

1 Learning excitatory-inhibitory neuronal assemblies in recurrent
2 networks

3 Owen Mackwood^{1,2}, Laura B. Naumann^{1,2}, and Henning Sprekeler^{*1,2}

4 *¹Berlin Institute of Technology, Marchstr. 23, 10587 Berlin, Germany*

5 *²Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany*

6 May 2020

7 **Abstract**

8 In sensory circuits with poor feature topography, stimulus-specific feedback inhibition necessitates
9 carefully tuned synaptic circuitry. Recent experimental data from mouse primary visual cortex (V1)
10 show that synapses between pyramidal neurons and parvalbumin-expressing (PV) inhibitory interneu-
11 rons tend to be stronger for neurons that respond to similar stimulus features. The mechanism that
12 underlies the formation of such excitatory-inhibitory (E/I) assemblies is unresolved. Here, we show
13 that activity-dependent synaptic plasticity on input and output synapses of PV interneurons generates
14 a circuit structure that is consistent with mouse V1. Using a computational model, we show that both
15 forms of plasticity must act synergistically to form the observed E/I assemblies. Once established, these
16 assemblies produce a stimulus-specific competition between pyramidal neurons. Our model suggests
17 that activity-dependent plasticity can enable inhibitory circuits to actively shape cortical computa-
18 tions.

19 **Introduction**

20 With the advent of modern optogenetics, the functional role of inhibitory interneurons has developed
21 into one of the central topics of systems neuroscience [Fishell and Kepcs, 2019]. Aside from the
22 classical perspective that inhibition serves to stabilize recurrent excitatory feedback loops in neuronal
23 circuits [van Vreeswijk and Sompolinsky, 1996, Brunel, 2000, Murphy and Miller, 2009, Sprekeler,

24 2017], it is increasingly recognised as an active player in cortical computation [Isaacson and Scanziani,
25 Priebe and Ferster, 2008, Rubin et al., 2015, Pouille and Scanziani, 2001, Letzkus et al., 2011,
26 Adesnik et al., 2012, Hennequin et al., 2014, Phillips et al., 2017, Barron et al., 2016, 2017, Tovote
27 et al., 2015].

28 Within cortical neurons, excitatory and inhibitory currents are often highly correlated in their
29 response to stimuli [Wehr and Zador, 2003, Froemke et al., 2007, Tan et al., 2011, Bhatia et al., 2019],
30 in time [Okun and Lampl, 2008, Dipoppa et al., 2018] and across neurons [Xue et al., 2014]. This co-
31 tuning of excitatory and inhibitory currents has been attributed to different origins. In topographically
32 organised sensory areas such as cat primary visual cortex, the co-tuning with respect to sensory stimuli
33 could be a natural consequence of local feedback inhibition and does not impose strong constraints on
34 inhibitory circuitry [Harris and Mrsic-Flogel, 2013]. In the case of feedforward inhibition, co-tuning
35 of excitatory and inhibitory currents was suggested to arise from homeostatic synaptic plasticity in
36 GABAergic synapses [Vogels et al., 2011, Clopath et al., 2016, Weber and Sprekeler, 2018, Hennequin
37 et al., 2017].

38 In sensory areas with poor feature topography, such as primary visual cortex of rodents [Ohki et al.,
39 2005], feedback inhibition has been hypothesised to be largely unspecific for stimulus features, a prop-
40 erty inferred from the dense connectivity [Fino and Yuste, 2011, Packer and Yuste, 2011] and reliable
41 presence of synapses connecting pyramidal (Pyr) neurons to inhibitory interneurons with dissimilar
42 stimulus tuning [Harris and Mrsic-Flogel, 2013, Bock et al., 2011, Hofer et al., 2011]. However, recent
43 results cast doubt on this idea of a “blanket of inhibition” [Fino and Yuste, 2011, Packer and Yuste,
44 2011].

45 In mouse primary visual cortex (V1), Znamenskiy et al. [2018] report that although the presence
46 of synaptic connections between Pyr cells and parvalbumin-positive (PV) interneurons is independent
47 of their respective stimulus responses, the efficacy of those synapses is correlated with their response
48 similarity, both in PV → Pyr and in Pyr → PV connections. These mutual preferences in synaptic
49 organization suggest that feedback inhibition may be more stimulus-specific than previously thought
50 and that Pyr and PV neurons form specialized—albeit potentially overlapping—excitatory-inhibitory
51 (E/I) assemblies [Chenkov et al., 2017, Yoshimura et al., 2005, Litwin-Kumar and Doiron, 2012, 2014].
52 While the presence of such E/I assemblies [Znamenskiy et al., 2018, Rupprecht and Friedrich, 2018]
53 suggests the need for an activity-dependent mechanism for their formation and/or refinement [Khan
54 et al., 2018, Najafi et al., 2020], the requirements such a mechanism must fulfil remain unresolved.

55 Here, we use a computational model to identify requirements for the development of stimulus-
56 specific feedback inhibition. We find that the formation of E/I assemblies requires a synergistic action

57 of plasticity on two synapse types: the excitatory synapses from Pyr neurons onto PV interneurons, and
58 the inhibitory synapses from those interneurons onto the Pyr cells. Using "knock-out experiments",
59 in which we block plasticity in either synapse type, we show that both must be plastic to account for
60 the observed functional microcircuits in mouse V1. In addition, after the formation of E/I assemblies,
61 perturbations of individual Pyr neurons lead to a feature-specific suppression of other Pyr neurons
62 as recently found in mouse V1 [Chettih and Harvey, 2019]. Thus, synergistic plasticity of the in-
63 and outgoing synapses of PV interneurons can drive the development of stimulus-specific feedback
64 inhibition, resulting in a competition between Pyr neurons with similar stimulus preference.

65 **Results**

66 To understand which activity-dependent mechanisms can generate specific feedback inhibition in cir-
67 cuits without feature topography—such as mouse V1 (Fig. 1a), we studied a rate-based network model
68 consisting of $N^E = 512$ excitatory Pyr neurons and $N^I = 64$ inhibitory PV neurons. To endow the
69 excitatory neurons with a stimulus-tuning similar to pyramidal cells in layer 2/3 of mouse V1 [Znamen-
70 skiy et al., 2018], each excitatory neuron receives external excitatory input that is tuned to orientation,
71 temporal frequency and spatial frequency (Fig. 1b). The preferred stimuli of the Pyr neurons cover
72 the stimulus space evenly. Because we are interested under which conditions feedback inhibition can
73 acquire a stimulus-selectivity, inhibitory neurons receive external inputs without stimulus tuning, but
74 are recurrently connected to Pyr neurons. While the network has no stimulus topography, Pyr neu-
75 rons are preferentially connected to other Pyr neurons with similar stimulus tuning [Hofer et al., 2011,
76 Cossell et al., 2015], and connection strength is proportional to the signal correlation of their external
77 inputs. Note that the Pyr \rightarrow Pyr connections only play a decisive role for the results in Fig. 4, but
78 are present in all simulations for consistency. Connection probability across the network is $p = 0.6$,
79 with the remaining network connectivity (Pyr \rightarrow PV, PV \rightarrow PV, PV \rightarrow Pyr) initialised randomly
80 according to a log-normal distribution [Song et al., 2005, Loewenstein et al., 2011], with a variability
81 that is similar to that measured in the respective synapses [Znamenskiy et al., 2018].

82 **E/I assemblies are formed by homeostatic plasticity rules in input and out- 83 put connections of PV interneurons**

84 In feedforward networks, a stimulus-specific balance of excitation and inhibition can arise from home-
85 ostatic inhibitory synaptic plasticity that aims to minimise the deviation of a neuron's firing rate from
86 a target for all stimuli of a given set [Vogels et al., 2011, Clopath et al., 2016, Weber and Sprekeler,

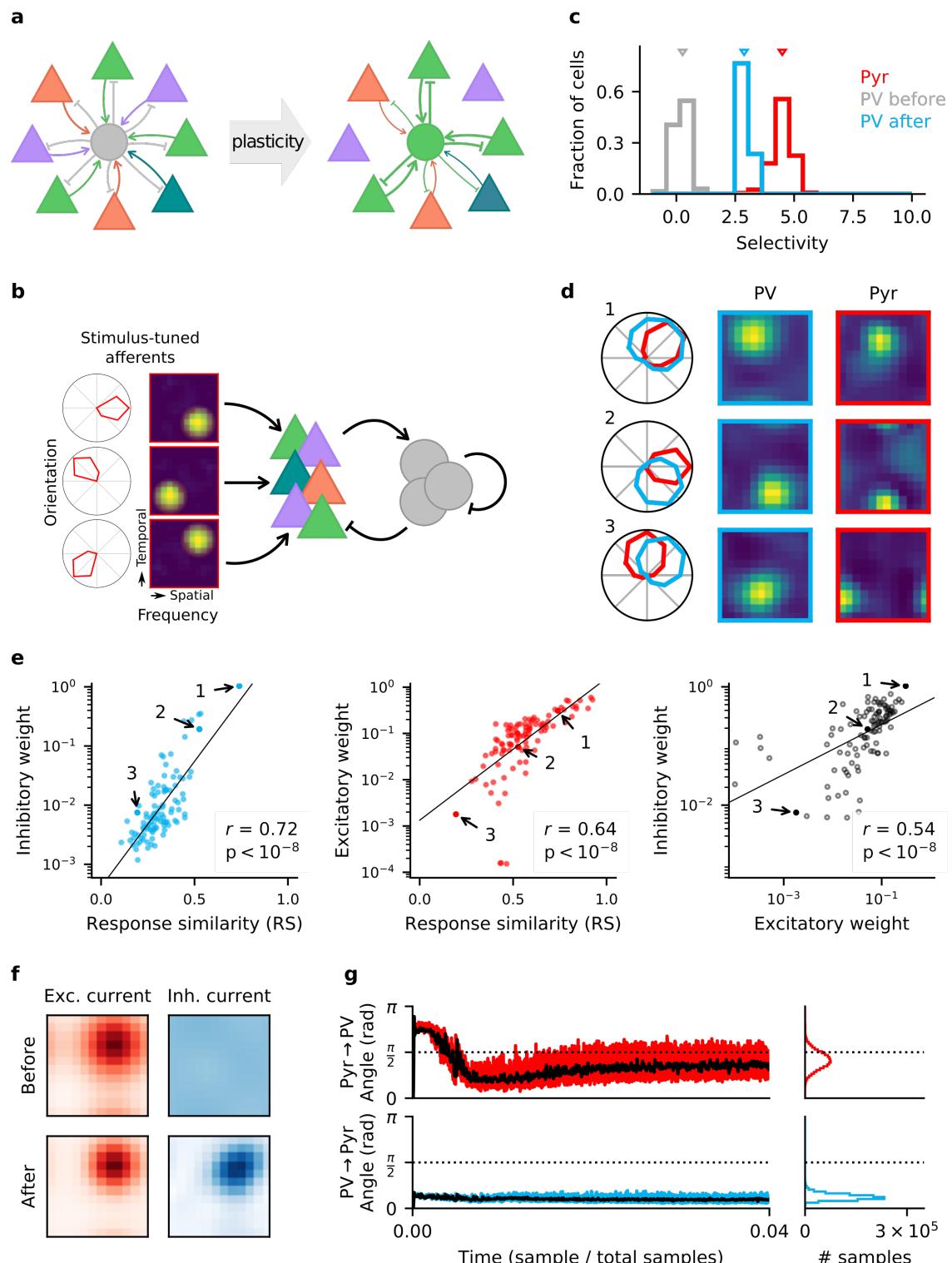


Figure 1: Homeostatic plasticity in input and output synapses of interneurons drives the formation of E/I assemblies. **a.** Emergence of E/I assemblies comprised of pyramidal neurons (triangles) and parvalbumin-expressing interneurons (circles) in circuits without feature topography. **b.** Network architecture and stimulus tuning of external inputs to pyramidal (Pyr) cells. **Continued on following page.**

Figure 1: **c.** Stimulus selectivity of Pyr neurons and PV interneurons (before and after learning). Arrows indicate the median. **d.** Example responses of reciprocally connected Pyr cells and PV interneurons. Examples chosen for large, intermediate and low response similarity (RS). Numbers correspond to points marked in (e). **e.** Relationship of synaptic efficacies of output (left) and input connections (centre) of PV interneurons with response similarity. Relationship of input and output efficacies (right). Black lines are obtained via linear regression. Reported r and associated p-value are Pearson's correlation. **f.** Stimulus tuning of excitatory and inhibitory currents onto an example Pyr cell, before and after learning. For simplicity, currents are shown for spatial and temporal frequency only, averaged across all orientations. **g.** Angle between the weight update and the gradient rule while following the local approximation for input (top) and output (bottom) connections of PV interneurons. Time course for first 4% of simulation (left) and final distribution (right) shown. Black lines are low-pass filtered time courses.

87 2018]. We wondered whether a stimulus-specific form of homeostasis can also generate stimulus-specific
88 *feedback* inhibition by forming E/I assemblies. To that end, we derive synaptic plasticity rules for ex-
89 citatory input and inhibitory output connections of PV interneurons that are homeostatic for the
90 excitatory population (see Materials & Methods). A stimulus-specific homeostatic control can be seen
91 as a "trivial" supervised learning task, in which the objective is that all pyramidal neurons should learn
92 to fire at a given target rate ρ_0 for all stimuli. Hence, a gradient-based optimisation would effectively
93 require a backpropagation of error [Rumelhart et al., 1985] through time [BPTT; Werbos, 1990].

94 Because backpropagation rules rely on non-local information that might not be available to the
95 respective synapses, their biological plausibility is currently debated [Lillicrap et al., 2020, Sacramento
96 et al., 2018, Guerguiev et al., 2017, Whittington and Bogacz, 2019, Bellec et al., 2020]. However,
97 a local approximation of the full BPTT update can be obtained under the following assumptions:
98 First, we assume that the sensory input to the network changes on a time scale that is slower than
99 the intrinsic time scales in the network. This eliminates the necessity of backpropagating information
100 through time, albeit still through the synapses in the network. This assumption results in what we
101 call the "gradient-based" rules (Eq. 15 in the Supplementary Materials), which are spatially non-local.
102 Second, we assume that synaptic interactions in the network are sufficiently weak that higher-order
103 synaptic interactions can be neglected. Third and finally, we assume that over the course of learning,
104 the Pyr \rightarrow PV connections and the PV \rightarrow Pyr connections become positively correlated [Znamenskiy
105 et al., 2018], such that we can replace PV \rightarrow Pyr synapses by the reciprocal Pyr \rightarrow PV synapse in the
106 Pyr \rightarrow PV learning rule, without rotating the update too far from the true gradient (see Supplementary
107 Materials).

The resulting learning rule for the output connections of the interneurons is similar to a previously suggested form of homeostatic inhibitory plasticity (Supp. Fig. S1a, left) [Vogels et al., 2011]. Specifically, PV output synapses $W^{E \leftarrow I}$ undergo Hebbian changes in proportion to presynaptic interneuron

activity r^I and the signed deviation of total postsynaptic pyramidal cell input h^E from the homeostatic target:

$$\Delta W_{ij}^{E \leftarrow I} \propto r_j^I (h_i^E - \rho_0) + \text{weight decay}.$$

In contrast, the PV input synapses $W^{I \leftarrow E}$ are changed such that the total excitatory drive $I_i^{E, \text{rec}}$ from the Pyr population to each interneuron is close to some target value I_0 (Supp. Fig. S1a, right):

$$\Delta W_{ij}^{I \leftarrow E} \propto r_j^E (I_i^{E, \text{rec}} - I_0) + \text{weight decay}.$$

¹⁰⁸ Both synapse types are subject to a weak weight decay, to avoid the redundancy that a multiplicative
¹⁰⁹ rescaling of input synapses can be compensated by a rescaling of the output synapses.

¹¹⁰ While our main results are obtained using the local approximations, we also simulated the gradient-
¹¹¹ based rules to verify that the approximation does not qualitatively change the results (Supp. Fig. S4).

¹¹² When we endow the synapses of an initially randomly connected network of Pyr neurons and PV
¹¹³ interneurons with plasticity in both the input and the output synapses of the interneurons, the network
¹¹⁴ develops a synaptic weight structure and stimulus response that closely resemble that of mouse V1
¹¹⁵ [Znamenskiy et al., 2018]. Before learning, interneurons show poor stimulus selectivity (Fig. 1c), in
¹¹⁶ line with the notion that in a random network, interneurons pool over many Pyr neurons with different
¹¹⁷ stimulus tuning [Harris and Mrsic-Flogel, 2013]. The network is then exposed to randomly interleaved
¹¹⁸ stimuli. By the end of learning, interneurons have developed a pronounced stimulus tuning, albeit
¹¹⁹ weaker than that of Pyr neurons (Fig. 1c, d). Interneurons form strong bidirectional connections pref-
¹²⁰ erentially with Pyr neurons with a similar stimulus tuning, whereas connections between Pyr-PV pairs
¹²¹ with dissimilar stimulus tuning are weaker (Fig. 1d, e). To make our results comparable to Znamenskiy
¹²² et al. [2018], we randomly sample an experimentally feasible number of synaptic connections from the
¹²³ network ($n = 100$). Both the efficacy of PV input and output connections are highly correlated with
¹²⁴ the response similarity (see Materials & Methods) of the associated Pyr neurons and interneurons
¹²⁵ (Fig. 1e, left and center). For bidirectionally connected cell pairs, the efficacies of the respective input
¹²⁶ and output connections are highly correlated (Fig. 1e, right). The stimulus tuning of the inhibitory
¹²⁷ inputs onto the Pyr cells—initially flat—closely resembles that of the excitatory inputs after learning
¹²⁸ (Fig. 1f, Supp. Fig. S2) [Tan et al., 2011], i.e. the network develops a precise E/I balance [Hennequin
¹²⁹ et al., 2017].

¹³⁰ Finally, the optimal gradient rules produce very similar results to the local approximations (Supp.
¹³¹ Fig. S4). Over the course of learning, the weight updates by the approximate rules align to the updates

132 that would result from the gradient rules over (Fig. 1g, Supp. Fig. S3), presumably by a mechanism
133 akin to feedback alignment [Lillicrap et al., 2016, Akrout et al., 2019].

134 In summary, these results show that combined homeostatic plasticity in input and output synapses
135 of interneurons can generate a similar synaptic structure as observed in mouse V1, including the
136 formation of E/I assemblies.

137 **PV → Pyr plasticity is required for the formation of E/I assemblies**

138 Having shown that homeostatic plasticity acting on both input and output synapses of interneurons
139 are *sufficient* to learn E/I assemblies, we now turn to the question of whether both are *necessary*.
140 To this end, we perform "knock-out" experiments, in which we selectively block synaptic plasticity in
141 either of the synapses. The motivation for these experiments is the observation that the incoming PV
142 synapses follow a long-tailed distribution [Znamenskiy et al., 2018]. This could provide a sufficient
143 stimulus selectivity in the PV population for PV → Pyr plasticity alone to achieve a satisfactory E/I
144 balance. A similar reasoning holds for static, but long-tailed outgoing PV synapses. This intuition is
145 supported by result of Litwin-Kumar et al. [2017] that in a population of neurons analogous to our
146 interneurons, the dimensionality of responses in that population can be high for static input synapses,
147 when those are log-normally distributed.

148 When we knock-out output plasticity but keep input plasticity intact, the network fails to develop
149 E/I assemblies and a stimulus-specific E/I balance. While there is highly significant change in the
150 distribution of PV interneuron stimulus selectivity (Mann-Whitney U test, $U = 1207$, $p < 10^{-4}$),
151 the effect is much stronger when output plasticity is also present (Fig. 2a,b). Importantly, excitatory
152 and inhibitory currents in Pyr neurons are poorly co-tuned (Fig. 2c, Supp. Fig. S2b). In particular,
153 feedback inhibition remains largely untuned because output connections are still random, so that Pyr
154 neurons pool inhibition from many interneurons with different stimulus tuning.

155 To investigate whether the model without output plasticity is consistent with the synaptic structure
156 of mouse V1, we repeatedly sample an experimentally feasible number of synapses ($n = 100$, Fig. 2d)
157 and plot the distribution of the three pairwise Pearson correlation coefficients between the two classes
158 of synaptic weights and response similarity (Fig. 2e). When both forms of plasticity are present in
159 the network, a highly significant positive correlation ($p < 0.01$) is detected in all samples for all three
160 correlation types (Fig. 2f). When output plasticity is knocked out, we still find a highly significant
161 positive correlation between input weights and response similarity in 99% of the samples (Fig. 2d-f). In
162 contrast, correlations between input and output synapses are weaker and cannot reliably be detected

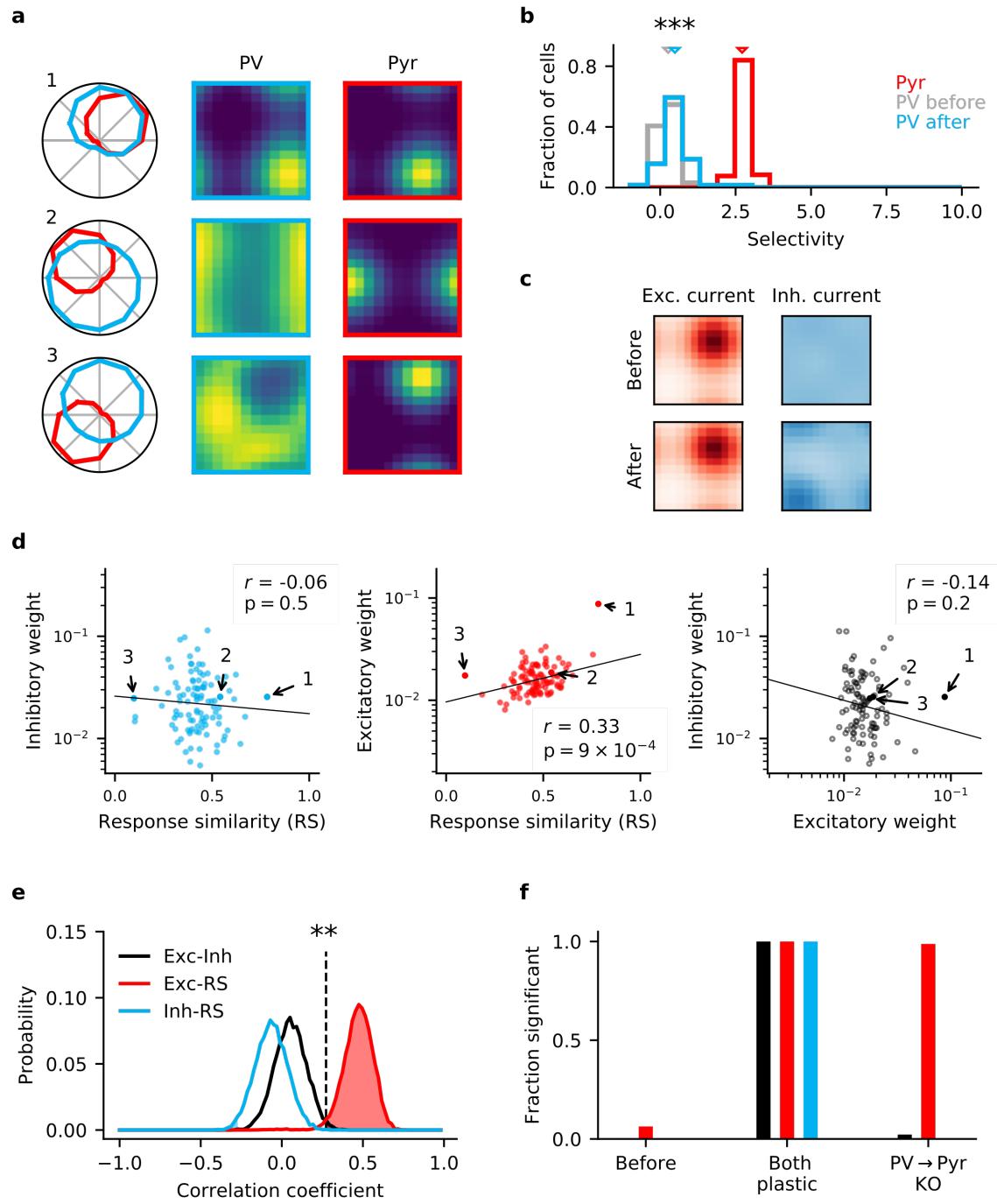


Figure 2: Knock-out of plasticity in PV output connections prevents inhibitory co-tuning.
a. Example responses of reciprocally connected pyramidal (Pyr) cells and PV interneurons. Numbers correspond to points marked in (d). **b.** Stimulus selectivity of Pyr cells and PV interneurons (before and after learning; Mann-Whitney U test, $p < 10^{-4}$). Arrows indicate median. **c.** Stimulus tuning of excitatory and inhibitory input currents for two example Pyr cells. For simplicity, currents are shown for spatial and temporal frequency only, averaged across all orientations. **d.** Relationship of output (left) and input (centre) synaptic efficacies of PV interneurons with response similarity. Relationship of input and output efficacies (right). Plotted lines are obtained via linear regression. Reported r and associated p -value are the Pearson correlation. **Continued on following page.**

Figure 2: **e.** Distribution of Pearson correlation coefficients for multiple samples as shown in (d). Dashed line marks threshold of high significance ($p < 0.01$). **f.** Fraction of samples with highly significant positive correlation before plasticity, after plasticity in both input and output connections and for knock-out (KO) of plasticity in PV output connections (based on 10,000 random samples of 100 synaptic connections).

163 (2% of samples). Notably, we find a correlation between output weights and response similarity in 0.0%
164 of samples (Fig. 2f). Finally, for an experimentally realistic sample size of $n = 100$, the probability of
165 a correlation coefficient equal or higher than that observed by Znamenskiy et al. [2018] is 0.0% for the
166 correlation between output weights and response similarity ($r = 0.55$), and 0.0% for the correlation
167 between input and output synapses ($r = 0.52$).

168 The non-local gradient rule for the PV input synapses alone also does not permit the formation of
169 E/I assemblies (Supp. Fig. S4a). While the selectivity of interneurons increases more than for the local
170 approximation (Supp. Fig. S4b), feedback inhibition still remains untuned in the absence of output
171 plasticity (Supp. Fig. S4c,d).

172 We therefore conclude that input plasticity alone is insufficient to generate the synaptic microstruc-
173 ture observed in mouse V1.

174 **Pyr \rightarrow PV plasticity is required for assembly formation**

175 When we knock out input plasticity but keep output plasticity intact, we again observe no formation
176 of E/I assemblies. This remains true even when using the gradient-based rule (Supp. Fig. S4). The
177 underlying reason is that input weights remain random. Interneurons collect excitation from many Pyr
178 neurons with different preferences, and absent plasticity on their input synapses, they maintain their
179 initial poor stimulus selectivity (Fig. 3a-c). Because of the poor stimulus tuning of the interneurons,
180 output plasticity cannot generate stimulus-specific inhibitory inputs to the Pyr neurons (Fig. 3d).
181 Across the whole population, the similarity of excitatory and inhibitory currents onto Pyr neurons
182 remains low (Supp. Fig. S2b,c).

183 Note that interneurons still possess a weak, but consistent stimulus tuning that arises from random
184 variations in their input weights. A particularly strong input connection will cause the postsynaptic
185 interneuron to prefer similar stimuli to the presynaptic Pyr. Because of the resulting correlated activity,
186 the Hebbian nature of the output plasticity potentiates inhibitory weights for such cell pairs that are
187 reciprocally connected. This tendency of strong input synapses to generate a strong corresponding
188 output synapse is reflected in a positive correlation between them (Fig. 3e, Supp. Fig. S5a), despite
189 the fact that input synapses remain random.

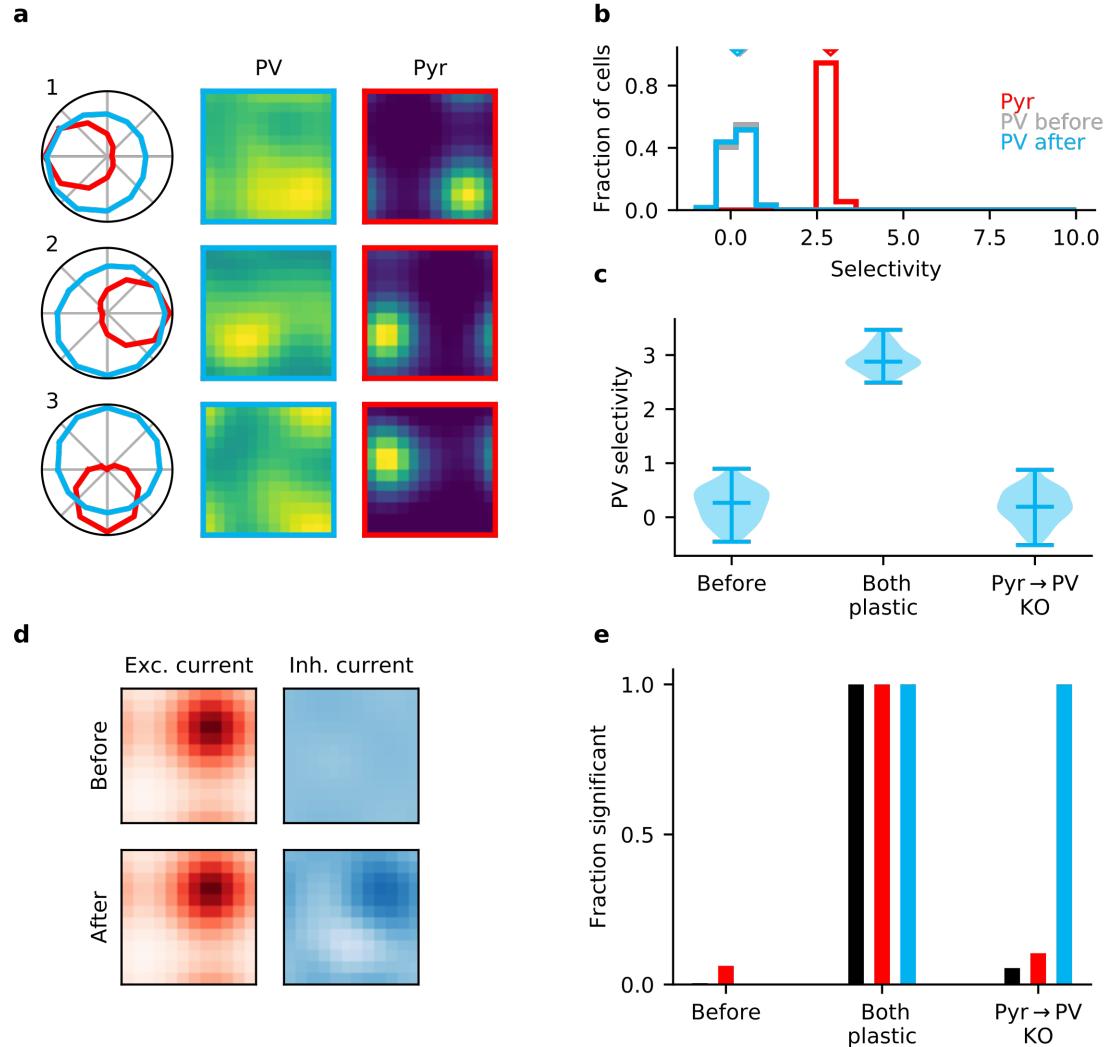


Figure 3: Plasticity of PV input connections is required for inhibitory stimulus selectivity and current co-tuning. **a.** Example responses of reciprocally connected pyramidal (Pyr) cells and PV interneurons. **b.** Stimulus selectivity of Pyr cells and PV interneurons (before and after learning). Arrows indicate median. **c.** Violin plots of inhibitory stimulus selectivity before plasticity, after learning with plasticity in both input and output connections of PV interneurons and for knock-out of plasticity in PV input connections. **d.** Stimulus tuning of excitatory and inhibitory currents in a Pyr cell before and after learning. Dimensions correspond to spatial and temporal frequency of the stimuli averaged across all orientations. **e.** Fraction of samples with highly significant ($p < 0.01$) positive correlation before plasticity, after plasticity in both input and output connections, and for knock-out (KO) of plasticity in PV input connections (based on 10,000 random samples of 100 synaptic connections).

190 Collectively, these results indicate that plasticity of both the inhibitory output and the excitatory
191 input synapses of PV interneurons is required for the formation of E/I assemblies in cortical areas
192 without feature topography, such as mouse V1.

193 Single Neuron Perturbations

194 Our findings demonstrate that in networks without feature topography, only a synergy of excitatory
195 and inhibitory plasticity can account for the emergence of E/I assemblies. But how does stimulus-
196 specific feedback inhibition affect interactions between excitatory neurons? In layer 2/3 of V1 similarly
197 tuned excitatory neurons tend to have stronger and more frequent excitatory connections [Ko et al.,
198 2011]. It has been hypothesised that this tuned excitatory connectivity supports reliable stimulus
199 responses by amplifying the activity of similarly tuned neurons [Cossell et al., 2015]. However, the
200 presence of co-tuned feedback inhibition could also induce the opposite effect, such that similarly tuned
201 excitatory neurons are in competition with each other [Chettih and Harvey, 2019, Moreno-Bote and
202 Drugowitsch, 2015].

203 To investigate the effect of stimulus-specific inhibition in our network, we simulate the perturbation
204 experiment of Chettih and Harvey [2019]: First, we again expose the network to the stimulus set, with
205 PV input and output plasticity in place to learn E/I assemblies. Second, both before and after learning,
206 we probe the network with randomly selected stimuli from the same stimulus set, while perturbing a
207 single Pyr cell with additional excitatory input, and measure the resulting change in activity of other
208 Pyr neurons in the network (Fig. 4a).

209 While the activity of the perturbed neuron increases, many of the other Pyr neurons are inhibited
210 in response to the perturbation (Fig. 4b). Although comparing the pairwise influence of Pyr neurons on
211 each other does not reveal any apparent trend (Fig. 4c), recent experiments report that the influence
212 a single-cell perturbation has on other neurons depends on the similarity of their stimulus feature
213 tuning [Chettih and Harvey, 2019]. To test whether we observe the same feature-specific suppression,
214 we compute the influence of perturbing a Pyr on the rest of the network as a function of the receptive
215 field correlation of the perturbed cell and each measured cell. In line with recent perturbation studies
216 [Chettih and Harvey, 2019, Sadeh and Clopath, 2020], we observe that—on average—neurons are more
217 strongly inhibited if they have a similar tuning to the perturbed neuron (Fig. 4d). The opposite holds
218 before learning: the effect of single-neuron perturbations on the network is increasingly excitatory as
219 receptive field correlation increases. Notably, the networks in which input or output plasticity was
220 knocked out during learning (and therefore did not develop E/I assemblies) show the same excitatory

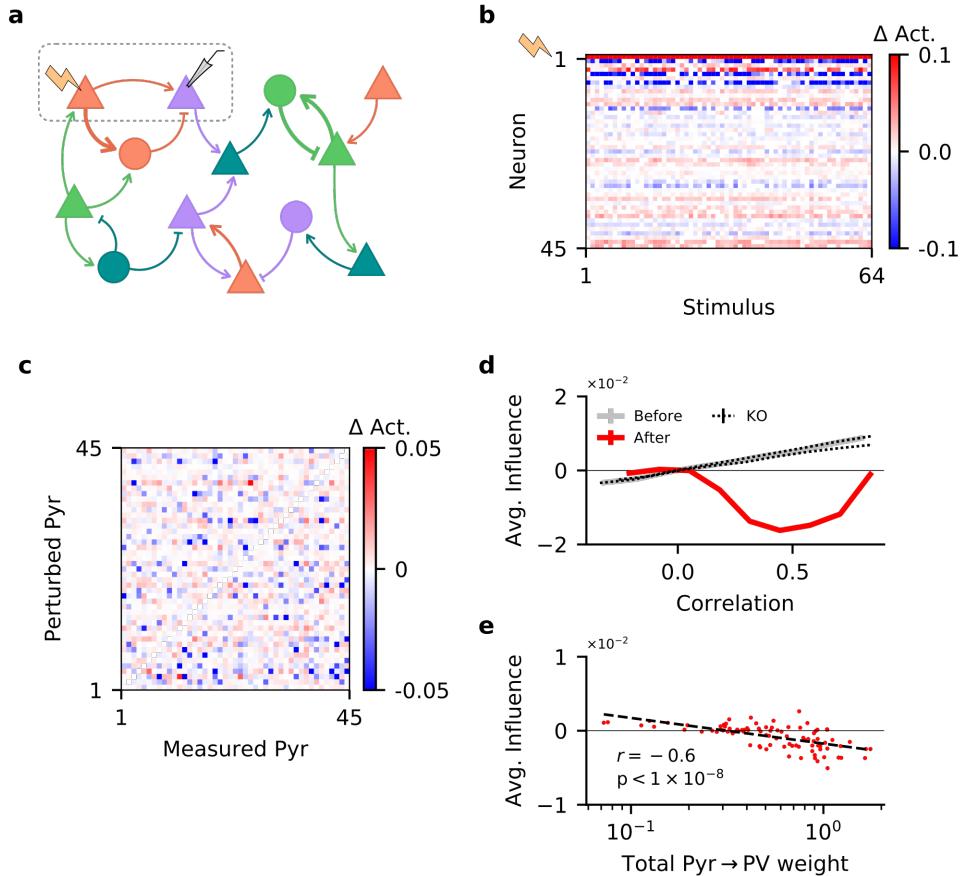


Figure 4: Single neuron perturbations suppress responses of similarly tuned neurons. **a.** Perturbation of a single pyramidal (Pyr) neuron. Responses of other Pyr neurons are recorded for different stimuli, both with and without perturbation. **b.** Perturbation-induced change in activity (Δ Act.) of a subset of Pyr cells, for a random subset of stimuli (with neuron 1 being perturbed). **c.** Influence of perturbing a Pyr neuron on the other Pyr neurons, averaged across all stimuli, for a subset of Pyr neurons. **d.** Dependence of influence among Pyr neurons on their receptive field correlation (Pearson's r), across all neurons in the network (see Materials & Methods). Dotted lines indicate plasticity knock-out (KO) experiments, see Supp. Fig. S6b for details. Error bars correspond to the standard error of the sample mean, but are not visible due to their small values. **e.** Total strength of output synapses from a Pyr neuron predicts the average effect perturbing it has on other neurons. Dashed line is the result of a linear regression, while r and its associated p -value correspond to the Pearson correlation.

221 effect (Fig. 4d, Supp. Fig. S6b). This confirms that a “blanket of inhibition” does not account for
222 feature-specific suppression between excitatory neurons [Sadeh and Clopath, 2020].

223 To better understand this behaviour, we use the Pyr-Pyr receptive field correlations to compute
224 the coefficient of determination for all pairs (R^2 , which quantifies how well the receptive field of one
225 Pyr neuron predicts that of another). Learning changes the correlative structure in the network (Supp.
226 Fig. S6a), and thereby decreases the coefficient of determination on average, indicating a reduction in
227 Pyr-Pyr correlations within the network ($E[R^2] = 0.06$ before learning, 0.02 after). Thus, plasticity
228 suppresses some of the strongest correlations, resulting in “feature competition” which is believed to
229 aid sensory processing [Lochmann et al., 2012, Moreno-Bote and Drugowitsch, 2015].

230 While on average the network exhibits feature competition, the influence of individual Pyr neurons
231 on the rest of the network is highly variable. According to recent modeling work [Sadeh and Clopath,
232 2020], the strength of Pyr \rightarrow PV synapses strongly influences whether a network will exhibit feature
233 competition. In our network, the total out-going weight of a Pyr cell onto the PV neurons indeed
234 predicts the average influence that neuron will have on the rest of the network when perturbed (Fig. 4e;
235 $r = -0.6$).

236 In summary, the stimulus-specific feedback inhibition that emerges in the model also captures
237 the paradoxical suppression of similarly tuned excitatory neurons observed in single-cell perturbation
238 experiments.

239 Discussion

240 The idea that feedback inhibition serves as a “blanket of inhibition” [Packer and Yuste, 2011, Fino
241 and Yuste, 2011] that can be selectively broken [Karnani et al., 2016] has been gradually relaxed over
242 recent years and replaced by the notion that feedback inhibition can be rather selective [Rupprecht and
243 Friedrich, 2018] and could thereby support specific neuronal computations [Vogels and Abbott, 2009,
244 Hennequin et al., 2014, Denève and Machens, 2016, Najafi et al., 2020], even in networks without
245 topographic organisation [Znamenskiy et al., 2018, Rupprecht and Friedrich, 2018]. Here, we used
246 a computational model to show that the development of E/I assemblies similar to those observed
247 in mouse V1 [Znamenskiy et al., 2018] or zebrafish olfactory areas [Rupprecht and Friedrich, 2018]
248 can be driven by a homeostatic form of plasticity of the in- and outgoing synapses of inhibitory
249 interneurons. Based on the results of virtual knock-out experiments we suggest that, on their own,
250 input or output plasticity of interneurons are insufficient to explain the Pyr-PV microcircuitry in
251 mouse V1 and that input and output plasticity in interneurons must act in synergy for stimulus-

252 specific feedback inhibition to develop. To investigate how the presence of E/I assemblies affects
253 interactions between excitatory neurons, we mimicked a perturbation experiment and found that—as
254 in mouse visual cortex—stimulating single excitatory cells paradoxically suppresses similarly tuned
255 neurons [Chettih and Harvey, 2019]. Our findings suggest that, by driving the development of tuned
256 feedback inhibition, plasticity of interneurons can fundamentally shape cortical processing.

257 The learning rules for the input and output synapses of PV interneurons are based on a single
258 homeostatic objective that aims to keep the net synaptic current onto Pyr neurons close to a given
259 target for all stimuli. The two forms of plasticity fulfil different purposes, however. Plasticity of input
260 synapses is required for interneurons to acquire a stimulus selectivity, whereas plasticity of output
261 synapses can exploit interneuron selectivity to shape inhibitory currents onto excitatory cells. The
262 output plasticity we derived for our recurrent network is very similar to a previously suggested form
263 of inhibitory plasticity [Vogels et al., 2011, Sprekeler, 2017]. Homeostatic plasticity rules for inhibitory
264 synapses are now used regularly in computational studies to stabilise model circuits [Vogels et al.,
265 2011, Hennequin et al., 2017, Landau et al., 2016]. In contrast, a theoretically grounded approach for
266 the plasticity of excitatory input synapses onto inhibitory neurons is missing.

267 Homeostatic changes in excitatory synapses onto interneurons in response to lesions or sensory
268 deprivation have been reported [Keck et al., 2011, Takesian et al., 2013, Kuhlman et al., 2013], but the
269 specific mechanisms and functions of this form of interneuron plasticity are not resolved. The plasticity
270 rule we derived for the input synapses of interneurons effectively changes the selectivity of those neurons
271 according to the demands of the Pyr cells, i.e. such that the interneurons can best counteract deviations
272 of Pyr activity from the target. By which mechanisms such a (nearly teleological) form of plasticity
273 can be achieved is at its core a problem of credit assignment, whose biological implementation remains
274 open [Lillicrap et al., 2016, Guerguiev et al., 2017, Sacramento et al., 2018].

275 Here, we used a local approximation of the gradient, backpropagation rules, which produces qual-
276 itatively similar results, and which we interpret as a recurrent variant of feedback alignment, applied
277 to the specific task of a stimulus-specific E/I balance [Lillicrap et al., 2016, Akroud et al., 2019]. The
278 excitatory input connections onto the interneurons serve as a proxy for the transpose of the output
279 connections. The intuition why this replacement is reasonable is the following: The task of balancing
280 excitation by feedback inhibition favours symmetric connections, because excitatory cells that strongly
281 drive a particular PV interneuron should receive a strong feedback connection in return. Therefore,
282 E/I balance favours a positive correlation between the incoming and outgoing synapses of PV neurons
283 and thus the two weight matrices will be aligned in a final balanced state [Lillicrap et al., 2016, Akroud
284 et al., 2019]. This weight replacement effectively replaces the "true" feedback errors by a deviation

285 of the total excitatory input to the PV neurons from a target [Hertög and Sprekeler, 2020]. The rule
286 therefore has the structure of a homeostatic rule for the recurrent excitatory drive received by PV
287 neurons.

288 A cellular implementation of such a plasticity rule would require the following ingredients: i) a
289 signal that reflects the cell-wide excitatory current ii) a mechanism that changes Pyr → PV synapses
290 in response to variations in this signal. On PV interneurons, NMDA receptors are enriched in excitatory
291 feedback relative to feedforward connections [Le Roux et al., 2013]. Intracellular sodium and calcium
292 could hence be a proxy of recurrent excitatory input. In addition, the activation of NMDA receptors has
293 been shown to track intracellular sodium concentration [Yu and Salter, 1998] which at least partially
294 reflects glutamatergic synaptic currents. Due to a lack of spines in PV dendrites, both postsynaptic
295 sodium and calcium are expected to diffuse more broadly in the dendritic arbor [Hu et al., 2014,
296 Kullmann and Lamsa, 2007], and thus might provide a signal for overall dendritic excitatory currents.
297 Depending on how the excitatory inputs are distributed on PV interneuron dendrites [Larkum and
298 Nevian, 2008, Jia et al., 2010, Grienberger et al., 2015], this integration does not need to be cell-wide,
299 but could be local, e.g. to a dendrite, if the local excitatory input is a proxy for the global input. NMDA
300 receptors at IN excitatory input synapses can mediate Hebbian long-term plasticity [Kullmann and
301 Lamsa, 2007], and blocking excitatory currents can abolish plasticity in those synapses [Le Roux et al.,
302 2013]. Furthermore, NMDAR-dependent plasticity is expressed postsynaptically, and seems to require
303 presynaptic activation [Kullmann and Lamsa, 2007]. Other molecular signals that reflect excitatory
304 activity have been implicated in the homeostatic regulation of synapses onto INs, including Narp and
305 BDNF [Chang et al., 2010, Rutherford et al., 1998, Lamsa et al., 2007]. In summary, we conjecture
306 that PV interneurons and their excitatory inputs have the necessary prerequisites to implement the
307 suggested local Pyr → PV plasticity rule.

308 If excitatory inputs to Pyr neurons are much larger than required to reach the target, the homeo-
309 static objective of bringing net currents to that target effectively requires a balance of excitation and
310 inhibition on a stimulus-by-stimulus basis, with a small overshoot of excitation (or, in spiking networks,
311 membrane potential fluctuations) that allows Pyr neurons to fire at the target rate. We speculate that
312 E/I assemblies could be learned not only from the homeostatic objective used here, but by any other
313 objective that enforces a positive correlation of the stimulus tuning of excitatory and inhibitory inputs
314 to neurons in the circuit.

315 We expect that the rules we suggest here are only one set of many that can establish E/I assemblies.
316 Given that the role of the input plasticity in the interneurons is the formation of a stimulus specificity,
317 it is tempting to assume that this could equally well be achieved by classical forms of plasticity like the

318 Bienenstock-Cooper-Munro (BCM) rule [Bienenstock et al., 1982], which is commonly used in models
319 of receptive field formation. However, in our hands, the combination of BCM plasticity in Pyr → PV
320 synapses with homeostatic inhibitory plasticity in the PV → Pyr synapses showed complex dynamics,
321 an analysis of which is beyond the scope of this article. In particular, this combination of rules often
322 did not converge to a steady state, probably for the following reason. BCM rules tend to make the
323 postsynaptic neuron as stimulus-selective as possible. Given the limited number of interneurons in
324 our circuit, this can lead to a situation in which parts of stimulus space are not represented by any
325 interneurons. As a result, Pyr neurons that respond to those stimuli cannot recruit inhibition and
326 maintain a high firing rate far above the target. Other Pyr cells, which have access to interneurons
327 with a similar stimulus tuning, can recruit inhibition to gradually reduce their firing rates towards
328 the target rate. Because the BCM rule is Hebbian, it tends to strengthen input synapses from Pyr
329 neurons with high activity. This shifts the stimulus tuning of the interneurons to those stimuli that
330 were previously underrepresented. However, this in turn renders a different set of stimuli uncovered by
331 inhibition and withdraws feedback inhibition from the corresponding set of Pyr cells, which can now
332 fire at high rates.

333 We suspect that this instability can also arise for other Hebbian forms of plasticity in interneuron
334 input synapses when they are combined with homeostatic inhibitory plasticity [Vogels et al., 2011] in
335 their output synapses. The underlying reason is that for convergence, the two forms of plasticity need
336 to work synergistically towards the same goal, i.e., the same steady state. For two arbitrary synaptic
337 plasticity rules acting in different sets of synapses, it is likely that they aim for two different overall
338 network configurations. Such competition can easily result in latching dynamics with a continuing
339 turn-over of transiently stable states, in which the form of plasticity that acts more quickly gets to
340 reach its goal transiently, only to be undermined by the other one later.

341 Both Pyr → PV and PV → Pyr plasticity have been studied in slice [for reviews, see, e.g., Kullmann
342 and Lamsa, 2007, Vogels et al., 2013], but mostly in isolation. The idea that the two forms of plasticity
343 should act in synergy suggests that it may be interesting to study both forms in the same system, e.g.,
344 in reciprocally connected Pyr-PV pairs.

345 Like all computational models, the present one contains simplifying design choices. First, we did
346 not include stimulus-specific *feedforward* inhibition, because the focus lay on the formation of stimulus-
347 specific *feedback* inhibition. The model could be enriched by feedforward inhibition in different ways. In
348 particular, we expect that the two forms of plasticity will establish E/I assemblies even in the presence
349 of stimulus-selective external inputs to the interneurons, because stimulus-specific external excitation
350 should always be more supportive of the homeostatic objective than unspecific inputs. It may be

351 worth exploring whether adding feedforward inhibition leaves more room for replacing the PV input
352 plasticity that we used by classical Hebbian rules, because the activity of the external inputs remains
353 unaltered by the plasticity in the network (such that the complex instability described above may be
354 mitigated). Given that the focus of this work was on feedback inhibition, an extensive evaluation of
355 the different variants of feedforward inhibition are beyond the scope of the present article.

356 Second, we neglected much of the complexity of cortical interneuron circuits by including only one
357 class of interneurons. We interpret these interneurons as PV-expressing interneurons, given that PV
358 interneurons provide local feedback inhibition [Hu et al., 2014] and show a stimulus-selective circuitry
359 akin to E/I assemblies [Znamenskiy et al., 2018]. With their peri-somatic targets on Pyr cells, PV-
360 expressing (basket) cells are also a prime candidate for the classical feedback model of E/I balance
361 [van Vreeswijk and Sompolinsky, 1996]. Note that our results do not hinge on any assumptions that
362 are specific to PV neurons, and may thus also hold for other interneuron classes that provide feedback
363 inhibition [Tremblay et al., 2016]. Given that the division of labour of the various cortical interneuron
364 classes is far from understood, an extension to complex interneuron circuits [Litwin-Kumar et al., 2016,
365 Hertäg and Sprekeler, 2019, 2020] is clearly beyond the present study.

366 Similarly tuned pyramidal cells tend to be recurrently connected [Cossell et al., 2015, Harris and
367 Mrsic-Flogel, 2013], in line with the notion that excitatory cells with similar tuning mutually excite
368 each other. This notion is questioned by a recent perturbation experiment demonstrating feature-
369 specific suppression between pyramidal cells with similar tuning [Chettih and Harvey, 2019]. It has
370 been suggested that this apparently paradoxical effect requires strong and tuned connections between
371 excitatory and inhibitory neurons [Sadeh and Clopath, 2020]. The E/I assemblies that develop in our
372 model provide sufficiently strong and specific inhibitory feedback to cause a suppression between simi-
373 larly tuned Pyr neurons in response to perturbations. Hence, despite the presence of stimulus-specific
374 excitatory recurrence, Pyr neurons with similar stimulus preference effectively compete. Computa-
375 tional arguments suggest that this feature competition may be beneficial for stimulus processing, e.g.
376 by generating a sparser and more efficient representation of the stimuli [Olshausen and Field, 2004,
377 Denève and Machens, 2016].

378 In addition to predicting that knocking out plasticity of inhibitory input or output synapses should
379 prevent the development of E/I assemblies, our model also predicts different outcomes for single neu-
380 ron perturbation experiments in juvenile and adult mice. Given that in rodents, stimulus-tuning of
381 inhibitory currents occurs later in development than that of excitation [Dorrn et al., 2010], we ex-
382 pect that in juvenile mice single-cell perturbations would not cause feature-specific suppression but
383 amplification due to excitatory recurrence and unspecific feedback inhibition.

384 Materials & Methods

385 Network & stimuli

386 We use custom software to simulate a rate-based recurrent network model containing $N^E = 512$
 387 excitatory and $N^I = 64$ inhibitory neurons. The activation of the neurons follows Wilson-Cowan
 388 dynamics:

$$\tau_E \frac{d}{dt} \mathbf{h}^E = -\mathbf{h}^E + W^{E \leftarrow E} \mathbf{r}^E - W^{E \leftarrow I} \mathbf{r}^I + I^{\text{bg}} + \mathbf{I}(\mathbf{s}) \quad (1a)$$

$$\tau_I \frac{d}{dt} \mathbf{h}^I = -\mathbf{h}^I + W^{I \leftarrow E} \mathbf{r}^E - W^{I \leftarrow I} \mathbf{r}^I + I^{\text{bg}}. \quad (1b)$$

389 Here, $\mathbf{r}^E = [\mathbf{h}^E]_+$, $\mathbf{r}^I = [\mathbf{h}^I]_+$ denote the firing rates of the excitatory and inhibitory neurons, which are
 390 given by their rectified activation. $W^{Y \leftarrow X}$ denotes the matrix of synaptic efficacies from population X
 391 to population Y ($X, Y \in \{E, I\}$). The external inputs $\mathbf{I}(\mathbf{s})$ to the excitatory neurons have a bell-shaped
 392 tuning in the three-dimensional stimulus space consisting of spatial frequency, temporal frequency and
 393 orientation [Znamenskiy et al., 2018]. To avoid edge effects, the stimulus space is periodic in all three
 394 dimensions, with stimuli ranging from $-\pi$ to π . The stimulus tuning of the external inputs is modeled
 395 by a von Mises function with a maximum of 50 Hz and a tuning width $\kappa = 1$. The preferred stimuli
 396 of the $N^E = 512$ excitatory cells cover the stimulus space evenly on a $12 \times 12 \times 12$ grid. All neurons
 397 receive a constant background input of $I^{\text{bg}} = 5$ Hz.

398 Recurrent connections $W^{E \leftarrow E}$ among excitatory neurons have synaptic weight between neurons i
 399 and j that grows linearly with the signal correlation of their external inputs:

$$W_{ij}^{E \leftarrow E} = [\text{corr}(I_i(\mathbf{s}), I_j(\mathbf{s})) - C]_+. \quad (2)$$

400 The cropping threshold C is chosen such that the overall connection among the excitatory neurons
 401 probability is 0.6. The remaining synaptic connections ($E \rightarrow I$, $I \rightarrow E$, $I \rightarrow I$) are initially random, with a
 402 connection probability $p = 0.6$ and log-normal weights. For parameters please refer to Table 1.

403 During learning, we repeatedly draw all $12 \times 12 \times 12$ preferred stimuli of the Pyr neurons, in
 404 random order. This procedure is repeated 500 times to ensure convergence of synaptic weights. To
 405 reduce simulation time, we present each stimulus long enough for all firing rates to reach steady state
 406 and only then update the synaptic weights.

407 **Synaptic plasticity**

408 The PV → Pyr and Pyr → PV synapses follow plasticity rules that aim to minimize the deviation of
 409 the excitatory activations from a target rate ρ_0 ($\rho_0 = 1$ Hz):

$$\mathcal{E}(\mathbf{h}^E) = \left\langle \frac{1}{2} \sum_{j=1}^{N^E} (h_j^E - \rho_0)^2 \right\rangle_s, \quad (3)$$

where $\langle \cdot \rangle_s$ denotes the average over all stimuli. When plastic, synaptic weights change according to

$$\Delta W_{ji}^{E \leftarrow I} \propto (h_j^E - \rho_0) r_i^I, \quad (4a)$$

$$\Delta W_{ij}^{I \leftarrow E} \propto \left[\sum_{k=1}^{N^E} W_{ik}^{I \leftarrow E} (h_k^E - \rho_0) \right] r_j^E \quad (4b)$$

$$\begin{aligned} & \approx \left[\sum_{k=1}^{N^E} W_{ik}^{I \leftarrow E} (r_k^E - \rho_0) \right] r_j^E \\ & = (I_i^{E, \text{rec}} - I_0) r_j^E. \end{aligned} \quad (4c)$$

410 After every update of the Pyr → PV matrix, the incoming weights for each PV interneuron are
 411 multiplicatively scaled such that their sum is $J^{I \leftarrow E}$ [Akrout et al., 2019]. In that case, the rule in
 412 Eq. (4b) is approximately local in that it compares the excitatory input current $I_i^{E, \text{rec}}$ received by
 413 the postsynaptic PV neuron to a target value $I_0 = J^{I \leftarrow E} \rho_0$, and adjusts the incoming synapses in
 414 proportion to this error and to presynaptic activity [see Eq. (4c)].

415 Both plasticity rules are approximations of the gradient of the objective function Eq. (3). Interested
 416 readers are referred to the supplementary methods for their mathematical derivation. For the results
 417 in Supp. Fig. S4, we use the Adaptive Moment Estimation (Adam) algorithm [Kingma and Ba, 2014]
 418 to improve optimisation performance.

419 We used a standard reparameterization method to ensure the sign constraints of an E/I network.
 420 Moreover, all weights are subject to a small weight-dependent decay term, which aids to keep the
 421 firing rates of the interneurons in a reasonable range. For details, please refer to the Supplementary
 422 Methods. The learning rule Eq. (4a) for the output synapses of the inhibitory neurons is similar to
 423 the rule proposed by Vogels et al. [2011], wherein each inhibitory synapse increases in strength if the
 424 deviation of the postsynaptic excitatory cell from the homeostatic target ρ_0 is positive (and decreases
 425 it when negative). In contrast, the learning rule Eq. (4b) increases activated input synapses for an
 426 interneuron if the weighted sum of deviations in its presynaptic excitatory population is positive (and

427 decreases them if it is negative). Though it is local, when operating in conjunction with the plasticity of
428 Eq. (4a), this leads to feedback alignment in our simulations, and effectively performs backpropagation
429 without the need for weight transport [Akrout et al., 2019].

430 Note that the objective function Eq. (3) can also be interpreted differently. The activation h^E
431 of a neuron is essentially the difference between its excitatory and inhibitory inputs. Therefore, the
432 objective function Eq. (3) is effectively the mean squared error between excitation and inhibition, aside
433 from a small constant offset ρ_0 . The derived learning rules can therefore be seen as supervised learning
434 of the inhibitory inputs, with excitation as the label. They hence aim to establish the best co-tuning
435 of excitation and inhibition that is possible given the circuitry.

436 Perturbation experiments

437 The perturbation experiments in Fig. 4 are performed in a network in which both forms of plasticity
438 have converged. The network is then exposed to different stimuli, while the afferent drive to a single
439 excitatory cell i is transiently increased by $\Delta I = 10$ Hz. For each stimulus, we compute the steady
440 state firing rates r_j of all excitatory cells both with and without the perturbation. The influence of
441 the perturbation of neuron i on neuron j is defined as the difference between these two firing rates,
442 normalized by the perturbation magnitude [Sadéh and Clopath, 2020]. This stimulation protocol is
443 repeated for 90 randomly selected excitatory neurons. The dependence of the influence on the tuning
444 similarity (Fig. 4d) is obtained by binning the influence of the perturbed neuron i and the influenced
445 neuron j according to their stimulus response correlation, and then averaging across all influences in
446 the bin. During the perturbation experiments, synaptic plasticity was disabled.

447 Quantitative measures

448 The response similarity (RS) of the stimulus tuning of two neurons i and j is measured by the dot
449 product of their steady state firing rates in response to all stimuli, normalized by the product of their
450 norms [Znamenskiy et al., 2018]:

$$451 \text{RS}(r_i, r_j) = \frac{\sum_s r_i(s)r_j(s)}{\left(\sum_s (r_i(s))^2 \sum_s (r_j(s))^2\right)^{1/2}}. \quad (5)$$

452 The same measure is used for the similarity of synaptic currents onto excitatory neurons in Supp.
453 Fig. S2c & S4d.

454 There is no structural plasticity, i.e. synapses are never added or pruned. However, when calculating

N^E	512	N^I	64	Number of exc. & inh. neurons.
τ_E	50 ms	τ_I	25 ms	Rate dynamics time constants.
dt	1 ms			Numerical integration time step.
$p^{E \leftarrow X}$	0.6	$p^{I \leftarrow X}$	0.6	Connection probability to exc. & inh. neurons.
$J_i^{E \leftarrow E}$	2	$J_i^{I \leftarrow E}$	5	Total of exc. weights onto neuron i : $\sum_j W_{ij}^{X \leftarrow E}$
$J_i^{E \leftarrow I}$	1	$J_i^{I \leftarrow I}$	1	Total of inh. weights onto neuron i : $\sum_j W_{ij}^{X \leftarrow I}$
$\sigma^{E \leftarrow X}$	0.65	$\sigma^{I \leftarrow X}$	0.65	Std. deviation of the logarithm of the weights.
$\theta^{E \leftarrow I}$	10^{-4}	$\theta^{I \leftarrow E}$	10^{-4}	Experimental detection threshold for synapses.
I^{bg}	5 Hz	$\max(\mathbf{I}(\mathbf{s}))$	50 Hz	Background & maximum stimulus-specific input.
N^S	$12 \times 12 \times 12$	N^{trials}	500	Number of stimuli & trials.
R^S	$2\pi \times 2\pi \times 2\pi$	κ	1	Range of stimuli & Pyr RF von Mises width.
ΔI	10 Hz			Change of input for perturbation experiments.
$\eta^{Approx.}$	10^{-5}	$\eta^{Grad.}$	10^{-3}	Learning rates (approx. & gradient rules).
$\delta^{E \leftarrow I}$	0.1	$\delta^{I \leftarrow E}$	0.1	Weight decay rates.
ρ_0	1 Hz			Homeostatic plasticity target.
β_1	0.9	β_2	0.999	Adam parameters for gradient rules.
ϵ	10^{-9}			

Table 1: **Model parameters.**

454 Pearson's correlation between synaptic weights and RS, we exclude synapses that are too weak to be
455 detected using the experimental protocol employed by Znamenskiy et al. [2018]. The threshold values
456 $\theta^{E \leftarrow I}$ & $\theta^{I \leftarrow E}$ were chosen to be approximately four orders of magnitude weaker than the strongest
457 synapses in the network. The rules that we investigate here tend to produce bimodal distributions of
458 weights, with the lower mode well below this threshold (Supp. Fig. S7).

459 The stimulus selectivity of the neurons is measured by the skewness of their response distribution
460 across all stimuli:

$$\gamma_i = \frac{\left\langle (r_i(\mathbf{s}) - \bar{r}_i)^3 \right\rangle_{\mathbf{s}}}{\left\langle (r_i(\mathbf{s}) - \bar{r}_i)^2 \right\rangle_{\mathbf{s}}^{3/2}} \quad (6)$$

461 where $\bar{r}_i = \langle r_i(\mathbf{s}) \rangle_{\mathbf{s}}$. Both the response similarity Eq. (5) and the stimulus selectivity Eq. (6) are
462 adapted from Znamenskiy et al. [2018].

463 Finally, the angle θ between the gradient G from Eq. (15) and its approximation A from Eq. (4) is
464 given by:

$$\theta = \arccos \left(\frac{\sum_{ij} G_{ij} A_{ij}}{\left(\sum_{ij} G_{ij}^2 \sum_{ij} A_{ij}^2 \right)^{1/2}} \right) \quad (7)$$

465 References

466 H. Adesnik, W. Bruns, H. Taniguchi, Z. J. Huang, and M. Scanziani. A neural circuit for spatial
467 summation in visual cortex. *Nature*, 490(7419):226–231, 2012.

468 M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed. Deep learning without weight
469 transport. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox, and R. Garnett,
470 editors, *Advances in Neural Information Processing Systems 32*, pages 976–984. Curran Associates,
471 Inc., 2019.

472 H. Barron, T. Vogels, U. Emir, T. Makin, J. O'shea, S. Clare, S. Jbabdi, R. J. Dolan, and T. Behrens.
473 Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories.
474 *Neuron*, 90(1):191–203, 2016.

475 H. C. Barron, T. P. Vogels, T. E. Behrens, and M. Ramaswami. Inhibitory engrams in perception and
476 memory. *Proceedings of the National Academy of Sciences*, 114(26):6666–6674, 2017.

477 G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and W. Maass. A solution to
478 the learning dilemma for recurrent networks of spiking neurons. *bioRxiv*, page 738385, 2020.

479 A. Bhatia, S. Moza, and U. S. Bhalla. Precise excitation-inhibition balance controls gain and timing
480 in the hippocampus. *eLife*, 8:e43415, 2019.

481 E. Bienenstock, L. Cooper, and P. Munroe. Theory of the development of neuron selectivity: Ori-
482 entation specificity and binocular interaction in visual cortex. *Journal of Neuroscience*, 2:32–48,
483 1982.

484 D. D. Bock, W.-C. A. Lee, A. M. Kerlin, M. L. Andermann, G. Hood, A. W. Wetzel, S. Yurgenson,
485 E. R. Soucy, H. S. Kim, and R. C. Reid. Network anatomy and in vivo physiology of visual cortical
486 neurons. *Nature*, 471(7337):177–182, 2011.

487 N. Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory neurons. *Journal of*
488 *Computational Neuroscience*, 8(3):183–208, 2000.

489 M. C. Chang, J. M. Park, K. A. Pelkey, H. L. Grabenstatter, D. Xu, D. J. Linden, T. P. Sutula,
490 C. J. McBain, and P. F. Worley. Narp regulates homeostatic scaling of excitatory synapses on
491 parvalbumin-expressing interneurons. *Nature neuroscience*, 13(9):1090–1097, 2010.

492 N. Chenkov, H. Sprekeler, and R. Kempter. Memory replay in balanced recurrent networks. *PLoS*
493 *Computational Biology*, 13(1):e1005359, 2017.

494 S. N. Chettih and C. D. Harvey. Single-neuron perturbations reveal feature-specific competition in V1.
495 *Nature*, 567(7748):334–340, 2019.

496 C. Clopath, T. P. Vogels, R. C. Froemke, and H. Sprekeler. Receptive field formation by interacting
497 excitatory and inhibitory synaptic plasticity. *bioRxiv*, page 066589, 2016.

498 L. Cossell, M. F. Iacaruso, D. R. Muir, R. Houlton, E. N. Sader, H. Ko, S. B. Hofer, and T. D. Mrsic-
499 Flogel. Functional organization of excitatory synaptic strength in primary visual cortex. *Nature*,
500 518(7539):399–403, 2015.

501 S. Denève and C. K. Machens. Efficient codes and balanced networks. *Nature Neuroscience*, 19(3):
502 375, 2016.

503 M. Dipoppa, A. Ranson, M. Krumin, M. Pachitariu, M. Carandini, and K. D. Harris. Vision and
504 locomotion shape the interactions between neuron types in mouse visual cortex. *Neuron*, 98(3):
505 602–615, 2018.

506 A. L. Dorrn, K. Yuan, A. J. Barker, C. E. Schreiner, and R. C. Froemke. Developmental sensory
507 experience balances cortical excitation and inhibition. *Nature*, 465(7300):932–936, 2010.

508 E. Fino and R. Yuste. Dense inhibitory connectivity in neocortex. *Neuron*, 69(6):1188–1203, 2011.

509 G. Fishell and A. Kepecs. Interneuron types as attractors and controllers. *Annual Review of Neuro-*
510 *science*, 43, 2019.

511 R. C. Froemke, M. M. Merzenich, and C. E. Schreiner. A synaptic memory trace for cortical receptive
512 field plasticity. *Nature*, 450:425–429, 2007.

513 C. Grienberger, X. Chen, and A. Konnerth. Dendritic function in vivo. *Trends in neurosciences*, 38
514 (1):45–54, 2015.

515 J. Guerguiev, T. P. Lillicrap, and B. A. Richards. Towards deep learning with segregated dendrites.
516 *eLife*, 6:e22901, 2017.

517 K. D. Harris and T. D. Mrsic-Flogel. Cortical connectivity and sensory coding. *Nature*, 503(7474):
518 51–58, 2013.

519 G. Hennequin, T. P. Vogels, and W. Gerstner. Optimal control of transient dynamics in balanced
520 networks supports generation of complex movements. *Neuron*, 82(6):1394–1406, 2014.

521 G. Hennequin, E. J. Agnes, and T. P. Vogels. Inhibitory plasticity: Balance, control, and codependence.
522 *Annual Review of Neuroscience*, 40:557–579, 2017.

523 L. Hertäg and H. Sprekeler. Amplifying the redistribution of somato-dendritic inhibition by the inter-
524 play of three interneuron types. *PLoS Computational Biology*, 15(5):e1006999, 2019.

525 L. Hertäg and H. Sprekeler. Learning prediction error neurons in a canonical interneuron circuit.
526 *bioRxiv*, 2020.

527 S. B. Hofer, H. Ko, B. Pichler, J. Vogelstein, H. Ros, H. Zeng, E. Lein, N. A. Lesica, and T. D.
528 Mrsic-Flogel. Differential connectivity and response dynamics of excitatory and inhibitory neurons
529 in visual cortex. *Nature Neuroscience*, 14(8):1045, 2011.

530 H. Hu, J. Gan, and P. Jonas. Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular
531 design to microcircuit function. *Science*, 345(6196):1255263, 2014.

532 J. S. Isaacson and M. Scanziani. How inhibition shapes cortical activity. *Neuron*, 72(2):231–243, 2011.

533 H. Jia, N. L. Rochefort, X. Chen, and A. Konnerth. Dendritic organization of sensory input to cortical
534 neurons in vivo. *Nature*, 464(7293):1307–1312, 2010.

535 M. M. Karnani, J. Jackson, I. Ayzenshtat, A. H. Sichani, K. Manoocheri, S. Kim, and R. Yuste.
536 Opening holes in the blanket of inhibition: Localized lateral disinhibition by VIP interneurons.
537 *Journal of Neuroscience*, 36(12):3471–3480, 2016.

538 T. Keck, V. Scheuss, R. I. Jacobsen, C. J. Wierenga, U. T. Eysel, T. Bonhoeffer, and M. Hübener.
539 Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual
540 cortex. *Neuron*, 71(5):869–882, 2011.

541 A. G. Khan, J. Poort, A. Chadwick, A. Blot, M. Sahani, T. D. Mrsic-Flogel, and S. B. Hofer. Distinct
542 learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes
543 in visual cortex. *Nature Neuroscience*, 21(6):851–859, 2018.

544 D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
545 2014.

546 H. Ko, S. B. Hofer, B. Pichler, K. A. Buchanan, P. J. Sjöström, and T. D. Mrsic-Flogel. Functional
547 specificity of local synaptic connections in neocortical networks. *Nature*, 473(7345):87–91, 2011.

548 S. J. Kuhlman, N. D. Olivas, E. Tring, T. Ikrar, X. Xu, and J. T. Trachtenberg. A disinhibitory
549 microcircuit initiates critical-period plasticity in the visual cortex. *Nature*, 501(7468):543–546, 2013.

550 D. M. Kullmann and K. P. Lamsa. Long-term synaptic plasticity in hippocampal interneurons. *Nature
551 Reviews Neuroscience*, 8(9):687–699, 2007.

552 K. Lamsa, E. E. Irvine, K. P. Giese, and D. M. Kullmann. Nmda receptor-dependent long-term
553 potentiation in mouse hippocampal interneurons shows a unique dependence on ca2+/calmodulin-
554 dependent kinases. *The Journal of physiology*, 584(3):885–894, 2007.

555 I. D. Landau, R. Egger, V. J. Dercksen, M. Oberlaender, and H. Sompolinsky. The impact of structural
556 heterogeneity on excitation-inhibition balance in cortical networks. *Neuron*, 92(5):1106–1121, 2016.

557 M. E. Larkum and T. Nevian. Synaptic clustering by dendritic signalling mechanisms. *Current opinion
558 in neurobiology*, 18(3):321–331, 2008.

559 N. Le Roux, C. Cabezas, U. L. Böhm, and J. C. Poncer. Input-specific learning rules at excitatory
560 synapses onto hippocampal parvalbumin-expressing interneurons. *The Journal of physiology*, 591
561 (7):1809–1822, 2013.

562 J. Letzkus, S. Wolff, E. Meyer, P. Tovote, J. Courtin, C. Herry, and A. Lüthi. A disinhibitory
563 microcircuit for associative fear learning in the auditory cortex. *Nature*, 480:331–335, December
564 2011.

565 T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feedback weights
566 support error backpropagation for deep learning. *Nature Communications*, 7(1):1–10, 2016.

567 T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton. Backpropagation and the brain.
568 *Nature Reviews Neuroscience*, pages 1–12, 2020.

569 A. Litwin-Kumar and B. Doiron. Slow dynamics and high variability in balanced cortical networks
570 with clustered connections. *Nature Neuroscience*, 2012.

571 A. Litwin-Kumar and B. Doiron. Formation and maintenance of neuronal assemblies through synaptic
572 plasticity. *Nature Communications*, 5(1):1–12, 2014.

573 A. Litwin-Kumar, R. Rosenbaum, and B. Doiron. Inhibitory stabilization and visual coding in cortical
574 circuits with multiple interneuron subtypes. *Journal of Neurophysiology*, 115(3):1399–1409, 2016.

575 A. Litwin-Kumar, K. D. Harris, R. Axel, H. Sompolinsky, and L. Abbott. Optimal degrees of synaptic
576 connectivity. *Neuron*, 93(5):1153–1164, 2017.

577 T. Lochmann, U. A. Ernst, and S. Deneve. Perceptual inference predicts contextual modulations of
578 sensory responses. *Journal of Neuroscience*, 32(12):4179–4195, 2012.

579 Y. Loewenstein, A. Kuras, and S. Rumpel. Multiplicative dynamics underlie the emergence of the
580 log-normal distribution of spine sizes in the neocortex in vivo. *Journal of Neuroscience*, 31(26):
581 9481–9488, 2011.

582 R. Moreno-Bote and J. Drugowitsch. Causal inference and explaining away in a spiking network.
583 *Scientific Reports*, 5:17531, 2015.

584 B. Murphy and K. Miller. Balanced amplification: A new mechanism of selective amplification of
585 neural activity patterns. *Neuron*, 61(4):635–648, 2009. ISSN 0896-6273.

586 F. Najafi, G. F. Elsayed, R. Cao, E. Pnevmatikakis, P. E. Latham, J. P. Cunningham, and A. K.
587 Churchland. Excitatory and inhibitory subnetworks are equally selective during decision-making
588 and emerge simultaneously during learning. *Neuron*, 105(1):165–179, 2020.

589 E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate gradient learning in spiking neural networks: Bringing
590 the power of gradient-based optimization to spiking neural networks. *IEEE Signal Processing
591 Magazine*, 36(6):51–63, 2019.

592 K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid. Functional imaging with cellular resolution
593 reveals precise micro-architecture in visual cortex. *Nature*, 433(7026):597–603, 2005.

594 M. Okun and I. Lampl. Instantaneous correlation of excitation and inhibition during ongoing and
595 sensory-evoked activities. *Nature Neuroscience*, 11(5):535–537, 2008.

596 B. A. Olshausen and D. Field. Sparse coding of sensory inputs. *Current Opinion in Neurobiology*, 14
597 (4):481–487, 2004.

598 A. M. Packer and R. Yuste. Dense, unspecific connectivity of neocortical parvalbumin-positive in-
599 terneurons: A canonical microcircuit for inhibition? *Journal of Neuroscience*, 31(37):13260–13271,
600 2011.

601 E. A. Phillips, C. E. Schreiner, and A. R. Hasenstaub. Cortical interneurons differentially regulate the
602 effects of acoustic context. *Cell Reports*, 20(4):771–778, 2017.

603 F. Pouille and M. Scanziani. Enforcement of temporal fidelity in pyramidal cells by somatic feed-
604 forward inhibition. *Science*, 293(5532):1159–1163, 2001.

605 N. J. Priebe and D. Ferster. Inhibition, spike threshold, and stimulus selectivity in primary visual
606 cortex. *Neuron*, 57(4):482–497, 2008.

607 D. B. Rubin, S. D. Van Hooser, and K. D. Miller. The stabilized supralinear network: A unifying
608 circuit motif underlying multi-input integration in sensory cortex. *Neuron*, 85(2):402–417, 2015.

609 D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error prop-
610 agation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

611 P. Rupprecht and R. W. Friedrich. Precise synaptic balance in the zebrafish homolog of olfactory
612 cortex. *Neuron*, 100(3):669–683, 2018.

613 L. C. Rutherford, S. B. Nelson, and G. G. Turrigiano. Bdnf has opposite effects on the quantal
614 amplitude of pyramidal neuron and interneuron excitatory synapses. *Neuron*, 21(3):521–530, 1998.

615 J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn. Dendritic cortical microcircuits approximate the
616 backpropagation algorithm. In *Advances in Neural Information Processing Systems*, pages 8721–
617 8732, 2018.

618 S. Sadeh and C. Clopath. Theory of neuronal perturbome: Linking connectivity to coding via pertur-
619 bations. *bioRxiv*, 2020.

620 S. Song, P. J. Sjöström, M. Reigl, S. Nelson, and D. B. Chklovskii. Highly nonrandom features of
621 synaptic connectivity in local cortical circuits. *PLoS Biology*, 3(3), 2005.

622 H. Sprekeler. Functional consequences of inhibitory plasticity: Homeostasis, the excitation-inhibition
623 balance and beyond. *Current Opinion in Neurobiology*, 43:198–203, 2017.

624 A. E. Takesian, V. C. Kotak, N. Sharma, and D. H. Sanes. Hearing loss differentially affects thalamic
625 drive to two cortical interneuron subtypes. *Journal of Neurophysiology*, 110(4):999–1008, 2013.

626 A. Y. Tan, B. D. Brown, B. Scholl, D. Mohanty, and N. J. Priebe. Orientation selectivity of synaptic
627 input to neurons in mouse and cat primary visual cortex. *Journal of Neuroscience*, 31(34):12339–
628 12350, 2011.

629 P. Tovote, J. P. Fadok, and A. Lüthi. Neuronal circuits for fear and anxiety. *Nature Reviews Neuro-
630 science*, 16(6):317–331, 2015.

631 R. Tremblay, S. Lee, and B. Rudy. GABAergic interneurons in the neocortex: From cellular properties
632 to circuits. *Neuron*, 91(2):260–292, 2016.

633 C. van Vreeswijk and H. Sompolinsky. Chaos in neuronal networks with balanced excitatory and
634 inhibitory activity. *Science*, 274:1724–1726, 1996.

635 T. Vogels and L. Abbott. Gating multiple signals through detailed balance of excitation and inhibition
636 in spiking networks. *Nature Neuroscience*, 12(4):483–491, 2009. ISSN 1097-6256.

637 T. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory plasticity balances ex-
638 citation and inhibition in sensory pathways and memory networks. *Science*, 334(6062):1569–1573,
639 2011.

640 T. P. Vogels, R. C. Froemke, N. Doyon, M. Gilson, J. S. Haas, R. Liu, A. Maffei, P. Miller, C. Wierenga,
641 M. A. Woodin, et al. Inhibitory synaptic plasticity: spike timing-dependence and putative network
642 function. *Frontiers in neural circuits*, 7:119, 2013.

643 S. N. Weber and H. Sprekeler. Learning place cells, grid cells and invariances with excitatory and
644 inhibitory plasticity. *eLife*, 7:e34560, 2018.

645 M. Wehr and A. Zador. Balanced inhibition underlies tuning and sharpens spike timing in auditory
646 cortex. *Nature*, 426:442–446, 2003.

647 P. J. Werbos. Backpropagation through time: what it does and how to do it. *Proceedings of the IEEE*,
648 78(10):1550–1560, 1990.

649 J. C. Whittington and R. Bogacz. Theories of error back-propagation in the brain. *Trends in Cognitive
650 Sciences*, 2019.

651 M. Xue, B. V. Atallah, and M. Scanziani. Equalizing excitation–inhibition ratios across visual cortical
652 neurons. *Nature*, 511(7511):596–600, 2014.

653 Y. Yoshimura, J. L. Dantzker, and E. M. Callaway. Excitatory cortical neurons form fine-scale func-
654 tional networks. *Nature*, 433(7028):868–873, 2005.

655 X.-M. Yu and M. W. Salter. Gain control of nmda-receptor currents by intracellular sodium. *Nature*,
656 396(6710):469–474, 1998.

657 P. Znamenskiy, M.-H. Kim, D. R. Muir, M. F. Iacaruso, S. B. Hofer, and T. D. Mrsic-Flogel. Functional
658 selectivity and specific connectivity of inhibitory neurons in primary visual cortex. *bioRxiv*, page
659 294835, 2018.

660 **Supplementary Information** is available for this paper.

661 Correspondence and requests for materials should be addressed to H.S.

662 Acknowledgements

663 We thank Joram Keijser for helpful discussions that inspired parts of this work. He, along with De-
664 nis Alevi, Loreen Hertäg and Robert T. Lange also provided careful proof-reading of the manuscript.
665 This project was funded by the German Federal Ministry for Science and Education through a Bern-
666 stein Award (BMBF, FKZ 01GQ1201) and by the German Research Foundation (DFG, collabora-
667 tive research center FOR 2143).

668 Contributions

669 O.M. & H.S. conceived the model. O.M. wrote the simulator, and performed all of the simulations.
670 H.S. supervised the project, and acquired the funding. All authors contributed to the experimental
671 design, interpretation of results, and writing of the manuscript.

672 **Competing Interests**

673 The authors declare no competing interests.

674 Supplementary Materials

675 Plasticity rules

676 The general framework we follow to derive homeostatic rules is to minimise the mean squared deviation
 677 of individual excitatory (Pyr) neuron activations from a target for all stimuli. More specifically, we
 678 perform gradient descent on the following objective function:

$$\mathcal{E}(\mathbf{h}^E) = \left\langle \frac{1}{2} \sum_{j=1}^{N^E} (h_j^E - \rho_0)^2 \right\rangle_s.$$

679 Note that the activations \mathbf{h}^E are given by the difference between the excitatory and the inhibitory
 680 inputs to the excitatory neurons. Our approach can hence be interpreted as supervised learning of
 681 the inhibitory circuitry, with the goal of minimising the mean squared loss between the inhibitory and
 682 the excitatory inputs (plus the constant target ρ_0). In this sense, the derived gradient rules aim to
 683 generate the best possible E/I balance across stimuli that is possible with the circuitry at hand.

684 For reasons of readability, we will first simply state the derived rules. The details of their derivation
 685 can be found in the following section.

686 The sign constraints in excitatory-inhibitory networks require all synaptic weights to remain posi-
 687 tive. To ensure this, we reparameterised all plastic weights of the network by a strictly positive soft-plus
 688 function $W = s^+(V) = \alpha^{-1} \ln(1 + \exp \alpha V)$ and optimised the weight parameter V by gradient descent.

689 In summary, the derived learning rules for the synaptic weight parameters between excitatory
 690 neuron j and inhibitory interneuron i are given by

$$\Delta V_{ji}^{E \leftarrow I} = \eta^I (h_j^E - \rho_0) \frac{\partial W_{ji}^{E \leftarrow I}}{\partial V_{ji}^{E \leftarrow I}} r_i^I - \delta^I W_{ji}^{E \leftarrow I}, \quad (8a)$$

$$\Delta V_{ij}^{I \leftarrow E} = \eta^E \left[\sum_{k=1}^{N^E} W_{ik}^{I \leftarrow E} (h_k^E - \rho_0) \right] \frac{\partial r_i^I}{\partial h_i^I} \frac{\partial W_{ij}^{I \leftarrow E}}{\partial V_{ij}^{I \leftarrow E}} r_j^E - \delta^E W_{ij}^{I \leftarrow E}. \quad (8b)$$

691 Please note that we added a small weight decay to both learning rules. The purpose of this decay term
 692 is to avoid an ambiguity in the solution. When the firing rates of the interneurons are increased, but
 693 their output weights are decreased accordingly, the firing rates of the excitatory population remain
 694 unchanged. Pure gradient-based rules can therefore generate extreme values for the synaptic weights,
 695 in which the interneurons have biologically unrealistic firing rates. The additional decay terms in the
 696 learning rules solve this issue.

697 Finally, we replaced the derivative $\frac{\partial r}{\partial h}$ (which should be a Heaviside function, because rates are the
 698 rectified activations) by the derivative of a soft-plus function with finite sharpness ($\alpha = 1$). This allows
 699 interneurons to recover from a silent state, in which all gradients vanish. Note that this replacement
 700 is done only in the learning rules. The firing rates are still the rectified activations. This method is
 701 similar to recent surrogate gradient approaches in spiking networks [Neftci et al., 2019].

702 **Derivation of the homeostatic plasticity rules in recurrent networks**

703 The challenging aspect of the derivation of the learning rules lies in the recurrence of the network.
 704 The effects of changes in individual synapses can percolate through the network and thereby change
 705 the firing rates of all neurons. Moreover, the temporal dynamics of the network would in principle
 706 require a backpropagation of the gradient through time. We circumvent this complication by assuming
 707 that the external stimuli to the network change slowly compared to the dynamical time scales of the
 708 network, and that the network adiabatically follows the fixed point in its dynamics as the stimulus
 709 changes. This assumption significantly simplifies the derivation of the gradient.

710 The goal is to minimise the total deviation of the excitatory activations \mathbf{h}^E from the homeostatic
 711 target value ρ_0 . To this end, we calculate the gradient of the objective function in Eq. (3) with respect
 712 to a given synaptic weight parameter $v \in \{V_{ij}^{I \leftarrow E}, V_{ji}^{E \leftarrow I}\}$:

$$\frac{\partial}{\partial v} \mathcal{E}(\mathbf{h}^E) = \left\langle (\mathbf{h}^E - \rho_0)^T \frac{\partial \mathbf{h}^E}{\partial v} \right\rangle_s. \quad (9)$$

713 We therefore need the gradient of the activations \mathbf{h}^E of excitatory cells with respect to a parameter v .
 714 In the steady state, the activations are given by

$$\mathbf{h}^E = W^{E \leftarrow E} \mathbf{r}^E - W^{E \leftarrow I} \mathbf{r}^I + I_{\text{bg}} + \mathbf{I}(\mathbf{s}). \quad (10)$$

715 The gradient of the activations \mathbf{h}^E is therefore given by the following implicit condition:

$$\frac{\partial \mathbf{h}^E}{\partial v} = W^{E \leftarrow E} D^E \frac{\partial \mathbf{h}^E}{\partial v} - \left[\frac{\partial W^{E \leftarrow I}}{\partial v} \mathbf{r}^I + W^{E \leftarrow I} D^I \frac{\partial \mathbf{h}^I}{\partial v} \right], \quad (11)$$

716 where we introduced the diagonal matrices $D_i^{E/I} := \delta_{ij} \partial r_i^{E/I} / \partial h_i^{E/I}$ for notational convenience, δ_{ij}
 717 being the Kronecker symbol. Derivatives of expressions that do not depend on any of the synaptic
 718 weights in question are excluded.

Eq. (11) requires the gradient $\frac{\partial \mathbf{h}^I}{\partial v}$ of the inhibitory activations with respect to the parameter v ,

which can be calculated by a similar approach

$$\begin{aligned}\frac{\partial \mathbf{h}^I}{\partial v} &= \frac{\partial}{\partial v} (W^{I \leftarrow E} \mathbf{r}^E - W^{I \leftarrow I} \mathbf{r}^I + I_{\text{bg}}) \\ &= \left(\frac{\partial W^{I \leftarrow E}}{\partial v} \mathbf{r}^E + W^{I \leftarrow E} D^E \frac{\partial \mathbf{h}^E}{\partial v} \right) - W^{I \leftarrow I} D^I \frac{\partial \mathbf{h}^I}{\partial v}.\end{aligned}$$

Introducing the effective interaction matrix $\mathcal{M} := \mathbb{I} + W^{I \leftarrow I} D^I$ among the interneurons (\mathbb{I} being the identity matrix) allows to solve for the gradient of \mathbf{h}^I :

$$\frac{\partial \mathbf{h}^I}{\partial v} = \mathcal{M}^{-1} \left[W^{I \leftarrow E} D^E \frac{\partial \mathbf{h}^E}{\partial v} + \frac{\partial W^{I \leftarrow E}}{\partial v} \mathbf{r}^E \right]$$

Inserting this expression into Eq. (11) yields

$$\frac{\partial \mathbf{h}^E}{\partial v} = [W^{E \leftarrow E} D^E - W^{E \leftarrow I} D^I \mathcal{M}^{-1} W^{I \leftarrow E} D^E] \frac{\partial \mathbf{h}^E}{\partial v} - \frac{\partial W^{E \leftarrow I}}{\partial v} \mathbf{r}^I - W^{E \leftarrow I} D^I \mathcal{M}^{-1} \frac{\partial W^{I \leftarrow E}}{\partial v} \mathbf{r}^E,$$

719 Introducing the effective interaction matrix $\mathcal{W} = \mathbb{I} - W^{E \leftarrow E} D^E + W^{E \leftarrow I} D^I \mathcal{M}^{-1} W^{I \leftarrow E} D^E$ among the
720 excitatory neurons yields an explicit expression for the gradient of \mathbf{h}^E :

$$\frac{\partial \mathbf{h}^E}{\partial v} = -\mathcal{W}^{-1} \frac{\partial W^{E \leftarrow I}}{\partial v} \mathbf{r}^I - \mathcal{W}^{-1} W^{E \leftarrow I} D^I \mathcal{M}^{-1} \frac{\partial W^{I \leftarrow E}}{\partial v} \mathbf{r}^E, \quad (12)$$

721 To obtain gradients with respect to a particular network parameter, we simply substitute the chosen
722 parameter into Eq. (12). For the parameters $V_{ij}^{I \leftarrow E}$ of the input synapses to the interneurons, the
723 gradient reduces to

$$\frac{\partial \mathbf{h}^E}{\partial V^{I \leftarrow E}} = -\mathcal{W}^{-1} W^{E \leftarrow I} D^I \mathcal{M}^{-1} \frac{\partial W^{I \leftarrow E}}{\partial V^{I \leftarrow E}} \mathbf{r}^E, \quad (13)$$

724 and for the parameters $V_{ij}^{E \leftarrow I}$ of the output synapses from the interneurons we get

$$\frac{\partial \mathbf{h}^E}{\partial V^{E \leftarrow I}} = -\mathcal{W}^{-1} \frac{\partial W^{E \leftarrow I}}{\partial V^{E \leftarrow I}} \mathbf{r}^I. \quad (14)$$

By inserting these expressions into Eq. (9) and dropping the average, we obtain online learning rules for the input and output synapses of the interneurons:

$$\Delta V^{I \leftarrow E} \propto [(\mathbf{h}^E - \rho_0)^\top \mathcal{W}^{-1} W^{E \leftarrow I} D^I \mathcal{M}^{-1}] \frac{\partial W^{I \leftarrow E}}{\partial V^{I \leftarrow E}} \mathbf{r}^E \quad (15a)$$

$$\Delta V^{E \leftarrow I} \propto [(\mathbf{h}^E - \rho_0)^\top \mathcal{W}^{-1}] \frac{\partial W^{E \leftarrow I}}{\partial V^{E \leftarrow I}} \mathbf{r}^I. \quad (15b)$$

Note that the same approach also yields learning rules for the threshold and the gain of the transfer

function of the inhibitory interneurons, if those are parameters of the system. Although we did not use such intrinsic plasticity rules, we include them here for the interested reader. We assumed a threshold linear transfer function of the interneurons: $r_i^I = g_i [h_i^I - \theta_i]^+$, where g_i is the gain of the neuronal transfer function and θ_i a firing threshold. While the firing threshold can become negative, gain is reparameterised via the strictly positive soft-plus $g_i = s^+(v_i^g)$.

The gradient-based learning rule for the firing thresholds θ_i of the interneurons is given by

$$\Delta\theta_i \propto - \left[(\mathbf{h}^E - \rho_0)^\top \mathcal{W}^{-1} W^{E \leftarrow I} \mathcal{M}^{-1} \right]_i \frac{\partial r_i^I}{\partial \theta_i}, \quad (16)$$

and the corresponding learning rule for the interneuron gain g_i is

$$\Delta v_i^g \propto \left[(\mathbf{h}^E - \rho_0)^\top \mathcal{W}^{-1} W^{E \leftarrow I} \mathcal{M}^{-1} \right]_i \frac{\partial r_i^I}{\partial g_i} \frac{\partial g_i}{\partial v_i^g}. \quad (17)$$

725 Approximating the gradient rules

726 In the gradient-based rules derived in the previous section, the \mathcal{W}^{-1} and \mathcal{M}^{-1} terms account for the
727 fact that a change in a given synaptic connections percolates through the network. As a result, the
728 learning rules are highly nonlocal and hard to implement in a biologically plausible way. To resolve
729 this challenge, we begin by noting that

$$\mathcal{W}^{-1} = (\mathbb{I} - \hat{\mathcal{W}})^{-1} = \sum_{k=0}^{\infty} \hat{\mathcal{W}}^k,$$

which holds if $\|\hat{\mathcal{W}}\| < 1$. $\hat{\mathcal{W}}$ is a matrix that depends on the synaptic weights in the network. A similar relation holds for \mathcal{M}^{-1} . Since those matrices are contained in Eq. (15a), we substitute the equivalent sums into the relevant sub-expression and truncate the geometric series after the 0-th order, as in

$$\begin{aligned} \mathcal{W}^{-1} W^{E \leftarrow I} D^I \mathcal{M}^{-1} &= \left(\sum_{k=0}^{\infty} \hat{\mathcal{W}}^k \right) W^{E \leftarrow I} D^I \left(\sum_{k=0}^{\infty} \hat{\mathcal{M}}^k \right) \\ &= W^{E \leftarrow I} D^I + \hat{\mathcal{W}} W^{E \leftarrow I} D^I + W^{E \leftarrow I} D^I \hat{\mathcal{M}} + \left(\sum_{k=1}^{\infty} \hat{\mathcal{W}}^k \right) W^{E \leftarrow I} D^I \left(\sum_{k=1}^{\infty} \hat{\mathcal{M}}^k \right) \\ &\approx W^{E \leftarrow I} D^I. \end{aligned}$$

730 The truncation to 0-th order in the last line should yield an acceptable approximation if synapses are
731 sufficiently weak. The effect of higher-order interactions in the network can then be ignored. This
732 approximation can be substituted into Eq. (15a) and yields an equation that resembles a backpropa-

733 gation rule in a feedforward network ($E \rightarrow I \rightarrow E$) with one hidden layer—the interneurons. The final,
734 local approximation used for the simulations in the main text is then reached by replacing the output
735 synapses of the interneurons by the transpose of their input synapses. While there is no mathematical
736 argument why this replacement is valid, it turns out to be in the simulations, presumably because of
737 a mechanism akin to feedback alignment [Lillicrap et al., 2016], see discussion in the main text. In
738 feedback alignment, the matrix that backpropagates the errors is replaced by a random matrix B .
739 Here, we instead use the feedforward weights in the layer below. Similar to the extension to feedback
740 alignment of Akrout et al. [2019], those weights are themselves plastic. However, we believe that the
741 underlying mechanism of feedback alignment still holds. The representation in the hidden layer (the
742 interneurons) changes as if the weights to the output layer (the Pyr neurons) were equal to the weight
743 matrix they are replaced with (here, the input weights to the PV neurons). To exploit this representa-
744 tion, the weights to the output layer then align to the replacement weights, justifying the replacement
745 post-hoc (Fig. 1G).

746 Note that the condition for feedback alignment to provide an update in the appropriate direction
747 ($e^T B^T W e > 0$, where e denotes the error, W the weights in the second layer, and B the random
748 feedback matrix) reduces to the condition that $W^{E \leftarrow I} W^{I \leftarrow E}$ is positive definite (assuming the errors
749 are full rank). One way of assuring this is a sufficiently positive diagonal of this matrix product, i.e.
750 a sufficiently high correlation between the incoming and outgoing synapses of the interneurons. A
751 positive correlation of these weights is one of the observations of Znamenskiy et al. [2018] and also a
752 result of learning in our model.

753 While such a positive correlation is not necessarily present for all learning tasks or network models,
754 we speculate that it will be for the task of learning an E/I balance in networks that obey Dale’s law.

755 The same logic of using a 0-th order approximation of \mathcal{W}^{-1} that neglects higher order interactions
756 is employed to recover the inhibitory synaptic plasticity rule of Vogels et al. [2011] from Eq. (15b).

757 Overall, the local approximation of the learning rule relies on three assumptions: Slowly varying
758 inputs, weak synaptic weights and alignment of input and output synapses of the interneurons. These
759 assumptions clearly limit the applicability of the learning rules for other learning tasks. In particular,
760 the learning rules will not allow the network to learn temporal sequences.

761 **Supplementary Figures**

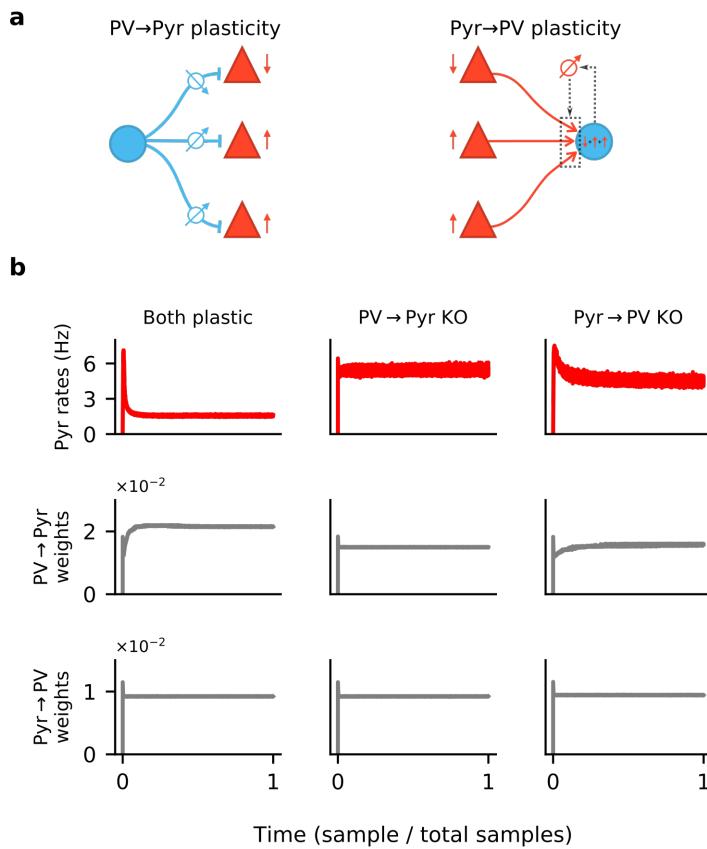
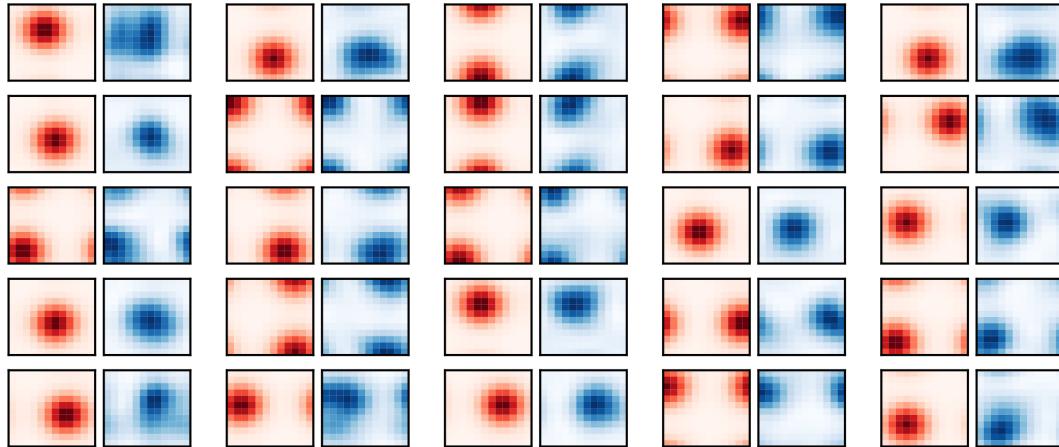
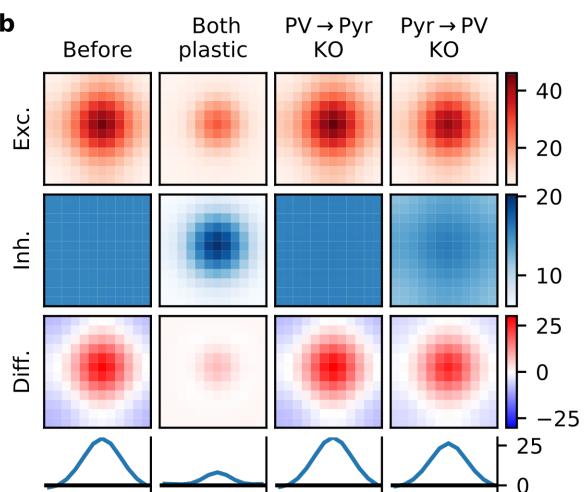


Figure S1: **Synaptic plasticity and convergence.** **a.** Schematics of PV → Pyr plasticity (left) and Pyr → PV plasticity (right). PV → Pyr plasticity follows a simple logic: A given inhibitory synapse is potentiated if the postsynaptic Pyr neuron fires above target, and is depressed if below. The Pyr → PV plasticity compares the excitatory input current received by the postsynaptic PV neuron to a target value, and adjusts the incoming synapses in proportion to this error and to presynaptic activity. **b.** Time plots of the Pyr population firing rate (top), mean of all PV → Pyr synaptic weights (middle) and Pyr → PV weights (bottom). Columns correspond to simulations in which both PV → Pyr and Pyr → PV plasticity are present (left), only Pyr → PV is present (middle), and only PV → Pyr is present (right).

a



b



c

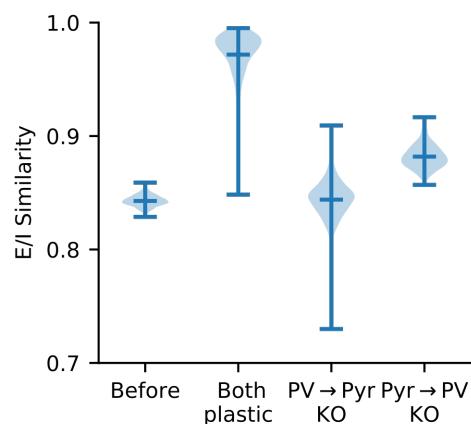


Figure S2: Synaptic currents onto Pyr neurons. **a.** Excitatory (red) and inhibitory (blue) synaptic currents onto a random selection of Pyr neurons, as a function of temporal and spatial stimulus frequency (averaged over all orientations), when both incoming and outgoing PV synapses are plastic. **b.** The network-averaged excitatory (first row) and inhibitory (second row) synaptic currents onto Pyr neurons, both centred according to the peak excitatory current before averaging. After averaging their difference is taken (third row), and a slice is plotted (bottom row). When both plasticities are present, currents are well-balanced across stimuli with a modest excitatory bias for preferred stimuli. **c.** Quality of E-I current co-tuning for every Pyr in the network quantified by the distribution of their cosine similarities. Only when both plasticities are present do most Pyr neurons receive well co-tuned E-I synaptic currents.

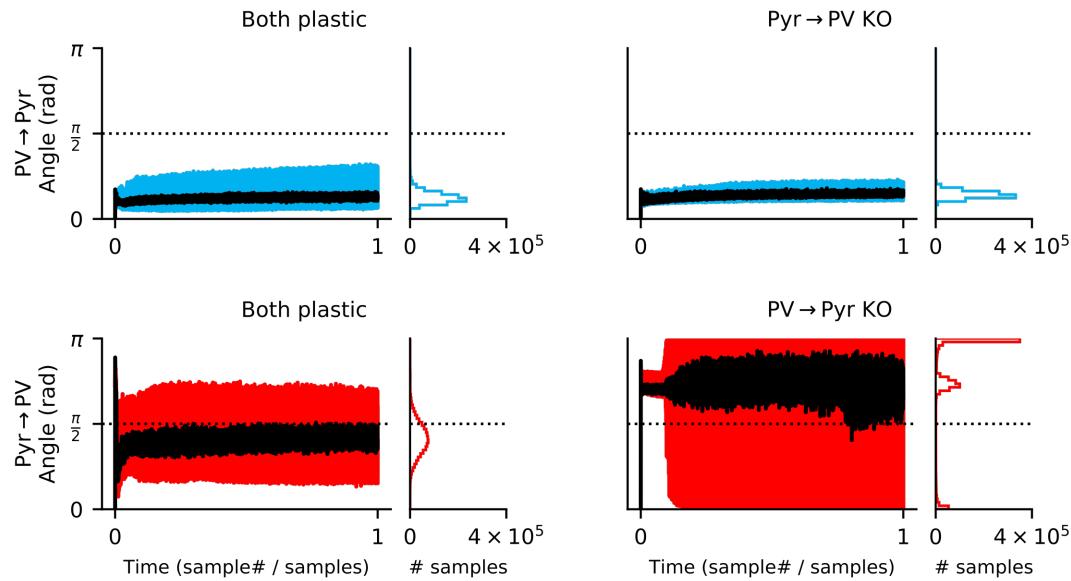


Figure S3: Both in- and output synapses must be plastic for feedback alignment to occur.
 In a network with both local rules (left column), the update to Pyr → PV synapses rapidly align to the gradient (i.e. when the angle between the approximate update and the gradient is below $\pi/2$; bottom left). While updates to the Pyr → PV weights occasionally point away from the gradient, 79% of samples are below $\pi/2$. For the knock-out (KO) experiments (right column), output plasticity closely follows the PV → Pyr gradient even if input plasticity is absent (upper right). In contrast, if output (PV → Pyr) plasticity is absent the approximate Pyr → PV rule does not follow the gradient (lower right).

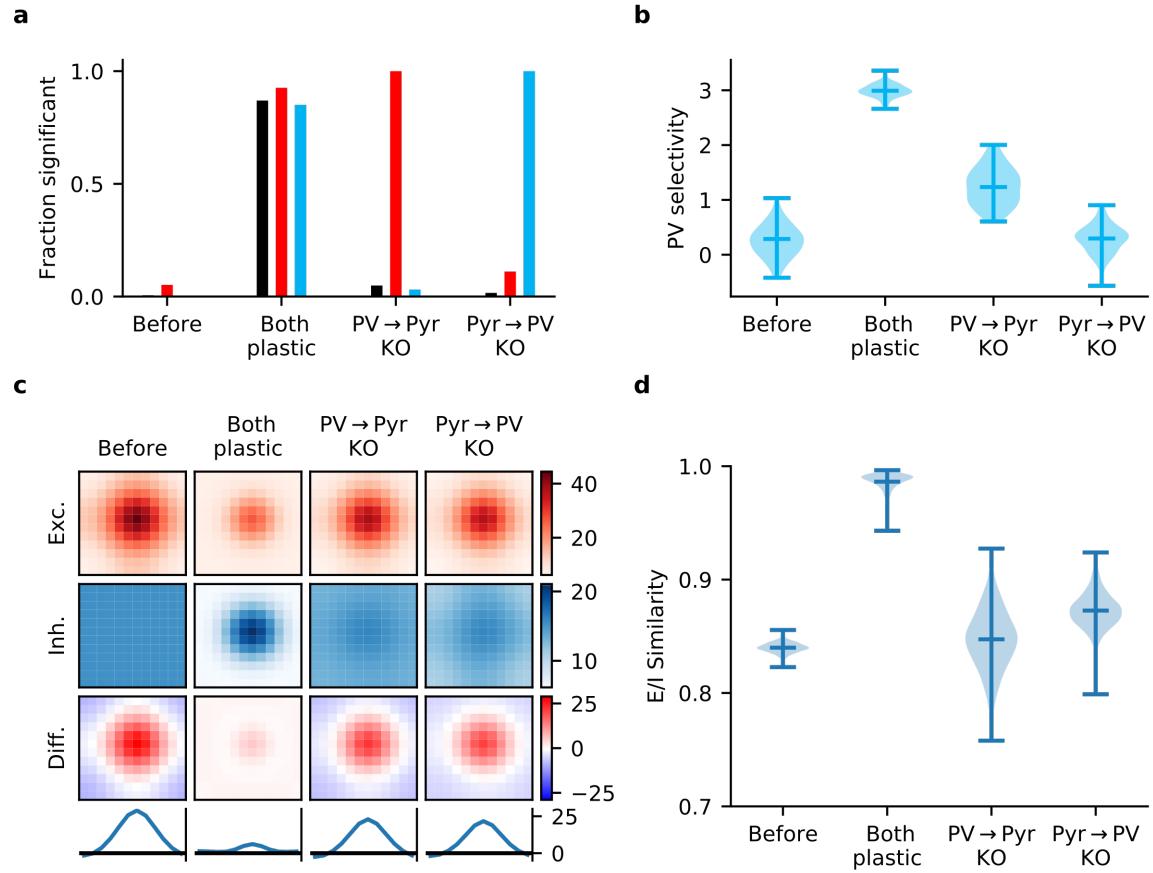


Figure S4: Gradient rules also require plasticity of both in- and output synapses of PV interneurons. **a.** In a network learning with the derived gradient rules of Eq. (15), significant correlations are reliably detected between response similarity (RS) and excitatory weights (red bars), RS and inhibitory weights (blue bars), and excitatory & inhibitory weights for reciprocally connected Pyr-PV cell pairs (black bars) only if both synapse types are plastic. **b.** Interneurons fail to develop stimulus selectivity if their input weights do not change according to the gradient rule of Eq. (15a). **c.** Synaptic currents onto Pyr neurons only develop reliable, strong excitatory-inhibitory (E/I) co-tuning if both in- and output synapses are updated using the gradient rules. Currents are averaged across all Pyr neurons after centering according to the neuron's preferred stimulus. The bottom row is a slice through the difference (third row) of the average excitatory (first row) and inhibitory currents (second row). **d.** Violin plot of the distribution of E/I synaptic current similarity values for all Pyr neurons in the network (see Methods).

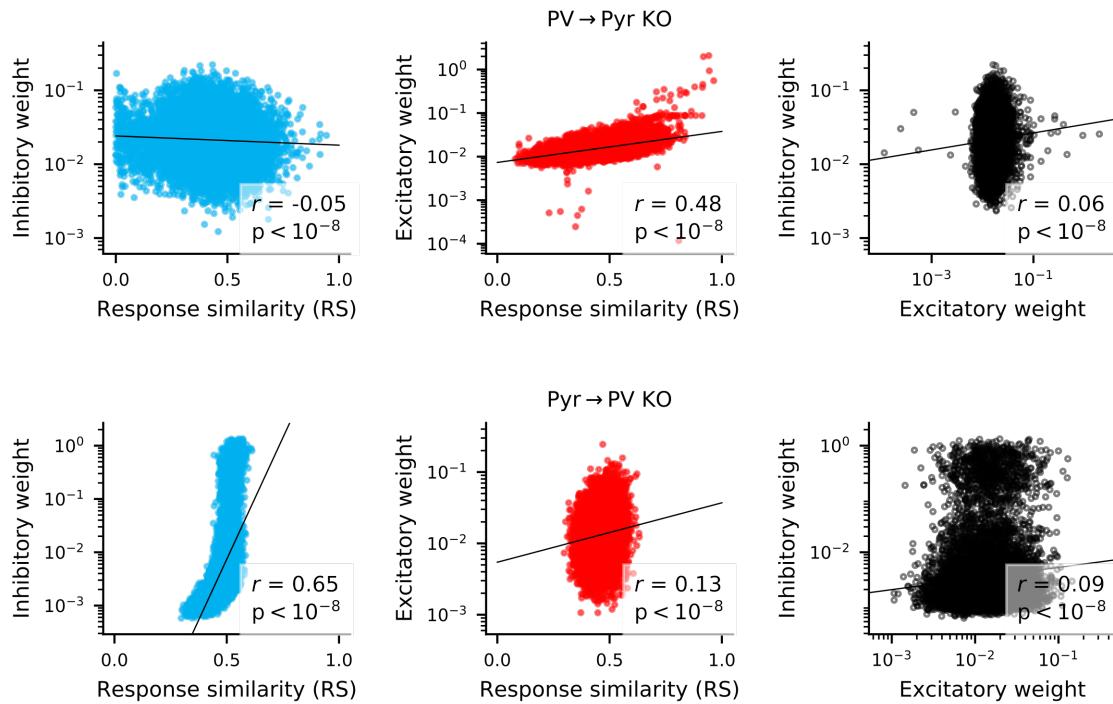


Figure S5: Correlation between weights and response similarity. Scatter plots containing every synapse in networks without PV → Pyr plasticity (top), or without Pyr → PV plasticity (bottom). Pearson correlation is always highly significant, though sometimes weak.

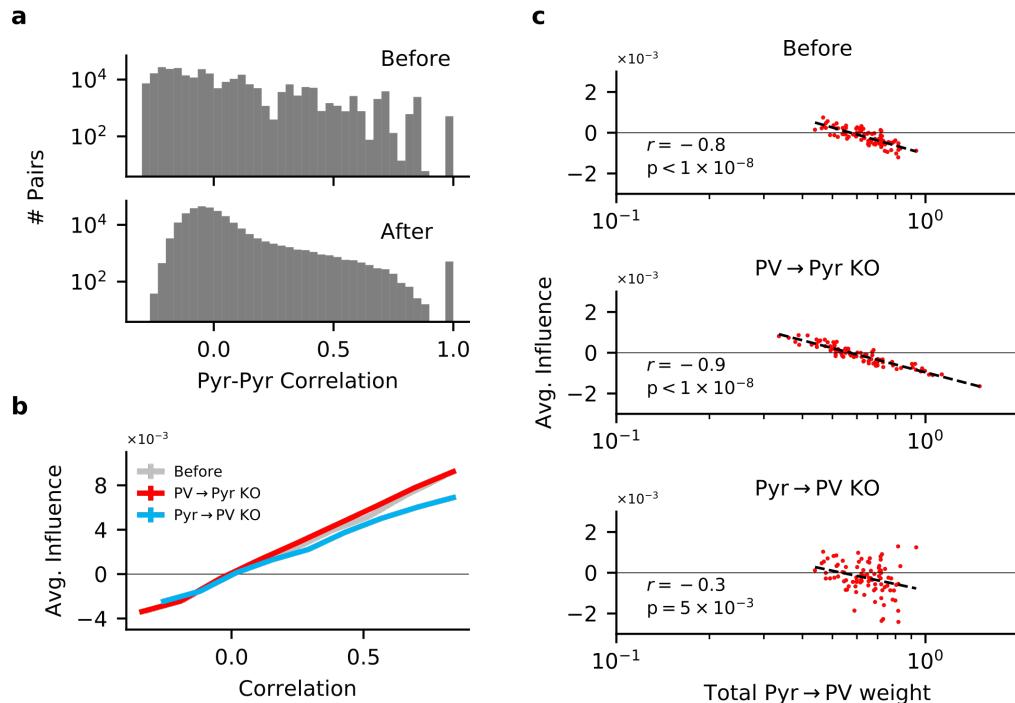


Figure S6: In- and output plasticity together change correlations between pyramidal (Pyr) neurons, while plasticity knock-out (KO) eliminates feature competition. a. Receptive-field correlations (Pearson) between Pyr neurons, before (top) and after (bottom) learning with both PV → Pyr and Pyr → PV synaptic plasticity. **b.** The effect of perturbing a Pyr neuron on the response of other Pyr neurons (to random stimuli) as a function of their receptive-field correlation (see Materials & Methods). On their own, both Pyr → PV and PV → Pyr plasticity have little effect on the feature amplification observed prior to learning. **c.** Despite the absence of feature competition on average in the KO networks, the total strength of Pyr → PV synapses from a given Pyr neuron is still predictive of its influence on the rest of the network: The stronger its total weight, the more likely a Pyr is to suppressing the response of other Pyr neurons.

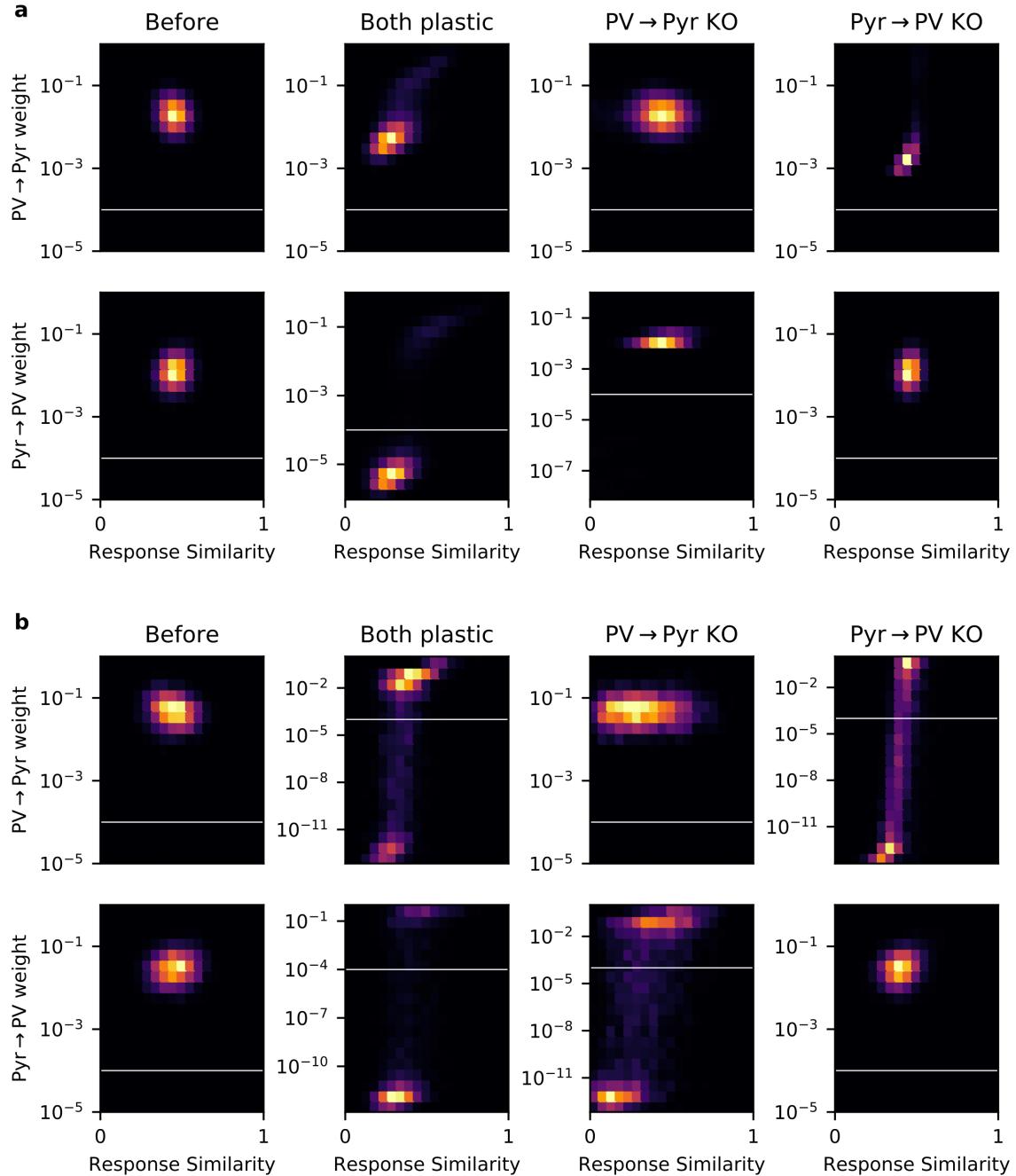


Figure S7: Some networks contain experimentally undetectable weights. a. Plots of 2D histograms for PV → Pyr (top) and Pyr → PV (bottom) weight versus response similarity (RS), in different networks trained with the local plasticity rules (columns). White lines indicate the threshold of experimental detectability. Any weight $< 10^{-4}$ is not included when computing Pearson's correlation between RS and synaptic weight, or weight-weight correlations. **b.** Same plots as (a), but for networks trained with the gradient rules.