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Abstract 
 
The developmental origins and evolutionary histories of cell types, tissues and organ systems 

contribute to the ways in which their dysfunction leads to disease. In mammals for example, the 
nature and extent of maternal-fetal interactions, how those interactions develop, and their 

evolutionary history likely influence diseases of pregnancy such as infertility and preterm birth. 
Here we show genes that evolved to be expressed at the maternal-fetal interface in Eutherian 

(‘Placental') mammals play essential roles in the evolution of pregnancy and are associated with 
immune system disorders and preterm birth. Among these genes is the transcription factor 

HAND2, which suppresses estrogen signaling, an innovation of Eutherians, thereby allowing 

blastocyst implantation. We found that HAND2 is dynamically expressed in the decidua 
throughout the menstrual cycle and pregnancy, gradually decreasing to reach a low at term. 

HAND2 regulates a small but distinct set of target genes in endometrial stromal fibroblasts 
including the cytokine IL15, which was also dynamically expressed throughout the menstrual 

cycle and gestation, and promoted the migration of natural killer cells and extravillous 
cytotrophoblasts. Remarkably, we found that the HAND2 promoter loops to a distal enhancer 

containing SNPs implicated in the regulation of gestation length and birth weight. Collectively, 
these data connect HAND2 expression at the maternal-fetal interface with the evolution of 

implantation and gestation length regulation, and preterm birth. 
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Introduction 
The ontogeny and evolutionary history of cell types, tissues and organ systems, as well 

as the life histories of organisms biases the ways in which dysfunctions in those systems 
underlie disease (Varki, 2012). Thus a mechanistic understanding of how cells, tissues and 

organs evolved their functions, and how organism’s life histories influence them, may provide 
clues to the molecular etiologies of disease. The most common way of utilizing evolutionary 

information to characterize the genetic architecture of disease is to link genetic variation within a 
species to phenotypes using quantitative trait loci (QTL) or genome wide association studies 

(GWAS). An alternative approach is to identify fixed genetic differences between species that 
are phylogenetically correlated with different disease relevant phenotypes. While the risk of 

cancer increases with age across mammals, for example, the prevalence of cancer types varies 

by species (Abegglen et al., 2015), likely because of differences in genetic susceptibility to 
specific cancers, structure of organ and tissue systems, and life exposures to carcinogens 

(Varki and Varki, 2015). Similarly, the risk of cardiovascular disease (CVD) increases with age 
across species, but the pathophysiology of CVD can differ even between closely related taxa 

such as humans, in which CVD predominantly results from coronary artery atherosclerosis, and 
the other Great Apes (Hominids), in which CVD is most often associated with interstitial 

myocardial fibrosis (Varki et al., 2009). 
 

Extant mammals span major stages in the origins and diversification of pregnancy, thus 
a mechanistic understanding of how pregnancy originated and diverged may provide unique 

insights into the ontogenetic origins of pregnancy disorders. The platypus and echidna 

(Monotremes) are oviparous, but the embryo is retained in the uterus for 10–22 days, during 
which the developing fetus is nourished by maternal secretions delivered through a simple 

placenta, prior to the laying of a thin, poorly mineralized egg that hatches in ~2 weeks (Hill, 
1936). Live birth (viviparity) evolved in the stem-lineage of Therian mammals, but Marsupials 

and Eutherian (‘Placental’) mammals have dramatically different reproductive strategies. In 
Marsupials, pregnancies are generally short (~25 days) and completed within the span of a 

single estrous cycle (Renfree and Shaw, 2001; Renfree, 2010). Eutherians, in contrast, evolved 
a suite of traits that support prolonged pregnancies (up to 670 days in African elephant), 

including an interrupted estrous cycle, which allows for gestation lengths longer than a single 
reproductive cycle, maternal-fetal communication, maternal recognition of pregnancy, 

implantation of the blastocyst and placenta into uterine tissue, differentiation (decidualization) of 
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endometrial stromal fibroblasts (ESFs) in the uterine lining into decidual stromal cells (DSCs), 

and maternal immunotolerance of the antigenically distinct fetus, i.e. the fetal allograft (Guleria 
and Pollard, 2000; Moffett and Loke, 2004; Erlebacher, 2013). 

 
Gene expression changes at the maternal-fetal interface underlie evolutionary 

differences in pregnancy (Hou et al., 2012; Lynch et al., 2015; Armstrong et al., 2017), and thus 
likely also pathologies of pregnancy such as infertility, recurrent spontaneous abortion (Kosova 

et al., 2015), preeclampsia (Elliot, 2017; Arthur et al., 2018; Varas Enriquez, McKerracher and 
Elliot, 2018) and preterm birth (Plunkett et al., 2011; Swaggart, Pavlicev and Muglia, 2015; 

LaBella et al., 2019). Here, we assembled a collection of gene expression data from the 
pregnant/gravid maternal-fetal interface of tetrapods and used evolutionary methods to 

reconstruct gene expression changes during the origins of mammalian pregnancy. We found 

that genes that evolved to be expressed at the maternal-fetal interface in the Eutherian stem-
lineage were enriched for immune functions and diseases, as well as preterm birth. Among the 

recruited genes was the transcription factor Heart- and neural crest derivatives-expressed 
protein 2 (HAND2), which plays essential roles in neural crest development (Srivastava et al., 

1997), cardiac morphogenesis (Srivastava et al., 1997; Shen et al., 2010; Tamura et al., 2013; 
Lu et al., 2016; Sun et al., 2016), and suppressing estrogen signaling during the period of 

uterine receptivity to implantation (Huyen and Bany, 2011; Li et al., 2011; Shindoh et al., 2014; 
Fukuda et al., 2015; Mestre-Citrinovitz et al., 2015; Murata et al., 2019; Šućurović et al., 2020). 

We determined that HAND2 expression at the first trimester maternal-fetal interface was almost 
entirely restricted to cell types in ESF lineage, and is regulated by multiple transcription factors 

that control progesterone responsiveness. Moreover, the HAND2 promoter loops to an 

enhancer with single nucleotide polymorphisms (SNPs) that have been implicated by GWAS in 
the regulation of gestation length (Warrington et al., 2019; Sakabe et al., 2020). Furthermore, 

we showed that HAND2 regulates interleukin 15 (IL15) expression in ESFs, and that ESF-
derived IL15 influences the migration of natural killer and trophoblast cells. These data suggest 

that HAND2 and IL15 signaling played an important role in the evolution of implantation and 
regulation of gestation length. 
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Results  
Genes that evolved endometrial expression in Eutherian mammals are enriched in 

immune functions 
We previously used comparative transcriptomics to reconstruct the evolution of gene 

expression at the maternal-fetal interface during the origins of mammalian pregnancy (Lynch et 
al., 2015). Here, we assembled a collection of new and existing transcriptomes from the 

pregnant/gravid endometria of 15 Eutherian mammals, three Marsupials, one Monotreme 
(platypus), two birds, six lizards, and one amphibian (Supplementary Table 1). The complete 

dataset includes expression information for 21,750 genes from 28 species. Next, we 
transformed continuous transcript abundance estimates values into discrete character states 

such that genes with Transcripts Per Million (TPM) ≥ 2.0 were coded as expressed (state=1), 

genes with TPM < 2.0 were coded as not expressed (state=0), and genes without data in 
specific species were coded as missing (state=?). We then used parsimony to reconstruct 

ancestral transcriptomes and trace the evolution of gene expression gains (0 à 1) and losses (1 
à 0) in the endometrium.  

 
We identified 958 genes that potentially evolved endometrial expression in the Eutherian 

stem-lineage (Figure 1A), including 149 that unambiguously evolved endometrial expression 
(Supplementary Table 2). These 149 genes were significantly enriched in pathways related to 

the immune system (Supplementary Table 3), although only two pathways were enriched at 
False Discovery Rate (FDR) ≤ 0.10, namely, “Cytokine Signaling in Immune System” 

(hypergeometric P=1.97x10-5, FDR=0.054) and “Signaling by Interleukins” (hypergeometric 

P=4.09x10-5, FDR=0.067). Unambiguously recruited genes were also enriched in numerous 
human phenotype ontology terms (Supplementary Table 4) but only two, “Immune System 

Diseases” (hypergeometric P=3.15x10-8, FDR=2.52x10-4) and “Preterm Birth” (hypergeometric 
P=4.04x10-4, FDR=8.07x10-4), at FDR ≤ 0.10. In contrast, these genes were enriched in 

numerous biological process gene ontology (GO) terms (Supplementary Table 5), nearly all of 
which were related to regulation of immune system, including “Leukocyte Migration” 

(hypergeometric P=1.17x10-7, FDR=1.29x10-3), “Inflammatory Response” (hypergeometric 
P=8.07x10-7, FDR=2.21x10-3), and “Cytokine-mediated Signaling Pathway” (hypergeometric 

P=2.18x10-5, FDR=0.013). 
 

Recruitment of HAND2 and anti-estrogenic signaling in Eutherians 
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 Among the genes that unambiguously evolved endometrial expression in the Eutherian 

stem-lineage was the basic helix-loop-helix family transcription factor Heart- and neural crest 
derivatives-expressed protein 2 (HAND2). HAND2 plays an essential role in mediating the anti-

estrogenic action of progesterone and the establishment of uterine receptivity to implantation 
(Figure 1B) (Huyen and Bany, 2011; Li et al., 2011; Fukuda et al., 2015; Mestre-Citrinovitz et 

al., 2015), suggesting an active role of this hormone during pregnancy in non-Eutherian 
mammals. To test this, we performed immunohistochemistry (IHC) on endometrial sections from 

day 12.5 of pregnancy (after the transition from the histotrophic to placental phase) in the short-
tailed opossum (Monodelphis domestica). We observed strong staining for estrogen receptor 

alpha (ESR1; ERα) phosphorylated at serine 118 (a mark of transcriptionally active ERα) (Kato 
et al., 1995), phosphorylated ERK1/2, and MUC1 (Figure 1C). We also found that ESR1, FGF2, 

FGF9, FGF18, MUC1, several WNT genes that stimulate proliferation of the luminal epithelia, 

and MKI67 (Ki-67), a mark of actively proliferating cells (Scholzen and Gerdes, 2000), were 
abundantly expressed in RNA-Seq data from day 12.5 pregnant M. domestica endometrium 

(Figure 1C). These data are indicative of persistent estrogen signaling during pregnancy in 
opossum. 

 
HAND2 is expressed in endometrial stromal fibroblast lineage cells  

To determine which cell types at the human maternal-fetal interface express HAND2, we 
used previously generated single-cell RNA-Seq (scRNA-Seq) data from first trimester decidua 

(Vento-Tormo et al., 2018). HAND2 expression was almost entirely restricted to cell populations 
in the endometrial stromal fibroblast lineage (ESF1, ESF2, and DSC), with particularly high 

expression in ESF2s and DSCs (Figure 2A). HAND2 protein was localized to nuclei in ESF 

lineage cells in human pregnant decidua (Figure 2B) from Human Protein Atlas IHC data 
(Uhlén et al., 2015). We also used existing functional genomics data to explore the regulatory 

status of the HAND2 locus (see Methods). Consistent with active expression, the HAND2 locus 
in human DSCs is marked by histone modifications that typify enhancers (H3K27ac) and 

promoters (H3K4me3), and is located in a region of open chromatin as assessed by ATAC-, 
DNaseI- and FAIRE-Seq. Additionally, it is bound by transcription factors that establish 

endometrial stromal cell-type identity and mediate decidualization, including the progesterone 
receptor (PR), NR2F2 (COUP-TFII), GATA2, FOSL2, FOXO1, as well as polymerase II (Figure 

2C). The HAND2 promoter loops to several distal enhancers, as assessed by H3K27ac HiChIP 

data generated from a normal hTERT-immortalized endometrial cell line (E6E7hTERT), 
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including a region bound by PR, NR2F2, GATA2, FOSL2 and FOXO1, that also contains SNPs 

associated with gestation length in recent GWAS (Warrington et al., 2019; Sakabe et al., 2020) 
(Figure 2C). HAND2 was significantly up-regulated by decidualization of human ESFs into 

DSCs by cAMP/progesterone treatment (Log2FC=1.28, P=2.62x10-26, FDR=1.16x10-24), and 
significantly down-regulated by siRNAs targeting PR (Log2FC=-0.90, P=7.05x10-15, 

FDR=2.03x10-13) and GATA2 (Log2FC=-2.73, P=0.01, FDR=0.19) (Figure 2D). In contrast, 
siRNA-mediated knockdown of neither NR2F2 (Log2FC=-0.91, P=0.05, FDR=1.0) nor FOXO1 

(Log2FC=0.08, P=0.49, FDR=0.74) significantly altered HAND2 expression (Figure 2D). 
 

Differential HAND2 expression throughout the menstrual cycle and pregnancy  
Our observation that HAND2 is progesterone responsive suggests it may be differentially 

expressed throughout the menstrual cycle and pregnancy. To explore this possibility, we utilized 

previously published gene expression datasets generated from the endometrium across the 
menstrual cycle (Talbi et al., 2006) and from the basal plate from mid-gestation to term (Winn et 

al., 2007). HAND2 expression tended to increase from proliferative through the early and middle 
secretory phases, reaching a peak in the late secretory phase of the menstrual cycle (Figure 

2E). In stark contrast, HAND2 expression decreases throughout pregnancy reaching a low at 
term (Figure 2F). For comparison, 9% of genes were down-regulated between weeks 14-19 

and 37-40 of pregnancy (FDR≤0.10). We also used previously published gene expression 
datasets (see Methods) to explore if HAND2 was associated with disorders of pregnancy and 

found significant HAND2 dysregulation in the endometria of women with infertility (IF) and 
recurrent spontaneous abortion (RSA) compared to fertile controls (Figure 2G). HAND2 was not 

differentially expressed in ESFs or DSCs from women with preeclampsia (PE) compared to 

controls (Figure 2G). 
 

HAND2 regulates a distinct set of target genes 
HAND2 expression has previously been shown to play a role in orchestrating the 

transcriptional response to progesterone during decidualization in human and mouse DSCs 
(Huyen and Bany, 2011; Li et al., 2011; McConaha et al., 2011; Shindoh et al., 2014). However, 

whether HAND2 has functions in other endometrial stromal lineage cells such as ESFs is 
unknown. Therefore, we used siRNA to knockdown HAND2 expression in human hTERT-

immortalized ESFs (T-HESC) and assayed global gene expression changes by RNA-Seq 48 

hours after knockdown. We found that HAND2 was knocked-down ~78% (P=7.79x10-3) by 
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siRNA treatment (Figure 3A), which dysregulated the expression of 553 transcripts (489 genes) 

at FDR ≤ 0.10 (Figure 3A and Supplementary Table 6). Genes dysregulated by HAND2 
knockdown had very little overlap with genes dysregulated by PR, NR2F2, GATA2, or FOXO1 

knockdown (Figure 3B). These data indicate that HAND2 regulates a distinct set of target 
genes compared to transcription factors that establish cell-type identity and mediate the 

decidualization response. Indeed, only 30 genes are co-regulated by cAMP/progesterone, PR, 
GATA2, and HAND2 (Figure 3B). 

 
Genes dysregulated by HAND2 knockdown were enriched in several pathways and 

human phenotype ontologies relevant to endometrial stromal cells and pregnancy in general 
(Figure 3C, Supplementary Table 7, and Supplementary Table 8). Enriched pathways play a 

role in decidualization, such as “Wnt Signaling” (Peng et al., 2008; Hayashi et al., 2009; 

Sonderegger, Pollheimer and Knöfler, 2010; Franco et al., 2011; Wang et al., 2013), “BMP 
Signaling” (Ying and Zhao, 2000; Lee et al., 2007; Li et al., 2007; Wetendorf and DeMayo, 

2012), “ErbB Signaling” (Lim, Dey and Das, 1997; Klonisch et al., 2001; Large et al., 2014), 
“TGF-beta Receptor Signaling” (Jones et al., 2006; Li, 2014; Ni and Li, 2017) and “BMP2-

WNT4-FOXO1 Pathway in Human Primary Endometrial Stromal Cell Differentiation” (Gellersen 
and Brosens, 2003; Buzzio et al., 2006; Lee et al., 2007; Li et al., 2007; Brayer, Lynch and 

Wagner, 2009; Lynch et al., 2009; Kajihara, Brosens and Ishihara, 2013). Other enriched 
pathways included those involved in placental bed development disorders and preeclampsia 

(Chekir et al., 2006; Oliver et al., 2011; Guedes-Martins et al., 2013), the induction of pro-
inflammatory factors via nuclear factor-κB (NFκB) through the “AGE/RAGE pathway” (Lappas, 

Permezel and Rice, 2007), the “Aryl Hydrocarbon Receptor Pathway”, which mediates maternal 

immunotolerance of the fetal allograft (Munn et al., 1998; Abbott et al., 1999; Funeshima et al., 
2005; Hao et al., 2013), “Circadian Rhythm Related Genes”, which have been associated with 

implantation (Greenhill, 2014) and parturition (Roizen et al., 2007; Olcese, 2012; Olcese, Lozier 
and Paradise, 2013; Menon et al., 2016), and the “RAC1/PAK1/p38/MMP2” pathway, which has 

also been implicated in decidual inflammation, senescence and parturition (Menon et al., 2016). 
Enriched human phenotype ontology terms were related to complications of pregnancy, 

including “Premature Rupture of Membranes”, “Premature Birth”, “Toxemia of Pregnancy” 
(preeclampsia) and “Abnormal Delivery”. We also observed that several genes in the NFκB 

pathway, such as MYD88, CHUK, IκBKE, NFκBIE and RTKN2 were differentially expressed; 

NFκB signaling has been associated with the molecular etiology of preterm birth (Allport, 2001; 
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Lindstrom and Bennett, 2005). 

 
HAND2 regulates IL15 expression in endometrial stromal fibroblast lineage cells  

Among the genes dysregulated by HAND2 knockdown in ESFs was IL15 (Log2FC=7.98, 
P=7.91x10-8, FDR=1.49x10-5), a pleiotropic cytokine previously shown to be expressed in the 

endometrium and decidua (Figure 3A and Table 1) (Kitaya et al., 2000; Okada, 2000; Dunn, 
Critchley and Kelly, 2002; Okada et al., 2004; Godbole and Modi, 2010). IL15 was robustly 

expressed at the first trimester maternal-fetal interface in stromal fibroblast lineage cells (Figure 
4A) and there was a general correlation between HAND2 and IL15 expression in single cells 

(Figure 4A inset) (Vento-Tormo et al., 2018). IL15 protein localized to cytoplasm in ESF 
lineage cells in human pregnant decidua (Figure 4B) in Human Protein Atlas data. The IL15 

promoter loops to several distal sites in H3K27ac HiChIP data from E6E7hTERT endometrial 

cells including to regions bound by PR, NR2F2, GATA2, FOSL2, FOXO1, and SRC2, an 
intrinsic histone acetyltransferase that is a transcriptional co-factor of ligand-dependent 

hormone receptors (Figure 4C). The IL15 promoter also loops to a putative enhancer in its first 
intron that contains a PGR binding site and SNPs marginally associated with a maternal effect 

on offspring birth weight (rs190663174, P=6x10-4) by GWAS (Warrington et al., 2019).  IL15 was 
significantly up-regulated by in vitro decidualization of human ESFs into DSCs by 

cAMP/progesterone treatment (Log2FC=2.15, P=2.58x10-33, FDR=1.59x10-31), and significantly 
down-regulated by siRNAs targeting PR (Log2FC=-1.24, P=6.23x10-15, FDR=1.80x10-13) and 

GATA2 (Log2FC=-2.08, P=4.16x10-3, FDR=0.14) (Figure 4D), but not NR2F2 (Log2FC=0.19, 
P=0.38, FDR=0.93) or FOXO1 (Log2FC=0.29, P=0.04, FDR=0.22) (Figure 4D). Although 

HAND2 binding data is not available for human stromal fibroblast lineage cells, several HAND2 

binding motifs (≥0.85 motif match) are located within enhancers that loop to the IL15 promoter.  
 

Differential IL15 expression throughout the menstrual cycle and pregnancy  
Our observations that HAND2 is progesterone responsive and differentially expressed 

throughout the menstrual cycle and pregnancy suggests that IL15, which is controlled by 
HAND2 as well as cAMP/progesterone/PR/GATA2, may be similarly regulated. Indeed, like 

HAND2, we found that IL15 expression increased as the menstrual cycle progressed, peaking in 
the middle-late secretory phases (Figure 4E) and decreased throughout pregnancy reaching a 

low at term (Figure 4F). IL15 expression was also dysregulated in the endometria of women 

with infertility but not recurrent spontaneous abortion, compared to fertile controls (Figure 4G). 
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In women with preeclampsia, IL15 was not dysregulated in ESFs, but it was expressed 

significantly higher in DSCs, compared to controls. Thus, like HAND2, IL15 is differentially 
expressed throughout the menstrual cycle and pregnancy, and in the endometria of women with 

infertility.  
 

ESF-derived IL15 promotes NK and trophoblast migration  
 Endometrial stromal cells promote the migration of uterine natural killer (uNK) (Chen et 

al., 2011) and trophoblast cells (Graham and Lala, 1991; Paiva et al., 2009; Zhu et al., 2009; 
Godbole et al., 2011). IL15, in particular, stimulates the migration of uNK cells (Allavena et al., 

1997; Verma et al., 2000; Ashkar et al., 2003; Barber and Pollard, 2003; Kitaya, Yamaguchi and 
Honjo, 2005) and the human choriocarcinoma cell line, JEG-3 (Zygmunt et al., 1998). Therefore, 

we tested whether ESF-derived IL15 influenced the migration of primary human NK cells and 

immortalized first trimester extravillous trophoblasts (HTR-8/SVneo) in trans-well migration 
assays (Figure 5A). We found that ESF media supplemented with recombinant human IL15 

(rhIL15) was sufficient to stimulate the migration of NK and HTR-8/SVneo cells to the lower 
chamber of trans-wells, compared to non-supplemented media (Figure 5B,C; Supplementary 

Tables 9 and 10). Conditioned media from ESFs with siRNA-mediated HAND2 knockdown 
increased migration of both NK and HTR-8/SVneo compared to negative control (i.e., non-

targeting siRNA) (Figure 5B,C). Conditioned media from ESFs with siRNA-mediated IL15 
knockdown reduced migration of both NK and HTR-8/SVneo cells compared to negative control 

(Figure 5B,C). Similarly, ESF conditioned media supplemented with anti-IL15 antibody reduced 
cell migration compared to media supplemented with control IgG antibody (Figure 5B,C).  

 

Discussion 

 Eutherian mammals evolved a suite of traits that support pregnancy, including an 
interrupted estrous cycle allowing for prolonged gestation lengths, maternal-fetal 

communication, implantation, maternal immunotolerance and recognition of pregnancy, and 
thus are uniquely afflicted by disorders of these processes. When searching for clues as to how 

variation in normal physiological functions can lead to dysfunction and disease, deeper 
understanding of the evolutionary and developmental histories of organ and tissues has the 

potential to provide novel insights. Here, we used evolutionary transcriptomics to identify genes 
that evolved to be expressed on the maternal side (endometrium) of the maternal-fetal interface 
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during the origins of pregnancy in Eutherians, and hence may also contribute to pregnancy 

complications such as infertility, recurrent spontaneous abortion, and preterm birth. 
 

Among the genes recruited into endometrial expression in Eutherians we identified 
HAND2, a pleiotropic transcription factor that plays an essential role in suppressing estrogen 

signaling at the time of uterine receptivity to blastocyst embedding, through its down-regulation 
of pro-estrogenic genes and by directly inhibiting the transcriptional activities of the estrogen 

receptor (Huyen and Bany, 2011; Li et al., 2011; Shindoh et al., 2014; Fukuda et al., 2015; 
Mestre-Citrinovitz et al., 2015; Murata et al., 2019). Consistent with these functions, we found 

evidence of estrogen activity in the endometrium of pregnant opossum. Earlier research 
detected similar activity in the gravid oviduct of birds and reptiles (Means et al., 1975; Kato et 

al., 1992; Girling, 2002; González-Morán, 2015). These data indicate that suppression of 

estrogen signaling during the window of uterine receptivity to implantation is an evolutionary 
innovation of Eutherian mammals, which involved the recruitment of HAND2 and its anti-

estrogenic functions into endometrial expression. 
 

The roles of HAND2 in DSCs and implantation are well-understood (Huyen and Bany, 
2011; Li et al., 2011; Shindoh et al., 2014; Fukuda et al., 2015; Mestre-Citrinovitz et al., 2015; 

Murata et al., 2019; Šućurović et al., 2020). In contrast, the function(s) of HAND2 at other 
stages of pregnancy and in ESFs remain relatively unexplored. We knocked down HAND2 in 

ESFs and found that downstream dysregulated genes were enriched for human phenotype 
ontologies related to disorders of pregnancy, including “Premature Rupture of Membranes”, 

“Premature Birth”, and “Abnormal Delivery”, suggesting that HAND2 has functions throughout 

pregnancy and in parturition. Indeed, we discovered that SNPs recently implicated in the 
regulation of gestation length and birth weight by GWAS (Warrington et al., 2019; Sakabe et al., 

2020) make long-range interactions to the HAND2 promoter. Also of note, HAND2 expression is 
significantly higher in placental villous samples from idiopathic spontaneous preterm birth 

(isPTB) compared to term controls (Brockway et al., 2019). However, this difference may be 
related to gestational age rather than the etiology of PTB (Eidem et al., 2016). 

 
Additionally, analyzing previously published datasets we noticed that HAND2 expression 

decreases throughout gestation. Unlike the majority of Eutherians, where parturition closely 

follows the significant drop in progesterone concentrations in maternal peripheral blood, this is 
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not the case for humans and other Old-World primates (Ratajczak, Fay and Muglia, 2010), 

where progesterone levels keep rising throughout gestation, reaching maximum at birth. These 
observations, combined with the central role of HAND2 in mediating the anti-estrogenic actions 

of progesterone, suggest decreased HAND2 at the end of pregnancy may contribute to the 
estrogen dominant uterine environment at the onset of labor (Pinto et al., 1966; Pepe and 

Albrecht, 1995; Mesiano et al., 2002; R. Smith et al., 2009; Ratajczak, Fay and Muglia, 2010; 
Welsh et al., 2012), despite high systemic progesterone. Low HAND2 at the end of pregnancy in 

humans is therefore most likely not directly related to progesterone concentrations, suggesting 
that an unidentified inhibitory signal reduces endometrial HAND2 expression. While taken 

collectively these data indicate a role for HAND2 in pre/term birth, a direct mechanistic link 
between HAND2 expression and the timing of parturition remains to be demonstrated. 

 

One of the genes dysregulated by HAND2 knockdown was the multifunctional cytokine 
IL15, which plays important roles in innate and adaptive immunity. In the context of pregnancy, 

it is important for the recruitment of uterine natural killer (uNK) cells to the endometrium (Kitaya 
et al., 2000; Verma et al., 2000; Ashkar et al., 2003; Barber and Pollard, 2003; Kitaya, 

Yamaguchi and Honjo, 2005; Laskarin et al., 2006). The roles of uNK cells in the remodeling of 
uterine spiral arteries and regulating trophoblast invasion are well known (Zygmunt et al., 1998; 

Hanna et al., 2006; S. D. Smith et al., 2009; Burke et al., 2010; Hazan et al., 2010; Lash, 
Robson and Bulmer, 2010; Bany, Scott and Eckstrum, 2012; Robson et al., 2012; Zhang, Dunk 

and Lye, 2013; Lima et al., 2014; Fraser et al., 2015; Felker and Croy, 2016; Renaud et al., 
2017). Endometrial stromal cell-derived IL15 is also necessary for the selective targeting and 

clearance of senescent endometrial stromal cells from the implantation site by uNK cells, which 

is essential for endometrial rejuvenation and remodeling at embryo implantation (Brighton et al., 
2017). Dysregulation of uNK cell-mediated clearance of these senescent cells has also been 

implicated in recurrent pregnancy loss (Lucas et al., 2020). We found that, like HAND2, IL15 
decreases throughout gestation and both genes increase in expression as the menstrual cycle 

progresses. Unexpectedly however, while previous studies showed that HAND2 induces IL15 in 
DSCs (Shindoh et al., 2014; Murata et al., 2020), we discovered that HAND2 inhibited IL15 

expression in ESFs, indicating a switch in regulatory activity sometime during early menstrual 
cycle. These data suggest that HAND2 regulates the appropriate timing of endometrial IL15 

expression during the menstrual cycle and pregnancy, and thus the appropriate timing of uNK 

cell recruitment, trophoblast migration and the clearance of senescent endometrial stromal cells 
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from the implantation site (Figure 5D). Additional work is needed to elucidate the mechanisms 

that underlie change in HAND2-IL15 dynamics. An intriguing possibility, however, is that 
progressive cell-state changes during gestation promote the transition from ESFs to DSCs to 

senescent DSCs (snDSCs), which have much lower HAND2 and IL15 expression than DSCs 
(Lucas et al., 2020). Thus, our observation of low HAND2 and IL15 near term may reflect a 

reduction of anti-inflammatory DSCs (high HAND2 and IL15) and an accumulation of pro-
inflammatory snDSCs (low HAND2 and IL15) at the maternal-fetal interface. 

 
Decreased HAND2 and IL15 expression near term and their influence on immune cells 

at the maternal-fetal interface may also play a role in parturition. While the signals that initiate 
the onset of parturition in humans and other Old-World monkeys are not known, pre/term labor 

is known to be associated with elevated inflammation and an influx of immune cells into utero-

placental tissues (Thomson et al., 1999; Young et al., 2002; Osman et al., 2003; Gomez-Lopez, 
Guilbert and Olson, 2010; Rinaldi et al., 2011, 2014; Hamilton et al., 2012; Shynlova et al., 

2013; Bartmann et al., 2014; Menon et al., 2016; Peters et al., 2016; Wilson and Mesiano, 
2020). uNK cells are abundant throughout gestation (Bulmer et al., 1991; King et al., 1991; 

Moffett-King, 2002; Williams et al., 2009; Bartmann et al., 2014), but whether they play a role in 
late pregnancy and parturition is unclear. However, depletion of uNK cells rescues LPS-induced 

preterm birth in IL10-null mice (Murphy et al., 2005), indicating they contribute to 
infection/inflammation-induced preterm parturition (Murphy et al., 2009). CD16+CD56dim 

(cytotoxic) uNK cells have also been observed in the decidua and the placental villi of women 
with preterm but not term labor, suggesting an association between dysregulation of uNK cells 

and preterm birth in humans (Gomaa et al., 2017). uNK cells are associated with other 

pregnancy complications in humans such as fetal growth restriction, preeclampsia, and 
recurrent spontaneous abortion (Moffett, Regan and Braude, 2004; Hiby et al., 2010; Wallace et 

al., 2013, 2014; Kieckbusch et al., 2014). Taken together, these data indicate that uNK cells 
may act downstream of HAND2-IL15 signaling in the timing of parturition. 

 
Conclusions 

 Here we show that HAND2 evolved to be expressed in endometrial stromal cells in the 
Eutherian stem-lineage, coincident with the evolution of suppressed estrogen signaling during 

the window of implantation and an interrupted reproductive cycle during pregnancy, which 

necessitated a means to regulate the length of gestation. Our data suggest that HAND2 may 
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contribute to the regulation of gestation length by promoting an estrogen dominant uterine 

environment near term and through its effect on IL15 signaling and uNK cell function. To further 
expand our understanding of HAND2 functions at the molecular mechanistic level, multiple 

technical and ethical difficulties associated with studying human pregnancy in vivo will need to 
be overcome. Therefore, recently developed organoid models of the human maternal-fetal 

interface (Rinehart, Lyn-Cook and Kaufman, 1988; Boretto et al., 2017; Turco et al., 2017, 2018; 
Marinić and Lynch, 2019), which allow for in vitro 3D manipulation, will prove instrumental. 
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Methods 
Endometrial gene expression profiling and ancestral transcriptome reconstruction 

Data Collection: We obtained previously generated RNA-Seq data from pregnant endometria of 
amniotes by searching NCBI BioSample, Short Read Archive (SRA), and Gene Expression 

Omnibus (GEO) databases for anatomical terms referring to the portion of the female 
reproductive tract (FRT), including “uterus”, “endometrium”, “decidua”, “oviduct”, and “shell 

gland”, followed by manual curation to identify those datasets that included the FRT region 
specialized for maternal-fetal interaction or shell formation. Datasets that did not indicate 

whether samples were from pregnant or gravid females were excluded, as were those 
composed of multiple tissue types. Species included in this study and their associated RNA-Seq 

accession numbers are included in Supplementary Table 1. 

 
New RNA-Seq data: Endometrial tissue samples from the pregnant uteri of baboon (x3), mouse 

(x3), hamster (x3), bat (x2), and squirrel (x2) were dissected and mailed to the University of 
Chicago in RNA-Later. These samples were further dissected to remove myometrium, luminal 

epithelium, and extra-embryonic tissues, and then washed 3x in ice cold PBS to remove 
unattached cell debris and red blood cells. Total RNA was extracted from the remaining tissue 

using the RNeasy Plus Mini Kit (74134, QIAGEN) per manufacturer’s instructions. RNA 
concentrations were determined by Nanodrop 2000 (Thermo Scientific). A total amount of 2.5μg 

of total RNA per sample was submitted to the University of Chicago Genomics Facility for 
Illumina Next Gen RNA sequencing. Quality was assessed with the Bioanalyzer 2100 (Agilent). 

A total RNA library was generated using the TruSEQ stranded mRNA with RiboZero depletion 

(Illumina) for each sample. The samples were fitted with one of six different adapters with a 
different 6-base barcode for multiplexing. Completed libraries were run on an Illumina 

HiSEQ2500 with v4 chemistry on 2 replicate lanes for hamster and 1 lane for everything else of 
an 8 lane flow cell, generating 30-50 million high quality 50bp single-end reads per sample. 

 
Multispecies RNA-Seq analyses: Kallisto version 0.42.4 was used to pseudo-align the raw RNA-

Seq reads to genomes (see Supplementary Table 1 for reference genome assemblies). We 
used default parameters bias correction, and 100 bootstrap replicates. Kallisto outputs consist 

of transcript abundance estimates in transcripts per million (TPM), which were used to 
determine gene expression. 
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Ancestral transcriptome reconstruction:  We previously showed that genes with TPM ≥ 2.0 are 

actively transcribed in endometrium while genes with TPM < 2.0 lack hallmarks of active 
transcription such as promoters marked with H3K4me3 (Wagner, Kin and Lynch, 2012, 2013). 

Based on these findings, we transformed values of transcript abundance estimates into discrete 
character states, such that genes with TPM ≥ 2.0 were coded as expressed (state=1), genes 

with TPM < 2.0 were coded as not expressed (state=0), and genes without data in specific 
species coded as missing (state=?). The binary encoded endometrial gene expression dataset 

generally grouped species by phylogenetic relatedness, suggesting greater signal to noise ratio 
than raw transcript abundance estimates. Therefore, we used the binary encoded endometrial 

transcriptome dataset to reconstruct ancestral gene expression states and trace the evolution of 
gene expression gains (0 à 1) and losses (1 à 0) in the endometria across vertebrate 

phylogeny (Figure 1A). We used Mesquite (v2.75) with parsimony optimization to reconstruct 

ancestral gene expression states, and identify genes that gained or lost endometrial expression. 
Expression was classified as an unambiguous gain if a gene was not inferred as expressed at a 

particular ancestral node (state 0) but inferred as expressed (state 1) in a descendent of that 
node, and vice versa for the classification of a loss of endometrial expression. We thus identified 

149 genes that unambiguously evolved endometrial expression in the stem-lineage of Placental 
mammals (Supplementary Table 2). 

 
Pathway enrichments: We used WebGestalt v. 2019 (Liao et al., 2019) to determine if the 149 

identifies genes were enriched in ontology terms using over-representation analysis (ORA). A 
key advantage of WebGestalt is that it allowed for the inclusion of a custom background gene 

list, which was the set of 21,750 genes for which we could reconstruct ancestral states, rather 

than all annotated protein-coding genes in the human genome. We used ORA to identify 
enriched terms for three pathway databases (KEGG, Reactome, and Wikipathway), the Human 

Phenotype Ontology database, and a custom database of genes implicated in preterm birth by 
GWAS. The preterm birth gene set was assembled from the NHGRI-EBI Catalog of published 

genome-wide association studies (GWAS Catalog), including genes implicated in GWAS with 
either the ontology terms “Preterm Birth” (EFO_0003917) or “Spontaneous Preterm Birth” 

(EFO_0006917), as well as two recent preterm birth GWAS (Warrington et al., 2019; Sakabe et 
al., 2020).  
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Immunohistochemistry (IHC) 

Endometrial tissue from pregnant opossum (12.5 d.p.c.) was fixed in 10% neutral-
buffered formalin, paraffin-embedded, sectioned at 4μm, and mounted on slides. Paraffin 

sections were dried at room temperature overnight and then baked for 12h at 50°C. Prior to 
immunostaining, de-paraffinization and hydration were done in xylene and graded ethanol to 

distilled water. During hydration, a 5mins blocking for endogenous peroxidase was done in 0.3% 
H2O2 in 95% ethanol. Antigen retrieval was performed in retrieval buffer pH6, using a pressure 

boiler microwave as a heat source with power set to full, allowing retrieval buffer to boil for 
20mins, and then cooled in a cold water bath for 10mins. To stain sections, we used the Pierce 

Peroxidase IHC Detection Kit (Cat. 36000) following the manufacturers protocol. Briefly, uterine 
sections were incubated at 4°C overnight with polyclonal antibodies against HAND2 (Santa 

Cruz SC-9409), MUC1 (Novus Biologicals NB120-15481), p-ERα (Santa Cruz SC-12915), p-

Erk1/2 (also known as MAPK1/2; Santa Cruz SC-23759-R) at 1:1000 dilution in blocking buffer. 
The next day sections were washed 3x in wash buffer, and incubated with HRP-conjugated 

rabbit anti-mouse IgG (H+L) secondary antibody (Invitrogen cat # 31450) at 1:10000 dilution in 
blocking buffer. After 30mins at 4°C slides were washed 3x in wash buffer. Slides were 

developed with 1x DAB/metal concentrate and stable peroxide buffer for 5mins, then rinsed 3x 
for 3mins in wash buffer, and mounted with Permount (SP15-100; Thermo Fisher Scientific). 

 
Expression of HAND2 and IL15 at the maternal-fetal interface 

We used previously published single-cell RNA-Seq (scRNA-Seq) data from the human 
first trimester maternal-fetal interface (Vento-Tormo et al., 2018) to determine which cell types 

express HAND2 and IL15. The dataset consists of transcriptomes for ~70,000 individual cells of 

many different cell types, including: three populations of tissue resident decidual natural killer 
cells (dNK1, dNK2, and dNK3), a population of proliferating natural killer cells (dNKp), type 2 

and/or type 3 innate lymphoid cells (ILC2/ILC3), three populations of decidual macrophages  
(dM1, dM2, and dM3), two populations of dendritic cells (DC1 and DC2), granulocytes (Gran), T 

cells (TCells), maternal and lymphatic endothelial cells (Endo), two populations of epithelial 
glandular cells (Epi1 and Epi2), two populations of perivascular cells (PV1 and PV2), two 

endometrial stromal fibroblast populations (ESF1 and ESF2), and decidual stromal cells 
(DSCs), placental fibroblasts (fFB1), extravillous- (EVT), syncytio- (SCT), and villus- (VCT) 

cytotrophoblasts (Figure 2A). Data were not reanalyzed, rather previously analyzed data were 

accessed using the cell×gene website available at https://maternal-fetal-
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interface.cellgeni.sanger.ac.uk. 

 
Expression of HAND2 and IL15 in human decidual cells 

We used previously published IHC data for HAND2 and IL15 generated from pregnant 
human decidua as part of the Human Protein Atlas project (http://www.proteinatlas.org/; (Uhlén 

et al., 2015)). Image/gene/data available from IL15 
(https://www.proteinatlas.org/ENSG00000164136-IL15/tissue) and HAND2 

(https://www.proteinatlas.org/ENSG00000164107-HAND2/tissue). 
 

Functional genomic analyses of the HAND2 and IL15 loci 
Gene expression data: We used previously published RNA-Seq and microarray gene 

expression data generated from human ESFs and DSCs that were downloaded from National 

Center for Biotechnology Information (NCBI) Short Read Archive (SRA) and processed remotely 
using Galaxy platform (https://usegalaxy.org/; Version 20.01) (Afgan et al., 2018) for RNA-Seq 

data  and GEO2R. RNA-Seq datasets were transferred from SRA to Galaxy using the Download 
and Extract Reads in FASTA/Q format from NCBI SRA tool (version 2.10.4+galaxy1). We used 

HISAT2 (version 2.1.0+galaxy5) (Kim, Langmead and Salzberg, 2015) to align reads to the 
Human hg38 reference genome using single- or paired-end options depending on the dataset 

and unstranded reads, and report alignments tailored for transcript assemblers including 
StringTie. Transcripts were assembled and quantified using StringTie (v1.3.6) (Pertea et al., 

2015, 2016), with reference file to guide assembly and the “reference transcripts only” option, 
and output count files for differential expression with DESeq2/edgeR/limma-voom. Differentially 

expressed genes were identified using DESeq2 (version 2.11.40.6+galaxy1) (Anders and 

Huber, 2010; Love, Huber and Anders, 2014). The reference file for StringTie guided assembly 
was wgEncodeGencodeBasicV33. GEO2R performs comparisons on original submitter-

supplied processed data tables using the GEOquery (Davis and Meltzer, 2007) and limma 
(Smyth et al., 2002) R packages from the Bioconductor project (https://bioconductor.org/; 

(Gentleman et al., 2004)).   
 

Datasets included gene expression profiles of primary human ESFs treated for 48 hours 
with control non-targeting, PGR-targeting (GSE94036), FOXO1-targeting (GSE94036) or 

NR2F2 (COUP-TFII)-targeting (GSE52008) siRNA prior to decidualization stimulus for 72 hours; 

transfection with GATA2-targeting siRNA was followed immediately by decidualization stimulus 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.06.15.152868doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.152868
http://creativecommons.org/licenses/by/4.0/


	 18	

(GSE108407). We also explored the expression of HAND2 and IL5 in the endometria of women 

with recurrent spontaneous abortion and infertility using a previously published dataset 
(GSE26787), as well as in the endometrium throughout the menstrual cycle (GSE4888) and 

basal plate throughout gestation (GSE5999); HAND2 probe 220480_at, IL15 probe 
205992_s_at, HAND2 expression from proliferative and mid-secretory endometria 

(GSE132713). 
 

ChIP-Seq and open chromatin data: We used previously published ChIP-Seq data generated 
from human DSCs that were downloaded from National Center for Biotechnology Information 

(NCBI) Short Read Archive (SRA) and processed remotely using Galaxy (Afgan et al., 2018). 
ChIP-Seq reads were mapped to the human genome (GRCh37/hg19) using HISAT2 (Kim, 

Langmead and Salzberg, 2015) with default parameters and peaks called with MACS2 (Zhang 

et al., 2008; Feng et al., 2012) with default parameters. Samples included PLZF (GSE112362), 
H3K4me3 (GSE61793), H3K27ac (GSE61793), H3K4me1 (GSE57007), PGR (GSE94038), the 

PGR A and B isoforms (GSE62475), NR2F2 (GSE52008), FOSL2 (GSE94038), FOXO1 
(GSE94037), PolII (GSE94037), GATA2 (GSE108408), SRC-2/NCOA2 (GSE123246), AHR 

(GSE114552), ATAC-Seq (GSE104720) and DNase1-Seq (GSE61793). FAIRE-Seq peaks 
were downloaded from the UCSC genome browser and not re-called.  

 
Chromosome interaction data: To assess chromatin looping, we utilized a previously published 

H3K27Ac HiChIP dataset from a normal hTERT-immortalized endometrial cell line 
(E6E7hTERT) and three endometrial cancer cell lines (ARK1, Ishikawa and JHUEM-14) 

(O’Mara, Spurdle and Glubb, 2019). This study identified 66,092 to 449,157 cis HiChIP loops (5 

kb–2 Mb in length) per cell line, with a majority involving interactions of over 20 kb in distance; 
35%–40% had contact with a promoter and these promoter-associated loops had a median 

span >200 kb. Contact data were from the original publication and not re-called for this study. 
Regions that interacted with the IL15 promoter were searched for HAND2 binding motifs using 

the JASPAR 2020 database of curated, non-redundant transcription factor binding profiles 
stored as position frequency matrices (PFMs) (Fornes et al., 2020); IL15 promoter interacting 

regions were searched for the HAND2 matrix profile (matrix ID MA1638.1) (Dai and Cserjesi, 
2002) using the ‘Scan” option on the JASPAR website. 
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Cell culture and HAND2 knockdown 

Human hTERT-immortalized endometrial stromal fibroblasts (T-HESC; CRL-4003, 
ATCC) were grown in maintenance medium, consisting of Phenol Red-free DMEM (31053-028, 

Thermo Fisher Scientific), supplemented with 10% charcoal-stripped fetal bovine serum (CS-
FBS; 12676029, Thermo Fisher Scientific), 1% L-glutamine (25030-081, Thermo Fisher 

Scientific) , 1% sodium pyruvate (11360070, Thermo Fisher Scientific), and 1x insulin-transferrin-
selenium (ITS; 41400045, Thermo Fisher Scientific). 2x105 cells were plated per well of a 6-well 

plate and 18 hours later cells in 1750μl of Opti-MEM (31985070, Thermo Fisher Scientific) were 
transfected with 50nM of siRNA targeting HAND2 (s18133; Silencer Select Pre-Designed 

siRNA; cat#4392420, Thermo Fisher Scientific) and 9μl of Lipofectamine RNAiMAX (133778-
150, Invitrogen) in 250μl Opti-MEM. BlockIT Fluorescent Oligo (44-2926, Thermo Fisher 

Scientific) was used as a scrambled non-targeting RNA control. Cells were incubated in the 

transfection mixture for 6 hours. Then, cells were washed with PBS and incubated in the 
maintenance medium overnight. Cells in the control wells were checked under the microscope 

for fluorescence the next day. 48 hours post treatment cells were washed with PBS, trypsinized 
(0.05% Trypsin-EDTA; 15400-054, Thermo Fisher Scientific) and total RNA was extracted using 

RNeasy Plus Mini Kit (74134, QIAGEN) following the manufacturer’s protocol. The knockdown 
experiment was done in 3 biological replicates. To test for the efficiency of the knockdown, 

cDNA was synthesized from 100-200ng RNA using Maxima H Minus First Strand cDNA 
Synthesis Kit (K1652, Thermo Fisher Scientific) following the manufacturer’s protocol. qRT-PCR 

was performed using QuantiTect SYBR Green PCR (204143, QIAGEN). HAND2 primers: fwd 
CACCAGCTACATCGCCTACC, rev ATTTCGTTCAGCTCCTTCTTCC. GAPDH housekeeping 

gene was used for normalization; primers fwd AATCCCATCACCATCTTCCA, rev 

TGGACTCCACGACGTACTCA. Samples that showed >70% KD efficiency were used for RNA-
Seq. 

 
HAND2 knockdown RNA-Seq analysis 

RNA from knockdown and control samples were DNase treated with TURBO DNA-free 
Kit (AM1907, Thermo Fisher Scientific) and RNA quality and quantity were assessed on 2100 

Bioanalyzer (Agilent Technologies, Inc.). RNA-Seq libraries were prepared using TruSeq 
Stranded Total RNA Library Prep Kit with Ribo-Zero Human (RS-122-2201, Illumina Inc.) 

following manufacturer’s protocol. Library quality and quantity were checked on 2100 

Bioanalyzer and the pool of libraries was sequenced on Illumina HiSEQ4000 (single-end 50bp) 
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using manufacturer’s reagents and protocols. Quality control, Ribo-Zero library preparation and 

Illumina sequencing were performed at the Genomics Facility at The University of Chicago.  
 

All sequencing data were uploaded and analyzed on the Galaxy platform 
(https://usegalaxy.org/; Version 20.01). Individual reads for particular samples were 

concatenated using the “Concatenate datasets” tool (version 1.0.0). We used HISAT2 (version 
2.1.0+galaxy5) (Kim, Langmead and Salzberg, 2015) to align reads to the Human hg38 

reference genome using “Single-end” option, and reporting alignments tailored for transcript 
assemblers including StringTie. Transcripts were assembled and quantified using StringTie 

(v1.3.6) (Pertea et al., 2015, 2016), with reference file to guide assembly and the “reference 
transcripts only” option, and output count files for differential expression with 

DESeq2/edgeR/limma-voom. Differentially expressed genes were identified using DESeq2 

(version 2.11.40.6+galaxy1) (Anders and Huber, 2010; Love, Huber and Anders, 2014). The 
reference file for StringTie guided assembly was wgEncodeGencodeBasicV33. The volcano plot 

was generated using Blighe K., Rana S., and Lewis M. (2018): EnhancedVolcano: Publication-
ready volcano plots with enhanced colouring and labeling (available at 

https://github.com/kevinblighe/EnhancedVolcano).  
 

Trans-well migration assay 
Choice of cells and culture: Human hTERT-immortalized ESFs (T-HESC) were selected as a 

model ESF cell line because they are proliferative, maintain hormone responsiveness and gene 
expression patterns characteristic of primary ESFs, and have been relatively well characterized 

(Krikun et al., 2004). ESFs were cultured in the maintenance medium as described above in 

T75 flasks until ~80% confluent. Cryopreserved primary adult human CD56+ NK cells purified 
by immunomagnetic bead separation were obtained from ATCC (PCS-800-019) and cultured in 

RPMI-1640 containing 10% FBS and IL2 in T75 flasks for two days prior to trans-well migration 
assays. We used the immortalized first trimester extravillous trophoblast cell line HTR-8/SVneo 

(Graham et al., 1993), because it maintains characteristics of extravillous trophoblasts and has 
previously been shown to be a good model of trophoblast migration and invasion (Iacob et al., 

2008; Paiva et al., 2009; Hannan et al., 2010). HTR-8/SVneo cells were obtained from ATCC 
(CRL-3271) and cultured in RPMI-1640 containing 5% FBS in T75 flasks for two days prior to 

trans-well migration assays. 
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3x104 ESF cells were plated per well of a 24-well plate and 18 hours later cells were transfected 

in Opti-MEM with 10nM (per well) of siRNA targeting HAND2 (s18133; Silencer Select Pre-
Designed siRNA, cat#4392420; Thermo Fisher Scientific) or IL15 (s7377; Silencer Select Pre-

Designed siRNA, cat#4392420; Thermo Fisher Scientific) and 1.5μl (per well) of Lipofectamine 
RNAiMAX (133778-150; Invitrogen). As a negative control we used Silencer Select negative 

control No. 1 (4390843; Thermo Fisher Scientific). ESF cells were incubated in the transfection 
mixture for 6 hours. Then, ESF cells were washed with warm PBS and incubated in the 

maintenance medium overnight. Efficiency of the knockdown was confirmed 48 hours post-
treatment by qPCR, media from each well was transferred to new 24-well plates and stored at 

4ºC. Total RNA from cells was extracted using RNeasy Plus Mini Kit (QIAGEN) following the 
manufacturer’s protocol. cDNA was synthesized from 10ng RNA using Maxima H Minus First 

Strand cDNA Synthesis Kit following the manufacturer’s protocol. qRT-PCR was performed 

using TaqMan Fast Universal PCR Master Mix 2X (4352042, Thermo Fisher Scientific), with 
primers for HAND2 (Hs00232769_m1), IL15 (Hs01003716_m1) and Malat (Hs00273907_s1) as 

a control housekeeping gene. Conditioned media from samples with >70% knockdown 
efficiency was used for trans-well migration assays. 

 
Corning HTS Trans-well permeable supports were used for the trans-well migration 

assay (Corning, cat # CLS3398). Prior to the assays, conditioned media was warmed to room 
temperature and centrifuged for 3min at 1000 RPM to pellet any cells. For experiments using 

recombinant human IL15 (rhIL15), we added 10ng/ml (AbCam, ab259403) of rhIL15 to fresh, 
non-conditioned ESF media; 10ng/ml has previously been shown to induce migration of JEG-3 

choriocarcinoma cells (Zygmunt et al., 1998). For neutralizing antibody experiments, either 

1μg/ml of anti-IL15 IgG (AbCam cat # MA5-23729) or control IgG (AbCam cat # 31903) were 
added to non-conditioned ESF media; 1μg/ml has previously been shown to neutralize ESF-

derived proteins and inhibit AC-1M88 trophoblast cell migration in trans-well assays (Gellersen 
et al., 2010, 2013). Plates were incubated with shaking at 37°C for 30min prior to initiation of 

migration assays. During antibody incubation, NK and HTR-8/SVneo cells were collected and 
resuspended in fresh ESF growth media. For the trans-well migration assay, 5x106 of either NK 

or HTR-8/SVneo cells were added to each well of the upper chamber and either treatment or 
control media were added to the lower chambers. Plates were incubated at 37°C with 5% CO2. 

 

After 8 hours incubation, we removed the upper plate (containing remaining NK and 
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HTR-8/SVneo cells) and discarded non-migrated cells. 50μl from each well in the lower 

chamber was transferred into a single well of a 96-well opaque plate. We used the CellTiter-Glo 
luminescent cell viability assay (G7570 Promega) to measure luminescence, which is 

proportional to the number of live cells per well. Data are reported as effect sizes (mean 
differences) between treatment and control. Confidence intervals are bias-corrected and 

accelerated. The P-values reported are the likelihoods of the observed effect sizes, if the null 
hypothesis of zero difference is true and calculated from a two-sided permutation t-test (5000 

reshuffles of the control and test labels). Cumming estimation plots and estimation statistics 
were calculated using DABEST R package (Ho et al., 2019). 
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Table 1. Exemplar genes differentially expressed in ESFs upon siRNA-mediated HAND2 
knockdown. Mean, base mean expression level. FC, log2 fold change. SE, standard error in log2 fold 
change. WS, Wald statistic. P-value, Wald test P-value. Adj-P, Benjamini-Hochberg (BH) adjusted P-
value. Function, function of gene inferred from WikiPathway 2019 human annotation. Association with 
preterm birth (PTB, HP:0001622) and premature rupture of membranes (PROM, HP:0001788) inferred 
from human phenotype ontology annotation. 

 
Gene Mean FC SE WS P-value Adj-P Function 

ARNT2 44.47 1.20 0.28 4.30 1.73E-05 1.89E-03 AHR signaling / Circadian rhythm 

ARNTL 42.52 -2.95 0.80 -3.67 2.46E-04 1.79E-02 AHR signaling / Circadian rhythm 

IL15 63.31 7.98 1.49 5.37 7.91E-08 1.49E-05 Cell migration 

BMP4 58.10 -8.34 1.25 -6.66 2.75E-11 8.28E-09 Decidualization 

GSK3B 69.23 -5.53 1.48 -3.73 1.94E-04 1.49E-02 Decidualization 

HAND2 136.06 -1.63 0.18 -8.85 9.10E-19 7.64E-16 Knocked down gene 

CHUK 765.77 0.44 0.14 3.14 1.67E-03 7.94E-02 NFκB pathway 

IκBKE 9.91 -5.41 1.65 -3.27 1.06E-03 5.72E-02 NFκB pathway 

MYD88 95.02 -0.93 0.26 -3.55 3.88E-04 2.59E-02 NFκB pathway 

NFκBIE 106.63 -0.78 0.25 -3.08 2.10E-03 9.53E-02 NFκB pathway 

RTKN2 50.64 8.02 1.33 6.02 1.75E-09 4.05E-07 NFκB pathway 

CRKL 1278.85 -0.31 0.09 -3.31 9.21E-04 5.10E-02 PTB  

EOGT 233.65 -2.77 0.80 -3.45 5.63E-04 3.38E-02 PTB  

LMNA 773.24 6.97 1.57 4.44 8.92E-06 1.06E-03 PTB; PROM  

PEX11B 181.31 10.05 1.12 9.00 2.28E-19 2.06E-16 PTB  

SERPINH1 1654.90 -6.01 1.31 -4.59 4.40E-06 5.61E-04 PROM  

SLC17A5 826.28 0.76 0.13 5.81 6.34E-09 1.40E-06 PTB  

ZMPSTE24 2140.67 -0.19 0.05 -4.10 4.10E-05 3.92E-03 PTB; PROM  
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Figure 1. Recruitment of HAND2-mediated anti-estrogenic 
signaling in the Eutherian endometrium. 

A. Evolution of HAND2 expression at the maternal-fetal 
interface. Amniotes phylogeny with horizontal branch lengths 
drawn proportional to the number of gene expression changes 
inferred by parsimony (most parsimonious reconstruction). 
Circles indicate HAND2 expression in extant species and 
ancestral reconstructions. Black, expressed (state=1). White, 
not expressed (state=0). Inset legend shows the number of 
most gene expression changes from the root node to human 
(+ = gene expression gained; - = gene expression lost). 

B. Cartoon model of estrogen signaling and HAND2-
mediated anti-estrogenic signaling in the endometrium. The 
estrogen-mediated signaling network is suppressed by 
progesterone through the activation of HAND2 and antagonists 
of canonical WNT/β-catenin mediated signaling pathways such 
as DKK1. In the proliferative phase of the reproductive cycle, 
estrogen acts through ESR1 in stromal cells to increase the 
production of fibroblast growth factors (FGFs), which serve as 
paracrine signals leading to sustained proliferation of epithelial 
cells. Active estrogen signaling maintains epithelial expression 
of Mucin 1 (MUC1), a cell surface glycoprotein that acts as a 
barrier to implantation. During the receptive phase of the cycle, 
however, progesterone induces HAND2 and DKK1 expression 
in the endometrial stroma, inhibiting production of fibroblast 
growth factors (FGFs), suppressing epithelial proliferation and 
antagonizing estrogen-mediated expression of MUC1, thereby 
promoting uterine receptivity to implantation. 

C. Upper, Timeline of pregnancy in Monodelphis 
domestica highlighting the histotrophic and placental phases. 
Bottom left, Immunohistochemistry showing phosphorylated 
ESR1 (pESR1), phosphorylated MAPK1/2 (pERK1/2), and 
MUC1 expression in paraffin embedded 12.5 d.p.c. pregnant 
opossum endometrium compared to control (IgG). Pl, 
placenta. LE, luminal epithelium. ES, endometrial stroma. BV, 
blood vessels. Bottom right, expression of genes related to 
HAND2-mediated anti-estrogenic signaling in RNA-Seq from 

12.5 d.p.c. pregnant opossum endometrium. Data shown as square root (Sqrt) transformed Transcripts Per Million (TPM). 
The TPM=2 expression cutoff is shown as a red line; genes with TPM≥2 are shown as black bars. 
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Figure 2. Expression of HAND2 at the maternal-fetal interface  
A. UMAP clustering of scRNA-Seq data from human first trimester maternal-fetal interface. Left, clusters colored according to 

inferred cell type. The ESF1, ESF2, and DSC clusters are highlighted. Right, cells within clusters are colored according to 
HAND2 expression level. 

B. HAND2 protein expression in human pregnant decidua, with strong staining and localization in the nuclei of endometrial 
stromal cells (image color auto adjusted). Image credit: Human Protein Atlas. 

C. Regulatory landscape of the HAND2 locus. Chromatin loops inferred from H3K27ac HiChIP, regions of open chromatin 
inferred from FAIRE-, DNaseI, and ATAC-Seq, and the locations of histone modifications and transcription factor ChIP-
Seq peaks are shown. The location of SNPs associated with gestation length is also shown (highlighted in gray). Note that 
the HAND2 promoter forms a long-range loop to a region marked by H3K27ac and bound by PR, NR2F2 (COUP-TFII), 
GATA2, FOSL2, and FOXO1. 

D. HAND2 expression is up-regulated by in vitro decidualization of ESFs into DSC by cAMP/progesterone treatment, and 
down-regulated by siRNA-mediated knockdown of PR and GATA2, but not NR2F2 or FOXO1. n=3 per transcription factor 
knockdown. 

E. Relative expression of HAND2 in the proliferative (n=6), early (n=4), middle (n=9), and late (n=9) secretory phases of the 
menstrual cycle. Note that outliers are excluded from the figure but not the regression; 95% CI is shown in gray. 

F. Relative expression of HAND2 in the basal plate from mid-gestation to term (14-40 weeks); 95% CI is shown in gray. 
Inset, percent of up- (Up) and down-regulated (Down) genes between weeks 14-19 and 37-40 of pregnancy (FDR≤0.10). 

G. HAND2 expression is significantly down-regulated in the endometria of women with implantation failure (IF, n=5) and 
recurrent spontaneous abortion (RSA, n=5) compared to fertile controls (n=5), but is not differentially expressed in ESFs 
or DSCs from women with preeclampsia (PE, n=5) compared to healthy controls (n=5).  
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Figure 3. HAND2 regulates a distinct set of target genes, including 
IL15 

A. Volcano plot of gene expression upon HAND2 knockdown. 
Only genes that are significantly differentially expressed (DE) with 
FDR≤0.10 are shown. Genes with ≥1.5-fold changes in expression are 
shown in red, others in blue. 

B.  UpSet plot showing intersection of genes DE by HAND2, 
NR2F2, FOXO1, GATA2, and PR knockdown (KD), and cAMP/MPA 
treatment. Inset plot shows number of DE genes for each treatment. 
Note large intersections for genes DE by cAMP/MPA/PR KD, GATA2 
KD/PR KD, and cAMP/GATA2 KD/PR KD, but few intersections with 
HAND2 KD and other TF KDs. 

C. Pathways (purple) and human phenotype ontologies (pink) in 
which genes dysregulated upon HAND2 KD are enriched. 
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Figure 4. Expression of IL15 at the maternal-fetal interface  
A. UMAP clustering of scRNA-Seq data from human the first trimester maternal-fetal interface. Left, clusters colored 

according to inferred cell type. The ESF1, ESF2, and DSC clusters are highlighted. Inset, per cell expression of HAND2 
and IL15 in ESF1s, ESF2s, and DSCs. Right, cells within clusters are colored according to IL15 expression level. 

B. IL15 protein expression in human pregnant decidua, with strong cytoplasmic staining in endometrial stromal cells (image 
color auto adjusted). Image credit: Human Protein Atlas. 

C. Regulatory landscape of the IL15 locus. Chromatin loops inferred from H3K27ac HiChIP, regions of open chromatin 
inferred from FAIRE-, DNaseI, and ATAC-Seq, and the locations of histone modifications and transcription factor ChIP-
Seq peaks are shown. The location of a SNP associated with gestation length / birth weight is also shown (highlighted in 
gray). Note that the IL15 promoter forms many long-range loops to regions marked by H3K27ac and bound by PR, 
NR2F2, GATA2, FOSL2, FOXO1, and SRC2.  

D. IL15 expression is up-regulated by in vitro decidualization of ESFs into DSC by cAMP/progesterone treatment, and down-
regulated by siRNA-mediated knockdown of PR and GATA2 but not NR2F2 or FOXO1. n=3 per transcription factor 
knockdown. 

H. Relative expression of Il15 in the proliferative (n=6), early (n=4), middle (n=9), and late (n=9) secretory phases of the 
menstrual cycle. Note that outliers are excluded from the figure. Note that outliers are excluded from the figure but not the 
regression; 95% CI is shown in gray. 

E. Relative expression of IL15 in the basal plate from mid-gestation to term (14-40 weeks); 95% CI is shown in gray. Inset, 
percent of up- (Up) and down-regulated (Down) genes between weeks 14-19 and 37-40 of pregnancy (FDR≤0.10). 

F. IL15 expression is significantly up-regulated in DSCs from women with preeclampsia (PE, n=5) compared to healthy 
controls (n=5), while it is only marginally up-regulated in ESFs from the same patient group. It is also marginally down-
regulated in the endometria of women with implantation failure (IF, n=5) and it is not differentially expressed in the 
endometria of women with recurrent spontaneous abortion (RSA, n=5) compared to fertile controls (n=5). 
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Figure 5. ESF-derived IL15 promotes NK and trophoblast 
migration in trans-well assays.   

A. Cartoon of trans-well migration assay comparisons. 
Cells that migrated to the lower chamber were quantified using 
the CellTiter-Glo luminescent cell viability assay after 8 hours. 

B. Primary natural killer (NK) cells. Raw luminescence 
data (RLU) is shown in the upper panel, mean difference 
(effect size) in experiment minus control luminescence values 
are shown as a dots with the 95% confidence interval 
indicated by vertical bars in the lower panel; distribution 
estimated from 5000 bootstrap replicates. The mean 
difference between Media and media supplemented with 
recombinant human IL15 (Media+rhIL15) is 0.432 [95.0% CI: 
0.376 – 0.492]; P=0.00. The mean difference between ESFs 
transiently transfected with non-targeting siRNA (NT siRNA) 
and HAND2-specific siRNAs (siHAND2) is 0.847 [95.0% CI: 
0.774 – 0.936]; P=0.00. The mean difference between ESFs 
transiently transfected with NT siRNA and IL15-specific 
siRNAs (siIL15) is -0.223 [95.0% CI: -0.256 – -0.192]; P=0.00. 
The mean difference between ESF media neutralized with 
either a non-specific antibody (IgG) or IL15-specific antibody 
(abIL15) is -0.106 [95.0% CI -0.147 – -0.067]; P=0.00. n=12. 

C. Extravillous trophoblast cell line HTR-8/SVneo. Raw 
luminescence data (RLU) from cells in the lower chamber is 
shown in the upper panel, mean difference (effect size) in 
experiment minus control luminescence values are shown as 
a dots with the 95% confidence interval indicated by vertical 
bars in the lower panel; distribution estimated from 5000 
bootstrap replicates. The mean difference between Media and 
Media+rhIL15 is 0.482 [95.0% CI: 0.193 –0.701]; P=0.002. 
The mean difference between ESFs transiently transfected 
with NT siRNA and siHAND2 is 0.463 [95.0% CI: 0.291 – 
0.559]; P=0.00. The mean difference between ESFs 

transiently transfected with NT siRNA and siIL15 is -0.598 [95.0% CI: -0.698 – 0.490]; P=0.00. The mean difference 
between ESF media neutralized with IgG or abIL15 is -0.267 [95.0% CI: -0.442 – -0.151]; P=0.0004. n=12. 

D. Model of HAND2 functions in the endometrium. During the proliferative phase HAND2 inhibits IL15, and thus the migration 
of uNK and trophoblast cells. In the receptive phase, HAND2 activates IL15, which promotes migration of uNK and trophoblast 
cells. In the receptive phase and early pregnancy (EP), HAND2 suppresses estrogen signaling by down-regulating FGFs and 
directly binding and inhibiting the ligand‑dependent transcriptional activation function of ESR1. During late pregnancy/term 
(LP/Term), reduced HAND2 expression mitigates its anti-estrogenic functions. Parturition signal unknown (???). 
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