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ABSTRACT 17 

Plant photosynthesis is a major part of the global carbon cycle and climate system. Carbon capture 18 

by C3 plants is most often modelled using the Farquhar-von-Caemmerer-Berry (FvCB) equations. We 19 

undertook a global synthesis of all parameters required to solve the FvCB model. The publicly 20 

available dataset we assembled includes 3663 observations from 336 different C3 plant species 21 

among 96 taxonomic families coming from every major vascular plant clade (lycophytes, ferns, 22 

gymnosperms, magnoliids, eudicots and monocots). Geographically, the species in the database 23 

have distributions that span the majority of the globe. We used the model to predict photosynthetic 24 

rates for a hypothetical average plant in each major terrestrial plant clade and find that generally 25 

plants have dramatically increased their photosynthetic abilities through evolutionary time, with the 26 

average monocot (the youngest clade) achieving maximum rates of photosynthesis almost double 27 

that of the average lycophyte (the oldest clade).  We also solved the model for different hypothetical 28 

average plant functional types (PFTs) and find that herbaceous species generally have much higher 29 

rates of photosynthesis compared to woody plants. Indeed, the maximum photosynthetic rate of 30 

graminoids is almost three times the rate of the average tree. The resulting functional responses to 31 

increasing CO2 in average hypothetical PFTs would suggest that most groups are already at or near 32 

their maximum rate of photosynthesis. However, phylogenetic analysis showed that there was no 33 

evidence of niche conservatism with most variance occurring within, rather than among clades 34 

(K=0.357, p=0.001). This high within-group variability suggests that average PFTs may obscure 35 

important plant responses to increasing CO2.  Indeed, when we solved the model for each of the 36 

3663 individual observations, we found that, contrary to the predictions of hypothetical average 37 

PFTs, that most plants are predicted to be able to increase their photosynthetic rates. These results 38 

suggest that global models should seek to incorporate high within-group variability to accurately 39 

predict plant photosynthesis in response to a changing climate.   40 
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INTRODUCTION 41 

 Plant photosynthesis is a major factor in the global climate system. Indeed, the annual flux 42 

of atmospheric carbon (C) through the leaves of terrestrial plants is estimated to be 1 � 10�� g yr-1 43 

(Beer et al., 2010, Hetherington &  Woodward, 2003). Carbon capture by C3 plants is most often 44 

modelled using models derived from the Farquhar-von-Caemmerer-Berry (FvCB) equations 45 

(Farquhar et al., 1980, Farquhar &  Wong, 1984, Sharkey et al., 2007, Von Caemmerer, 2000). The 46 

FvCB model is a process based physiological model that accurately describes the rate of 47 

photosynthesis across light levels, and across both CO2 and O2 concentrations. In its modern form, 48 

the FvCB model also accounts for triose phosphate limitation (Lombardozzi et al., 2018, Mcclain &  49 

Sharkey, 2019). Indeed, a version of the FvCB model forms the basis for most physiological, 50 

ecological, and earth system models that include plants (Rogers et al., 2017).  51 

 52 

Models that incorporate plant photosynthesis require accurate parameter estimates, 53 

estimates which are spread across four decades of scientific inquiry and may be difficult to find for 54 

specific taxa. There have been several syntheses and meta-analyses that focus on two parameters of 55 

the FvCB model, ��,���  and ����  (E.g. Kattge &  Knorr, 2007, Walker et al., 2014, Wullschleger, 56 

1993), as well as syntheses on empirically estimated maximum photosynthetic rates (Gago et al., 57 

2019), but we are unaware of any attempt at a global synthesis of the full suite of at least 12 58 

parameters needed to fully predict photosynthetic rates across the all C3 plants. In addition, the 59 

modern FvCB model of photosynthesis is well known to be over-parameterised (Qian et al., 2012), 60 

and modern techniques for curve fitting and parameter estimation can benefit from better prior 61 

information. For example, Bayesian methods can work from a known prior distribution of parameter 62 

values to enhance the ability to accurately estimate parameters (e.g. Patrick et al., 2009). Thus, 63 

collecting all available parameter estimates into one database would greatly enhance the ability to 64 

model global photosynthesis, as well as our ability to estimate parameters for new taxa. 65 

 66 
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 Here, we describe a synthesis of all FvCB parameters where at least one parameter was 67 

estimated for a given species. The summary includes parameter estimates from 359 different plant 68 

species from 96 taxonomic families coming from every major vascular plant clade (lycophytes, ferns, 69 

gymnosperms, magnoliids, eudicots and monocots) whose distributions span the majority of the 70 

globe. The parameter estimates are presented using a number of summary statistics and probability 71 

density histograms. We also solve the FvCB model using the full range of parameter estimates to 72 

generate predictions about the breadth of plant photosynthetic responses across major vascular 73 

plant clades, plant functional types, and individual leaves. The full dataset containing 3663 unique 74 

rows of data is publicly available.  75 

 76 

MATERIALS AND METHODS 77 

The FvCB photosynthesis model 78 

 Here, we briefly describe the equations of the FvCB model we used to seek 79 

parameterizations (Farquhar et al., 1980, Sharkey et al., 2007, Von Caemmerer, 2000). The most 80 

basic modern FvCB photosynthesis approach for C3 plants assumes that the rate of carbon 81 

assimilation (�) in photosynthesis is co-limited by either carbon (��), light (��) or TPU (�	) according 82 

to: 83 

� � min��� , �� , �	� � �
 ,         Eqn 1 

where �
  is the daytime respiration rate (See Table 1 for units). 84 

 85 

The carbon-limited portion of assimilation by photosynthesis in Eqn 1 is given by: 86 

�� � ��,�����

�� � �� �1 � ����
� ,          Eqn 2 

where ��  and ��  are the intracellular concentrations of CO2 and O2 at the site of ribulose-1,5-87 

bisphosphate carboxylase/oxygenase (RuBisCO) activity respectively;  �� and �� are the RuBisCO 88 

half saturation constants for CO2 and O2, respectively, and; ��,���  is the maximum possible rate of 89 
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photosynthesis. Half saturation constants are often called the enzyme “affinity” for the substrate, 90 

but in reality they have limited biological meaning and simply describe the shape of the curvature of 91 

the functional response (Mcnickle &  Brown, 2014). 92 

 93 

The light limited portion of photosynthesis is given by: 94 

�� � ���4.5�� � 10.5�

,          Eqn 3 

where � is the realised electron chain transport determined by light; �
 is the minimum partial 95 

pressure of CO2 where carbon assimilation balances respiration (i.e. � � �
) generally called the CO2 96 

compensation point; and ��  is as above.  97 

 98 

For the purposes of a global summary, the variable � has been determined in several ways 99 

over the years. The most common approach following Farquhar and  Wong (1984) � was found by 100 

solving for the root of a simple quadratic equation: 101 

��� � � ���� � !"# � ����!" � 0,           Eqn 4a 

Where " is the light photon flux density striking the leaf (μmol photons m-2 s-1), ���� is the light 102 

saturated maximum possible rate of electron transport; � represents curvature of the light 103 

response; and; ! is the efficiency of light conversion. Since this is a quadratic equation, and since 104 

negative values of � have no biological meaning, we can use the quadratic formula to find the 105 

positive root of Eqn 4a where: 106 

� � ���� � !" � % ���� � !"#� � 4�����!"2� .         Eqn 4b 

For some reason, most modern papers use different symbols from the original formulation. In 107 

addition, though significantly less common (Buckley &  Diaz-Espejo, 2015), some authors use an 108 

approximation of eqns 4 where � is approximated according to:  109 
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� � '"
(1 �  '"#�����

�

,          Eqn 5 

where ' represents the efficiency of light conversion (similar to ! in eqn 4), and " and ����  have 110 

their usual meanings. Note that ' in Eqn 5 is more typically written in the literature as the Greek 111 

letter ‘alpha’, but we altered this to avoid confusion with Eqn 4. 112 

 113 

 Finally, TPU limitation of photosynthesis in its most detailed form is given by: 114 

�	 � 3)	 �� � �
#�� � �
 1 � 3*# ,       Eqn 6' 

where * is a unitless scalar related to the proportion of glycolate recycled in chloroplasts (where 115 

0 , * , 1); )	 is the rate of TPU, and the other parameters have their usual meanings given above 116 

(Table 1).  However, it appears to be most common to assume that no glycolate is recycled (i.e. 117 

* � 0), and then Eqn 6a simplifies to: 118 

�	 � 3)	 .     -./ 60 

 119 

 We note that there are even more complex versions than we have detailed here in Eqns 1-6. 120 

These more complex versions may include parameters for stomatal conductance of CO2 (Collatz et 121 

al., 1992), mesophyll conductance of CO2 (Flexas et al., 2014, Niinemets et al., 2011) and 122 

transpiration (Farquhar &  Sharkey, 1982, Farquhar &  Wong, 1984). However, leaf resistance to CO2 123 

and transpiration could be considered their own rather large sub-fields independent from many 124 

attempts to estimate FvCB model parameters. Thus, we purposefully omitted resistances from our 125 

survey of the literature to make the scope of the literature synthesis more tractable. Also, models 126 

that include detailed temperature relationships via the Arrhenius equation are also somewhat 127 

common (Kattge &  Knorr, 2007). Again however, to limit the scope of our synthesis we did not 128 

collect the parameters of these Arrhenius rate parameters for a more complex temperature 129 

dependent FvCB model. We view these as future updates that could be made to the dataset.  130 
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 131 

Literature search 132 

 Briefly, we began with a search for “Farqhuar photosynthesis models” in the Web of Science, 133 

read each paper carefully, and extracted values for all parameters of the FvCB model (Table 1). The 134 

search was expanded by using the bibliographies of these papers. In total data was extracted from 135 

202 papers. Units were standardized across studies for comparison. We also collected as many 136 

methodological details about the conditions in the cuvette as possible to attempt to understand 137 

sources of variation in the data that were not caused by taxonomy (E.g. humidity, temperature, 138 

vapour pressure deficit, light levels, CO2 pressure). The full details of our systematic literature search 139 

and data extraction methods and criteria are given in the Supplementary Information. 140 

 141 

We found that studies could generally be broadly organised into three types: temperature 142 

effects, leaf nitrogen effects, or mean plant effects. First, temperature is well known to affect the 143 

biochemical reactions in photosynthesis and we wanted to account for this variability (Kattge &  144 

Knorr, 2007). Thus, when temperature was the treatment parameter, values at each temperature 145 

were recorded separately. These rows are labelled as type ‘)’ in the data file. Second, leaf nitrogen 146 

can also be related to photosynthesis parameters and we wanted to account for this variability as 147 

well (Kattge et al., 2009, Walker et al., 2014). Thus, when parameters were estimated separately by 148 

leaf nitrogen, each leaf nitrogen level was recorded separately.  Nitrogen was sometimes reported 149 

as percent dry weight, and sometimes as mass per leaf area. Either were recorded, but in separate 150 

data columns. These rows are labelled as type ‘1’ in the data file. Studies that reported just one 151 

value for each parameter and species (i.e. a species mean) are labelled as type ‘2’ in the data file. 152 

Thus, there are three types of data: (i) mean values (type 2); (ii) leaf temperature manipulations 153 

(type )), and; (iii) leaf nitrogen differences (type 1). However, when available, temperature was 154 

recorded for type 2 and type 1 studies. Similarly, when available, leaf nitrogen was recorded for 155 

type ) and type 2 studies.  156 
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 157 

Taxonomy and biogeography 158 

Species names reported in the original papers were checked the National Center for 159 

Biotechnology Information’s species taxonomy database using the brranching::phylomatic_names 160 

function in R (Webb &  Donoghue, 2005). In general, this just updated any outdated species names 161 

to the most modern accepted name. In one case, we had to manually change a species names to a 162 

taxonomic synonym to match to the database: Echinochloa crus-galli (L.) Beauv was changed to an 163 

accepted synonym Digitaria hispidula (Retz.) Willd. The updated species names were then pruned 164 

from the plant megatree of Zanne et al. (2014) to visually represent the taxonomic coverage of the 165 

dataset using the brranching library in R (v. 0.6; Chamberlain, 2020). The literature search produced 166 

a few parameter estimates for 21 C4 graminoid species that others had reported in the literature 167 

and the FvCB model is only appropriate for C3 photosynthesis (Collatz et al., 1992). The final data file 168 

includes these few C4 parameters, but C4 plants are excluded from all analyses described here 169 

because the FvCB model does not apply to them. Species were also assigned to the following broad 170 

plant functional types (PFTs) based on growth form: C3 graminoid, Forb, Vine/Climbing, Shrub, or 171 

Tree (Also, C4 graminoids are labelled in the datafile, but we do not analyse them here). Finally, we 172 

recorded growth habit of each species in the following categories: annual, biennial, perennial, or 173 

crop for herbaceous species; deciduous, evergreen, or crop for woody species; and fern, tree, or club 174 

moss for ferns. Growth habit information was not available for three rare and exotic species and was 175 

recorded as NA. Of course, future users are free to organize species into whatever other categories 176 

are of interest.   177 

 178 

Not all studies reported a location of plant material collection, measurement, or the cultivar 179 

examined. Thus, to obtain a sense of the geographic coverage of species in this dataset, we used the 180 

Botanical Information and Ecology Network (BIEN; Maitner et al., 2018) to obtain museum 181 

occurrence records for each species in our global database. We then mapped these occurrence 182 
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records. The resulting map shows the global distribution of all species in our dataset. Importantly 183 

this map is not the global distribution of measurement locations. Rather, the resulting map provides 184 

window into the range distributions of all species that have been studied for photosynthesis, and 185 

therefore details what regions of the world have good coverage of at least approximate species level 186 

photosynthetic data. In addition, the resulting map also shows what regions would benefit from 187 

increased empirical attention to improve global models.  188 

 189 

Data summary 190 

To create a global summary table, we treated the three data types differently. For studies 191 

that report only mean values (type “M”), we used all values in the summary.  For temperature 192 

studies (type “T”), we only used the value nearest to 25°C. This was done because 25°C was the most 193 

common temperature used in studies that did not manipulate leaf temperature and most 194 

temperature studies measure the same leaf across many temperatures.  Our approach of using only 195 

one value per leaf was to avoid pseudoreplication. For leaf nitrogen studies (Type “N”), we averaged 196 

values across leaf N amounts to capture the mean response of plants growing across different soil 197 

fertilities. Because different leaf nitrogen contents represented individual plants in each study, this 198 

method creates a species mean and also seeks to avoid pseudoreplication. To generate a global 199 

summary, we calculated the mean, standard deviation, median, maximum, minimum, skew, and 200 

kurtosis for each parameter from Eqns 1-6.  201 

 202 

 Data were also summarised by major taxonomic clade and PFT. For these summary rows, 203 

there were generally too few categories in most groups to create density distributions, and we 204 

report only the mean, standard deviation, and sample size. For sample sizes that were n<3, we 205 

report the standard deviation as NA. For these summaries, we did not separate the T, M, and N data 206 

types because many taxa were only studied once.  207 

 208 
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Breadth of model outcomes 209 

 It is useful to the modelling community to have a large database of FvCB model parameters, 210 

but the raw parameters do not show the breadth of plant photosynthetic responses on their own, 211 

since 12 parameters (Table 1) may combine in a many different ways to produce the same rate of 212 

photosynthesis. To examine the range of predicted photosynthetic responses, we used the 213 

parameter estimates to actually solve the FvCB model for plant carbon assimilation rate by solving 214 

for model predicted � � ��  and � � " curves. We did this in three ways. All three of these analysis 215 

uses all three types of data (M, T and N) in order to show the breadth of responses. 216 

 217 

 First, we solved the model for the average hypothetical plant that describes each major 218 

plant clade. To do this, each parameter value was set equal to the average of the clade, and the 219 

predicted � � ��  and � � " curves were solved. In addition, all parameters were set to the upper 220 

and lower 95% confidence intervals around the mean, and the equations were solved again to give a 221 

sense of variation within the clade. Missing values were replaced with the global mean in the clade 222 

analysis. This let us compare the average photosynthetic functional response of some hypothetical 223 

average lycophyte, fern, gymnosperm, magnoliid, eudicot, and monocot.  224 

 225 

 Second, we solved the model for the average hypothetical plant that describes each PFT. 226 

This was done as above with the mean parameter values and the upper and lower confidence 227 

intervals. Here, missing values were replaced with the mean of the appropriate clade (e.g. missing 228 

graminoid parameters were replaced with the monocot mean, while missing vine or shrub 229 

parameters with the eudicot mean).  230 

 231 

Third, we went down each of the 3663 rows of our dataset and solved the model for every 232 

individual leaf for which we had data. However, no study in our synthesis estimated all parameters 233 

of the FvCB equation. Thus, to fill in gaps for any row, we used the global mean value for any missing 234 
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parameter values. In addition, the average ����  for each species was calculated from these model 235 

runs and then drawn onto the phylogeny. We used Bloomberg’s K to examine phylogenetic signal in 236 

the species level data using phytools in R (Revell, 2012).  237 

 238 

RESULTS 239 

Taxonomy and biogeography 240 

 In total, we obtained at least one parameter estimate from 359 species in 96 families (Fig 241 

1A, Table S1). The data included all major vascular plant clades including: lycophytes (2 species, 1 242 

family), ferns (33 species, 16 families), gymnosperms (23 species, 3 families), and angiosperms (303 243 

species, 77 families). Angiosperms can be further separated into three more sub-clades comprised of 244 

monocots (62 species, 7 families), eudicots (235 species, 68 families), and magnoliids (6 species, 3 245 

families). Tables S1 and S2 include more detailed summaries breaking the available data up among 246 

each of the 96 taxonomic families and within the six clades. In addition, Tables S3 and S4 contain 247 

more detailed summaries breaking the data up by PFT and growth habit.  248 

 249 

 The occurrence data from BIEN shows that the majority of data comes from North America, 250 

Europe, Australia, New Zealand, and Japan (Fig 1B). Even though much of Africa is desert containing 251 

few to no plants, coverage on the vegetated parts of the continent was patchy, with the best 252 

coverage in South Africa and parts of west Africa.  However, excluding regions in Africa that mostly 253 

do not contain plants (i.e. the Sahara and Namib Deserts), there are entire countries in southern 254 

Africa for which very few species have been studied (e.g. Angola, Morocco, Nigeria). Similarly, 255 

coverage was spotty in northern Asia (E.g. Russia, Kazakhstan, Mongolia), Indochina, Indonesia and 256 

South America (e.g. Chile, Argentina, Uruguay, Paraguay). This is problematic, because many of 257 

these regions of Africa, Asia, and South America with patchy data are known diversity hotspots 258 

where a small number of taxonomic samples may not represent the average plant in those regions 259 

(Myers et al., 2000).  There was, however, a surprising amount of data from species endemic to the 260 
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southern foothills of the Himalayan mountains, and from Colombia and Ecuador. Regions of Brazil’s 261 

Amazon rainforest are also sparsely measured, with much of the Brazilian data appearing to have 262 

come from the southern grassland regions.    263 

 264 

Ignoring national borders, the geographic coverage suggests that most named ecosystem 265 

‘types’ (e.g. sensu Whittaker, 1975) also have good coverage. Temperate and boreal forests and 266 

grasslands have particularly good coverage (Fig 1B). However, given the high species diversity of 267 

tropical ecosystems, there are likely important gaps in our understanding of the diversity of 268 

photosynthetic responses in tropical regions across the globe. The arctic regions of Europe have very 269 

good coverage, but there is little data from arctic Russia and large gaps in coverage for arctic North 270 

America. Similarly, for grasslands, there is very good coverage in Australia and North America, but 271 

relatively little for the grasslands of Asia, Africa, and South America.  272 

 273 

Summary statistics and parameter distributions 274 

 By far, �����  (n=1364), ����  (n=961), and, to a lesser extent, )	 (n=171) were the most 275 

frequently estimated and reported parameter values (Table 2, 3). In general, most of the probability 276 

density distributions of observed parameters were skewed or possibly multi-modal (Table 2, 3, Fig 277 

S1, Fig S2). It is noteworthy that the minimum and maximum reported values of most parameters 278 

differed by as much as four orders of magnitude across all vascular plants. Also, the coefficient of 279 

variation in most cases was 0.5 or higher, suggesting high dispersion of the data among species. 280 

However, the data show that the majority of this within- and among-species variation over orders of 281 

magnitude was driven by methodological differences among research groups (Supplementary 282 

information). For example, a few species were studied many times by different groups, and variation 283 

in reported parameters for these species were largely explained by the nitrogen content of the 284 

leaves each group measured, and the VPD tolerance they used when taking measurements (Table 285 

S5, Fig S3). Similarly, among all species in our data base, methodological choices of different 286 
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research groups explained 60% of the variation in parameter estimates (Fig S4, Fig S5). Thus, once 287 

methods are controlled, the variation is primarily driven by species differences.  288 

 289 

 Among the six major clades, eudicots had the most data (n=2037 for �� ���) followed by 290 

gymnosperms (n=461 for �� ���) and monocots (n=400 for �� ���).  In general, for both �����  and 291 

����  there was a clear order to the means such that monocots > eudicots > magnoliids > 292 

gymnosperms > lycophytes. This suggests that plants have become increasingly adept at 293 

photosynthesis through evolutionary time. However, ferns do not seem to fit into this schema with 294 

ferns in-between magnoliids and gymnosperms. The half saturation constants (�� and ��) were only 295 

estimated twice for gymnosperms and never for lycophytes, ferns, and magnoliids. Better in vivo 296 

sampling of lycophyte, fern and magnoliid species may resolve phylogenetic differences of 297 

parameter values in the future. 298 

 299 

 For PFTs, most researchers studied trees (n=2077 for �� ���) followed by C3 graminoids 300 

(n=388 for �� ���) and forbs (n=222 for �� ���). There were relatively few vines, and shrubs. When 301 

they are included there was a clear order, for both �����  and ����  means such that C3 graminoids > 302 

forbs > shrubs > trees > vines.  303 

 304 

Model outcomes 305 

 We also used the parameters to solve the FvCB model to explore predicted photosynthesis 306 

rates. For comparison among the six major clades represented in our data, we note that ����  was 307 

significantly different such that monocots > eudicots > gymnosperms (Fig 2A, B). There were too few 308 

parameter estimates to draw confidence intervals for lycophyte, fern, and magnoliid clades, but 309 

readers should assume they are very wide, and we hesitate to draw many conclusions without more 310 

data. However, if the patterns stand, these predicted photosynthetic rates among clades show a 311 

similar pattern to empirically estimated photosynthetic rates showing that on average land plants 312 
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have substantially increased their photosynthetic ability over evolutionary time, matching empirical 313 

observations of ����  (Gago et al., 2019).  314 

 315 

 For PFT photosynthetic rates, ����  was significantly different such that C3 graminoids > 316 

shrubs > trees, but the confidence interval around forbs was so large that this group was not 317 

significantly different from any of these groups, suggesting herbaceous forbs fill a wider variety of 318 

photosynthetic niches than other groups (Fig 2C,D). Like magnoliids, there were too few parameter 319 

estimates for vines to draw confidence intervals for these PFTs, and we hesitate to draw conclusions 320 

about these PFTs.  321 

 322 

 There is reason to think analysing some hypothetical mean clade or PFT member might 323 

obscure diverse responses of genotypes and species. Thus, we also went down our dataset row by 324 

row to generate the entire breadth of photosynthetic responses of every leaf and species for which 325 

we had data. When parameters were missing, we replaced them with the global mean (Table 1). This 326 

created 3663 � � ��  and 3663 � � " curves (Fig 2E,F). When all 3663 curves were plotted on the 327 

same axis but with slightly transparent lines, the darker regions show the most common responses 328 

and the lighter regions show fewer common responses. Not surprisingly, the darkest lines largely 329 

appear to trace the average monocot and eudicot because these were best taxonomically sampled 330 

groups.  The breadth of maximum photosynthesis values ranged from slightly negative rates of 331 

photosynthesis (-1.6 μmol C m-2 s-1) to 59.7 μmol C m-2 s-1.  332 

 333 

When these data were averaged by species, there was no phylogenetic niche conservatism 334 

(Fig 1A, K=0.357, p=0.001) indicating that the majority of variation occurred within clades rather 335 

than among clades. Therefore, even though clades do appear to differ on average (Fig 2A,B), each 336 

clade is just as likely to contain some individual species with either low or high modelled ����  (Fig 337 

1A).  338 
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 339 

DISCUSSION 340 

 Photosynthesis is an important part of the earth climate system. Enormous quantities of CO2 341 

pass through terrestrial plants each year across the globe. As such, accurate parameterisation of 342 

photosynthetic models is key to an understanding of phenomena ranging from simple leaf level 343 

physiology to global atmospheric dynamics. Here, we undertook a synthesis of parameter values in 344 

the literature. The data set we assembled from the literature includes 3663 rows of data across 359 345 

different plant species from 96 taxonomic families that spanned all major vascular plant clades 346 

including lycophytes, ferns, gymnosperms, magnoliids, monocots, and eudicots (Fig 1; Table 2). Our 347 

aim was that modellers with diverse interests and questions could make use of this dataset, either 348 

for some general plant summarised by clade or PFT (Table 2,3). We also hope that empirical 349 

estimations of new parameter estimates can benefit from detailed prior probability distributions for 350 

modern Bayesian model fitting approaches (Fig S1, S2). However, it is also possible with these data 351 

to get more detailed, for example by family (Table S1, Table S2), growth habit (Table S3, Table S4), or 352 

even by individual species.  353 

 354 

 It has been shown that empirical estimates of ���� show a trend towards increasing 355 

photosynthetic efficiency in C3 plants through evolutionary time such that lycophytes > ferns > 356 

gymnosperms > angiosperms (Gago et al., 2019). It is exciting that the FvCB model is accurate 357 

enough to return the same ranking when estimated parameters are used to predict ���� (Fig 2).  It’s 358 

not surprising that increases in ����  are due to evolutionary adaptations that lead to increases in 359 

both ��,��� , and ����  since these parameters control the maximum photosynthetic rate (Table 2). 360 

Our data also show, for gymnosperms, eudicots and monocots that there has also been an increase 361 

in TPU efficiency through evolutionary time (Table 1). However, there are too few data to compare 362 

other parameter values. It would be valuable to have data to compare parameters such as the half 363 

saturation constants to know if there have been evolutionary innovations in RuBisCO affinities. We 364 
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restricted our search to in vivo parameter estimates. However, analysis of �� and �� estimated using 365 

extracted enzyme in vitro has recently been done for many diverse lineages ranging from Bacteria, 366 

Archaea and Eukarea (Iñiguez et al., 2020). Interestingly, they find significant phylogenetic 367 

conservation with early groups such as Chorophyta (green algae), Cyanobacteria, and Euglenophyta 368 

(a group of photosynthetic flagellate algae) having RuBisCO affinities for CO2 that were very similar 369 

to vascular land plants, though the actual affinities ranged over an order of magnitude for these 370 

three groups of plants (Iñiguez et al., 2020). Thus, the global understanding of photosynthesis would 371 

benefit from more in vivo estimates of enzyme affinities.  372 

 373 

 Indeed, in terms of actual parameter estimates, we note that ��  (n=112), �
 (n=64), �� 374 

(n=43), �� (n=29), and all parameters from eqns 4-5 were rarely estimated (Table 1,2, Fig S1, S2). 375 

Most studies use previously published estimates of these parameters to remove the degrees of 376 

freedom problem caused by over-parameterization of the FvCB model, and then simply estimate 377 

��,���  (n=1294), ����  (n=891), and increasingly )	 (n=171). Parameters other than ��,���  and  ����  378 

are more challenging to estimate because of FvCB model over-parameterization. However, these 379 

more rarely estimated parameters are far from constant (Fig S1, S2) despite being required to solve 380 

the model. Thus, there is likely more variation in these more rarely estimated parameters (I.e. �
, 381 

n=64; ��, n=43; ��, n=29) than is currently known, and we suggest that more attention to these 382 

parameter estimates would greatly improve our ability to accurately model photosynthesis.  Indeed, 383 

all parameters show either a skewed distribution with high kurtosis, or perhaps even a multi-modal 384 

distribution (Fig S1, S2). Currently, there are too few data to know whether these multi-modal 385 

distributions are artefacts of low sample sizes, or if they represent important physiological trade-386 

offs.   387 

 388 

It should also be noted that though we recorded respiration rates (�
 , n=468) that were 389 

reported along with the main parameters of the FvCB equations, we did not seek out studies that 390 
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report respiration rates of leaves. We are well aware that there are many more estimates of leaf 391 

respiration rates in the literature which are not associated with modelling exercises. However, like 392 

various resistances to CO2 movement into and through the leaf, seeking out leaf respiration rate 393 

measurements would require its own dedicated meta-analysis, which we view as a separate study. 394 

In the future, we seek to continue to update and expand this database of parameters.  Future 395 

updates could also include accounting for stomatal and mesophyll conductance (Flexas et al., 2014, 396 

Niinemets et al., 2011).  397 

 398 

 In addition to the four orders of magnitude variation among species, the data also show that 399 

variation in parameter estimates within a species can be over an order of magnitude (Fig S3). 400 

Importantly, however, most of this variation can be explained by methodological differences among 401 

research groups and are driven by the leaf temperature and VPD inside the cuvette, as well as the 402 

nitrogen content of the leaves (i.e. the growing conditions of the plant). Variation among species is 403 

also partially explained by methods (Fig S4, S5) and clade (Fig 1,2, Table 1). This is well known, and 404 

not particularly surprising, so we do not dwell on these methodological effects here.  405 

 406 

Implications for global models 407 

 Most global models rely on simplifying the diversity of plant life by representing plants as 408 

some small number of average PFTs (Wullschleger et al., 2014). However, it is interesting thing to 409 

note that the average plant in a clade (Fig 2A, B), or PFT (Fig 2C, D) tells a different story than the 410 

diversity of results one sees when we model across species, genotypes and even individual leaves 411 

(Fig 2E, F).  For example, from our modelled � � ��  curves, we can predict the average functional 412 

response of each major plant clade (Fig 1A) or PFT (Fig 1C) to rising CO2 levels. Because our data go 413 

back to the 1970s, the average partial pressure of intracellular CO2 across our data set was only 28.4 414 

Pa (~280 ppm), while at the time of this writing the partial pressure of CO2 in the atmosphere was 415 

approximately 42 Pa (~415 ppm). The model output predicts that the average angiosperm has been 416 
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able to take advantage of the increased CO2 in the atmosphere in this period from the 1970s to the 417 

present (Fig 2A). Furthermore, the PFT data show that the average angiosperm response is 418 

dominated largely by the average graminoids and average forbs, while the average tree and shrub 419 

shrubs were already at their maximum photosynthetic rate with CO2 at 28.4 Pa. If we continue this 420 

trend and cast forward to the IPCC predictions for the year 2100 (Ipcc, 2012) of 74 – 103.4 Pa (~730-421 

1020 ppm) CO2, our model results suggest that our hypothetical average plant representing different 422 

clades and PFTs are already near or at their maximum photosynthetic rates at CO2 levels of 42 Pa (Fig 423 

1A, C). Our data using hypothetical mean PFTs suggest that only graminoids, have much capacity for 424 

increased CO2 assimilation beyond their current assimilation rates as we move toward the expected 425 

CO2 composition of the atmosphere by the year 2100. This seems to contradict empirical work 426 

where any plant species nearly always increase photosynthesis rates with increasing CO2 well 427 

beyond 42 Pa (Ainsworth &  Long, 2005, Norby &  Zak, 2011). What is the cause of this apparent 428 

contradiction? 429 

 430 

We suggest, the lack of phylogenetic signal among all the species and clades (Fig 1A) means 431 

modelling plants as some hypothetical average member of a clade or PFT obscures important 432 

underlying species level variability. Indeed, when we examine the individual � � ��  curves for every 433 

leaf for which we had data, the model results show that almost every individual leaf has the capacity 434 

to dramatically increase its photosynthetic rate as we move from current CO2 levels to the IPCC 435 

predictions for the year 2100 (Fig 2E). Thus, our results tell two divergent stories: some hypothetical 436 

average plant from a clade (Fig 2A) or PFT (Fig 2C) is predicted to have little room for additional 437 

photosynthesis with increasing CO2, while actual empirically observed individual leaves almost all 438 

have significant room for additional photosynthesis with increasing CO2 (Fig 2E). Thus, the 439 

simplifying use of PFTs in most climate models may be dramatically underestimating the future 440 

photosynthetic capacity of terrestrial plants because using a mean PFT obscures the fact that most 441 

variation occurs within groups not among groups (Fig 1A). Ecologically, we would expect those 442 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.10.06.328682doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328682
http://creativecommons.org/licenses/by-nd/4.0/


species who can take advantage of increasing CO2 to expand in abundance resulting in an increased 443 

photosynthetic capacity at the community and ecosystem scale.  The clade and PFT means do not 444 

capture this ecological change.  445 

 446 

Future directions: filling in gaps 447 

 Given the divergent results between the response of some mean hypothetical clade or PFT 448 

member which were almost at their maximum rate of photosynthesis in response to rising CO2, and 449 

the individual leaves which almost all had capacity to increase their photosynthetic rate in response 450 

to rising CO2, this seems like a problem for global models. On one hand, the use of a handful of PFTs 451 

is a necessary simplifying assumption in the face of a world with hundreds of thousands of species 452 

(Wullschleger et al., 2014).  But on the other, it obscures the diversity of responses within each 453 

group which may drive future plant-climate feedbacks (Fig 1, 2). Newer models that include 454 

ecosystem demography and ecological competition among more types of plants are already likely 455 

the solution to this problem (Medvigy et al., 2009). We look forward to the increasing use and 456 

development of these ecosystem demography models which are a promising solution to this 457 

problem.  458 

 459 

There are some holes in the global data that limit some conclusions that can be drawn.  460 

From a phylogenetic and biogeographic perspective, it seems that the lack of bryophyte and lichen 461 

parameter data (Fig 1A), particularly in the arctic (Fig 1B), is a hole in our ability to predict global 462 

photosynthesis. In some arctic and boreal systems, bryophytes and lichens can represent the bulk of 463 

net primary production by C3 pathways (Limpens et al., 2011). Gago et al. (2019) summarized 464 

empirically estimated values of ���� , and show that mosses and liverworts fit into the evolutionary 465 

hierarchy such that their photosynthetic rates are lower than fern allies like lycophytes. The absence 466 

of FvCB parameters for bryophytes and lichens however, means that it is difficult to build the 467 

important results of Gago et al. (2019) into climate models. Since, most variability in the data 468 
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occured within groups not among groups (Fig 1A), models would likely benefit from increased 469 

taxonomic coverage of these more rarely studied groups.  470 

 471 

From a perspective of potential geographic bias, we cannot help but notice that – like many 472 

global datasets (E.g. Díaz et al., 2016, Luyssaert et al., 2007, Wright et al., 2004) – the FvCB 473 

parameter data are very western-centric, primarily coming from North American, Australian, and 474 

European species. This is likely a function of past funding levels, but we should work to correct this 475 

historical pattern. Indeed, many fields in science are well known to have a problem with diversity 476 

among members of the field (Swartz et al., 2019). Such lack of diversity is thought to limit 477 

perspective and cost the field bright minds from underrepresented minorities. Indeed, more diverse 478 

collaborations have been shown to lead to higher impact research (Alshebli et al., 2018). However, in 479 

a field like biology where diversity of life is also a part of the structure of our data, we suggest this 480 

western-centric data bias is also harming our global understanding of ecological systems as much as 481 

it is harming scientists from under-represented groups. There could be much to be gained by 482 

increased coverage of species from the South American, African, and Asian continents. Particularly, 483 

since most terrestrial biodiversity hotspots are in these regions. Data exists for almost every species 484 

of tree in the boreal forest, and arguably the majority of the most common trees in temperate 485 

forests, yet we know comparatively little about the diversity of photosynthetic responses of the 486 

enormous diversity of plant species in the tropics (Fig 1B). However, we do not think the solution to 487 

this dual problem with diversity of scientists and diversity of plant data is for western scientists to 488 

move their research into regions of Africa, South America and Asia that are under sampled. These 489 

regions already have scientists who can become experts or perhaps collaborators. Given that the 490 

cost of instruments required to estimate photosynthesis parameters is unusually high for ecological 491 

research, we recommend an international collaborative approach might be the most useful way to 492 

combine western access to expensive instruments, with local expertise in flora. Some have called 493 

such international collaborations the “fourth age of science” (Adams, 2013).  494 
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 495 

Conclusion 496 

Photosynthesis is a key process in the global climate system and is often modelled with FvCB 497 

type models. However, considering that there are 300,000 estimated plant species on earth, there is 498 

the potential for a large diversity of photosynthetic ability among plants. Thus, accurate models 499 

require large databases of parameter estimates. We have assembled such a database containing all 500 

parameter estimates required to solve the FvCB photosynthesis model. The publicly available 501 

database contains 3663 rows of data where at least one parameter was estimated for a given 502 

species. The summary includes parameter estimates from 359 different plant species from 96 503 

taxonomic families representing all major vascular plant clades. The biogeographic coverage of 504 

species spans the majority of the globe, although there are some important gaps. We find very 505 

different predicted photosynthetic rates depending on whether we examine some hypothetical 506 

average plant that is meant to represent a clade or PFT, compared to when we model individual 507 

leaves in our dataset. Specifically, when hypothetical average plants are modelled we found that 508 

most clades are approaching their maximum photosynthetic rate in response to elevated CO2.  509 

However, when the breadth of responses for individual leaves are modelled, we found that almost 510 

all plants are predicted to increase photosynthetic rates in response to elevated CO2. We hope that 511 

this database can improve our understanding of global carbon flux through the terrestrial biosphere.  512 

 513 
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TABLE 1: Summary of symbols, associated equation numbers in the text, plain descriptions and units 626 
for the parameters of the FvCB photosynthesis model that are included in this global summary. Note 627 
that those parameters in units of pressure (Pa), are reported differently by many authors. See text 628 
for unit conversions. Note that μmol m-2 s-1 represents carbon or photons depending on parameter.  629 

Parameter  Units Eqn Description ��,���  μmol m-2 s-1
 2 The carbon saturated maximum rate of carbon fixation. ���� μmol m-2 s-1
 4, 5, 

6 
The light saturated maximum possible rate of electron 
transport.  ��  Pa 2, 3 Intercellular partial pressure of CO2 at the site of RUBISCO activity. 

(When constructing a CO2 response curve, this is considered a 

variable, not a parameter.) �
 Pa 2, 3 The partial pressure of the CO2 compensation point. This is 

equivalent to a giving up density.  It is where carbon assimilation 

(i.e. benefits) equal respiration costs. �� Pa 2 The half saturation constant for CO2 of RUBISCO. This is sometimes 

called the enzyme “affinity” for the substrate, though in reality it 

has limited biological meaning. Rather, it describes the the 

curvature of the CO2 functional response. It is simply the partial 

pressure that is half-way to the maximum rate.  �� Pa 2 The half saturation constant for O2 of RUBISCO. This is sometimes 

called the enzyme “affinity” for the substrate, though in reality it 

has limited biological meaning. Rather it describes the curvature of 

the oxygenation functional response of RUBISCO. It is simply the 

partial pressure of oxygen that is half-way to the maximum rate. �
  μmol m-2 s-1
 1 The leaf respiration rate during the day of the leaf.  )	 μmol m-2 s-1
 7a, b The rate of TPU production.  * unitless 7a The rate of TPU recycling. Often assumed to be 0.   ! unitless 4 The efficiency of light conversion.  � unitless 4 A curvature factor of the light response.  ' unitless 5 The efficiency of light conversion. 

Variable    " μmol 
photons m-2 
s-1

 

4, 5 The light photon flux density striking the leaf. (When 
constructing a CO2 response curve, this can be considered a 
parameter not a variable) � μmol m-2 s-1 3, 4, 

5 
The actual rate of electron transport going to support NADP+ 
reduction for RuBP regeneration.  �� μmol m-2 s-1

 1 Rate of carbon assimilation limited by carbon reactions. ��  μmol m-2 s-1 1 Rate of carbon assimilation limited by light and electron transport.  �	 μmol m-2 s-1
 1 Rate of carbon assimilation limited by TPU.  � μmol m-2 s-1
 1 Actual rate of carbon assimilation 
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TABLE 2: Summary statistics and distribution parameters for each parameter of the Farquhar photosynthesis 631 
equations (Eqn 1-4). The global density distribution histogram for each parameter is shown in Fig S1. The 632 
mean, standard deviation (SD) and sample size is also shown for each major clade. SD is reported as NA for 633 
n<3, and empty cells represent no data.  634 

Clade Stat 

�� ���  

(μmol m
-

2
 s

-1
) 

� ���  

(μmol 

m
-2

 s
-1

) 

��  

(Pa) 

��  

(Pa) 

��  

(Pa) 

��  

(Pa) 

�	  

(μmol m
-

2
 s

-1
) 

�
  

(μmol 

m
-2

 s
-1

) 

All n 1352 953 88 58 43 29 458 171 

Mean 61.0 134.8 37.8 4.5 35.8 29169.1 1.2 12.0 

SD 39.1 81.0 6.6 2.6 12.6 9829.1 1.7 5.4 

CV 0.6 0.6 0.17 0.58 0.35 0.33 1.4 0.45 

Median 52.9 118.0 31.8 4.0 30.5 28168.4 0.8 12 

Min 0.3 10.4 15.9 0.01 17.0 16500 0.02 1.7 

Max 267.1 498.4 37.7 9.2 70.7 47926.7 20.3 29.2 

Skew. 1.09 1.09 -0.64 0.18 0.82 0.43 7.62 0.64 

Kurtosis 4.60 4.41 2.01 2.45 3.08 2.04 75.31 3.59 

Lycoph. n 2 2     2  

 Mean 17.2 25.5     0.5  

 SD NA NA     NA  

Ferns n 33 33     33  

 Mean 51.2 59.7     0.5  

 SD 27.9 24.1     0.3  

Gymno. n 461 301 37 27 2 2 41 49 

Mean 34.7 65.2 19.4 7.7 27.4 41543.3 0.9 2.8 

SD 32.25 42.93 5.14 3.04 NA NA 0.45 2.62 

Magno. n 18 3     1  

Mean 21 119.3     0.7  

SD 12.85 29.16     NA  

Eudic. 

 

n 2037 1060 43 63 42 31 283 48 

Mean 76.3 135.9 28.8 4.3 47.5 26442.6 1.5 6.8 

SD 56.88 64.8 5.67 1.87 31.63 11382.05 1.76 2.6 

Monoc. n 395 342 15 8 22 20 225 236 

 Mean 86.6 196.7  28.8 3.0  51.9  37944  0.79  13  

 SD 40.9 92.8 7.0 1.7 32.59 17120.35 0.50 5.35 

PFT          

C3 

gramin. 

n 388 342 12 5 21 20 222 236 

Mean 87.2 199.6 29.7 3.0 53.6 37944 0.8 13 

SD 41.1 92.2 7.1 1.7 32.8 17120.3 0.5 5.4 

Forb n 222 123 22 43 23 21 40 6 

Mean 83.5 167.5 31.2 4.3 41.1 24574.4 1.5 9.4 

SD 50.3 75.4 6.0 1.6 32.2 10685.8 2.2 3.4 

Vine n 55 54 1 1   5 2 

 Mean 55.9 95.4 20 4.1   0.5 9.1 

 SD 23.1 37.2 NA NA   0.3 NA 

Shrub n 166 143 3 4 3  23 21 

 Mean 72.1 125.7 18.7 2.8 26.8  2.1 6.6 

 SD 58.4 63.3 0.8 3.5 5.0  1.7 2.5 

Tree n 2077 1048 57 42 19 12 259 68 

 Mean 66.6 114.4 22.4 6.6 54.9 32073 1.3 3.7 

 SD 56.1 65.4 6.0 3.0 30.1 12035.2 1.6 2.7 

*  only �
  values reported with estimates of FvCB model parameters were sought. This will not be a 635 
complete literature review of plant respiration rates. 636 
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TABLE 3: Summary statistics across all measurements for 334 species for each parameter of the 637 
Farquhar photosynthesis equations 4-5. The global density distribution histogram for each 638 
parameter is shown in Fig S2. The mean, standard deviation (SD) and sample size is also shown for 639 
each major clade. SD is reported as NA for n<3, and empty cells represent no data. Clades are 640 
summarised by family in Table S1 and by functional type growth habit in Table S4.  641 

Clade Stat 

� 

(Eqn 4) 

	 

(Eqn 4) 


 

(Eqn 5) 

ALL n 41 192 6 

Mean 0.22 0.6 0.17 

SD 0.21 0.28 0.06 

CV 0.95 0.47 0.35 

Median 0.16 0.67 0.19 

Min 0.02 0.04 0.06 

Max 0.95 1.0 0.23 

Skewness 1.55 -0.82 -1.81 

Kurtosis 5.86 2.66 6.87 

Gymnosperm n 14 13 3 

Mean 0.23 0.53 0.19 

SD 0.05 0.17 0.02 

Magnoliid n  1  

 Mean  0.06  

 SD  NA  

Eudicot n 26 44 3 

Mean 0.27 0.51 0.16 

SD 0.22 0.41 0.09 

Monocot n 2 223  

Mean 0.27 0.68  

SD NA 0.16  

PFT     

C3 graminoid n  220  

 Mean  0.68  

 SD  0.20  

Forb n 17 23  

 Mean 0.32 0.77  

 SD 0.20 0.30  

Vine n  3  

 Mean  0.65  

 SD  0.50  

Shrub n 4 4  

 Mean 0.02 0.33  

 SD 0.006 0.5  

Tree n 20 30 5 

 Mean 0.24 0.33 0.17 

 SD 0.20 0.30 0.10 

Note: Lycophytes and ferns are absent from this table because no data were available for these 642 
parameters.   643 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.10.06.328682doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.06.328682
http://creativecommons.org/licenses/by-nd/4.0/


644 

 645 

FIG 1: (A) The evolutionary relationships among all 359 species among 6 major terrestrial plant clades for 646 

which photosynthesis parameters were recovered from the literature and included in our database. Scale bar 647 

represents 50 million years of evolution, and colours represent modelled . Unresolved taxonomy are 648 

drawn as polytomies at the genus level. The raw phylogeny in newick format is given in the supplementary 649 

information to allow digital visualisation of such a large phylogeny. There was no evidence of phylogenetic 650 

niche conservatism across the entire dataset, meaning species with low or high  are equally likely in any 651 

clade. (B) Global distribution data for all 334 species included in the data set (blue points). Points represent 652 

occurrence distribution data for all species retrieved from BIEN, not the locations of the measurements.  653 
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Fig 2: (A) Mean � � ��  and (B) � � " curves among each of the six major plant clades for which we 655 

have parameter estimates (solid lines). We also show (C) Mean � � ��  and (D) � � " curves with 656 

species grouped by broad functional type (dashed lines). Shading around the mean curve in panels 657 

A-D represents solving the model with the 95% confidence interval around all parameters. These 658 

95% confidence intervals cross on the � � ��  curve because of the oxygenation behaviour of 659 

RUBISCO at low CO2 partial pressures. For, lycophytes, ferns, magnoliids, and vines the large number 660 

of missing values were replaced with the global mean, and we did not draw confidence intervals for 661 

these groups (readers should assume they are very wide due to low taxonomic sampling). Finally, 662 

each line in the lower panels represent 3663 separate (E) � � ��  or (F) � � " curves generated for 663 

every single row in our database and show the breadth of individual species responses across 664 

diverse conditions. For these 3663 lines, missing values were replaced with the global mean (Table 665 

2). In all panels, for  � � ��  curves, the black vertical dotted line marks the estimated mean partial 666 

pressure of CO2 inside the leaf in reported in the literature, while the dashed line represents the 667 

approximate current partial pressure of CO2 in the atmosphere at the time of writing. The shaded 668 

rectangle represents the predicted range of CO2 Intergovernmental panel on climate change (IPCC) 669 

predicted partial pressures of CO2 by the year 2100. For � � " curves, the black dot-dash line 670 

represents the mean saturating Q used among studies in our database.  671 
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