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2 

 

Abstract 21 

Deep learning has been increasingly used in protein tertiary structure prediction, a 22 

major goal in life science. However, all the algorithms developed so far mostly use 23 

protein sequences as input, whereas the vast amount of protein tertiary structure 24 

information available in the Protein Data Bank (PDB) database remains largely unused, 25 

because of the inherent complexity of 3D data computation. In this study, we propose 26 

Protein Structure Camera (PSC) as an approach to convert protein structures into 27 

images. As a case study, we developed a deep learning method incorporating PSC 28 

(DeepPSC) to reconstruct protein backbone structures from alpha carbon traces. 29 

DeepPSC outperformed all the methods currently available for this task. This PSC 30 

approach provides a useful tool for protein structure representation, and for the 31 

application of deep learning in protein structure prediction and protein engineering. 32 

  33 
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Introduction 34 

Protein structure determination is an ongoing issue and a major goal in life science that 35 

has captivated the attention of scientists for decades. Experimentally, protein structures 36 

have been mostly determined by X-ray diffraction crystallography1, and to a less extent 37 

by nuclear magnetic resonance spectroscopy2. In recent years, cryo-electron 38 

microscopy (EM) has also been increasingly used for structure determination3. As an 39 

alternative to experimental methods, computational methods have also been developed 40 

for predicting protein structures from protein sequences, and deep learning has recently 41 

been applied to this prediction problem4-6. In particular, DeepMind proposed a method 42 

called AlphaFold4, which significantly outperformed all previous prediction methods. 43 

A number of algorithms that extract features from protein primary sequences for the 44 

purpose of protein function prediction and protein engineering, e.g., UniRep7 and 45 

TAPE8, represent a further advancement in the field. Other applications of deep learning 46 

include protein fold recognition9, and the predictions of protein secondary structures10, 47 

protein functions11, and drug protein interactions12. 48 

However, all the deep learning methods developed so far utilize only protein 49 

sequences as input, whereas the vast amount of protein tertiary structure information 50 

available in the rapidly expanding PDB database has not been sufficiently exploited in 51 

the calculations, due to its complexity. There are presently three common coarse 52 

approximation approaches for protein structure representation, namely, k nearest 53 

residues13, distance or contact maps14, and 3D grids15, but all with limited utility. Thus, 54 

we are interested in the following question: how to utilize protein structure information 55 
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in deep learning? 56 

It is well known that images can be efficiently processed by deep learning, and 57 

particularly in recent years, convolutional neural networks (CNN) have been 58 

successfully used in an array of computer vision tasks such as image classification16, 59 

object detection17, and face recognition18. CNN can understand an object in the 60 

Euclidean space by extracting visual features from the corresponding image19,20. Fig. 61 

1a shows a typical workflow of computer vision-based image classification. Here we 62 

 63 

  64 

Figure 1. Schematic for the deep learning algorithm used in this work, or DeepPSC. a) 65 

The workflow of a typical computer vision task. b) Visualization of Protein Structure 66 

Camera (PSC) workflow. This figure is generated with the Chimera software 50. c) The 67 

workflow of the deep learning-based algorithm DeepPSC used in this work for 68 

reconstructing backbone structures from alpha-carbon traces. 69 
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propose a “Protein Structure Camera” (PSC) approach for converting protein tertiary 70 

structures into images for computer vision processing. In PSC, we used a 16 Å × 16 Å 71 

× 16 Å sliding cubic window centered on the alpha carbons of the amino acid residues 72 

(Cα) to dissect a protein structure (Fig. 1b). This was then turned into a group of 73 

compressed two dimensional 16 Å× 16 Å images with a -8 Å to 8 Å depth range, which 74 

were then fed into a CNN and implemented into a deep learning-based network 75 

architecture, or DeepPSC (Fig. 1c).  76 

As a case study, we applied this DeepPSC for reconstructing protein backbone 77 

structures (containing atoms C, N, O, Cβ in addition to Cα) based on Cα traces, which 78 

is an important task for protein structure determination by experimental means and for 79 

protein structure prediction by computational approaches. Several protein structure 80 

refinement methods have been developed for the analysis of EM images to generate 81 

high-quality structure models, such as PHENIX21 and Coot22. Within these algorithms, 82 

the positions of the Cα, which are the atoms that can be located with the highest 83 

accuracy, are determined first. Subsequently the backbone structure and then the full 84 

atom model are generated. Similarly, many computational algorithms predict the Cα 85 

trace as a preliminary reduced model. PHENIX ensembles PULCHRA23 for backbone 86 

reconstruction, which uses a simple force field and steepest descent minimization. Coot 87 

ensembles CALPHA24,25, which is based on a library of backbone fragments compiled 88 

from experimentally determined structures. The widely used computational protein 89 

structure prediction platform I-TASSER26 ensembles REMO27, which directly 90 

reconstructs full-atom models (including the backbones) from a backbone isomer 91 
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library. Similar library-based methods include BBQ28, SABBAC29, and PD230, which 92 

often achieve better performance than PULCHRA or REMO. These three backbone 93 

structure reconstruction methods have also been applied for experimental structure 94 

determination31, although they have not been incorporated in PHENIX or Coot. A 95 

significant limitation of the library-based methods, however, is that the wide range of 96 

conformations of protein backbones cannot be sufficiently represented by the limited 97 

number of fragments in the libraries. 98 

In this work, we found that our DeepPSC approach outperformed all the previously 99 

reported methods for backbone reconstruction, including the benchmark PD2, and the 100 

ablation tests showed that the visual feature extracted from the protein structure images 101 

provided the main contribution for the improved performance.  102 

 103 

 104 

Results 105 

Represent Cα trace as images by protein structure camera 106 

The PSC concept is shown in Fig. 1b. Given an Cα-trace  {𝐶𝛼1, 𝐶𝛼2, … , 𝐶𝛼𝐿}, where 107 

𝐶𝛼𝑛 ∈ ℝ3 is the coordinate of the 𝑛𝑡ℎ Cα atom and 𝐿 is the number of residues, PSC 108 

represents it as 𝐿  images. Any given structural segment having 𝐶𝛼𝑛  as the center 109 

requires a preset orientation and scale. We defined the orientation from 𝐶𝛼𝑛 to 𝐶𝛼𝑛+1 110 

as the X-axis. The Y-axis was then determined by the orientation from the X-axis to 111 

𝐶𝛼𝑛+2, and the Z-axis was defined such as to build a left-hand Cartesian coordinate on 112 

the given local structural segment. We set the orientation directed from the positive to 113 
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the negative regions of the Z-axis as the PSC view so that the orientations of different 114 

local structural segments could be normalized. For 𝐶𝛼𝐿−1, the position on the Y-axis 115 

was determined by the orientation from the X-axis to 𝐶𝛼𝐿−2. Similarly, for the last Cα, 116 

we defined the orientation from 𝐶𝛼𝐿 to 𝐶𝛼𝐿−1 as the X-axis and the orientation from 117 

the X-axis to 𝐶𝛼𝐿−2  as the Y-axis. An enlarged view of Fig. 1b is given as 118 

Supplementary Fig. 1.  119 

Since 8 Å is generally regarded as the interaction distance cutoff between two 120 

residues32, we used a sliding cubic window with a side length of 16 Å centered on the 121 

Cα, and a depth ranging from -8 Å to 8 Å was applied to the PSC view. Each PSC view 122 

was then encoded as an image with five channels, representing the Z-axis depth, the 123 

relative sequence position, and three key amino acid properties including 124 

hydrophobicity33, bulkiness34 and flexibility35, respectively. The resolution of the image 125 

is 128 × 128 pixels. In the image, each Cα was first encoded as a pixel, and a straight 126 

line was used to connect adjacent Cα pixels. The values of the properties along the 127 

straight line were interpolated from the two Cα pixel values. A given protein Cα trace 128 

was thus converted into a group of local structural images.  129 

 130 

Present protein backbone structure as peptide plane torsion angles 131 

In this study, we represented the structure of the protein backbone as peptide plane 132 

torsions, as reported in a previous study36. For convenience, we denoted the C atom and 133 

N atom in the 𝑛𝑡ℎ  of all 𝐿 − 1  peptide planes by 𝐶𝑛 ∈ ℝ3  and 𝑁𝑛 ∈ ℝ3 , 134 

respectively. Note that 𝑁𝑛, the N atom in the 𝑛𝑡ℎ peptide, is actually the (𝑛 + 1)𝑡ℎ  135 
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 136 

Figure 2. Diagrams of the backbone structure representation and rebuilding (only the 137 

case of a trans peptide plane is shown). a) Typical peptide plane conformation. 𝐶𝛼𝑛, 138 

𝐶𝑛, 𝑂𝑛, 𝑁𝑛, 𝐶𝛼𝑛+1 located on the 𝑛𝑡ℎ peptide plane of the protein structure. 𝑃𝐶𝑛, 139 

𝑃𝑁𝑛, and 𝑃𝑂𝑛 are the projections of 𝐶𝑛, 𝑁𝑛, and 𝑂𝑛 on  𝐶𝛼𝑛𝐶𝛼𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, respectively. 140 

b) Side view from 𝐶𝛼𝑛 to 𝐶𝑛+1, in which 𝑇𝐶𝑛 and 𝑇𝑁𝑛 are the torsion angles from 141 

𝐶𝛼𝑛+2 to 𝐶𝑛 , and from 𝐶𝛼𝑛+2 to 𝑁𝑛 , respectively, with 𝐶𝛼𝑛𝐶𝛼𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ as the axis. c) 142 

Rebuilding process for 𝐶𝛽𝑛 , using the constraint 𝜃𝑁 = 𝜃𝐶  , fixed bond length 143 

|𝐶𝛼𝑛𝐶𝛽𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |, and fixed torsion angle 𝑇𝐶𝛽. 144 

 145 

N atom of the protein backbone. Besides, we defined the vectors from atom 𝐴 to atom 146 

𝐵 as  𝐴𝐵⃗⃗⃗⃗  ⃗ ≡ 𝐵 − 𝐴, with the corresponding unit vector being  𝐴𝐵̂ ≡ 𝐴𝐵⃗⃗⃗⃗  ⃗ /|𝐴𝐵⃗⃗⃗⃗  ⃗ |. We 147 

applied a constraint that assumed 𝐶𝛼𝑛 , 𝐶𝑛 , 𝑂𝑛 , 𝑁𝑛 , 𝐶𝛼𝑛+1  forming a standard 148 

peptide plane (trans or cis). Within the given 𝑛𝑡ℎ trans peptide plane, as shown in 149 
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Fig.2a, the locations of 𝐶𝑛, 𝑂𝑛, 𝑁𝑛 on the plane can be determined with a group of 150 

fixed lengths. For example, since |𝐶𝛼𝑛𝑃𝐶𝑛| and |𝑃𝐶𝑛𝐶𝑛|  are fixed, we could locate 151 

𝐶𝑛 on the plane. Next, as shown in Fig. 2b, we used  𝐶𝛼𝑛+1𝐶𝛼𝑛+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    as a reference 152 

orientation to determine the torsion angles for each 𝑛𝑡ℎpeptide plane, i.e., the torsion 153 

angle from 𝐶𝛼𝑛+1𝐶𝛼𝑛+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    to 𝐶𝛼𝑛𝐶𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  (𝑇𝐶𝑛 ), and that from 𝐶𝛼𝑛+1𝐶𝛼𝑛+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    to 𝐶𝛼𝑛𝑁𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   154 

(𝑇𝑁𝑛), where 𝑇𝑁𝑛 is approximately 180 degrees larger than 𝑇𝐶𝑛. The locations of 155 

𝐶𝛼𝑛 , 𝐶𝑛 , 𝑂𝑛 , 𝑁𝑛 , 𝐶𝛼𝑛+1  were determined from the combination of all this 156 

information. In the case of cis peptides, the fixed lengths are different from those of 157 

trans peptides, and 𝑇𝑁𝑛  is close to 𝑇𝐶𝑛 . In all cases, 𝑇𝑂𝑛  is very close to 𝑇𝐶𝑛 , 158 

therefore 𝑇𝐶𝑛  was used as an approximation of 𝑇𝑂𝑛  in all calculations. 𝑇𝐶𝑛  and 159 

𝑇𝑁𝑛 were encoded in the form of sine and cosine in the final representations.  160 

Since the residues in proteins are L-amino acids, the coordinates of 𝐶𝛽𝑛 can be 161 

determined when 𝑁𝑛−1, 𝐶𝛼𝑛, and 𝐶 are known. Fig. 2c shows the rebuilding process 162 

used in this work. We first set the position of the projection of 𝐶𝛽𝑛(𝐶𝛽𝑛
′ ) along the 163 

direction of the bisector of ∠𝑁𝑛−1𝐶𝛼𝑛𝐶𝑛 , with a fixed bond length |𝐶𝛼𝑛𝐶𝛽𝑛| . By 164 

rotating 𝐶𝛼𝑛𝐶𝛽𝑛
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    with the fixed angle 𝑇𝐶𝛽 , the location of 𝐶𝛽𝑛  was determined. 165 

Without constraints from the peptide plane, the first N atom and the last C and O atoms 166 

of a protein backbone are usually highly flexible, therefore our method could not predict 167 

the positions of these atoms.  168 

Specific geometrical calculations for all the above representations and rebuilding 169 

are provided in Methods. 170 

 171 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.08.12.247312doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.247312
http://creativecommons.org/licenses/by-nc/4.0/


10 

 

Develop a deep neural network for PSC images 172 

As shown in Fig. 3, the deep neural network implemented in DeepPSC takes local 173 

structure images as the input, and calculate the peptide plane torsions as the output. We 174 

first adopted ResNet5037, the most used convolutional neural network for computer 175 

vision processing, to extract visual features from the images (Supplementary Fig. 2), 176 

which are labelled as “local structural features”. Then, we used a bidirectional long 177 

short-term memory module (Bi-LSTM)38,39, the most used recurrent neural network 178 

 179 

 180 

Figure 3. Network Architecture of DeepPSC. ResNet50 was used to extract visual 181 

features from images as local structure features. All local structure features were then 182 

fed into a Bi-LSTM module for information globalization among residues, yielding 183 

globalized local structure features. Finally, an MLP module was used to predict peptide 184 

plane torsions for pairs of the above adjacent globalized local structure features. 185 
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module for sequence modelling, to sequentially pass information between the extracted 186 

local structural features (Supplementary Fig. 3a). The outputs of this module were 187 

expected to mainly represent the local structures but they also contain sequential 188 

context information, and are labeled as “globalized local structural features”. Afterward, 189 

considering that a single peptide plane is constructed by two adjacent residues, we 190 

paired every globalized local structural feature with the next one in the amino acid 191 

sequence as the “peptide plane feature”. Finally, we used a multilayer perceptron 192 

(MLP)40, a typical neural network module, to predict peptide plane torsions from the 193 

peptide plane features (Supplementary Fig. 3b). 194 

To compare our DeepPSC method with previously reported protein structure 195 

representation methods, we additionally built two baseline methods. In the first baseline, 196 

we used the k nearest residues method13 to represent the Cα trace, and to encode the 197 

network input. To maintain the input information as close to that of our method as 198 

possible, we enriched the representation by adding relative protein positions and residue 199 

properties. For this baseline, an MLP module (Supplementary Fig. 4) was used instead 200 

of ResNet50, to extract local structural features for the input format, since the latter 201 

cannot process this baseline input13. For the second baseline, protein structures were 202 

represented as distance maps and processed with a CNN (Supplementary Fig. 5), as 203 

previously reported, without any modifications14.  204 

 205 

DeepPSC outperforms other standard backbone reconstruction methods 206 

We performed the 10-fold cross validation process on the three network architectures 207 
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Table 1. Overview of the results for various backbone reconstruction methods. 208 

*SABBAC failed to process one of the 21 structures in the test set. The results shown 209 

here were obtained with the other 20 test structures.  210 

 211 

(DeepPSC, and the two baselines), and obtained 10 models for each architecture, for a 212 

total of 30 models. Next, we applied each of these models to the test set and obtained 213 

the predicted torsion angles as outputs. Subsequently, for each architecture, we took the 214 

Methods Models 
Mean 

RMSD100 (Å) 

Mean 

GDT_P0.2 (%) 

Mean RAMA 

outliers (%) 

Rebuilt from 

PDB 
—— 0.040 95.76 0.22 

DeepPSC 

Ensemble 

model 
0.076 88.18 0.23 

Single model 0.079±0.001 87.87±0.08 0.22±0.03 

Baseline 1 

(k nearest 

residues) 

Ensemble 

model 
0.101 83.44 0.50 

Single model 0.108±0.001 82.16±0.25 0.71±0.07 

Baseline 2 

(distance map) 

Ensemble 

model 
0.289 54.58 5.23 

Single model 0.289±0.001 54.42±0.48 5.30±0.17 

PD2 —— 0.149 73.26 0.90 

BBQ —— 0.156 71.82 3.03 

SABBAC* —— 0.201 58.30 1.94 

PULCHRA —— 0.221 52.15 2.20 
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average of the outputs of the 10 cross validation models as the “ensemble model”. Then 215 

the outputs of the ten models and that of the ensemble model were used to rebuild the 216 

backbone structures together with the corresponding Cα traces, and these rebuilt models 217 

were evaluated with the three performance criteria, RMSD100, GDT_P0.2, and RAMA 218 

outliers (Table 1). The average performance of the ten models for each architecture was 219 

calculated and shown as the “single model” performance, with the standard deviation 220 

of the single model performance indicating the robustness of the network architecture. 221 

Finally, we compared the performance of these architectures to that of PD2, BBQ, 222 

SABBAC and PULCHRA (Table 1). 223 

 Generally, protein structures with resolution smaller than 2.0 Å are regarded as 224 

high-quality structures30. According to the official statistics of PDB, up to July 27, 2020, 225 

the median resolution of X-ray crystallography structures in the database is 2.03 Å. For 226 

a typical 2.0 Å crystallographic model, the average error on atomic coordinates is lower 227 

than 0.2 Å41. Therefore, we considered 0.2 Å as the benchmark in our performance 228 

evaluation. Accordingly, we set the GDT cutoff at 0.2 Å to calculate the percentage of 229 

atoms that can be regarded as acceptable in a high-quality structure. 230 

Based on the mean RMSD100, and the GDT_P0.2 and RAMA outliers percentages 231 

as shown in Table 1, the backbone structures predicted by the ensemble model obtained 232 

with DeepPSC clearly outperformed those predicted by the baseline methods as well as 233 

the various traditional methods (PD2, BBQ, SABBAC and PULCHRA), in all three 234 

criteria. In particular, the performance of baseline 1, which was devoid of the image 235 

features of DeepPSC, suggested that the visual features extracted in DeepPSC were the 236 
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main factor for its improved performance. By comparing the results for the Rebuilt 237 

model (directly from the PDB) and the ensemble model of DeepPSC, it could be 238 

deduced that the deviations observed in DeepPSC consisted of two elements: (i) the 239 

first was represented by the deviations introduced during the rebuilding process per se, 240 

which were the deviations between the ideal peptide plane conformations and the 241 

experimentally determined peptide plane conformations; (ii) the second is represented 242 

by the deviations induced by the model fitting in DeepPSC. Therefore, future 243 

developments should focus on devising an alternative strategy in lieu of the peptide 244 

plane assumption.  245 

 246 

 247 

Figure 4. Distributions of the atomic coordinate deviations (rows) of the various 248 

reconstruction methods (columns). The GDT scores for 0.2 Å cutoff are indicated in 249 

the plots.  250 
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 251 

Figure 5. Ramachandran plots of the reconstructions obtained with different methods 252 

compared to the original structures (PDB). Rows represent the different methods and 253 

columns represent all residues (General), glycines (Gly), the residues preceding 254 
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prolines (Pre-Pro), and prolines (Pro). By taking the reference distributions in the 255 

backgrounds, residues are classified as normal residues (blue) or outliers (red). 256 

 257 

The distributions of the atomic coordinate deviations were also used to calculate 258 

the GDT_P0.2 scores of DeepPSC, PD2, PULCHRA and the two baselines (Fig. 4), 259 

which clearly show that the backbones reconstructed by DeepPSC were more accurate 260 

than those obtained with PD2, PULCHRA and the two baselines. Lastly, the 261 

Ramachandran plots of the reconstructions obtained with different methods clearly 262 

showed that the backbone structures reconstructed by DeepPSC were the most 263 

reasonable among all methods (Fig. 5). In particular, none of the glycine and proline 264 

residues in the backbones obtained from DeepPSC were classified as outliers, 265 

consistent with the experimentally determined PDB structures, whereas many of these 266 

residues resulted as outliers in the backbones obtained by PD2 and PULCHRA, as well 267 

as by baseline 2. It is noteworthy that for baseline 2, the dihedral angles share a “S-268 

shape” distribution pattern for all the four types of residues (general, glycine, pre-269 

proline, and proline), which is consistent with the poor network fitting of this type of 270 

protein structure representation, as shown in Supplementary Fig. 6. 271 

 272 

 273 

Conclusions 274 

We consider protein structure representation as a critical problem in applying deep 275 

learning for reliable protein structure prediction, and for related endeavors such as 276 
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protein design. Our protein structure camera (PSC) approach provides a step forward 277 

in protein structure representations, and toward enabling more sophisticated 278 

applications of deep learning in biology. 279 

 280 

 281 

Methods  282 

Geometrical calculation. In this study, we represented C atoms and N atoms in peptide 283 

planes as torsion angles by: 284 

𝑇𝐶𝑛 = {
𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝐶𝛼𝑛+1𝐶𝛼𝑛+2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐶𝛼𝑛𝐶𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝐶𝛼𝑛+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) , 𝑛 < 𝐿 − 2

𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝐶𝛼𝑛𝐶𝛼𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝐶𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝐶𝛼𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ), 𝑛 = 𝐿 − 1

 (1) 285 

and 286 

𝑇𝑁𝑛 = {
𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝐶𝛼𝑛+1𝐶𝛼𝑛+2

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐶𝛼𝑛𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐶𝛼𝑛𝐶𝛼𝑛+1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) , 𝑛 < 𝐿 − 2

𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝐶𝛼𝑛𝐶𝛼𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝑁𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐶𝛼𝑛𝐶𝛼𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ), 𝑛 = 𝐿 − 1

 (2) 287 

in which the torsion angle from 𝑣1⃗⃗⃗⃗  to 𝑣2⃗⃗⃗⃗  with 𝑢⃗  as axis was calculated by: 288 

𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ , 𝑢⃗ ) = arctan (
𝑛1 × 𝑛2 ∙ 𝑢̂

𝑛1 ∙ 𝑛2
) , 𝑤ℎ𝑒𝑟𝑒 {

𝑛1 = 𝑣1⃗⃗⃗⃗ × 𝑢⃗ 

𝑛2 = 𝑢⃗ × 𝑣2⃗⃗⃗⃗  
 (3) 289 

In the rebuilding process, the orientation of 𝐶𝑛 and 𝑁𝑛 was determined by rotating 290 

the 𝑛𝑡ℎ peptide plane with 𝐶𝛼𝑛𝐶𝛼𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ as the axis: 291 

𝑃𝐶𝑛𝐶𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝐶𝛼𝑛+2𝐶𝛼𝑛+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝐶𝛼𝑛+1

̂ ,𝑇𝐶𝑛), 𝑛 < 𝐿 − 2

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝐶𝛼𝑛−1𝐶𝛼𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝐶𝛼𝑛+1

̂ ,𝑇𝐶𝑛), 𝑛 = 𝐿 − 1
 (4) 292 

and 293 

𝑃𝑁𝑛𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝐶𝛼𝑛+2𝐶𝛼𝑛+2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝐶𝛼𝑛+1

̂ ,𝑇𝑁𝑛), 𝑛 < 𝐿 − 2

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝐶𝛼𝑛−1𝐶𝛼𝑛−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶𝛼𝑛𝐶𝛼𝑛+1

̂ ,𝑇𝑁𝑛), 𝑛 = 𝐿 − 1
 (5) 294 

where 𝑃𝐶𝛼𝑛+2  and 𝑃𝐶𝛼𝑛−1  is the projections of 𝐶𝛼𝑛+2  and 𝐶𝛼𝑛−1  on 295 

𝐶𝛼𝑛𝐶𝛼𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ , respectively. The rotation was calculated by Rodrigues-Gibbs 296 
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Formulation42: 297 

𝑣2⃗⃗⃗⃗ = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(𝑣1⃗⃗⃗⃗  , 𝑢̂, 𝑇) = 𝑣1⃗⃗⃗⃗ cos 𝑇 + 𝑢̂ × 𝑣1⃗⃗⃗⃗ sin 𝑇 + (𝑣1⃗⃗⃗⃗ ∙ 𝑢̂)𝑢̂(1 − cos 𝑇) (6) 298 

in which 𝑣2⃗⃗⃗⃗  was obtained by rotate 𝑣1⃗⃗⃗⃗  with a unit vector 𝑢̂ as axis and 𝑇 as torsion 299 

angle. We assumed 𝑃𝑂𝑛𝑂𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ≡ 𝑃𝐶𝑛𝐶𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  using the ideal peptide plane conformation. 300 

Afterward the relative locations from atoms 𝐶𝑛 , 𝑁𝑛 , and 𝑂𝑛  to 𝐶𝛼𝑛  were 301 

respectively determined by: 302 

{

𝐶𝛼𝑛𝐶𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐶𝛼𝑛𝐶𝛼𝑛+1

̂ ∗ |𝐶𝛼𝑛𝑃𝐶𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | + 𝑃𝐶𝑛𝐶𝑛

̂ ∗ |𝑃𝐶𝑛𝐶𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

𝐶𝛼𝑛𝑂𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐶𝛼𝑛𝐶𝛼𝑛+1

̂ ∗ |𝐶𝛼𝑛𝑃𝑂𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | + 𝑃𝑂𝑛𝑂𝑛

̂ ∗ |𝑃𝑂𝑛𝑂𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

𝐶𝛼𝑛𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐶𝛼𝑛𝐶𝛼𝑛+1

̂ ∗ |𝐶𝛼𝑛𝑃𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| + 𝑃𝑁𝑛𝑁𝑛

̂ ∗ |𝑃𝑁𝑛𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

 (7) 303 

where |𝐶𝛼𝑛𝑃𝐶𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | ,  |𝑃𝐶𝑛𝐶𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| , |𝐶𝛼𝑛𝑃𝑂𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | , |𝑃𝑂𝑛𝑂𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| , |𝐶𝛼𝑛𝑃𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| , and |𝑃𝑁𝑛𝑁𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |  are a 304 

group of fixed length estimated from training data (listed in Table S1). Note that there 305 

are two type of peptide planes and the fixed lengths are correspondingly different. In 306 

the trans peptide plane, the distance between adjacent Cα is approximately 3.8 Å while 307 

for the cis peptide plane it is approximately 3.0 Å. Therefore, we rebuilt the 𝑛𝑡ℎ 308 

peptide plane with fixed lengths for the trans peptide plane when |𝐶𝛼𝑛𝐶𝛼𝑛+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| ≥ 3.4 Å, 309 

otherwise with fixed lengths for cis peptide plane. 310 

Finally, the coordinates were determined as: 311 

{

𝐶𝑛 = 𝐶𝛼𝑛 + 𝐶𝛼𝑛𝐶𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑂𝑛 = 𝐶𝛼𝑛 + 𝐶𝛼𝑛𝑂𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑁𝑛 = 𝐶𝛼𝑛 + 𝐶𝛼𝑛𝑁𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 (8) 312 

The rebuilt atoms 𝐶𝑛, 𝑁𝑛−1 and known 𝐶𝛼𝑛 in a residue were used to rebuild atom 313 

𝐶𝛽𝑛 ∈ ℝ3 with the following process. First, we initialized 𝐶𝛼𝑛𝐶𝛽𝑛
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    at the middle 314 

between  𝐶𝛼𝑛𝐶𝑛
̂  and   𝐶𝛼𝑛𝑁𝑛−1

̂  by: 315 

𝐶𝛼𝑛𝐶𝛽𝑛
′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

𝐶𝛼𝑛𝐶𝑛
̂ + 𝐶𝛼𝑛𝑁𝑛−1

̂

2
∗ |𝐶𝛼𝑛𝐶𝛽𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | (9) 316 
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Afterward, 𝐶𝛼𝑛𝐶𝛽𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   was determined by rotating 𝐶𝛼𝑛𝐶𝛽𝑛

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   with  𝑁𝑛−1𝐶𝑛
̂  as axis and 317 

𝑇𝐶𝛽 as torsion angle: 318 

𝐶𝛼𝑛𝐶𝛽𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = rotation(𝐶𝛼𝑛𝐶𝛽𝑛

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ,  𝑁𝑛−1𝐶𝑛
̂ ,𝑇𝐶𝛽) (10) 319 

We then calculated 𝐶𝛽𝑛 by: 320 

𝐶𝛽𝑛 = 𝐶𝛼𝑛 + 𝐶𝛼𝑛𝐶𝛽𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (11) 321 

The fixed length |𝐶𝛼𝑛𝐶𝛽𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | and fixed angle 𝑇𝐶𝛽 used above are constants estimated 322 

from the training data (listed in Supplementary Table 1). 323 

 324 

Dataset. We selected a subgroup from the protein structures reported in the PDB, to 325 

build a tertiary structure dataset. A PDB entry was not included in this subgroup if: (i) 326 

the structure was not determined by X-ray crystallography; (ii) the entry has a number 327 

of residues fewer than 15 or higher than 800; (iii) the entry has missing atoms in the 328 

backbone or unnatural residues; (iv) the entry has sequence identity higher than 40% 329 

with another entry included in the subgroup30. This resulted in the construction of a 330 

non-redundant dataset containing 10,302 protein structures.  331 

 332 

Model training. We used 10-fold cross validation in training our models. The whole 333 

dataset was randomly and equally separated into ten sub-datasets. We routinely used 334 

one sub-dataset as the validation set and all the other nine sub-datasets as the model 335 

training sets. All the models were trained for 30 epochs using mean square error (MSE) 336 

as the loss function and the Adam optimizer43. The training batch size for the local 337 

structure embedding block was the total number of residues of the input structures, thus 338 
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it was dynamic even if the number of input structures was fixed. To maintain the 339 

training batch relatively stable, we split all training structures as batches containing 1~5 340 

structures with approximately 800 residues. The learning rate was set to 0.0003 for the 341 

first 3 epochs, and then was adjusted according to the cosine-annealing schedule44 in 342 

the following epochs. The trained models were validated with the corresponding 343 

validation set after every epoch. The curves of validation loss showed that all the 344 

models of DeepPSC and baseline 1 steadily converged at the 30th epoch, while the 345 

models of baseline 2 showed poor fitting (Supplementary Fig. 6). The network 346 

construction and model training were implemented with PyTorch, an open source 347 

machine learning framework. All the details we have not mention follow the default 348 

setting of PyTorch. 349 

 350 

Performance criteria. In this study the performance of various methods was evaluated 351 

on the basis of three criteria, e.g., root mean square deviation (RMSD)45, global distance 352 

test (GDT)46, and Ramachandran (RAMA) outliers47. RMSD is one of the most used 353 

criteria to measure the similarity between two structures 45, and is calculated as follows: 354 

𝑅𝑀𝑆𝐷 = √
∑ 𝑑𝑖

𝑁
𝑖=1

𝑁
 (12) 355 

where 𝑑𝑖 is the coordinate deviation between atom 𝑖 in two structures, and 𝑁 is the 356 

total number of atoms. Considering that RMSD usually increases as the number of 357 

atoms of a protein increases48, this value is usually normalized as RMSD100, which 358 

describes the same deviation in 100 atoms49, and is calculated as follows: 359 
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𝑅𝑀𝑆𝐷100 =
𝑅𝑀𝑆𝐷

1 + ln√ 𝑁
100

 (13)
 360 

where 𝑁 is the number of atoms.  361 

RMSD is, however, strongly affected by the parts in the structures that deviate the 362 

most, therefore it often fails to represent the deviations of most of the atoms. Aimed at 363 

alleviating this problem, a community-wide experiment called CASP (critical 364 

assessment of techniques for Protein Structure Prediction)46 have been using a different 365 

indicator, the Global Distance Test (GDT), as their main assessment method for ranking 366 

protein structure prediction methods. GDT scores are calculated as the percentage of 367 

atoms that have distance deviations smaller than the preset distance cutoffs. Cutoffs for 368 

GDT in CASP is usually set to 1, 2, 4, and 8 Å. In this study, the cutoff was set to 0.2 369 

Å, and the GDT was labeled as GDT_P0.2.  370 

The Ramachandran Plot is a statistical reference distribution of the combination of 371 

the backbone dihedral angles in proteins47. In a Ramachandran Plot, one can classify 372 

residues in a given protein backbone structure as ‘core’, ‘allowed’, and ‘outliers’. The 373 

percentage of outliers (RAMA outliers) is used to assess protein backbone structure 374 

uncertainty. 375 

  376 
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