

1 A transcriptome for the early-branching fern *Botrychium*
2 *lunaria* enables fine-grained resolution of population
3 structure

4
5
6

7 Vinciane Mossion¹, Benjamin Dauphin^{1,2}, Jason Grant¹, Niklaus Zemp³, Daniel Croll¹ *

8

9 ¹Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland

10 ²Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

11 ³Genetic Diversity Centre (GDC), ETH Zurich, Zurich, Switzerland

12 *Corresponding author: daniel.croll@unine.ch

13

14

15

16

17 Data availability: Raw sequencing reads and the assembled transcriptome are available at the NCBI
18 Short Read Archive under the Bioproject accession PRJNA605155. Sequences for multi-gene
19 phylogenies are available under the NCBI Nucleotide accession (*pending*). Supplementary files
20 (phylogenetic trees, alignments and protein sequences) are available:
21 <https://doi.org/10.5281/zenodo.3959727>

22

23 Author contributions: VM, BD and DC designed the study. VM and DC performed analyses, NZ
24 contributed analyses tools, BD and JG acquired funding. VM and DC wrote the manuscript with input
25 from the others.

26

27 Running title: Transcriptome-wide markers for *Botrychium lunaria* ferns

28

29 **Abstract**

30 Ferns are the second most dominant group of land plants after angiosperms. Extant species occupy an
31 extensive range of habitats and contribute significantly to ecosystem functioning. Despite the
32 importance of ferns, most taxa are poorly covered by genomic resources. The genus *Botrychium* belongs
33 to the family Ophioglossaceae, one of the earliest divergent lineages of vascular plants, and has a
34 cosmopolitan distribution with 35 species, half of which are polyploids. Here, we establish a
35 transcriptome for *Botrychium lunaria*, a diploid species with an extremely large genome with a 1C value
36 of 12.10 pg. We assembled 25,701 high-quality transcripts with an average length of 1,332 bp based on
37 deep RNA-sequencing of a single individual. We sequenced an additional 11 transcriptomes of
38 individuals from two populations in Switzerland, including the population of the reference individual.
39 Based on read mapping to reference transcript sequences, we identified 374,510 single nucleotide
40 polymorphisms (SNPs) segregating among individuals for an average density of 14 SNPs per kb. The
41 transcriptome-wide markers provided unprecedented resolution of the population genetic structure
42 revealing substantial variation in heterozygosity among individuals. We also constructed a
43 phylogenomic tree of 90 taxa representing all fern orders to ascertain the placement of the genus
44 *Botrychium*. The high-quality transcriptomic resources enable powerful population and phylogenomic
45 studies in an important group of ferns.

46

47 **Significance statement**

48 Ferns pose substantial puzzles in terms of lifestyles, genome organization and population structure.
49 Progress has been significantly hampered by the lack of genomic resources. Here, we present a
50 transcriptome for *Botrychium lunaria*, a phylogenetically early-branching fern with an extremely large
51 genome. We show that the new transcriptome improves phylogenetic resolution among early-branching
52 ferns. Based on an additional 11 transcriptomes of the same species, we identify unexpected variation
53 in population-level heterozygosity.

54

55 Introduction

56 Ferns (Polypodiopsida) constitute the earliest divergent lineage of vascular plants along with lycophytes
57 (Lycopodiopsida) (Kranz and Huss, 1996; Kenrick and Crane, 1997). With 85% of the total species
58 richness found in the tropics, ferns are present in most climates (Page, 2002; Ranker and Haufler, 2008).
59 Habitats of ferns include deserts, grasslands, forest understory, mountainous regions, and aquatic
60 environments (Mehltreter *et al.*, 2010) where they have diversified into a multitude of lifestyles. Ferns
61 play key roles in ecosystem functioning including serving as a habitat for invertebrates (Ellwood and
62 Foster, 2004), shaping plant recolonization of disturbed habitats (Walker, 1994) and influencing the
63 composition of tree species communities (George and Bazzaz, 1999a; George and Bazzaz, 1999b). Ferns
64 have complex and idiosyncratic life cycles. In contrast to other plants, many fern species are capable of
65 versatile reproductive modes (Sessa *et al.*, 2012) including apomixes, sporophytic and gametophytic
66 selfing, as well as outcrossing (Barker and Wolf, 2010; Haufler *et al.*, 2016). Yet, our understanding of
67 the evolutionary origins and lifestyle diversification is limited.

68

69 Phylogenetic analyses resolved the position of ferns as the sister group to seed plants (Pryer *et al.*, 2001)
70 and as the second earliest diverging lineage of vascular land plants (Raubeson and Jansen, 1992; Pryer
71 *et al.*, 2004). The crown age of ferns was estimated to be ca. 360-431 million years underlining the deep
72 divergence among ferns lineages (Pryer *et al.*, 2004; Testo and Sundue, 2016; Rothfels *et al.*, 2015;
73 Lehtonen *et al.*, 2017; Magallón *et al.*, 2013; Des Marais *et al.*, 2003; Zhong *et al.*, 2014; Wikström and
74 Kenrick, 2001; Qi *et al.*, 2018). Fern phylogenies have been established based on chloroplast markers
75 (Schuettpelz and Pryer, 2007; Rai and Graham, 2010; Kuo *et al.*, 2011; Lu *et al.*, 2015; Testo and
76 Sundue, 2016; Grewe *et al.*, 2013; Lu *et al.*, 2015; Rai and Graham, 2010) in combination with
77 mitochondrial (Knie *et al.*, 2015) and nuclear markers (Pryer *et al.*, 2001; Pryer *et al.*, 2004; Schuettpelz
78 *et al.*, 2016) or both (Qiu *et al.*, 2007). Plastid and mitochondrial markers are unsuitable to investigate
79 events of reticulate evolution, whereas a third of all speciation events may have been driven by
80 polyploidization (Wood *et al.*, 2009). In contrast, a series of recent phylogenomic studies highlighted
81 the power of transcriptome-based approaches (Wickett *et al.*, 2014; Shen *et al.*, 2018; Leebens-Mack *et*
82 *al.*, 2019; Qi *et al.*, 2018; Rothfels *et al.*, 2015; Rothfels *et al.*, 2013). Expanding genome- or
83 transcriptome-wide datasets will help to further improve the accuracy of phylogenomic reconstructions.

84

85 The first insights into the structure of fern genomes were provided by two complete genome sequences
86 of *Azolla filiculoides* and *Salvinia cucullata* (Li *et al.*, 2018). These two species belong to the 1%
87 heterosporous fern species in contrast to the dominant homosporous species. Heterosporous ferns exhibit
88 the smallest known genome sizes as shown for the closely related species *A. microphylla* and *S. molesta*
89 (1C value of 0.77 pg and 1C value of 2.28 pg, respectively; Obermayer *et al.*, 2002; Clark *et al.*, 2016).
90 Conversely, homosporous fern genomes contain on average three times more chromosomes than

91 heterosporous ferns and seeds plants (Barker and Wolf, 2010). The recent release of a partial genome
92 assembly for the heterosporous fern *Ceratopteris richardii* highlighted the challenge associated with
93 complex fern genomes (Marchant *et al.*, 2019). Major progress in the establishment of genomic
94 resources was made with the sequencing of 73 fern transcriptomes (Leebens-Mack *et al.*, 2019;
95 Carpenter *et al.*, 2019). Such datasets were successfully used to develop single copy nuclear markers to
96 resolve deep evolutionary relationships among ferns (Rothfels *et al.*, 2013; Rothfels *et al.*, 2015).
97 Transcriptome assemblies are also an important tool to develop genotyping approaches and overcome
98 challenges associated with extremely large fern genome (Bennett and Leitch, 2001; Obermayer *et al.*,
99 2002; Hanson and Leitch, 2002). These approaches typically reduce genome complexity but still provide
100 sufficient polymorphic markers to conduct population genomics analyses (Seeb *et al.*, 2011).
101 Establishing transcriptomic datasets for understudied fern clades will bring new insights into fern
102 diversification.

103
104 An important genus lacking transcriptomic resources is *Botrychium* belonging to subclass
105 Ophioglossidae (PPG I, 2016). This subclass is characterized by a subterranean gametophytic stage
106 (Jeffrey, 1898; Winther and Friedman, 2007; Field *et al.*, 2015) and extremely large and complex
107 genomes (e.g., *Ophioglossum petiolatum* 1C value of 65.55 pg; Obermayer *et al.*, 2002). *Botrychium*
108 occurs in open habitats on nearly every continent across a broad temperate and boreal distribution. This
109 genus is divided into three monophyletic clades defined by maternally inherited markers (Simplex-
110 Campestre, Lanceolatum and Lunaria; Dauphin *et al.*, 2017), containing 35 recognized taxa (PPG I,
111 2016). The challenge of identifying *Botrychium* taxa based on morphology is underlined by claims of
112 cryptic species (Clausen, 1938; Hauk, 1995). Ambiguous morphologies are sometimes caused by
113 polyploidization which is a major driver of speciation as half of the known *Botrychium* species are
114 allopolyploids (Dauphin *et al.*, 2018). Nuclear markers resolved the parental origins of these
115 allopolyploid taxa and provided insights into the genus radiation approximately 2 million years ago.
116 Additionally, the reconstruction of maternal lineages of *Botrychium* revealed genetic diversity within
117 the Lunaria clade highlighting the uncertainty of taxonomic assignments (Dauphin *et al.*, 2014;
118 Maccagni *et al.*, 2017; Dauphin *et al.*, 2017). Previous population genetic studies based on isozymes
119 showed a lack of genetic differentiation among morphologically recognized types (Williams *et al.*,
120 2016), and the low amount of genetic variation detected within *Botrychium* populations suggests
121 pervasive self-fertilization (Farrar, 1998; Hauk and Haufler, 1999). Furthermore, genetic differentiation
122 among populations and regions was found to be low suggesting that gene flow may occur (Camacho
123 and Liston, 2001; Swartz and Brunsfeld, 2002; Birkeland *et al.*, 2017). These studies highlight the need
124 for powerful, genome-wide marker systems to resolve population structures, life histories and taxonomy
125 of these early-branching ferns.

126

127 In this study, we assemble and curate the transcriptome of *B. lunaria* with a massive genome size of a
128 1C value of 12.10 pg (Veselý *et al.*, 2012) filling an important gap in the fern phylogeny. By analyzing
129 the transcriptome of an additional 11 individuals, we show that individuals vary substantially in terms
130 of genotype and heterozygosity within and between populations. We further demonstrate the power of
131 transcriptome-wide markers to resolve phylogenetic relationships at the genus level and among deeply
132 divergent fern lineages.

133

134

135 **Material and Methods**

136

137 *Sampling, library preparation and sequencing*

138 Leaf material of *B. lunaria* was obtained from three locations in Switzerland: two in the Valais Alps in
139 Val d'Hérens, Mase and Forclaz within approximately 30 km, and one in the Jura Mountains at
140 Chasseral (Table 1). Leaves of six individuals from Val d'Hérens and from Chasseral were collected in
141 July 2015 and June 2017, respectively. Plant material was wrapped in aluminum foil and frozen
142 immediately in liquid nitrogen. Total RNA was extracted from trophophores (i.e., sterile part of leaves)
143 using the RNAeasy Plant Mini Kit (Qiagen) and DNA was eliminated using DNase I digestion. Total
144 RNA was quantified using a Qubit fluorometer (Invitrogen, Thermo Fisher Scientific) with the RNA
145 Broad-Range assay kit (Invitrogen, Thermo Fisher Scientific) and quality-checked using an Agilent
146 2200 Tape Station (Agilent Technologies, Inc.). Samples were diluted to 100 ng/µl in RNase free ultra-
147 pure water before library preparation. The RNA-sequencing libraries were prepared following a TruSeq
148 RNA library preparation protocol (Illumina, Inc.) enriching for polyadenylated RNAs. After quality
149 assessment on an Agilent 2200 Tape Station, libraries were pooled and sequenced in 150 bp single-end
150 mode on one lane of an Illumina HiSeq 4000 sequencer.

151

152 *De novo assembly, filtering and quality assessment*

153 Sequencing reads were quality-checked using FastQC v. 0.11.7 (Andrews, 2010) and trimmed using
154 Trimmomatic v. 0.38 (Bolger *et al.*, 2014). Reads were retained if the leading and trailing bases > 5, a
155 4-bp sliding window > 15, and a minimum read length of 36 bp. Trimmed transcript sequences were
156 then *de novo* assembled using Trinity v. 2.8.3 (Haas *et al.*, 2013) from a single individual used as a
157 reference. We used the pseudo-alignment percentage calculated by Kallisto v. 0.45.0 (Bray *et al.*, 2016)
158 to assess the representativeness of the raw assembly across the twelve sequenced individuals in total.
159 Candidate coding regions were identified using TransDecoder v. 5.3.0 (Haas *et al.*, 2013). Only
160 transcripts with an open reading frame (ORF) of at least 100 amino acids were kept. We also retained
161 only the longest isoform per transcript using the Trinity v. 2.8.3 toolkit. We used Diamond v. 0.9.24
162 (Buchfink *et al.*, 2015) to screen the transcript assembly against the NCBI non-redundant protein (nr)

163 and UniVec databases to identify potential foreign RNA contaminants. The best hit for each transcript
164 was assigned at the phylum-level using the R package *taxise* v. 0.9.7 (Chamberlain and Szöcs, 2013) in
165 RStudio v. 1.2.1335 (RStudio Team, 2015; R Development Core Team, 2020). We excluded all
166 transcripts with a best hit outside of the plant kingdom. The completeness of the transcriptome assembly
167 was assessed using BUSCO v. 4.0.6 with the *viridiplantae_odb10* database (Simão *et al.*, 2015). Data
168 were visualized using the R package *ggplot2* v. 3.2.1 (Wickham, 2016).

169

170 *Variant calling*

171 We generated alignment BAM files for each individual against the transcriptome using the short read
172 aligner Bowtie2 v. 2.3.5 (Langmead, 2010) and SAMtools v. 1.9 (Li *et al.*, 2009). Depth coverage of
173 the reference individual was extracted using SAMtools idxstats. Alignments were processed with
174 HaplotypeCaller implemented in the Genome Analysis Toolkit (GATK) v. 4.1.0.0 (DePristo *et al.*, 2011;
175 McKenna *et al.*, 2010; Van der Auwera *et al.*, 2013) for single nucleotide polymorphism (SNP) calling.
176 The resulting gvcf files were combined and genotyped using the GATK CombineGVCF and
177 GenotypeGVCF tools, respectively. We excluded monomorphic sites from further analysis. We filtered
178 SNPs for the number of genotyped chromosomes ($AN \geq 20$) out of a maximum of 24 (12 diploid
179 individuals). Quality criteria $QUAL > 100$, $QualByDepth > 5.0$, $RMSMappingQuality > 20.0$,
180 $MappingQualityRankSumTest$ retained values > -2.0 and < 2.0 , and $ReadPosRankSumTest$ and
181 $BaseQualityRankSumTest$ retained values > -2.0 and < 2.0 were defined following the best practices
182 and were applied to flag low-quality loci (Suppl. Figure S1). We removed SNPs failing the above filters
183 using VCFtools v. 0.1.16 (Danecek *et al.*, 2011) and added a filter to retain only bi-allelic SNPs. These
184 analyses were performed using the R packages *vcfR* v. 1.10.0 (Knaus and Grünwald, 2017) and the SNP
185 statistics among transcripts were visualized using *ggplot2* v. 3.2.1.

186

187 *Population genetics analyses*

188 Intra-individual allele frequencies were calculated for each individual and SNP locus using the mapped
189 read depth per allele (AD). The frequency distributions were plotted per individual. Then, to avoid biases
190 introduced by highly polymorphic transcripts and to reduce the computational time of population genetic
191 analysis, we subsampled the number of SNPs by selecting one SNP every 1,000 bp of transcriptomic
192 sequence using VCFtools v. 0.1.16. We performed principal component analyses (PCA) and calculated
193 the pairwise F_{ST} and the mean heterozygosity (H_e) per location and per individual. These analyses were
194 performed using the R packages *vcfR* v. 1.10.0, *adegenet* v. 2.1.3 (Jombart and Ahmed, 2011) and
195 *hierfstat* v. 0.04-22 (Goudet, 2005), and data were visualized using *ggplot2* v. 3.2.1.

196

197 *Functional annotation*

198 We functionally characterized encoded protein sequences based on gene ontology (GO) terms. We
199 summarized GO terms by selecting the least redundant annotations among the 30 most frequent terms
200 per ontology (cellular component CC, molecular function MF, and biological process BP). Analyses
201 were performed using the Bioconductor packages *AnnotationDbi* v. 1.46.0 (Pagès *et al.*, 2020), *GO.db*
202 v. 3.8.2 (Carlson, 2020), *GSEABase* v. 1.34.0 (Morgan *et al.*, 2020), *annotate* v. 1.62.0 (Gentleman,
203 2020), and data were visualized using the R packages *ggplot2* v. 3.1.0.

204

205 *Genus-level phylogenetic analyses*

206 We analysed published sequences of four nuclear regions from diploid and polyploid *Botrychium* taxa:
207 *ApPEFP_C*, *CRY2cA*, *CRY2cB*, and *transducin* (Dauphin *et al.*, 2018). We searched homologous
208 sequences in the transcriptome assembly using BLAST v. 2.9.0 (Altschul *et al.*, 1990). If the associated
209 transcript was found in the assembly, we used BCFtools v. 1.9 (Li, 2011) to retrieve the corresponding
210 transcript from the 11 remaining individuals using the VCF file information. Sequence alignments were
211 performed with MAFFT v. 7.470 under the G-INS-i strategy and default parameters (Katoh *et al.*, 2002;
212 Katoh and Standley, 2013). Multiple alignments were visually inspected and manually adjusted using
213 Geneious v. 8.1.9 (Kearse *et al.*, 2012). Phylogenetic trees were inferred using maximum likelihood
214 (ML) in RAxML-NG v. 0.9.0 (Kozlov *et al.*, 2019). We ran tree inferences with a fixed random seed of
215 2 under the HKY+GAMMA model based on model settings by Dauphin *et al.* (2018) to ensure
216 reproducibility. The tree search was performed using 25 random- and 25 parsimony-based starting trees.
217 The branch support was estimated using 1,000 bootstrap replicates and calculated according to the
218 transfer bootstrap expectation matrix (Lemoine *et al.*, 2018). The support values were depicted on the
219 best-scoring ML tree. Final gene trees were edited with FigTree v. 1.4.4 (Rambaut, 2009).

220

221 *Phylogenomic analyses*

222 We performed phylogenomic analyses across ferns by including the newly established *B. lunaria*
223 transcriptome for a total of 95 transcriptomes including 86 fern species (18 Eusporangiates, 68
224 Leptosporangiates), six Spermatophyta and two Lycopodiopsida (Suppl. Table S1; Shen *et al.*, 2018; Qi
225 *et al.*, 2018; Leebens-Mack *et al.*, 2019). The Spermatophyta and Lycopodiopsida species represent
226 outgroups in the analysis. We first performed an ortholog search using OrthoFinder v. 2.3.12 (Emms
227 and Kelly, 2015) including the newly established *B. lunaria* transcriptome and protein sequences of
228 other transcriptomes. We retained only orthogroups with members found in at least 85 species (> 90%
229 of total), with a minimum of 80 species (> 85%) carrying a single copy ortholog. Species represented in
230 less than 50% of the orthogroups were excluded from the dataset. Members of each orthogroup passing
231 our filters had multiple gene copies per individual. Then, we randomly selected one copy of each
232 duplicated gene (i.e., the first copy reported by OrthoFinder) to reduce the amount of missing data in
233 gene trees. Sequences of the orthogroups subset were subsequently aligned with MAFFT v. 7.470 under

234 the L-INS-i strategy and default parameters. The optimal substitution model was assessed for each
235 orthogroup alignment using modeltest-ng v. 0.1.6 (Darriba *et al.*, 2020). Finally, unrooted gene trees
236 were built using maximum likelihood (ML) in RAxML-NG v. 0.9.0. We ran tree inferences under the
237 best model according to the Akaike information criterion (AICc) criterion with a fixed random seed of
238 2. The tree search was performed on 25 random and 25 parsimony-based starting trees and branch
239 support was estimated over 100 bootstrap replicates. The inferred gene trees were used to estimate a
240 species tree with Astral v. 5.7.3 (Mirarab *et al.*, 2014; Zhang *et al.*, 2018). Branch support was calculated
241 using multi-locus bootstrapping (Seo, 2008) and local posterior probabilities (Sayyari and Mirarab,
242 2016). Species trees were edited with FigTree v. 1.4.4 (Rambaut, 2009). Phylogenetic trees, alignments
243 and protein sequences are available as Supplementary Files S1-S5
244 <https://doi.org/10.5281/zenodo.3959727>.

245

246 **Results**

247

248 *Sample collection and transcriptome assembly*

249 In total, twelve *B. lunaria* individuals were sampled from Val d'Hérens and Chasseral located in the
250 Valais Alps and the Jura Mountains, respectively. The two sites are approximately 120 km apart and the
251 Alpine population was sampled on meadows on an altitudinal range of 1,500 to 2,400 meters (Table 1).
252 The transcriptome sequencing produced 14.6-50.1 million reads per individual. After quality trimming,
253 we retained 97.0-99.2% of the reads (Figure 1A, Suppl. Table S2). The highest number of high-quality
254 reads (49.5 million) were obtained for the Chasseral individual CHA_I_1. Hence, we selected this
255 individual to produce a transcriptome. The raw assembly for the reference individual (CHA_I_1)
256 contained 167,306 transcripts for a total of 87,537 candidate genes. Mapping reads from individuals to
257 the raw transcriptome assembly showed an alignment rate (percentage of mapped reads) between 74.2-
258 82.5% regardless of the population of origin (Figure 1A, Suppl. Table S2). We analyzed all transcripts
259 for the presence of high-confidence open reading frames (ORF; \geq 100 amino acids). We retained 69,280
260 transcripts (41.4%) covering 26,139 predicted genes (Figure 1B). Next, we selected the longest
261 transcript for each gene (Figure 1D). We performed a screen of each gene against the complete non-
262 redundant protein and the UniVec database of NCBI and found evidence for contamination in 438
263 transcripts. Most contaminant sequences were associated with viruses, fungi and bacteria (Figure 1C).
264 The final assembly consisted of 25,701 unique transcripts spanning a total of 34.24 Mb. The average
265 and median transcript length were 1,332 and 967 bp, respectively (Figure 1D). The N50 of the final
266 transcriptome was 1,995 bp with an average GC content of 44.3% (Table 2). GO terms were assigned
267 to 12,154 transcripts (47.2%; Figure 2).

268

269 *Completeness of the *B. lunaria* transcriptome*

270 We assessed the completeness of the assembled *B. lunaria* transcriptome using BUSCO. Importantly,
271 none of the 30 species constituting the BUSCO viridiplantae_odb10 database belongs to ferns *lato sensu*.
272 We found 81.4% complete single-copy, 0.7% complete duplicates, 12.7% fragmented and 5.2% missing
273 genes for the *B. lunaria* transcriptome (Figure 1E, Table 3). This is comparable to the only two complete
274 genome assemblies of ferns that include *A. filiculoides* with 87.8% and *S. cucullata* with 93.9% complete
275 single-copy genes (Figure 1E, Table 3). The two Salviniaceae genomes and the *B. lunaria* transcriptome
276 exhibited a comparable number of missing BUSCO genes (2.1%, 1.4% and 5.2%, respectively; Figure
277 1E, Table 3). The *B. lunaria* transcriptome showed a higher percentage of fragmented BUSCO genes
278 compared to genome assemblies of *A. filiculoides* and *S. cucullata* (12.7%, 1.9% and 1.2%, respectively;
279 Figure 1E, Table 3). The mapped reads coverage depth of the reference individual to the assembled
280 transcripts is on average 1,649X with a range of 4 to 514,622X. Most of the transcripts exhibited a
281 moderate coverage (Figure 3A) whereas few (6.9%) showed a coverage > 4,004. The read coverage
282 shows no clear association with transcript length (Figure 3B).

283

284 *Identification of within-species transcriptomic polymorphism*

285 We mapped reads from the twelve sequenced transcriptomes to the newly established reference
286 transcriptome to identify segregating variants within the species (Figure 3C). The mapping rate of each
287 individual varied between 82.1-86.7%. We found no meaningful difference in mapping rates among
288 populations and individuals. The highest mapping rate was found for the individual IIT1_H5 (86.7%),
289 which was slightly higher than the mapping rate of the reference individual used to establish the
290 transcriptome (CHA_I_1, 85.5%; Suppl. Table S2). Based on reads aligned against reference transcripts,
291 we called SNPs and genotyped each individual as a diploid. Allele frequency distributions show a clear
292 peak around a frequency of 0.5 without secondary peaks at 0.25 or 0.75 (Figure 4A). Hence, all
293 individuals are most likely diploids as higher levels of ploidy would likely have generated additional,
294 minor peaks. We recovered a total of 376,526 high-quality bi-allelic SNPs after filtering. The average
295 number of SNPs per transcript was 17 and the maximum number was 257 (Figure 4B). The SNP density
296 per transcript had a mean of 14, a median of 10, and a maximum of 153 SNPs per kb (Figure 4C). The
297 median SNP density increased with transcript length (Figure 4D).

298

299 *Population structure and heterozygosity*

300 We used the SNP genotyping data from the twelve individuals to assess the degree of population
301 differentiation between the sampling locations (Figure 5A). The first principal component (PC1, 17%)
302 of the principal component analysis (PCA) identified a divergent genotype in the Chasseral population
303 (CHA_I_7, Figure 5B). The second principal component (PC2, 12%) separated the two populations
304 Chasseral and Val d'Hérens (Figure 5B). We performed a second PCA excluding the CHA_I_7
305 individual and found the Chasseral population to be more diverse than Val d'Hérens (Figure 5C). We

306 found no apparent differentiation between the two locations sampled in Val d'Hérens (Forclaz and
307 Mase). The pairwise F_{ST} between populations was low (0.079). The mean heterozygosity was slightly
308 higher in Val d'Hérens ($H_e = 0.20$) than in the Chasseral population (0.17; Figure 5D). We found similar
309 levels of variation in individual heterozygosity among populations ranging from 0.16 to 0.21, except for
310 CHA_I_7, which was an outlier on the PCA (Figure 5E). CHA_I_7 showed less than half the
311 heterozygosity ($H_e = 0.05$) compared to other members of the same population.

312

313 *Phylogenetic inference among Botrychium species*

314 We analyzed available multi-locus sequence data to place the twelve individuals analyzed at the
315 transcriptome level. Among the four nuclear loci previously sequenced in a broad sample of *Botrychium*
316 species, three loci are known to display sequence variation nearly exclusively in intronic sequences
317 (Dauphin *et al.*, 2018). Hence, no comparisons with our transcriptomic sequences were possible. We
318 focused on the locus CRY2cA carrying enough informative sites in the coding regions to produce a
319 well-supported phylogeny. The combined dataset for CRY2cA included 67 individuals representing 38
320 *Botrychium* taxa and an outgroup constituted by *Sceptridium multifidum* and a *Botrypus virginianum*
321 (Dauphin *et al.*, 2018; Suppl. Table S3). The multiple sequence alignment contained a total of 3,579
322 sites and 153 patterns. The main clades Lanceolatum, Lunaria, and Simplex-Campestre were resolved
323 as being monophyletic (Figure 6). Lanceolatum was resolved as a sister group to the Simplex-Campestre
324 and Lunaria clade. All individuals from the Chasseral and Val d'Hérens grouped with *B. lunaria* var.
325 *lunaria* and formed a well-supported clade.

326

327 *Transcriptome-wide phylogenomic tree of ferns*

328 We retrieved complete transcriptomes of 93 species covering the phylogenetic breadth of ferns (Shen *et*
329 *al.*, 2018; Qi *et al.*, 2018; Leebens-Mack *et al.*, 2019) in order to robustly place the *B. lunaria*
330 transcriptome. We identified 41,017 orthogroups in total of which we retained 525 orthogroups and 90
331 species to construct a phylogenomic tree. The species tree branch support values from the local posterior
332 probability (LPP) of the main topology and bootstrap (BS) were highly congruent (Figure 7, Suppl.
333 Figure S2). Minor discrepancies were found in the relationship between two Marattiidae species and the
334 deep relationships among eupolypods. The species tree topology was consistent with the most recent
335 fern phylogenies (Rai and Graham, 2010; Kuo *et al.*, 2011; Rothfels *et al.*, 2015; Lu *et al.*, 2015; Knie
336 *et al.*, 2015; Testo and Sundue, 2016; Shen *et al.*, 2018; Qi *et al.*, 2018; Leebens-Mack *et al.*, 2019) and
337 with the current consensus classification (PPG I, 2016). Among the earliest divergent ferns (i.e.,
338 eusporangiate and early leptosporangiate), we identified Equisetales as the sister clade to all other ferns
339 and Marattiales as the sister clade to all leptosporangiates (both with 100% LPP and BS support).
340 Hymenophyllales and Gleicheniales were recovered as a monophyletic clade with Dipteridaceae as the
341 sister clade. The Dipteridaceae position was only moderately supported (i.e., LPP = 75, BS = 74). Within

342 the Polypodiales, both the placement of Dennstaedtiineae as sister to all eupolypods and Aspleniaceae
343 as sister to all eupolypods II were strongly supported (i.e., LLP = 1, BS = 1). The quartet support across
344 the tree highlighted poorly resolved branching discussed above (Suppl. Figure 3). Deeper eupolypds
345 relationships remained largely unresolved in our phylogeny. The *B. lunaria* transcriptome clustered with
346 the sister genus *Sceptridium* and the closely related genus *Botrypus*.

347

348 **Discussion**

349

350 We established a high-quality transcriptome for the genus *Botrychium* filling an important gap in the
351 coverage of early-branching ferns. The completeness of the transcriptomic gene space was comparable
352 to well-assembled fern genomes. Using twelve individuals of the same species sampled in two locations,
353 we were able to generate the first dense SNP dataset for *B. lunaria* and early-branching ferns in general.
354 We were also able to anchor the sequenced individuals in the phylogeny of other *Botrychium* species
355 using a nuclear locus. A phylogenomic tree based on 525 orthologous genes confirmed the phylogenetic
356 position of the genus among other ferns.

357

358 *Establishment of a transcriptome for the Botrychium genus*

359 Generating a representative transcriptome assembly is challenging because not all genes are expressed
360 in all tissues and life cycle stages. Across the life cycle of ferns gene expression patterns are largely
361 overlapping (Sigel *et al.*, 2018), but the covered gene space is usually increased by including multiple
362 target tissues. For *Botrychium*, only the trophophore and the sporophore were adequate tissues for the
363 extraction of RNA since underground tissues are colonized by arbuscular mycorrhizal fungi (AMF)
364 leading to numerous contaminants. Because we did not include sporophore tissue, the assembled
365 transcriptome potentially underrepresents sporogenesis-specific genes. Despite these challenges, our *B.*
366 *lunaria* transcriptome has a fairly complete gene space in comparison to a wide range of assembled
367 transcriptomes (Der *et al.*, 2011; Shen *et al.*, 2018; Qi *et al.*, 2018; Leebens-Mack *et al.*, 2019). It is
368 important to note that database-dependent tools such as BUSCO consistently underestimate
369 transcriptome completeness if the database was compiled without closely related species. The challenge
370 in using BUSCO is exemplified by the absence of Polypodiopsida species in the viridiplantae dataset.
371 The gene space of assembled fern genomes tends to show less fragmented BUSCO genes compared to
372 the *B. lunaria* transcriptome (Li *et al.*, 2018). However, the *B. lunaria* transcriptome is consistent with
373 other high-quality fern transcriptomes (Shen *et al.*, 2018; Qi *et al.*, 2018; Leebens-Mack *et al.*, 2019).
374 Missing gene segments in assembled transcriptomes are often caused by uneven read depth among genes
375 or alternative splicing complicating gene recovery. The completeness of the *B. lunaria* transcriptome
376 compared to other fern genomes and transcriptomes provides a powerful tool for phylogenetic and
377 population analyses.

378
379 *Fine-grained resolution of population structure*
380 The transcriptome-wide SNPs revealed clear population structure between two *B. lunaria* populations
381 sampled from Switzerland. The differentiation was apparent even when subsampling SNPs contains a
382 maximum of 1 SNP per kb to avoid biases by highly polymorphic transcripts. It was generally assumed
383 *Botrychium* species show no meaningful genetic differentiation within populations (Farrar, 1998; Hauk
384 and Haufler, 1999) or low genetic differentiation among populations (Camacho and Liston, 2001;
385 Swartz and Brunsfeld, 2002; Birkeland *et al.*, 2017). However, the absence of genetic differentiation
386 reported by previous studies may well stem from low marker resolution. The transcriptome-wide
387 markers showed every individual was clearly distinct, and populations showed marked differentiation.
388 The Chasseral and Val d'Hérens populations were collected in the Jura Mountains and Valais Alps,
389 respectively. The two sites are 120 km apart and separated by habitats unsuitable for *B. lunaria*. Hence,
390 reduced gene flow and genetic differentiation among populations is expected. We found no indication
391 of genetic substructure among the two locations Mase and Forclaz within the Val d'Hérens valley. This
392 suggests sufficient gene flow at the local scale or recent recolonization at the upper front of the valley,
393 which is consistent with restriction-site associated DNA sequencing-based analyses of the same field
394 sites (Dauphin, 2017). We found no evidence for higher levels of ploidy based on mapped read depths
395 per individual. Consistent with our findings, a recent study of Swiss populations based on allozyme
396 markers found no evidence for fixed heterozygosity (Dauphin *et al.*, 2020). However, we cannot exclude
397 the possibility of very recent polyploidization or autoploidization events. Leebens-Mack *et al.*
398 (2019) identified putative ancient whole-genome duplication events in the Ophioglossaceae. No
399 evidence was found for more recent duplication events in the *Botrychium* genus (Dauphin *et al.*, 2018).
400
401 Population-level genetic diversity is indicative of the reproductive mode of *Botrychium* species
402 populations. Self-fertilization is common and includes sporophytic and gametophytic selfing. In
403 sporophytic selfing, zygotes are produced by gametes from two distinct gametophytes but originate from
404 a single sporophyte. In contrast, in gametophytic selfing, zygotes are produced from gametes of the
405 same gametophyte. Gametophytic selfing is thought to be the main reproductive mode for the
406 *Botrychium* genus and can lead to completely homozygous plants in one generation (Haufler *et al.*,
407 2016). In a population undergoing largely gametophytic selfing, very low genetic variation would be
408 expected among individuals. Hence, the unique genotypes found in the Chasseral and Val d'Hérens
409 populations suggest populations undergo either sporophytic selfing or outcrossing. Interestingly, one of
410 the six Chasseral individuals exhibited less than half the heterozygosity observed in other individuals
411 indicative of recent gametophytic selfing. The genetic diversity of *B. lunaria* populations and the clear
412 structure among sites suggest that sporophytic selfing or outcrossing was dominant with a likely recent
413 gametophytic selfing event. These findings contrast with the general assumption that gametophytic
414 selfing is the dominant reproductive mode in the genus.

415

416 *A refined phylogenetic placement of the *Botrychium* genus*

417 The *B. lunaria* transcriptome enables strong phylogenetic inference at different taxonomic levels
418 overcoming challenges associated with the small number of nuclear and chloroplast markers.
419 *Botrychium* taxa cannot be easily delineated by morphological characteristics, hence taxonomy relies
420 largely on phylogenetics (Dauphin *et al.*, 2014; Maccagni *et al.*, 2017; Dauphin *et al.*, 2017). We have
421 placed the individual *B. lunaria* transcriptomes among other closely related taxa by retrieving
422 orthologous genes, which were previously used for phylogenetic analyses. Despite challenges of low
423 polymorphism in coding sequences of the loci, we were able to recapitulate the phylogenetic position of
424 the reference individual used for transcriptome assembly and the 11 other *B. lunaria*. The newly
425 established transcriptome will enable powerful genome-wide studies across the *Botrychium* genus.
426 Importantly, markers developed using the transcriptome assembly will help to retrace the evolution of
427 the extensive ploidy variation among *Botrychium*.

428

429 As an expansion of the phylogenetic analyses within *Botrychium*, we analyzed orthologous genes across
430 all ferns. The genus *Botrychium* was placed within the Ophioglossales with strong support. Furthermore,
431 the phylogenomic tree support the placement of the Marattiidae as a sister clade of the Polypodiidae.
432 The placement of the Marattiidae has long been debated though (Pryer *et al.*, 2001; K. M. Pryer *et al.*,
433 2004; Schuettpelz *et al.*, 2006; Schuettpelz and Pryer, 2007; Qiu *et al.*, 2007; Rai and Graham, 2010;
434 Grewe *et al.*, 2013; Wickett *et al.*, 2014; Rothfels *et al.*, 2015; Lu *et al.*, 2015; Knie *et al.*, 2015; Testo
435 and Sundue, 2016; Shen *et al.*, 2018; Qi *et al.*, 2018; Leebens-Mack *et al.*, 2019). The uncertain position
436 of the Marattiidae could stem from variation in taxon sampling of the euphorangiate ferns (Rothfels *et*
437 *al.*, 2015). Phylogenies incorporating broader taxon samples recovered Marattiidae as sister to all
438 leptosporangiates with strong support (Rai and Graham, 2010; Knie *et al.*, 2015; Rothfels *et al.*, 2015;
439 Lu *et al.*, 2015; Testo and Sundue, 2016; Qi *et al.*, 2018): However, quartet scores in our analyses
440 highlight the remaining uncertainties reported by Leebens-Mack *et al.* (2019) (Suppl. Figure 3). The
441 potential paraphyly observed for the Gleicheniales in our species tree corroborate recent findings based
442 on phylotranscriptomics (Shen *et al.*, 2018; Qi *et al.*, 2018). Sparse sampling can strongly influence
443 tree topologies. For example, Matoniaceae, constituting one of the tree Gleicheniales families (PPG I,
444 2016), are not represented in phylogenomics studies. Previous phylogenies based on few barcoding loci
445 only, but with a more representative sampling, identified Gleicheniales as being monophyletic (Pryer *et*
446 *al.*, 2004; Schuettpelz *et al.*, 2006; Schuettpelz and Pryer, 2007). The high confidence around the
447 monophyly between the remaining Gleicheniales and the Hymenophyllales suggests a scenario of
448 paraphyly (Figure 7, Suppl. Figure 3). However, phylogenomics studies including Matoniaceae will be
449 need to ascertain the placement of the Dipteridaceae. The identification of Aspleniaceae as the crown
450 group of eupolypods II matches recent studies (Testo and Sundue, 2016; Shen *et al.*, 2018) but contrasts
451 with multiple concurrent studies identifying Cystopteridaceae as the crown group (Schuettpelz and

452 Pryer, 2007; Kuo *et al.*, 2011; Rothfels *et al.*, 2012; Qi *et al.*, 2018). Eupolypods II families are notorious
453 for exhibiting family-level heterogeneity in rates of molecular evolution (Rothfels *et al.*, 2012; Testo
454 and Sundue, 2016). In our species tree, Aspleniaceae showed long branches compared to other closely
455 related taxa indicative of an accelerated evolutionary rate. Our placement of *Asplenium* may well be
456 caused by the scarce representation of eupolypods II taxa in our dataset and corresponding long branch
457 attraction effect.

458
459 Our study establishes a high-quality transcriptome for the early diverging fern genus *Botrychium*. With
460 a genome size estimated at 1C value of 12.10 pg for *B. lunaria* (Veselý *et al.*, 2012), the assembly of
461 transcriptomes provides the only currently feasible approach to generate extensive genome-wide
462 markers information. Our phylotranscriptomics analyses identify the *Botrychium* genus as one of the
463 early diverging ferns matching previous phylogenetics analyses on barcoding markers. Furthermore, the
464 inclusion of the *Botrychium* transcriptome improves the resolution of basal nodes among ferns. The
465 transcriptomic markers will be powerful tools to investigate mating systems and polyploidization events.
466 Furthermore, the transcriptome enables fine-grained demographic history analyses helping to dissect
467 evidence for local adaptation across the diverse habitats of ferns.

468
469

470 **Acknowledgements**

471 We thank Frederic Sandoz for assistance in the field work. We thank Aria Minder and Sylvia Kobel for
472 for input on laboratory methods. We acknowledge the 1KP sequencing consortium for advance access
473 to transcriptomic sequences. Emilie Chanclud, Ursula Oggenfuss and Erik Koenen provided advice on
474 data analysis. Ursula Oggenfuss, Leen N. Abraham, Simone Fouché, Pierre-Emmanuel Du Pasquier,
475 Rosangela Ston, Erik Koenen and Giacomo Zilio provided helpful comments on a previous manuscript
476 version. Rosangela Ston for mounting the herbarium vouchers. Data produced and analysed in this paper
477 were generated in collaboration with the Genetic Diversity Centre (GDC), ETH Zurich and the
478 Functional Genomics Center (FGC), Zurich. This work was supported by the Overhead fund of the
479 University of Neuchâtel.

480

481 **References**

482 **Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J.** (1990) Basic local alignment
483 search tool. *J. Mol. Biol.*, **215**, 403–410.

484 **Andrews, S.** (2010) FastQC A Quality Control tool for High Throughput Sequence Data. Available at:
485 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/> [Accessed August 30, 2019].

486 **Barker, M.S. and Wolf, P.G.** (2010) Unfurling Fern Biology in the Genomics Age. *BioScience*, **60**,
487 177–185.

488 **Bennett, M.D. and Leitch, I.J.** (2001) Nuclear DNA Amounts in Pteridophytes. *Ann. Bot.*, **87**, 335–
489 345.

490 **Birkeland, S., Borgenkjetne, I., Brysting, A.K., Elven, R. and Alsos, I.G.** (2017) Living on the
491 edge: Conservation Genetics of Seven Thermophilous Plant Species in a High Arctic
492 Archipelago. *AoB PLANTS*, **9**.

493 **Bolger, A.M., Lohse, M. and Usadel, B.** (2014) Trimmomatic: a flexible trimmer for Illumina
494 sequence data. *Bioinformatics*, **30**, 2114–2120.

495 **Bray, N.L., Pimentel, H., Melsted, P. and Pachter, L.** (2016) Near-optimal probabilistic RNA-seq
496 quantification. *Nat. Biotechnol.*, **34**, 525–527.

497 **Buchfink, B., Xie, C. and Huson, D.H.** (2015) Fast and sensitive protein alignment using
498 DIAMOND. *Nat. Methods*, **12**, 59–60.

499 **Camacho, F.J. and Liston, A.** (2001) Population structure and genetic diversity of *Botrychium*
500 *pumicola* (Ophioglossaceae) based on inter-simple sequence repeats (ISSR). *Am. J. Bot.*, **88**,
501 1065–1070.

502 **Carlson, M.** (2020) *GO.db: A set of annotation maps describing the entire Gene Ontology*,
503 Bioconductor version: Release (3.10). Available at: <https://bioconductor.org/packages/GO.db/>.

504 **Carpenter, E.J., Matasci, N., Ayyampalayam, S., et al.** (2019) Access to RNA-sequencing data
505 from 1,173 plant species: The 1000 Plant transcriptomes initiative (1KP). *GigaScience*, **8**.
506 Available at: <https://academic.oup.com/gigascience/article/8/10/giz126/5602476> [Accessed
507 July 15, 2020].

508 **Chamberlain, S.A. and Szöcs, E.** (2013) taxize: taxonomic search and retrieval in R. *F1000Research*,
509 **2**, 191.

510 **Clark, J., Hidalgo, O., Pellicer, J., et al.** (2016) Genome evolution of ferns: evidence for relative
511 stasis of genome size across the fern phylogeny. *New Phytol.*, **210**, 1072–1082.

512 **Clausen, R.T.** (1938) A Monograph of the Ophioglossaceae. *Mem. Torrey Bot. Club*, **19**, 1–177.

513 **Danecek, P., Auton, A., Abecasis, G., et al.** (2011) The variant call format and VCFtools.
514 *Bioinformatics*, **27**, 2156–2158.

515 **Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. and Flouri, T.** (2020)
516 ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary
517 Models. *Mol. Biol. Evol.*, **37**, 291–294.

518 **Dauphin, B.** (2017) *Evolution of moonwort ferns (“Botrychium”, Ophioglossaceae) on local to global*
519 *scales*. University of Neuchâtel.

520 **Dauphin, B., Farrar, D.R., Maccagni, A. and Grant, J.R.** (2017) A Worldwide Molecular
521 Phylogeny Provides New Insight on Cryptic Diversity Within the Moonworts (*Botrychium* s.
522 s., Ophioglossaceae). *Syst. Bot.*, **42**.

523 **Dauphin, B., Grant, J.R., Farrar, D.R. and Rothfels, C.J.** (2018) Rapid allopolyploid radiation of
524 moonwort ferns (*Botrychium*; Ophioglossaceae) revealed by PacBio sequencing of
525 homologous and homeologous nuclear regions. *Mol. Phylogenet. Evol.*, **120**, 342–353.

526 **Dauphin, B., Grant, J., & Farrar, D.** (2020) Outcrossing mating system of the early-divergent fern
527 moonwort (*Botrychium lunaria*, Ophioglossaceae) revealed in the European Alps. *Int. J. Plant
528 Sci. in press.*

529 **Dauphin, B., Vieu, J. and Grant, J.R.** (2014) Molecular phylogenetics supports widespread cryptic
530 species in moonworts (*Botrychium* s.s., Ophioglossaceae). *Am. J. Bot.*, **101**, 128–140.

531 **DePristo, M.A., Banks, E., Poplin, R., et al.** (2011) A framework for variation discovery and
532 genotyping using next-generation DNA sequencing data. *Nat. Genet.*, **43**, 491–498.

533 **Der, J.P., Barker, M.S., Wickett, N.J., dePamphilis, C.W. and Wolf, P.G.** (2011) De novo
534 characterization of the gametophyte transcriptome in bracken fern, *Pteridium aquilinum*. *BMC
535 Genomics*, **12**, 99.

536 **Des Marais, D.L., Smith, A.R., Britton, D.M. and Pryer, K.M.** (2003) Phylogenetic Relationships
537 and Evolution of Extant Horsetails, *Equisetum*, Based on Chloroplast DNA Sequence Data
538 (rbcL and trnL-F). *Int. J. Plant Sci.*, **164**, 737–751.

539 **Ellwood, M.D.F. and Foster, W.A.** (2004) Doubling the estimate of invertebrate biomass in a
540 rainforest canopy. *Nature*, **429**, 549–551.

541 **Emms, D.M. and Kelly, S.** (2015) OrthoFinder: solving fundamental biases in whole genome
542 comparisons dramatically improves orthogroup inference accuracy. *Genome Biol.*, **16**, 157.

543 **Farrar, D.R.** (1998) *Population genetics of moonwort Botrychium*. In N. Berlin, P. Miller, J.
544 Borovansky, U. S. Seal, and O. Byers [eds.], *Population and habitat viability assessment for
545 the goblin fern (Botrychium mormo)*, The Conservation Breeding Specialist Group. Available
546 at: <http://www.cpsg.org/content/goblin-fern-phva-1998> [Accessed August 25, 2019].

547 **Field, K.J., Leake, J.R., Tille, S., Allinson, K.E., Rimington, W.R., Bidartondo, M.I., Beerling,
548 D.J. and Cameron, D.D.** (2015) From mycoheterotrophy to mutualism: Mycorrhizal
549 specificity and functioning in *Ophioglossum vulgatum* sporophytes. *New Phytol.*, **205**, 1492–
550 1502.

551 **Gentleman, R.** (2020) *annotate*: Annotation for microarrays, Bioconductor version: Release (3.10).
552 Available at: <https://bioconductor.org/packages/annotate/> [Accessed February 13, 2020].

553 **George, L.O. and Bazzaz, F.A.** (1999a) The Fern Understory as an Ecological Filter: Emergence and
554 Establishment of Canopy-Tree Seedlings. *Ecology*, **80**, 833–845.

555 **George, L.O. and Bazzaz, F.A.** (1999b) The Fern Understory as an Ecological Filter: Growth and
556 Survival of Canopy-Tree Seedlings. *Ecology*, **80**, 846–856.

557 **Goudet, J.** (2005) hierfstat, a package for r to compute and test hierarchical F-statistics. *Mol. Ecol.
558 Notes*, **5**, 184–186.

559 **Grewe, F., Guo, W., Gubbels, E.A., Hansen, A.K. and Mower, J.P.** (2013) Complete plastid
560 genomes from *Ophioglossum californicum*, *Psilotum nudum*, and *Equisetum hyemale* reveal
561 an ancestral land plant genome structure and resolve the position of Equisetales among
562 monilophytes. *BMC Evol. Biol.*, **13**, 8.

563 **Haas, B.J., Papanicolaou, A., Yassour, M., et al.** (2013) De novo transcript sequence reconstruction
564 from RNA-seq using the Trinity platform for reference generation and analysis. *Nat. Protoc.*,
565 **8**, 1494–1512.

566 **Hanson, L. and Leitch, I.J.** (2002) DNA amounts for five pteridophyte species fill phylogenetic gaps
567 in C-value data. *Bot. J. Linn. Soc.*, **140**, 169–173.

568 **Haufler, C.H., Pryer, K.M., Schuettpelz, E., Sessa, E.B., Farrar, D.R., Moran, R., Schneller, J.J.,
569 Watkins, J.E. and Windham, M.D.** (2016) Sex and the Single Gametophyte: Revising the
570 Homosporous Vascular Plant Life Cycle in Light of Contemporary Research. *BioScience*, **66**,
571 928–937.

572 **Hauk, W.D.** (1995) A Molecular Assessment of Relationships among Cryptic Species of *Botrychium*
573 Subgenus *Botrychium* (Ophioglossaceae). *Am. Fern J.*, **85**, 375–394.

574 **Hauk, W.D. and Haufler, C.H.** (1999) Isozyme variability among cryptic species of *Botrychium*
575 subgenus *Botrychium* (Ophioglossaceae). *Am. J. Bot.*, **86**, 614–633.

576 **Jeffrey, E.C.** (1898) The gametophyte of *Botrychium virginianum*. *Univ Tor. Stud. Biol. Ser.*, **1**, 3–32
577 pl.i–iv.

578 **Jombart, T. and Ahmed, I.** (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP
579 data. *Bioinformatics*, **27**, 3070–3071.

580 **Katoh, K., Misawa, K., Kuma, K. and Miyata, T.** (2002) MAFFT: a novel method for rapid
581 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.*, **30**, 3059–
582 3066.

583 **Katoh, K. and Standley, D.M.** (2013) MAFFT Multiple Sequence Alignment Software Version 7:
584 Improvements in Performance and Usability. *Mol. Biol. Evol.*, **30**, 772–780.

585 **Kearse, M., Moir, R., Wilson, A., et al.** (2012) Geneious Basic: an integrated and extendable desktop
586 software platform for the organization and analysis of sequence data. *Bioinforma. Oxf. Engl.*,
587 **28**, 1647–1649.

588 **Kenrick, P. and Crane, P.R.** (1997) The origin and early evolution of plants on land. *Nature*, **389**,
589 33–39.

590 **Knaus, B.J. and Grünwald, N.J.** (2017) vcfr: a package to manipulate and visualize variant call
591 format data in R. *Mol. Ecol. Resour.*, **17**, 44–53.

592 **Knie, N., Fischer, S., Grewe, F., Polsakiewicz, M. and Knoop, V.** (2015) Horsetails are the sister
593 group to all other monilophytes and Marattiales are sister to leptosporangiate ferns. *Mol.*
594 *Phylogenet. Evol.*, **90**, 140–149.

595 **Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. and Stamatakis, A.** (2019) RAxML-NG: a fast,
596 scalable and user-friendly tool for maximum likelihood phylogenetic inference.
597 *Bioinformatics*, **35**, 4453–4455.

598 **Kranz, H.D. and Huss, V.A.R.** (1996) Molecular evolution of pteridophytes and their relationship to
599 seed plants: Evidence from complete 18S rRNA gene sequences. *Plant Syst. Evol.*, **202**, 1–11.

600 **Kuo, L.-Y., Li, F.-W., Chiou, W.-L. and Wang, C.-N.** (2011) First insights into fern matK
601 phylogeny. *Mol. Phylogen. Evol.*, **59**, 556–566.

602 **Langmead, B.** (2010) Aligning Short Sequencing Reads with Bowtie. *Curr. Protoc. Bioinforma.*, **32**,
603 11.7.1–11.7.14.

604 **Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., et al.** (2019) One thousand plant
605 transcriptomes and the phylogenomics of green plants. *Nature*. Available at:
606 <https://doi.org/10.1038/s41586-019-1693-2>.

607 **Lehtonen, S., Silvestro, D., Karger, D.N., Scotese, C., Tuomisto, H., Kessler, M., Peña, C.,**
608 **Wahlberg, N. and Antonelli, A.** (2017) Environmentally driven extinction and opportunistic
609 origination explain fern diversification patterns. *Sci. Rep.*, **7**, 4831.

610 **Lemoine, F., Entfellner, J.-B.D., Wilkinson, E., Correia, D., Felipe, M.D., Oliveira, T.D. and**
611 **Gascuel, O.** (2018) Renewing Felsenstein's phylogenetic bootstrap in the era of big data.
612 *Nature*, **556**, 452.

613 **Li, F.-W., Brouwer, P., Carretero-Paulet, L., et al.** (2018) Fern genomes elucidate land plant
614 evolution and cyanobacterial symbioses. *Nat. Plants*, **4**, 460–472.

615 **Li, H.** (2011) A statistical framework for SNP calling, mutation discovery, association mapping and
616 population genetical parameter estimation from sequencing data. *Bioinformatics*, **27**, 2987–
617 2993.

618 **Li, H., Handsaker, B., Wysoker, A., et al.** (2009) The Sequence Alignment/Map format and
619 SAMtools. *Bioinforma. Oxf. Engl.*, **25**, 2078–2079.

620 **Lu, J.-M., Zhang, N., Du, X.-Y., Wen, J. and Li, D.-Z.** (2015) Chloroplast phylogenomics resolves
621 key relationships in ferns. *J. Syst. Evol.*, **53**, 448–457.

622 **Maccagni, A., Parisod, C. and Grant, J.R.** (2017) Phylogeography of the moonwort fern
623 *Botrychium lunaria* (Ophioglossaceae) based on chloroplast DNA in the Central-European
624 Mountain System. *Alp. Bot.*, **127**, 185–196.

625 **Magallón, S., Hilu, K.W. and Quandt, D.** (2013) Land plant evolutionary timeline: Gene effects are
626 secondary to fossil constraints in relaxed clock estimation of age and substitution rates. *Am. J.*
627 *Bot.*, **100**, 556–573.

628 **Marchant, D.B., Sessa, E.B., Wolf, P.G., Heo, K., Barbazuk, W.B., Soltis, P.S. and Soltis, D.E.**
629 (2019) The C-Fern (*Ceratopteris richardii*) genome: insights into plant genome evolution
630 with the first partial homosporous fern genome assembly. *Sci. Rep.*, **9**, 1–14.

631 **McKenna, A., Hanna, M., Banks, E., et al.** (2010) The Genome Analysis Toolkit: A MapReduce
632 framework for analyzing next-generation DNA sequencing data. *Genome Res.*, **20**, 1297–
633 1303.

634 **Mehltreter, K., Walker, L.R., Sharpe, J.M., Kessler, M., Richardson, S.J., Hietz, P., Robinson,**
635 **R. and Sheffield, E.** (2010) *Fern ecology*, Cambridge University Press. Available at:
636 <https://www.cambridge.org/ch/academic/subjects/life-sciences/plant-science/fern-ecology>
637 [Accessed August 8, 2019].

638 **Mirarab, S., Reaz, R., Bayzid, Md.S., Zimmermann, T., Swenson, M.S. and Warnow, T.** (2014)
639 ASTRAL: genome-scale coalescent-based species tree estimation. *Bioinformatics*, **30**, i541–
640 i548.

641 **Morgan, M., Falcon, S. and Gentleman, R.** (2020) *GSEABase: Gene set enrichment data structures*
642 *and methods*, Bioconductor version: Release (3.10). Available at:
643 <https://bioconductor.org/packages/GSEABase/> [Accessed February 13, 2020].

644 **Obermayer, R., Leitch, I.J., Hanson, L. and Bennett, M.D.** (2002) Nuclear DNA C-values in 30
645 species double the familial representation in pteridophytes. *Ann. Bot.*, **90**, 209–217.

646 **Page, C.N.** (2002) Ecological strategies in fern evolution: a neopteridological overview. *Rev.*
647 *Palaeobot. Palynol.*, **119**, 1–33.

648 **Pagès, H., Carlson, M., Falcon, S. and Li, N.** (2020) *AnnotationDbi: Manipulation of SQLite-based*
649 *annotations in Bioconductor*, Bioconductor version: Release (3.10).

650 **PPG I** (2016) A community-derived classification for extant lycophytes and ferns. *J. Syst. Evol.*, **54**,
651 563–603.

652 **Pryer, K.M., Schneider, H., Smith, A.R., Cranfill, R., Wolf, P.G., Hunt, J.S. and Sipes, S.D.**
653 (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed
654 plants. *Nature*, **409**, 618–622.

655 **Pryer, K. M., Schuettpelz, E., Wolf, P.G., Schneider, H., Smith, A.R. and Cranfill, R.** (2004)
656 Phylogeny and evolution of ferns (Monilophytes) with a focus on the early Leptosporangiate
657 divergence. *Am. J. Bot.*, **91**, 1582–1598.

658 **Pryer, Kathleen M., Schuettpelz, E., Wolf, P.G., Schneider, H., Smith, A.R. and Cranfill, R.**
659 (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early
660 leptosporangiate divergences. *Am. J. Bot.*, **91**, 1582–1598.

661 **Qi, X., Kuo, L.-Y., Guo, C., et al.** (2018) A well-resolved fern nuclear phylogeny reveals the
662 evolution history of numerous transcription factor families. *Mol. Phylogenet. Evol.*, **127**, 961–
663 977.

664 **Qiu, Y., Li, L., Wang, B., et al.** (2007) A Nonflowering Land Plant Phylogeny Inferred from
665 Nucleotide Sequences of Seven Chloroplast, Mitochondrial, and Nuclear Genes. *Int. J. Plant*
666 *Sci.*, **168**, 691–708.

667 **R Development Core Team** (2020) R: The R Project for Statistical Computing. Available at:
668 <https://www.r-project.org/> [Accessed February 9, 2020].

669 **Rai, H.S. and Graham, S.W.** (2010) Utility of a large, multigene plastid data set in inferring higher-
670 order relationships in ferns and relatives (monilophytes). *Am. J. Bot.*, **97**, 1444–1456.

671 **Rambaut, A.** (2009) FigTree 1.4.4. Available at: <http://tree.bio.ed.ac.uk/software/figtree/> [Accessed
672 January 17, 2020].

673 **Ranker, T.A. and Haufler, C.H.** (2008) *Biology and Evolution of Ferns and Lycophytes*, Cambridge
674 University Press. Available at: [/core/books/biology-and-evolution-of-ferns-and-lycophytes/B8C92258A68F155B3A7DBBFB84D0B48F](http://core/books/biology-and-evolution-of-ferns-and-lycophytes/B8C92258A68F155B3A7DBBFB84D0B48F) [Accessed August 8, 2019].

676 **Raubeson, L.A. and Jansen, R.K.** (1992) Chloroplast DNA evidence on the ancient evolutionary
677 split in vascular land plants. *Science*, **255**, 1697–1699.

678 **Rothfels, C.J., Larsson, A., Kuo, L.-Y., Korall, P., Chiou, W.-L. and Pryer, K.M.** (2012)
679 Overcoming Deep Roots, Fast Rates, and Short Internodes to Resolve the Ancient Rapid
680 Radiation of Eupolypod II Ferns. *Syst. Biol.*, **61**, 490–490.

681 **Rothfels, C.J., Larsson, A., Li, F.-W., et al.** (2013) Transcriptome-Mining for Single-Copy Nuclear
682 Markers in Ferns. *PLOS ONE*, **8**, e76957.

683 **Rothfels, C.J., Li, F.-W., Sigel, E.M., et al.** (2015) The evolutionary history of ferns inferred from 25
684 low-copy nuclear genes. *Am. J. Bot.*, **102**, 1089–1107.

685 **RStudio Team** (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston. Available at:
686 <https://www.rstudio.com/> [Accessed August 30, 2019].

687 **Sayyari, E. and Mirarab, S.** (2016) Fast Coalescent-Based Computation of Local Branch Support
688 from Quartet Frequencies. *Mol. Biol. Evol.*, **33**, 1654–1668.

689 **Schuettgelz, E., Chen, C.-W., Kessler, M., Pinson, J.B., Johnson, G., Davila, A., Cochran, A.T.,**
690 **Huiet, L. and Pryer, K.M.** (2016) A revised generic classification of vittarioid ferns
691 (Pteridaceae) based on molecular, micromorphological, and geographic data. *Taxon*, **65**, 708–
692 722.

693 **Schuettgelz, E., Korall, P. and Pryer, K.M.** (2006) Plastid atpA data provide improved support for
694 deep relationships among ferns. *TAXON*, **55**, 897–906.

695 **Schuettgelz, E. and Pryer, K.M.** (2007) Fern phylogeny inferred from 400 leptosporangiate species
696 and three plastid genes. *Taxon*, **56**.

697 **Seeb, J.E., Carvalho, G., Hauser, L., Naish, K., Roberts, S. and Seeb, L.W.** (2011) Single-
698 nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel
699 organisms. *Mol. Ecol. Resour.*, **11**, 1–8.

700 **Seo, T.-K.** (2008) Calculating Bootstrap Probabilities of Phylogeny Using Multilocus Sequence Data.
701 *Mol. Biol. Evol.*, **25**, 960–971.

702 **Sessa, E.B., Zimmer, E.A. and Givnish, T.J.** (2012) Unraveling reticulate evolution in North
703 American Dryopteris (Dryopteridaceae). *BMC Evol. Biol.*, **12**, 104.

704 **Shen, H., Jin, D., Shu, J.-P., et al.** (2018) Large-scale phylogenomic analysis resolves a backbone
705 phylogeny in ferns. *GigaScience*, **7**, 1–11.

706 **Sigel, E.M., Schuettgelz, E., Pryer, K.M. and Der, J.P.** (2018) Overlapping Patterns of Gene
707 Expression Between Gametophyte and Sporophyte Phases in the Fern Polypodium amorphum
708 (Polypodiales). *Front. Plant Sci.*, **9**. Available at:
709 <https://www.frontiersin.org/articles/10.3389/fpls.2018.01450/full> [Accessed November 3,
710 2019].

711 **Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. and Zdobnov, E.M.** (2015)
712 BUSCO: assessing genome assembly and annotation completeness with single-copy
713 orthologs. *Bioinformatics*, **31**, 3210–3212.

714 **Swartz, L.M. and Brunsfeld, S.J.** (2002) The morphological and genetic distinctness of Botrychium
715 minganense and B. crenulatum as assessed by morphometric analysis and RAPD markers. *Am.*
716 *Fern J.*, **92**, 249–269.

717 **Testo, W. and Sundue, M.** (2016) A 4000-species dataset provides new insight into the evolution of
718 ferns. *Mol. Phylogenet. Evol.*, **105**, 200–211.

719 **Van der Auwera, G.A., Carneiro, M.O., Hartl, C., et al.** (2013) From FastQ data to high confidence
720 variant calls: the Genome Analysis Toolkit best practices pipeline. *Curr. Protoc. Bioinforma.*,
721 **43**, 11.10.1-33.

722 **Veselý, P., Bureš, P., Šmarda, P. and Pavláček, T.** (2012) Genome size and DNA base composition
723 of geophytes: the mirror of phenology and ecology? *Ann. Bot.*, **109**, 65–75.

724 **Walker, L.R.** (1994) Effects of fern thickets on woodland development on landslides in Puerto Rico.
725 *J. Veg. Sci.*, **5**, 525–532.

726 **Wickett, N.J., Mirarab, S., Nguyen, N., et al.** (2014) Phylogenomic analysis of the origin and
727 early diversification of land plants. *Proc. Natl. Acad. Sci.*, **111**, E4859–E4868.

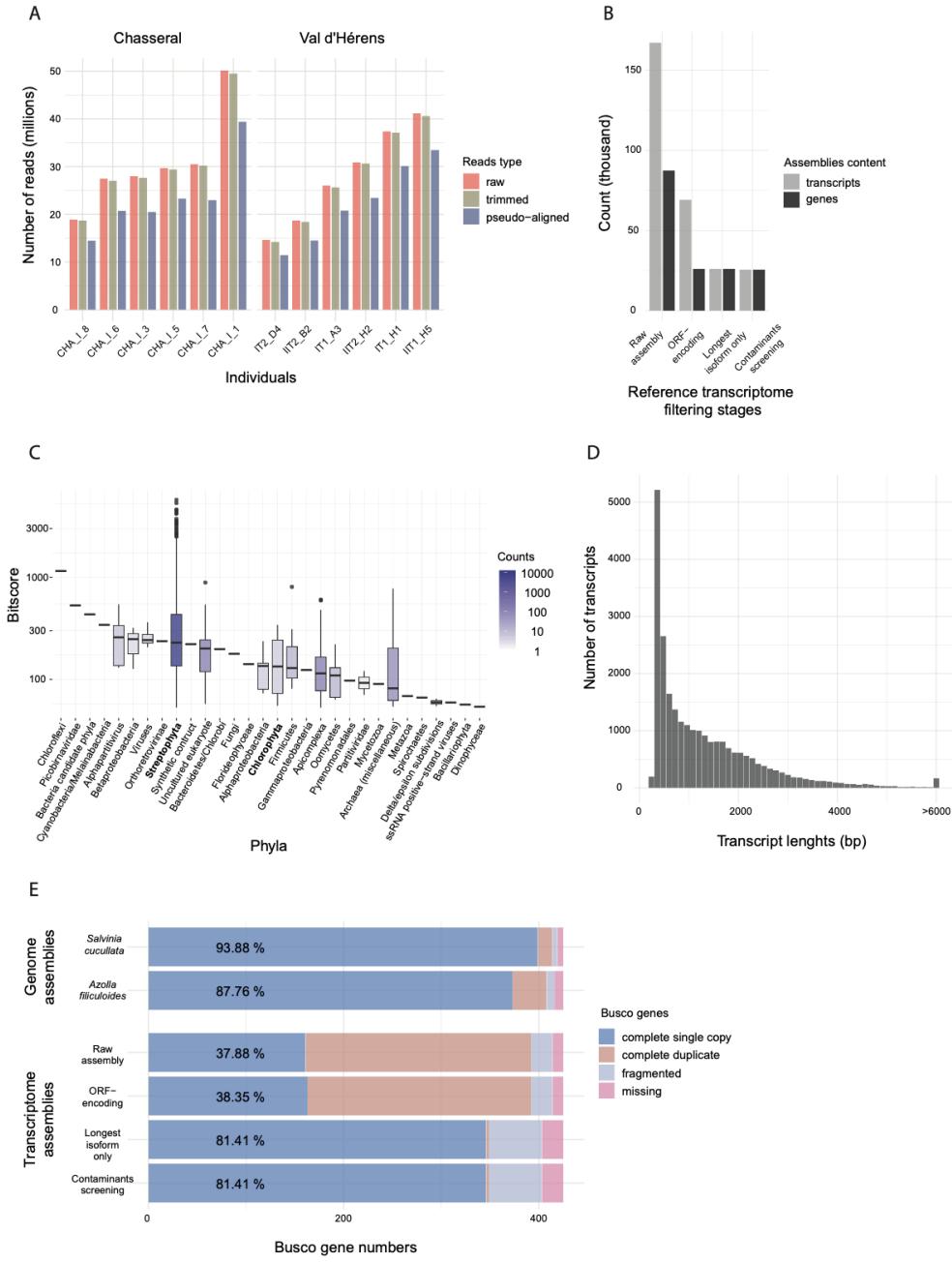
728 **Wickham, H.** (2016) *ggplot2: Elegant Graphics for Data Analysis* 2nd ed., Springer International
729 Publishing. Available at: <https://www.springer.com/gp/book/9783319242750> [Accessed
730 January 17, 2020].

731 **Wikström, N. and Kenrick, P.** (2001) Evolution of Lycopodiaceae (Lycopida): Estimating
732 Divergence Times from rbcL Gene Sequences by Use of Nonparametric Rate Smoothing.
733 *Mol. Phylogen. Evol.*, **19**, 177–186.

734 **Williams, E.W., Farrar, D.R. and Henson, Don** (2016) Cryptic speciation in allotetraploids: Lessons
735 from the Botrychium matricariifolium (Ophioglossaceae) complex. *Am. J. Bot.*, **103**, 1–14.

736 **Winther, J.L. and Friedman, W.E.** (2007) Arbuscular mycorrhizal symbionts in Botrychium
737 (Ophioglossaceae). *Am. J. Bot.*, **94**, 1248–1255.

738 **Wood, T.E., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B. and Rieseberg, L.H.**
739 (2009) The frequency of polyploid speciation in vascular plants. *Proc. Natl. Acad. Sci.*, **106**,
740 13875–13879.


741 **Zhang, C., Rabiee, M., Sayyari, E. and Mirarab, S.** (2018) ASTRAL-III: polynomial time species
742 tree reconstruction from partially resolved gene trees. *BMC Bioinformatics*, **19**, 153.

743 **Zhong, B., Fong, R., Collins, L.J., McLenahan, P.A. and Penny, D.** (2014) Two New Fern
744 Chloroplasts and Decelerated Evolution Linked to the Long Generation Time in Tree Ferns.
745 *Genome Biol. Evol.*, **6**, 1166–1173.

746

747

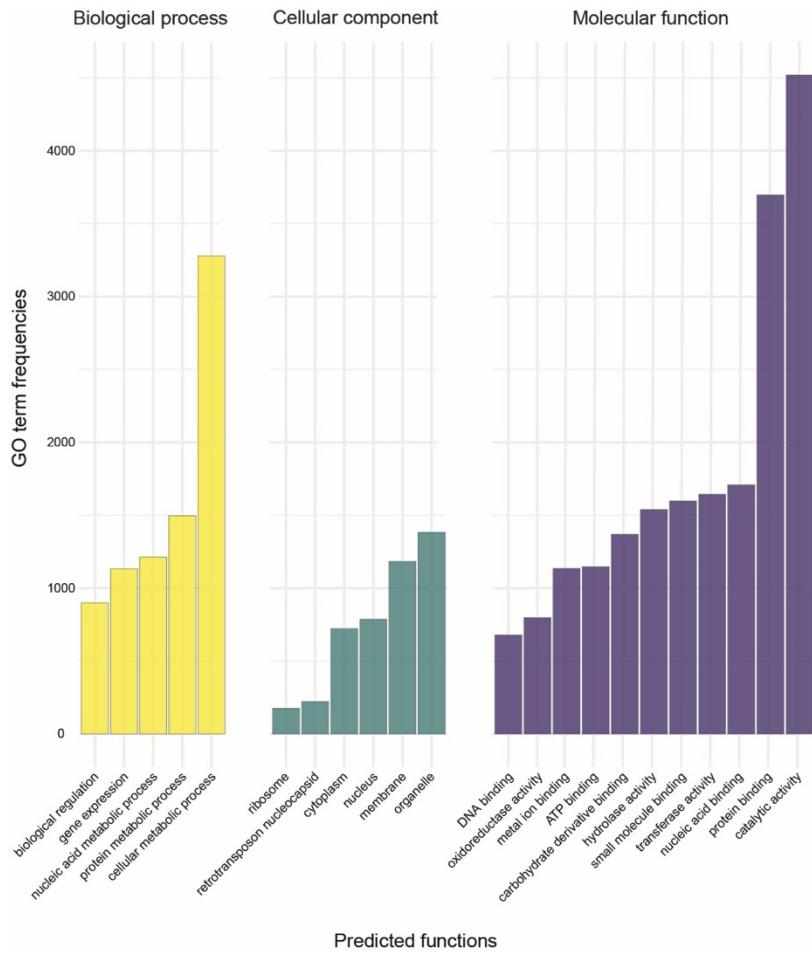
748 **Figures**

749

750

751

752


753

754

755

756

Figure 1: De novo assembly of the *Botrychium lunaria* transcriptome. (A) Distribution of the raw, trimmed, and pseudo-aligned read numbers per individual. (B) Transcripts and gene assembly content at each filtering stage of the transcriptome. (C) Contaminant transcript sequences detected by phylum. Retained phyla are indicated in bold. (D) Distribution of the assembled transcript lengths. (E) BUSCO genes detected at each filtering stage of the *B. lunaria* transcriptome and for two genome assemblies of ferns (*Azolla filiculoides* and *Salvinia cucullata*; Li *et al.*, 2018).

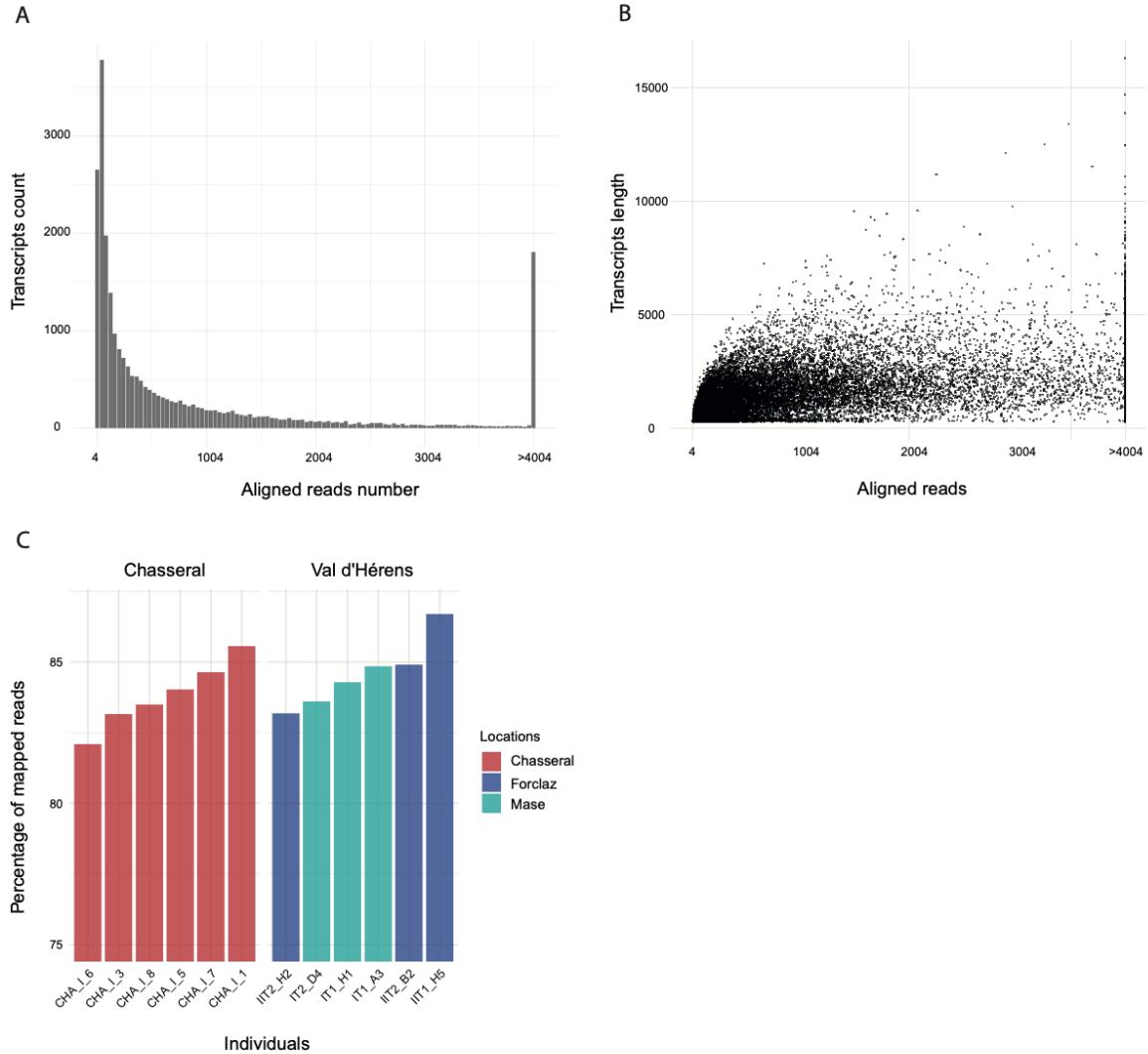
758

Predicted functions

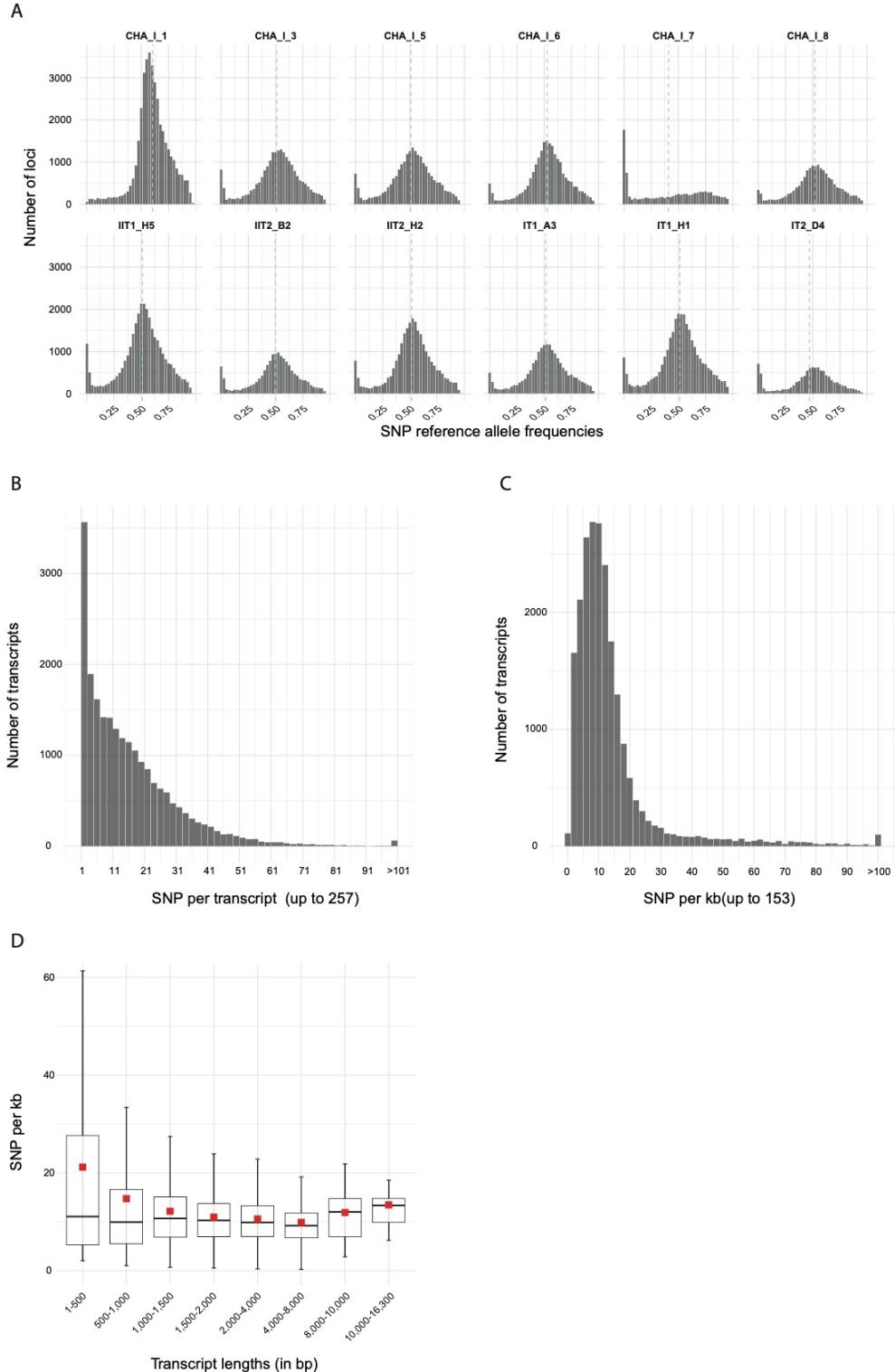
759

760

Figure 2: Characterizations of predicted functions encoded by the transcriptome. Gene ontology (GO) term annotations are shown for the 30 most frequent terms per ontology (biological process = BP, cellular component = CC, and molecular function = MF). GO terms with highly similar functions are excluded from the representation.

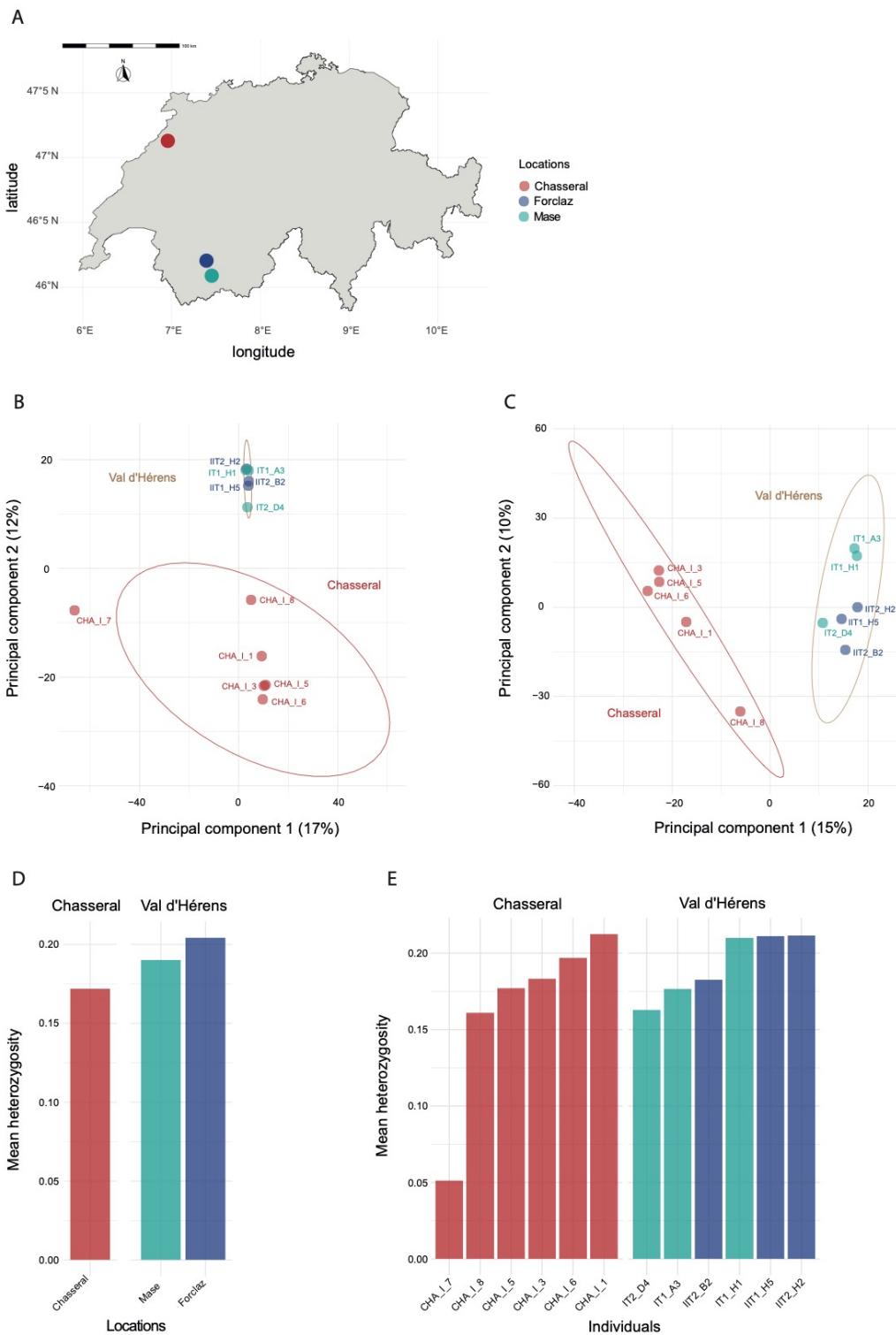

761

762


763

764

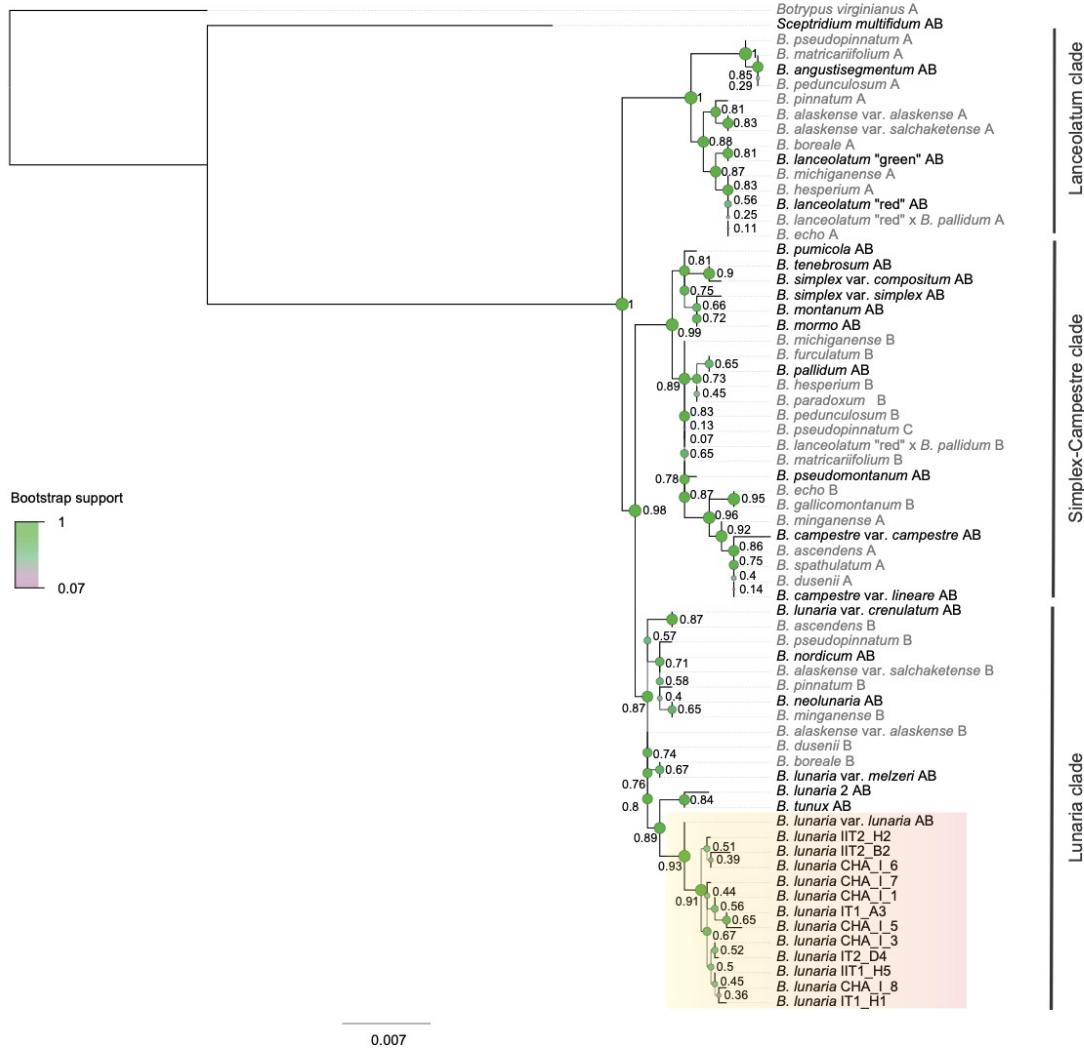
765



766
767 **Figure 3: Analyses of the assembly coverage.** (A) Number of aligned reads per assembled transcript
768 for the reference individual. (B) Aligned reads of the reference individual according to the assembled
769 transcript length. (C) Mapping rate of all 12 individuals from the Chasseral and Val d'Hérens
770 populations (including the subpopulations Forclaz and Mase). The reference individual used to assemble
771 the transcriptome was CHA_I_1.
772

773
774 **Figure 4: Analyses of population-level transcriptomic polymorphism.** (A) Distribution of the
775 transcriptome-wide SNP reference allele frequencies per individual estimated from mapped reads. The
776 light-blue dashed lines show the mean reference allele frequency. Homozygous positions (frequencies
777 0 and 1) were excluded. (B) Number of SNPs per transcript. (C) Density of SNPs per transcript (i.e.,
778 number of SNPs per kb). (D) SNP density according to bins of transcript length. The mean density is
779 shown by a red rectangle.
780

781



782

783 **Figure 5: Population genetic structure and observed heterozygosity.** (A) Principal component
784 analysis (PCA) of the populations Chasseral and Val d'Hérens (sites Mase and Forclaz). (B) PCA of
785 both populations excluding the CHA_I_7 outlier. Both PCA were analyzed using a reduced SNP dataset
786 of a maximum of 1 SNP per kb of transcript. (C) Mean observed heterozygosity per location grouped
787 by population. (D) Mean observed heterozygosity per individual grouped by population.

788

789
790

791
792
793 **Figure 6: Phylogenetic positions of the *Botrychium lunaria* samples from Chasseral and Val d'Hérens within the *Botrychium* genus.** Maximum likelihood (ML) tree of the CRY2cA locus. ML bootstrap support values are shown next to nodes. Thicker branch lines, larger node sizes and nodes colored in green further indicate higher bootstrap values. Diploid taxa are shown in black and polyploids are shown in grey. For polyploids, the subgenome is shown individually on the tree and specified by a letter after the species name: "A" for maternal subgenome, "B" for paternal subgenome, and "C" for additional subgenome for the hexaploid (modified from Dauphin *et al.*, 2018). The three *Botrychium* main clades were delimited by vertical dark grey lines. Individuals from Chasseral and Val d'Hérens populations are highlighted by an orange rectangle.

801
802

814 **Tables**

815

816 **Table 1: Populations, accessions and voucher information.** Coordinates are given in WGS84.

Individual identifier	Population	Location	Latitude	Longitude	Altitude (m)	Date	Voucher number	Deposit ^{1,2} institute
CHA_I_1	Chasseral	Chasseral	47.12974	7.04934	1549.71	07.06.2017	NE000101258	NE
CHA_I_3	Chasseral	Chasseral	47.12974	7.04934	1549.71	07.06.2017	NE000101257	NE
CHA_I_5	Chasseral	Chasseral	47.12974	7.04934	1549.71	07.06.2017	NE000101256	NE
CHA_I_6	Chasseral	Chasseral	47.12974	7.04934	1549.71	07.06.2017	NE000101255	NE
CHA_I_7	Chasseral	Chasseral	47.12974	7.04934	1549.71	07.06.2017	CHA_I_7	UNINE
CHA_I_8	Chasseral	Chasseral	47.12974	7.04934	1549.71	07.06.2017	NE000101254	NE
IIT2_H2	Val d'Hérens	Forclaz	46.08741	7.54379	2346.15	2015	IIT2_H2	UNINE
IIT1_H5	Val d'Hérens	Forclaz	46.08851	7.53906	2346.15	2015	IIT1_H5	UNINE
IIT2_B2	Val d'Hérens	Forclaz	46.08741	7.54379	2406.10	2015	IIT2_B2	UNINE
IT1_A3	Val d'Hérens	Mase	46.20432	7.48350	2406.62	2015	IT1_A3	UNINE
IT1_H1	Val d'Hérens	Mase	46.20432	7.48350	2406.62	2015	IT1_H1	UNINE
IT2_D4	Val d'Hérens	Mase	46.19642	7.48502	2424.07	2015	IT2_D4	UNINE

817 Notes: ¹NE: Herbarium of the University of Neuchâtel, ²UNINE: University of Neuchâtel, Evolutionary genetics laboratory.

818 The specimens deposited at UNINE are frozen samples stored at -80°C.

819

820 **Table 2: Overview of assembly statistics over the different transcript filtering stages.**

Filtering stage	Assembled bases	Transcripts	Genes	N50-longest isoform	N50-all	GC%
Raw assembly	56,273,802	167,306	87,537	1,689	1,089	43.68
ORF-encoding	34,588,465	69,280	26,139	2,152	1,988	44.00
Longest isoform only	34,588,465	26,139	26,139	1,988	1,988	44.31
Contaminants screening	34,245,455	25,701	25,701	1,995	1,995	44.30

821

822

823 **Table 3: Analyses of assembly completeness using BUSCO genes.** The *B. lunaria* transcriptome is
824 compared to two genome assemblies of ferns (*Azolla filiculoides* and *Salvinia cucullata*).

Species name	Filtering stage	C ¹	CS ²	CD ³	F ⁴	M ⁵	n ⁶	Dataset
<i>Azolla filiculoides</i>	-	4088	373	35	8	9	425	viridiplantae_odb10
<i>Salvinia cucullata</i>	-	414	399	15	5	6	425	viridiplantae_odb10
<i>B. lunaria</i>	Raw assembly	392	161	231	22	11	425	viridiplantae_odb10
<i>B. lunaria</i>	ORF-encoding	392	163	229	22	11	425	viridiplantae_odb10
<i>B. lunaria</i>	Longest isoform only	349	346	3	54	22	425	viridiplantae_odb10
<i>B. lunaria</i>	Contaminants screening	349	346	2	54	22	425	viridiplantae_odb10

825 Notes: ¹Complete genes, ²Complete and single copy genes, ³Complete and duplicated genes, ⁴Fragmented genes, ⁵Missing
826 genes, ⁶Total number of BUSCO genes in the dataset.

827