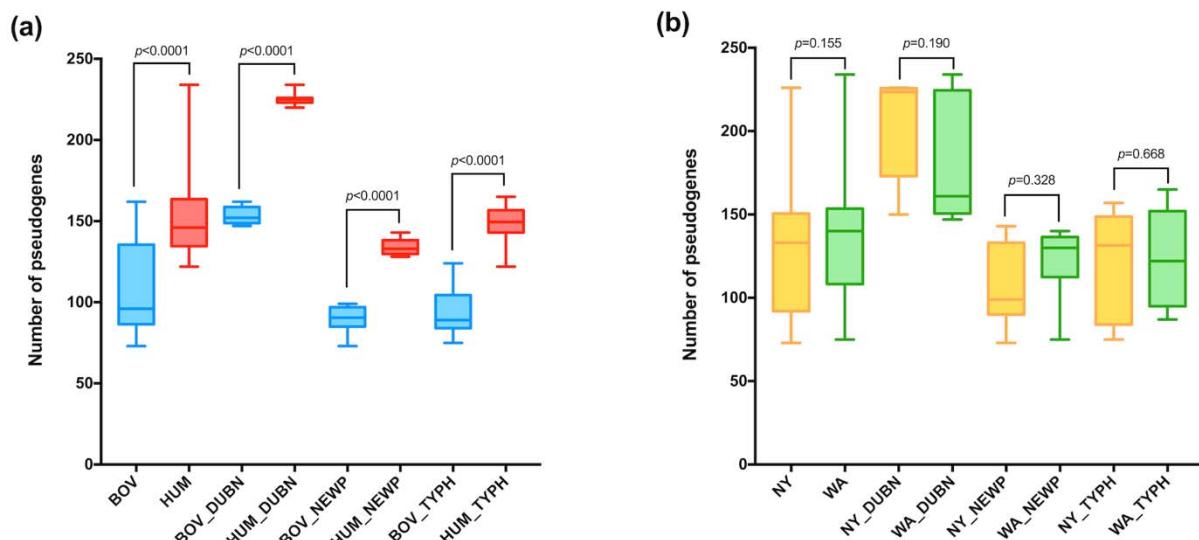

670

671

672

673

674 **Figures**



675

676 **Figure 1.** Gene presence/absence based-NMDS ordination (NMDS) of
677 antimicrobial-resistant (AMR) *S. enterica* isolates (a) across all serotypes; (b) within *S. Dublin*, (c)
678 within *S. Newport*, and (d) within *S. Typhimurium*. Isolates from New York state (NY) are indicated
679 by symbol circle; isolates from Washington state (WA) are indicated by symbol triangle. Bovine
680 isolates (BOV) are in blue; human isolates (HUM) are in red. For panel (a), *S. Dublin* are indicated
681 by “+”; *S. Newport* are indicated by “x”; *S. Typhimurium* are indicated by “◊”. Dotted lines indicate
682 clustering of isolates correspond to host.

683

684

685

686 **Figure 2.** Box and whisker plot of the number of pseudogenes in AMR *S. enterica* isolates from (a)
687 bovine and human populations, and (b) NY and WA among all three serotypes and within each
688 serotype. DUBN - *S. Dublin*; NEWP - *S. Newport*; TYPH - *S. Typhimurium*; *P* values were
689 determined by Mann-Whitney test after FDR correction. Minimum and maximum values are
690 depicted by short horizontal lines above and below the box; the box signifies the upper and lower
691 quartiles, and the median is represented by a short line within the box.

692

693

694

695

696

697

698

699

700

701

702

703 **Figure 3.** Heatmap of the 60 bovine-associated of AMR *S. enterica* orthologous genes annotated
704 with known functions. Genes encoding transposases, cell surface proteins, and phage-associated
705 proteins are highlighted in blue, purple, and red, respectively; genes encoding other functions are
706 indicated in dark grey. Light grey boxes indicate absence of genes (see key). Isolates (shown on y
707 axis) are color coded by serotype, with green indicating *S. Dublin*, yellow indicating *S. Newport*, and
708 orange indicating *S. Typhimurium*; bovine isolates are highlighted in bold. Details of these 60
709 bovine-associated genes are shown in Table S3.

710

711

712

713

714 **Figure 4.** Box and whisker plot of number of (a) pseudogenes and (b) orthologous genes annotated
715 as encoding transposases in AMR *S. enterica* isolates from bovine and human populations. Bovine
716 isolates are indicated by blue boxes; human isolates are indicated by red boxes; *P* values were
717 determined by Mann-Whitney test after FDR correction. Minimum and maximum values are
718 depicted by short horizontal lines above and below the box; the box signifies the upper and lower
719 quartiles, and the median is represented by a short line within the box.

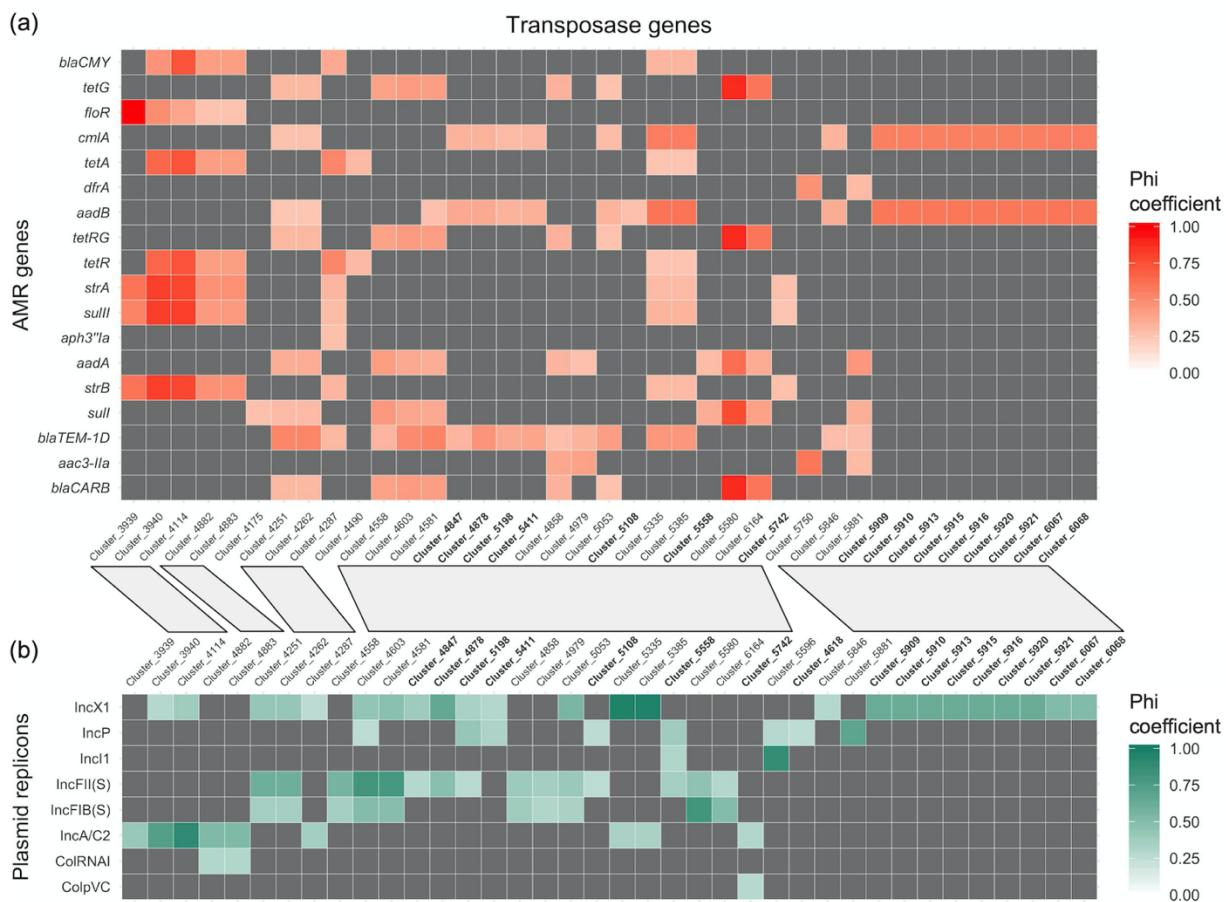
720

721

722

723

724


725

726

727

728

729

730

731 **Figure 5.** Heatmaps of Phi coefficient between (a) transposase genes and AMR genes, and (b)
732 transposase genes and plasmid replicons. Dark grey boxes indicate that the positive correlation is not
733 strong (Phi coefficient < 0.25). Bovine-associated transposase genes are highlighted in bold. Gray
734 parallelograms between panels a and b link clusters (e.g., Cluster_3939) that showed strong positive
735 correlations with both AMR genes and plasmid replicons.

736

737

738

739

740

741

742

757 **Tables**

758 **Table 1** PERMANOVA of gene presence/absence for isolate groups of AMR *S. enterica*^a

Serotypes	Grouping factor ^b	F Statistic	Uncorrected <i>p</i> -value	FDR ^c
All	Host	13.98	< 0.001	< 0.001
All	Geographic origin	0.86	0.48	0.48
S. Dublin	Host	21.37	< 0.001	< 0.001
S. Dublin	Geographic origin	2.75	0.04	0.06
S. Newport	Host	17.686	< 0.001	< 0.001
S. Newport	Geographic origin	2.24	0.05	0.06
S. Typhimurium	Host	10.37	< 0.001	< 0.001
S. Typhimurium	Geographic origin	1.21	0.26	0.29

759 ^a Rows in boldface indicate that FDR test was significant (FDR < 0.05).

760 ^b Host – bovine vs human, Geographic origin – NY vs WA.

761 ^c FDR was determined by a Benjamini and Hochberg correction.

762

Table 2 Annotated functions of genes which contain potentially geographic-associated SNPs within *S. Dublin* and *S. Newport*

Gene	Function ^a	Codon with nucleotide enriched in NY (AA) ^b	Codon with nucleotide enriched in WA (AA) ^b
<i>S. Dublin</i>			
Cluster_82	integral component of membrane [#]	CAG (Gln)	CGG (Arg)
Cluster_208	integral component of membrane [#]	AAA(Lys)	GAA(Glu)
Cluster_104	4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase	CTC (Leu)	CCC (Pro)
Cluster_4108	DNA polymerase III subunit epsilon	CCC(Pro)	TCC(Ser)
Cluster_5206	hypothetical protein	CCA(Pro)	ACA(Thr)
Cluster_5312	DUF4755 domain-containing protein	AGT(Ser)	GGT(Gly)
Cluster_3703	ATP-dependent protease	GCC(Ala)	GCT(Ala)
Cluster_4136	restriction endonuclease subunit M	GCA(Ala)	GCC(Ala)
Cluster_4288	RNA-splicing ligase RtcB	TAT(Tyr)	GAT(Asp)
Cluster_4195	conjugal transfer protein [#]	GTA(Val)	GCA(Ala)
Cluster_195	cytosol nonspecific dipeptidase	GCG(Ala)	ACG(Thr)
Cluster_476	porin [#]	GCA(Ala)	GCT(Ala)
Cluster_5407	fimbrial protein SefA [#]	CAG(Gln)	AAG(Lys)
<i>S. Newport</i>			
Cluster_1979	transporter [#]	ATC(Ile)	GTC(Val)
Cluster_3964	phage tail protein	TTC(Phe)	TGC(Cys)
Cluster_3624	acetyl-CoA carboxylase subunit beta	GCC(Ala)	GCG(Ala)
Cluster_2245	penicillin-binding protein activator	CTA(Leu)	CTG(Leu)
Cluster_3735	cytoplasmic protein [#]	TAC(Tyr)	CAC(His)
Cluster_3207	cardiolipin synthase B [#]	GGT(Gly)	GGC(Gly)
Cluster_1005	AraC family transcriptional regulator	TGT(Cys)	TAT(Tyr)
Cluster_3568	2-succinyl-5-enolpyruvyl-6-hydroxy-3- cyclohexene-1-carboxylic-acid synthase	GTG(Val)	GCG(Ala)
Cluster_815	DUF179 domain-containing protein	TGC(Cys)	CGC(Arg)
Cluster_2311	E3 ubiquitin--protein ligase	TGG(Trp)	CGG(Arg)
Cluster_3830	4-hydroxyphenylacetate permease [#]	ACA(Thr)	ACC(Thr)

763

^a # indicates that genes were annotated as encoding cell surface proteins.

764

^b SNPs resulting in nonsynonymous substitutions (i.e., change in amino acid (AA)) and relevant AA are in bold; A-Adenine, T-Thymine, G-Guanine, C-Cytosine; Ala-

765

Alanine, Arg-Arginine, Asp-Aspartate, Cys-Cysteine, Gln-Glutamine, Glu-Glutamate, Gly-Glycine, His-Histidine, Ile-Isoleucine, Leu-Leucine, Lys-Lysine, Phe-

766

Phenylalanine, Pro-Proline, Ser-Serine, Thr-Threonine, Trp-Tryptophan, Tyr-Tyrosine, Val-Valine.

767 **Reference**

768 Abeles, S.R. and Pride, D.T. (2014) Molecular bases and role of viruses in the human microbiome. J
769 Mol Biol 426: 3892-3906.

770 Anderson, M.J. and Walsh, D.C.I. (2013) PERMANOVA, ANOSIM, and the Mantel test in the face
771 of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr 83: 557-574.

772 Ao, T.T., Feasey, N.A., Gordon, M.A., Keddy, K.H., Angulo, F.J., and Crump, J.A. (2015) Global
773 burden of invasive nontyphoidal *Salmonella* disease 2010. Emerg Infect Dis 21: 941.

774 Batista, D.F.A., Neto, O.C.F., Barrow, P.A., de Oliveira, M.T., Almeida, A.M., Ferraudo, A.S., and
775 Berchieri Jr, A. (2015) Identification and characterization of regions of difference between the
776 *Salmonella* Gallinarum biovar Gallinarum and the *Salmonella* Gallinarum biovar Pullorum
777 genomes. Infect Genet Evol 30: 74-81.

778 Baudart. J., Lemarchand, K., Brisabois, A., Lebaron, P. (2000) Diversity of *Salmonella* strains
779 isolated from the aquatic environment as determined by serotyping and amplification of the
780 ribosomal DNA spacer regions. Appl Environ Microbiol 66: 1544-52.

781 Bäumler, A. and Fang, F.C. (2013) Host specificity of bacterial pathogens. Cold Spring Harb
782 Perspect Med 3: a010041.

783 Behringer, M.G., Choi, B.I., Miller, S.F., Doak, T.G., Karty, J.A., Guo, W., and Lynch, M. (2018)
784 *Escherichia coli* cultures maintain stable subpopulation structure during long-term evolution. Proc
785 Nat Acad Sci USA 115: E4642-E4650.

786 Blot, M. (1994) Transposable elements and adaptation of host bacteria. Genetica 93: 5-12.

787 Bordenstein, S.R. and Reznikoff, W.S. (2005) Mobile DNA in obligate intracellular bacteria. Nat
788 Rev Microbiol 3: 688.

789 Bromham, L. and Penny, D. (2003) The modern molecular clock. Nature Rev Genet 4: 216-224.

790 Carattoli, A., Filetici, E., Villa, L., Dionisi, A.M., Ricci, A., and Luzzi, I. (2002) Antibiotic resistance
791 genes and *Salmonella* genomic island 1 in *Salmonella enterica* serovar Typhimurium isolated in
792 Italy. *Antimicrob Agents Chemother* 46: 2821-2828.

793 Carroll, L.M., Wiedmann, M., den Bakker, H., Siler, J., Warchocki, S., Kent, D., *et al.* (2017) Whole-
794 genome sequencing of drug-resistant *Salmonella enterica* isolates from dairy cattle and humans in
795 New York and Washington States reveals source and geographic associations. *Appl Environ
796 Microbiol* 83: e00140-17.

797 Casacuberta, E. and González, J. (2013) The impact of transposable elements in environmental
798 adaptation. *Mol Ecol* 22: 1503-17.

799 Centers for Disease Control and Prevention. (2017) National *Salmonella* surveillance annual report
800 and appendices, 2015.

801 Centers for Disease Control and Prevention (2002). Outbreak of multidrug-resistant *Salmonella*
802 Newport--United States, January-April 2002. *Morbidity and Mortality Weekly Report*. 51: 545.

803 Chen, H., Cohen, P., and Chen, S. (2010) How big is a big odds ratio? Interpreting the magnitudes of
804 odds ratios in epidemiological studies. *Commun Stat Simul Comput* 39: 860-864.

805 Chen, S.L., Hung, C.S., Xu, J., Reigstad, C.S., Magrini, V., Sabo, A., *et al.* (2006) Identification of
806 genes subject to positive selection in uropathogenic strains of *Escherichia coli*: a comparative
807 genomics approach. *Proc Nat Acad Sci USA* 103: 5977-5982.

808 Dandekar, T., Fieselmann, A., Fischer, E., Popp, J., Hensel, M., and Noster, J. (2015) *Salmonella*-
809 how a metabolic generalist adopts an intracellular lifestyle during infection. *Front Cell Infect
810 Microbiol* 4: 191.

811 Davlieva, M., Zhang, W., Arias, C.A., and Shamoo, Y. (2013) Biochemical characterization of
812 cardiolipin synthase mutations associated with daptomycin resistance in enterococci. *Antimicrob
813 Agents Chemother* 57: 289-296.

814 Ellermeier, C.D. and Slauch, J.M. (2006) The genus *Salmonella*. The Prokaryotes: Volume 6:
815 Proteobacteria: Gamma Subclass, 123-158.

816 Eng, S.K., Pusparajah, P., Ab Mutalib, N.S., Ser, H.L., Chan, K.G., and Lee, L.H. (2015) *Salmonella*:
817 a review on pathogenesis, epidemiology and antibiotic resistance. *Front Life Sci* 8: 284-293.

818 Ernst, R.K., Dombroski, D.M., and Merrick, J.M. (1990) Anaerobiosis, type 1 fimbriae, and growth
819 phase are factors that affect invasion of HEp-2 cells by *Salmonella typhimurium*. *Infect Immun*
820 58: 2014-2016.

821 Feschotte, C. (2008) Transposable elements and the evolution of regulatory networks. *Nat Rev Genet*
822 9: 397-405.

823 Finley, D. and Chau, V. (1991) Ubiquitination. *Annu Rev Cell Dev Biol* 7: 25-69.

824 Foley, S. L. and Lynne, A. M. (2008) Food animal-associated *Salmonella* challenges: pathogenicity
825 and antimicrobial resistance. *J Anim Sci* 86: E173-E187.

826 Galimand, M., Sabtcheva, S., Courvalin, P., and Lambert, T. (2005) Worldwide disseminated *armA*
827 aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. *Antimicrob
828 Agents Chemother* 49: 2949-2953.

829 Harvey, R.R., Friedman, C.R., Crim, S.M., Judd, M., Barrett, K.A., Tolar, B., *et al.* (2017)
830 Epidemiology of *Salmonella enterica* serotype Dublin infections among humans, United States,
831 1968–2013. *Emerg. Infect. Dis.* 23:1493.

832 Hendry, T.A., Freed, L.L., Fader, D., Fenolio, D., Sutton, T.T., and Lopez, J.V. (2018) Ongoing
833 transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid
834 anglerfishes. *mBio* 9: e01033-18.

835 Hoberg, E.P. and Brooks, D.R. (2008) A macroevolutionary mosaic: episodic host-switching,
836 geographical colonization and diversification in complex host–parasite systems. *J Biogeogr* 35:
837 1533-50.

838 Hong, S., Rovira, A., Davies, P., Ahlstrom, C., Muellner, P., Rendahl, A., *et al.* (2016) Serotypes and
839 antimicrobial resistance in *Salmonella enterica* recovered from clinical samples from cattle and
840 Swine in Minnesota, 2006 to 2015. *PLoS One* 11: e0168016.

841 Hufbauer, R.A. and Roderick, G.K. (2005) Microevolution in biological control: mechanisms,
842 patterns, and processes. *Biol Control* 35: 227-239.

843 Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012) *De novo* assembly and
844 genotyping of variants using colored de Bruijn graphs. *Nat Genet* 44: 226-32.

845 Jennings, E., Thurston, T.L., and Holden, D.W. (2017) *Salmonella* SPI-2 type III secretion system
846 effectors: molecular mechanisms and physiological consequences. *Cell Host Microbe* 22:217-231.

847 Klemm, E.J., Gkrania-Klotsas, E., Hadfield, J., Forbester, J.L., Harris, S.R., Hale, C., *et al.* (2016)
848 Emergence of host-adapted *Salmonella* Enteritidis through rapid evolution in an
849 immunocompromised host. *Nat Microbiol* 1: 15023.

850 Knight, S.D. and Bouckaert, J. (2009) Structure, function, and assembly of type 1 fimbriae. In
851 Glycoscience and Microbial Adhesion (pp. 67-107). Springer, Berlin, Heidelberg.

852 Kovac, J., Cummings, K.J., Rodriguez-Rivera, L.D., Carroll, L.M., Thachil, A. and Wiedmann, M.
853 (2017). Temporal genomic phylogeny reconstruction indicates a geospatial transmission path of
854 *Salmonella* Cerro in the United States and a clade-specific loss of hydrogen sulfide production.
855 *Front Microbiol* 8: 737.

856 Kruskal, J.B. (1964) Nonmetric multidimensional scaling: A numerical method. *Psychometrika* 29:
857 115-129.

858 Kung, V.L., Khare, S., Stehlik, C., Bacon, E.M., Hughes, A.J., and Hauser, A.R. (2012) An *rhs* gene
859 of *Pseudomonas aeruginosa* encodes a virulence protein that activates the inflammasome. *Proc
860 Nat Acad Sci USA* 109: 1275-1280.

861 Langridge, G.C., Fookes, M., Connor, T.R., Feltwell, T., Feasey, N., Parsons, B.N., *et al.* (2015)

862 Patterns of genome evolution that have accompanied host adaptation in *Salmonella*. Proc Nat

863 Acad Sci USA 112: 863-868.

864 Lerat, E. and Ochman, H. (2005) Recognizing the pseudogenes in bacterial genomes. Nucleic Acids

865 Res 33: 3125-3132.

866 Li, Y., Pinto-Tomás, A.A., Rong, X., Cheng, K., Liu, M., and Huang, Y. (2019) Population genomics

867 insights into adaptive evolution and ecological differentiation in *Streptomyces*. Appl Environ

868 Microbiol 85: e02555-18.

869 Liao, J., Orsi, R.H., Carroll, L., Kovac, J., Ou, H., Zhang, H., and Wiedmann, M. (2019) Serotype-

870 specific evolutionary patterns of antimicrobial-resistant *Salmonella enterica*. BMC Evol Biol 19:

871 132.

872 Lupolova, N., Dallman, T.J., Holden, N.J., and Gally, D.L. (2017) Patchy promiscuity: machine

873 learning applied to predict the host specificity of *Salmonella enterica* and *Escherichia coli*.

874 Microb Genom 3.

875 Lupolova, N., Dallman, T.J., Matthews, L., Bono, J.L., and Gally, D.L. (2016) Support vector

876 machine applied to predict the zoonotic potential of *E. coli* O157 cattle isolates. Proc Nat Acad

877 Sci USA 113: 11312-7.

878 Ma, K.W. and Ma, W. (2016) YopJ family effectors promote bacterial infection through a unique

879 acetyltransferase activity. Microbiol Mol Biol Rev 80: 1011-1027.

880 Maculins, T., Fiskin, E., Bhogaraju, and S., Dikic, I. (2016) Bacteria-host relationship: ubiquitin

881 ligases as weapons of invasion. Cell Res 26: 499.

882 Martin, J.E., Waters, L.S., Storz, G., and Imlay, J.A. (2015) The *Escherichia coli* small protein MntS

883 and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet 11:

884 e1004977.

885 Maury, M.M., Tsai, Y.H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., *et al.*
886 (2016) Uncovering *Listeria monocytogenes* hypervirulence by harnessing its biodiversity. *Nature*
887 *Genet* 48: 308.

888 McGhie, E.J., Brawn, L.C., Hume, P.J., Humphreys, D., and Koronakis, V. (2009) *Salmonella* takes
889 control: effector-driven manipulation of the host. *Curr Opin Microbiol* 12: 117-124.

890 McLaughlin, J.B., Castrodale, L.J., Gardner, M.J., Ahmed, R. and Gessner, B.D. (2006). Outbreak of
891 multidrug-resistant *Salmonella* Typhimurium associated with ground beef served at a school
892 potluck. *J. Food Prot.* 69: 666-670.

893 Mileykovskaya, E. and Dowhan, W. (2009) Cardiolipin membrane domains in prokaryotes and
894 eukaryotes. *Biochim Biophys Acta* 1788: 2084– 2091.

895 Miriagou, V., Carattoli, A., and Fanning, S. (2006) Antimicrobial resistance islands: resistance gene
896 clusters in *Salmonella* chromosome and plasmids. *Microb Infect* 8: 1923-1930.

897 Moran, N.A. and Plague, G.R. (2004) Genomic changes following host restriction in bacteria. *Curr*
898 *Opin Genet Dev* 14: 627-633.

899 Morgan, E., Campbell, J.D., Rowe, S.C., Bispham, J., Stevens, M.P., Bowen, A.J., *et al.* (2004)
900 Identification of host-specific colonization factors of *Salmonella enterica* serovar Typhimurium.
901 *Mol Microbiol* 54: 994-1010.

902 Moura, A., Criscuolo, A., Pouseele, H., Maury, M.M., Leclercq, A., Tarr, C., *et al.* (2017) Whole
903 genome-based population biology and epidemiological surveillance of *Listeria monocytogenes*.
904 *Nat Microbiol* 2: 16185.

905 Nemergut, D.R., Schmidt, S.K., Fukami, T., O'Neill, S.P., Bilinski, T.M., Stanish, L.F., *et al.* (2013)
906 Patterns and processes of microbial community assembly. *Microbiol Mol Biol Rev* 77: 342-356.

907 Olsen, S.J., Ying, M., Davis, M.F., Deasy, M., Holland, B., Iampietro, L., *et al.* (2004) Multidrug-
908 resistant *Salmonella* Typhimurium infection from milk contaminated after pasteurization. *Emerg.*
909 *Infect. Dis.* 10: 932.

910 Parkhill, J., Dougan, G., James, K.D., Thomson, N.R., Pickard, D., Wain, J., *et al.* (2001) Complete
911 genome sequence of a multiple drug resistant *Salmonella enterica* serovar Typhi CT18. *Nature*
912 413: 848-852.

913 Pasquali, F., Kehrenberg, C., Manfreda, G., and Schwarz, S. (2005) Physical linkage of Tn 3 and part
914 of Tn 1721 in a tetracycline and ampicillin resistance plasmid from *Salmonella* Typhimurium.
915 *Antimicrob Chemother* 55: 562-565.

916 Peleg, A.Y., Miyakis, S., Ward, D.V., Earl, A.M., Rubio, A., Cameron, D.R., *et al.* (2012) Whole
917 genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory
918 derived isolates of *Staphylococcus aureus*. *PloS One* 7: e28316.

919 Petersen, L., Bollback, J.P., Dimmic, M., Hubisz, M., and Nielsen, R. (2007) Genes under positive
920 selection in *Escherichia coli*. *Genome Res* 17: 1336-1343.

921 Pezzella, C., Ricci, A., DiGiannatale, E., Luzzi, I., and Carattoli, A. (2004) Tetracycline and
922 streptomycin resistance genes, transposons, and plasmids in *Salmonella enterica* isolates from
923 animals in Italy. *Antimicrob Agents Chemother* 48: 903-908.

924 Plumb, I.D., Schwensohn, C.A., Gieraltowski, L., Tecle, S., Schneider, Z.D., Freiman, J., *et al.*
925 (2019) Outbreak of *Salmonella* Newport infections with decreased susceptibility to azithromycin
926 linked to beef obtained in the United States and soft cheese obtained in Mexico—United States,
927 2018–2019. *Morbidity and Mortality Weekly Report* 68:713.

928 Quezada, C.M., Hicks, S.W., Galán, J.E., and Stebbins, C.E. (2009) A family of *Salmonella*
929 virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. *Proc Nat Acad
930 Sci USA* 106: 4864-4869.

931 Rice, P.A. and Baker, T.A. (2001) Comparative architecture of transposase and integrase complexes.
932 *Nat Struct Biol* 8: 302-307.

933 Richards, V.P., Lang, P., Bitar, P.D., Lefébure, T., Schukken, Y.H., Zadoks, R.N., *et al.* (2011)

934 Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted

935 *Streptococcus agalactiae*. *Infect Genet Evol* 11: 1263-75.

936 Rodriguez-Rivera, L.D., Cummings, K.J., Loneragan, G.H., Rankin, S.C., Hanson, D.L., Leone,

937 W.M., *et al.* (2016) *Salmonella* prevalence and antimicrobial susceptibility among dairy farm

938 environmental samples collected in Texas. *Foodborne Pathog Dis* 13: 205-11.

939 Rytkönen, A., Poh, J., Garmendia, J., Boyle, C., Thompson, A., Liu, M., *et al.* (2007) SseL, a

940 *Salmonella* deubiquitinase required for macrophage killing and virulence. *Proc Nat Acad Sci USA*

941 104: 3502-3507.

942 Schleker, S., Sun, J., Raghavan, B., Srnec, M., Müller, N., Koepfinger, M., *et al.* (2012) The current

943 *Salmonella*–host interactome. *Proteomics Clin Appl* 6: 117-33.

944 Slatkin, M. (1987) Gene flow and the geographic structure of natural populations. *Science* 236: 787-

945 92.

946 Strachan, N.J., Rotariu, O., Lopes, B., MacRae, M., Fairley, S., Laing, C., *et al.* (2015) Whole

947 genome sequencing demonstrates that geographic variation of *Escherichia coli* O157 genotypes

948 dominates host association. *Sci Rep* 5: 14145.

949 Steenbergen, J.N., Mohr, J.F., and Thorne, G.M. (2009) Effects of daptomycin in combination with

950 other antimicrobial agents: a review of in vitro and animal model studies. *J Antimicrob Chemother*

951 64: 1130-1138.

952 Toft, C. and Andersson, S.G. (2010) Evolutionary microbial genomics: insights into bacterial host

953 adaptation. *Nat Rev Genet* 11: 465.

954 Thomson, N.R., Clayton, D.J., Windhorst, D., Vernikos, G., Davidson, S., Churcher, C., *et al.* (2008)

955 Comparative genome analysis of *Salmonella Enteritidis* PT4 and *Salmonella Gallinarum* 287/91

956 provides insights into evolutionary and host adaptation pathways. *Genome Res* 18: 1624-37.

957 United States Department of Agriculture. (2014) Nutrient Management Practices on U.S. Dairy
958 Operations.

959 Valenski, M.L., Harris, S.L., Spears, P.A., Horton, J.R., and Orndorff, P.E. (2003) The Product of the
960 *fimI* gene is necessary for *Escherichia coli* type 1 pilus biosynthesis. *J Bacteriol* 185: 5007-5011.

961 Vos, M. (2011) A species concept for bacteria based on adaptive divergence. *Trends Microbiol* 19: 1-
962 7.

963 Wachter, J. and Hill, S. (2016) Positive selection pressure drives variation on the surface-exposed
964 variable proteins of the pathogenic *Neisseria*. *PLoS One*.11: e0161348.

965 Yue, M., Han, X., De Masi, L., Zhu, C., Ma, X., Zhang, J., *et al.* (2015) Allelic variation contributes
966 to bacterial host specificity. *Nat Commun* 6: 8754.

967 Zhao, S., Qaiyumi, S., Friedman, S., Singh, R., Foley, S.L., White, D.G, *et al.* (2003)
968 Characterization of *Salmonella enterica* serotype Newport isolated from humans and food
969 animals. *J Clin Microbiol* 41: 5366-71.

970 Zheng, J., Luo, Y., Reed, E., Bell, R., Brown, E.W., and Hoffmann, M. (2017) Whole-genome
971 comparative analysis of *Salmonella enterica* serovar Newport strains reveals lineage-specific
972 divergence. *Genome Biol Evol* 9: 1047-1050.

973