

1 **Title:** Urban fox squirrels exhibit tolerance to humans but respond to stimuli from natural
2 predators

3

4 **Running title:** Fox squirrel behavior in urban areas

5

6 **Authors:** Anna Kittendorf¹, Ben Dantzer^{1,2}

7 ¹Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA

8 ²Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI,
9 48109, USA

10

11 **Correspondence:** Ben Dantzer (dantzer@umich.edu)

12

13 **Acknowledgements**

14 This research was a part of a senior honor's thesis conducted by AK in the Department of
15 Psychology at the University of Michigan. It was funded by the University of Michigan. Thanks
16 to Amy-Charlotte Devitz for input on this project and to two anonymous reviewers for
17 constructive feedback. We acknowledge that the University of Michigan and some of the other
18 properties that we worked on during this project reside on the traditional Territories of the Three
19 Fire Peoples – the Ojibwe, Odawa, and Bodewadmi.

20

21 **Conflict of Interests**

22 Both authors declare no conflict of interests.

23 **Abstract**

24 Animals in urban areas that experience frequent exposure to humans often behave differently
25 than those in less urban areas, such as exhibiting less vigilance or anti-predator behavior. These
26 behavioral shifts may be an adaptive response to urbanization, but it may be costly if animals in
27 urban areas also exhibit reduced anti-predator behavior in the presence of natural predators. In
28 trials with only a human observer as the stimulus, urban squirrels exhibited reduced vigilance
29 and anti-predator behavior compared to those in less urban areas. Next, we exposed squirrels in
30 multiple urban and less urban sites to acoustic playbacks of a control stimulus (non-predatory
31 bird calls), a natural predator (hawk), and dogs and recorded their vigilance and three different
32 anti-predator behaviors when a human approached them while either broadcasting one of these
33 three playbacks or no playbacks at all. Squirrels at urban sites also did not differ in their
34 behavioral responses to the playbacks from possible predators (hawks or dogs) when they were
35 compared to those at less urban sites exposed to these playbacks. Urban squirrels also exhibited
36 increased vigilance and anti-predator behavior when exposed to a human paired with hawk
37 playbacks compared to the control playbacks. Together, our results indicate that urban squirrels
38 did perceive and assess risk to the natural predator appropriately despite exhibiting increased
39 tolerance to humans. These results provide little support for the hypothesis that increased
40 tolerance to humans causes animals to lose their fear of natural predators.

41

42 **Keywords:** Anti-predator behavior, cross-habituation, first alert distance, flight initiation
43 distance, stimulus generalization, urbanization

44

45

46 **Introduction**

47 Behavior plays an important role in enabling animals to persist through environmental
48 change (Baldwin, 1896; Bartholomew, 1964; West Eberhard, 1989; Price et al., 2003; Snell-
49 Rood, 2013). Accordingly, it seems to play a major role in facilitating the ability of animals to
50 cope with new challenges that they face in urban environments (Ditchkoff et al., 2006;
51 Tuomainen and Candolin, 2011; Lowry et al., 2013; Ryan and Partan, 2014). One of the most
52 common behavioral adjustments of animals in urban environments is reduced anti-predator
53 behavior in the presence of humans. This is often reflected in measures of flight initiation
54 distance (FID), which is the distance at which an animal flees from an approaching human and is
55 thought to be an approximation of their sensitivity to risk of an approaching predator (Cooke,
56 1980; Ydenberg & Dill, 1986; Lima and Dill, 1990). Individuals with shorter FIDs are
57 considered to be bolder than individuals with longer FIDs since they demonstrate reduced fear of
58 the “predator”.

59 Substantial evidence supports the hypothesis that animals in more urban environments
60 exhibit less anti-predator behavior, as reflected by a lower FID. For example, a meta-analysis of
61 180 bird species, 16 lizard species, and 16 mammal species, Samia et al. (2015) showed that
62 populations of these species that experienced elevated levels of human disturbance exhibited
63 lower FID. This could be because vigilance and anti-predator behaviors carry energetic or time
64 costs as they take time away from resource acquisition and animals in urban environments may
65 therefore optimize resource acquisition by exhibiting lower levels of anti-predator behavior
66 (Ydenberg and Dill, 1986; Cooper and Frederick, 2007; Møller, 2012).

67 Although reductions in the expression of anti-predator in urban environments is generally
68 thought to be adaptive (Møller, 2008; Carrette et al., 2016), there may be potential costs for

69 urban animals if they reduce their overall expression of anti-predator behavior to not only
70 humans but also towards natural predators if those urban areas contain predators. This could be
71 due to the phenomenon of cross-habituation or stimulus-generalization. For example, birds that
72 are habituated to a threatening stimulus that are then presented with a second simulated predator
73 exhibit an attenuated response to this second stimulus compared to a group of naïve birds (Hinde,
74 1954; see also Curio, 1993). This type of stimulus generalization can occur where an animal
75 habituated to one stimulus exhibits an attenuated response to a second stimulus from the same *or*
76 different sensory modality (Guttman and Kalish, 1956; Thompson and Spencer, 1966; Rankin et
77 al., 2009). Related concepts occur in the context of “behavioral spillover” where individuals that
78 exhibit high levels of a behavior in one context also exhibit it in another context even though it
79 may not be adaptive, such as animals exhibiting higher levels of boldness in a courtship context
80 also exhibiting higher boldness in the presence of a predator (Arnqvist and Henriksson, 1997;
81 Sih et al., 2004).

82 If urban animals in areas containing predators exhibit reductions in vigilance and/or anti-
83 predator behavior not only toward humans but also to natural predators, it could conceivably
84 have important impacts on wildlife populations by increasing their vulnerability to predators
85 (Geffroy et al., 2015). To date, there is little consensus about whether animals in urban areas or
86 those exposed to increased human presence exhibit a reduced response to threats from natural
87 predators (Fitzgerald and Stronza, 2016). For example, some studies show that individuals in
88 areas with higher human activity exhibit less of a behavioral response when natural predators
89 were observed visiting the area (Olson and Acevedo-Gutiérrez, 2017) or due to acoustic
90 playbacks of a natural predator (McCleery, 2009). The latter suggests that animals experiencing
91 frequent exposure to human activity exhibit reduced responses to other stimuli from natural

92 predators. Other studies show that the response of animals in more urban areas to a stimulus
93 from a natural predator is not attenuated compared to those in more rural locations (Labra and
94 Leonard, 1999; Coleman et al., 2008; Seress et al., 2011; Bokony et al., 2012; Cavalli et al.,
95 2016; Weaver et al., 2018; Vincze et al., 2019).

96 In this study, we characterized the vigilance and anti-predator behavior of fox squirrels
97 (*Sciurus niger*) in urban and less urban areas to achieve the following two objectives. First, we
98 conducted standard FID trials (with only stimuli from a human observer) to examine whether
99 squirrels in urban areas showed reduced vigilance and anti-predator behavior towards a human
100 observer compared to those in less urban areas. If squirrels in urban areas did exhibit reduced
101 vigilance and anti-predator behavior, this would support the hypothesis that squirrels in our
102 urban study populations were more tolerant of human presence, which would be consistent with
103 numerous other studies (Samia et al., 2015). Squirrels were located in their natural habitat and
104 we recorded the following four aspects of their vigilance and anti-predator behavior. First, we
105 recorded the distance to which the observer could get to before they exhibited vigilance behavior
106 towards the observer (“first alert distance” or FAD, similar to Fernández-Juricic and Schroeder,
107 2003; Blumstein et al., 2005). Second, we recorded how close the observer could get to them
108 before they ran away (FID). Third, was the probability that the squirrel escaped by running up a
109 tree. Fourth, the latency following the trial it took them to resume their typical behavior
110 (foraging or traveling off tree). We interpreted vigilance behavior was reflected in FAD and that
111 anti-predator behavior was composed of FID, probability of the squirrel escaping up a tree, and
112 the latency to resume typical behavior following the trial. However, we note that it is likely that
113 all four of these behaviors are quite similar in the sense that they measured anti-predator
114 behavior and that the latency to resume typical behavior following the trial may be affected by

115 motivational issues associated with nutritional state. Measuring all four of them can provide
116 additional insight, such as examining whether squirrels in less urban areas are more alert to
117 human presence than those in urban areas. Additionally, most studies on this topic are in birds
118 and only measure FID. Measuring whether the squirrel escaped by running up a tree and how
119 long the squirrel took to resume their typical behavior in addition to FID may provide greater
120 insight into the behavioral differences between animals in urban or less urban areas.

121 Our second objective was to examine whether urban animals exhibit reduced behavioral
122 responses to stimuli from natural predators when they are in the presence of humans. To do so,
123 we quantified the four behaviors described above when fox squirrels in urban or less urban areas
124 were presented with a human observer with a control acoustic playback (common non-
125 threatening bird), a human observer paired with the playback of a natural predator (hawk), or a
126 human observer paired with a playback of an invasive predator (dog). We predicted that squirrels
127 in the urban areas but not those in the less urban areas would exhibit no change in vigilance and
128 anti-predator behavior when they were exposed to the human+dog or human+hawk stimuli
129 compared to the human+control playback. We also predicted that squirrels in the urban sites
130 would exhibit less vigilance and anti-predator behavior when exposed to hawk or dog playbacks
131 compared to those at the less urban sites that were exposed to the hawk or dog playbacks. These
132 results would support the hypothesis that animals in urban environments exhibit less vigilance
133 and anti-predator not only to humans but also when faced with natural predators.

134

135 **Materials and Methods**

136 *Study species and sites*

137 Fox squirrels are ubiquitous in urban and suburban environments in the midwestern
138 United States (McCleery, 2008, 2009). Although arboreal tree squirrel species like fox squirrels
139 are common in urban areas worldwide, they continue to experience predation from natural
140 predators, although it may be rare compared to other sources of mortality (McCleery et al.,
141 2008). Urban squirrels also likely experience predation from domestic cats and dogs (Koprowski,
142 1994; Wauters et al., 1997; Tumlison, 2012; Loss et al., 2013; Jokimäki et al., 2017).

143 We studied natural populations of adult fox squirrels from six sites in and around Ann
144 Arbor, Michigan (Table S1 in Appendix). Sites were chosen based upon estimates of human
145 population density (Center for International Earth Science Information Network, 2018) with
146 urban sites having higher human density than less urban sites (see below and Table S1). Urban
147 sites included Prospect Park as well as two locations on the University of Michigan's (UM) main
148 campus (North and Central Campus) that are ~3-4 km away from one another. Prospect Park is
149 near downtown Ypsilanti, Michigan and about 13 km away from UM main campus. Less urban
150 sites included Nichols Arboretum, County Farm Park, and Saginaw Forest. Nichols Arboretum is
151 located ~1 km away UM main campus, County Farm Park is about ~4.5 km away, and Saginaw
152 Forest is ~7 km away. At all research sites, dogs are allowed but hunting is not. Squirrels may be
153 occasionally fed by humans at some of our study sites (e.g., Central Campus), but data were not
154 systematically collected to assess feeding rates. Approval to conduct this research at each site
155 was obtained from UM (Central Campus, Nichols Arboretum, North Campus, Saginaw Forest),
156 Washtenaw County Parks & Recreation (County Farm Park), and the City of Ypsilanti (Prospect
157 Park). All of our field procedures were non-invasive and involved behavioral observation or
158 short-term exposure to playbacks of acoustic stimuli. All experiments followed the guidelines set
159 by the Animal Behavior Society/Association for the Study of Animal Behaviour (Anonymous,

160 2012) and the US National Research Council and were approved by the UM Institutional Animal
161 Care and Use Committee (protocol # PRO00009076). We note that squirrels used in the study
162 may be STRANGE (*sensu* Webster and Rutz, 2020) in the sense that individual squirrels likely
163 have different rearing histories (though they are unknown and none should have been reared in
164 captivity) and that compliance to take part in the study was likely biased towards squirrels that
165 did not immediately run away when approached by the human observer.

166 Given that increased exposure to humans may cause animals in urban areas to exhibit less
167 anti-predator behavior towards them (McCleery, 2009; Rodriguez-Prieto et al., 2009; Vincze et
168 al., 2016; Uchida et al., 2019), we focused on human presence as the major factor difference
169 between our study sites (which should also reflect general urbanization). Sites were classified as
170 “urban” based upon having a human population density >1000 persons per km^2 whereas the less
171 urban sites had anywhere from 25-250 persons per km^2 (Saginaw) to 250-1000 persons per km^2
172 (County Farm Park, Nichols Arboretum). To support these classifications, we estimated human
173 and dog presence while we were visiting sites conducting our behavioral observations. We
174 counted the total number of dogs (on or off leash) but only counted the number of humans up to
175 50. If human presence exceeded 50 people, then a rough estimate of 50, 75, or 100 was recorded.
176 Human presence was recorded as 100 for all numbers estimated to be >100 . We did not record
177 the distance from the observer to other humans but just whether the human was visible. Although
178 human and dog presence varied among the different sites (Table S1), the number of humans
179 observed per hour of observation averaged over all the urban sites (mean \pm SE = 7.23 ± 3.33
180 humans/hr) was higher than those observed averaged over all the less urban sites (0.51 ± 0.40 :
181 Mann-Whitney-Wilcoxon Test, $W = 1$, $p = 0.1$). We observed fewer dogs per hour at the urban
182 sites (0.065 ± 0.06 dogs/hr) compared to the less urban sites (0.33 ± 0.10 , Mann-Whitney-

183 Wilcoxon Test, $W = 9, p = 0.1$). These differences in humans or dogs observer per hour were not
184 significant but in general support our assumption that our urban sites likely experience greater
185 exposure to humans.

186 We aged and sexed squirrels visually according to their size (small juvenile squirrels
187 were excluded) and anatomy (males were identified by presence of testes), respectively. Similar
188 to most studies that measure anti-predator using FID, trials were conducted on unmarked
189 squirrels at each site. We located squirrels by walking around each site and trials were started
190 when squirrels were observed. Focal individuals were selected randomly, however, only squirrels
191 that were feeding or foraging on the ground were included in this experiment. Because we did
192 not mark squirrels individually, it is possible that the same squirrel was observed on different
193 days, although we visited different areas of each study site to try and reduce this possibility. It is
194 unlikely that the same squirrel was observed multiple times on the same day, because after each
195 trial was completed, the observer walked approximately 20 meters away from the previous
196 location (in a continuous linear direction from where the first trial was conducted) and started a
197 trial with a different squirrel. Additionally, sites were only revisited after at least three days since
198 the previous visit to reduce the possibility of a squirrel becoming habituated to the trials should it
199 be sampled again. Although we cannot address habituation in this study, if squirrels at these sites
200 were habituating to our protocols, we would expect that their behavioral responses would decline
201 with trial number or date when the trial was conducted. The fact that none of our behavioral
202 variables were associated with date of when the trial was conducted (Tables 1-2) supports our
203 assumption that squirrels were not habituating to our protocols.

204 *Quantifying behavioral responses of squirrels*

205 In total, we observed fox squirrels for 52.36 hours over 30 different days. A single
206 observer (AK) conducted all trials. A total of 171 trials were conducted with 71 trials conducted
207 without any acoustic playback treatments and 94 trials conducted with an acoustic playback.
208 Sites were visited between 800 and 1900 h EST and data were collected from October 2019
209 through January 2020. Trials with no playbacks were conducted from 25 October 2019 to 16
210 November 2019 (from 812 to 1810 h) whereas trials using playbacks (playback trials) were
211 conducted from 18 November 2019 to 27 January 2020 (from 802 to 1609 h). We randomized
212 the order in which sites were visited and the version of playback treatments used (see below for
213 information on playback versions) at each site. No two sites were visited on the same day. All
214 trials with no playbacks were conducted prior to the playback trials in this study. This was due to
215 personnel limitations and prevents us from directly comparing trials with and without playbacks
216 given that squirrel behavior likely changes seasonally from October to January due to food
217 caching behavior in autumn but not winter. Trials were not conducted when it was raining or
218 snowing. Results from two one-way ANOVAs showed that the time of day for playback trials
219 did not vary among the three different treatment groups ($F_{2,91} = 0.44, p = 0.65$) and that the time
220 of day when trials were conducted did not vary among squirrels at the urban or less urban sites
221 (t-test: $t_{75.4} = 0.21, p = 0.83$). Air temperature varied during all the trials varied from -6.1° to
222 10.5°C (mean = 2.7°C).

223 We measured the behavioral responses of squirrels to humans or humans plus different
224 playbacks using protocols developed for tree squirrels (Dill and Houtman, 1989; Gustafson and
225 VanDruff, 1990; McCleery, 2009). At the beginning of each trial, a marker was placed at the
226 starting position of the observer and trial data were recorded (GPS location, time of day,
227 temperature, general weather conditions, and squirrel sex). The squirrel was approached by a

228 single observer (AK) at a slow and steady pace in a direct line to the squirrel (see Fig. S1 in
229 Appendix I). Additional markers were placed when a squirrel displayed the first alert and when
230 they fled. The FAD was defined as the distance between the observer and the squirrel when it
231 first stopped moving (froze) and looked at the observer with one or both eyes. FID was recorded
232 as the distance between the squirrel's initial position and the observer location when it actively
233 fled (stopped feeding and foraging and moved rapidly away from observer). A marker was also
234 placed at an estimate of the squirrel's initial position to the place where they fled to if refuge was
235 not taken in a tree, and the distance between this marker and the squirrel's initial position was
236 recorded as "flight distance". We recorded this because some studies have noted that FID is
237 variable depending on intruder starting distances and distance to a refuge (Dill & Houtman,
238 1989; Blumstein, 2003). Consequently, the distance between the observer and the focal squirrel
239 at the start of the trial (starting positions, hereafter referred to as "initial distance": mean \pm SE
240 over all 171 trials = 21.2 ± 0.61 m) and the distance between the focal squirrel's initial position
241 and the nearest tree were also measured ("distance to nearest tree": mean \pm SE over all 171 trials
242 = 3.2 ± 0.11 m).

243 If the focal animal took refuge in a tree other than the one nearest, distance between the
244 squirrel's initial position and its refuge tree of choice ("distance to the chosen tree") was also
245 recorded. If an individual took refuge in a tree, a laser rangefinder was used to measure how high
246 they climbed, and this distance was recorded (same as vertical escape distance in Uchida et al.,
247 2017). Lastly, latency to resume behavior was recorded ("latency"). This was measured with a
248 stopwatch to determine how long it took for the animal to cease alert/vigilance behavior and
249 resume typical activity (foraging or traveling off tree). When the observer was recording latency,
250 they maintained as large a distance as possible (~15-20 m) from the tree to reduce the influence

251 on the squirrel's behavior. Out of all the trials, nearly all squirrels ceased alert behavior and
252 resumed typical behavior within a couple minutes ($n = 171$ trials, mean \pm SE = 130.5 ± 10.3 s),
253 but there was one individual squirrel that remained alert for longer than ten minutes and we
254 recorded its latency as ten minutes. Distances were measured with a tape measure and presented
255 in meters.

256 *Playback trials*

257 Playback trials ($n = 94$ total trials) were conducted using the same protocol shown above,
258 with the addition of an acoustic stimulus being broadcasted while the observer approached the
259 squirrels. The control stimulus consisted of recordings of black-capped chickadee calls (*Poecile*
260 *atricapillus*). Black-capped chickadees are not known to be predators of fox squirrels
261 (Korschgen, 1981; Koprowski, 1994) and a previous study in another tree squirrel species
262 showed that individuals exhibited a significantly reduced response to black-capped chickadee
263 playbacks compared to calls of other anthropogenic noises (car alarm, buzzer) and playbacks of
264 red-tailed hawks (Bohls and Koehnle, 2017). We therefore expected that black-capped chickadee
265 recordings would represent a neutral vocalization for fox squirrels and they can act as control to
266 ensure that any differences in squirrel behavior across playback treatments are attributable to the
267 vocalization information of the playback rather than an added exposure to noise. To simulate the
268 threat of a terrestrial predator, recordings of domestic dogs barking were broadcasted. Domestic
269 dogs are terrestrial predators of fox squirrels (Koprowski, 1994; Wauters et al., 1997) and other
270 species of tree squirrels that live in the same habitats as fox squirrels also adjust their risk-taking
271 behavior according to the abundance of domestic dogs (Bowers and Breland, 1996; Cooper et al.,
272 2008). For the avian predator, recordings of red-tailed hawk (*Buteo jamaicensis*) calls were
273 broadcasted to the focal individual. Red-tailed hawks were chosen since they are year-round

274 predators of fox squirrels in Michigan (Koprowski, 1994; personal observations) and other
275 studies illustrate that tree squirrels respond to hawk playbacks with increased anti-predator
276 behavior (McCleery, 2009; Lilly et al., 2019). No post-processing of sound files was performed.

277 Playbacks of the recordings were broadcasted to individuals at the start of the trial and
278 when the observer began the approach and suspended when the squirrel took flight.

279 Vocalizations were broadcasted through a JAMBOX speaker (Jawbone, San Francisco, CA)
280 connected to an Apple iPhone 6s (Mountain View, CA) with a constant volume set for the
281 speaker and phone. The speaker was carried by the observer during each trial. The amplitude of
282 the playbacks measured from 1 m away from the speaker was variable among the chickadee (67-
283 80 dB), dog (69-77 dB), and hawk (78-86 dB) playbacks (measured using a BAFX Sound Level
284 Meter, BAFX3370). We note that the initial starting distance of the playbacks was inherently
285 variable as we could not standardize the distance between the observer and squirrel when the
286 trials were started (mean \pm SE over all 94 trials involving playbacks = 19.11 ± 0.73 m).

287 Consequently, the actual realized sound level of the playbacks experienced by a squirrel varied.
288 Given how the trials were conducted in real time (not video recorded), the single observer (AK)
289 was not blind to the playback treatments or locations of where the experiments took place. All
290 vocalization recordings were found online (Control A: Place, 2015; Control B: Floyd, 2017a;
291 Control C: Floyd, 2017b; Dog A: Simion, 2016; Dog B: Simion, 2018; Dog C: Simion, 2017;
292 Hawk A: Chartier, 2008; Hawk B: Addison, 2017; Hawk C: Wilson, 2010). Each playback
293 treatment (control, dog, or hawk) had three separate recordings/exemplars (A, B, or C). We
294 tested whether there were any exemplar effects in separate ANOVAs that included playback
295 exemplar (A, B, C), playback treatment (chickadee, dog, hawk), and an interaction between the
296 two. We did this for each of our four behavioral response variables and did not find any

297 significant interactions between playback exemplar and treatment ($p = 0.12$ - 0.99), suggesting
298 that the version of the playback treatment did not influence the behavioral response.

299 *Statistical analyses*

300 We analyzed the data from trials with and without playbacks separately because the two
301 experiments were not conducted synchronously and seasonal changes from fall to winter in
302 Michigan may alter squirrel behavior. In trials without playbacks, we used three separate linear
303 mixed-effects models (LMMs) to examine the effects of urbanization on FAD, FID, and latency
304 to resume activity following the trial. Although the linear distance a squirrel climbed up a tree
305 (from base of tree to location of squirrel) has been used in other studies of tree squirrels (e.g.,
306 Uchida et al., 2017), the distance a squirrel climbed up a tree in our study exhibited a Poisson
307 distribution where many squirrels did not climb up a tree at all and a few climbed up very high
308 (squirrels did not climb a tree in 80 of 171 total trials; those that did climb a tree mean \pm SE =
309 4.7 ± 0.34 m). This seemed to better approximate a behavioral decision made by a squirrel to
310 “climb or not climb” rather than “how high to climb”. Consequently, a generalized linear mixed-
311 effect model (GLMM) with binomial errors was used to examine the effects of urbanization on
312 the probability that squirrels climbed a tree to escape during the trial. We note that the same
313 inferences for the linear distance a squirrel climbed a tree were gained if we instead ran a zero-
314 inflated Poisson mixed-effects model. Models included site category (urban, less urban), distance
315 to the nearest tree, sex, Julian date of the trial, and initial distance of the observer as fixed effects.
316 Distance to the nearest tree was included not only because previous studies show it can impact
317 anti-predator behavior (measured using FID: Dill & Houtman, 1989; Blumstein, 2003) but also
318 because it helps control for any differences in vegetation among the different study sites, which
319 could impact their behavior. Because we had repeated samples from the same site, we also

320 included a random intercept for site in all of our models. The same model structure was used in
321 separate LMMs or the GLMM for data from the playback trials to examine the effects of the
322 acoustic playback manipulations on the four squirrel behaviors described above but the models
323 included an interaction between playback treatment (control, dog, hawk) and site category
324 (urban, less urban). We then assessed the statistical significance of pairwise comparisons using
325 post-hoc Tukey's Honest Significant Differences that were corrected for multiple comparisons.
326 In these pairwise comparisons, we were specifically interested in identifying 1) whether squirrels
327 in urban and less urban sites differed in their behavior in response to the playback treatments
328 (e.g., urban squirrels exposed to hawk playbacks differed in FID compared to less urban squirrels
329 exposed to hawk playbacks) and 2) whether squirrels within each type of site differed in their
330 response to the playbacks (e.g., whether squirrels in urban areas exhibited a higher FID in
331 response to hawk playbacks compared to those in urban areas exposed to control playbacks).

332 Continuous predictor variables were standardized to a mean of 0 and SD of 1. We
333 confirmed model diagnostics visually and all models met the appropriate assumptions (normality
334 of residuals, constant variance, no high leverage observations). Latency to resume behavior was
335 log+1 transformed (base e) to improve homoscedasticity and normality. There were also no
336 predictor variables that were found to be colinear as all variance inflation factors (VIFs) were
337 less than 3.68 (Zuur et al., 2010), though the higher VIF were due to interaction terms and VIF of
338 variables not in interactions were <1.5. All analyses were conducted in R version 4.02 (R Core
339 Team, 2020) with lme4 (version 1.1.23, Bates et al., 2015) and p-values estimated using
340 lmerTest (version 3.1.2, Kuznetsova et al., 2017). Tukey's post-hoc tests were used to evaluate if
341 the responses to the playback treatments differed between squirrels in urban and less urban areas

342 using emmeans (1.5.2-1: Lenth, 2020) and *p* values from these analyses were adjusted for
343 multiple comparisons. Mean and SE are presented below.

344

345 **Results**

346 *Behavioral responses to human-stimuli only*

347 Overall, urban squirrels (n = 38, 20 females and 18 males) exhibited greater tolerance to
348 humans as they allowed a human observer to get closer to them before they exhibited vigilance
349 (FAD) or fled (FID) and tended to be less likely to climb a tree during the trial and more quickly
350 return to typical behavior following the trial compared to those in less urban sites (n = 39, 19
351 females and 20 males; Table 1, Fig. 1). FID in the squirrels at the urban site (6.36 ± 0.52 m) was
352 97.2% shorter compared to those at the less urban sites (12.54 ± 0.62 m, $p = 0.043$, Table 1, Fig.
353 1B). Although the average FAD for squirrels observed at the urban site (10.09 ± 0.74 m) was
354 43.8% shorter than for those at the less urban sites (14.51 ± 0.69 m), this difference was not
355 significant ($p = 0.10$, Table 1, Fig. 1A). Squirrels at the urban sites were less likely to climb a
356 tree while the observer approached (34.2% of trials) compared to those at the less urban sites
357 (64.1%), although this difference was not significant ($p = 0.093$, Table 1, Fig. 1C). Latency to
358 resume behavior following the trial was shorter for urban squirrels (43.9 ± 14.4 s) compared to
359 those at the less urban sites (157.51 ± 25.35 s), but this difference was not significant ($p = 0.11$,
360 Table 1, Fig. 1D). Trials where the observer started the trial at a longer initial distance to the
361 squirrel had significantly longer FAD and FID but not probability of climbing a tree or latency to
362 resume behavior following the trial (Table 1). There were no significant effects of sex, Julian
363 date, or distance to the nearest tree on FAD, FID, probability of climbing a tree, or latency
364 (Table 1).

365 *Behavioral responses to stimuli from natural predators*

366 The effects of the playbacks on FAD depended upon whether the squirrels were located
367 at the urban or less urban sites (Table 2, Fig. 2A). Average FAD for urban squirrels exposed to
368 the hawk vocalizations ($n = 12$ trials, 17.17 ± 1.33 m) was 37% longer than urban squirrels who
369 were exposed to the control playback ($n = 11$, 12.56 ± 0.94 m, Tukey's $p = 0.004$) and 20%
370 longer than those exposed to the dog playbacks ($n = 20$, 14.30 ± 0.83 m, Tukey's $p = 0.006$, Fig.
371 2A). By contrast, the FAD of squirrels at the less urban sites were just longer overall (Fig. 2A)
372 and the FAD of those less urban squirrels who were exposed to the hawk playbacks ($n = 16$,
373 14.62 ± 1.14 m) did not differ from those exposed to the control playback ($n = 15$, 14.46 ± 0.88
374 m, Tukey's $p = 0.99$) or dog playbacks ($n = 20$, 14.85 ± 1.05 m, Tukey's $p = 0.94$, Fig. 2A).
375 There were no significant differences in FAD for squirrels exposed to dog playbacks and those
376 exposed to the control playback for squirrels at urban sites (Tukey's $p = 0.99$) or those at less
377 urban sites (Tukey's $p = 0.99$). When comparing squirrels at urban or less urban sites to a
378 specific playback treatment, squirrels at the urban and less urban sites did not differ in their FAD
379 when exposed to hawk playbacks (urban vs. less urban: Tukey's $p = 0.64$), dog playbacks (urban
380 vs. less urban: Tukey's $p = 0.39$), or the control stimulus (urban vs. less urban: Tukey's $p = 0.49$,
381 Fig. 2A).

382 Similar to FAD, the effects of the playbacks on FID also depended upon whether the
383 squirrels were located at the urban or less urban sites (Table 2, Fig. 2B). Average FID for urban
384 squirrels exposed to the hawk vocalizations ($n = 12$ trials, 14.95 ± 0.98 m) was 44.3% longer
385 than squirrels who were exposed to the control playbacks ($n = 11$, 10.37 ± 3.13 m, Tukey's $p =$
386 0.001) and 29.9% longer than those exposed to the dog playbacks ($n = 20$, 11.86 ± 2.65 m,
387 Tukey's $p = 0.001$, Fig. 2A). In squirrels at urban sites, there was no difference in FID between

388 those exposed to the control playback and those exposed to the dog vocalizations (Tukey's $p =$
389 0.99). In squirrels at less urban sites, FID for those exposed to the dog playbacks (13.60 ± 0.98
390 m) was similar to those exposed to the control (12.12 ± 0.88 m, Tukey's $p = 0.14$) or hawk
391 playbacks (13.11 ± 0.96 m, Tukey's $p = 0.95$, Fig. 2B). Unlike urban squirrels, the FID of those
392 at the less urban sites who were exposed to hawk playbacks was similar compared to those
393 exposed to the control playback (Tukey's $p = 0.69$). When comparing squirrels at urban or less
394 urban sites to a specific playback treatment, squirrels at the urban and less urban sites did not
395 differ in their FID when exposed to hawk playbacks (urban vs. less urban: Tukey's $p = 0.98$),
396 dog playbacks (urban vs. less urban: Tukey's $p = 0.13$), or the control stimulus (urban vs. less
397 urban: Tukey's $p = 0.83$).

398 There were no significant effects of the playback treatments or site differences on the
399 likelihood squirrels climbed a tree. Squirrels at urban sites were not more likely to climb a tree
400 when exposed to a hawk playback compared to a dog (Tukey's $p = 0.30$) or control (Tukey's $p =$
401 0.67) playback and were not more likely to climb a tree when exposed to a dog playback versus a
402 control playback (Tukey's $p = 0.99$). Squirrels at less urban sites exhibited a similar probability
403 of climbing a tree when they were exposed to hawk playbacks compared to dog (Tukey's $p =$
404 1.0) or control (Tukey's $p = 0.73$) playbacks or when exposed to dog playbacks compared to a
405 control playback (Tukey's $p = 0.73$). Squirrels at the urban and less urban sites did not differ in
406 their probability of climbing a tree when exposed to hawk playbacks (urban vs. less urban:
407 Tukey's $p = 0.99$), dog playbacks (urban vs. less urban: Tukey's $p = 0.12$), or the control
408 stimulus (urban vs. less urban: Tukey's $p = 0.99$).

409 Squirrels at the urban and less urban sites did not differ in their latency to resume typical
410 behavior following exposure to hawk playbacks (urban vs. less urban: Tukey's $p = 0.98$), dog

411 playbacks (urban vs. less urban: Tukey's $p = 0.89$), or the control stimulus (urban vs. less urban:
412 Tukey's $p = 0.88$, Table 2, Fig. 2D). However, there were differences in how squirrels responded
413 to the playback treatments within each of the two types of study sites. Squirrels at urban sites that
414 were exposed to the hawk playbacks took 436% longer to resume their pre-trial behavior (213.33 ± 28.9 s)
415 compared to those who were exposed to the control playback (39.82 ± 7.70 s, Tukey's
416 $p < 0.001$) and 147% longer than those exposed to dog playbacks (86.25 ± 13.30 s, Tukey's $p =$
417 0.027). Squirrels at the urban sites also took 114% longer to resume typical behavior if they were
418 exposed to dog playbacks compared to those exposed to the control playback (Tukey's $p <$
419 0.001). Similarly, squirrels at the less urban sites that were exposed to the hawk playbacks took
420 218% longer to resume their pre-trial behavior (291.25 ± 35.45 s) compared to those who were
421 exposed to the control playback (91.47 ± 25.45 s, Tukey's $p < 0.001$) and 55.7% longer than
422 those exposed to dog playbacks (187.05 ± 21.38 s, Tukey's $p = 0.12$, Fig. 2D). Squirrels at the
423 less urban sites also took 95.6% longer to resume typical behavior if they were exposed to dog
424 playbacks compared to those exposed to the control playback (Tukey's $p < 0.001$).

425 There was no effect of sex or Julian date of trial, on any of the behaviors (Table 2). There
426 was no effect of the initial distance that a squirrel was from a tree when the trial started on FAD,
427 FID, or probability to climb a tree, but squirrels were less likely to climb a tree if they were
428 closer to one when the trial started (Table 2). Trials that started with the human observer a
429 greater distance away from the squirrel had longer FAD, FID, and latency to resume typical
430 behavior, but not the probability to climb a tree (Table 2).

431

432 **Discussion**

433 Squirrels at urban sites in the no playback trials exhibited a significantly shorter FID
434 compared to those at the less urban sites and also exhibited a lower FAD and likelihood to climb
435 a tree during the trial, and shorter latency to resume typical behavior following the trial, though
436 only the difference in FID was statistically significant. In the trials where squirrels were exposed
437 to playbacks from possible predators (hawks or dogs), squirrels at the urban sites did not differ in
438 their vigilance (FAD) or anti-predator behavior response (FID, likelihood to climb a tree, latency
439 to resume typical behavior following the trial) compared to those at the less urban sites. When
440 we compared the behavior responses of squirrels within each site type (urban or less urban),
441 squirrels at the urban sites exhibited longer FAD (hawk > dog = control) and FID (hawk > dog =
442 control) when exposed to hawk playbacks compared to control or dog playbacks, suggesting
443 increased vigilance (FAD) anti-predator behavior (FID) when exposed to vocalizations from
444 potential predators. By contrast, squirrels at the less urban sites had longer overall FAD and FID
445 than those at urban sites regardless of playback treatment and there was no effect of hawk or dog
446 playbacks on FAD (hawk = control = dog) or FID (hawk = control = dog), suggesting no
447 increase in vigilance or anti-predator behavior when exposed to vocalizations from potential
448 predators. Squirrels at both urban and less urban sites were not more likely to climb a tree
449 following playbacks from possible predators (hawk = dog = control) but both urban and less
450 urban squirrels exhibited a longer latency to resume typical behavior following the hawk or dog
451 playbacks compared to the control (hawk > dog > control), suggesting increased anti-predator
452 behavior when exposed to vocalizations from potential predators. Overall, our results indicate
453 that squirrels in urban areas are more tolerant to humans but still exhibit a high level of vigilance
454 and anti-predator behavior when exposed to predator stimuli. In terms of the STRANGEness of
455 our results (Webster and Rutz, 2020), our results may be generalizable to other squirrel

456 populations or different species but we note that our results are biased towards squirrels that
457 voluntarily participated in the trials (i.e., did not run away when approached). We also note that
458 the significance of our results may be limited to urban populations where predators are present in
459 those areas.

460 Similar to most other studies in terrestrial animals (Samia et al., 2015) and in studies in
461 tree squirrels (McCleery, 2009; Engelhardt and Weladji, 2011; Sarno et al., 2015; Uchida et al.,
462 2020), our results from trials with no playbacks suggest that squirrels in urban sites were more
463 tolerant of humans. Specifically, squirrels in urban areas exhibited a shorter FAD and FID, lower
464 probability to climb a tree to escape the human observer, and a shorter latency to resume typical
465 behavior following the trial, although only FID was significantly different between habitat types.
466 The congruency of our results with previous studies strongly supports this assumption that
467 squirrels at our urban sites were more tolerant of humans. These are presumably sympatric
468 populations with a large amount of gene flow among them as the linear distance between some
469 urban and less urban sites is ~1 km. Unless selection favoring reductions in anti-predator
470 behavior is extremely strong in urban areas or features of urban landscapes strongly impede gene
471 flow (Johnson and Munshi-South, 2017), it seems likely that these behavioral differences are
472 driven by plasticity given that the likely exchange of individuals between suburban and urban
473 sites prevents local genetic adaptation to these different sites (see discussion in Sol et al., 2013).
474 It is also possible that these behavioral differences are due to personality-dependent colonization
475 of urban habitats (Carrete and Tella, 2010; Sprau and Dingemanse, 2017), but we cannot
476 distinguish among these possibilities at this time.

477 Although squirrels at our urban sites were more tolerant of humans, they still exhibited a
478 strong behavioral response to acoustic stimuli from natural predators. Specifically, they exhibited

479 increased vigilance (FAD) and anti-predator behavior (FID, latency to resume typical behavior
480 after the trial) when exposed to the playbacks of a natural predator (hawk) compared to the
481 control playback or the dog playbacks. The behavioral responsiveness to hawk vocalization is
482 somewhat surprising because hawks do not vocalize while hunting, but squirrels still responded
483 to their presence suggested through acoustic cues. These results indicate that urban squirrels do
484 still pay attention to predation risk and can discriminate and respond accordingly by becoming
485 vigilant and fleeing when the human is at a greater distance if the human is also paired with
486 hawk playbacks. By contrast, squirrels at less urban sites did not exhibit differences in FAD
487 when exposed to the different playbacks, perhaps due to some ceiling effect given that FAD of
488 squirrels at less urban sites was much longer than FAD of squirrels at urban sites. Furthermore,
489 when we compared the effects of hawk or dog playbacks on FAD or FID, there were no
490 differences between squirrels at the urban and less urban sites. Our results therefore reject the
491 hypothesis that urban squirrels are less responsive to natural predators due to increased tolerance
492 to humans. Previous studies (see also Labra and Leonard, 1999; Seress et al., 2011; Cooper et al.,
493 2008; Bokony et al., 2012; Cavalli et al., 2016; Weaver et al., 2018; Vincze et al. 2019) together
494 with our results support that animals in urban habitats or those frequently exposed to humans,
495 even if more tolerant of human presence, still exhibit increases in anti-predator behavior in
496 response to a non-human predator. However, future studies that test this hypothesis need to have
497 increased sample sizes and should also include a playback treatment that uses both visual and
498 acoustic cues of humans as a control stimulus.

499 There are two other interesting results from our trials with playbacks. First is the finding
500 that squirrels that were closer to a tree at the start of the trial were less likely to climb a tree. This
501 is opposite of what we would expect and future studies need to better assess if this is caused by

502 some larger habitat difference between urban and less urban areas and/or reflect differential
503 escape strategies. For example, squirrels at urban sites may be more distant to a tree at the start
504 of the trials and escape from humans by running away rather than going up a tree. However, in a
505 post-hoc analysis using our entire dataset of trials conducted with or without playbacks ($n = 171$
506 trials), squirrels in urban areas ($n = 81$ trials, 3.30 ± 0.16 m) and those in less urban areas ($n = 90$
507 trials, 3.05 ± 0.15 m) did not differ in their distance to a tree at the start of the trials (general
508 linear model: $t_{169} = 1.13, p = 0.26$). Second, we expected that squirrels would respond to the dog
509 playbacks in similar way to how they responded to the hawk playbacks as both are stimuli from
510 potential predators. Previous studies in tree squirrels also show that they exhibit increased
511 vigilance or FID to the physical presence of a dog with a human handler (Gustafson and
512 VanDruff, 1990; Cooper et al., 2008) or behave in such a way in areas with high levels of dogs
513 and cats that suggests that they perceive a higher predation risk in such areas (i.e., giving up
514 density was higher in study areas where cats and dogs are present: Bowers and Breland, 1996).
515 Instead, we found that squirrels at both sites did not differ in their vigilance (FAD) when
516 exposed to dog playbacks compared to the control playbacks. Additionally, only squirrels in less
517 urban sites had a slightly (non-significantly) longer FID when exposed to dog playbacks
518 compared to the control playback. Although we did find that squirrels exposed to dog
519 vocalizations took longer to resume typical behavior following the trials, our results generally
520 differ from previous studies in tree squirrels and owls showing that FAD and/or FID were
521 increased in squirrels or owls in urban areas when they were presented with a human plus dog
522 compared to just a human (Gustafson and VanDruff, 1990; Cooper et al., 2008; Cavalli et al.,
523 2016). This suggests that squirrels, especially those in urban sites, were more tolerant to dog
524 vocalizations when paired with a human observer, whereas squirrels in less urban areas may

525 have viewed the sounds of dogs paired with humans as threatening. We predict that squirrels in
526 urban environments exhibit selective tolerance where the response to humans or stimuli from
527 their commensals (dogs) is attenuated but the increased response to natural predators is
528 maintained despite this tolerance to humans and their dogs.

529 Together, our results provide insight into how urbanization may shape the behavioral
530 characteristics animals in two main ways. First, as most studies on this topic are in birds (Samia
531 et al., 2015), which can escape from humans using flight, it is important to consider if the same
532 patterns are found in terrestrial animals. Our results show that non-volant animals in urban
533 environments exhibit less vigilance and anti-predator behavior. Second, we show that squirrels in
534 urban environments were more tolerant to humans but still exhibited a strong response reflecting
535 increased vigilance and anti-predator behavior to acoustic stimuli from a natural predator
536 (hawks) and that squirrels in urban areas did not differ in their behavioral response when
537 exposed to stimuli from two types of possible predators compared to those exposed to those
538 stimuli in less urban areas. Although we do not wish to imply that tolerance or habituation to
539 humans is cost-free, most studies fail to find evidence that populations where individuals are
540 more tolerant of humans (or in some cases habituated to their presence) also exhibit reduced
541 vigilance and/or anti-predator behavior to stimuli from natural predators. Given that urbanization
542 is unlikely to slow, increased effort is needed to determine if increased tolerance and/or
543 habituation to humans carries costs (Geffroy et al., 2015). Some studies suggest the costs of
544 human tolerance may be more nuanced, such as tolerance to humans reducing the latency to
545 return to the nest following a disturbance in nesting shorebirds, but potentially causing increased
546 chick mortality due to the presence of dogs that often are paired with human stimuli (Baudains
547 and Lloyd, 2007). Other studies that increased tolerance of humans could even be beneficial for

548 populations that cannot avoid anthropogenic stimuli due to seasonal food pulses coinciding with
549 a large influx of tourists (Wheat and Wilmers, 2016). Clearly more work is needed on this
550 subject, especially on a greater number of species including species that are not “urban
551 exploiters” like tree squirrels, but the existing evidence rejects the hypothesis that there is a cost
552 to human tolerance in terms of lowering the vigilance and/or anti-predator behavior of animals to
553 other natural predators. If predatory species re-colonize urban areas, our results suggest that they
554 should respond appropriately to stimuli indicating their presence.

555

556 **Data Availability Statement**

557 All data are available through the FigShare account associated with the senior author (Dantzer,
558 2021).

559

560 **References**

561 Addison, A. (2017, January 27). *Red-tailed Hawk (Buteo jamaicensis)* [XC401311].

562 <https://www.xeno-canto.org/401311>

563

564 Anonymous. (2012). Guidelines for the treatment of animals in behavioural research and
565 teaching. *Animal Behaviour* 83, 301-309. doi:10.1016/j.anbehav.2011.10.031

566

567 Arnqvist, G., & Henriksson, S. (1997). Sexual cannibalism in the fishing spider and a model for
568 the evolution of sexual cannibalism based on genetic constraints. *Evolution & Ecology* 11, 255-
569 273. doi.org/10.1023/A:1018412302621

570

571 Baldwin, J. M. (1896). A new factor in evolution. *The American Naturalist* 30, 441-451.

572 doi.org/10.1086/276408

573

574 Bartholomew, G. A. (1964). The roles of physiology and behaviour in the maintenance of

575 homeostasis in the desert environment. *Symposia of the Society for Experimental Biology* 18, 7-

576 29.

577

578 Bates, D., Maechler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models using

579 lme4. *Journal of Statistical Software*, 67, 1-48. doi:10.18637/jss.v067.i01.

580

581 Baudains, T. P., & Lloyd, P. (2007). Habituation and habitat changes can moderate the impacts

582 of human disturbance on shorebird breeding disturbance. *Animal Conservation* 10, 400-407.

583 doi.org/10.1111/j.1469-1795.2007.00126.x

584

585 Blumstein, D. T. (2003). Flight-initiation distance in birds is dependent on intruder starting

586 distance. *Journal of Wildlife Management* 67, 852-857. doi.org/10.2307/3802692

587

588 Blumstein, D. T., Fernández-Juricic, E., Zollner, P. A., Garity, S. C. (2005). Inter-specific

589 variation in avian responses to human disturbance. *Journal of Applied Ecology* 42, 943-953.

590 doi.org/10.1111/j.1365-2664.2005.01071.x

591

592 Bohls, P., & Koehnle, T. J. (2017). Responses of eastern gray squirrels (*Sciurus carolinensis*) to
593 predator calls and their modulation by coat color. *The American Midland Naturalist* 178:226-
594 236. doi.org/10.1674/0003-0031-178.2.226

595

596 Bókony, V., Kulcsár, A., Tóth, Z., Liker, A. (2012). Personality traits and behavioral syndromes
597 in differently urbanized populations of house sparrows (*Passer domesticus*). *PLoS One* 7,
598 e36639. doi.org/10.1371/journal.pone.0036639

599

600 Bowers, M. A., & Breland, B. (1996). Foraging of gray squirrels on an urban-rural gradient: use
601 of the GUD to assess anthropogenic impact. *Ecological Applications* 6, 1135-1142.
602 doi.org/10.2307/2269597

603

604 Carrete, M., & Tella, J. L. (2010). Individual consistency in flight initiation distances in
605 burrowing owls: a new hypothesis on disturbance-induced habitat selection. *Biology Letters* 6,
606 167-170. doi.org/10.1098/rsbl.2009.0739

607

608 Carrete, M., Tella, J. L. (2017). Behavioral correlations associated with fear of humans differ
609 between rural and urban burrowing owls. *Frontiers in Ecology and Evolution* 5, 54.
610 doi.org/10.3389/fevo.2017.00054

611

612 Cavalli, M., Baladrón, A. J., Isacch, J. P., Biondi, L. M., Bó, M. S. (2016). Differential risk
613 perception of rural and urban Burrowing Owls exposed to humans and dogs. *Behavioural*
614 *Processes* 124, 60-65. doi.org/10.1016/j.beproc.2015.12.006

615

616 Center for International Earth Science Information Network - CIESIN - Columbia University.

617 (2018). *Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11.*

618 NASA Socioeconomic Data and Applications Center (SEDAC).

619 <https://doi.org/https://doi.org/10.7927/H49C6VHW>

620

621 Chartier, A. (2008, June 24). *Red-tailed Hawk (Buteo jamaicensis borealis)*. [XC31161].

622 <https://www.xeno-canto.org/31161>

623

624 Coleman, A., Richardson, D., Schechter, R., Blumstein, D. T. (2008). Does habituation to
625 humans influence predator discrimination in Gunther's dik-diks (*Madoqua guentheri*)? *Biology*
626 Letters 4, 250-252. doi.org/10.1098/rsbl.2008.0078

627

628 Cooke, A. S. (1980). Observations on how close certain passerine species will tolerate an
629 approaching human in rural and suburban areas. *Biological Conservation* 18, 85-88.

630 doi.org/10.1016/0006-3207(80)90072-5

631

632 Cooper, C. A., Neff, A. J., Poon, D. P., Smith, G. R. (2008). Behavioral responses of eastern
633 gray squirrels in suburban habitats differing in human activity levels. *Northeastern Naturalist* 15,
634 619-625.

635

636 Cooper, W. E., Frederick, W. G. (2007). Optimal flight initiation distance. *Journal of Theoretical*
637 *Biology* 244, 59–67. doi.org/10.1016/j.jtbi.2006.07.011

638

639 Crooks, K. R. (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation.

640 Conservation Biology 16, 488-502. doi.org/10.1046/j.1523-1739.2002.00386.x

641

642 Curio, E. (1993) Proximate and developmental aspects of antipredator behavior. Advances in the
643 Study of Behavior 22, 135-238.

644

645 Dantzer, B. 2021. Kittendorf and Dantzer Data.xlsx. FigShare Dataset.

646 doi.org/10.6084/m9.figshare.14417882.v1

647

648 Dill, L. M., & Houtman, R. (1989). The influence of distance to refuge on flight initiation
649 distance in the gray squirrel (*Sciurus carolinensis*). Canadian Journal of Zoology 67, 233–235.

650 doi.org/10.1139/z89-033

651

652 Ditchkoff, S. S., Saalfeld, S. T., Gibson, C. J. (2006). Animal behavior in urban ecosystems:
653 modifications due to human-induced stress. Urban Ecosystems 9, 5-12. doi.org/10.1007/s11252-
654 006-3262-3

655

656 Dochtermann, N. A. (2011). Testing Cheverud's conjecture for behavioral correlations and
657 behavioral syndromes. Evolution 65, 1814-1820. doi.org/10.1111/j.1558-5646.2011.01264.x

658

659 Engelhardt, S. C., & Weladji, R. B. (2011). Effects of levels of human exposure on flight
660 initiation distance and distance to refuge in foraging eastern gray squirrels (*Sciurus carolinensis*).
661 Canadian Journal of Zoology 89, 823-830. doi.org/10.1139/z11-054
662
663 Evans, J., Boudreau, K., Hyman, J. (2010). Behavioural syndromes in urban and rural
664 populations of song sparrows. Ethology 116, 588-595. doi.org/10.1111/j.1439-
665 0310.2010.01771.x
666
667 Fernández-Juricic, E., & Schroeder, N. (2003). Do variations in scanning behavior affect
668 tolerance to human disturbance? Applied Animal Behaviour Science 84, 219-234.
669 doi.org/10.1016/j.applanim.2003.08.004
670
671 Fitzgerald, L. A., & Stronza, A. L. (2016). In defense of the ecotourism shield: a response to
672 Geffroy et al. Trends in Ecology & Evolution 31, 94. doi.org/10.1016/j.tree.2015.11.002
673
674 Floyd, T. (2017a, January 2). *Black-capped Chickadee (Poecile atricapillus)*. [XC348981].
675 <https://www.xeno-canto.org/348981>
676
677 Floyd, T. (2017b, January 25). *Black-capped Chickadee (Poecile atricapillus)*. [XC352827].
678 <https://www.xeno-canto.org/352827>
679

680 Geffroy, B., Samia, D. S. M., Bessa, E., & Blumstein, D. T. (2015). How nature-based tourism
681 might increase prey vulnerability to predators. *Trends in Ecology & Evolution* 30, 755-765.
682 doi.org/10.1016/j.tree.2015.09.010

683

684 Gustafson, E. J., & VanDruff, L. W. (1990). Behavior of black and gray morphs of *Sciurus*
685 *carolinensis* in an urban environment. *The American Midland Naturalist* 123, 186-192.
686 doi.org/10.2307/2425772

687

688 Guttman, N., & Kalish, H. I. (1956). Discriminability and stimulus generalization. *Journal of*
689 *Experimental Psychology* 51, 79-88. doi.org/10.1037/h0046219

690

691 Hinde, R. A. (1954). Factors governing the changes in strength of a partially inborn response, as
692 shown by the mobbing behaviour of the chaffinch (*Fringilla coelebs*). II. The waning of the
693 response. *Proceedings of the Royal Society B* 142, 331-358. doi.org/10.1098/rspb.1954.0028

694

695 Johnson, M. T. J., & Munshi-South, J. (2017). Evolution of life in urban environments. *Science*
696 358, 607. doi.org/10.1126/science.aam8327

697

698 Jokimäki, J., Selonen, V., Lehikoinen, A., Kaisanlahti-Jokimäki, M.-L. (2017). The role of urban
699 habitats in the abundance of red squirrels (*Sciurus vulgaris*, L.) in Finland. *Urban Forestry &*
700 *Urban Greening* 27, 100-108. doi.org/10.1016/j.ufug.2017.06.021

701

702 Koprowski, J. L. (1994). *Sciurus niger*. *Mammalian Species* 479:1–9. doi.org/10.2307/3504263

703

704 Korschgen, L. J. (1981). Foods of fox and gray squirrels in Missouri. Journal of Wildlife
705 Management 45, 260-266. doi.org/10.2307/3807899

706

707 Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2017). lmerTest package: tests in linear
708 mixed effects models. Journal of Statistical Software 82, 1-26. doi: 10.18637/jss.v082.i13

709

710 Labra, A., Leonard, R. (1999). Intraspecific variation in antipredator responses of three species
711 of lizards (*Liolaemus*): possible effects of human presence. Journal of Herpetology 33, 441-448.
712 doi.org/10.2307/1565641

713

714 Lapiendra, O., Chejanovski, Z., Kolbe, J. J. (2017). Urbanization and biological invasion shape
715 animal personalities. Global Change Biology 23, 592-603. doi.org/10.1111/gcb.13395

716

717 Lenth, R. (2020). emmeans: estimated marginal means, aka least-squares means. R package
718 version 1.5.2-1. <https://CRAN.R-project.org/package=emmeans>

719

720 Lilly, M. V., Lucore, E. C., Tarvin, K. A. (2019). Eavesdropping grey squirrels infer safety from
721 bird chatter. PLoS One 14, e0221279. doi.org/10.1371/journal.pone.0221279

722

723 Lima, S. L., & Dill, L. (1990). Behavioral decisions made under the risk of predation: a review
724 and prospectus. Canadian Journal of Zoology 68, 610-640. doi.org/10.1139/z90-092

725

726 Loss, S.R., Will, T., Marra, P. P. (2013). The impact of free-ranging domestic cats on wildlife of
727 the United States. *Nature Communications* 4, 1396. doi.org/10.1038/ncomms2380
728

729 Lowry, H., Lill, A., Wong, B. B. M. (2013). Behavioural responses of wildlife to urban
730 environments. *Biological Reviews* 88, 537–549. doi.org/10.1111/brv.12012
731

732 McCleery, R. A. (2009). Changes in fox squirrel anti-predator behaviors across the urban-rural
733 gradient. *Landscape Ecology* 24, 483–493. doi.org/10.1007/s10980-009-9323-2
734

735 McCleery, R. A., Lopez, R. R., Silvy, N. J., Gallant, D. L. (2008). Fox squirrel survival in urban
736 and rural environments. *Journal of Wildlife Management* 72, 133–137. doi.org/10.2193/2007-138
737

738

739 Møller, A. P. (2008). Flight distance of urban birds, predation, and selection for urban life.
740 *Behavioral Ecology and Sociobiology* 63, 63-75. doi.org/10.1007/s00265-008-0636-y
741

742 Møller, A. P. (2012). Urban areas as refuges from predators and flight distance of prey.
743 *Behavioral Ecology* 23, 1030-1035. doi.org/10.1093/beheco/ars067
744

745 Myers, R.E., & Hyman, J. (2016). Differences in measures of boldness even when underlying
746 behavioral syndromes are present in two populations of the song sparrow (*Melospiza melodia*).
747 *Journal of Ethology* 34, 197-206. doi.org/10.1007/s10164-016-0465-9
748

749 Olson, J. K., & Acevedo-Gutiérrez, A. (2017). Influence of human exposure on the anti-predator
750 response of harbor seals (*Phoca vitulina*). *Aquatic Mammals* 43, 673-681.
751 doi:10.1578/AM.43.6.2017.673

752

753 Place, A. (2015, September). *Black-capped Chickadee (Poecile atricapillus)*. [XC289220].
754 <https://www.xeno-canto.org/289220>

755

756 Price, T. D., Qvarnström. A., Irwin, D. E. (2003). The role of phenotypic plasticity in driving
757 genetic evolution. *Proceedings of the Royal Society B* 270, 1433-1440.
758 doi.org/10.1098/rspb.2003.2372

759

760 R Core Team. (2020). R: A language and environment for statistical computing. R Foundation
761 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

762

763 Rankin, C. H., Abrams, T., Barry, R. J., Bhatnagar, S., Clayton, D., Colombo, J., Coppola, G.,
764 Geyer, M. A., Glanzman, D. L., Marsland, S., McSweeney, F., Wilson, D. A., Wu, C-F.,
765 Thompson, R. F. (2009). Habituation revisited: an updated and revised description of the
766 behavioral characteristics of habituation. *Neurobiology of Learning and Memory* 92, 135-138.
767 doi.org/10.1016/j.nlm.2008.09.012

768

769 Rodriguez-Prieto, I., Ferndández-Juricic, E., Martin, J., Regis, Y. (2009). Antipredator behavior
770 in blackbirds: habituation complements risk allocation. *Behavioral Ecology* 20, 371-377.
771 doi.org/10.1093/beheco/arn151

772

773 Ryan, A. M., & Partan, S. R. (2014). Urban wildlife behavior. In: McCleery, R. A., Moorman, C. E., Peterson, M. N., editors. *Urban Wildlife Conservation*. New York, USA: Springer p. 149-173.

776

777 Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F., Blumstein, D. T. (2015). Increased tolerance to humans among disturbed wildlife. *Nature Communications* 6, 8877.

779 doi.org/10.1038/ncomms9877

780

781 Sarno, R. J., Parsons, M., Ferris, A. (2015). Differing vigilance among gray squirrels (*Sciuridae carolinensis*) along an urban-rural gradient on Long Island. *Urban Ecosystems* 18, 517-523.

783 doi.org/10.1007/s11252-014-0414-8

784

785 Scales, J., Hyman, J., Hughes, M. (2011). Behavioral syndromes break down in urban song
786 sparrow populations. *Ethology* 117, 887-895. doi.org/10.1111/j.1439-0310.2011.01943.x

787

788 Seress, G., Bókony, V., Heszberger, J., Liker, A. (2011). Response to predation risk in urban and
789 rural house sparrows. *Ethology* 117, 896-907. doi.org/10.1111/j.1439-0310.2011.01944.x

790

791 Sih, A., Bell, A., Johnson, J. C. (2004). Behavioral syndromes: An ecological and evolutionary
792 overview. *Trends in Ecology & Evolution* 19, 372–378. doi.org/10.1016/j.tree.2004.04.009

793

794 Simion, D. (2016, August 1). *German Shepard Sound* [Audio]. <http://soundbible.com/2146-German-Shepard.html>

795

796

797 Simion. D. (2017, May 12). *Doberman Pinscher Sound* [Audio]. <http://soundbible.com/2194-Doberman-Pinscher.html>

798

799

800 Simion. D. (2018, May 4). *Labrador Barking Dog Sound* [Audio]. <http://soundbible.com/2215-Labrador-Barking-Dog.html>

801

802

803 Snell-Rood, E. C. (2013). An overview of the evolutionary causes and consequences of

804 behavioural plasticity. *Animal Behaviour* 85, 1004-1011. doi.org/10.1016/j.anbehav.2012.12.031

805

806 Sol, D., Lapietra, O., González-Lagos, C. (2013). Behavioural adjustments for a life in the city.

807 *Animal Behaviour* 85, 1101-1112. doi.org/10.1016/j.anbehav.2013.01.023

808

809 Sprau, P., Dingemanse, N. J. (2017). An approach to distinguish between plasticity and non-

810 random distributions of behavioral types along urban gradients in a wild passerine bird. *Frontiers*

811 in *Ecology and Evolution* 5, 92. doi.org/10.3389/fevo.2017.00092

812

813 Thompson, R. F., & Spencer, W. A. (1966). Habituation: a model phenomenon for the study of

814 neuronal substrates of behavior. *Psychological Review* 73, 16-43. doi.org/10.1037/h0022681

815

816 Tumlison, R. (2012). Unusual foraging tactics by a red-tailed hawk in an urban environment.

817 Wilson Journal of Ornithology 124, 818-820. doi.org/10.1676/1559-4491-124.4.818

818

819 Tuomainen, U., & Candolin, U. (2011). Behavioural responses to human-induced environmental

820 change. Biological Reviews 86, 640-657. doi.org/10.1111/j.1469-185X.2010.00164.x

821

822 Uchida, K., Suzuki, K. K., Shimamoto, T., Yanagawa, H., Koizumi, I. (2017). Escaping height in

823 a tree represents a potential indicator of fearfulness in arboreal squirrels. Mammal Study 42, 39-

824 43. doi.org/10.3106/041.042.0104

825

826 Uchida, K., Suzuki, K. K., Shimamoto, T., Yanagawa, H., Koizumi, I. (2019). Decreased

827 vigilance or habituation to humans? Mechanisms on increased boldness in urban animals.

828 Behavioral Ecology, 30, 1583–1590. doi.org/10.1093/beheco/azz117

829

830 Uchida, K., Shimamoto, T., Yanagawa, H., Kolzumi, I. (2020). Comparison of multiple

831 behavioral trials between urban and rural squirrels. Urban Ecosystems 23, 745-754.

832 doi.org/10.1007/s11252-020-00950-2

833

834 Vincze, E., Papp, S., Preiszner, B., Seress, G., Bókony, V., Liker, A. 2016. Habituation to human

835 disturbance is faster in urban than rural house sparrows. Behavioral Ecology 27, 1304-1313.

836 doi.org/10.1093/beheco/arw047

837

838 Vincze, E., Pipoly, I., Seress, G., Preiszner, B., Papp, S., Németh, B., Liker, A., Bókony, V.
839 (2019). Great tits take greater risk toward humans and sparrowhawks in urban habitats than in
840 forests. *Ethology* 125, 686-701. doi.org/10.1111/eth.12922

841

842 Wauters, L. A., Somers, L., Dhondt, A. A. (1997). Settlement behaviour and population
843 dynamics of reintroduced red squirrels *Sciurus vulgaris* in a park in Antwerp, Belgium.
844 *Biological Conservation* 82, 101-107. doi.org/10.1016/S0006-3207(97)00007-4

845

846 Weaver, M., Ligon, R. A., Mousel, M., McGraw, K. J. (2018). Avian anthropophobia? Behavioral
847 and physiological responses of house finches (*Haemorhous mexicanus*) to human and predator
848 threats across an urban gradient. *Landscape and Urban Planning* 179, 46-54.
849 doi.org/10.1016/j.landurbplan.2018.07.001

850

851 Webster, M. M., & Rutz, C. (2020) How STRANGE are your study animals? *Nature* 582, 337-
852 340. doi.org/10.1038/d41586-020-01751-5

853

854 West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. *Annual Review*
855 of *Ecology and Systematics* 20, 249-278. doi.org/10.1146/annurev.es.20.110189.001341

856

857 Wheat, R. E., & Wilmers, C. C. (2016). Habituation reverses fear-based ecological effects in
858 brown bears (*Ursus arctos*). *Ecosphere* 7, e01408. doi.org/10.1002/ecs2.1408

859

860 Wilson, T. (2010, May 29). *Red-tailed Hawk (Buteo jamaicensis)* [XC53797]. <https://www.xeno-canto.org/53797>

861

862

863 Ydenberg, R. C., & Dill, L. M. (1986). The economics of fleeing from predators. *Advances in*

864 *the Study of Behavior*, 16, 229–249. doi.org/10.1016/S0065-3454(08)60192-8

865

866 Zuur, A. F., Ieno, E. N., Elphick, C. S. (2010). A protocol for data exploration to avoid common

867 statistical problems. *Methods in Ecology and Evolution* 1, 3-14. doi.org/10.1111/j.2041-210X.2009.00001.x

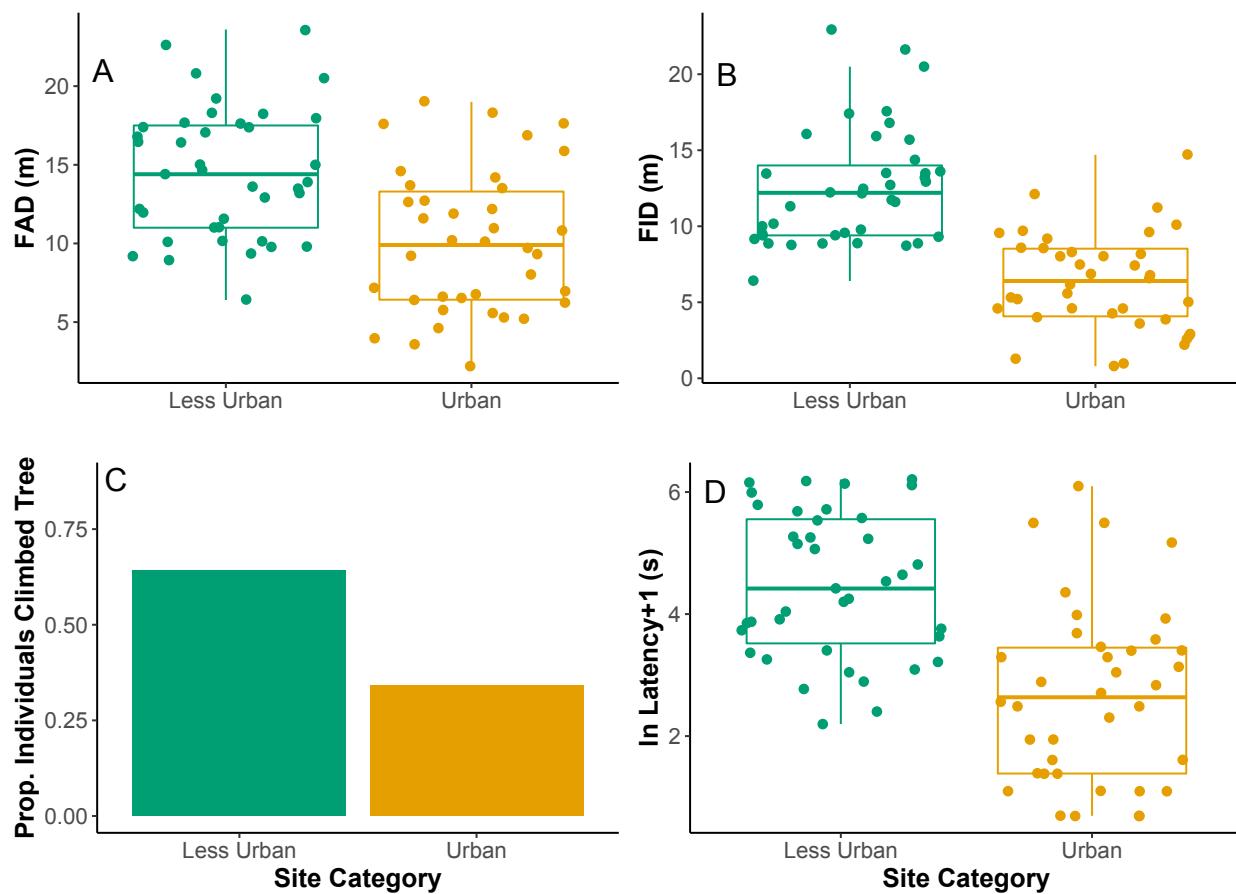
868

869

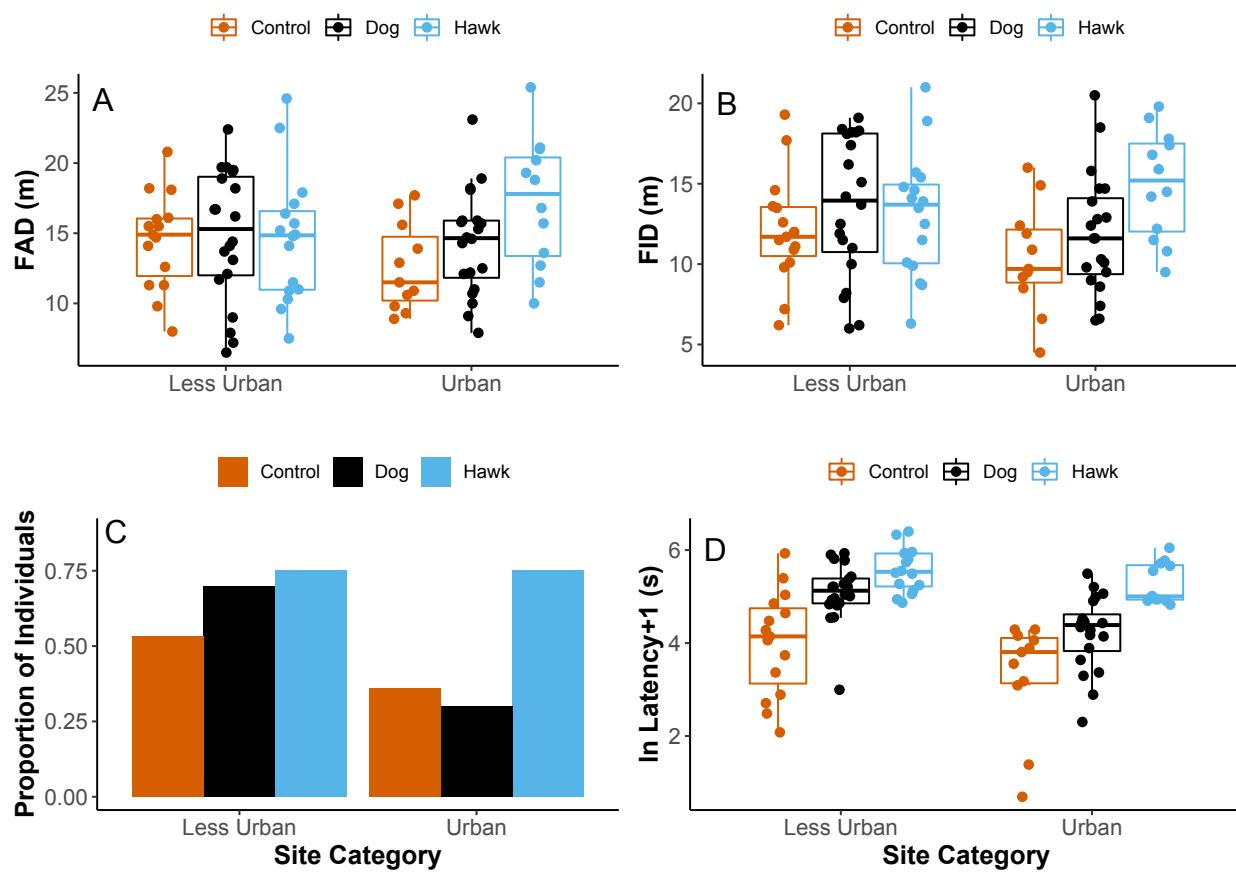
Table 1. Differences between fox squirrels at urban and less urban sites that were not exposed to any playbacks for first alert distance (FAD), flight initiation distance (FID), probability of escaping the observer by climbing a tree during the trial, and latency to resume behavior following the trial. A random effect for site identity was included in the model for FAD ($\sigma^2 = 6.9$), FID ($\sigma^2 = 6.24$), probability of climbing a tree ($\sigma^2 = 1.23$), and latency ($\sigma^2 = 1.22$). Latency was $\ln+1$ transformed. Results are from 77 trials from six sites.

Response Variable	Variable	<i>b</i>	SE	<i>t</i> or <i>z</i>	<i>P</i>
First alert distance (FAD)	Intercept (Less urban, Female)	14.11	1.63	8.67	0.0007
	Site (Urban)	-4.79	2.26	-2.11	0.10
	Distance to tree	-0.37	0.38	-0.98	0.33
	Sex (Male)	1.17	0.66	1.77	0.08
	Julian Date	0.15	0.40	0.39	0.70
	Initial Distance	2.63	0.35	7.51	<0.0001
Flight initiation distance (FID)	Intercept (Less urban, Female)	12.16	1.54	7.89	0.0009
	Site (Urban)	-6.22	2.14	-2.90	0.043
	Distance to tree	-0.56	0.35	-1.59	0.12
	Sex (Male)	0.85	0.61	1.38	0.17
	Julian Date	0.01	0.37	0.03	0.97
	Initial Distance	1.38	0.32	4.24	<0.0001
Probability of climbing a tree	Intercept (Less urban, Female)	0.71	0.79	0.89	0.37
	Site (Urban)	-1.89	1.12	-1.68	0.09
	Distance to tree	-0.09	0.32	-0.27	0.78
	Sex (Male)	0.17	0.55	0.31	0.76
	Julian Date	0.47	0.35	1.34	0.18
	Initial Distance	0.23	0.30	0.76	0.45
Latency to resume behavior	Intercept (Less urban, Female)	4.48	0.67	6.70	0.002
	Site (Urban)	-1.87	0.93	1.99	0.11

Distance to tree	-0.07	0.13	-0.57	0.57
Sex (Male)	0.06	0.23	0.25	0.80
Julian Date	0.07	0.14	0.52	0.61
Initial Distance	0.002	0.12	0.02	0.98


Table 2. Effects of acoustic playbacks (control, hawk, dog) on first alert distance (FAD), flight initiation distance (FID), probability of escaping human observer by climbing a tree, and latency to resume behavior following the trial for fox squirrels observed at urban or less urban sites. Reference (intercept) was “less urban” for site, “control playback” for treatment, and “female” for sex. A random effect for site identity was included in the model for FAD ($\sigma^2 = 6.5$), FID ($\sigma^2 = 4.9$), probability of climbing a tree ($\sigma^2 = 0.07$), and latency ($\sigma^2 = 0.37$). Latency was $\ln+1$ transformed. Results are from 94 trials from six study sites.

Response Variable	Variable	<i>b</i>	SE	<i>t</i> or <i>z</i>	<i>P</i>
First alert distance (FAD)	Intercept (Less urban, Female, Control)	14.94	0.89	16.71	<0.0001
	Site (Urban)	-2.32	1.33	-1.74	0.11
	Dog playbacks	0.51	0.90	0.57	0.57
	Hawk playbacks	-0.29	0.98	-0.30	0.76
	Distance to tree	0.36	0.29	1.23	0.22
	Sex (Male)	0.29	0.58	0.51	0.61
	Julian Date	-0.10	0.28	-0.34	0.73
	Initial Distance	3.20	0.29	10.84	<0.0001
	Site (Urban) x Dog playbacks	0.07	1.35	0.05	0.96
	Site (Urban) x Hawk playbacks	4.29	1.49	2.86	0.005
Flight initiation distance (FID)	Intercept (Less urban, Female, Control)	12.3	0.95	7.31	<0.0001
	Site (Urban)	-1.64	1.39	-1.18	0.27
	Dog playbacks	1.89	0.79	2.40	0.018
	Hawk playbacks	1.21	0.85	1.42	0.16
	Distance to tree	0.08	0.26	0.30	0.76
	Sex (Male)	0.01	0.50	0.01	0.99
	Julian Date	-0.39	0.25	-1.59	0.11
	Initial Distance	2.99	0.26	11.51	<0.0001
	Site (Urban) x Dog playbacks	-1.52	1.18	-1.29	0.20
	Site (Urban) x Hawk playbacks	2.53	1.30	1.94	0.056


Probability of climbing a tree	Intercept (Less urban, Female, Control)	-0.20	0.62	-0.33	0.74
	Site (Urban)	-0.61	0.92	-0.66	0.51
	Dog playbacks	1.14	0.82	1.39	0.16
	Hawk playbacks	1.26	0.90	1.40	0.16
	Distance to tree	-0.64	0.27	-2.34	0.02
	Sex (Male)	0.61	0.55	1.10	0.27
	Julian Date	-0.26	0.27	-0.97	0.33
	Initial Distance	0.01	0.27	0.04	0.96
	Site (Urban) x Dog playbacks	-1.52	1.20	-1.27	0.20
	Site (Urban) x Hawk playbacks	0.18	1.34	0.14	0.89
Latency to resume behavior	Intercept (Less urban, Female, Control)	3.83	0.39	9.69	0.0001
	Site (Urban)	-0.60	0.57	-1.05	0.33
	Dog playbacks	1.14	0.23	4.91	<0.0001
	Hawk playbacks	1.71	0.25	6.76	<0.0001
	Distance to tree	0.03	0.07	0.39	0.70
	Sex (Male)	0.24	0.15	1.61	0.11
	Julian Date	0.07	0.07	-0.91	0.36
	Initial Distance	0.06	0.08	0.82	0.41
	Site (Urban) x Dog playbacks	0.03	0.35	0.10	0.92
	Site (Urban) x Hawk playbacks	0.22	0.39	0.57	0.57

Figures and Figure Legends

Figure 1. Variation in A) vigilance (first alert distance: FAD), B) anti-predator behavior (flight initiation distance: FID), C) proportion of individuals that escaped up a tree during the trial, and D) latency to resume behavior following the trial among fox squirrels at urban ($n = 38$ trials) and less urban ($n = 39$) sites in trials where squirrels were not exposed to any playbacks. Squirrels in urban areas had significantly shorter FID compared to those in the less urban sites, but there were no other significant differences (Table 1). Each symbol corresponds to a different trial. Upper and lower hinges correspond to first and third quartile, respectively. Upper/lower whiskers extend from the hinge to the highest/lowest value that is within 1.5x the interquartile range. Solid horizontal line shows median.

Figure 2. Effects of human observer approaching a squirrel while broadcasting one of three playback treatments (control playback, hawk or dog vocalizations) on A) first alert distance (FAD), B) flight initiation distance (FID), C) proportion of individuals escaping up a tree during the trial, and D) latency to resume typical behavior following the trial. Trials were conducted at less urban ($n = 15$ control, 20 dog, 16 hawk) and urban ($n = 11$ control, 20 dog, 12 hawk) sites. Results shown in Table 2. Upper and lower hinges correspond to first and third quartile, respectively. Each symbol corresponds to a different trial. Upper/lower whiskers extend from the hinge to the highest/lowest value that is within 1.5x the interquartile range. Solid horizontal line shows median.

