

1 **A global analysis of song frequency in passerines provides no support for the acoustic
2 adaptation hypothesis but suggests a role for sexual selection**

3 **Running title:** Evolutionary ecology of song frequency

4

5 **Peter Mikula^{1,2}, Mihai Valcu³, Henrik Brumm⁴, Martin Bulla^{3,5}, Wolfgang Forstmeier³,
6 Tereza Petrusková⁶, Bart Kempenaers^{3*}, Tomáš Albrecht^{1,2*}**

7

8 ¹Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Praha 2,
9 Czech Republic

10 ²Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech
11 Republic

12 ³Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for
13 Ornithology, Eberhard-Gwinner-Str. 7, 82319 Seewiesen, Germany

14 ⁴Communication and Social Behaviour Group, Max Planck Institute for Ornithology,
15 Eberhard-Gwinner-Str. 11, 82319 Seewiesen, Germany

16 ⁵Department of Ecology, Faculty of Environmental Sciences, Czech University of Life
17 Sciences, 16521 Prague, Czech Republic

18 ⁶Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 43, Praha 2,
19 Czech Republic

20 *Authors for correspondence: E-mail: b.kempenaers@orn.mpg.de and albrecht@ivb.cz,
21 phone no.: +498 157 932 232 and +420 608 237 158

22 **Statement of authorship:** TA and PM conceived and designed the study with input from all
23 authors. TA and BK coordinated the study. PM collected the song data. MV performed the
24 statistical analyses with input from WF. MB made the figures with help from MV and PM. TP
25 and HB provided bioacoustic expertise. PM drafted the first version of the manuscript. TA,
26 BK and PM revised and finalized the manuscript with input from all authors.

27 **Data availability statement:** The data used in this study were collected from publicly
28 available databases. All data and computer code used to generate the results, as well as
29 supplementary figures and tables will be freely available at <https://osf.io/fa9ky/>.

30 **Abstract**

31 Many animals use acoustic signals for communication, implying that the properties of these
32 signals can be under strong selection. The acoustic adaptation hypothesis predicts that species
33 living in dense habitats emit lower-frequency sounds than those in open areas, because low-
34 frequency sounds generally propagate further in denser vegetation. Signal frequency may also
35 be under sexual selection, because it correlates with body size and lower-frequency sounds are
36 perceived as more intimidating. Here, we evaluate these hypotheses by analysing variation in
37 peak song frequency across 5,085 passerine species (Passeriformes). A phylogenetically-
38 informed analysis revealed that song frequency decreases with increasing body mass and with
39 male-biased sexual size dimorphism. However, we found no support for the predicted
40 relationship between frequency and habitat. Our results suggest that the global variation in
41 passerine song frequency is mostly driven by natural and sexual selection causing
42 evolutionary shifts in body size rather than by habitat-related selection on sound propagation.

43

44 **Keywords:** acoustic adaptation hypothesis, allometry, animal communication, bird song,
45 macroecology, morphological constraints, sexual selection

46

47 **INTRODUCTION**

48 Acoustic signalling is widespread among animals (Bradbury & Vehrencamp 1998; Gerhardt
49 & Huber 2002; Catchpole & Slater 2008). Successful transmission and reception of acoustic
50 signals between conspecifics are essential in diverse contexts, including predation avoidance
51 (alerting others to a threat), territory defence, mate attraction, and synchronization of breeding
52 activities (Bradbury & Vehrencamp 1998; Catchpole & Slater 2008). One of the fundamental
53 characteristics of acoustic signals is the frequency of the sound, because it strongly affects
54 signal propagation through the environment (Morton 1975; Wiley & Richards 1982; Padgham
55 2004). Low frequency sounds are generally less attenuated during transmission than high
56 frequency sounds (Wiley & Richards 1982; Padgham 2004). Nevertheless, the frequency of
57 acoustic signals is tremendously diverse across the animal kingdom (Gerhardt 1994; Fitch
58 2006; Gillooly & Ophir 2010; Pijanowski *et al.* 2011) and several hypotheses have been
59 proposed to explain this diversity. Here, we focus on the three most compelling ones: (1) the
60 acoustic adaptation hypothesis, (2) the morphological constraint hypothesis, and (3) the sexual
61 selection hypothesis.

62 Since the 1970s, it has been postulated that the frequency of acoustic signals could reflect an
63 adaptation to maximize the effectiveness of sound transmission in specific habitats (Morton
64 1975). This is known as the acoustic adaptation hypothesis (Boncoraglio & Saino 2007; Ey &
65 Fischer 2009). Sounds transmitted through the natural environment are subject to degradation,
66 for example due to environmental absorption, reverberation and scattering. The degree of this
67 degradation depends both on the sound structure and on the physical characteristics of the
68 environment (Wiley & Richards 1982; Brumm & Naguib 2009). Specifically, because of
69 frequency-dependent attenuation, low-frequency sounds transmit generally further than high-
70 frequency sounds. However, the slope of the frequency dependence is steeper in dense,

71 forested habitats because of the high degree of sound absorption and scattering from foliage.
72 Hence, high-frequency signals are attenuated more strongly in closed than in open habitats
73 (Morton 1975; Marten & Marler 1977; Wiley & Richards 1978). Therefore, species living in
74 forested habitats are expected to produce vocalizations of lower frequencies than those living
75 in open habitats (Ey & Fischer 2009). Despite this strong theoretical underpinning, empirical
76 evidence for the acoustic adaptation hypothesis is equivocal (Morton 1975; Wiley 1991;
77 Buskirk 1997; Bertelli & Tubaro 2002; Blumstein & Turner 2005; Ey & Fischer 2009). For
78 instance, a meta-analysis by Boncoraglio & Saino (2007) showed that song frequency in birds
79 tends to be lower in closed compared with open habitats, but the effect size was small. A
80 review by Ey & Fischer (2009) concluded that habitat-related adjustments of frequency
81 parameters of acoustic signals of birds, anurans and mammals are not as widespread as
82 previously thought.

83 The morphological constraint hypothesis simply posits that body size sets a limit on the
84 frequency of the sound an animal can produce. Morphological constraints generally seem to
85 play a pervasive role in the evolution of animal acoustic communication (Ryan & Brenowitz
86 1985; Bradbury & Vehrencamp 1998; Fitch & Hauser 2002). A negative relationship between
87 body size and frequency of acoustic signals, i.e. larger species tend to produce lower
88 frequency sounds than smaller species, seems to be a general rule in animal bioacoustics and
89 has been documented across various groups, including insects, fishes, amphibians, reptiles,
90 birds, and mammals (Wallschläger 1980; McClatchie *et al.* 1996; Fitch & Hauser 2002;
91 Gillooly & Ophir 2010; Pearse *et al.* 2018). In birds, it has been suggested that the frequency
92 of vocalizations negatively scales with body size, simply because body size influences the
93 morphology and functional aspects of the vocal apparatus, such as the size of vibratory
94 structures (Bertelli & Tubaro 2002; Suthers & Zollinger 2008; Seneviratne *et al.* 2012;
95 Gonzalez-Voyer *et al.* 2013; Tietze *et al.* 2015). However, body size alone does not explain

96 the entire variation in song frequency across animals. Departures from the negative allometric
97 relationship between frequency of acoustic signals and body size may reflect (a) differences in
98 evolutionary history that caused variation in syrinx or vocal tract morphology (phylogenetic
99 constraints) and (b) differences in costs or benefits of producing low-frequency sounds. Thus,
100 variation in frequency may inform about current or past selection on acoustic signals (Searcy
101 & Nowicki 2005; Ophir *et al.* 2010; Wagner *et al.* 2012).

102 This brings us to the hypothesis that the frequency of acoustic signals may be sexually
103 selected, acting as an indicator of an individual's size, dominance or fighting ability. In
104 various taxa, the frequency of male vocalizations indeed seems to indicate individual body
105 size and can influence territory establishment (or other forms of male–male competition),
106 attractiveness (female choice) and ultimately an individual's reproductive success (Morton
107 1977; Fitch & Hauser 2002; Apicella *et al.* 2007; Hardouin *et al.* 2007; Mager *et al.* 2007;
108 Vannoni & McElligott 2008; Forstmeier *et al.* 2009; Brumm & Goymann 2017). For instance,
109 the frequency of advertising vocalizations negatively correlates with body size in males of
110 common toads *Bufo bufo* and during the mating period smaller males were less often attacked
111 by larger males when natural croaks of the small males were experimentally replaced by deep
112 croaks (Davies & Halliday 1978). Similarly, heavier individuals of scops owl *Otus scops*
113 produced lower-frequency hoots and territorial males responded less intensely to hoots
114 simulating heavier intruders (Hardouin *et al.* 2007). Thus, if low-frequency sounds are
115 advantageous during agonistic interactions between males and as a means of dominance status
116 signalling (Davies & Halliday 1978; Wagner 1989; Briefer *et al.* 2010; Bro-Jørgensen &
117 Beeston 2015), we predict correlated evolution of male vocal frequency and indices of the
118 intensity of sexual selection such as male-biased sexual size dimorphism (Trivers 1972;
119 Fairbairn 1997).

120 Here, we use a large data set of 5,085 passerine species (Order: Passeriformes), representing
121 85% of all passerines and 50% of all avian taxa (Jetz *et al.* 2012), to explore interspecific
122 variation in peak frequency of male song. Applying a phylogenetically-informed cross-species
123 analysis, we evaluate the association between song frequency and habitat density, body size
124 (expressed as body mass), and the intensity of sexual selection (expressed as sexual size
125 dimorphism). Based on the hypotheses outlined above, we test the one-tailed predictions that
126 lower-frequency songs are associated with (1) more closed (forested) habitats, (2) larger body
127 size and (3) stronger male-biased sexual size dimorphism.

128 Passerines are an excellent study system for evaluating sources of interspecific variation in
129 signal frequency. First, their song represents a textbook example of a long-range acoustic
130 signal that plays an important role in mate attraction and territory defence (Catchpole 1987;
131 Catchpole & Slater 2008). Second, passerines are globally distributed, show a more than 300-
132 fold difference in body mass, vary in sexual selection pressures and mating systems, and
133 occupy a wide range of habitats (del Hoyo *et al.* 2018). Although song (or call) frequency has
134 been widely studied in birds, previous comparative studies often evaluated the effects of body
135 size, sexual selection, and habitat effects separately and without accounting for phylogeny
136 (reviewed by Ey & Fischer 2009). Moreover, previous studies were restricted to a few species
137 only (Ey & Fischer 2009).

138

139 MATERIALS AND METHODS

140 Data on peak song frequency

141 We collected song recordings primarily from xeno-canto (<https://www.xeno-canto.org>), a
142 citizen science repository of bird vocalizations. When access to recordings of endangered or

143 vulnerable species was restricted, we directly contacted the authors. For species with missing
144 recordings on xeno-canto, we used recordings from the Macaulay Library (The Cornell Lab of
145 Ornithology, <https://www.macaulaylibrary.org/>). We focused exclusively on the song,
146 ignoring other types of vocalizations (e.g. calls). Song is commonly defined as a long-range
147 vocalization that is used mainly in mate attraction and territory defence. The definition of the
148 song may, however, vary across sources or authorities, and functions of particular
149 vocalizations are still poorly known for several passerine species. Therefore, we used the
150 classification of vocalizations as provided on the platform storing the recordings. Although
151 some recordings might be misclassified, we primarily focused on high-quality recordings
152 (scored as quality “A” or “B” in xeno-canto, or rated four or more stars in Macaulay Library),
153 usually collected by skilled observers with in-depth knowledge of particular bird species’
154 vocalizations. Both repositories also provide a space for discussion and correction of
155 misclassified recordings by community members, increasing the reliability of the available
156 information.

157 We collected 1–5 (median = 4, mean \pm SD = 3.7 ± 1.5) recordings of adult male song for each
158 species (total of 18,789 recordings from 5,085 species). We did not use recordings of female
159 and juvenile song. However, recordings often lacked information on sex, age, or the number
160 of singing individuals. Although most of such recordings presumably documented adult male
161 song, females of many species sing, either solo, in duets (coordinated joint singing of a mated
162 pair) or in a chorus (three and more singing individuals) (Odom *et al.* 2014; Tobias *et al.*
163 2016; Mikula *et al.* 2020). A few recording annotations mentioned “duet” or “chorus” and in
164 some cases we could disentangle parts produced by different individuals. We then measured
165 song frequency for the individual producing the more complex song, i.e. containing more
166 elements and syllable types (presumably a male). For a few species, we were not able to
167 separate the song of multiple individuals. In these cases, we assumed that the recording was

168 representative of the song of the males of the species. Although this procedure might have
169 introduced some error, we do not expect systematic bias in species-specific frequency values.
170 We assigned geographic coordinates to all song recordings as reported by the person who
171 made the recording. In widely distributed species, recordings were typically separated by tens
172 to thousands of kilometres. However, in species with smaller ranges, we used recordings
173 made at least 1 km apart to reduce the possibility that two or more analysed recordings
174 contained song of the same individual. In several species (all island or mountain endemics or
175 poorly sampled species) this was not possible. In these cases, we a priori maximized the
176 altitudinal and temporal separation of recordings, by only selecting recordings that differed in
177 altitude by at least 100 metres or were collected in different years.

178 After downloading, all recordings were converted to .wav format with an online converter
179 (www.online-audio-converter.com) at a sampling rate of 44.1 kHz. We characterized song
180 frequency by a single parameter, namely peak frequency (i.e. the frequency at maximum
181 amplitude), using the Raven Pro 1.4 software (Cornell Lab of Ornithology, Ithaca, NY, USA,
182 www.ravensoundsoftware.com). We then calculated the median value for each species. Peak
183 frequency is central to our hypotheses because: (1) unlike minimum and maximum
184 frequencies, it is crucial for signal transmission (Brumm & Naguib 2009), (2) it may differ
185 between habitats (see meta-analysis in Boncoraglio & Saino 2007), and (3) it is a key trait in
186 other studies investigating the effect of morphological constraints and sexual selection on
187 acoustic communication (Gillooly & Ophir 2010; Greig *et al.* 2013; Mason & Burns 2015;
188 Thiagavel *et al.* 2017). First, we measured peak song frequency based on a fast Fourier
189 transform length of 256 points (Hann window), resulting in a frequency resolution of 172 Hz.
190 In a second step, we re-measured peak song frequency for species with median peak
191 frequency < 1.2 kHz ($n = 90$ species), using a higher frequency resolution of 21.5 Hz (fast
192 Fourier transform length of 2,048 points) to capture the lower end of the range in peak song

193 frequency more accurately. To ensure consistency, all recordings were downloaded and
194 analysed by a single person (PM).

195

196 **Predictor variables**

197 *Body size and sexual size dimorphism*

198 As a proxy of species-specific body size, we used mean body mass (in grams; pooling sexed
199 and unsexed individuals from Dunning 2008; $n = 4,602$ species) or male body mass (from
200 Dunning 2008; $n = 984$ species). To estimate sexual size dimorphism we used data on male
201 and female body mass (from Dunning 2008; $n = 984$ species) or wing length (in millimetres;
202 from Dale *et al.* 2007; $n = 2,463$ species). We then calculated sexual size dimorphism either
203 as $\log(\text{male body mass}) - \log(\text{female body mass})$ or as $\log(\text{male wing length}) - \log(\text{female}$
204 wing length). Positive values indicate species where males are larger than females, i.e. male-
205 biased sexual size dimorphism. Sexual size dimorphism is associated with other indices of the
206 intensity of sexual selection, such as the mating system (polygyny versus monogamy) or testis
207 size (Dunn *et al.* 2001).

208

209 *Habitat density*

210 As a proxy for habitat density, we used tree cover data from Collection 2 of the Copernicus
211 Global Land Cover project (Buchhorn *et al.* 2020). For each geographic location of a song
212 recording, we extracted the percentage of tree cover in a 100×100 metres quadrant using the
213 *exactextractr* package (v.0.2.1) in R (Baston 2020). Species-specific tree cover was then
214 estimated as the mean of all conspecific recordings.

215 We also extracted data on habitat type for each species based on descriptions in del Hoyo *et*
216 *al.* (2018). We assigned each species to the most prevalent habitat type on a three-point scale:
217 (1) closed (covering species living in densely vegetated habitat types such as forest, woodland
218 and mangrove), (2) mixed (covering generalist species and species inhabiting ecotones), and
219 (3) open (covering species inhabiting grassland, steppe, desert and semi-desert, savannah,
220 bushland, rocky habitats and seashores).

221

222 **Statistical analyses**

223 All statistical analyses were performed using R v. 4.0.0 (R Development Core Team 2019).

224

225 *Data visualization*

226 To help interpret the investigated relationships, we assessed whether peak song frequency
227 evolved within diverged groups of passerines by plotting the evolutionary tree of song
228 frequency, as well as of the predictors (Fig. S1). We mapped these variables on a maximum
229 credibility tree reconstructed from 100 trees using the function `maxCladeCred` in the
230 *phangorn* package (v. 2.5.5) (Schliep 2011). Character states at internal nodes were mapped
231 using a maximum-likelihood approach implemented in the `contMap` function (Revell 2013)
232 from the *phytools* package (Revell 2012). To illustrate the geographic distribution of peak
233 song frequency, we used the breeding range distribution of all passerines (obtained from
234 BirdLife International and NatureServe 2018) to visualize mean peak song frequency values
235 across passerine assemblages with grid cells of 112.5×112.5 km ($\sim 1^\circ$ scale) (Valcu *et al.*
236 2012).

237

238 *General modelling procedures*

239 All comparative analyses were performed using the *phyolm* package (v. 2.6) (Tung Ho &
240 Ané 2014). To control for non-independence due to common ancestry (Paradis 2011), we
241 used phylogenetic generalized least-squares (PGLS) regressions with Pagel's lambda (λ)
242 transformation of a correlation structure (Pagel 1999). This method explicitly models how the
243 covariance between species declines as they become more distantly related. If $\lambda = 1$, modelled
244 traits co-vary in direct proportion to shared evolutionary history, whereas $\lambda = 0$ indicates
245 phylogenetic independence of traits (Freckleton *et al.* 2002). We randomly sampled 100
246 phylogenetic trees (Hackett backbone) from those available at <http://birdtree.org> (Jetz *et al.*
247 2012), which included all species in our data set. We ran all models using these 100
248 phylogenies to account for uncertainties associated with different tree topologies and
249 combined model coefficients by model averaging (Symonds & Moussalli 2011). For each
250 model, we also calculated the proportion of variance explained (R^2) according to Ives (2019)
251 using the *rr2* package (Ives & Li 2018), including the conditional R^2 (the variance explained
252 by fixed and random effects) and the marginal R^2 (the variance explained by the fixed effects
253 only), and report these as mean values from 100 models each based on a different
254 phylogenetic tree. Model residuals revealed no major violation of the assumptions of
255 normality and homogeneity of variance. Peak song frequency and body mass were log-
256 transformed before analysis. Peak song frequency and all predictors were also mean-centred
257 and divided by their standard deviation (Scheižeth 2010).

258 Sex-specific body mass and wing length data were only available for 984 and 2,463 species,
259 respectively. Hence, we estimated the missing values with the phylogenetic imputation
260 method in the *Rphylopars* package (v 0.2.12) (Goolsby *et al.* 2017), using Pagel's lambda
261 model of trait evolution. We did this separately for each of the 100 phylogenetic trees, such

262 that each tree was associated with specific imputed values. This method performs well in
263 predicting missing species' data (Penone *et al.* 2014) and imputed data increase the statistical
264 power of analysis (Nakagawa & Freckleton 2008). Importantly, the bias in imputed data sets
265 tends to be lower than the bias in data sets with missing data omitted, particularly when values
266 for many species are missing (Penone *et al.* 2014). To minimize concerns that imputed data
267 may affect our conclusions, we validated the robustness of our findings by performing all
268 analyses also on the subset of species for which we have data on body mass and sexual size
269 dimorphism.

270

271 *Model specification*

272 We specified two types of models. First, we ran a set of univariate models with peak song
273 frequency as the dependent variable and with either body mass (species or male), sexual size
274 dimorphism (based on wing length or body mass) or habitat density (tree cover or habitat
275 type) as predictor. Second, we ran multivariate models, which included different sets of
276 predictors. The first models included combinations of species body mass, wing-based sexual
277 size dimorphism and tree cover (or habitat type), the second models included combinations of
278 male body mass and body mass-based sexual size dimorphism as predictors. Note that the
279 results from univariate and multivariate models, from analyses based on imputed or raw data,
280 from analyses with species- or male-specific body mass, as well as from analyses based on
281 tree cover or habitat type were qualitatively almost identical (Fig. S2 and Table S1). Hence, in
282 the main text we report only findings from multivariate model containing species-specific
283 body mass, wing-based sexual size dimorphism and tree cover with imputed missing data for
284 body mass and sexual size dimorphism.

285

286 **RESULTS**

287 Species-specific median peak song frequency ranged from 215 Hz to 10,659 Hz ($n = 5,085$
288 species), but most passerine species emitted songs of intermediate frequencies (mean \pm SD =
289 $4,030 \pm 1,626$ Hz; median = 3,790 Hz; Fig. 1a). Median peak song frequency shows a strong
290 evolutionary signal with a coefficient $\lambda \approx 0.87$ (see also Table S1). Nevertheless, low and high
291 peak song frequencies occur within phylogenetically distinct groups (Fig. 1a).

292 Passerines sang at low frequencies predominantly in large parts of Australia, in tropical
293 rainforests of the Neotropical, Afrotropical, and Papua New Guinea regions, and possibly in
294 the Sahara where data coverage was sparse (Fig. 1b). Conversely, high-frequency songs
295 characterize passerine communities in the northern parts of the Nearctic and Palearctic
296 regions, in large mountain ranges such as the Andes and Himalayas, in southern parts of the
297 Neotropical region, and in belts of grassland and savannah in Africa (Fig. 1b).

298 Body mass was the strongest predictor of global variation in peak song frequency (Fig. 2a and
299 Fig. S2), explaining 11–16% of the variation (59–67% together with phylogeny; Table S1).
300 As predicted from the morphological constraint hypothesis, heavier species sang at lower
301 frequencies (Fig. 2a and Fig. S2); this pattern was observed for all but two families ($n = 52$
302 families with more than 15 species; Fig. 2b and Fig. S3).

303 Peak song frequency was also significantly associated with sexual size dimorphism (either
304 measured in wing length or in body mass), although the effect size was substantially smaller,
305 explaining 1–3% of the variation (Fig. 2a and Fig. S2; Table S1). As predicted based on the
306 sexual selection hypothesis, species with a stronger male-biased sexual size dimorphism (i.e. a
307 higher intensity of sexual selection) sang with lower frequencies, even after controlling for

308 body mass *per se* (Fig. 2a and Fig. S2; Table S1). This effect of decreasing frequency with
309 increasing dimorphism was seen in 67% of families (35 out of 52 families with more than 15
310 species) while in the remaining families the trend was in the opposite direction (Fig. 2b and
311 S3). Note that in this analysis data on body mass were not sex-specific. Hence, adding sexual
312 size dimorphism might improve model fit, simply because our measure of body mass and
313 sexual size dimorphism together better reflect male size than species-specific mass alone.
314 However, sexual dimorphism in body mass remained influential even when limiting the
315 analysis to a subset of 984 species for which data on male body mass were available (Fig. S2).

316 Peak song frequency of passerines was weakly, but significantly associated with tree cover or
317 habitat type (Fig. 2a and Fig. S2; Table S1); however, the effect explained only around 0.2%
318 of the variation and was opposite to that predicted from the acoustic adaptation hypothesis:
319 species living in open habitats had lower (not higher) peak song frequencies than those living
320 in more dense, forested habitats (Fig. 2a and Fig. S2; Table S1). Moreover, this effect was
321 observed in only 24 out of 52 families (46%) with more than 15 species (with the random
322 expectation being 50% of the families; Fig. 2b and S3). This unexpected relationship was
323 close to zero and not statistically significant in multivariate models that used the original, non-
324 imputed values of body mass and sexual size dimorphism (based either on wing length or
325 body mass; Fig. S2; Table S1).

326

327 **DISCUSSION**

328 Our data revealed remarkable variation in peak song frequency among the world's passerine
329 birds. Our analyses show that most of the interspecific diversity in peak song frequency can
330 be explained by evolutionary history and by body mass, with an additional effect of sexual

331 size dimorphism as a proxy of the intensity of sexual selection. In contrast, our study does not
332 support the acoustic adaptation hypothesis. Opposite to the prediction, we found at best a
333 weakly positive association between habitat density and peak song frequency. Our results thus
334 indicate that the evolution of peak song frequency in passerines is primarily controlled by
335 morphological constraints, as expected from basic physical principles. We further show that
336 peak song frequency may be shaped by sexual selection, but not by habitat-driven selection to
337 maximize song transmission.

338 We found that after controlling for phylogeny 11–16% of interspecific variation in peak song
339 frequency of passerines is explained by variation in body mass (Table S1). However,
340 phylogeny also explains some of the variation in body mass (Fig. S1) and in a simple linear
341 regression body mass explains ~27% of the variance in peak song frequency. Together, body
342 mass and phylogeny explained almost 70% of the variation in peak song frequency (Table
343 S1). Our results confirm that body size (estimated as body mass in our study) imposes a
344 strong morphological limit on the production of vocalizations of certain frequencies,
345 presumably through a strong correlation with the length of the vocal tract and the size of the
346 labia in the syrinx (Podos 2001; Suthers & Zollinger 2008; Rodríguez *et al.* 2015). The
347 morphological constraint hypothesis can thus be seen as a kind of “null model” (also see
348 Pearse *et al.* 2018) and it is the remaining variation in peak song frequency that needs
349 explanation.

350 After accounting for body mass, peak song frequency was lower in species where males were
351 larger than females, i.e. in species with – presumably – stronger sexual selection on males.
352 This result is robust to different ways of analysis (Table S1) and supports the hypothesis that
353 sexual selection has shaped the evolution of song frequency (Greig *et al.* 2013; Hall *et al.*
354 2013; Geberzahn & Aubin 2014; Linhart & Fuchs 2015; Pearse *et al.* 2018). Our comparative

355 study provides evidence that sexual selection led to low-frequency song performance in many
356 families of passerines, presumably in those where song frequency is indicative of the
357 competitive ability of individuals during male–male interactions (Christie *et al.* 2004; Seddon
358 *et al.* 2004; Price *et al.* 2006). Notably, the songs that departed the most in peak frequency
359 from the expected association with body mass – those of three related species from the
360 Cotingidae family (the Amazonian umbrellabird *Cephalopterus ornatus*, the long-wattled
361 umbrellabird *C. penduliger*, and the red-ruffed fruitcrow *Pyroderus scutatus*) – were also
362 those that had the lowest peak frequencies documented for any passerine in our data set (<
363 260 Hz); their peak frequencies are so low that they partly overlap with the fundamental
364 speech frequencies of humans (100–300 Hz), who are, however, more than 100 times heavier
365 (Baken 1987). The umbrellabirds and their close relatives show high male-biased sexual size
366 dimorphism (compared to other passerines) and a lekking mating system where males display
367 together on traditional “exploded” leks and presumably do not provide parental care (del
368 Hoyo *et al.* 2018). In species that produce substantially lower-frequency songs than predicted
369 from the negative frequency–size relationship, sexual selection may have led to the
370 development of a specific vocal apparatus to produce these sounds (Riede *et al.* 2016), such as
371 the unique pendulous oesophageal vocal sacs that are used as a resonator in umbrellabirds
372 (Sick 1954, see also Riede *et al.* 2015 for a non-passerine example). Although selection for
373 low-frequency sounds may in some cases cause a corresponding change in body size (Fitch
374 1999), it seems more likely that natural (Woodward *et al.* 2005; Ricklefs 2010) and sexual
375 (Björklund 1990) selection on body size underlies most evolutionary shifts in the song
376 frequency of passerines, with an additional effect of sexual selection on the vocal apparatus.

377 Despite the theoretical basis and some empirical evidence for a negative association between
378 song frequency and habitat density (Morton 1975; Badyaev & Leaf 1997; Buskirk 1997;
379 Bertelli & Tubaro 2002; Blumstein & Turner 2005; Boncoraglio & Saino 2007), our

380 comparative study provides clear evidence against the acoustic adaptation hypothesis. Peak
381 song frequency across the world's passerines was, if anything, weakly positively instead of
382 negatively correlated with habitat density. Thus, forest-inhabiting species produced sounds
383 that were higher or similar in peak frequency than those of species living in open areas. While
384 other unmeasured biotic and abiotic characteristics of the environment, including consistent
385 background noise produced by wind, rain, insects or other birds, may drive the evolution of
386 peak song frequencies (reviewed in Brumm & Zollinger 2013), we provide solid evidence that
387 habitat density – as used and widely evaluated in bioacoustic studies – had at best a negligible
388 effect on peak song frequency of passerines. Of course, this does not exclude singing-
389 associated behavioural adaptations of birds that improve signal transmission, such as
390 microhabitat selection during perch-singing or display flights (Menezes & Santos 2020). It is
391 noteworthy that at the intraspecific level, birds can adjust their song frequency to local
392 conditions, but these shifts are relatively minor compared to the interspecific variation in
393 frequency we documented in this study (Slabbekoorn & Peet 2003; Slabbekoorn & den Boer-
394 Visser 2006; Nemeth & Brumm 2010; Brumm & Zollinger 2013).

395 In conclusion, using data of most passerine species and half of the global avian diversity, our
396 study provides three insights into the evolution of acoustic signals. (1) A strong allometric
397 relationship between body size and peak song frequency imposes a clear limit on the
398 evolution of song frequency. (2) Sexual selection seems to cause departures from this
399 allometric relationship, leading to lower-frequency signals than predicted by body size.
400 Further research into the mechanism (e.g. selection on the structure of the vocal apparatus) is
401 of interest. (3) There is no evidence that species in more dense, forested habitats produce
402 songs of lower frequencies. Our study thus challenges the idea that habitat-dependent
403 selection to maximize sound propagation influences the evolution of signal frequency in
404 songbirds. Future work should focus on the link between song frequency, behaviour during

405 vocal performance (e.g. aerial displays), and habitat properties that influence sound
406 transmission and degradation. In general, our study calls for large-scale empirical studies on
407 acoustic signal frequency in other animal groups as independent replication studies.

408 **Acknowledgements**

409 We are grateful to all contributors and the administrators of the xeno-canto database
410 (<https://www.xeno-canto.org/>) and Macaulay Library (<https://www.macaulaylibrary.org/>).
411 Without their contribution, this study would not have been possible. We thank Barbora
412 Blažková for help with the collection of song recordings of endangered species and Liam
413 Revell for help with visualising phylogenies. This study was supported by the Czech Science
414 Foundation project 17-24782S to TA and by the Max Planck Society to BK.

415

416 **References**

- 417 Apicella, C.L., Feinberg, D.R. & Marlowe, F.W. (2007). Voice pitch predicts reproductive
418 success in male hunter-gatherers. *Biol. Lett.*, 3, 682–684.
- 419 Badyaev, A. V. & Leaf, E.S. (1997). Habitat associations of song characteristics in
420 *Phylloscopus* and *Hippolais* warblers. *Auk*, 114, 40–46.
- 421 Baken, R.J. (1987). *Clinical Measurement of Speech and Voice*. Taylor and Francis Ltd.,
422 London.
- 423 Baston, D. (2020). *exactextractr: Fast extraction from raster datasets using polygons. R*
424 *Packag. version 0.2.1*. Available at: <https://cran.r-project.org/package=exactextractr>.
425 Last accessed .
- 426 Bertelli, S. & Tubaro, P.L. (2002). Body mass and habitat correlates of song structure in a
427 primitive group of birds. *Biol. J. Linn. Soc.*, 77, 423–430.
- 428 BirdLife International and NatureServe. (2018). *Bird species distribution maps of the world*.
429 Available at: <http://datazone.birdlife.org/>.
- 430 Björklund, M. (1990). A phylogenetic interpretation of sexual dimorphism in body size and
431 ornament in relation to mating system in birds. *J. Evol. Biol.*, 3, 171–183.
- 432 Blumstein, D.T. & Turner, A.C. (2005). Can the acoustic adaptation hypothesis predict the
433 structure of Australian birdsong? *Acta Ethol.*, 8, 35–44.
- 434 Boncoraglio, G. & Saino, N. (2007). Habitat structure and the evolution of bird song: a meta-
435 analysis of the evidence for the acoustic adaptation hypothesis. *Funct. Ecol.*, 21, 134–
436 142.

- 437 Bradbury, J.W. & Vehrencamp, S.L. (1998). *Principles of animal communication*. Sinauer
438 Associates, Sunderland, MA.
- 439 Briefer, E., Vannoni, E. & McElligott, A.G. (2010). Quality prevails over identity in the
440 sexually selected vocalisations of an ageing mammal. *BMC Biol.*, 8, 1–15.
- 441 Bro-Jørgensen, J. & Beeston, J. (2015). Multimodal signalling in an antelope: Fluctuating
442 facemasks and knee-clicks reveal the social status of eland bulls. *Anim. Behav.*, 102, 231–
443 239.
- 444 Brumm, H. & Goymann, W. (2017). On the natural history of duetting in White-browed
445 Coucals: sex- and body-size-dependent differences in a collective vocal display. *J.*
446 *Ornithol.*, 158, 669–678.
- 447 Brumm, H. & Naguib, M. (2009). Environmental acoustics and the evolution of bird song.
448 *Adv. Study Behav.*, 40, 1–33.
- 449 Brumm, H. & Zollinger, S.A. (2013). Avian Vocal Production in Noise. In: *Animal*
450 *Communication and Noise* (ed. Brumm, H.). Springer, Berlin, Heidelberg, pp. 187–227.
- 451 Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L. & Smets, B. (2020).
452 Copernicus Global Land Cover Layers–Collection 2. *Remote Sens.*, 12, 1044.
- 453 Buskirk, J. V. (1997). Independent evolution of song structure and note structure in American
454 wood warblers. *Proc. R. Soc. B Biol. Sci.*, 264, 755–761.
- 455 Catchpole, C.K. (1987). Bird song, sexual selection and female choice. *Trends Ecol. Evol.*, 2,
456 94–97.
- 457 Catchpole, C.K. & Slater, P.J.B. (2008). *Bird song: biological themes and variations*.
458 Cambridge University Press, Cambridge, UK.

- 459 Christie, P.J., Mennill, D.J. & Ratcliffe, L.M. (2004). Pitch shifts and song structure indicate
460 male quality in the dawn chorus of black-capped chickadees. *Behav. Ecol. Sociobiol.*, 55,
461 341–348.
- 462 Dale, J., Dunn, P.O., Figuerola, J., Lislevand, T., Székely, T. & Whittingham, L.A. (2007).
463 Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. *Proc.
464 R. Soc. B Biol. Sci.*, 274, 2971–2979.
- 465 Davies, N.B. & Halliday, T.R. (1978). Deep croaks and fighting assessment in toads *Bufo
466 bufo*. *Nature*, 274, 683–685.
- 467 Dunn, P.O., Whittingham, L.A. & Pitcher, T.E. (2001). Mating systems, sperm competition,
468 and the evolution of sexual dimorphism in birds. *Evolution*, 55, 161–175.
- 469 Dunning, J.B. (2008). *CRC Handbook of Avian Body Masses*. CRC Press, Boca Raton.
- 470 Ey, E. & Fischer, J. (2009). The “acoustic adaptation hypothesis” – a review of the evidence
471 from birds, anurans and mammals. *Bioacoustics*, 19, 21–48.
- 472 Fairbairn, D.J. (1997). Allometry for sexual size dimorphism: pattern and process in the
473 coevolution of body size in males and females. *Annu. Rev. Ecol. Syst.*, 28, 659–687.
- 474 Fitch, T.W. (2006). Production of vocalizations in mammals. *Vis. Commun.*, 3, 115–121.
- 475 Fitch, W.T. (1999). Acoustic exaggeration of size in birds via tracheal elongation:
476 comparative and theoretical analyses. *J. Zool.*, 248, 31–48.
- 477 Fitch, W.T. & Hauser, M.D. (2002). Unpacking “honesty”: vertebrate vocal production and
478 the evolution of acoustic signals. In: *Acoustic communication*. (eds. Simmons, A.M.,
479 Fay, R.R. & Popper, A.N.). Springer, New York, pp. 65–137.

- 480 Forstmeier, W., Burger, C., Temnow, K. & Derégnaucourt, S. (2009). The genetic basis of
481 zebra finch vocalizations. *Evolution*, 63, 2114–2130.
- 482 Freckleton, R.P., Harvey, P.H. & Pagel, M. (2002). Phylogenetic analysis and comparative
483 data: a test and review of evidence. *Am. Nat.*, 160, 712–726.
- 484 Geberzahn, N. & Aubin, T. (2014). How a songbird with a continuous singing style modulates
485 its song when territorially challenged. *Behav. Ecol. Sociobiol.*, 68, 1–12.
- 486 Gerhardt, H.C. (1994). The evolution of vocalization in frogs and toads. *Annu. Rev. Ecol.*
487 *Syst.*, 25, 293–324.
- 488 Gerhardt, H.C. & Huber, F. (2002). *Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions*. 2nd ed. The University of Chicago Press,
489 Chicago.
- 491 Gillooly, J.F. & Ophir, A.G. (2010). The energetic basis of acoustic communication. *Proc. R.*
492 *Soc. B Biol. Sci.*, 277, 1325–1331.
- 493 Gonzalez-Voyer, A., den Tex, R.-J., Castelló, A. & Leonard, J.A. (2013). Evolution of
494 acoustic and visual signals in Asian barbets. *J. Evol. Biol.*, 26, 647–659.
- 495 Goolsby, E.W., Bruggeman, J. & Ané, C. (2017). Rphylopars: fast multivariate phylogenetic
496 comparative methods for missing data and within-species variation. *Methods Ecol. Evol.*,
497 8, 22–27.
- 498 Greig, E.I., Price, J.J. & Pruett-Jones, S. (2013). Song evolution in Maluridae: influences of
499 natural and sexual selection on acoustic structure. *Emu*, 113, 270–281.
- 500 Hall, M.L., Kingma, S.A. & Peters, A. (2013). Male songbird indicates body size with low-
501 pitched advertising songs. *PLoS One*, 8, e56717.

- 502 Hardouin, L.A., Reby, D., Bavoux, C., Burneveau, G. & Bretagnolle, V. (2007).
503 Communication of male quality in owl hoots. *Am. Nat.*, 169, 552–562.
- 504 del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (2018). *Handbook of the*
505 *birds of the world Alive*. Available at: <http://www.hbw.com/>.
- 506 Ives, A.R. (2019). R²s for correlated data: phylogenetic models, LMMs, and GLMMs. *Syst.*
507 *Biol.*, 68, 234–251.
- 508 Ives, A.R. & Li, D. (2018). rr2: an R package to calculate R²s for regression models. *J. Open*
509 *Source Softw.*, 3, 1028.
- 510 Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. (2012). The global diversity
511 of birds in space and time. *Nature*, 491, 444–448.
- 512 Linhart, P. & Fuchs, R. (2015). Song pitch indicates body size and correlates with males'
513 response to playback in a songbird. *Anim. Behav.*, 103, 91–98.
- 514 Mager, J.N., Walcott, C. & Piper, W.H. (2007). Male common loons, *Gavia immer*,
515 communicate body mass and condition through dominant frequencies of territorial
516 yodels. *Anim. Behav.*, 73, 683–690.
- 517 Marten, K. & Marler, P. (1977). Sound transmission and its significance for animal
518 vocalization. I. Temperate habitats. *Behav. Ecol. Sociobiol.*, 2, 271–290.
- 519 Mason, N.A. & Burns, K.J. (2015). The effect of habitat and body size on the evolution of
520 vocal displays in Thraupidae (tanagers), the largest family of songbirds. *Biol. J. Linn.*
521 *Soc.*, 114, 538–551.
- 522 McClatchie, S., Alsop, J. & Coombs, R.F. (1996). A re-evaluation of relationships between
523 fish size, acoustic frequency, and target strength. *ICES J. Mar. Sci.*, 53, 780–791.

- 524 Menezes, J.C.T. & Santos, E.S.A. (2020). Habitat structure drives the evolution of aerial
525 displays in birds. *J. Anim. Ecol.*, 89, 482– 493.
- 526 Mikula, P., Tószögiová, A., Hořák, D., Petrusková, T., Storch, D. & Albrecht, T. (2020).
527 Female solo song and duetting are associated with different territoriality in songbirds.
528 *Behav. Ecol.*, 31, 322–329.
- 529 Morton, E.S. (1975). Ecological sources of selection on avian sounds. *Am. Nat.*, 109, 17–34.
- 530 Morton, E.S. (1977). On the occurrence and significance of motivation structural rules in
531 some bird and mammal sounds. *Am. Nat.*, 111, 855– 869.
- 532 Nakagawa, S. & Freckleton, R.P. (2008). Missing inaction: the dangers of ignoring missing
533 data. *Trends Ecol. Evol.*
- 534 Nemeth, E. & Brumm, H. (2010). Birds and anthropogenic noise: are urban songs adaptive?
535 *Am. Nat.*, 176, 465–475.
- 536 Odom, K.J., Hall, M.L., Riebel, K., Omland, K.E. & Langmore, N.E. (2014). Female song is
537 widespread and ancestral in songbirds. *Nat. Commun.*, 5, 3379.
- 538 Ophir, A.G., Schrader, S.B. & Gillooly, J.F. (2010). Energetic cost of calling: general
539 constraints and species-specific differences. *J. Evol. Biol.*, 23, 1564–1569.
- 540 Padgham, M. (2004). Reverberation and frequency attenuation in forests – implications for
541 acoustic communication in animals. *J. Acoust. Soc. Am.*, 115, 402–410.
- 542 Pagel, M. (1999). Inferring the historical patterns of biological evolution. *Nature*, 401, 877–
543 884.
- 544 Paradis, E. (2011). *Analysis of Phylogenetics and Evolution with R*. Springer, Berlin.

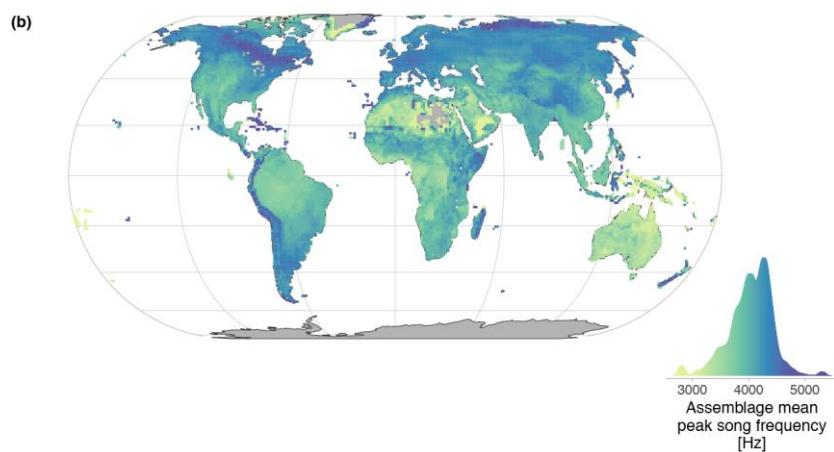
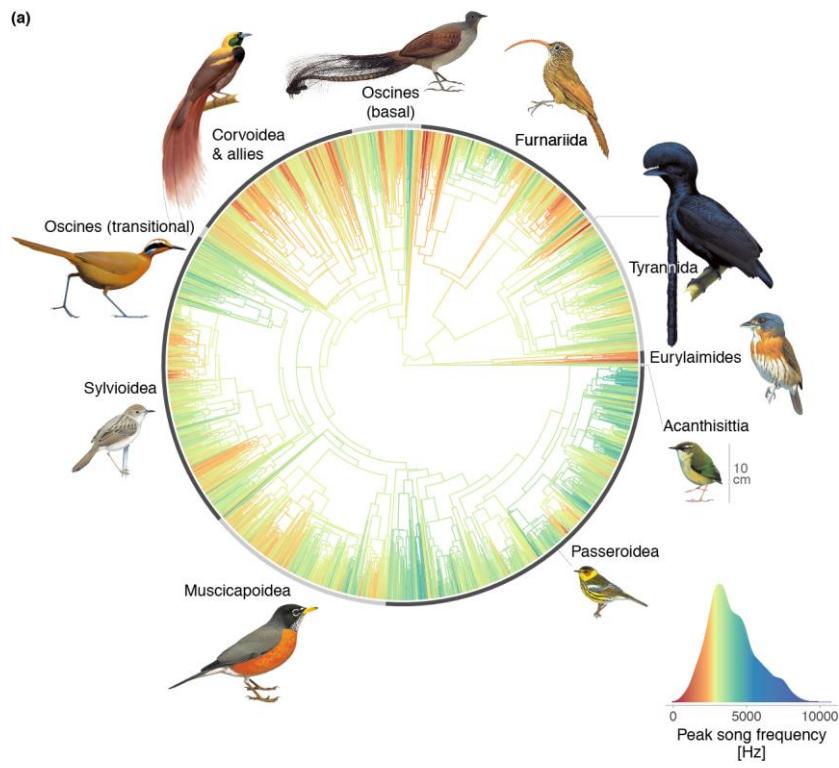
- 545 Pearse, W.D., Morales-Castilla, I., James, L.S., Farrell, M., Boivin, F. & Davies, T.J. (2018).
- 546 Global macroevolution and macroecology of passerine song. *Evolution*, 72, 944–960.
- 547 Penone, C., Davidson, A.D., Shoemaker, K.T., Di Marco, M., Rondinini, C., Brooks, T.M., *et*
- 548 *al.* (2014). Imputation of missing data in life-history trait datasets: which approach
- 549 performs the best? *Methods Ecol. Evol.*, 5, 961–970.
- 550 Pijanowski, B.C., Villanueva-Rivera, L.J., Dumyahn, S.L., Farina, A., Krause, B.L.,
- 551 Napoletano, B.M., *et al.* (2011). Soundscape ecology: The science of sound in the
- 552 landscape. *Bioscience*, 61, 203–216.
- 553 Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's
- 554 finches. *Nature*, 409, 185–188.
- 555 Price, J.J., Earnshaw, S.M. & Webster, M.S. (2006). Montezuma oropendolas modify a
- 556 component of song constrained by body size during vocal contests. *Anim. Behav.*, 71,
- 557 799–807.
- 558 R Development Core Team. (2019). *A Language and Environment for Statistical Computing*.
- 559 R Foundation for Statistical Computing, Vienna, Austria.
- 560 Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biology (and other
- 561 things). *Methods Ecol. Evol.*, 3, 217–223.
- 562 Revell, L.J. (2013). Two new graphical methods for mapping trait evolution on phylogenies.
- 563 *Methods Ecol. Evol.*, 4, 754–759.
- 564 Ricklefs, R.E. (2010). Insights from comparative analyses of aging in birds and mammals.
- 565 *Aging Cell*, 9, 273–284.
- 566 Riede, T., Eliason, C.M., Miller, E.H., Goller, F. & Clarke, J.A. (2016). Coos, booms, and

- 567 hoots: The evolution of closed-mouth vocal behavior in birds. *Evolution*, 70, 1734–1746.
- 568 Riede, T., Forstmeier, W., Kempenaers, B. & Goller, F. (2015). The functional morphology of
569 male courtship displays in the Pectoral Sandpiper (*Calidris melanotos*). *Auk*, 132, 65–77.
- 570 Rodríguez, R.L., Araya-Salas, M., Gray, D.A., Reichert, M.S., Symes, L.B., Wilkins, M.R., *et*
571 *al.* (2015). How acoustic signals scale with individual body size: common trends across
572 diverse taxa. *Behav. Ecol.*, 26, 168–177.
- 573 Ryan, M.J. & Brenowitz, E.A. (1985). The role of body size, phylogeny, and ambient noise in
574 the evolution of bird song. *Am. Nat.*, 126, 87–100.
- 575 Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients.
576 *Methods Ecol. Evol.*, 1, 103–113.
- 577 Schliep, K.P. (2011). phangorn: phylogenetic analysis in R. *Bioinformatics*, 27, 592–593.
- 578 Searcy, W.A. & Nowicki, S. (2005). *The Evolution of Animal Communication: Reliability and*
579 *Deception in Signaling Systems*. Princeton University Press, Princeton.
- 580 Seddon, N., Amos, W., Mulder, R.A. & Tobias, J.A. (2004). Male heterozygosity predicts
581 territory size, song structure and reproductive success in a cooperatively breeding bird.
582 *Proc. R. Soc. B Biol. Sci.*, 271, 1823–1829.
- 583 Seneviratne, S.S., Jones, I.L. & Carr, S.M. (2012). Patterns of vocal divergence in a group of
584 non-oscine birds (auklets; Alcidae, Charadriiformes). *Evol. Ecol. Res.*, 14, 95–112.
- 585 Sick, H. (1954). Zur Biologie des amazonischen Schirmvogels, *Cephalopterus ornatus*. *J. für*
586 *Ornithol.*, 95, 233–244.
- 587 Slabbekoorn, H. & den Boer-Visser, A. (2006). Cities change the songs of birds. *Curr. Biol.*,

- 588 16, 2326–2331.
- 589 Slabbekoorn, H. & Peet, M. (2003). Birds sing at a higher pitch in urban noise. *Nature*, 424,
590 267.
- 591 Suthers, R.A. & Zollinger, S.A. (2008). From brain to song: the vocal organ and vocal tract.
592 In: *Neuroscience of Birdsong* (eds. Zeigler, P.H. & Marler, P.). Cambridge University
593 Press, Cambridge, pp. 78–98.
- 594 Symonds, M.R.E. & Moussalli, A. (2011). A brief guide to model selection, multimodel
595 inference and model averaging in behavioural ecology using Akaike's information
596 criterion. *Behav. Ecol. Sociobiol.*, 65, 13–21.
- 597 Thiagavel, J., Santana, S.E. & Ratcliffe, J.M. (2017). Body size predicts echolocation call
598 peak frequency better than gape height in vespertilionid bats. *Sci. Rep.*, 7, 1–6.
- 599 Tietze, D.T., Martens, J., Fischer, B.S., Sun, Y.-H., Klussmann-Kolb, A. & Päckert, M.
600 (2015). Evolution of leaf warbler songs (Aves: Phylloscopidae). *Ecol. Evol.*, 5, 781–798.
- 601 Tobias, J.A., Sheard, C., Seddon, N., Meade, A., Cotton, A.J. & Nakagawa, S. (2016).
602 Territoriality, social bonds, and the evolution of communal signaling in birds. *Front.
603 Ecol. Evol.*, 4, 74.
- 604 Trivers, R.L. (1972). Parental investment and sexual selection. In: *Sexual Selection and the
605 Descent of Man 1871–1971* (ed. Campbell, B.). Aldine, Chicago, pp. 136–179.
- 606 Tung Ho, L. si & Ané, C. (2014). A linear-time algorithm for gaussian and non-gaussian trait
607 evolution models. *Syst. Biol.*, 63, 397–408.
- 608 Valcu, M., Dale, J. & Kempenaers, B. (2012). rangeMapper: a platform for the study of
609 macroecology of life-history traits. *Glob. Ecol. Biogeogr.*, 21, 945–951.

- 610 Vannoni, E. & McElligott, A.G. (2008). Low frequency groans indicate larger and more
611 dominant fallow deer (*Dama dama*) males. *PLoS One*, 3, e3113.
- 612 Venables, W.N. & Ripley, B.D. (2002). *Modern Applied Statistics with S. Fourth Edition*.
613 Springer, New York.
- 614 Wagner, W.E. (1989). Fighting, assessment, and frequency alteration in Blanchard's cricket
615 frog. *Behav. Ecol. Sociobiol.*, 25, 429–436.
- 616 Wagner, W.E., Beckers, O.M., Tolle, A.E. & Basolo, A.L. (2012). Tradeoffs limit the
617 evolution of male traits that are attractive to females. *Proc. R. Soc. B Biol. Sci.*, 279,
618 2899–2906.
- 619 Wallschläger, D. (1980). Correlation of song frequency and body weight in passerine birds.
620 *Experientia*, 36, 412.
- 621 Wiley, H.R. & Richards, D.G. (1982). Adaptations for acoustic communication in birds:
622 sound transmission and signal detection. In: *Acoustic Communication in Birds* (eds.
623 Kroodsma, D.E. & Miller, E.H.). Academic Press, New York, pp. 131–181.
- 624 Wiley, R.H. (1991). Associations of song properties with habitats for territorial oscine birds of
625 eastern North America. *Am. Nat.*, 138, 973–993.
- 626 Wiley, R.H. & Richards, D.G. (1978). Physical constraints on acoustic communication in the
627 atmosphere: Implications for the evolution of animal vocalizations. *Behav. Ecol.
628 Sociobiol.*, 3, 69–94.
- 629 Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesen, J.M., Valido, A., *et al.*
630 (2005). Body size in ecological networks. *Trends Ecol. Evol.*, 20, 402–409.

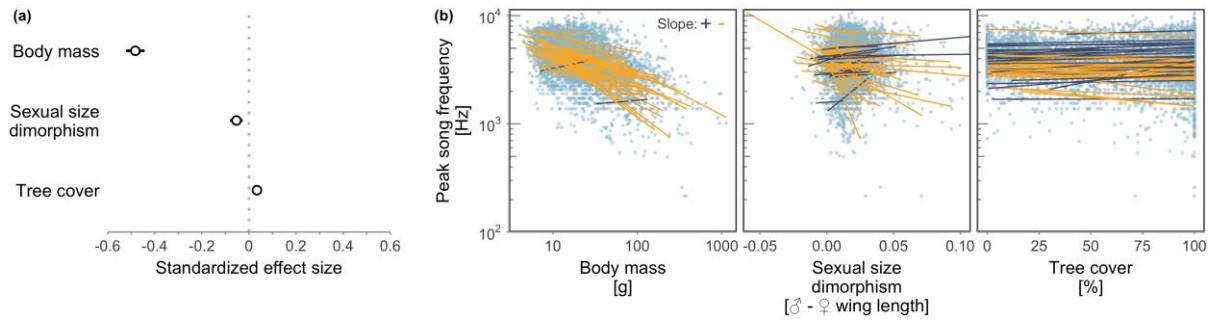
632 **Figure legends**



633 **Figure 1.** Distribution of peak song frequency across passerines. (a) Distribution across a
634 maximum credibility phylogenetic tree (based on 100 trees sampled from <http://birdtree.org>)
635 with colour scale reflecting variation (Kernel densities) in species median values ($n = 5,085$
636 species). Highlighted are 10 major groups of passerines with their representative species,
637 scaled according to size, except for the downscaled representatives of the Tyrannida (should
638 be ~20% larger) and the basal Oscines (should be three times larger); starting with
639 Acanthisittia and going counterclockwise, the pictures depict *Xenicus gilviventris* (10 cm
640 body size), *Smithornis sharpei* (17 cm), *Cephalopterus penduliger* (41 cm; example of low-
641 frequency singer: <https://www.xeno-canto.org/75792>), *Campylorhamphus trochilirostris* (25
642 cm), *Menura novaehollandiae* (103 cm), *Paradisaea raggiana* (34 cm), *Eupetes macrocerus*
643 (29 cm), *Cisticola chiniana* (14 cm), *Turdus migratorius* (25 cm) and *Setophaga tigrina* (13
644 cm; example of high-frequency singer: <https://www.xeno-canto.org/182791>). Illustrations
645 reproduced by permission of Lynx Edicions. (b) Geographical distribution in peak song
646 frequency across species assemblages (based on the species' breeding range) defined for
647 112.5×112.5 km (~ 1° scale) areas. Colour scale reflects variation (Kernel densities) in
648 assembly mean peak song frequency ($n = 10,856$ points; for clearer illustration of differences,
649 outliers were assigned a single value causing the "bumps" on both ends of the distribution).

650 **Figure 2.** Associations between peak song frequency and body mass, sexual size dimorphism
651 (in wing length) and tree cover across passerines ($n = 5,085$ species). (a) Standardized effect
652 sizes (dots) with their 95% confidence intervals (horizontal lines) based on a multivariate
653 analysis with imputed missing data for body mass and sexual size dimorphism (see Material
654 and Methods and Table S1 for details). Values represent averages from 100 multivariate
655 models, each using a different phylogenetic tree. (b) Relationship between peak song

656 frequency and each of the three explanatory variables. Each dot represents the median peak
657 song frequency of a given species. Lines show the results of univariate robust linear
658 regressions for each of the 52 families with more than 15 species. Positive slopes are
659 indicated in dark blue, negative slopes in yellow. Note the log-scale for peak song frequency
660 and body mass and that for clearer visualisation two lower and ten higher sexual size
661 dimorphism points are not displayed. Robust regressions were fitted to the data with imputed
662 missing values using the *rlm* function from the *MASS* package (Venables & Ripley 2002). For
663 results of univariate models and those using the original, non-imputed data only, see Fig. S2
664 and S3, and Table S1.

665


666 **Figure 1**

667

668

669 **Figure 2**

670