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21  Abstract

22 Deep learning has been increasingly used in protein tertiary structure prediction, a
23 major goal in life science. However, all the algorithms developed so far mostly use
24  protein sequences as input, whereas the vast amount of protein tertiary structure
25 information available in the Protein Data Bank (PDB) database remains largely unused,
26  because of the inherent complexity of 3D data computation. In this study, we propose
27  Protein Structure Camera (PSC) as an approach to convert protein structures into
28  images. As a case study, we developed a deep learning method incorporating PSC
29  (DeepPSC) to reconstruct protein backbone structures from alpha carbon traces.
30  DeepPSC outperformed all the methods currently available for this task. This PSC
31 approach provides a useful tool for protein structure representation, and for the

32  application of deep learning in protein structure prediction and protein engineering.
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34  Introduction

35  Protein structure determination is an ongoing issue and a major goal in life science that
36  has captivated the attention of scientists for decades. Experimentally, protein structures
37  have been mostly determined by X-ray diffraction crystallography', and to a less extent
38 by nuclear magnetic resonance spectroscopy>. In recent years, cryo-electron
39  microscopy (EM) has also been increasingly used for structure determination®. As an
40  alternative to experimental methods, computational methods have also been developed
41  for predicting protein structures from protein sequences, and deep learning has recently
42 been applied to this prediction problem*®. In particular, DeepMind proposed a method
43 called AlphaFold*, which significantly outperformed all previous prediction methods.
44 A number of algorithms that extract features from protein primary sequences for the
45  purpose of protein function prediction and protein engineering, e.g., UniRep’ and
46 TAPES, represent a further advancement in the field. Other applications of deep learning
47  include protein fold recognition’, and the predictions of protein secondary structures'?,
48  protein functions!!, and drug protein interactions!?.

49 However, all the deep learning methods developed so far utilize only protein
50 sequences as input, whereas the vast amount of protein tertiary structure information
51 available in the rapidly expanding PDB database has not been sufficiently exploited in
52  the calculations, due to its complexity. There are presently three common coarse
53  approximation approaches for protein structure representation, namely, k£ nearest
54  residues'’, distance or contact maps'4, and 3D grids'?, but all with limited utility. Thus,

55  we are interested in the following question: how to utilize protein structure information
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56  in deep learning?

57 It is well known that images can be efficiently processed by deep learning, and
58  particularly in recent years, convolutional neural networks (CNN) have been
59  successfully used in an array of computer vision tasks such as image classification'®,

7. and face recognition'®. CNN can understand an object in the

60  object detection'
61  Euclidean space by extracting visual features from the corresponding image!®2°. Fig.

62  lashows a typical workflow of computer vision-based image classification. Here we
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65  Figure 1. Schematic for the deep learning algorithm used in this work, or DeepPSC. a)
66  The workflow of a typical computer vision task. b) Visualization of Protein Structure
67  Camera (PSC) workflow. This figure is generated with the Chimera software *°. ¢) The
68  workflow of the deep learning-based algorithm DeepPSC used in this work for

69  reconstructing backbone structures from alpha-carbon traces.
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70  propose a “Protein Structure Camera” (PSC) approach for converting protein tertiary
71  structures into images for computer vision processing. In PSC, we used a 16 A x 16 A
72 x 16 A sliding cubic window centered on the alpha carbons of the amino acid residues
73 (Ca) to dissect a protein structure (Fig. 1b). This was then turned into a group of
74  compressed two dimensional 16 Ax 16 A images with a-8 A to 8 A depth range, which
75 were then fed into a CNN and implemented into a deep learning-based network
76 architecture, or DeepPSC (Fig. 1c¢).

77 As a case study, we applied this DeepPSC for reconstructing protein backbone
78  structures (containing atoms C, N, O, Cf in addition to Cat) based on Ca traces, which
79  is an important task for protein structure determination by experimental means and for
80  protein structure prediction by computational approaches. Several protein structure
81  refinement methods have been developed for the analysis of EM images to generate
82  high-quality structure models, such as PHENIX?!' and Coot??. Within these algorithms,
83  the positions of the Ca, which are the atoms that can be located with the highest
84  accuracy, are determined first. Subsequently the backbone structure and then the full
85  atom model are generated. Similarly, many computational algorithms predict the Ca
86  trace as a preliminary reduced model. PHENIX ensembles PULCHRA? for backbone
87  reconstruction, which uses a simple force field and steepest descent minimization. Coot
88  ensembles CALPHA?**?* which is based on a library of backbone fragments compiled
89  from experimentally determined structures. The widely used computational protein
90 structure prediction platform I-TASSER?*® ensembles REMO?’, which directly

91  reconstructs full-atom models (including the backbones) from a backbone isomer


https://doi.org/10.1101/2020.08.12.247312
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247312; this version posted November 9, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

92 library. Similar library-based methods include BBQ?, SABBAC?’, and PD2*, which

93  often achieve better performance than PULCHRA or REMO. These three backbone

94  structure reconstruction methods have also been applied for experimental structure

95  determination®', although they have not been incorporated in PHENIX or Coot. A

96  significant limitation of the library-based methods, however, is that the wide range of

97  conformations of protein backbones cannot be sufficiently represented by the limited

98  number of fragments in the libraries.

99 In this work, we found that our DeepPSC approach outperformed all the previously
100  reported methods for backbone reconstruction, including the benchmark PD2, and the
101  ablation tests showed that the visual feature extracted from the protein structure images
102  provided the main contribution for the improved performance.

103

104

105  Results

106  Represent Ca trace as images by protein structure camera

107 The PSC concept is shown in Fig. 1b. Given an Ca-trace {Cay,Cay, ..., Ca;}, where
108 Ca, € R? isthe coordinate of the n" Caatomand L is the number of residues, PSC
109  represents it as L images. Any given structural segment having Ca, as the center
110  requires a preset orientation and scale. We defined the orientation from Ca, to Ca,4q
111 as the X-axis. The Y-axis was then determined by the orientation from the X-axis to
112 Cay4o, and the Z-axis was defined such as to build a left-hand Cartesian coordinate on

113 the given local structural segment. We set the orientation directed from the positive to
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114  the negative regions of the Z-axis as the PSC view so that the orientations of different
115  local structural segments could be normalized. For Ca;_4, the position on the Y-axis
116  was determined by the orientation from the X-axis to Ca;_,. Similarly, for the last Ca,
117  we defined the orientation from Ca; to Ca;_; asthe X-axis and the orientation from
118  the X-axis to Ca;_, as the Y-axis. An enlarged view of Fig. 1b is given as
119  Supplementary Fig. 1.

120 Since 8 A is generally regarded as the interaction distance cutoff between two
121  residues®?, we used a sliding cubic window with a side length of 16 A centered on the
122 Ca, and a depth ranging from -8 A to 8 A was applied to the PSC view. Each PSC view
123 was then encoded as an image with five channels, representing the Z-axis depth, the
124  relative sequence position, and three key amino acid properties including
125  hydrophobicity*?, bulkiness** and flexibility*>, respectively. The resolution of the image
126 is 128 x 128 pixels. In the image, each Ca was first encoded as a pixel, and a straight
127  line was used to connect adjacent Ca pixels. The values of the properties along the
128  straight line were interpolated from the two Ca pixel values. A given protein Ca trace
129  was thus converted into a group of local structural images.

130

131  Present protein backbone structure as peptide plane torsion angles

132 In this study, we represented the structure of the protein backbone as peptide plane
133  torsions, as reported in a previous study>. For convenience, we denoted the C atom and
134 N atom in the n'® of all L —1 peptide planes by C, € R® and N, € R3,

135  respectively. Note that N,,, the N atom in the n‘"® peptide, is actually the (n + 1)%"
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136

137  Figure 2. Diagrams of the backbone structure representation and rebuilding (only the
138  case of a trans peptide plane is shown). a) Typical peptide plane conformation. Ca,,,
139  C,, O,, N,, Ca,., located on the n‘" peptide plane of the protein structure. PC,,
140 PN, and PO, are the projections of C,, N,, and O, on m, respectively.
141 b) Side view from Ca, to C,,q,in which TC, and TN, are the torsion angles from
142 Capyq to Cp, and from Cay,y, to N, respectively, with m as the axis. ¢)
143 Rebuilding process for Cf,, , using the constraint 8y = 6., fixed bond length

144 |C a,CpBy|, and fixed torsion angle TCpS.

145

146 N atom of the protein backbone. Besides, we defined the vectors from atom A to atom
147 B as AB = B — A, with the corresponding unit vector being AB = AB / |Z§ | We
148  applied a constraint that assumed Cea,, C,, O,, N,, Ca,,; forming a standard

149  peptide plane (trans or cis). Within the given n'* trans peptide plane, as shown in
8
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150  Fig.2a, the locations of C,, 0,, N, on the plane can be determined with a group of
151  fixed lengths. For example, since |Ca,PC,| and |PC,C,| are fixed, we could locate

152 G, on the plane. Next, as shown in Fig. 2b, we used Ca,,1Ca,,, as a reference

153  orientation to determine the torsion angles for each n'*peptide plane, i.e., the torsion

154  angle from Ca,,1Ca,4, to Ca,C, (TC,), and that from Ca,,1Cay., to Ca,N,
155  (TN,), where TN, is approximately 180 degrees larger than TC,. The locations of
156 Ca,, C,, O0,, N,, Ca,y; were determined from the combination of all this
157  information. In the case of cis peptides, the fixed lengths are different from those of
158  trans peptides, and TN,, is close to TC,. In all cases, TO, is very close to TCp,
159  therefore TC, was used as an approximation of T0O, in all calculations. TC, and
160 TN, were encoded in the form of sine and cosine in the final representations.

161 Since the residues in proteins are L-amino acids, the coordinates of Cf,, can be
162  determined when N,_4, Ca,,and C are known. Fig. 2¢ shows the rebuilding process
163  used in this work. We first set the position of the projection of CS,(Cp;,) along the
164  direction of the bisector of £N,_;Ca,C,, with a fixed bond length |Ca,,CB,|. By
165  rotating m with the fixed angle TCf, the location of Cf, was determined.
166  Without constraints from the peptide plane, the first N atom and the last C and O atoms
167  ofaprotein backbone are usually highly flexible, therefore our method could not predict
168  the positions of these atoms.

169 Specific geometrical calculations for all the above representations and rebuilding
170  are provided in Methods.

171
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Develop a deep neural network for PSC images

As shown in Fig. 3, the deep neural network implemented in DeepPSC takes local
structure images as the input, and calculate the peptide plane torsions as the output. We
first adopted ResNet50, the most used convolutional neural network for computer
vision processing, to extract visual features from the images (Supplementary Fig. 2),
which are labelled as “local structural features”. Then, we used a bidirectional long

)38,39

short-term memory module (Bi-LSTM , the most used recurrent neural network
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Figure 3. Network Architecture of DeepPSC. ResNet50 was used to extract visual
features from images as local structure features. All local structure features were then
fed into a Bi-LSTM module for information globalization among residues, yielding
globalized local structure features. Finally, an MLP module was used to predict peptide

plane torsions for pairs of the above adjacent globalized local structure features.
10
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186  module for sequence modelling, to sequentially pass information between the extracted
187  local structural features (Supplementary Fig. 3a). The outputs of this module were
188  expected to mainly represent the local structures but they also contain sequential
189  context information, and are labeled as “globalized local structural features”. Afterward,
190  considering that a single peptide plane is constructed by two adjacent residues, we
191  paired every globalized local structural feature with the next one in the amino acid
192  sequence as the “peptide plane feature”. Finally, we used a multilayer perceptron
193  (MLP)*, a typical neural network module, to predict peptide plane torsions from the
194  peptide plane features (Supplementary Fig. 3b).

195 To compare our DeepPSC method with previously reported protein structure
196  representation methods, we additionally built two baseline methods. In the first baseline,
197  we used the k nearest residues method!® to represent the Ca trace, and to encode the
198  network input. To maintain the input information as close to that of our method as
199  possible, we enriched the representation by adding relative protein positions and residue
200  properties. For this baseline, an MLP module (Supplementary Fig. 4) was used instead
201  of ResNet50, to extract local structural features for the input format, since the latter
202  cannot process this baseline input'®. For the second baseline, protein structures were
203  represented as distance maps and processed with a CNN (Supplementary Fig. 5), as
204  previously reported, without any modifications!®.

205

206  DeepPSC outperforms other standard backbone reconstruction methods

207  We performed the 10-fold cross validation process on the three network architectures

11
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208  Table 1. Overview of the results for various backbone reconstruction methods.

Mean Mean Mean RAMA

Method
ethods Models RMSDioo (A) |GDT P0.2 (%)| outliers (%)

Rebuilt from

PDB — 0.040 95.76 0.22
Ensemble 0.076 88.18 0.23
model
DeepPSC
Single model | 0.079+0.001 87.87+0.08 0.22+0.03
Ensemble
Baseline 1 model 0.101 83.44 0.50
(k nearest
residues) Single model | 0.108+0.001 82.16+0.25 0.71+0.07
Ensemble 0.289 54.58 5.23
Baseline 2 model

(distance map)
Single model | 0.289+0.001 | 54.42+0.48 5.30+0.17

PD2 — 0.149 73.26 0.90
BBQ — 0.156 71.82 3.03
SABBAC* — 0.201 58.30 1.94
PULCHRA — 0.221 52.15 2.20

209  *SABBAC failed to process one of the 21 structures in the test set. The results shown
210  here were obtained with the other 20 test structures.

211

212 (DeepPSC, and the two baselines), and obtained 10 models for each architecture, for a
213 total of 30 models. Next, we applied each of these models to the test set and obtained

214  the predicted torsion angles as outputs. Subsequently, for each architecture, we took the

12
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215  average of the outputs of the 10 cross validation models as the “ensemble model”. Then
216  the outputs of the ten models and that of the ensemble model were used to rebuild the
217  backbone structures together with the corresponding Ca traces, and these rebuilt models
218  were evaluated with the three performance criteria, RMSDi90, GDT P0.2, and RAMA
219  outliers (Table 1). The average performance of the ten models for each architecture was
220  calculated and shown as the “single model” performance, with the standard deviation
221  of the single model performance indicating the robustness of the network architecture.
222  Finally, we compared the performance of these architectures to that of PD2, BBQ,
223 SABBAC and PULCHRA (Table 1).

224 Generally, protein structures with resolution smaller than 2.0 A are regarded as
225  high-quality structures®’. According to the official statistics of PDB, up to July 27, 2020,
226  the median resolution of X-ray crystallography structures in the database is 2.03 A. For
227  atypical 2.0 A crystallographic model, the average error on atomic coordinates is lower
228  than 0.2 A*!. Therefore, we considered 0.2 A as the benchmark in our performance
229  evaluation. Accordingly, we set the GDT cutoff at 0.2 A to calculate the percentage of
230  atoms that can be regarded as acceptable in a high-quality structure.

231 Based on the mean RMSDj o, and the GDT_P0.2 and RAMA outliers percentages
232 asshown in Table 1, the backbone structures predicted by the ensemble model obtained
233 with DeepPSC clearly outperformed those predicted by the baseline methods as well as
234  the various traditional methods (PD2, BBQ, SABBAC and PULCHRA), in all three
235  criteria. In particular, the performance of baseline 1, which was devoid of the image
236  features of DeepPSC, suggested that the visual features extracted in DeepPSC were the

13
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237  main factor for its improved performance. By comparing the results for the Rebuilt
238  model (directly from the PDB) and the ensemble model of DeepPSC, it could be
239  deduced that the deviations observed in DeepPSC consisted of two elements: (i) the
240  first was represented by the deviations introduced during the rebuilding process per se,
241  which were the deviations between the ideal peptide plane conformations and the
242  experimentally determined peptide plane conformations; (ii) the second is represented
243 by the deviations induced by the model fitting in DeepPSC. Therefore, future
244  developments should focus on devising an alternative strategy in lieu of the peptide
245  plane assumption.

246

Rebuilt from PDB DeepPSC Baseline 1 Baseline 2 PD2 PULCHRA
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247
248  Figure 4. Distributions of the atomic coordinate deviations (rows) of the various

249  reconstruction methods (columns). The GDT scores for 0.2 A cutoff are indicated in

250  the plots.
14
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251

252  Figure 5. Ramachandran plots of the reconstructions obtained with different methods
253  compared to the original structures (PDB). Rows represent the different methods and
254  columns represent all residues (General), glycines (Gly), the residues preceding

15
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255  prolines (Pre-Pro), and prolines (Pro). By taking the reference distributions in the
256  backgrounds, residues are classified as normal residues (blue) or outliers (red).

257

258 The distributions of the atomic coordinate deviations were also used to calculate
259  the GDT P0.2 scores of DeepPSC, PD2, PULCHRA and the two baselines (Fig. 4),
260  which clearly show that the backbones reconstructed by DeepPSC were more accurate
261  than those obtained with PD2, PULCHRA and the two baselines. Lastly, the
262  Ramachandran plots of the reconstructions obtained with different methods clearly
263  showed that the backbone structures reconstructed by DeepPSC were the most
264  reasonable among all methods (Fig. 5). In particular, none of the glycine and proline
265 residues in the backbones obtained from DeepPSC were classified as outliers,
266  consistent with the experimentally determined PDB structures, whereas many of these
267  residues resulted as outliers in the backbones obtained by PD2 and PULCHRA, as well
268  as by baseline 2. It is noteworthy that for baseline 2, the dihedral angles share a “S-
269  shape” distribution pattern for all the four types of residues (general, glycine, pre-
270  proline, and proline), which is consistent with the poor network fitting of this type of
271  protein structure representation, as shown in Supplementary Fig. 6.

272

273

274  Conclusions

275  We consider protein structure representation as a critical problem in applying deep
276  learning for reliable protein structure prediction, and for related endeavors such as
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277  protein design. Our protein structure camera (PSC) approach provides a step forward
278 in protein structure representations, and toward enabling more sophisticated
279  applications of deep learning in biology.

280

281

282  Methods

283  Geometrical calculation. In this study, we represented C atoms and N atoms in peptide

284  planes as torsion angles by:

- e = {torsion(Can+1Can+2, CanCpCanCaynyy), n<L—2 D
" torsion(Ca,Cay_1,CanCy CanCany, ), n=L-1
286  and
torsion(Ca,.1Ca,,-,,Ca,N,,Ca,Ca , n<L-—2
287 TNn — { ( n+1 n+2 ni'n n n+1) (2)
torsion(CanCay_y,CayNy, CayCany, ), n=L-1
288  in which the torsion angle from v; to v, with U as axis was calculated by:
. ny Xn, i n, =v; XU
289 torsion(vy,v,,U) = arctan (#»Where{ reore (3)
ngn, n, =u X (%)

290 In the rebuilding process, the orientation of C,, and N, was determined by rotating

291  the n*" peptide plane with Ca,Ca, ., as the axis:

rotation(PCa,.,Ca,.,, Ca,Cat,, 1, TC,), n<L-—2
292 PCnCn — { ( n+2 n+2 n/\n+1 n) (4)
rotation(PCap_1Cay_q,CanCaynyy,TC,), n=L—1
293 and
rotation(PCa,,,,Ctt,.», Ca,,Cct,,.1,TN,, ), n<L-2
294 PNnNn — { ( n+2 n+2 n n+1 n) (5)
rotation(PCap_1Cay_q,CanCanyy, TN,), n=L-1

295 where PCa,,, and PCa,_; is the projections of Ca,,, and Ca,_; on

296 Ca,Cap,q , respectively. The rotation was calculated by Rodrigues-Gibbs
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297  Formulation**:
298 v, = rotation(vy ,4,T) =v;cosT + 1 X vysinT + (v; - W)A(1 —cosT) (6)

299  inwhich v, was obtained by rotate v; with a unit vector @i asaxisand T as torsion

300 angle. We assumed PO, 0, = PC,C, using the ideal peptide plane conformation.
301  Afterward the relative locations from atoms C,, N,, and O, to Ca, were

302  respectively determined by:

CanCp = CanCanyy * |CanPCy| + PC,C, % |PCLCy|
303 Can0, = CanCanyq * |CayP0,| + PO,0, * |P0O,0,| (7)
CanN, = CayCanyq * |CanPN,| + PN,N, * |PN,N,|

304  where |CanPCn

. |PC.Cy], [CanPO,|, |P0L0,|, |CanPN,|, and |PN,N,| are a
305  group of fixed length estimated from training data (listed in Table S1). Note that there
306 are two type of peptide planes and the fixed lengths are correspondingly different. In
307  the trans peptide plane, the distance between adjacent Ca is approximately 3.8 A while
308 for the cis peptide plane it is approximately 3.0 A. Therefore, we rebuilt the nt"
309  peptide plane with fixed lengths for the trans peptide plane when |m| > 3.4 A,
310 otherwise with fixed lengths for cis peptide plane.

311  Finally, the coordinates were determined as:

C,=Ca, + Ca,C,

312 0, = Ca, + Ca,,0, (8)
N, =Ca, + Ca,N,

313  The rebuilt atoms C,, N,_; and known Ca, in aresidue were used to rebuild atom

314 Cf, € R3with the following process. First, we initialized Ca,CpB;, at the middle

315 between Ca,C, and Ca,N,_; by:

— Ca,C,+CayNy—y ——
316 CanChy = ——— "=+ [CanCPy| )
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317  Afterward, m was determined by rotating m with N,_,C, as axis and
318 TCp as torsion angle:

319 Ca,CB, = rotation(m, Np—1C,, TCB) (10)
320  We then calculated Cf,, by:

321 CB, = Ca, + Ca,CB, (11)
322  The fixed length |m| and fixed angle TCB used above are constants estimated
323  from the training data (listed in Supplementary Table 1).

324

325 Dataset. We selected a subgroup from the protein structures reported in the PDB, to
326  build a tertiary structure dataset. A PDB entry was not included in this subgroup if: (i)
327  the structure was not determined by X-ray crystallography; (i1) the entry has a number
328  of residues fewer than 15 or higher than 800; (ii1) the entry has missing atoms in the
329  backbone or unnatural residues; (iv) the entry has sequence identity higher than 40%
330  with another entry included in the subgroup’. This resulted in the construction of a
331 non-redundant dataset containing 10,302 protein structures.

332

333  Model training. We used 10-fold cross validation in training our models. The whole
334  dataset was randomly and equally separated into ten sub-datasets. We routinely used
335 one sub-dataset as the validation set and all the other nine sub-datasets as the model
336 training sets. All the models were trained for 30 epochs using mean square error (MSE)
337  as the loss function and the Adam optimizer*’. The training batch size for the local
338  structure embedding block was the total number of residues of the input structures, thus
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339 it was dynamic even if the number of input structures was fixed. To maintain the
340 training batch relatively stable, we split all training structures as batches containing 1~5
341  structures with approximately 800 residues. The learning rate was set to 0.0003 for the
342  first 3 epochs, and then was adjusted according to the cosine-annealing schedule** in
343  the following epochs. The trained models were validated with the corresponding
344  wvalidation set after every epoch. The curves of validation loss showed that all the
345  models of DeepPSC and baseline 1 steadily converged at the 30" epoch, while the
346  models of baseline 2 showed poor fitting (Supplementary Fig. 6). The network
347  construction and model training were implemented with PyTorch, an open source
348  machine learning framework. All the details we have not mention follow the default
349  setting of PyTorch.

350

351  Performance criteria. In this study the performance of various methods was evaluated
352  onthe basis of three criteria, e.g., root mean square deviation (RMSD)*, global distance

353  test (GDT)*, and Ramachandran (RAMA) outliers*’. RMSD is one of the most used

354 criteria to measure the similarity between two structures *°, and is calculated as follows:

355 (12)

356  where d; is the coordinate deviation between atom i in two structures, and N is the
357  total number of atoms. Considering that RMSD usually increases as the number of
358  atoms of a protein increases*®, this value is usually normalized as RMSD1o, which

359  describes the same deviation in 100 atoms*, and is calculated as follows:
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RMSD
RMSDyyy = ———— (13)
360 N
1+1In m
361 where N is the number of atoms.
362 RMSD is, however, strongly affected by the parts in the structures that deviate the

363  most, therefore it often fails to represent the deviations of most of the atoms. Aimed at
364 alleviating this problem, a community-wide experiment called CASP (critical
365  assessment of techniques for Protein Structure Prediction)*® have been using a different
366 indicator, the Global Distance Test (GDT), as their main assessment method for ranking
367  protein structure prediction methods. GDT scores are calculated as the percentage of
368  atoms that have distance deviations smaller than the preset distance cutoffs. Cutoffs for
369 GDT in CASP is usually set to 1, 2, 4, and 8 A. In this study, the cutoff was set to 0.2
370 A, and the GDT was labeled as GDT P0.2.

371 The Ramachandran Plot is a statistical reference distribution of the combination of
372  the backbone dihedral angles in proteins*’. In a Ramachandran Plot, one can classify
373  residues in a given protein backbone structure as ‘core’, ‘allowed’, and ‘outliers’. The
374  percentage of outliers (RAMA outliers) is used to assess protein backbone structure
375  uncertainty.

376
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Code and data availability
All source codes and models of DeepPSC are openly available on GitHub
(https://github.com/EricZhangSCUT/DeepPSC), together with the PDB ID lists of all

involved datasets.
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