

1 **DeepPSC (protein structure camera): computer vision-based protein**
2 **backbone structure reconstruction from alpha carbon trace as a case**
3 **study**

4

5 Xing Zhang¹, Junwen Luo¹, Yi Cai¹, Wei Zhu¹, Xiaofeng Yang^{1*}, Hongmin Cai^{2*}, and
6 Zhanglin Lin^{1*}

7

8 ¹School of Biology and Biological Engineering, ²School of Computer Science and
9 Engineering, South China University of Technology, 382 East Outer Loop Road,
10 University Park, Guangzhou 510006, China;

11

12 * To whom correspondence should be addressed:

13 ¹School of Biology and Biological Engineering, South China University of Technology,
14 382 East Outer Loop Road, University Park, Guangzhou 510006, China; Tel: +86 (20)
15 3938-0680; Fax: +86 (20) 3938-0601; Email: zhanglinlin@scut.edu.cn (Z.L.);
16 biyangxf@scut.edu.cn (X.Y.).

17 ²School of Computer Science and Engineering, South China University of Technology,
18 382 East Outer Loop Road, University Park, Guangzhou 510006, China; Tel: +86 (20)
19 3938-2850; Fax: +86 (20) 3938-2850; Email: hmcai@scut.edu.cn (H.C.).

20

21 **Abstract**

22 Deep learning has been increasingly used in protein tertiary structure prediction, a
23 major goal in life science. However, all the algorithms developed so far mostly use
24 protein sequences as input, whereas the vast amount of protein tertiary structure
25 information available in the Protein Data Bank (PDB) database remains largely unused,
26 because of the inherent complexity of 3D data computation. In this study, we propose
27 Protein Structure Camera (PSC) as an approach to convert protein structures into
28 images. As a case study, we developed a deep learning method incorporating PSC
29 (DeepPSC) to reconstruct protein backbone structures from alpha carbon traces.
30 DeepPSC outperformed all the methods currently available for this task. This PSC
31 approach provides a useful tool for protein structure representation, and for the
32 application of deep learning in protein structure prediction and protein engineering.

33

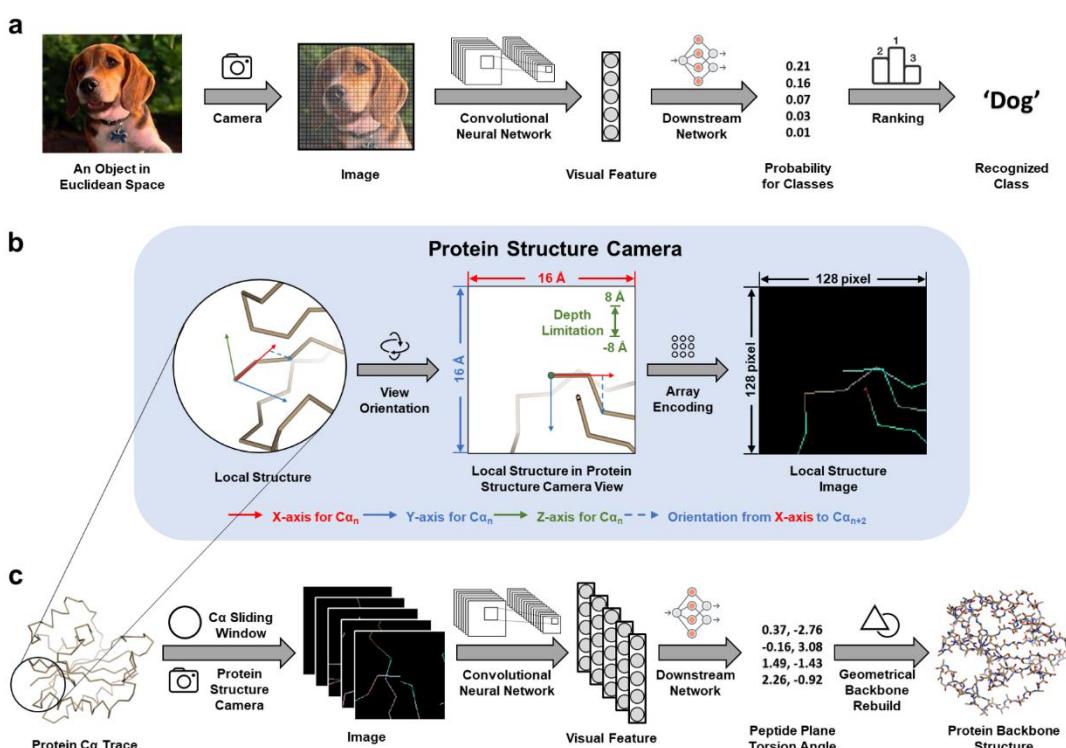
34 **Introduction**

35 Protein structure determination is an ongoing issue and a major goal in life science that
36 has captivated the attention of scientists for decades. Experimentally, protein structures
37 have been mostly determined by X-ray diffraction crystallography¹, and to a less extent
38 by nuclear magnetic resonance spectroscopy². In recent years, cryo-electron
39 microscopy (EM) has also been increasingly used for structure determination³. As an
40 alternative to experimental methods, computational methods have also been developed
41 for predicting protein structures from protein sequences, and deep learning has recently
42 been applied to this prediction problem⁴⁻⁶. In particular, DeepMind proposed a method
43 called AlphaFold⁴, which significantly outperformed all previous prediction methods.
44 A number of algorithms that extract features from protein primary sequences for the
45 purpose of protein function prediction and protein engineering, *e.g.*, UniRep⁷ and
46 TAPE⁸, represent a further advancement in the field. Other applications of deep learning
47 include protein fold recognition⁹, and the predictions of protein secondary structures¹⁰,
48 protein functions¹¹, and drug protein interactions¹².

49 However, all the deep learning methods developed so far utilize only protein
50 sequences as input, whereas the vast amount of protein tertiary structure information
51 available in the rapidly expanding PDB database has not been sufficiently exploited in
52 the calculations, due to its complexity. There are presently three common coarse
53 approximation approaches for protein structure representation, namely, k nearest
54 residues¹³, distance or contact maps¹⁴, and 3D grids¹⁵, but all with limited utility. Thus,
55 we are interested in the following question: how to utilize protein structure information

56 in deep learning?

57 It is well known that images can be efficiently processed by deep learning, and
58 particularly in recent years, convolutional neural networks (CNN) have been
59 successfully used in an array of computer vision tasks such as image classification¹⁶,
60 object detection¹⁷, and face recognition¹⁸. CNN can understand an object in the
61 Euclidean space by extracting visual features from the corresponding image^{19,20}. Fig.
62 1a shows a typical workflow of computer vision-based image classification. Here we
63



64

65 **Figure 1.** Schematic for the deep learning algorithm used in this work, or DeepPSC. a)
66 The workflow of a typical computer vision task. b) Visualization of Protein Structure
67 Camera (PSC) workflow. This figure is generated with the Chimera software⁵⁰. c) The
68 workflow of the deep learning-based algorithm DeepPSC used in this work for
69 reconstructing backbone structures from alpha-carbon traces.

70 propose a “Protein Structure Camera” (PSC) approach for converting protein tertiary
71 structures into images for computer vision processing. In PSC, we used a $16 \text{ \AA} \times 16 \text{ \AA}$
72 $\times 16 \text{ \AA}$ sliding cubic window centered on the alpha carbons of the amino acid residues
73 ($\text{C}\alpha$) to dissect a protein structure (Fig. 1b). This was then turned into a group of
74 compressed two dimensional $16 \text{ \AA} \times 16 \text{ \AA}$ images with a -8 \AA to 8 \AA depth range, which
75 were then fed into a CNN and implemented into a deep learning-based network
76 architecture, or DeepPSC (Fig. 1c).

77 As a case study, we applied this DeepPSC for reconstructing protein backbone
78 structures (containing atoms C, N, O, $\text{C}\beta$ in addition to $\text{C}\alpha$) based on $\text{C}\alpha$ traces, which
79 is an important task for protein structure determination by experimental means and for
80 protein structure prediction by computational approaches. Several protein structure
81 refinement methods have been developed for the analysis of EM images to generate
82 high-quality structure models, such as PHENIX²¹ and Coot²². Within these algorithms,
83 the positions of the $\text{C}\alpha$, which are the atoms that can be located with the highest
84 accuracy, are determined first. Subsequently the backbone structure and then the full
85 atom model are generated. Similarly, many computational algorithms predict the $\text{C}\alpha$
86 trace as a preliminary reduced model. PHENIX ensembles PULCHRA²³ for backbone
87 reconstruction, which uses a simple force field and steepest descent minimization. Coot
88 ensembles CALPHA^{24,25}, which is based on a library of backbone fragments compiled
89 from experimentally determined structures. The widely used computational protein
90 structure prediction platform I-TASSER²⁶ ensembles REMO²⁷, which directly
91 reconstructs full-atom models (including the backbones) from a backbone isomer

92 library. Similar library-based methods include BBQ²⁸, SABBAC²⁹, and PD2³⁰, which
93 often achieve better performance than PULCHRA or REMO. These three backbone
94 structure reconstruction methods have also been applied for experimental structure
95 determination³¹, although they have not been incorporated in PHENIX or Coot. A
96 significant limitation of the library-based methods, however, is that the wide range of
97 conformations of protein backbones cannot be sufficiently represented by the limited
98 number of fragments in the libraries.

99 In this work, we found that our DeepPSC approach outperformed all the previously
100 reported methods for backbone reconstruction, including the benchmark PD2, and the
101 ablation tests showed that the visual feature extracted from the protein structure images
102 provided the main contribution for the improved performance.

103

104

105 **Results**

106 **Represent C α trace as images by protein structure camera**

107 The PSC concept is shown in Fig. 1b. Given an C α -trace $\{\mathcal{C}\alpha_1, \mathcal{C}\alpha_2, \dots, \mathcal{C}\alpha_L\}$, where
108 $\mathcal{C}\alpha_n \in \mathbb{R}^3$ is the coordinate of the n^{th} C α atom and L is the number of residues, PSC
109 represents it as L images. Any given structural segment having $\mathcal{C}\alpha_n$ as the center
110 requires a preset orientation and scale. We defined the orientation from $\mathcal{C}\alpha_n$ to $\mathcal{C}\alpha_{n+1}$
111 as the X-axis. The Y-axis was then determined by the orientation from the X-axis to
112 $\mathcal{C}\alpha_{n+2}$, and the Z-axis was defined such as to build a left-hand Cartesian coordinate on
113 the given local structural segment. We set the orientation directed from the positive to

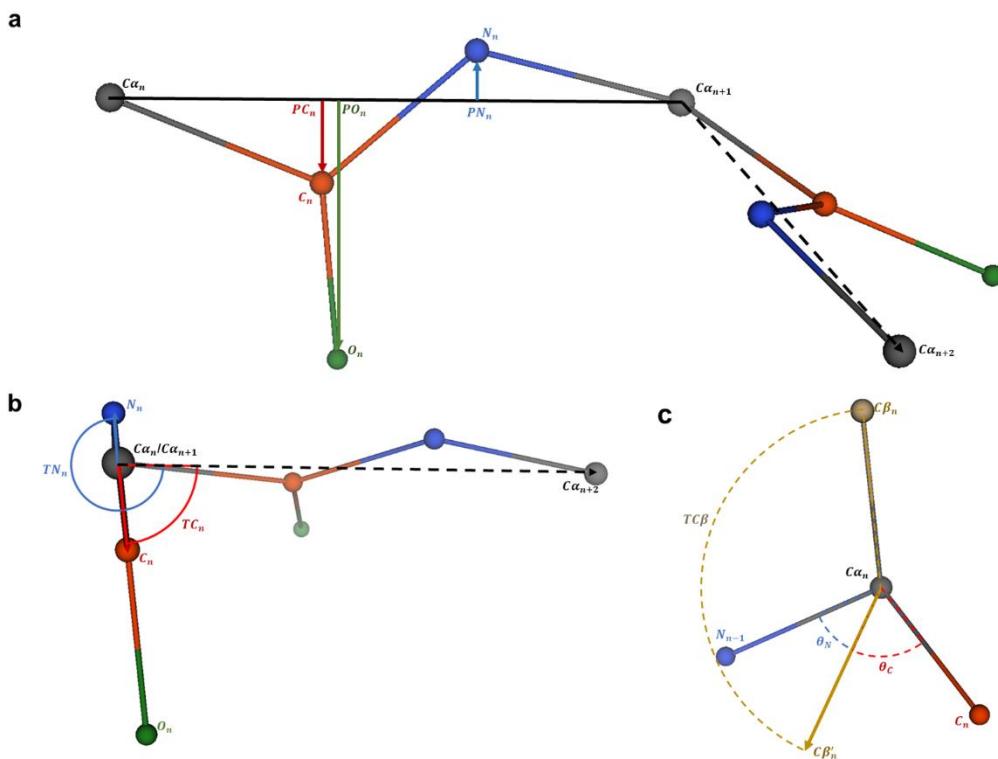
114 the negative regions of the Z-axis as the PSC view so that the orientations of different
115 local structural segments could be normalized. For $C\alpha_{L-1}$, the position on the Y-axis
116 was determined by the orientation from the X-axis to $C\alpha_{L-2}$. Similarly, for the last $C\alpha$,
117 we defined the orientation from $C\alpha_L$ to $C\alpha_{L-1}$ as the X-axis and the orientation from
118 the X-axis to $C\alpha_{L-2}$ as the Y-axis. An enlarged view of Fig. 1b is given as
119 Supplementary Fig. 1.

120 Since 8 Å is generally regarded as the interaction distance cutoff between two
121 residues³², we used a sliding cubic window with a side length of 16 Å centered on the
122 $C\alpha$, and a depth ranging from -8 Å to 8 Å was applied to the PSC view. Each PSC view
123 was then encoded as an image with five channels, representing the Z-axis depth, the
124 relative sequence position, and three key amino acid properties including
125 hydrophobicity³³, bulkiness³⁴ and flexibility³⁵, respectively. The resolution of the image
126 is 128 × 128 pixels. In the image, each $C\alpha$ was first encoded as a pixel, and a straight
127 line was used to connect adjacent $C\alpha$ pixels. The values of the properties along the
128 straight line were interpolated from the two $C\alpha$ pixel values. A given protein $C\alpha$ trace
129 was thus converted into a group of local structural images.

130

131 **Present protein backbone structure as peptide plane torsion angles**

132 In this study, we represented the structure of the protein backbone as peptide plane
133 torsions, as reported in a previous study³⁶. For convenience, we denoted the C atom and
134 N atom in the n^{th} of all $L - 1$ peptide planes by $C_n \in \mathbb{R}^3$ and $N_n \in \mathbb{R}^3$,
135 respectively. Note that N_n , the N atom in the n^{th} peptide, is actually the $(n + 1)^{th}$



136

137 **Figure 2.** Diagrams of the backbone structure representation and rebuilding (only the
 138 case of a trans peptide plane is shown). a) Typical peptide plane conformation. $C\alpha_n$,
 139 C_n , O_n , N_n , $C\alpha_{n+1}$ located on the n^{th} peptide plane of the protein structure. PC_n ,
 140 PN_n , and PO_n are the projections of C_n , N_n , and O_n on $\overrightarrow{C\alpha_n C\alpha_{n+1}}$, respectively.
 141 b) Side view from $C\alpha_n$ to C_{n+1} , in which TC_n and TN_n are the torsion angles from
 142 $C\alpha_{n+2}$ to C_n , and from $C\alpha_{n+2}$ to N_n , respectively, with $\overrightarrow{C\alpha_n C\alpha_{n+1}}$ as the axis. c)
 143 Rebuilding process for $C\beta_n$, using the constraint $\theta_N = \theta_C$, fixed bond length
 144 $|\overrightarrow{C\alpha_n C\beta_n}|$, and fixed torsion angle $TC\beta$.

145

146 N atom of the protein backbone. Besides, we defined the vectors from atom A to atom
 147 B as $\overrightarrow{AB} \equiv B - A$, with the corresponding unit vector being $\widehat{AB} \equiv \overrightarrow{AB} / |\overrightarrow{AB}|$. We
 148 applied a constraint that assumed $C\alpha_n$, C_n , O_n , N_n , $C\alpha_{n+1}$ forming a standard
 149 peptide plane (*trans* or *cis*). Within the given n^{th} *trans* peptide plane, as shown in

150 Fig.2a, the locations of C_n , O_n , N_n on the plane can be determined with a group of
151 fixed lengths. For example, since $|C\alpha_n PC_n|$ and $|PC_n C_n|$ are fixed, we could locate
152 C_n on the plane. Next, as shown in Fig. 2b, we used $\overrightarrow{C\alpha_{n+1}C\alpha_{n+2}}$ as a reference
153 orientation to determine the torsion angles for each n^{th} peptide plane, *i.e.*, the torsion
154 angle from $\overrightarrow{C\alpha_{n+1}C\alpha_{n+2}}$ to $\overrightarrow{C\alpha_n C_n}$ (TC_n), and that from $\overrightarrow{C\alpha_{n+1}C\alpha_{n+2}}$ to $\overrightarrow{C\alpha_n N_n}$
155 (TN_n), where TN_n is approximately 180 degrees larger than TC_n . The locations of
156 $C\alpha_n$, C_n , O_n , N_n , $C\alpha_{n+1}$ were determined from the combination of all this
157 information. In the case of *cis* peptides, the fixed lengths are different from those of
158 *trans* peptides, and TN_n is close to TC_n . In all cases, TO_n is very close to TC_n ,
159 therefore TC_n was used as an approximation of TO_n in all calculations. TC_n and
160 TN_n were encoded in the form of sine and cosine in the final representations.

161 Since the residues in proteins are L-amino acids, the coordinates of $C\beta_n$ can be
162 determined when N_{n-1} , $C\alpha_n$, and C are known. Fig. 2c shows the rebuilding process
163 used in this work. We first set the position of the projection of $C\beta_n(C\beta'_n)$ along the
164 direction of the bisector of $\angle N_{n-1}C\alpha_n C_n$, with a fixed bond length $|C\alpha_n C\beta_n|$. By
165 rotating $\overrightarrow{C\alpha_n C\beta'_n}$ with the fixed angle $TC\beta$, the location of $C\beta_n$ was determined.
166 Without constraints from the peptide plane, the first N atom and the last C and O atoms
167 of a protein backbone are usually highly flexible, therefore our method could not predict
168 the positions of these atoms.

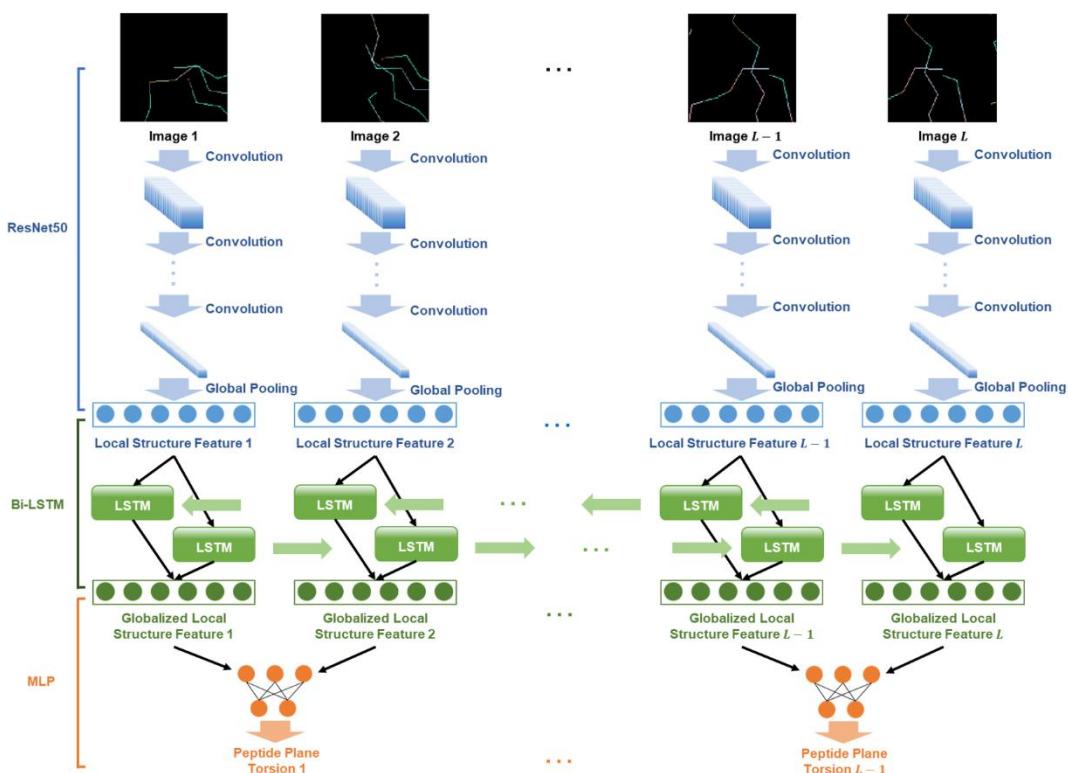
169 Specific geometrical calculations for all the above representations and rebuilding
170 are provided in Methods.

171

172 **Develop a deep neural network for PSC images**

173 As shown in Fig. 3, the deep neural network implemented in DeepPSC takes local
174 structure images as the input, and calculate the peptide plane torsions as the output. We
175 first adopted ResNet50³⁷, the most used convolutional neural network for computer
176 vision processing, to extract visual features from the images (Supplementary Fig. 2),
177 which are labelled as “local structural features”. Then, we used a bidirectional long
178 short-term memory module (Bi-LSTM)^{38,39}, the most used recurrent neural network

179



180
181 **Figure 3.** Network Architecture of DeepPSC. ResNet50 was used to extract visual
182 features from images as local structure features. All local structure features were then
183 fed into a Bi-LSTM module for information globalization among residues, yielding
184 globalized local structure features. Finally, an MLP module was used to predict peptide
185 plane torsions for pairs of the above adjacent globalized local structure features.

186 module for sequence modelling, to sequentially pass information between the extracted
187 local structural features (Supplementary Fig. 3a). The outputs of this module were
188 expected to mainly represent the local structures but they also contain sequential
189 context information, and are labeled as “globalized local structural features”. Afterward,
190 considering that a single peptide plane is constructed by two adjacent residues, we
191 paired every globalized local structural feature with the next one in the amino acid
192 sequence as the “peptide plane feature”. Finally, we used a multilayer perceptron
193 (MLP)⁴⁰, a typical neural network module, to predict peptide plane torsions from the
194 peptide plane features (Supplementary Fig. 3b).

195 To compare our DeepPSC method with previously reported protein structure
196 representation methods, we additionally built two baseline methods. In the first baseline,
197 we used the k nearest residues method¹³ to represent the C α trace, and to encode the
198 network input. To maintain the input information as close to that of our method as
199 possible, we enriched the representation by adding relative protein positions and residue
200 properties. For this baseline, an MLP module (Supplementary Fig. 4) was used instead
201 of ResNet50, to extract local structural features for the input format, since the latter
202 cannot process this baseline input¹³. For the second baseline, protein structures were
203 represented as distance maps and processed with a CNN (Supplementary Fig. 5), as
204 previously reported, without any modifications¹⁴.

205

206 **DeepPSC outperforms other standard backbone reconstruction methods**

207 We performed the 10-fold cross validation process on the three network architectures

208 **Table 1.** Overview of the results for various backbone reconstruction methods.

Methods	Models	Mean RMSD ₁₀₀ (Å)	Mean GDT_P0.2 (%)	Mean RAMA outliers (%)
Rebuilt from PDB	—	0.040	95.76	0.22
DeepPSC	Ensemble model	0.076	88.18	0.23
	Single model	0.079±0.001	87.87±0.08	0.22±0.03
Baseline 1 (<i>k</i> nearest residues)	Ensemble model	0.101	83.44	0.50
	Single model	0.108±0.001	82.16±0.25	0.71±0.07
Baseline 2 (distance map)	Ensemble model	0.289	54.58	5.23
	Single model	0.289±0.001	54.42±0.48	5.30±0.17
PD2	—	0.149	73.26	0.90
BBQ	—	0.156	71.82	3.03
SABBAC*	—	0.201	58.30	1.94
PULCHRA	—	0.221	52.15	2.20

209 *SABBAC failed to process one of the 21 structures in the test set. The results shown
210 here were obtained with the other 20 test structures.

211
212 (DeepPSC, and the two baselines), and obtained 10 models for each architecture, for a
213 total of 30 models. Next, we applied each of these models to the test set and obtained
214 the predicted torsion angles as outputs. Subsequently, for each architecture, we took the

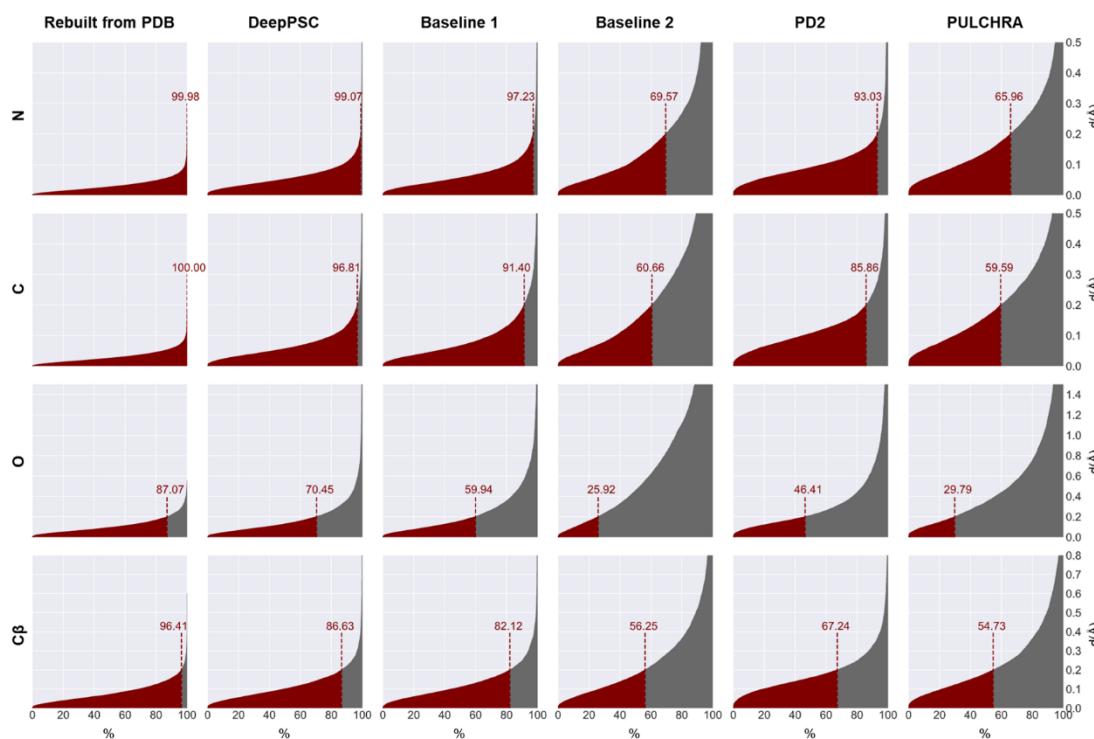
215 average of the outputs of the 10 cross validation models as the “ensemble model”. Then
216 the outputs of the ten models and that of the ensemble model were used to rebuild the
217 backbone structures together with the corresponding C α traces, and these rebuilt models
218 were evaluated with the three performance criteria, RMSD₁₀₀, GDT_P0.2, and RAMA
219 outliers (Table 1). The average performance of the ten models for each architecture was
220 calculated and shown as the “single model” performance, with the standard deviation
221 of the single model performance indicating the robustness of the network architecture.
222 Finally, we compared the performance of these architectures to that of PD2, BBQ,
223 SABBAC and PULCHRA (Table 1).

224 Generally, protein structures with resolution smaller than 2.0 Å are regarded as
225 high-quality structures³⁰. According to the official statistics of PDB, up to July 27, 2020,
226 the median resolution of X-ray crystallography structures in the database is 2.03 Å. For
227 a typical 2.0 Å crystallographic model, the average error on atomic coordinates is lower
228 than 0.2 Å⁴¹. Therefore, we considered 0.2 Å as the benchmark in our performance
229 evaluation. Accordingly, we set the GDT cutoff at 0.2 Å to calculate the percentage of
230 atoms that can be regarded as acceptable in a high-quality structure.

231 Based on the mean RMSD₁₀₀, and the GDT_P0.2 and RAMA outliers percentages
232 as shown in Table 1, the backbone structures predicted by the ensemble model obtained
233 with DeepPSC clearly outperformed those predicted by the baseline methods as well as
234 the various traditional methods (PD2, BBQ, SABBAC and PULCHRA), in all three
235 criteria. In particular, the performance of baseline 1, which was devoid of the image
236 features of DeepPSC, suggested that the visual features extracted in DeepPSC were the

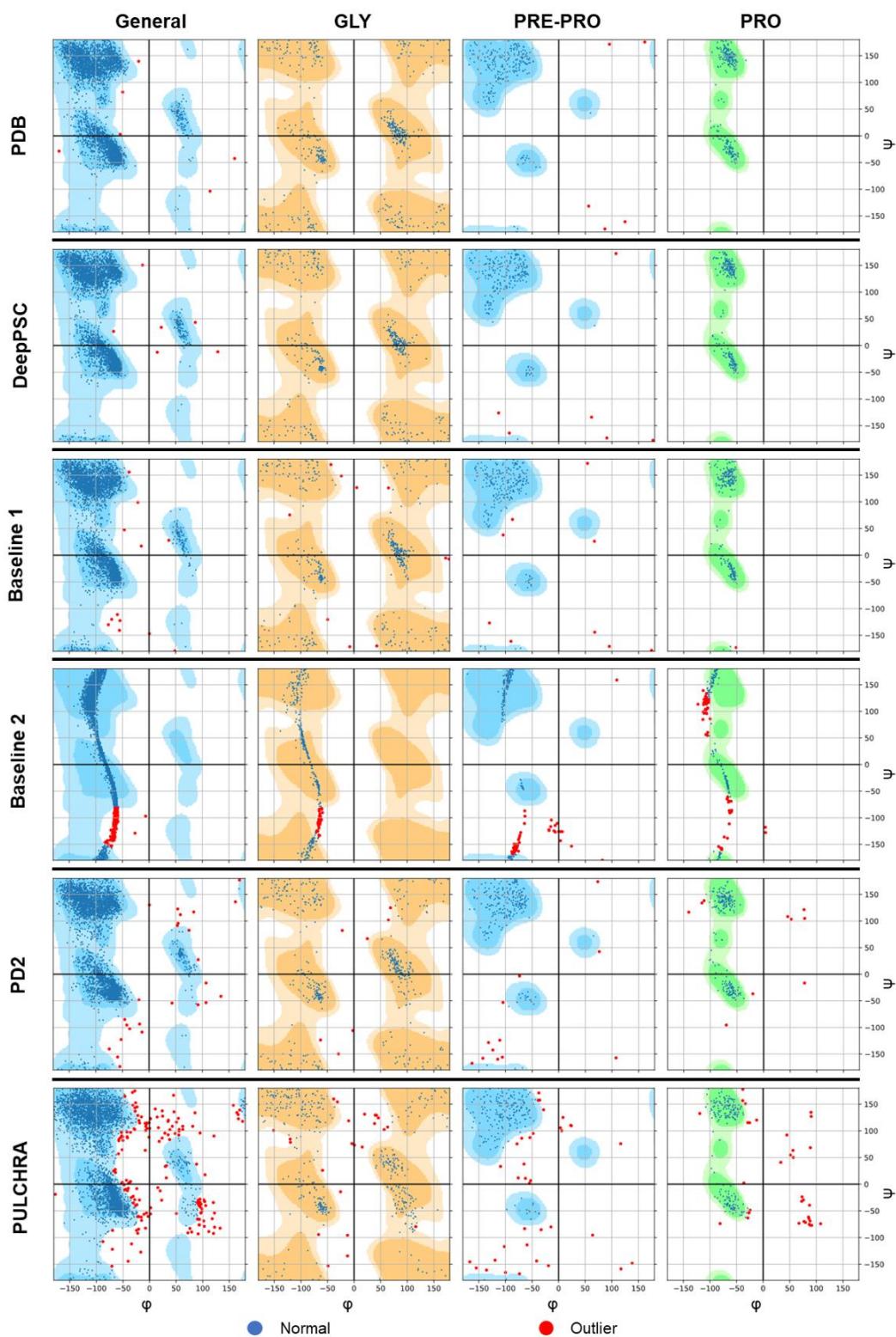
237 main factor for its improved performance. By comparing the results for the Rebuilt
238 model (directly from the PDB) and the ensemble model of DeepPSC, it could be
239 deduced that the deviations observed in DeepPSC consisted of two elements: (i) the
240 first was represented by the deviations introduced during the rebuilding process per se,
241 which were the deviations between the ideal peptide plane conformations and the
242 experimentally determined peptide plane conformations; (ii) the second is represented
243 by the deviations induced by the model fitting in DeepPSC. Therefore, future
244 developments should focus on devising an alternative strategy in lieu of the peptide
245 plane assumption.

246



247

248 **Figure 4.** Distributions of the atomic coordinate deviations (rows) of the various
249 reconstruction methods (columns). The GDT scores for 0.2 Å cutoff are indicated in
250 the plots.



251

252 **Figure 5.** Ramachandran plots of the reconstructions obtained with different methods

253 compared to the original structures (PDB). Rows represent the different methods and

254 columns represent all residues (General), glycines (Gly), the residues preceding

255 prolines (Pre-Pro), and prolines (Pro). By taking the reference distributions in the
256 backgrounds, residues are classified as normal residues (blue) or outliers (red).

257

258 The distributions of the atomic coordinate deviations were also used to calculate
259 the GDT_P0.2 scores of DeepPSC, PD2, PULCHRA and the two baselines (Fig. 4),
260 which clearly show that the backbones reconstructed by DeepPSC were more accurate
261 than those obtained with PD2, PULCHRA and the two baselines. Lastly, the
262 Ramachandran plots of the reconstructions obtained with different methods clearly
263 showed that the backbone structures reconstructed by DeepPSC were the most
264 reasonable among all methods (Fig. 5). In particular, none of the glycine and proline
265 residues in the backbones obtained from DeepPSC were classified as outliers,
266 consistent with the experimentally determined PDB structures, whereas many of these
267 residues resulted as outliers in the backbones obtained by PD2 and PULCHRA, as well
268 as by baseline 2. It is noteworthy that for baseline 2, the dihedral angles share a “S-
269 shape” distribution pattern for all the four types of residues (general, glycine, pre-
270 proline, and proline), which is consistent with the poor network fitting of this type of
271 protein structure representation, as shown in Supplementary Fig. 6.

272

273

274 **Conclusions**

275 We consider protein structure representation as a critical problem in applying deep
276 learning for reliable protein structure prediction, and for related endeavors such as

277 protein design. Our protein structure camera (PSC) approach provides a step forward
278 in protein structure representations, and toward enabling more sophisticated
279 applications of deep learning in biology.

280

281

282 **Methods**

283 **Geometrical calculation.** In this study, we represented C atoms and N atoms in peptide
284 planes as torsion angles by:

$$285 \quad TC_n = \begin{cases} \text{torsion}(\overrightarrow{C\alpha_{n+1}C\alpha_{n+2}}, \overrightarrow{C\alpha_nC_n}, \overrightarrow{C\alpha_nC\alpha_{n+1}}), & n < L - 2 \\ \text{torsion}(\overrightarrow{C\alpha_nC\alpha_{n-1}}, \overrightarrow{C\alpha_nC_n}, \overrightarrow{C\alpha_nC\alpha_{n+1}}), & n = L - 1 \end{cases} \quad (1)$$

286 and

$$287 \quad TN_n = \begin{cases} \text{torsion}(\overrightarrow{C\alpha_{n+1}C\alpha_{n+2}}, \overrightarrow{C\alpha_nN_n}, \overrightarrow{C\alpha_nC\alpha_{n+1}}), & n < L - 2 \\ \text{torsion}(\overrightarrow{C\alpha_nC\alpha_{n-1}}, \overrightarrow{C\alpha_nN_n}, \overrightarrow{C\alpha_nC\alpha_{n+1}}), & n = L - 1 \end{cases} \quad (2)$$

288 in which the torsion angle from \vec{v}_1 to \vec{v}_2 with \vec{u} as axis was calculated by:

$$289 \quad \text{torsion}(\vec{v}_1, \vec{v}_2, \vec{u}) = \arctan\left(\frac{\vec{n}_1 \times \vec{n}_2 \cdot \hat{u}}{\vec{n}_1 \cdot \vec{n}_2}\right), \text{ where } \begin{cases} \vec{n}_1 = \vec{v}_1 \times \vec{u} \\ \vec{n}_2 = \vec{u} \times \vec{v}_2 \end{cases} \quad (3)$$

290 In the rebuilding process, the orientation of C_n and N_n was determined by rotating
291 the n^{th} peptide plane with $\overrightarrow{C\alpha_nC\alpha_{n+1}}$ as the axis:

$$292 \quad PC_nC_n = \begin{cases} \text{rotation}(\overrightarrow{PC\alpha_{n+2}C\alpha_{n+2}}, \overrightarrow{C\alpha_nC\alpha_{n+1}}, TC_n), & n < L - 2 \\ \text{rotation}(\overrightarrow{PC\alpha_{n-1}C\alpha_{n-1}}, \overrightarrow{C\alpha_nC\alpha_{n+1}}, TN_n), & n = L - 1 \end{cases} \quad (4)$$

293 and

$$294 \quad PN_nN_n = \begin{cases} \text{rotation}(\overrightarrow{PC\alpha_{n+2}C\alpha_{n+2}}, \overrightarrow{C\alpha_nC\alpha_{n+1}}, TN_n), & n < L - 2 \\ \text{rotation}(\overrightarrow{PC\alpha_{n-1}C\alpha_{n-1}}, \overrightarrow{C\alpha_nC\alpha_{n+1}}, TN_n), & n = L - 1 \end{cases} \quad (5)$$

295 where $PC\alpha_{n+2}$ and $PC\alpha_{n-1}$ is the projections of $C\alpha_{n+2}$ and $C\alpha_{n-1}$ on
296 $\overrightarrow{C\alpha_nC\alpha_{n+1}}$, respectively. The rotation was calculated by Rodrigues-Gibbs

297 Formulation⁴²:

298 $\vec{v}_2 = rotation(\vec{v}_1, \hat{u}, T) = \vec{v}_1 \cos T + \hat{u} \times \vec{v}_1 \sin T + (\vec{v}_1 \cdot \hat{u})\hat{u}(1 - \cos T)$ (6)

299 in which \vec{v}_2 was obtained by rotate \vec{v}_1 with a unit vector \hat{u} as axis and T as torsion
300 angle. We assumed $\overrightarrow{PO_nO_n} \equiv \overrightarrow{PC_nC_n}$ using the ideal peptide plane conformation.
301 Afterward the relative locations from atoms C_n , N_n , and O_n to $C\alpha_n$ were
302 respectively determined by:

303
$$\begin{cases} \overrightarrow{C\alpha_nC_n} = C\alpha_n \widehat{C\alpha_{n+1}} * |\overrightarrow{C\alpha_nPC_n}| + \widehat{PC_nC_n} * |\overrightarrow{PC_nC_n}| \\ \overrightarrow{C\alpha_nO_n} = C\alpha_n \widehat{C\alpha_{n+1}} * |\overrightarrow{C\alpha_nPO_n}| + \widehat{PO_nO_n} * |\overrightarrow{PO_nO_n}| \\ \overrightarrow{C\alpha_nN_n} = C\alpha_n \widehat{C\alpha_{n+1}} * |\overrightarrow{C\alpha_nPN_n}| + \widehat{PN_nN_n} * |\overrightarrow{PN_nN_n}| \end{cases}$$
 (7)

304 where $|\overrightarrow{C\alpha_nPC_n}|$, $|\overrightarrow{PC_nC_n}|$, $|\overrightarrow{C\alpha_nPO_n}|$, $|\overrightarrow{PO_nO_n}|$, $|\overrightarrow{C\alpha_nPN_n}|$, and $|\overrightarrow{PN_nN_n}|$ are a
305 group of fixed length estimated from training data (listed in Table S1). Note that there
306 are two type of peptide planes and the fixed lengths are correspondingly different. In
307 the *trans* peptide plane, the distance between adjacent $C\alpha$ is approximately 3.8 Å while
308 for the *cis* peptide plane it is approximately 3.0 Å. Therefore, we rebuilt the n^{th}
309 peptide plane with fixed lengths for the *trans* peptide plane when $|\overrightarrow{C\alpha_nC\alpha_{n+1}}| \geq 3.4$ Å,
310 otherwise with fixed lengths for *cis* peptide plane.

311 Finally, the coordinates were determined as:

312
$$\begin{cases} C_n = C\alpha_n + \overrightarrow{C\alpha_nC_n} \\ O_n = C\alpha_n + \overrightarrow{C\alpha_nO_n} \\ N_n = C\alpha_n + \overrightarrow{C\alpha_nN_n} \end{cases}$$
 (8)

313 The rebuilt atoms C_n , N_{n-1} and known $C\alpha_n$ in a residue were used to rebuild atom
314 $C\beta_n \in \mathbb{R}^3$ with the following process. First, we initialized $\overrightarrow{C\alpha_nC\beta'_n}$ at the middle
315 between $\widehat{C\alpha_nC_n}$ and $\widehat{C\alpha_nN_{n-1}}$ by:

316
$$\overrightarrow{C\alpha_nC\beta'_n} = \frac{\widehat{C\alpha_nC_n} + \widehat{C\alpha_nN_{n-1}}}{2} * |\overrightarrow{C\alpha_nC\beta_n}|$$
 (9)

317 Afterward, $\overrightarrow{C\alpha_n C\beta_n}$ was determined by rotating $\overrightarrow{C\alpha_n C\beta'_n}$ with $\widehat{N_{n-1} C_n}$ as axis and
318 $TC\beta$ as torsion angle:

319
$$\overrightarrow{C\alpha_n C\beta_n} = \text{rotation}(\overrightarrow{C\alpha_n C\beta'_n}, \widehat{N_{n-1} C_n}, TC\beta) \quad (10)$$

320 We then calculated $C\beta_n$ by:

321
$$C\beta_n = C\alpha_n + \overrightarrow{C\alpha_n C\beta_n} \quad (11)$$

322 The fixed length $|\overrightarrow{C\alpha_n C\beta_n}|$ and fixed angle $TC\beta$ used above are constants estimated
323 from the training data (listed in Supplementary Table 1).

324

325 **Dataset.** We selected a subgroup from the protein structures reported in the PDB, to
326 build a tertiary structure dataset. A PDB entry was not included in this subgroup if: (i)
327 the structure was not determined by X-ray crystallography; (ii) the entry has a number
328 of residues fewer than 15 or higher than 800; (iii) the entry has missing atoms in the
329 backbone or unnatural residues; (iv) the entry has sequence identity higher than 40%
330 with another entry included in the subgroup³⁰. This resulted in the construction of a
331 non-redundant dataset containing 10,302 protein structures.

332

333 **Model training.** We used 10-fold cross validation in training our models. The whole
334 dataset was randomly and equally separated into ten sub-datasets. We routinely used
335 one sub-dataset as the validation set and all the other nine sub-datasets as the model
336 training sets. All the models were trained for 30 epochs using mean square error (MSE)
337 as the loss function and the Adam optimizer⁴³. The training batch size for the local
338 structure embedding block was the total number of residues of the input structures, thus

339 it was dynamic even if the number of input structures was fixed. To maintain the
340 training batch relatively stable, we split all training structures as batches containing 1~5
341 structures with approximately 800 residues. The learning rate was set to 0.0003 for the
342 first 3 epochs, and then was adjusted according to the cosine-annealing schedule⁴⁴ in
343 the following epochs. The trained models were validated with the corresponding
344 validation set after every epoch. The curves of validation loss showed that all the
345 models of DeepPSC and baseline 1 steadily converged at the 30th epoch, while the
346 models of baseline 2 showed poor fitting (Supplementary Fig. 6). The network
347 construction and model training were implemented with PyTorch, an open source
348 machine learning framework. All the details we have not mention follow the default
349 setting of PyTorch.

350

351 **Performance criteria.** In this study the performance of various methods was evaluated
352 on the basis of three criteria, *e.g.*, root mean square deviation (RMSD)⁴⁵, global distance
353 test (GDT)⁴⁶, and Ramachandran (RAMA) outliers⁴⁷. RMSD is one of the most used
354 criteria to measure the similarity between two structures⁴⁵, and is calculated as follows:

$$355 \quad RMSD = \sqrt{\frac{\sum_{i=1}^N d_i}{N}} \quad (12)$$

356 where d_i is the coordinate deviation between atom i in two structures, and N is the
357 total number of atoms. Considering that RMSD usually increases as the number of
358 atoms of a protein increases⁴⁸, this value is usually normalized as RMSD₁₀₀, which
359 describes the same deviation in 100 atoms⁴⁹, and is calculated as follows:

360

$$RMSD_{100} = \frac{RMSD}{1 + \ln \sqrt{\frac{N}{100}}} \quad (13)$$

361 where N is the number of atoms.

362 RMSD is, however, strongly affected by the parts in the structures that deviate the
363 most, therefore it often fails to represent the deviations of most of the atoms. Aimed at
364 alleviating this problem, a community-wide experiment called CASP (critical
365 assessment of techniques for Protein Structure Prediction)⁴⁶ have been using a different
366 indicator, the Global Distance Test (GDT), as their main assessment method for ranking
367 protein structure prediction methods. GDT scores are calculated as the percentage of
368 atoms that have distance deviations smaller than the preset distance cutoffs. Cutoffs for
369 GDT in CASP is usually set to 1, 2, 4, and 8 Å. In this study, the cutoff was set to 0.2
370 Å, and the GDT was labeled as GDT_P0.2.

371 The Ramachandran Plot is a statistical reference distribution of the combination of
372 the backbone dihedral angles in proteins⁴⁷. In a Ramachandran Plot, one can classify
373 residues in a given protein backbone structure as ‘core’, ‘allowed’, and ‘outliers’. The
374 percentage of outliers (RAMA outliers) is used to assess protein backbone structure
375 uncertainty.

376

377 **Acknowledgements**

378 This work was supported by the National Key R&D Program of China
379 (2018YFA0901000), and the Guangzhou Science and Technology Program key projects
380 (201904020016). Dr. Hongmin Cai acknowledges the support by the Key-Area
381 Research and Development of Guangdong Province under Grant (2020B010166002,
382 2020B1111190001), the National Natural Science Foundation of China (61771007), the
383 Health & Medical Collaborative Innovation Project of Guangzhou City (201803010021,
384 202002020049).

385

386 **Author contributions**

387 X.Z. contributed to the experimental design, methodology, coding, data analysis and
388 writing of the original draft. J.L. contributed to the methodology, coding and data
389 analysis. Y.C contributed to the data analysis. X.Y. contributed to the data analysis and
390 writing (review and revision). W.Z. contributed to the data analysis. H.C. contributed
391 to the methodology, data analysis and writing (review and revision), and was partially
392 responsible for supervision. Z.L. was responsible for the experimental design,
393 supervision as well as funding acquisition, and contributed to the data analysis, writing
394 (review and revision). All authors reviewed and approved the final manuscript.

395

396 **Competing interests**

397 The authors declare no competing interests.

398

399 **Code and data availability**

400 All source codes and models of DeepPSC are openly available on GitHub
401 (<https://github.com/EricZhangSCUT/DeepPSC>), together with the PDB ID lists of all
402 involved datasets.

403

404 **Reference**

405 1 Smyth, M. S. & Martin, J. H. X-ray crystallography. *Mol. Pathol.* **53**, 8-14
406 (2000).

407 2 Voula Kanelis, J. D. F.-K. & Lewis E. Kay. Multidimensional NMR Methods
408 for Protein Structure Determination. *IUBMB Life* **52**, 291-302 (2001).

409 3 Cheng, Y. Single-particle cryo-EM - How did it get here and where will it go.
410 *Science* **361**, 876-880 (2018).

411 4 Senior, A. W. *et al.* Improved protein structure prediction using potentials from
412 deep learning. *Nature* **577**, 706-710 (2020).

413 5 AlQuraishi, M. End-to-end differentiable learning of protein structure. *Cell Syst.*
414 **8**, 292-301 e293 (2019).

415 6 Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo prediction of
416 protein contact map by ultra-deep learning model. *PLoS Comput. Biol.* **13**,
417 e1005324 (2017).

418 7 Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified
419 rational protein engineering with sequence-based deep representation learning.
420 *Nat. Methods* **16**, 1315-1322 (2019).

421 8 Rao R, B. N., Thomas N, *et al.* Evaluating protein transfer learning with TAPE.
422 Preprint at <https://arxiv.org/abs/1906.08230> (2019).

423 9 Hou, J., Adhikari, B. & Cheng, J. DeepSF: deep convolutional neural network
424 for mapping protein sequences to folds. *Bioinformatics* **34**, 1295-1303 (2018).

425 10 Wang, S., Peng, J., Ma, J. & Xu, J. Protein secondary structure prediction using

426 deep convolutional neural fields. *Sci. Rep.* **6**, 18962 (2016).

427 11 Kulmanov, M., Khan, M. A., Hoehndorf, R. & Wren, J. DeepGO: predicting
428 protein functions from sequence and interactions using a deep ontology-aware
429 classifier. *Bioinformatics* **34**, 660-668 (2018).

430 12 Tsubaki, M., Tomii, K. & Sese, J. Compound-protein interaction prediction with
431 end-to-end learning of neural networks for graphs and sequences.
432 *Bioinformatics* **35**, 309-318 (2019).

433 13 Wang, J., Cao, H., Zhang, J. Z. H. & Qi, Y. Computational protein design with
434 deep learning neural networks. *Sci. Rep.* **8**, 6349 (2018).

435 14 Zheng, S., Li, Y., Chen, S., Xu, J. & Yang, Y. Predicting drug–protein interaction
436 using quasi-visual question answering system. *Nat. Mach. Intell.* **2**, 134-140
437 (2020).

438 15 Stepniewska-Dziubinska, M. M., Zielenkiewicz, P. & Siedlecki, P.
439 Development and evaluation of a deep learning model for protein-ligand
440 binding affinity prediction. *Bioinformatics* **34**, 3666-3674 (2018).

441 16 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep
442 convolutional neural networks. *NeurIPS* 1097-1105 (2012).

443 17 Zhao, Z.Q., Zheng, P., Xu, S.t. & Wu, X. Object detection with deep learning:
444 A review. *IEEE Trans. Neural Netw. Learn. Syst.* **30**, 3212-3232 (2019).

445 18 Sun, Y., Chen, Y., Wang, X. & Tang, X. Deep learning face representation by
446 joint identification-verification. *NeurIPS* 1988-1996 (2014).

447 19 Mallat, S. Understanding deep convolutional networks. *Philos. Trans. A Math.*

448 18 *Phys. Eng. Sci.* **374**, 20150203 (2016).

449 19 20 Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional
450 networks. *European conference on computer vision* 818-833 (2014).

451 21 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for
452 macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* **66**,
453 213-221 (2010).

454 22 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics.
455 *Acta Crystallogr. D Biol. Crystallogr.* **60**, 2126-2132 (2004).

456 23 Rotkiewicz, P. & Skolnick, J. Fast procedure for reconstruction of full-atom
457 protein models from reduced representations. *J. Comput. Chem.* **29**, 1460-1465
458 (2008).

459 24 Esnouf, R. M. Polyalanine Reconstruction from Ca Positions Using the Program
460 CALPHA Can Aid Initial Phasing of Data by Molecular Replacement
461 Procedures. *Acta Crystallogr. D Biol. Crystallogr.* **53**, 665-672 (1997).

462 25 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development
463 of Coot. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486-501 (2010).

464 26 Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for
465 automated protein structure and function prediction. *Nat. Protoc.* **5**, 725-738
466 (2010).

467 27 Li, Y. & Zhang, Y. REMO: A new protocol to refine full atomic protein models
468 from C-alpha traces by optimizing hydrogen-bonding networks. *Proteins* **76**,
469 665-676 (2009).

470 28 Gront, D., Kmiecik, S. & Kolinski, A. Backbone building from quadrilaterals:
471 a fast and accurate algorithm for protein backbone reconstruction from alpha
472 carbon coordinates. *J. Comput. Chem.* **28**, 1593-1597 (2007).

473 29 Maupetit, J., Gautier, R. & Tuffery, P. SABBAC: online Structural Alphabet-
474 based protein BackBone reconstruction from Alpha-Carbon trace. *Nucleic Acids*
475 *Res.* **34**, W147-151 (2006).

476 30 Moore, B. L., Kelley, L. A., Barber, J., Murray, J. W. & MacDonald, J. T. High-
477 quality protein backbone reconstruction from alpha carbons using Gaussian
478 mixture models. *J. Comput. Chem.* **34**, 1881-1889 (2013).

479 31 Zhang, R. *et al.* 4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan
480 equine encephalitis virus. *EMBO J.* **30**, 3854-3863 (2011).

481 32 Xiong, D., Zeng, J. & Gong, H. A deep learning framework for improving long-
482 range residue-residue contact prediction using a hierarchical strategy.
483 *Bioinformatics* **33**, 2675-2683 (2017).

484 33 Kyte, J. & Russell F. Doolittle. A simple method for displaying the hydropathic
485 character of a protein. *J. of Mol. Biol.* **157**, 105-132 (1982).

486 34 Zimmerman, J. M., Naomi Eliezer & R. Simha. The characterization of amino
487 acid sequences in proteins by statistical methods. *J. of Theor. Biol.* **21.2**, 170-
488 201 (1968).

489 35 Huang, F. & Nau, W. M. A conformational flexibility scale for amino acids in
490 peptides. *Angew. Chem. Int. Ed. Engl.* **42**, 2269-2272 (2003).

491 36 Payne, P. W. Reconstruction of protein conformations from estimated positions

492 of the Ca coordinates. *Protein Sci.* **2**(3), 315-324 (1993).

493 37 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
494 recognition. *Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*
495 770-778 (2016).

496 38 Graves, A. & Schmidhuber, J. Framewise phoneme classification with
497 bidirectional LSTM and other neural network architectures. *Neural Netw.* **18**,
498 602-610 (2005).

499 39 Hochreiter, S. & Schmidhuber, J. Long short-term memory. *Neural Comput.* **9**,
500 1735-1780 (1997).

501 40 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. *Parallel distributed*
502 *processing: explorations in the microstructure of cognition, vol. 1* 318-362
503 (MIT Press, Cambridge, 1986).

504 41 Scapin, G., Potter, C. S. & Carragher, B. Cryo-EM for small molecules
505 discovery, design, understanding, and application. *Cell Chem. Biol.* **25**, 1318-
506 1325 (2018).

507 42 Parsons, J., Holmes, J. B., Rojas, J. M., Tsai, J. & Strauss, C. E. Practical
508 conversion from torsion space to Cartesian space for in silico protein synthesis.
509 *J. Comput. Chem.* **26**, 1063-1068 (2005).

510 43 Kingma, D. P. & Jimmy Ba. Adam: A method for stochastic optimization.
511 Preprint at <https://arxiv.org/abs/1412.6980> (2014).

512 44 Loshchilov, I. & Frank Hutter. SGDR: Stochastic Gradient Descent with warm
513 Restarts. Preprint at <https://arxiv.org/abs/1608.03983> (2016).

514 45 Kufareva, I. & Abagyan, R. Methods of protein structure comparison. *Methods*
515 *Mol. Biol.* **857**, 231-257 (2012).

516 46 Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A.
517 Critical assessment of methods of protein structure prediction (CASP) - round
518 x. *Proteins* **82 Suppl 2**, 1-6 (2014).

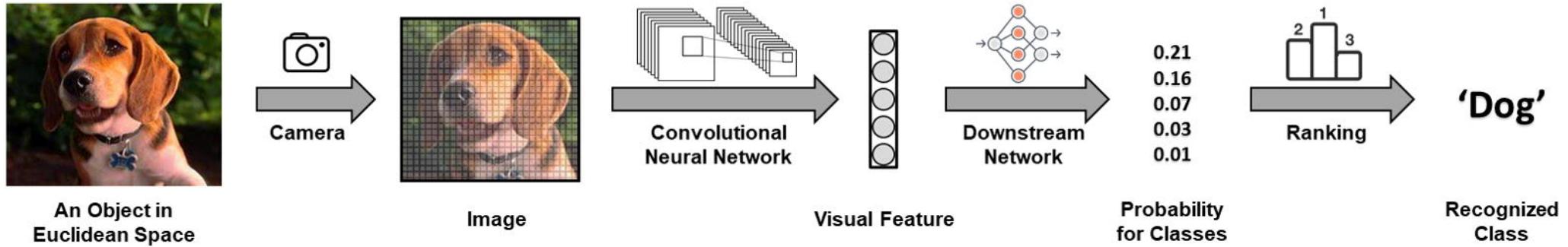
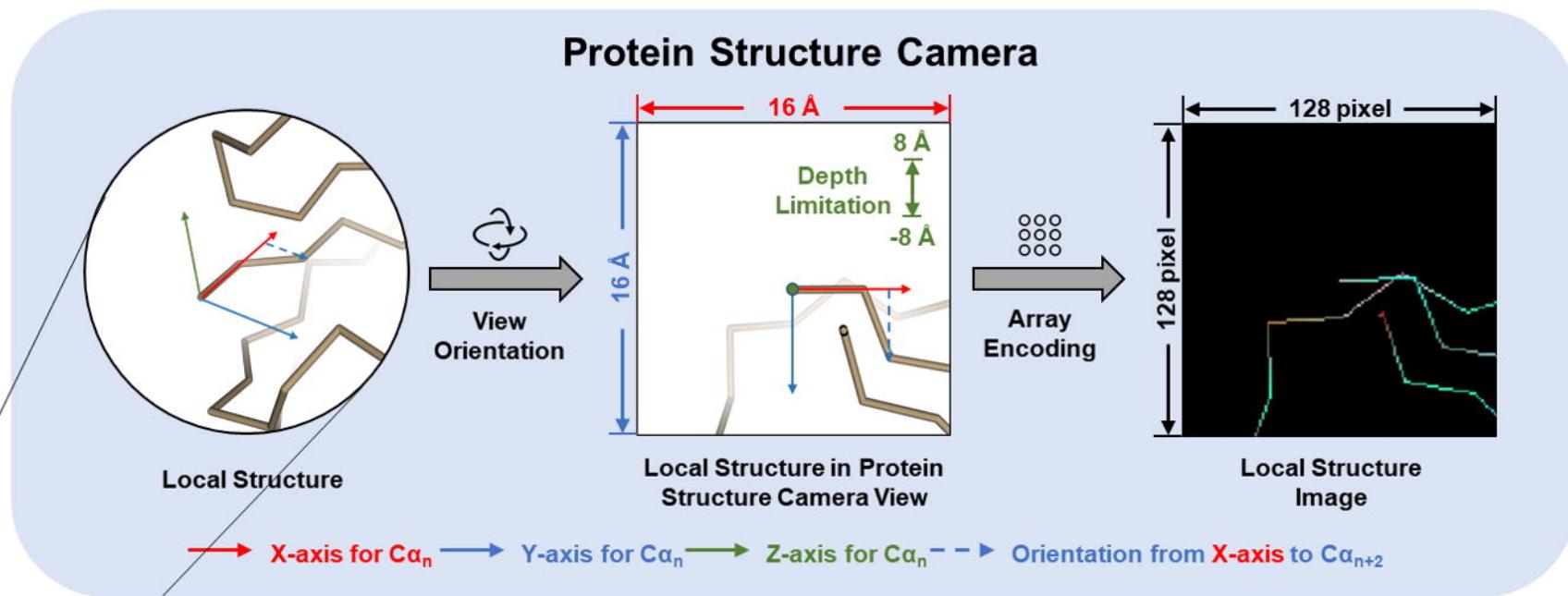
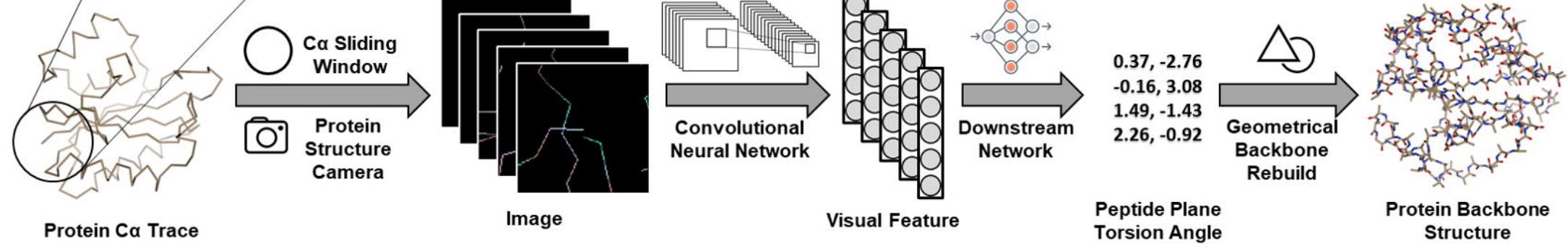
519 47 Lovell, S. C. *et al.* Structure validation by C α geometry: ϕ, ψ and C β deviation.
520 *Proteins* **50**, 437-450 (2003).

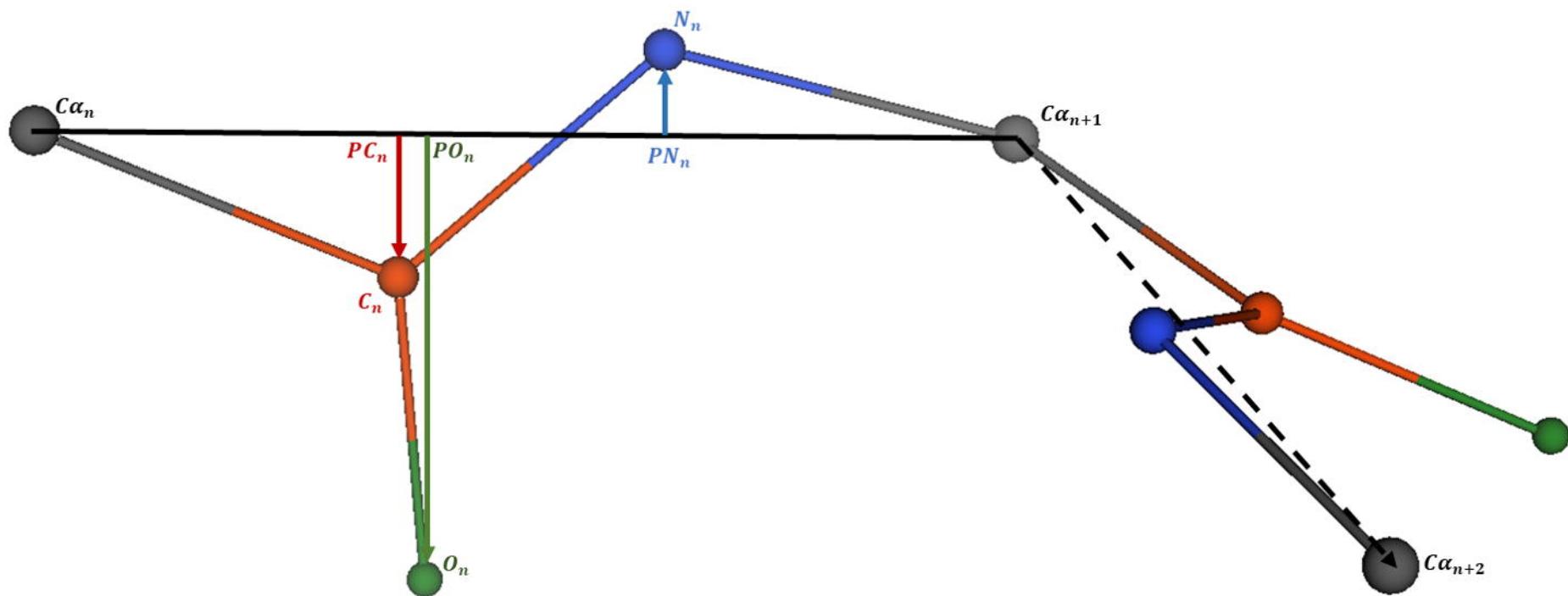
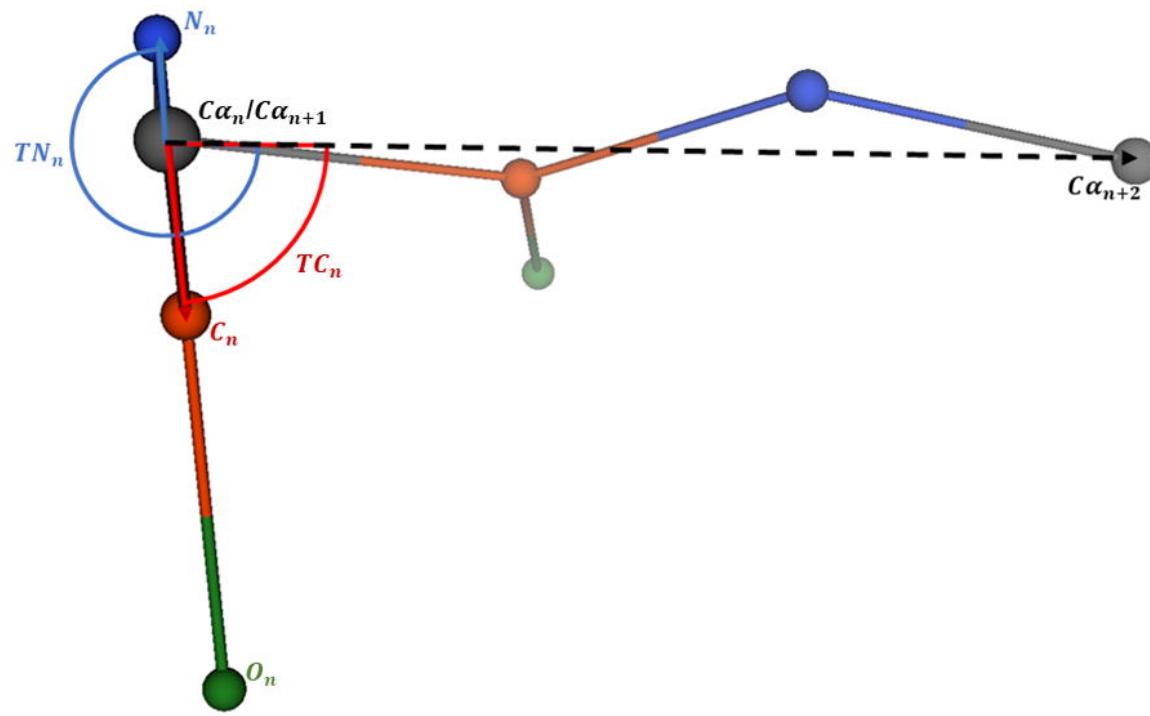
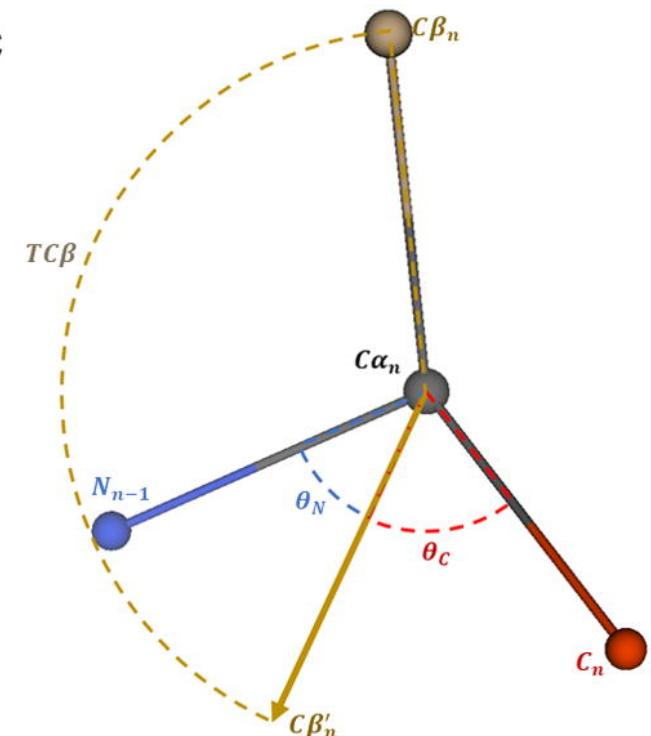
521 48 Sargsyan, K., Grauffel, C. & Lim, C. How molecular size impacts RMSD
522 applications in molecular dynamics simulations. *J. Chem. Theory Comput.* **13**,
523 1518-1524 (2017).

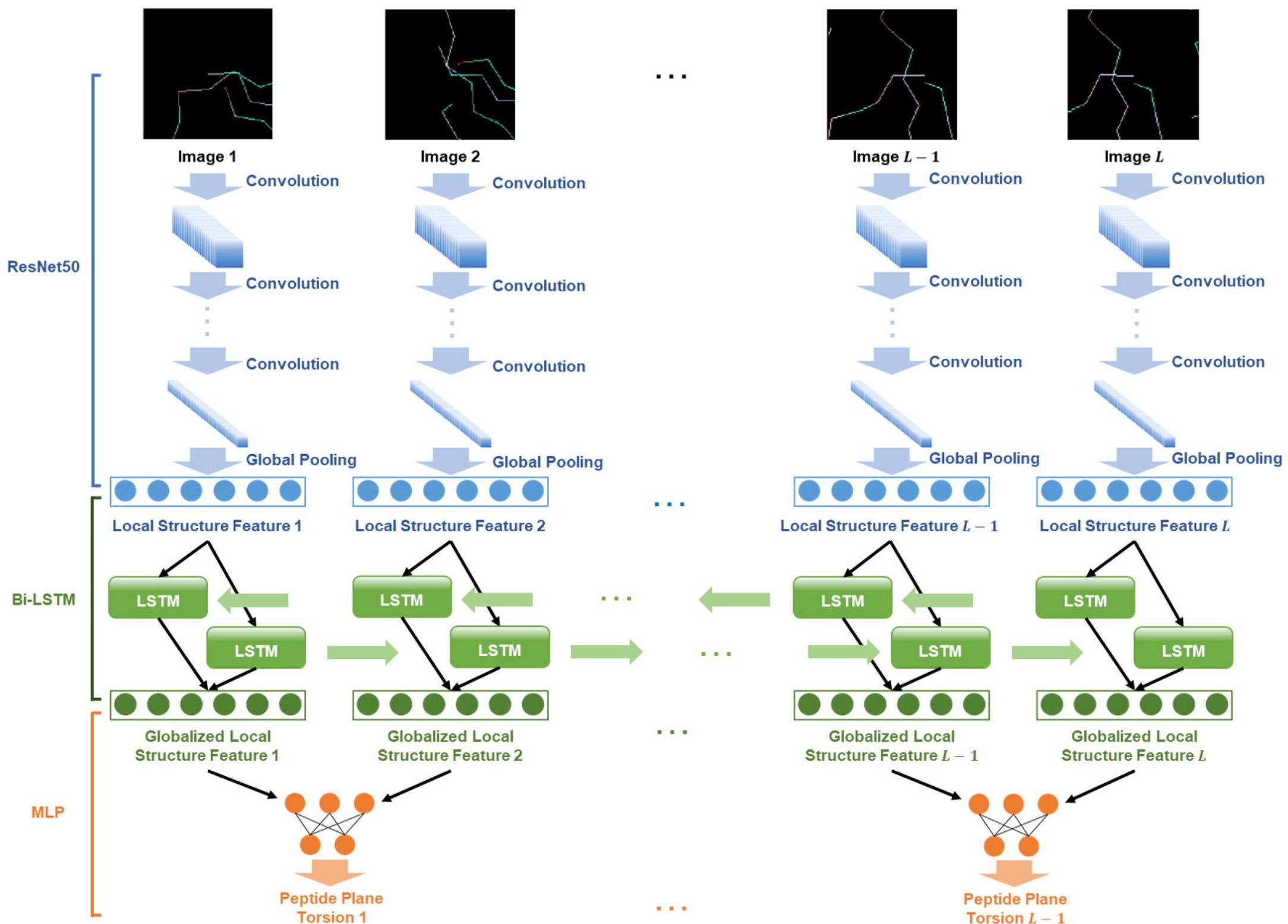
524 49 Carugo, O. & Pongor, S. A normalized root-mean-square distance for
525 comparing protein three-dimensional structures. *Protein Sci.* **10**, 1470-1473
526 (2001).

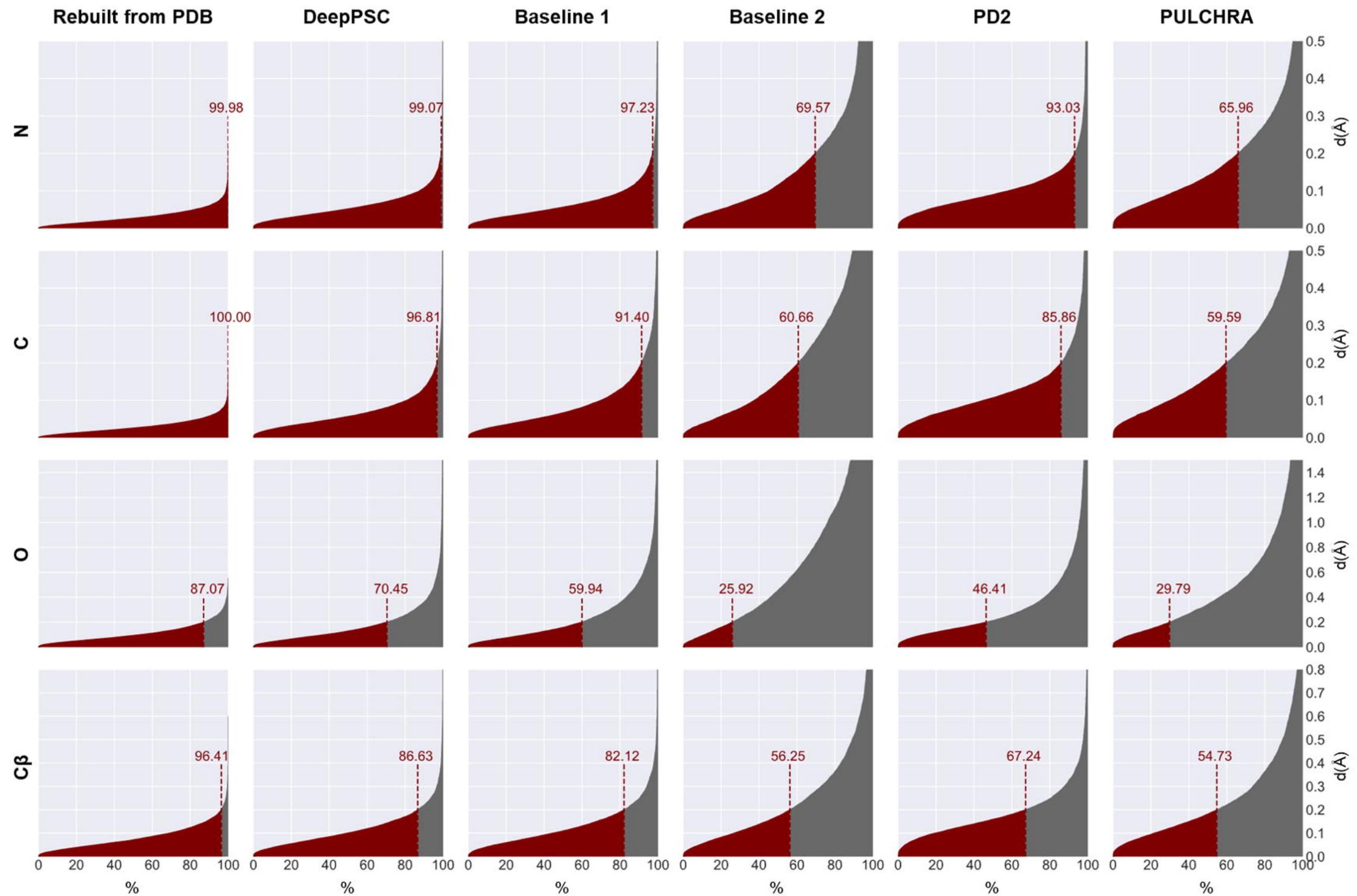
527 50 Pettersen, E. F. *et al.* UCSF Chimera - A visualization system for exploratory
528 research and analysis. *J. Comput. Chem.* **25**, 1605-1612 (2004).

529

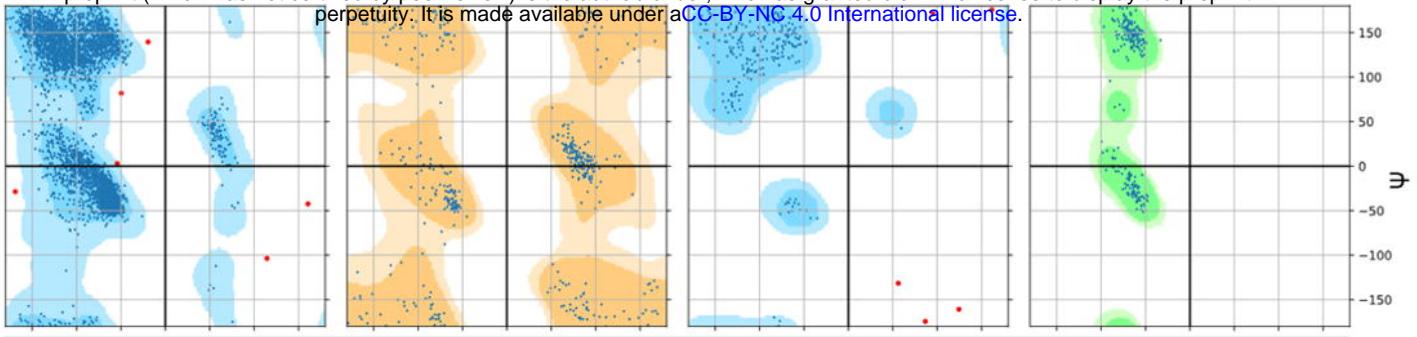
a**b****c**

a**b****c**

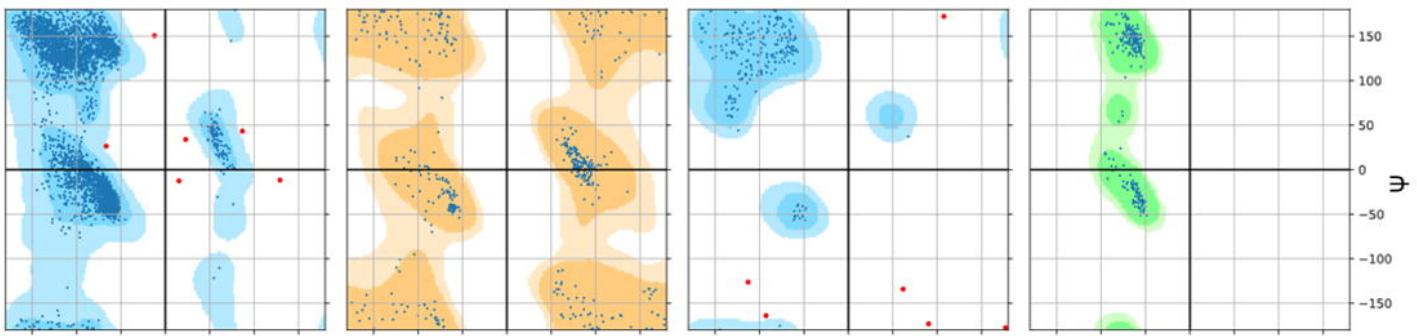




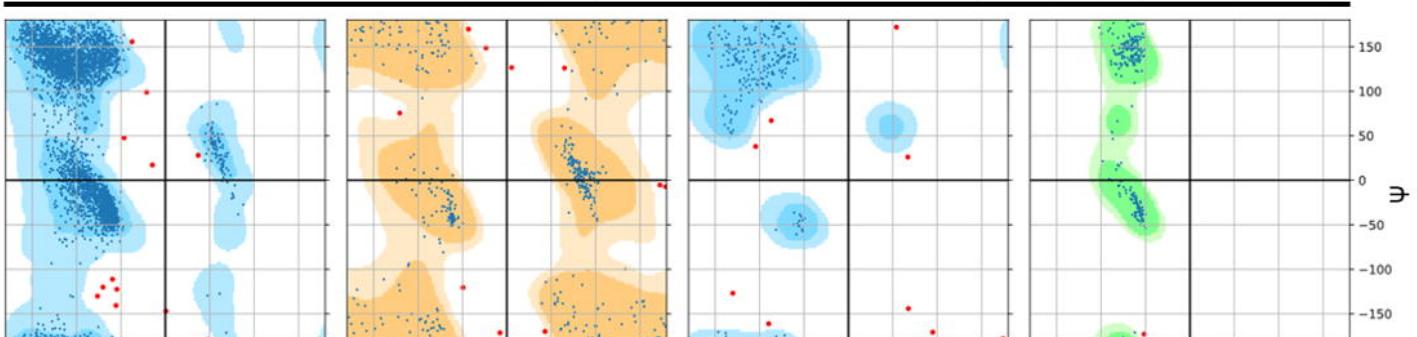
PDB



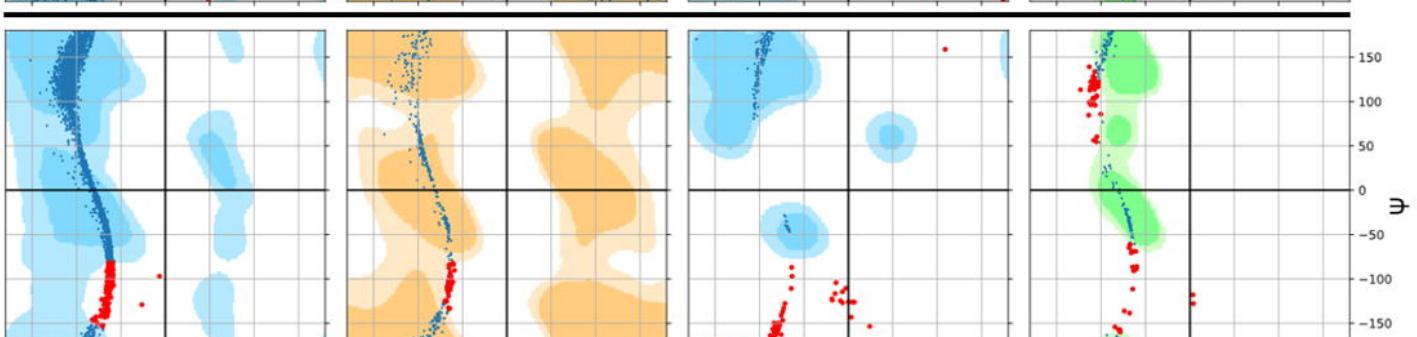
DeepPSC



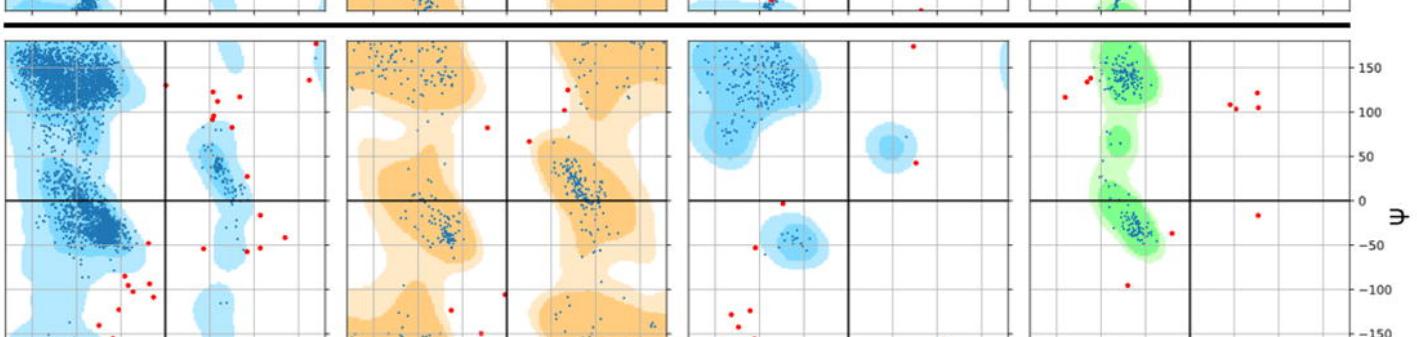
Baseline 1



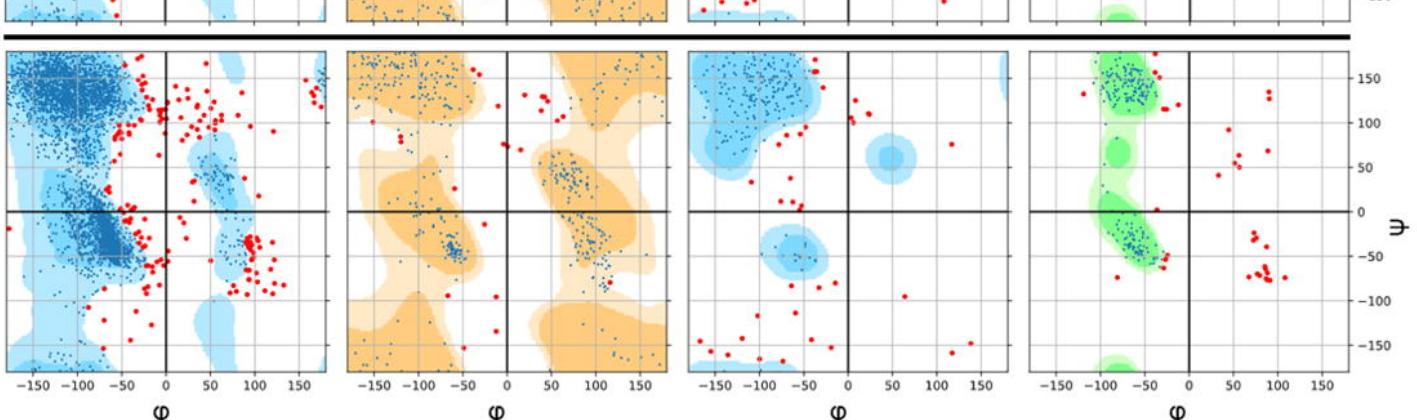
Baseline 2



PD2



PULCHRA



Normal

Outlier