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ABSTRACT

Plant photosynthesis is a major part of the global carbon cycle and climate system. Carbon capture
by Cs plants is most often modelled using the Farquhar-von-Caemmerer-Berry (FvCB) equations. We
undertook a global synthesis of all parameters required to solve the FvCB model. The publicly
available dataset we assembled includes 3663 observations from 336 different Cs plant species
among 96 taxonomic families coming from every major vascular plant clade (lycophytes, ferns,
gymnosperms, magnoliids, eudicots and monocots). Geographically, the species in the database
have distributions that span the majority of the globe. We used the model to predict photosynthetic
rates for a hypothetical average plant in each major terrestrial plant clade and find that generally
plants have dramatically increased their photosynthetic abilities through evolutionary time, with the
average monocot (the youngest clade) achieving maximum rates of photosynthesis almost double
that of the average lycophyte (the oldest clade). We also solved the model for different hypothetical
average plant functional types (PFTs) and find that herbaceous species generally have much higher
rates of photosynthesis compared to woody plants. Indeed, the maximum photosynthetic rate of
graminoids is almost three times the rate of the average tree. The resulting functional responses to
increasing CO, in average hypothetical PFTs would suggest that most groups are already at or near
their maximum rate of photosynthesis. However, phylogenetic analysis showed that there was no
evidence of niche conservatism with most variance occurring within, rather than among clades
(K=0.357, p=0.001). This high within-group variability suggests that average PFTs may obscure
important plant responses to increasing CO,. Indeed, when we solved the model for each of the
3663 individual observations, we found that, contrary to the predictions of hypothetical average
PFTs, that most plants are predicted to be able to increase their photosynthetic rates. These results
suggest that global models should seek to incorporate high within-group variability to accurately

predict plant photosynthesis in response to a changing climate.
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INTRODUCTION

Plant photosynthesis is a major factor in the global climate system. Indeed, the annual flux
of atmospheric carbon (C) through the leaves of terrestrial plants is estimated to be 1 x 10> g yr*
(Beer et al., 2010, Hetherington & Woodward, 2003). Carbon capture by C; plants is most often
modelled using models derived from the Farquhar-von-Caemmerer-Berry (FvCB) equations
(Farquhar et al., 1980, Farquhar & Wong, 1984, Sharkey et al., 2007, Von Caemmerer, 2000). The
FvCB model is a process based physiological model that accurately describes the rate of
photosynthesis across light levels, and across both CO; and O, concentrations. In its modern form,
the FvCB model also accounts for triose phosphate limitation (Lombardozzi et al., 2018, Mcclain &
Sharkey, 2019). Indeed, a version of the FvCB model forms the basis for most physiological,

ecological, and earth system models that include plants (Rogers et al., 2017).

Models that incorporate plant photosynthesis require accurate parameter estimates,
estimates which are spread across four decades of scientific inquiry and may be difficult to find for
specific taxa. There have been several syntheses and meta-analyses that focus on two parameters of
the FvCB model, V, ;05 and J ;05 (E.g. Kattge & Knorr, 2007, Walker et al., 2014, Wullschleger,
1993), as well as syntheses on empirically estimated maximum photosynthetic rates (Gago et al.,
2019), but we are unaware of any attempt at a global synthesis of the full suite of at least 12
parameters needed to fully predict photosynthetic rates across the all C; plants. In addition, the
modern FvCB model of photosynthesis is well known to be over-parameterised (Qian et al., 2012),
and modern techniques for curve fitting and parameter estimation can benefit from better prior
information. For example, Bayesian methods can work from a known prior distribution of parameter
values to enhance the ability to accurately estimate parameters (e.g. Patrick et al., 2009). Thus,
collecting all available parameter estimates into one database would greatly enhance the ability to

model global photosynthesis, as well as our ability to estimate parameters for new taxa.
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Here, we describe a synthesis of all FvCB parameters where at least one parameter was
estimated for a given species. The summary includes parameter estimates from 359 different plant
species from 96 taxonomic families coming from every major vascular plant clade (lycophytes, ferns,
gymnosperms, magnoliids, eudicots and monocots) whose distributions span the majority of the
globe. The parameter estimates are presented using a number of summary statistics and probability
density histograms. We also solve the FvCB model using the full range of parameter estimates to
generate predictions about the breadth of plant photosynthetic responses across major vascular
plant clades, plant functional types, and individual leaves. The full dataset containing 3663 unique

rows of data is publicly available.

MATERIALS AND METHODS
The FvCB photosynthesis model

Here, we briefly describe the equations of the FvCB model we used to seek
parameterizations (Farquhar et al., 1980, Sharkey et al., 2007, Von Caemmerer, 2000). The most
basic modern FvCB photosynthesis approach for C3 plants assumes that the rate of carbon
assimilation (A) in photosynthesis is co-limited by either carbon (4,), light (4;) or TPU (4,,) according
to:

A =min(4.,4;,4,) — Rq, Eqn 1

where R; is the daytime respiration rate (See Table 1 for units).

The carbon-limited portion of assimilation by photosynthesis in Eqn 1 is given by:

|4

c,max

C.
A, -

:a-+1<c(1+0i)' Han 2

Ko
where C; and O; are the intracellular concentrations of CO, and O, at the site of ribulose-1,5-

bisphosphate carboxylase/oxygenase (RuBisCO) activity respectively; K. and K, are the RuBisCO

half saturation constants for CO, and O,, respectively, and; V. .4, is the maximum possible rate of
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photosynthesis. Half saturation constants are often called the enzyme “affinity” for the substrate,
but in reality they have limited biological meaning and simply describe the shape of the curvature of

the functional response (Mcnickle & Brown, 2014).

The light limited portion of photosynthesis is given by:

A = L Egn 3
J T 45C, + 10.57" q
where J is the realised electron chain transport determined by light; I'* is the minimum partial

pressure of CO, where carbon assimilation balances respiration (i.e. A = R;) generally called the CO,

compensation point; and C; is as above.

For the purposes of a global summary, the variable J has been determined in several ways
over the years. The most common approach following Farquhar and Wong (1984) ] was found by
solving for the root of a simple quadratic equation:

02 = JUmax + @Q) + JmaxaQ =0,  Eqnia
Where Q is the light photon flux density striking the leaf (umol photons m™?s™), J,,,. is the light
saturated maximum possible rate of electron transport; 8 represents curvature of the light
response; and; « is the efficiency of light conversion. Since this is a quadratic equation, and since
negative values of J have no biological meaning, we can use the quadratic formula to find the

positive root of Eqn 4a where:

_]max + OCQ - \/(]max + aQ)z - 4’9]maxaQ
- 26 '

J Eqn 4b

For some reason, most modern papers use different symbols from the original formulation. In
addition, though significantly less common (Buckley & Diaz-Espejo, 2015), some authors use an

approximation of eqns 4 where J is approximated according to:
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a
]:—Q , Eqn 5

) 4 (@@

]max

where a represents the efficiency of light conversion (similar to « in eqn 4), and Q and J,,,,, have
their usual meanings. Note that a in Eqn 5 is more typically written in the literature as the Greek

letter ‘alpha’, but we altered this to avoid confusion with Eqn 4.

Finally, TPU limitation of photosynthesis in its most detailed form is given by:

3T,(C; = T'™)

Y A’
=—FP 2 -~ Eqmé6
P, —T*(1+3r) anba

where 7 is a unitless scalar related to the proportion of glycolate recycled in chloroplasts (where

0 <r < 1); T, is the rate of TPU, and the other parameters have their usual meanings given above
(Table 1). However, it appears to be most common to assume that no glycolate is recycled (i.e.

r = 0), and then Eqn 6a simplifies to:

A, =3T,. Eqnéb

We note that there are even more complex versions than we have detailed here in Eqns 1-6.
These more complex versions may include parameters for stomatal conductance of CO, (Collatz et
al., 1992), mesophyll conductance of CO; (Flexas et al., 2014, Niinemets et al., 2011) and
transpiration (Farquhar & Sharkey, 1982, Farquhar & Wong, 1984). However, leaf resistance to CO,
and transpiration could be considered their own rather large sub-fields independent from many
attempts to estimate FvCB model parameters. Thus, we purposefully omitted resistances from our
survey of the literature to make the scope of the literature synthesis more tractable. Also, models
that include detailed temperature relationships via the Arrhenius equation are also somewhat
common (Kattge & Knorr, 2007). Again however, to limit the scope of our synthesis we did not
collect the parameters of these Arrhenius rate parameters for a more complex temperature

dependent FvCB model. We view these as future updates that could be made to the dataset.
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Literature search

Briefly, we began with a search for “Farghuar photosynthesis models” in the Web of Science,
read each paper carefully, and extracted values for all parameters of the FvCB model (Table 1). The
search was expanded by using the bibliographies of these papers. In total data was extracted from
202 papers. Units were standardized across studies for comparison. We also collected as many
methodological details about the conditions in the cuvette as possible to attempt to understand
sources of variation in the data that were not caused by taxonomy (E.g. humidity, temperature,
vapour pressure deficit, light levels, CO, pressure). The full details of our systematic literature search

and data extraction methods and criteria are given in the Supplementary Information.

We found that studies could generally be broadly organised into three types: temperature
effects, leaf nitrogen effects, or mean plant effects. First, temperature is well known to affect the
biochemical reactions in photosynthesis and we wanted to account for this variability (Kattge &
Knorr, 2007). Thus, when temperature was the treatment parameter, values at each temperature
were recorded separately. These rows are labelled as type ‘T’ in the data file. Second, leaf nitrogen
can also be related to photosynthesis parameters and we wanted to account for this variability as
well (Kattge et al., 2009, Walker et al., 2014). Thus, when parameters were estimated separately by
leaf nitrogen, each leaf nitrogen level was recorded separately. Nitrogen was sometimes reported
as percent dry weight, and sometimes as mass per leaf area. Either were recorded, but in separate
data columns. These rows are labelled as type ‘N’ in the data file. Studies that reported just one
value for each parameter and species (i.e. a species mean) are labelled as type ‘M’ in the data file.
Thus, there are three types of data: (i) mean values (type M); (ii) leaf temperature manipulations
(type T), and; (iii) leaf nitrogen differences (type N). However, when available, temperature was
recorded for type M and type N studies. Similarly, when available, leaf nitrogen was recorded for

type T and type M studies.
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Taxonomy and biogeography

Species names reported in the original papers were checked the National Center for
Biotechnology Information’s species taxonomy database using the brranching::phylomatic_names
functionin R (Webb & Donoghue, 2005). In general, this just updated any outdated species names
to the most modern accepted name. In one case, we had to manually change a species names to a
taxonomic synonym to match to the database: Echinochloa crus-galli (L.) Beauv was changed to an
accepted synonym Digitaria hispidula (Retz.) Willd. The updated species names were then pruned
from the plant megatree of Zanne et al. (2014) to visually represent the taxonomic coverage of the
dataset using the brranching library in R (v. 0.6; Chamberlain, 2020). The literature search produced
a few parameter estimates for 21 C4 graminoid species that others had reported in the literature
and the FvCB model is only appropriate for C3 photosynthesis (Collatz et al., 1992). The final data file
includes these few C4 parameters, but C4 plants are excluded from all analyses described here
because the FvCB model does not apply to them. Species were also assigned to the following broad
plant functional types (PFTs) based on growth form: C3 graminoid, Forb, Vine/Climbing, Shrub, or
Tree (Also, C4 graminoids are labelled in the datafile, but we do not analyse them here). Finally, we
recorded growth habit of each species in the following categories: annual, biennial, perennial, or
crop for herbaceous species; deciduous, evergreen, or crop for woody species; and fern, tree, or club
moss for ferns. Growth habit information was not available for three rare and exotic species and was
recorded as NA. Of course, future users are free to organize species into whatever other categories

are of interest.

Not all studies reported a location of plant material collection, measurement, or the cultivar
examined. Thus, to obtain a sense of the geographic coverage of species in this dataset, we used the
Botanical Information and Ecology Network (BIEN; Maitner et al., 2018) to obtain museum

occurrence records for each species in our global database. We then mapped these occurrence
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183  records. The resulting map shows the global distribution of all species in our dataset. Importantly
184  this map is not the global distribution of measurement locations. Rather, the resulting map provides
185  window into the range distributions of all species that have been studied for photosynthesis, and
186  therefore details what regions of the world have good coverage of at least approximate species level
187 photosynthetic data. In addition, the resulting map also shows what regions would benefit from

188 increased empirical attention to improve global models.

189

190 Data summary

191 To create a global summary table, we treated the three data types differently. For studies
192  thatreport only mean values (type “M”), we used all values in the summary. For temperature

193  studies (type “T”), we only used the value nearest to 25°C. This was done because 25°C was the most
194  common temperature used in studies that did not manipulate leaf temperature and most

195  temperature studies measure the same leaf across many temperatures. Our approach of using only
196  one value per leaf was to avoid pseudoreplication. For leaf nitrogen studies (Type “N”), we averaged
197  values across leaf N amounts to capture the mean response of plants growing across different soil
198 fertilities. Because different leaf nitrogen contents represented individual plants in each study, this
199 method creates a species mean and also seeks to avoid pseudoreplication. To generate a global

200 summary, we calculated the mean, standard deviation, median, maximum, minimum, skew, and
201 kurtosis for each parameter from Eqns 1-6.

202

203 Data were also summarised by major taxonomic clade and PFT. For these summary rows,
204  there were generally too few categories in most groups to create density distributions, and we

205 report only the mean, standard deviation, and sample size. For sample sizes that were n<3, we

206 report the standard deviation as NA. For these summaries, we did not separate the T, M, and N data
207  types because many taxa were only studied once.

208
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Breadth of model outcomes

It is useful to the modelling community to have a large database of FvCB model parameters,
but the raw parameters do not show the breadth of plant photosynthetic responses on their own,
since 12 parameters (Table 1) may combine in a many different ways to produce the same rate of
photosynthesis. To examine the range of predicted photosynthetic responses, we used the
parameter estimates to actually solve the FvCB model for plant carbon assimilation rate by solving
for model predicted A — C; and A — Q curves. We did this in three ways. All three of these analysis

uses all three types of data (M, T and N) in order to show the breadth of responses.

First, we solved the model for the average hypothetical plant that describes each major
plant clade. To do this, each parameter value was set equal to the average of the clade, and the
predicted A — C; and A — Q curves were solved. In addition, all parameters were set to the upper
and lower 95% confidence intervals around the mean, and the equations were solved again to give a
sense of variation within the clade. Missing values were replaced with the global mean in the clade
analysis. This let us compare the average photosynthetic functional response of some hypothetical

average lycophyte, fern, gymnosperm, magnoliid, eudicot, and monocot.

Second, we solved the model for the average hypothetical plant that describes each PFT.
This was done as above with the mean parameter values and the upper and lower confidence
intervals. Here, missing values were replaced with the mean of the appropriate clade (e.g. missing
graminoid parameters were replaced with the monocot mean, while missing vine or shrub

parameters with the eudicot mean).

Third, we went down each of the 3663 rows of our dataset and solved the model for every
individual leaf for which we had data. However, no study in our synthesis estimated all parameters

of the FvCB equation. Thus, to fill in gaps for any row, we used the global mean value for any missing
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235  parameter values. In addition, the average A4,,,, for each species was calculated from these model
236  runs and then drawn onto the phylogeny. We used Bloomberg's K to examine phylogenetic signal in
237  the species level data using phytools in R (Revell, 2012).

238

239 RESULTS

240 Taxonomy and biogeography

241 In total, we obtained at least one parameter estimate from 359 species in 96 families (Fig
242 1A, Table S1). The data included all major vascular plant clades including: lycophytes (2 species, 1
243 family), ferns (33 species, 16 families), gymnosperms (23 species, 3 families), and angiosperms (303
244  species, 77 families). Angiosperms can be further separated into three more sub-clades comprised of
245 monocots (62 species, 7 families), eudicots (235 species, 68 families), and magnoliids (6 species, 3
246  families). Tables S1 and S2 include more detailed summaries breaking the available data up among
247 each of the 96 taxonomic families and within the six clades. In addition, Tables S3 and S4 contain
248  more detailed summaries breaking the data up by PFT and growth habit.

249

250 The occurrence data from BIEN shows that the majority of data comes from North America,
251  Europe, Australia, New Zealand, and Japan (Fig 1B). Even though much of Africa is desert containing
252  few to no plants, coverage on the vegetated parts of the continent was patchy, with the best

253  coverage in South Africa and parts of west Africa. However, excluding regions in Africa that mostly
254 do not contain plants (i.e. the Sahara and Namib Deserts), there are entire countries in southern
255  Africa for which very few species have been studied (e.g. Angola, Morocco, Nigeria). Similarly,

256 coverage was spotty in northern Asia (E.g. Russia, Kazakhstan, Mongolia), Indochina, Indonesia and
257  South America (e.g. Chile, Argentina, Uruguay, Paraguay). This is problematic, because many of

258  these regions of Africa, Asia, and South America with patchy data are known diversity hotspots

259  where a small number of taxonomic samples may not represent the average plant in those regions

260  (Myers et al., 2000). There was, however, a surprising amount of data from species endemic to the
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southern foothills of the Himalayan mountains, and from Colombia and Ecuador. Regions of Brazil’s
Amazon rainforest are also sparsely measured, with much of the Brazilian data appearing to have

come from the southern grassland regions.

Ignoring national borders, the geographic coverage suggests that most named ecosystem
‘types’ (e.g. sensu Whittaker, 1975) also have good coverage. Temperate and boreal forests and
grasslands have particularly good coverage (Fig 1B). However, given the high species diversity of
tropical ecosystems, there are likely important gaps in our understanding of the diversity of
photosynthetic responses in tropical regions across the globe. The arctic regions of Europe have very
good coverage, but there is little data from arctic Russia and large gaps in coverage for arctic North
America. Similarly, for grasslands, there is very good coverage in Australia and North America, but

relatively little for the grasslands of Asia, Africa, and South America.

Summary statistics and parameter distributions

By far, Vomax (n=1364), /14, (n=961), and, to a lesser extent, T,, (n=171) were the most
frequently estimated and reported parameter values (Table 2, 3). In general, most of the probability
density distributions of observed parameters were skewed or possibly multi-modal (Table 2, 3, Fig
S1, Fig S2). It is noteworthy that the minimum and maximum reported values of most parameters
differed by as much as four orders of magnitude across all vascular plants. Also, the coefficient of
variation in most cases was 0.5 or higher, suggesting high dispersion of the data among species.
However, the data show that the majority of this within- and among-species variation over orders of
magnitude was driven by methodological differences among research groups (Supplementary
information). For example, a few species were studied many times by different groups, and variation
in reported parameters for these species were largely explained by the nitrogen content of the
leaves each group measured, and the VPD tolerance they used when taking measurements (Table

S5, Fig S3). Similarly, among all species in our data base, methodological choices of different
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287  research groups explained 60% of the variation in parameter estimates (Fig S4, Fig S5). Thus, once
288  methods are controlled, the variation is primarily driven by species differences.

289

290 Among the six major clades, eudicots had the most data (n=2037 for V. ,,,,,.) followed by
291  gymnosperms (n=461 for V, ,,,,,.) and monocots (n=400 for V,,,,,)- In general, for both V.., and
292 Jhax there was a clear order to the means such that monocots > eudicots > magnoliids >

293  gymnosperms > lycophytes. This suggests that plants have become increasingly adept at

294 photosynthesis through evolutionary time. However, ferns do not seem to fit into this schema with
295 fernsin-between magnoliids and gymnosperms. The half saturation constants (K, and K,) were only
296  estimated twice for gymnosperms and never for lycophytes, ferns, and magnoliids. Better in vivo
297  sampling of lycophyte, fern and magnoliid species may resolve phylogenetic differences of

298  parameter values in the future.

299

300 For PFTs, most researchers studied trees (n=2077 for V, ,,,,..) followed by C3 graminoids

301  (n=388for V. ;uqyx) and forbs (n=222 for V, ., ., )- There were relatively few vines, and shrubs. When
302  they are included there was a clear order, for both V,,, ;- and J,,,,, means such that C3 graminoids >
303  forbs > shrubs > trees > vines.

304

305  Model outcomes

306 We also used the parameters to solve the FvCB model to explore predicted photosynthesis
307  rates. For comparison among the six major clades represented in our data, we note that 4,,,,, was
308  significantly different such that monocots > eudicots > gymnosperms (Fig 2A, B). There were too few
309 parameter estimates to draw confidence intervals for lycophyte, fern, and magnoliid clades, but

310 readers should assume they are very wide, and we hesitate to draw many conclusions without more
311  data. However, if the patterns stand, these predicted photosynthetic rates among clades show a

312  similar pattern to empirically estimated photosynthetic rates showing that on average land plants
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313  have substantially increased their photosynthetic ability over evolutionary time, matching empirical
314  observations of 4,,,, (Gago et al., 2019).

315

316 For PFT photosynthetic rates, 4,,,, was significantly different such that C3 graminoids >
317  shrubs > trees, but the confidence interval around forbs was so large that this group was not

318  significantly different from any of these groups, suggesting herbaceous forbs fill a wider variety of
319 photosynthetic niches than other groups (Fig 2C,D). Like magnoliids, there were too few parameter
320 estimates for vines to draw confidence intervals for these PFTs, and we hesitate to draw conclusions
321  aboutthese PFTs.

322

323 There is reason to think analysing some hypothetical mean clade or PFT member might

324  obscure diverse responses of genotypes and species. Thus, we also went down our dataset row by
325  row to generate the entire breadth of photosynthetic responses of every leaf and species for which
326  we had data. When parameters were missing, we replaced them with the global mean (Table 1). This
327 created 3663 A — (; and 3663 A — @ curves (Fig 2E,F). When all 3663 curves were plotted on the
328  same axis but with slightly transparent lines, the darker regions show the most common responses
329  and the lighter regions show fewer common responses. Not surprisingly, the darkest lines largely
330  appear to trace the average monocot and eudicot because these were best taxonomically sampled
331  groups. The breadth of maximum photosynthesis values ranged from slightly negative rates of

332 photosynthesis (-1.6 pmol C m?s™) to 59.7 umol C m™?s™.

333

334 When these data were averaged by species, there was no phylogenetic niche conservatism
335 (Fig 1A, K=0.357, p=0.001) indicating that the majority of variation occurred within clades rather
336 than among clades. Therefore, even though clades do appear to differ on average (Fig 2A,B), each
337  cladeis just as likely to contain some individual species with either low or high modelled 4,,,,, (Fig

338 1A).
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DISCUSSION

Photosynthesis is an important part of the earth climate system. Enormous quantities of CO,
pass through terrestrial plants each year across the globe. As such, accurate parameterisation of
photosynthetic models is key to an understanding of phenomena ranging from simple leaf level
physiology to global atmospheric dynamics. Here, we undertook a synthesis of parameter values in
the literature. The data set we assembled from the literature includes 3663 rows of data across 359
different plant species from 96 taxonomic families that spanned all major vascular plant clades
including lycophytes, ferns, gymnosperms, magnoliids, monocots, and eudicots (Fig 1; Table 2). Our
aim was that modellers with diverse interests and questions could make use of this dataset, either
for some general plant summarised by clade or PFT (Table 2,3). We also hope that empirical
estimations of new parameter estimates can benefit from detailed prior probability distributions for
modern Bayesian model fitting approaches (Fig S1, S2). However, it is also possible with these data
to get more detailed, for example by family (Table S1, Table S2), growth habit (Table S3, Table S4), or

even by individual species.

It has been shown that empirical estimates of A,,,,, show a trend towards increasing
photosynthetic efficiency in C3 plants through evolutionary time such that lycophytes > ferns >
gymnosperms > angiosperms (Gago et al., 2019). It is exciting that the FvCB model is accurate
enough to return the same ranking when estimated parameters are used to predict A, (Fig 2). It’s
not surprising that increases in 4,,,, are due to evolutionary adaptations that lead to increases in
both V. ;.4x, and Jpqx Since these parameters control the maximum photosynthetic rate (Table 2).
Our data also show, for gymnosperms, eudicots and monocots that there has also been an increase
in TPU efficiency through evolutionary time (Table 1). However, there are too few data to compare
other parameter values. It would be valuable to have data to compare parameters such as the half

saturation constants to know if there have been evolutionary innovations in RuBisCO affinities. We
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restricted our search to in vivo parameter estimates. However, analysis of K. and K, estimated using
extracted enzyme in vitro has recently been done for many diverse lineages ranging from Bacteria,
Archaea and Eukarea (Ifiiguez et al., 2020). Interestingly, they find significant phylogenetic
conservation with early groups such as Chorophyta (green algae), Cyanobacteria, and Euglenophyta
(a group of photosynthetic flagellate algae) having RuBisCO affinities for CO2 that were very similar
to vascular land plants, though the actual affinities ranged over an order of magnitude for these
three groups of plants (lfiiguez et al., 2020). Thus, the global understanding of photosynthesis would

benefit from more in vivo estimates of enzyme affinities.

Indeed, in terms of actual parameter estimates, we note that C; (n=112), I'* (n=64), K.,
(n=43), K, (n=29), and all parameters from eqns 4-5 were rarely estimated (Table 1,2, Fig S1, S2).
Most studies use previously published estimates of these parameters to remove the degrees of
freedom problem caused by over-parameterization of the FvCB model, and then simply estimate
Ve max (n=1294), [ 14, (n=891), and increasingly T, (n=171). Parameters other than I ;.4 and Jyqx
are more challenging to estimate because of FvCB model over-parameterization. However, these
more rarely estimated parameters are far from constant (Fig S1, S2) despite being required to solve
the model. Thus, there is likely more variation in these more rarely estimated parameters (l.e. I'",
n=64; K., n=43; K, n=29) than is currently known, and we suggest that more attention to these
parameter estimates would greatly improve our ability to accurately model photosynthesis. Indeed,
all parameters show either a skewed distribution with high kurtosis, or perhaps even a multi-modal
distribution (Fig S1, S2). Currently, there are too few data to know whether these multi-modal
distributions are artefacts of low sample sizes, or if they represent important physiological trade-

offs.

It should also be noted that though we recorded respiration rates (R, n=468) that were

reported along with the main parameters of the FvCB equations, we did not seek out studies that
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391  report respiration rates of leaves. We are well aware that there are many more estimates of leaf
392  respiration rates in the literature which are not associated with modelling exercises. However, like
393  various resistances to CO, movement into and through the leaf, seeking out leaf respiration rate
394  measurements would require its own dedicated meta-analysis, which we view as a separate study.
395 In the future, we seek to continue to update and expand this database of parameters. Future

396 updates could also include accounting for stomatal and mesophyll conductance (Flexas et al., 2014,
397 Niinemets et al., 2011).

398

399 In addition to the four orders of magnitude variation among species, the data also show that
400  variation in parameter estimates within a species can be over an order of magnitude (Fig S3).

401 Importantly, however, most of this variation can be explained by methodological differences among
402  research groups and are driven by the |leaf temperature and VPD inside the cuvette, as well as the
403  nitrogen content of the leaves (i.e. the growing conditions of the plant). Variation among species is
404  also partially explained by methods (Fig S4, S5) and clade (Fig 1,2, Table 1). This is well known, and
405  not particularly surprising, so we do not dwell on these methodological effects here.

406

407  Implications for global models

408 Most global models rely on simplifying the diversity of plant life by representing plants as
409  some small number of average PFTs (Wullschleger et al., 2014). However, it is interesting thing to
410  note that the average plant in a clade (Fig 2A, B), or PFT (Fig 2C, D) tells a different story than the
411  diversity of results one sees when we model across species, genotypes and even individual leaves
412  (Fig 2E, F). For example, from our modelled A — C; curves, we can predict the average functional
413  response of each major plant clade (Fig 1A) or PFT (Fig 1C) to rising CO; levels. Because our data go
414  back to the 1970s, the average partial pressure of intracellular CO;, across our data set was only 28.4
415  Pa (~280 ppm), while at the time of this writing the partial pressure of CO, in the atmosphere was

416  approximately 42 Pa (~415 ppm). The model output predicts that the average angiosperm has been
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able to take advantage of the increased CO2 in the atmosphere in this period from the 1970s to the
present (Fig 2A). Furthermore, the PFT data show that the average angiosperm response is
dominated largely by the average graminoids and average forbs, while the average tree and shrub
shrubs were already at their maximum photosynthetic rate with CO, at 28.4 Pa. If we continue this
trend and cast forward to the IPCC predictions for the year 2100 (lpcc, 2012) of 74 — 103.4 Pa (~730-
1020 ppm) CO,, our model results suggest that our hypothetical average plant representing different
clades and PFTs are already near or at their maximum photosynthetic rates at CO; levels of 42 Pa (Fig
1A, C). Our data using hypothetical mean PFTs suggest that only graminoids, have much capacity for
increased CO, assimilation beyond their current assimilation rates as we move toward the expected
CO, composition of the atmosphere by the year 2100. This seems to contradict empirical work
where any plant species nearly always increase photosynthesis rates with increasing CO, well
beyond 42 Pa (Ainsworth & Long, 2005, Norby & Zak, 2011). What is the cause of this apparent

contradiction?

We suggest, the lack of phylogenetic signal among all the species and clades (Fig 1A) means
modelling plants as some hypothetical average member of a clade or PFT obscures important
underlying species level variability. Indeed, when we examine the individual A — C; curves for every
leaf for which we had data, the model results show that almost every individual leaf has the capacity
to dramatically increase its photosynthetic rate as we move from current CO, levels to the IPCC
predictions for the year 2100 (Fig 2E). Thus, our results tell two divergent stories: some hypothetical
average plant from a clade (Fig 2A) or PFT (Fig 2C) is predicted to have little room for additional
photosynthesis with increasing CO,, while actual empirically observed individual leaves almost all
have significant room for additional photosynthesis with increasing CO- (Fig 2E). Thus, the
simplifying use of PFTs in most climate models may be dramatically underestimating the future
photosynthetic capacity of terrestrial plants because using a mean PFT obscures the fact that most

variation occurs within groups not among groups (Fig 1A). Ecologically, we would expect those
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443  species who can take advantage of increasing CO, to expand in abundance resulting in an increased
444  photosynthetic capacity at the community and ecosystem scale. The clade and PFT means do not
445  capture this ecological change.

446

447 Future directions: filling in gaps

448 Given the divergent results between the response of some mean hypothetical clade or PFT
449 member which were almost at their maximum rate of photosynthesis in response to rising CO,, and
450 theindividual leaves which almost all had capacity to increase their photosynthetic rate in response
451  torising CO,, this seems like a problem for global models. On one hand, the use of a handful of PFTs
452  is a necessary simplifying assumption in the face of a world with hundreds of thousands of species
453  (Wullschleger et al., 2014). But on the other, it obscures the diversity of responses within each

454  group which may drive future plant-climate feedbacks (Fig 1, 2). Newer models that include

455  ecosystem demography and ecological competition among more types of plants are already likely
456  the solution to this problem (Medvigy et al., 2009). We look forward to the increasing use and

457  development of these ecosystem demography models which are a promising solution to this

458 problem.
459
460 There are some holes in the global data that limit some conclusions that can be drawn.

461  From a phylogenetic and biogeographic perspective, it seems that the lack of bryophyte and lichen
462  parameter data (Fig 1A), particularly in the arctic (Fig 1B), is a hole in our ability to predict global
463  photosynthesis. In some arctic and boreal systems, bryophytes and lichens can represent the bulk of
464  net primary production by C3 pathways (Limpens et al., 2011). Gago et al. (2019) summarized

465  empirically estimated values of 4,,,,, and show that mosses and liverworts fit into the evolutionary
466  hierarchy such that their photosynthetic rates are lower than fern allies like lycophytes. The absence
467  of FvCB parameters for bryophytes and lichens however, means that it is difficult to build the

468  important results of Gago et al. (2019) into climate models. Since, most variability in the data


https://doi.org/10.1101/2020.10.06.328682
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.328682; this version posted November 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

available under aCC-BY-ND 4.0 International license.

occured within groups not among groups (Fig 1A), models would likely benefit from increased

taxonomic coverage of these more rarely studied groups.

From a perspective of potential geographic bias, we cannot help but notice that — like many
global datasets (E.g. Diaz et al., 2016, Luyssaert et al., 2007, Wright et al., 2004) — the FvCB
parameter data are very western-centric, primarily coming from North American, Australian, and
European species. This is likely a function of past funding levels, but we should work to correct this
historical pattern. Indeed, many fields in science are well known to have a problem with diversity
among members of the field (Swartz et al., 2019). Such lack of diversity is thought to limit
perspective and cost the field bright minds from underrepresented minorities. Indeed, more diverse
collaborations have been shown to lead to higher impact research (Alshebli et al., 2018). However, in
a field like biology where diversity of life is also a part of the structure of our data, we suggest this
western-centric data bias is also harming our global understanding of ecological systems as much as
it is harming scientists from under-represented groups. There could be much to be gained by
increased coverage of species from the South American, African, and Asian continents. Particularly,
since most terrestrial biodiversity hotspots are in these regions. Data exists for almost every species
of tree in the boreal forest, and arguably the majority of the most common trees in temperate
forests, yet we know comparatively little about the diversity of photosynthetic responses of the
enormous diversity of plant species in the tropics (Fig 1B). However, we do not think the solution to
this dual problem with diversity of scientists and diversity of plant data is for western scientists to
move their research into regions of Africa, South America and Asia that are under sampled. These
regions already have scientists who can become experts or perhaps collaborators. Given that the
cost of instruments required to estimate photosynthesis parameters is unusually high for ecological
research, we recommend an international collaborative approach might be the most useful way to
combine western access to expensive instruments, with local expertise in flora. Some have called

such international collaborations the “fourth age of science” (Adams, 2013).
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495

496  Conclusion

497 Photosynthesis is a key process in the global climate system and is often modelled with FvCB
498  type models. However, considering that there are 300,000 estimated plant species on earth, thereis
499 the potential for a large diversity of photosynthetic ability among plants. Thus, accurate models

500 require large databases of parameter estimates. We have assembled such a database containing all
501 parameter estimates required to solve the FvCB photosynthesis model. The publicly available

502  database contains 3663 rows of data where at least one parameter was estimated for a given

503  species. The summary includes parameter estimates from 359 different plant species from 96

504  taxonomic families representing all major vascular plant clades. The biogeographic coverage of

505  species spans the majority of the globe, although there are some important gaps. We find very

506  different predicted photosynthetic rates depending on whether we examine some hypothetical

507  average plant that is meant to represent a clade or PFT, compared to when we model individual

508 leaves in our dataset. Specifically, when hypothetical average plants are modelled we found that
509  most clades are approaching their maximum photosynthetic rate in response to elevated CO,.

510 However, when the breadth of responses for individual leaves are modelled, we found that almost
511  all plants are predicted to increase photosynthetic rates in response to elevated CO,. We hope that
512 this database can improve our understanding of global carbon flux through the terrestrial biosphere.
513
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626
627
628
629

630

TABLE 1: Summary of symbols, associated equation numbers in the text, plain descriptions and units
for the parameters of the FvCB photosynthesis model that are included in this global summary. Note
that those parameters in units of pressure (Pa), are reported differently by many authors. See text
for unit conversions. Note that umol m? s™ represents carbon or photons depending on parameter.

Parameter  Units Eqn  pescription
Ve max pumol m2st 2 The carbon saturated maximum rate of carbon fixation.
Jmax pumolm?s* 4,5 The light saturated maximum possible rate of electron
6 transport.

C; Pa 2,3 Intercellular partial pressure of CO, at the site of RUBISCO activity.
(When constructing a CO, response curve, this is considered a
variable, not a parameter.)

r* Pa 2,3 The partial pressure of the CO, compensation point. This is
equivalent to a giving up density. It is where carbon assimilation
(i.e. benefits) equal respiration costs.

K, Pa 2 The half saturation constant for CO, of RUBISCO. This is sometimes
called the enzyme “affinity” for the substrate, though in reality it
has limited biological meaning. Rather, it describes the the
curvature of the CO, functional response. It is simply the partial
pressure that is half-way to the maximum rate.

K, Pa 2 The half saturation constant for O, of RUBISCO. This is sometimes
called the enzyme “affinity” for the substrate, though in reality it
has limited biological meaning. Rather it describes the curvature of
the oxygenation functional response of RUBISCO. It is simply the
partial pressure of oxygen that is half-way to the maximum rate.

Ry pmol m?s* 1 The leaf respiration rate during the day of the leaf.

T, pmol m?s™*  7a,b  The rate of TPU production.

r unitless 7a The rate of TPU recycling. Often assumed to be 0.

a unitless 4 The efficiency of light conversion.

0 unitless 4 A curvature factor of the light response.

a unitless 5 The efficiency of light conversion.

Variable
Q pumol 4,5 The light photon flux density striking the leaf. (When
photons m™ constructing a CO, response curve, this can be considered a
st parameter not a variable)
J pumol m?s® 3,4, The actual rate of electron transport going to support NADP*
5 reduction for RuBP regeneration.

A, pmol mZst 1 Rate of carbon assimilation limited by carbon reactions.

Aj pumol m2st 1 Rate of carbon assimilation limited by light and electron transport.

4, pmol m?s* 1 Rate of carbon assimilation limited by TPU.

A pmol m?s* 1 Actual rate of carbon assimilation



https://doi.org/10.1101/2020.10.06.328682
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.328682; this version posted November 26, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

631 TABLE 2: Summary statistics and distribution parameters for each parameter of the Farquhar photosynthesis
632 equations (Eqn 1-4). The global density distribution histogram for each parameter is shown in Fig S1. The
633 mean, standard deviation (SD) and sample size is also shown for each major clade. SD is reported as NA for
634 n<3, and empty cells represent no data.

chax ]max Rd TP
(umol m~  (umol C; rr K, K, (umol m™  (pumol
Clade  Stat 257 m?’s’) (Pa) (Pa) (Pa) (Pa) 257 m?s?)
All n 1352 953 88 58 43 29 458 171
Mean 61.0 134.8 37.8 4.5 35.8 29169.1 1.2 12.0
SD 39.1 81.0 6.6 2.6 12.6 9829.1 1.7 5.4
cv 0.6 0.6 0.17 0.58 0.35 0.33 1.4 0.45
Median 52.9 118.0 31.8 4.0 30.5 28168.4 0.8 12
Min 0.3 104 159 0.01 17.0 16500 0.02 1.7
Max 267.1 498.4 37.7 9.2 70.7 47926.7 20.3 29.2
Skew. 1.09 1.09 -0.64 0.18 0.82 0.43 7.62 0.64
Kurtosis 4.60 4.41 2.01 2.45 3.08 2.04 75.31 3.59
Lycoph. n 2 2 2
Mean 17.2 25.5 0.5
SD NA NA NA
Ferns n 33 33 33
Mean 51.2 59.7 0.5
sD 279 24.1 0.3
Gymno. n 461 301 37 27 2 2 41 49
Mean 34.7 65.2 194 7.7 27.4 41543.3 0.9 2.8
sD 32.25 42.93 5.14 3.04 NA NA 0.45 2.62
Magno. n 18 3 1
Mean 21 119.3 0.7
SD 12.85 29.16 NA
Eudic. n 2037 1060 43 63 42 31 283 48
Mean 76.3 135.9 28.8 4.3 47.5 26442.6 1.5 6.8
SD 56.88 64.8 5.67 1.87 31.63 11382.05 1.76 2.6
Monoc. n 395 342 15 8 22 20 225 236
Mean 86.6 196.7 28.8 3.0 51.9 37944 0.79 13
sD 40.9 92.8 7.0 1.7 32.59 17120.35 0.50 5.35
PFT
c3 n 388 342 12 5 21 20 222 236
gramin.  Mean 87.2 199.6 297 3.0 53.6 37944 0.8 13
SD 41.1 92.2 7.1 1.7 32.8 17120.3 0.5 5.4
Forb n 222 123 22 43 23 21 40 6
Mean 83.5 167.5 312 43 41.1 24574 .4 1.5 9.4
SD 50.3 75.4 6.0 1.6 32.2 10685.8 2.2 34
Vine n 55 54 1 1 5 2
Mean 55.9 95.4 20 41 0.5 9.1
SD 231 37.2 NA NA 0.3 NA
Shrub n 166 143 3 4 3 23 21
Mean 72.1 125.7 18.7 2.8 26.8 2.1 6.6
SD 584 63.3 0.8 3.5 5.0 1.7 2.5
Tree n 2077 1048 57 42 19 12 259 68
Mean 66.6 114.4 22.4 6.6 54.9 32073 1.3 3.7
SD 56.1 65.4 6.0 3.0 30.1 12035.2 1.6 2.7

635  * only R, values reported with estimates of FvCB model parameters were sought. This will not be a
636  complete literature review of plant respiration rates.
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637  TABLE 3: Summary statistics across all measurements for 334 species for each parameter of the
638  Farquhar photosynthesis equations 4-5. The global density distribution histogram for each

639  parameter is shown in Fig S2. The mean, standard deviation (SD) and sample size is also shown for
640  each major clade. SD is reported as NA for n<3, and empty cells represent no data. Clades are

641  summarised by family in Table S1 and by functional type growth habit in Table S4.

a e a
Clade Stat (Eqn 4) (Eqn 4) (Eqn 5)
ALL n 41 192 6
Mean 0.22 0.6 0.17
SD 0.21 0.28 0.06
cv 0.95 0.47 0.35
Median 0.16 0.67 0.19
Min 0.02 0.04 0.06
Max 0.95 1.0 0.23
Skewness 1.55 -0.82 -1.81
Kurtosis 5.86 2.66 6.87
Gymnosperm n 14 13 3
Mean 0.23 0.53 0.19
SD 0.05 0.17 0.02
Magnoliid n 1
Mean 0.06
SD NA
Eudicot n 26 44 3
Mean 0.27 0.51 0.16
SD 0.22 0.41 0.09
Monocot n 2 223
Mean 0.27 0.68
SD NA 0.16
PFT
C3 graminoid n 220
Mean 0.68
sD 0.20
Forb n 17 23
Mean 0.32 0.77
SD 0.20 0.30
Vine n 3
Mean 0.65
SD 0.50
Shrub n 4 4
Mean 0.02 0.33
SD 0.006 0.5
Tree n 20 30 5
Mean 0.24 0.33 0.17
SD 0.20 0.30 0.10

642  Note: Lycophytes and ferns are absent from this table because no data were available for these
643 parameters.
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646 FIG 1: (A) The evolutionary relationships among all 359 species among 6 major terrestrial plant clades for
647 which photosynthesis parameters were recovered from the literature and included in our database. Scale bar

648 represents 50 million years of evolution, and colours represent modelled . Unresolved taxonomy are
649 drawn as polytomies at the genus level. The raw phylogeny in newick format is given in the supplementary
650 information to allow digital visualisation of such a large phylogeny. There was no evidence of phylogenetic
651 niche conservatism across the entire dataset, meaning species with low or high are equally likely in any

652 clade. (B} Global distribution data for all 334 species included in the data set (blue points). Points represent
653 occurrence distribution data for all species retrieved from BIEN, not the locations of the measurements.
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Fig 2: (A) Mean A — C; and (B) A — Q curves among each of the six major plant clades for which we
have parameter estimates (solid lines). We also show (C) Mean A — C; and (D) A — Q curves with
species grouped by broad functional type (dashed lines). Shading around the mean curve in panels
A-D represents solving the model with the 95% confidence interval around all parameters. These
95% confidence intervals cross on the A — C; curve because of the oxygenation behaviour of
RUBISCO at low CO, partial pressures. For, lycophytes, ferns, magnoliids, and vines the large number
of missing values were replaced with the global mean, and we did not draw confidence intervals for
these groups (readers should assume they are very wide due to low taxonomic sampling). Finally,
each line in the lower panels represent 3663 separate (E) A — C; or (F) A — Q curves generated for
every single row in our database and show the breadth of individual species responses across
diverse conditions. For these 3663 lines, missing values were replaced with the global mean (Table
2). In all panels, for A — C; curves, the black vertical dotted line marks the estimated mean partial
pressure of CO; inside the leaf in reported in the literature, while the dashed line represents the
approximate current partial pressure of CO; in the atmosphere at the time of writing. The shaded
rectangle represents the predicted range of CO; Intergovernmental panel on climate change (IPCC)
predicted partial pressures of CO, by the year 2100. For A — Q curves, the black dot-dash line
represents the mean saturating Q used among studies in our database.
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