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Abstract

During communication in real-life settings, the brain integrates information from auditory and
visual modalities to form a unified percept of our environment. In the current
magnetoencephalography (MEG) study, we used rapid invisible frequency tagging (RIFT) to
generate steady-state evoked fields and investigated the integration of audiovisual information in
a semantic context. We presented participants with videos of an actress uttering action verbs
(auditory; tagged at 61 Hz) accompanied by a gesture (visual; tagged at 68 Hz, using a projector
with a 1440 Hz refresh rate). Integration difficulty was manipulated by lower-order auditory
factors (clear/degraded speech) and higher-order visual factors (congruent/incongruent gesture).
We identified MEG spectral peaks at the individual (61/68 Hz) tagging frequencies. We
furthermore observed a peak at the intermodulation frequency of the auditory and visually tagged
signals (fvisual - fauditory = 7 Hz), specifically when lower-order integration was easiest because signal
quality was optimal. This intermodulation peak is a signature of nonlinear audiovisual integration,
and was strongest in left inferior frontal gyrus and left temporal regions; areas known to be
involved in speech-gesture integration. The enhanced power at the intermodulation frequency thus
reflects the ease of lower-order audiovisual integration and demonstrates that speech-gesture
information interacts in higher-order language areas. Furthermore, we provide a proof-of-principle
of the use of RIFT to study the integration of audiovisual stimuli, in relation to, for instance,
semantic context.

Introduction

During communication in real-life settings, our brain needs to integrate auditory input with visual
input in order to form a unified percept of the environment. Several magneto- and
electroencephalography (M/EEG) studies have demonstrated that integration of non-semantic
audiovisual inputs can occur as early as 50-100 ms after stimulus onset (e.g., Giard & Peronnet,
1999; Molholm et al., 2002; Talsma et al., 2010), and encompasses a widespread network of
primary sensory and higher-order regions (e.g., Beauchamp et al., 2004; Calvert, 2001; Werner &
Noppeney, 2010).

The integration of these audiovisual inputs has been studied using frequency tagging (Giani
et al., 2012; Regan et al., 1995). Here, an auditory or visual stimulus is periodically modulated at
a specific frequency, for example by modulating the luminance of a visual stimulus or the
amplitude of an auditory stimulus. This produces steady-state evoked potentials (SSEPs, SSEFs
for MEG) with strong power at the tagged frequency (for frequency-tagging in the visual domain
and steady-state visual evoked responses (SSVEP), see e.g. Norcia et al., 2015; Vialatte et al.,
2010; Gulbinaite et al., 2019, for frequency tagging in the auditory domain and auditory steady-
state responses (ASSR), see e.g. Baltus & Herrmann, 2015; Picton et al., 2003; Ross et al., 2005;
Ross et al., 2003). This technique is especially interesting in the context of studying audiovisual
integration, because it enables the tagging of an auditory stimulus and a visual stimulus at two
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different frequencies (fvisual and fauditory) in order to study whether and how these two inputs interact
in the brain. Previous work has suggested that when the auditory and visual signals interact, this
results in increased power at the intermodulation frequencies of the two stimuli (e.g., |fvisual - fauditory
or fvisual + fauditory) (Regan & Regan, 1989). Such intermodulation frequencies arise from nonlinear
interactions of the two oscillatory signals. In the case of audio-visual integration, the
intermodulation likely reflects neuronal activity that combines the signals of the two inputs beyond
linear summation (Regan & Regan, 1988; Zemon & Ratliff, 1984).

However, other authors have reported inconclusive results on the occurrence of such
intermodulation frequencies as a signature of nonlinear audiovisual integration in neural signals.
Furthermore, this integration has so far only been studied in non-semantic contexts (e.g., the
integration of tones and gratings). For example, whereas Regan et al. (1995) identified
intermodulation frequencies (i.e., as a result of tagging an auditory and visual stimulus) in an area
close to the auditory cortex, Giani et al., (2012) identified intermodulation frequencies within (i.e.,
as a result of tagging two signals in the visual domain), but not between modalities (i.e., as a result
of tagging both an auditory and a visual signal).

In both of these previous studies, frequency tagging was applied at relatively low
frequencies (< 30 Hz for visual stimuli, < 40 Hz for auditory stimuli) (Giani et al., 2012; Regan et
al., 1995). This might be problematic, considering that spontaneous neuronal oscillations at lower
frequencies (e.g., alpha and beta oscillations) are likely entrained by frequency tagging (Keitel et
al., 2014; Spaak et al., 2014). In the current study, we use novel projector technology to perform
frequency tagging at high frequencies (rapid invisible frequency tagging; RIFT), and in a semantic
context. Previous work has demonstrated that neuronal responses to a rapidly flickering LED can
be driven and measured up to 100 Hz (Herrmann, 2001), and can successfully be used to study
sensory processing in the brain (Herring, 2017; Zhigalov et al., 2019). We here leverage these
rapid neural responses in order to circumvent the issue of endogenous rhythms interacting with
low-frequency tagging signals.

We use speech-gesture integration as a test case for studying rapid invisible frequency
tagging in a semantic context. Speech-gesture integration is a form of semantic audiovisual
integration that often occurs in natural, face-to-face communication. Previous behavioral and
neuroimaging studies have demonstrated that listeners process and integrate speech and gestures
at a semantic level, and that this integration relies on a network involving left inferior frontal gyrus
(LIFG), left-temporal regions (STS/MTG), motor cortex, and visual cortex (Dick et al., 2014;
Drijvers, Ozylrek, et al., 2018; Drijvers, Ozyurek, et al., 2018; Drijvers et al., 2019; Holle et al.,
2008, 2010; Kircher et al., 2009; Straube et al., 2012; Willems et al., 2007, 2009; Zhao et al.,
2018). Using frequency tagging in such a context to study whether intermodulation frequencies
can be identified as a signature of nonlinear audiovisual integration would provide a proof-of-
principle for the use of such a technique to study the integration of multiple inputs during complex
dynamic settings, such as multimodal language comprehension.
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100 In the present study, we set out to explore whether RIFT can be used to identify
101 intermodulation frequencies as a result of the interaction between a visual and auditory tagged
102  signal in a semantic context. Participants watched videos of an actress uttering action verbs (tagged
103 at fauditory = 61 Hz) accompanied by a gesture (tagged at fuisual = 68 Hz). Integration difficulty of
104  these inputs was modulated by auditory factors (clear/degraded speech) and visual factors
105  (congruent/incongruent gesture). For the visually tagged input, we expected power to be strongest
106  at 68 Hz in occipital regions. For the auditory tagged input, we expected power to be strongest at
107 61 Hz in auditory regions. We expected the interactions between the visually tagged and auditory
108  tagged signal to be non-linear in nature, resulting in spectral peaks at the intermodulation
109  frequencies of fvisual and fauditory (i.€., fvisual + Tauditory @Nd Fvisual — Tauditory). ON the basis of previous
110  work (e.g., Drijvers, Ozyurek & Jensen, 2018a/b, 2019), we expected the locus of the
111 intermodulation frequencies to occur in LIFG and left-temporal regions such as pSTS/MTG, areas
112 known to be involved in speech-gesture integration.

113

114  Methods
115
116  Participants

117  Twenty-nine right-handed native Dutch-speaking adults (age range = 19 - 40, mean age = 23.68,
118  SD =4.57, 18 female) took part in the experiment. All participants reported normal hearing, normal
119  or corrected-to-normal vision, no neurophysiological disorders and no language disorders. All
120  participants were recruited via the Max Planck Institute for Psycholinguistics participant database
121 and the Radboud University participant database, and gave their informed consent preceding the
122 experiment. Three participants (2 females) were excluded from the experiment due to unreported
123 metal in dental work (1) or excessive motion artifacts (>75% of trials affected) (2). The final data
124  setincluded the data of 26 participants.

125
126  Stimulus materials

127  Participants were presented with 160 video clips showing an actress uttering a highly-frequent
128  action verb accompanied by a matching or a mismatching iconic gesture (see for a detailed
129  description of pre-tests on recognizability and iconicity of the gestures, (Drijvers & Ozyurek,
130  2017)). All gestures used in the videos were rated as potentially ambiguous when viewed without
131 speech, which allowed for mutual disambiguation of speech and gesture (Habets et al., 2011).

132 In all videos, the actress was standing in front of a neutrally colored background, in
133 neutrally colored clothes. We predefined the verbs that would form the ‘mismatching gesture’, in
134  the sense that we asked the actress to utter the action verb, and depict the other verb in her gesture.
135  This approach was chosen because we included the face and lips of the actress in the videos, and
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Figure 1 A. lllustration of the structure of the videos. Speech was amplitude-modulated at 61 Hz. B. Illustration of the
different conditions. C. Area used for visual frequency tagging at 68 Hz. D. Illustration of luminance manipulation for
visual-frequency tagging. D. Frequency tagging was achieved by multiplying the luminance of the pixels with a 68 Hz
sinusoid. Modulation signal was equal to 0.5 at sine wave zero-crossing to preserve the mean luminance of the video,
and was phase-locked across trials.

136 we did not want to recombine a mismatching audio track to a video to create the mismatch
137  condition. Videos were on average 2000 ms long (SD = 21.3 ms). After 120 ms, the preparation
138  (i.e., the first frame in which the hands of the actress moved) of the gesture started. On average, at
139 550 ms (SD = 74.4 ms), the meaningful part of the gesture (i.e., the stroke) started, followed by
140  speech onset at 680 ms (SD = 112.54 ms), and average speech offset at 1435 ms (SD = 83.12 ms)
141 None of these timings differed between conditions. None of the iconic gestures were prescripted.
142 All gestures were performed by the actress on the fly.

143 All audio files were intensity-scaled to 70 dB and denoised using Praat (Boersma &
144  Weenink, 2015), before they were recombined with their corresponding video files using Adobe
145  Premiere Pro. For 80 of the 160 sound files, we created noise-vocoded versions using Praat. Noise-
146  vocoding pertains the temporal envelope of the audio signal, but degrades the spectral content
147  (Shannon et al., 1995). We used 6-band noise-vocoding, as we demonstrated in previous work that
148  this is the noise-vocoding level where the auditory signal is reliable enough for listeners to still be
149  able to use the gestural information for comprehension (Drijvers & Ozyurek, 2017). To achieve
150 this, we band-pass filtered the sound files between 50 and 8000 Hz in 6 logarithmically spaced
151  frequency bands with cut-off frequencies at 50, 116.5, 271.4, 632.5, 1473.6, 3433.5 and 8000 Hz.
152 These frequencies were used to filter white noise and obtain six noise bands. We extracted the
153  amplitude envelope of each band using half-wave rectification and multiplied the amplitude
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154  envelope with the noise bands. These bands were then recombined. Sound was presented to
155  participants using MEG-compatible air tubes.

156 We manipulated integration strength in the videos by auditory (clear/degraded) and visual
157  (congruent/incongruent) factors (see Figure 1). This resulted in four conditions: clear speech +
158  matching gesture (CM), clear speech + mismatching gesture (CMM), degraded speech + matching
159  gesture (DM) and degraded speech + mismatching gesture (DMM). These stimuli have been
160  thoroughly pretested and used in previous work on speech-gesture integration (e.g., Drijvers &
161  Ozyurek, 2017; Drijvers, Ozyurek & Jensen, 2018). All of the conditions contained 40 videos. All
162  verbs and gestures were only presented once. Participants were asked to pay attention to the videos
163  and identify what verb they heard in the videos in a 4-alternative forced choice identification task.

164
165 Procedure

166  Participants were tested in a dimly-lit magnetically shielded room and seated 70 cm from the
167  projection screen. All stimuli were presented using MATLAB 2016b (Mathworks Inc, Natrick,
168  USA) and the Psychophysics Toolbox, version 3.0.11 (Brainard, 1997; Kleiner et al., 2007; Pelli,
169  1997). To achieve rapid invisible frequency tagging, we used a GeForce GTX960 2GB graphics
170  card with a refresh rate of 120 Hz, in combination with a PROPixx DLP LED projector (VPixx
171 Technologies Inc., Saint-Bruno-de-Montarville, Canada), which can achieve a presentation rate up
172 to 1440 Hz. This high presentation rate is achieved by the projector interpreting the four quadrants
173 and three colour channels of the GPU screen buffer as individual smaller, grayscale frames, which
174 it then projects in rapid succession, leading to an increase of a factor 12 (4 quadrants * 3 colour
175  channels * 120 Hz = 1440 Hz) (User Manual for ProPixx, VPixx Technologies Inc., Saint-Bruno-
176  de-Montarville, Canada).

177  Frequency tagging

178 The area of the video that would be frequency-tagged was defined by the rectangle in which
179  all gestures occurred, which measured 10.0 by 6.5 degrees of visual angle (width by height). The
180  pixels within that area were always tagged at 68 Hz. This was achieved by multiplying the
181  luminance of the pixels within that square with a 68 Hz sinusoid (modulation depth = 100 %;
182  modulation signal equal to 0.5 at sine wave zero-crossing, in order to preserve the mean luminance
183  of the video), phase-locked across trials (see Figure 1D). For the auditory stimuli, frequency
184  tagging was achieved by multiplying the amplitude of the signal with a 61 Hz sinusoid, with a
185  modulation depth of 100 % (following (Lamminmaéki et al., 2014)). In a pretest, we presented 11
186  native Dutch speakers with half of the stimuli containing the amplitude modulation, and half of
187  the stimuli not containing the amplitude modulation in both clear and degraded speech.
188  Participants were still able to correctly identify the amplitude modulated stimuli in clear speech
189  (mean % correct without amplitude modulation: 99.54, with amplitude modulation: 99.31) and in
190 degraded speech (mean % correct without amplitude modulation: 72.74, with amplitude
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191  modulation: 70.23) and did not suffer more compared to when the signal was not amplitude
192  modulated.

193 Participants were asked to attentively watch and listen to the videos. Every trial started
194  with a fixation cross (1000 ms), followed by the video (2000 ms), a short delay period (1500 ms),
195  and a 4-alternative forced choice identification task (max 3000 ms, followed by the fixation cross
196  of the next trial as soon as a participant pressed one of the 4 buttons). In the 4-alternative forced
197  choice identification task, participants were presented with four written options, and had to identify
198  which verb they heard in the video by pressing one of 4 buttons on an MEG-compatible button
199  box. This task ensured that participants were attentively watching the videos, and to check whether
200 the verbs were understood. Participants were instructed not to blink during video presentation.

201 Throughout the experiment, we presented all screens at a 1440 Hz presentation rate. Brain
202  activity was measured using MEG, and was recorded throughout the experiment. The stimuli were
203  presented in four blocks of 40 trials each. The whole experiment lasted approximately 30 minutes,
204 and participants were allowed to take a self-paced break after every block. All stimuli were
205  presented in a randomized order per participant.

206
207  MEG data acquisition

208  MEG was recorded using a 275-channel axial gradiometer CTF MEG system (CTF MEG systems,
209  Coquitlam, Canada). We used an online low-pass filter at 300 Hz and digitized the data at 1200
210 Hz. All participants’ eye gaze was recorded by an SR Research Eyelink 1000 eye tracker for
211  artifact rejection purposes. The head position of the participants was tracked in real time by
212 recording markers on the nasion, and left and right periauricular points (Stolk et al., 2013). This
213 enabled us to readjust the head position of participants relative to their original starting position
214  whenever the deviation was larger than 5 mm. After the experiment, T1-weighted structural
215  magnetic resonance images (MRI) were collected from 24 out of 26 participants using a Siemens
216 3T MAGNETOM Skyra system.

217
218  MEG data analysis
219  Preprocessing

220  All MEG data were analyzed using the FieldTrip toolbox (version 20180221) (Oostenveld et al.,
221 2011) running in a Matlab environment (2017b). All data were segmented into trials starting 1 s
222 before and ending 3 s after the onset of the video. The data were demeaned and line noise was
223 attenuated using a discrete Fourier transform approach at 50, 100 and 150 Hz. All trials that
224  contained jump artifacts or muscle artifacts were rejected using a semi-automatic routine. The data
225  were then down-sampled to 400 Hz. Independent component analysis (Bell & Sejnowski, 1995;
226  Jungetal., 2000) was used to remove residual eye movements and cardiac-related activity (average
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227  number of components removed: 6.05). All data were then inspected on a trial-by-trial basis to
228 remove artifacts that were not identified using these rejection procedures. These procedures
229  resulted in rejection of 8.3 % of the trials. The number of rejected trials did not differ significantly
230  between conditions.

231 Frequency tagging analyses - Sensor-level

232 Toinvestigate the response in auditory and visual regions to the frequency-tagged signal, we first
233 calculated event-related fields by averaging time-locked gradiometer data over trials, over
234  conditions, and over participants. All tagged stimuli were presented phase-locked over trials. We
235  used an approximation of planar gradiometer data to facilitate interpretation of the MEG data, as
236  planar gradient maxima are thought to be located above the neuronal sources that may underlie
237  them (Bastiaansen & Kndsche, 2000). This was achieved by converting the axial gradiometer data
238  to orthogonal planar gradiometer pairs, which were combined by using root-mean-square (RMS)
239  for the ERFs. For the power analyses, we computed the power separately for the two planar
240  gradient directions, and combined the power data by averaging the two. To visualize the responses
241  per tagging frequency (Figure 3), we used a notch (i.e. band-stop) filter between 60 and 62 Hz to
242  display the ERF at 68 Hz, and a notch filter between 67 and 69 Hz to display the ERF at 61 Hz.

243 We then performed a spectral analysis on an individual’s ERF data pooled over conditions,
244  in the time window in which both the auditory and visual stimulus unfolded (0.5 - 1.5 s), and a
245  post-stimulus baseline (2.0 - 3.0s). We chose this post-stimulus time window as a baseline because,
246  contrary to the pre-stimulus time window, it is not affected by the button press of the 4-alternative
247  forced choice identification task. We chose the 0.5-1.5 s time window to focus our analysis on,
248  because this time window captures both the meaningful part of the gesture and the full speech
249  signal. We computed power spectra in frequencies ranging from 1 to 130 Hz for both the baseline
250  and stimulus window using fast Fourier transform and a single Hanning taper of the 1s segments.
251  This data was then averaged over conditions, and the stimulus window was compared to the
252 baseline window.

253  Frequency tagging analyses - Source-level

254  To reconstruct activity at the tagging frequencies, we calculated coherence between a pure sine
255  wave at either 61 Hz or 68 Hz, reflecting the tagged stimulus, and the observed MEG signal at
256  those frequencies. Although the phase of the tagging was designed to be identical over trials, the
257  projector that we used occasionally experienced a brief delay in presenting the video material (in
258 16 of the 26 participants). We corrected for this by translating any observed delays between video
259  onset and offset markers (recorded in a stimulus trigger channel) into a phase-difference, which
260  was then subtracted from the tagging signal. Note that this correction only uses information in the
261  stimulus marker channel and the length of the original video files, and does not rely on any
262  information in the measured MEG signal.
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263 We performed source analysis to identify the neuronal sources that were coherent with the
264  modulation signal at either 61 Hz or 68 Hz, and compared the difference in coherence in the
265  stimulus and post-stimulus window. This was done pooled over conditions. Source analyses on
266  coherence values (for 61 and 68 Hz) and power values (for the intermodulation frequency at 7 Hz,
267  see results), was performed using dynamic imaging of coherent sources (DICS; (Gross et al.,
268  2001)) as a beamforming approach. We computed a common spatial filter per subject from the
269 lead field matrix and the cross-spectral density matrix (CSD) that was the same for all conditions.
270  Anindividual’s leadfield was obtained by spatially co-registering an individual’s anatomical MRI
271  to the MEG data by the anatomical markers at the nasion and left and right periaucular points.
272 Then, for each participant, a single-shell head model was constructed on the basis of the MRI
273 (Nolte, 2003). A source model was created for each participant by warping a 10 mm spaced grid
274  defined in MNI space to the individual participant’s segmented MRI. The MNI template brain was
275  used for those participants (2/26) for which an individual MRI scan was not available.

276 After establishing regions that showed elevated coherence with the tagged stimuli, we
277  proceeded to test the effect of the experimental conditions (clear versus degraded speech; matching
278  versus mismatching gesture) within these regions-of-interest (ROIs). The ROIs for the auditory
279  and visual tagged signals were defined by taking the grid points that exceeded 80 percent of the
280  peak coherence difference value between stimulus and baseline, across all conditions. For these
281  ROIs, coherence difference values were extracted per condition. Analogously, the ROI for the
282  intermodulation frequency at 7 Hz was defined by taking those grid points that exceeded 80 percent
283  of the peak power difference value between stimulus and baseline. The 80 percent threshold was
284  chosen as an exploratory threshold.

285  Statistical comparisons

286  As we predefined our frequencies of interest and have specific regions of interest for analysis, we
287  compared the differences between conditions using 2x2 repeated measures ANOVAs, with the
288  factors Speech (clear/degraded) and Gesture (matching/mismatching).

289
290 Results

291  Participants watched videos of an actress uttering action verbs in clear or degraded speech,
292  accompanied by a matching or mismatching gesture. After the video, participants were asked to
293  identify the verb they heard in a 4-alternative forced choice identification task, presented on the
294  screen in written form. Video presentation was manipulated by tagging the gesture space in the
295  video by 68 Hz flicker, while the sound in the videos was tagged by 61 Hz amplitude modulation
296  (see Figure 1).

297
298 Behavioral results
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Figure 2 A: Accuracy results per condition. Response accuracy is highest for clear speech conditions, and when a
gesture matches the speech signal. B: Reaction times per condition. Reaction times are faster in clear speech and when
a gesture matches the speech signal. Raincloud plots reveal raw data, density and boxplots for coherence change.

299  In our behavioral task we replicated previous results (see Drijvers, Ozyiirek, et al., 2018; Drijvers
300 & Ozyiirek, 2018) and observed that when the speech signal was clear, response accuracy was
301 higher than when speech was degraded (F(1, 25) = 301.60, p < .001, partial n? = .92) (mean scores
302 and SDs: CM: 94.7% (SD = 4.0%), CMM: 90.2% (SD = 5.6%), DM: 85.0% (SD = 8.2%), DMM:
303 66.5% (SD = 7.8%)). Similarly, response accuracy was higher when a gesture matched compared
304  to mismatched the speech signal (F(1, 25) = 184.29, p < .001, partial n? = .88). The difference in
305  response accuracy was larger in degraded speech than in clear speech (F(1, 25) = 4.87, p < .001,
306  partial n? = .66) (see raincloud plots (Allen et al., 2019), Figure 2).

307  We observed similar results in the reaction times (RTs). Participants were faster to identify the
308 verbs when speech was clear, compared to when speech was degraded (F(1, 25) = 198,06, p <
309 .001, partial n? = .89) (mean RTs and SDs: CM: 1086.3 ms, SD = 177.1 ms, CMM: 1127.92 ms,
310 SD = 153.84 ms, DM: 1276.96 ms, SD = 230.13 ms, DMM: 1675.77 ms, SD = 246.69 ms).
311  Participants were faster to identify the verbs when the gesture matched the speech signal, compared
312 to when the gesture mismatched the speech signal (F(1, 25) = 105,42, p < .001, partial n? = .81).
313  This difference in reaction times was larger in degraded speech than in clear speech (F(1, 25) =
314 187,78, p <.001, partial n? = .88).

315 In sum, these results demonstrate that gestures facilitate speech comprehension when the
316 actress performed a matching gesture, but hindered comprehension when she performed a
317  mismatching gesture. This effect was larger in degraded speech than in clear speech.

318
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Figure 3: Event-related fields show clear responses at the tagged frequencies. Auditory input was tagged by 61 Hz
amplitude modulation (A), Visual input was tagged by 68 Hz flicker (B). The insets reflect an enlarged part of the
signal to clearly demonstrate the effect of the tagging on the event-related fields. Tagging was phase-locked over trials.
A: Average ERF for a single subject at selected sensors overlying the left and right temporal lobe. The highlighted
sensors in the right plot reflect the sensors for which the ERF is plotted. B: Average ERF for 68 Hz for a single subject
at selected sensors overlying occipital cortex. The highlighted locations in the right plot reflect the sensors for which
the ERF is plotted. ERFs show combined planar gradient data.

319 MEG results - Frequency tagging

320 Both visual and auditory frequency tagging produce a clear steady-state response that is larger
321  than baseline

322 As a first step, we calculated the time-locked averages of the event-related fields pooled over
323 conditions. Auditory frequency tagging at 61 Hz produced an auditory steady-state response over
324 leftand right-temporal regions (see Figure 3A), and visual frequency tagging at 68 Hz produced a
325 clear visual steady-state response at occipital regions (see Figure 3B).

326  Toexplicitly compare the tagged signals between stimulus (0.5 — 1.5 s) and post-stimulus baseline
327 (2.0 — 3.0 s) periods, we plotted the difference in spectral power calculated from the ERF (i.e.
328  power of the time-locked average) in Figure 4. We observe that both visual and auditory responses
329 at the tagged frequency were reliable larger in the stimulus period than in the baseline (see below
330 for statistical assessment at the source level). Note that the visual tagged signal at 68 Hz seems to
331  be more focal and strong than the auditory tagged signal at 61 Hz (see Figure 4). These analyses
332 confirm that we were able to induce high-frequency steady-state responses simultaneously for both
333 auditory and visual stimulation.

334
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Figure 4: A: Power over auditory sensors peaks at the tagged frequency of the auditory stimulus (61 Hz). Note the
visual 68 Hz tagged signal is still observable at left- and right-temporal sensors of interest. 61 Hz power is stronger in
the stimulus interval than in the baseline interval, and is widely spread over posterior regions, with maxima at right-
temporal regions. B: A power increase is observed at the tagged frequency (68 Hz) for the visual stimuli. 68 Hz power
is larger in the stimulus than in the baseline window and is strongest over occipital regions.

335  Coherence is strongest at occipital regions for the visually tagged signal (68 Hz) and strongest
336 when speech is clear

337  We proceeded to identify the neural generators of the tagged signals using beamformer source
338 analysis. We computed source-level coherence coefficients for all conditions pooled together. This
339  was done by computing coherence between a visual dummy 68 Hz modulation signal and the
340 observed MEG data. The relative coherence increase between stimulus and baseline was largest in
341  occipital regions (see Figure 5A), in an area consistent with early visual cortex.

342 To compare conditions, we then formed a visual ROI by selecting those grid points
343  exceeding an exploratory threshold of 80 % of the peak coherence increase. For each participant,
344  the percentage of change in coherence between stimulus and baseline was computed in that ROI
345  per condition and compared in a 2x2 (Speech: clear/degraded, Gesture: matching/mismatching)
346 RM-ANOVA (see Figure 5B). Coherence change was larger for videos containing clear speech
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Figure 5: Sources of the visually tagged signal at 68 Hz (A/B) and sources of the auditory tagged signal at 61 Hz
(C/D), and individual scores in the respective ROl per condition (clear match/clear mismatch/degraded
match/degraded mismatch. Z-coordinates of slices are in mm and in MNI space. A: Coherence change in percentage
when comparing coherence values in the stimulus window to a post-stimulus baseline for 68 Hz (the frequency of the
visual tagging), pooled over conditions. Only positive coherence change values are plotted (>80% of peak maximum).
Coherence change is largest over occipital regions for the visually tagged signal. B: Coherence change values in
percentage extracted from the 68 Hz ROI. Raincloud plots reveal raw data, density and boxplots for coherence change.
C: Coherence change in percentage when comparing coherence values in the stimulus window to a post-stimulus
baseline for 61 Hz (the frequency of the auditory tagging), pooled over conditions. Only positive coherence values are
plotted (>80% of peak maximum). Coherence change is largest over right-temporal regions. D: Coherence change
values in percentage extracted from the 61 Hz ROI. Raincloud plots reveal raw data, density and boxplots for coherence
change.

347  than videos containing degraded speech (F(1, 25) = 17.14, p <.001, partial n2 = .41), but did not
348  differ between matching or mismatching trials (F(1, 25) = 0.025, p = .87, partial n2 =.001). We
349  observed a significant interaction between Speech and Gesture (F(1, 25) = 26.87, p < .001, partial
350 12 = .52). Post-hoc pairwise comparisons revealed a stronger coherence change in videos
351  containing clear speech and a matching gesture (CM) than clear speech and a mismatching gesture
352 (CMM) (t(25) = 3.26, p = .015), and a stronger coherence change in videos containing degraded
353  speech and a mismatching gesture (DMM) than in videos containing degraded speech and a
354  matching gesture (DM) (t(25) = -4.03, p < .001). Coherence change was larger in CM than in DM
355  (t(25) = 6.59, p <.001), in CMM than DM (t(25) = 2.93, p = .04), but not larger in CM than in
356 DMM (t(25) = 2.02, p =.27), and not larger in CMM compared to DMM (t(26) = -1.74, p=.48).
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Figure 6: An intermodulation frequency could be observed at 7 Hz (|fvisua-fauditory]) (A/C/E) but not 129 Hz
(Fvisuartfauditory)- (D). Az 7 Hz power in the stimulus window is larger than baseline over left-temporal and left-frontal
sensors. Only positive values are plotted. B: Selected sensors (based on visual inspection). The black highlighted
sensors represent the sensors at which the power spectra of the ERFs was calculated. C: Power spectra of 7 Hz
(stimulus>baseline). D: No difference could be observed at 129 Hz between stimulus and baseline. E: Power spectra
per condition. 7 Hz power peaks strongest in the clear+match condition. F: Power spectra of 61 Hz and 68 Hz over
selected channels of 7 Hz power peak (see B).

357

358  These results thus indicate that visual regions responded stronger to the frequency-tagged gestural
359  signal when speech was clear than when speech was degraded. This suggests that when speech is
360 clear, participants allocate more visual attention to gestures than when speech is degraded,
361  especially when a gesture matched the speech signal. When speech is degraded, participants
362 allocate more attention to mismatching than to matching gestures.

363  Coherence is strongest at right-temporal regions for the auditory tagged signal (61 Hz) and
364  strongest when speech is degraded

365  Similar to the visually tagged signal, we first computed coherence coefficients for all conditions
366  pooled together. This was done by computing source-level coherence between a dummy 61 Hz
367 modulation signal (reflecting the auditory tagging drive) and the observed MEG data. The
368  coherence difference between stimulus and baseline peaked at right temporal regions (Figure 5C),
369 inan area consistent with (right) early auditory cortex.

370 To compare conditions, we then formed the auditory ROI by selecting those grid points
371  exceeding an exploratory threshold of 80 % of peak coherence change. Again, coherence change
372 values per condition and per participant were compared in a 2x2 RM-ANOVA (see Figure 5D).
373  Coherence change was larger in degraded speech conditions than in clear speech conditions (F(1,
374  25) = 12.87, p = .001, partial n2 = .34), but did not differ between mismatching and matching
375  conditions (F(1, 25) = 0.09, p = .77, partial n2 =.04). No interaction effect was observed (F(1, 25)
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376 = 3.13, p = .089, partial n2 = .11). Post-hoc pairwise comparisons revealed that there was no
377  difference in coherence change when comparing CM and CMM (t(25) =-1.44, p =.81), or between
378 DM and DMM (t(25) = 1.38, p = .90). Coherence change was larger in DM than in CM (t(25) = -
379 4.24,p <.001), and in DMM than in CM (t(25) = -3.90, p < .01) but not when comparing CMM
380 to DMM (t(25) =-1.40, p = .87). These results thus indicate that right-lateralized auditory regions
381  processed the frequency-tagged auditory signal more strongly when speech was degraded than
382  when speech was clear. This suggests that when speech is degraded, participants allocate more
383  auditory attention to speech than when speech is clear.

384  An intermodulation frequency was observed at 7 Hz (|fvisual - fauditory]), but not at 129 Hz (fuisual +
385  fauditory)

386  To test whether intermodulation frequencies (|fvisual - fauditory|, fvisual + fauditory) could be observed,
387  we then calculated power spectra of the ERFs in the stimulus time window and the post-stimulus
388  time window at 7 Hz and 129 Hz. Only for 7 Hz a difference between stimulus and baseline was
389  observed at left frontal and left temporal sensors (Figure 6A/C). No reliable differences were
390 observed for 129 Hz (Figure 6D). Interestingly, the spectral peak at 7 Hz during stimulus was most
391  pronounced for the clear/match condition (Figure 6E).

392 As a next step, we then took a similar approach as for the visual and auditory tagged stimuli
393 and calculated the coherence difference between stimulus and baseline at 7 Hz, pooled over
394  conditions. This was done by computing source-level coherence between a dummy 7 Hz
395  modulation signal (the intermodulation frequency of our 61 and 68 Hz tagging signals, specified
396 as the multiplication of the 61 and 68 Hz dummy signal) and the observed MEG data. The
397  coherence analysis did not reveal any differences between stimulus and baseline (see Figure 7A).
398 It should be noted here that our frequency-tagged signals at fauditory and fisual Were exactly phase-
399  consistent across trials, since the phase was uniquely determined by the stimuli themselves.
400 However, it is possible that the phase of the intermodulation signal has a much weaker phase
401  consistency across trials, since it depends not only on the stimuli but also on the nature of the
402  nonlinear neural interaction. If this is the case, we might still observe an effect on the power at the
403  intermodulation frequency, rather than the coherence. We therefore performed source analysis on
404  the power of the combined conditions versus baseline. Here, we observed a power change at 7 Hz
405 in left frontal and temporal regions that mirrored the effect we observed at sensor level (Figure
406  7B).

407 The condition-averaged effect at the intermodulation frequency of 7 Hz is less striking than
408  at the primary tagged frequencies of 61 and 68 Hz, potentially due to it being driven mainly by
409  one of the four conditions only (see Figure 6E). Note that the 61 and 68 Hz signal were still present
410  over the left-frontotemporal sensors where we observed the 7Hz effect (see Figure 6F). As a next
411  step, and sticking to our a priori defined hypotheses and analysis plan, we again proceeded by
412  comparing conditions within an ROI defined by the condition-averaged contrast in source space.
413  As before, the ROI was defined as those grid points exceeding an exploratory threshold of 80 %
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Figure 7: Sources of the intermodulation frequency (fvisua-faudioy) at 7 Hz and individual scores in the left-
frontotemporal ROI per condition (clear match/clear mismatch/degraded match/degraded mismatch). Z-coordinates
of slices are in mm and in MNI space. A: Coherence change in percentage when comparing coherence values in the
stimulus window to a post-stimulus baseline for 7 Hz (intermodulation frequency, fyisuai - fauditory), pooled over
conditions. Only positive coherence values are plotted (> 80 % of maximum). No differences could be observed. B:
Power change in percentage when comparing power values in the stimulus window to a post-stimulus baseline for 7
Hz, pooled over conditions. Power changes were largest in left-frontal and left-temporal regions. Highest peak value
was at MNI coordinates -44, 24, 22, and extended from LIFG to pSTS/MTG. Only positive coherence values are
plotted (> 80 % of maximum). C: Power change values in percentage extracted from the 7 Hz ROI in source space.
Raincloud plots reveal raw data, density and boxplots for power change per condition. D: Power change in percentage
when comparing power values in the stimulus window to a post-stimulus baseline for 7Hz, per condition.

of the peak power change from baseline to stimulus epochs. We compared the strength of the 7 Hz
signal at source level between conditions by using a 2x2 RM-ANOVA (Figure 7C). Power change
was larger in clear speech conditions than in degraded speech conditions (F(1, 25) = 10.26, p =
.004, partial n2 = .29), but did not differ between matching and mismatching trials (F(1, 25) =
0.01, p = .91, partial n2 = .001), suggesting an effect of speech degradation, but not of semantic
congruency. No interaction effect was observed (F(1, 25) = 1.27, p = .27, partial 2 = .05). Post-
hoc pairwise comparisons revealed that 7 Hz power was not different for CM compared to CMM
(t(25) = 1.14, p = 1), and not different for DM compared to DMM (t(25) = -.67, p = 1). However,
7 Hz power was larger in CM than in DM (t(25) = 3.01, p =.025), and larger in CM than in DMM
(t(25) = 2.82, p = .045). No difference was observed between CMM and DMM (t(25) = 1.61, p =
.6). To rule out that these differences in 7 Hz power were due to general power differences in the
theta band, we compared the strength of 6 Hz and 8 Hz between conditions, using two 2x2 RM-
ANOVA'’s. Here, no differences between conditions were observed (all p > 0.05), suggesting this
was specific to the 7 Hz signal. These results are also in line with previous MEG studies on speech-
gesture integration, where no differences in theta power were observed (Drijvers, Ozyirek, et al.,
2018; Drijvers, Ozyurek, et al., 2018b; Drijvers, van der Plas, et al., 2019).

In addition to our ROI-based analysis, we present the full beamformer source maps of 7
Hz power (stimulus versus baseline) for the four conditions in Figure 7D. These reveal results fully
compatible with the aforementioned RM-ANOVA. Furthermore, they show that our ROI selection
on the condition-averaged response versus baseline was likely suboptimal, since the source map
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434  for CM shows a more clearly elevated intermodulation cluster than the average (in line with the
435  sensor-level results shown in Figure 6A).

436 These results thus demonstrate that we could reliably observe an intermodulation signal
437  when speech was clear and a gesture matched the speech signal. Left-frontotemporal regions
438  showed a stronger intermodulation peak (reflecting the lower-order interaction between the
439  auditory and visually tagged signal) when speech was clear than when speech was degraded. This
440  suggests that the interaction between the auditory and visual tagged signal is strongest when signal
441  quality was optimal and speech was clear.

442
443  Discussion

444  In the current MEG study we provide a proof-of-principle that rapid invisible frequency tagging
445  (RIFT) can be used to estimate task-dependent neuronal excitability in visual and auditory areas,
446  as well as the auditory-visual interaction. Coherence was strongest over occipital regions for the
447  visual-tagged input, and strongest when speech was clear. Coherence was strongest over right-
448  temporal regions for the auditory-tagged input and strongest when speech was degraded.
449  Importantly, we identified an intermodulation frequency at 7 Hz (fvisual - fauditory) as a result of the
450 interaction between a visual frequency-tagged signal (gesture; 68 Hz) and an auditory frequency-
451  tagged signal (speech; 61 Hz). In line with our hypotheses, power at this intermodulation frequency
452  was strongest in LIFG and left-temporal regions (pSTS/MTG), and was strongest when the lower-
453  order integration of auditory and visual information was optimal (i.e., when speech was clear).
454  Below we provide interpretations of these results.

455
456  Clear speech enhances visual attention to gestural information

457  In occipital regions, we observed a stronger drive by the 68 Hz visual modulation signal when
458  speech was clear than when speech was degraded. We speculate that this effect reflects that
459 listeners allocate more visual attention to gestures when speech is clear. This speculative
460 interpretation is in line with previous eye-tracking work that demonstrated that when speech is
461  degraded, listeners gaze more often to the face and mouth than to gestures to extract phonological
462  information to aid comprehension (Drijvers, Vaitonyté, et al., 2019), as well as previous work that
463  revealed that the amplitude of SSVEPs was enhanced by visual attention, irrespective of whether
464  the stimuli were task-relevant (Morgan et al., 1996; Muller et al., 2006). Note that gestural
465 information is often processed in the periphery of a listener’s visual field (Gullberg & Holmagvist,
466 1999, 2002, 2006; Gullberg & Kita, 2009). As listeners do not necessarily need to extract the
467  phonological information conveyed by the lips when speech is clear, overt visual attention might
468  be directed to a ‘resting’ position in the middle of the screen during clear speech processing,
469  resulting in stronger coherence with the visual drive when speech is clear than when speech is
470  degraded. Pairwise comparisons of the conditions revealed that in clear speech, coherence was
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471  larger when the gesture matched, rather than mismatched, the signal. In line with the interpretation
472  above, a listener might have reconsidered the auditory input when noticing that the gesture
473  mismatched the perceived auditory input, and might have directed their attention to the face/lips
474  of the actress, which, in turn, reduces visual attention to the gesture.

475 However, we observed the opposite effect when speech was degraded; i.e. a stronger
476  coherence when the gesture mismatched, rather than matched, the degraded speech signal. We
477  speculate that when speech is degraded and a gesture matches the signal, a listener might more
478  strongly allocate visual attention to the information conveyed by the face/lips, so that information
479  conveyed by the lips and the information conveyed by the gesture can jointly aid in disambiguating
480  the degraded speech signal (Drijvers & Ozyirek, 2017). However, when speech is degraded and
481  a gesture mismatches the signal, the uncertainty of both inputs may result in a reconsideration of
482  both inputs, and thus a less fixed locus of attention (see also Nath & Beauchamp, 2011 for work
483  on perceptual reliability weighting in clear and degraded speech). These interpretations are rather
484  speculative, and further work is needed to disambiguate different interpretations. For example,
485  future work could consider tagging the mouth-region to further investigate how a listener allocates
486  visual attention to these two visual articulators during comprehension

487
488  Degraded speech enhances auditory attention to speech information

489 In line with our hypotheses, we observed stronger drive by the 61 Hz amplitude modulation signal
490 in temporal areas overlapping with auditory cortex when speech was degraded than when speech
491  was clear. This response was strongest at right-temporal regions, which is in line with previous
492  work that demonstrated that for speech stimuli, the ASSR is often localized to right-lateralized
493  sources (Lamminmaki et al., 2014; Ross et al., 2005). Although both left- and right-hemispheres
494  process speech, a right-lateralized dominance is often observed because right-lateralized regions
495 are sensitive to spectral changes and prosodic information, and processing of low-level auditory
496  cues (Zatorre & Gandour, 2008; Scott et al., 2000).

497 Previous work has reported enhanced ASSR responses to amplitude-modulated multi-
498  speech babble when attention to this input increases (Keitel et al., 2011; Ross et al., 2004; Saupe
499  etal., 2009; Talsma et al., 2010; Tiitinen et al., 1993). The enhanced ASSR which we observed in
500 the degraded compared to clear speech conditions could thus reflect an increase in attention to the
501  speech signal when speech is degraded. Note that no differences in coherence were observed when
502  comparing matching and mismatching gestures in either clear or degraded speech. As the gesture
503  congruency manipulation is a visual manipulation, this indicates that modulation of the ASSR is
504  modality-specific (Parks et al., 2011; Rees et al., 2001).

505

506 The auditory tagged speech signal and visual tagged gesture signal interact in left-
507 frontotemporal regions
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508  We set out to study whether intermodulation frequencies could be identified in a multimodal,
509  semantic context as a result of the interaction of the visual and auditory tagged signals. In contrast
510 to previous work by (Giani et al., 2012) using lower frequencies, we did observe an
511  intermodulation frequency at 7 Hz (fvisual - fauditory), but not at 129 Hz (fuisual + fauditory). AS responses
512 in lower frequencies tend to be stronger than in higher frequencies, the higher-frequency
513 intermodulation frequency might not have been identifiable as neurons cannot be driven in this
514  fast range.

515 Note that although we observed a stronger 7 Hz power peak at sensor level in the stimulus
516 interval compared to the baseline interval, we did not observe stronger coherence between a 7 Hz
517  dummy signal and the observed MEG data at source level. This indicates that the phase of the
518  intermodulation signal is not as consistent over trials as the fvisuar and fauditory Signals, which in turn
519  might imply that the time point of interaction of the two signals differs across trials. This could
520  explain why we observed a clear difference between stimulus and baseline when we reconstructed
521  the sources of the intermodulation frequency on the basis of power, but not coherence.

522 We observed a reliable peak at 7 Hz power during stimulation when integration of the
523  lower-order auditory and visual input was optimal, i.e., when speech was clear. In line with our
524  hypotheses, the source of the intermodulation frequency was localized in LIFG and left-temporal
525  (pSTS/MTG) regions. It has been shown that these areas are involved in the integration of speech
526  and gestures (Dick et al., 2014; Drijvers, Ozyurek, et al., 2018; Drijvers, Ozyurek, et al., 2018;
527  Drijvers, van der Plas, et al., 2019; Holle et al., 2008, 2010; Kircher et al., 2009; Straube et al.,
528  2012; Willems et al., 2007, 2009; Zhao et al., 2018). There are, however, important differences
529  between the interpretation of the intermodulation frequency in this work, and the results observed
530 inresponse to higher-order speech-gesture integration in previous work.

531 First, although previous work has observed effects related to higher-order integration in
532 LIFG and pSTS/MTG, the observed intermodulation frequency in the current work is most likely
533 related to lower-order integration. Specifically, we observed that power at the intermodulation
534  frequency was stronger in clear speech conditions than in degraded speech conditions, but we did
535  not observe an effect of gesture congruency. We therefore propose that, contrary to our hypotheses,
536  power at the intermodulation frequency does not reflect the integration of higher-order semantic
537 audiovisual integration, but rather is a direct reflection of the non-linear integration of lower-order
538  speech and gesture information. This difference might be explained by considering that the
539 intermodulation frequency is unable to capture higher-order effects that result from lexical access
540 on the basis of the auditory and visual input. Second, the current work is not able to dissociate
541  between the different roles of the LIFG and pSTS/MTG in the speech-gesture integration process.
542  The accuracy of source modeling using MEG should be considered in the light of the inverse
543  problem (Baillet, 2017). This limits our ability to make precise claims about the exact locus of the
544  observed effect when comparing to fMRI (see e.g., Papeo et al., 2019, for a functional distinction
545  of different subregions of the MTG in the speech-gesture integration process). Furthermore, fMRI
546 is sensitive to modulations in the BOLD signal whereas MEG detects changes in neuronal
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547  synchronization. As such, these techniques provide complementary but not necessarily
548  overlapping information on neuronal activation.

549  Proof of principle: using RIFT to study the integration of complex and dynamic audiovisual
550  stimuli in a semantic context.

551  The current MEG study provides a proof of principle of the use of rapid invisible frequency tagging
552 (RIFT) to study the integration of audiovisual stimuli, and is the first study to identify
553  intermodulation frequencies as a result of the lower-order interaction between auditory and visual
554  stimuli in a semantic context. Note that although previous work has reported the occurrence of
555 intermodulation frequencies in a non-semantic context (Regan et al., 1995), other studies have
556 failed to identify between-modality intermodulation frequencies (Giani et al., 2012). This could be
557  due to the fact that lower frequencies were used for tagging. Another possibility is that this was
558  due to the nature of the stimuli used in these studies. As Giani et al., (2012) suggest, the occurrence
559  of intermodulation frequencies resulting from audiovisual integration of non-semantic inputs such
560 as tones and gratings might reflect low-level spatiotemporal coincidence detection that is
561  prominent for transient stimuli, but less so for sustained steady-state responses. Similarly, previous
562  fMRI work that investigated the difference between transient and sustained BOLD responses
563  revealed that primary auditory and visual regions were only involved in the integration of rapid
564  transient stimuli at stimulus onset. However, integration for sustained responses did involve
565  higher-order areas (Werner & Noppeney, 2011). The observed 7 Hz intermodulation frequency in
566  response to our semantic audiovisual stimuli was also localized to higher-order areas, rather than
567 early sensory regions. This again underlines the possibility that the observed intermodulation
568  frequency in the current study reflects the ease of lower-order integration of these audiovisual
569  stimuli in certain higher-order regions.

570 An important advantage of using RIFT is that spontaneous neuronal oscillations in lower
571  frequencies were not entrained by our tagging frequencies. This might explain why a clear
572  intermodulation frequency was observed in the current study, but was less easy to identify in
573  previous work. Future studies might consider exploiting this feature and using RIFT to study the
574 interaction of these endogenous lower frequency oscillations with the tagged signals, in order to
575 elucidate their role in sensory processing. However, future work should also consider that high-
576  frequency tagging might entrain spontaneous neuronal oscillations at higher frequencies. Although
577  this was not directly relevant for the identification of the intermodulation frequency in this study,
578 and we did not observe any gamma band modulations in response to the stimuli used in this study
579 in earlier work (Drijvers, Ozyurek & Jensen, 2018b), it should be noted that gamma band
580 modulations have been observed in other work related to linguistic semantic processing (e.g., in
581  the 30-50 Hz range in Mellem et al., 2013; Wang et al., 2018).

582  Conclusion

583  Firstof all, we provided a proof of principle that RIFT can be used to tag visual and auditory inputs
584  at high frequencies, resulting in clear spectral peaks in the MEG signal, localized to early sensory
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585  cortices. Second, we demonstrated that RIFT can be used to identify intermodulation frequencies
586 in a multimodal, semantic context. The observed intermodulation frequency was the result of the
587  nonlinear interaction between visual and auditory tagged stimuli. Third, the intermodulation signal
588  was localized to LIFG and pSTS/MTG, areas known to be involved in speech-gesture integration.
589  The strength of this intermodulation frequency was strongest when lower-order signal quality was
590 optimal. In conclusion, we thus propose that the strength of this intermodulation frequency reflects
591  the ease of lower-order audiovisual integration, that RIFT can be used to study both unimodal
592  sensory signals as well as their multimodal interaction in downstream higher-order areas, and that
593  RIFT has many use cases for future work.
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