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Abstract7

In sensory circuits with poor feature topography, stimulus-specific feedback inhibition necessitates8

carefully tuned synaptic circuitry. Recent experimental data from mouse primary visual cortex (V1)9

show that synapses between pyramidal neurons and parvalbumin-expressing (PV) inhibitory interneu-10

rons tend to be stronger for neurons that respond to similar stimulus features. The mechanism that11

underlies the formation of such excitatory-inhibitory (E/I) assemblies is unresolved. Here, we show12

that activity-dependent synaptic plasticity on input and output synapses of PV interneurons generates13

a circuit structure that is consistent with mouse V1. Using a computational model, we show that both14

forms of plasticity must act synergistically to form the observed E/I assemblies. Once established, these15

assemblies produce a stimulus-specific competition between pyramidal neurons. Our model suggests16

that activity-dependent plasticity can enable inhibitory circuits to actively shape cortical computa-17

tions.18

Introduction19

With the advent of modern optogenetics, the functional role of inhibitory interneurons has developed20

into one of the central topics of systems neuroscience [Fishell and Kepecs, 2019]. Aside from the21

classical perspective that inhibition serves to stabilize recurrent excitatory feedback loops in neuronal22

circuits [van Vreeswijk and Sompolinsky, 1996, Brunel, 2000, Murphy and Miller, 2009, Sprekeler,23
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2017], it is increasingly recognised as an active player in cortical computation [Isaacson and Scanziani,24

2011, Priebe and Ferster, 2008, Rubin et al., 2015, Pouille and Scanziani, 2001, Letzkus et al., 2011,25

Adesnik et al., 2012, Hennequin et al., 2014, Phillips et al., 2017, Barron et al., 2016, 2017, Tovote26

et al., 2015].27

Within cortical neurons, excitatory and inhibitory currents are often highly correlated in their28

response to stimuli [Wehr and Zador, 2003, Froemke et al., 2007, Tan et al., 2011, Bhatia et al., 2019],29

in time [Okun and Lampl, 2008, Dipoppa et al., 2018] and across neurons [Xue et al., 2014]. This co-30

tuning of excitatory and inhibitory currents has been attributed to different origins. In topographically31

organised sensory areas such as cat primary visual cortex, the co-tuning with respect to sensory stimuli32

could be a natural consequence of local feedback inhibition and does not impose strong constraints on33

inhibitory circuitry [Harris and Mrsic-Flogel, 2013]. In the case of feedforward inhibition, co-tuning34

of excitatory and inhibitory currents was suggested to arise from homeostatic synaptic plasticity in35

GABAergic synapses [Vogels et al., 2011, Clopath et al., 2016, Weber and Sprekeler, 2018, Hennequin36

et al., 2017].37

In sensory areas with poor feature topography, such as primary visual cortex of rodents [Ohki et al.,38

2005], feedback inhibition has been hypothesised to be largely unspecific for stimulus features, a prop-39

erty inferred from the dense connectivity [Fino and Yuste, 2011, Packer and Yuste, 2011] and reliable40

presence of synapses connecting pyramidal (Pyr) neurons to inhibitory interneurons with dissimilar41

stimulus tuning [Harris and Mrsic-Flogel, 2013, Bock et al., 2011, Hofer et al., 2011]. However, recent42

results cast doubt on this idea of a “blanket of inhibition” [Fino and Yuste, 2011, Packer and Yuste,43

2011].44

In mouse primary visual cortex (V1), Znamenskiy et al. [2018] report that although the presence45

of synaptic connections between Pyr cells and parvalbumin-positive (PV) interneurons is independent46

of their respective stimulus responses, the efficacy of those synapses is correlated with their response47

similarity, both in PV → Pyr and in Pyr → PV connections. These mutual preferences in synaptic48

organization suggest that feedback inhibition may be more stimulus-specific than previously thought49

and that Pyr and PV neurons form specialized—albeit potentially overlapping—excitatory-inhibitory50

(E/I) assemblies [Chenkov et al., 2017, Yoshimura et al., 2005, Litwin-Kumar and Doiron, 2012, 2014].51

While the presence of such E/I assemblies [Znamenskiy et al., 2018, Rupprecht and Friedrich, 2018]52

suggests the need for an activity-dependent mechanism for their formation and/or refinement [Khan53

et al., 2018, Najafi et al., 2020], the requirements such a mechanism must fulfil remain unresolved.54

Here, we use a computational model to identify requirements for the development of stimulus-55

specific feedback inhibition. We find that the formation of E/I assemblies requires a synergistic action56
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of plasticity on two synapse types: the excitatory synapses from Pyr neurons onto PV interneurons, and57

the inhibitory synapses from those interneurons onto the Pyr cells. Using ”knock-out experiments”,58

in which we block plasticity in either synapse type, we show that both must be plastic to account for59

the observed functional microcircuits in mouse V1. In addition, after the formation of E/I assemblies,60

perturbations of individual Pyr neurons lead to a feature-specific suppression of other Pyr neurons61

as recently found in mouse V1 [Chettih and Harvey, 2019]. Thus, synergistic plasticity of the in-62

and outgoing synapses of PV interneurons can drive the development of stimulus-specific feedback63

inhibition, resulting in a competition between Pyr neurons with similar stimulus preference.64

Results65

To understand which activity-dependent mechanisms can generate specific feedback inhibition in cir-66

cuits without feature topography—such as mouse V1 (Fig. 1a), we studied a rate-based network model67

consisting of NE = 512 excitatory Pyr neurons and N I = 64 inhibitory PV neurons. To endow the68

excitatory neurons with a stimulus-tuning similar to pyramidal cells in layer 2/3 of mouse V1 [Znamen-69

skiy et al., 2018], each excitatory neuron receives external excitatory input that is tuned to orientation,70

temporal frequency and spatial frequency (Fig. 1b). The preferred stimuli of the Pyr neurons cover71

the stimulus space evenly. Because we are interested under which conditions feedback inhibition can72

acquire a stimulus-selectivity, inhibitory neurons receive external inputs without stimulus tuning, but73

are recurrently connected to Pyr neurons. While the network has no stimulus topography, Pyr neu-74

rons are preferentially connected to other Pyr neurons with similar stimulus tuning [Hofer et al., 2011,75

Cossell et al., 2015], and connection strength is proportional to the signal correlation of their external76

inputs. Note that the Pyr → Pyr connections only play a decisive role for the results in Fig. 4, but77

are present in all simulations for consistency. Connection probability across the network is p = 0.6,78

with the remaining network connectivity (Pyr → PV, PV → PV, PV → Pyr) initialised randomly79

according to a log-normal distribution [Song et al., 2005, Loewenstein et al., 2011], with a variability80

that is similar to that measured in the respective synapses [Znamenskiy et al., 2018].81

E/I assemblies are formed by homeostatic plasticity rules in input and out-82

put connections of PV interneurons83

In feedforward networks, a stimulus-specific balance of excitation and inhibition can arise from home-84

ostatic inhibitory synaptic plasticity that aims to minimise the deviation of a neuron’s firing rate from85

a target for all stimuli of a given set [Vogels et al., 2011, Clopath et al., 2016, Weber and Sprekeler,86
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Figure 1: Homeostatic plasticity in input and output synapses of interneurons drives the
formation of E/I assemblies. a. Emergence of E/I assemblies comprised of pyramidal neurons
(triangles) and parvalbumin-expressing interneurons (circles) in circuits without feature topography.
b. Network architecture and stimulus tuning of external inputs to pyramidal (Pyr) cells. Continued
on following page.
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Figure 1: c. Stimulus selectivity of Pyr neurons and PV interneurons (before and after learning).
Arrows indicate the median. d. Example responses of reciprocally connected Pyr cells and PV
interneurons. Examples chosen for large, intermediate and low response similarity (RS). Numbers
correspond to points marked in (e). e. Relationship of synaptic efficacies of output (left) and input
connections (centre) of PV interneurons with response similarity. Relationship of input and output
efficacies (right). Black lines are obtained via linear regression. Reported r and associated p-value are
Pearson’s correlation. f. Stimulus tuning of excitatory and inhibitory currents onto an example Pyr
cell, before and after learning. For simplicity, currents are shown for spatial and temporal frequency
only, averaged across all orientations. g. Angle between the weight update and the gradient rule while
following the local approximation for input (top) and output (bottom) connections of PV interneurons.
Time course for first 4% of simulation (left) and final distribution (right) shown. Black lines are low-
pass filtered time courses.

2018]. We wondered whether a stimulus-specific form of homeostasis can also generate stimulus-specific87

feedback inhibition by forming E/I assemblies. To that end, we derive synaptic plasticity rules for ex-88

citatory input and inhibitory output connections of PV interneurons that are homeostatic for the89

excitatory population (see Materials & Methods). A stimulus-specific homeostatic control can be seen90

as a ”trivial” supervised learning task, in which the objective is that all pyramidal neurons should learn91

to fire at a given target rate ρ0 for all stimuli. Hence, a gradient-based optimisation would effectively92

require a backpropagation of error [Rumelhart et al., 1985] through time [BPTT; Werbos, 1990].93

Because backpropagation rules rely on non-local information that might not be available to the94

respective synapses, their biological plausibility is currently debated [Lillicrap et al., 2020, Sacramento95

et al., 2018, Guerguiev et al., 2017, Whittington and Bogacz, 2019, Bellec et al., 2020]. However,96

a local approximation of the full BPTT update can be obtained under the following assumptions:97

First, we assume that the sensory input to the network changes on a time scale that is slower than98

the intrinsic time scales in the network. This eliminates the necessity of backpropagating information99

through time, albeit still through the synapses in the network. This assumption results in what we100

call the ”gradient-based” rules (Eq. 15 in the Supplementary Materials), which are spatially non-local.101

Second, we assume that synaptic interactions in the network are sufficiently weak that higher-order102

synaptic interactions can be neglected. Third and finally, we assume that over the course of learning,103

the Pyr → PV connections and the PV → Pyr connections become positively correlated [Znamenskiy104

et al., 2018], such that we can replace PV → Pyr synapses by the reciprocal Pyr → PV synapse in the105

Pyr→ PV learning rule, without rotating the update too far from the true gradient (see Supplementary106

Materials).107

The resulting learning rule for the output connections of the interneurons is similar to a previously

suggested form of homeostatic inhibitory plasticity (Supp. Fig. S1a, left) [Vogels et al., 2011]. Specifi-

cally, PV output synapses WE←I undergo Hebbian changes in proportion to presynaptic interneuron
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activity rI and the signed deviation of total postsynaptic pyramidal cell input hE from the homeostatic

target:

∆WE←I
ij ∝ rIj(hEi − ρ0) + weight decay .

In contrast, the PV input synapses W I←E are changed such that the total excitatory drive IE, rec
i from

the Pyr population to each interneuron is close to some target value I0 (Supp. Fig. S1a, right):

∆W I←E
ij ∝ rEj (IE, rec

i − I0) + weight decay .

Both synapse types are subject to a weak weight decay, to avoid the redundancy that a multiplicative108

rescaling of input synapses can be compensated by a rescaling of the output synapses.109

While our main results are obtained using the local approximations, we also simulated the gradient-110

based rules to verify that the approximation does not qualitatively change the results (Supp. Fig. S4).111

When we endow the synapses of an initially randomly connected network of Pyr neurons and PV112

interneurons with plasticity in both the input and the output synapses of the interneurons, the network113

develops a synaptic weight structure and stimulus response that closely resemble that of mouse V1114

[Znamenskiy et al., 2018]. Before learning, interneurons show poor stimulus selectivity (Fig. 1c), in115

line with the notion that in a random network, interneurons pool over many Pyr neurons with different116

stimulus tuning [Harris and Mrsic-Flogel, 2013]. The network is then exposed to randomly interleaved117

stimuli. By the end of learning, interneurons have developed a pronounced stimulus tuning, albeit118

weaker than that of Pyr neurons (Fig. 1c, d). Interneurons form strong bidirectional connections pref-119

erentially with Pyr neurons with a similar stimulus tuning, whereas connections between Pyr-PV pairs120

with dissimilar stimulus tuning are weaker (Fig. 1d, e). To make our results comparable to Znamenskiy121

et al. [2018], we randomly sample an experimentally feasible number of synaptic connections from the122

network (n = 100). Both the efficacy of PV input and output connections are highly correlated with123

the response similarity (see Materials & Methods) of the associated Pyr neurons and interneurons124

(Fig. 1e, left and center). For bidirectionally connected cell pairs, the efficacies of the respective input125

and output connections are highly correlated (Fig. 1e, right). The stimulus tuning of the inhibitory126

inputs onto the Pyr cells—initially flat—closely resembles that of the excitatory inputs after learning127

(Fig. 1f, Supp. Fig. S2) [Tan et al., 2011], i.e. the network develops a precise E/I balance [Hennequin128

et al., 2017].129

Finally, the optimal gradient rules produce very similar results to the local approximations (Supp.130

Fig. S4). Over the course of learning, the weight updates by the approximate rules align to the updates131
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that would result from the gradient rules over (Fig. 1g, Supp. Fig. S3), presumably by a mechanism132

akin to feedback alignment [Lillicrap et al., 2016, Akrout et al., 2019].133

In summary, these results show that combined homeostatic plasticity in input and output synapses134

of interneurons can generate a similar synaptic structure as observed in mouse V1, including the135

formation of E/I assemblies.136

PV → Pyr plasticity is required for the formation of E/I assemblies137

Having shown that homeostatic plasticity acting on both input and output synapses of interneurons138

are sufficient to learn E/I assemblies, we now turn to the question of whether both are necessary.139

To this end, we perform ”knock-out” experiments, in which we selectively block synaptic plasticity in140

either of the synapses. The motivation for these experiments is the observation that the incoming PV141

synapses follow a long-tailed distribution [Znamenskiy et al., 2018]. This could provide a sufficient142

stimulus selectivity in the PV population for PV → Pyr plasticity alone to achieve a satisfactory E/I143

balance. A similar reasoning holds for static, but long-tailed outgoing PV synapses. This intuition is144

supported by result of Litwin-Kumar et al. [2017] that in a population of neurons analogous to our145

interneurons, the dimensionality of responses in that population can be high for static input synapses,146

when those are log-normally distributed.147

When we knock-out output plasticity but keep input plasticity intact, the network fails to develop148

E/I assemblies and a stimulus-specific E/I balance. While there is highly significant change in the149

distribution of PV interneuron stimulus selectivity (Mann–Whitney U test, U = 1207, p < 10−4),150

the effect is much stronger when output plasticity is also present (Fig. 2a,b). Importantly, excitatory151

and inhibitory currents in Pyr neurons are poorly co-tuned (Fig. 2c, Supp. Fig. S2b). In particular,152

feedback inhibition remains largely untuned because output connections are still random, so that Pyr153

neurons pool inhibition from many interneurons with different stimulus tuning.154

To investigate whether the model without output plasticity is consistent with the synaptic structure155

of mouse V1, we repeatedly sample an experimentally feasible number of synapses (n = 100, Fig. 2d)156

and plot the distribution of the three pairwise Pearson correlation coefficients between the two classes157

of synaptic weights and response similarity (Fig. 2e). When both forms of plasticity are present in158

the network, a highly significant positive correlation (p < 0.01) is detected in all samples for all three159

correlation types (Fig. 2f). When output plasticity is knocked out, we still find a highly significant160

positive correlation between input weights and response similarity in 99% of the samples (Fig. 2d-f). In161

contrast, correlations between input and output synapses are weaker and cannot reliably be detected162
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Figure 2: Knock-out of plasticity in PV output connections prevents inhibitory co-tuning.
a. Example responses of reciprocally connected pyramidal (Pyr) cells and PV interneurons. Numbers
correspond to points marked in (d). b. Stimulus selectivity of Pyr cells and PV interneurons (before
and after learning; Mann–Whitney U test, p < 10−4). Arrows indicate median. c. Stimulus tuning of
excitatory and inhibitory input currents for two example Pyr cells. For simplicity, currents are shown
for spatial and temporal frequency only, averaged across all orientations. d. Relationship of output
(left) and input (centre) synaptic efficacies of PV interneurons with response similarity. Relationship
of input and output efficacies (right). Plotted lines are obtained via linear regression. Reported r and
associated p-value are the Pearson correlation. Continued on following page.
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Figure 2: e. Distribution of Pearson correlation coefficients for multiple samples as shown in (d).
Dashed line marks threshold of high significance (p< 0.01). f. Fraction of samples with highly
significant positive correlation before plasticity, after plasticity in both input and output connections
and for knock-out (KO) of plasticity in PV output connections (based on 10,000 random samples of
100 synaptic connections).

(2% of samples). Notably, we find a correlation between output weights and response similarity in 0.0%163

of samples (Fig. 2f). Finally, for an experimentally realistic sample size of n = 100, the probability of164

a correlation coefficient equal or higher than that observed by Znamenskiy et al. [2018] is 0.0% for the165

correlation between output weights and response similarity (r = 0.55), and 0.0% for the correlation166

between input and output synapses (r = 0.52).167

The non-local gradient rule for the PV input synapses alone also does not permit the formation of168

E/I assemblies (Supp. Fig. S4a). While the selectivity of interneurons increases more than for the local169

approximation (Supp. Fig. S4b), feedback inhibition still remains untuned in the absence of output170

plasticity (Supp. Fig. S4c,d).171

We therefore conclude that input plasticity alone is insufficient to generate the synaptic microstruc-172

ture observed in mouse V1.173

Pyr → PV plasticity is required for assembly formation174

When we knock out input plasticity but keep output plasticity intact, we again observe no formation175

of E/I assemblies. This remains true even when using the gradient-based rule (Supp. Fig. S4). The176

underlying reason is that input weights remain random. Interneurons collect excitation from many Pyr177

neurons with different preferences, and absent plasticity on their input synapses, they maintain their178

initial poor stimulus selectivity (Fig. 3a-c). Because of the poor stimulus tuning of the interneurons,179

output plasticity cannot generate stimulus-specific inhibitory inputs to the Pyr neurons (Fig. 3d).180

Across the whole population, the similarity of excitatory and inhibitory currents onto Pyr neurons181

remains low (Supp. Fig. S2b,c).182

Note that interneurons still possess a weak, but consistent stimulus tuning that arises from random183

variations in their input weights. A particularly strong input connection will cause the postsynaptic184

interneuron to prefer similar stimuli to the presynaptic Pyr. Because of the resulting correlated activity,185

the Hebbian nature of the output plasticity potentiates inhibitory weights for such cell pairs that are186

reciprocally connected. This tendency of strong input synapses to generate a strong corresponding187

output synapse is reflected in a positive correlation between them (Fig. 3e, Supp. Fig. S5a), despite188

the fact that input synapses remain random.189
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Figure 3: Plasticity of PV input connections is required for inhibitory stimulus selectivity
and current co-tuning. a. Example responses of reciprocally connected pyramidal (Pyr) cells and
PV interneurons. b. Stimulus selectivity of Pyr cells and PV interneurons (before and after learning).
Arrows indicate median. c. Violin plots of inhibitory stimulus selectivity before plasticity, after
learning with plasticity in both input and output connections of PV interneurons and for knock-out of
plasticity in PV input connections. d. Stimulus tuning of excitatory and inhibitory currents in a Pyr
cell before and after learning. Dimensions correspond to spatial and temporal frequency of the stimuli
averaged across all orientations. e. Fraction of samples with highly significant (p < 0.01) positive
correlation before plasticity, after plasticity in both input and output connections, and for knock-
out (KO) of plasticity in PV input connections (based on 10,000 random samples of 100 synaptic
connections).
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Collectively, these results indicate that plasticity of both the inhibitory output and the excitatory190

input synapses of PV interneurons is required for the formation of E/I assemblies in cortical areas191

without feature topography, such as mouse V1.192

Single Neuron Perturbations193

Our findings demonstrate that in networks without feature topography, only a synergy of excitatory194

and inhibitory plasticity can account for the emergence of E/I assemblies. But how does stimulus-195

specific feedback inhibition affect interactions between excitatory neurons? In layer 2/3 of V1 similarly196

tuned excitatory neurons tend to have stronger and more frequent excitatory connections [Ko et al.,197

2011]. It has been hypothesised that this tuned excitatory connectivity supports reliable stimulus198

responses by amplifying the activity of similarly tuned neurons [Cossell et al., 2015]. However, the199

presence of co-tuned feedback inhibition could also induce the opposite effect, such that similarly tuned200

excitatory neurons are in competition with each other [Chettih and Harvey, 2019, Moreno-Bote and201

Drugowitsch, 2015].202

To investigate the effect of stimulus-specific inhibition in our network, we simulate the perturbation203

experiment of Chettih and Harvey [2019]: First, we again expose the network to the stimulus set, with204

PV input and output plasticity in place to learn E/I assemblies. Second, both before and after learning,205

we probe the network with randomly selected stimuli from the same stimulus set, while perturbing a206

single Pyr cell with additional excitatory input, and measure the resulting change in activity of other207

Pyr neurons in the network (Fig. 4a).208

While the activity of the perturbed neuron increases, many of the other Pyr neurons are inhibited209

in response to the perturbation (Fig. 4b). Although comparing the pairwise influence of Pyr neurons on210

each other does not reveal any apparent trend (Fig. 4c), recent experiments report that the influence211

a single-cell perturbation has on other neurons depends on the similarity of their stimulus feature212

tuning [Chettih and Harvey, 2019]. To test whether we observe the same feature-specific suppression,213

we compute the influence of perturbing a Pyr on the rest of the network as a function of the receptive214

field correlation of the perturbed cell and each measured cell. In line with recent perturbation studies215

[Chettih and Harvey, 2019, Sadeh and Clopath, 2020], we observe that—on average—neurons are more216

strongly inhibited if they have a similar tuning to the perturbed neuron (Fig. 4d). The opposite holds217

before learning: the effect of single-neuron perturbations on the network is increasingly excitatory as218

receptive field correlation increases. Notably, the networks in which input or output plasticity was219

knocked out during learning (and therefore did not develop E/I assemblies) show the same excitatory220
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Figure 4: Single neuron perturbations suppress responses of similarly tuned neurons. a.
Perturbation of a single pyramidal (Pyr) neuron. Responses of other Pyr neurons are recorded for
different stimuli, both with and without perturbation. b. Perturbation-induced change in activity (∆
Act.) of a subset of Pyr cells, for a random subset of stimuli (with neuron 1 being perturbed). c.
Influence of perturbing a Pyr neuron on the other Pyr neurons, averaged across all stimuli, for a subset
of Pyr neurons. d. Dependence of influence among Pyr neurons on their receptive field correlation
(Pearson’s r), across all neurons in the network (see Materials & Methods). Dotted lines indicate
plasticity knock-out (KO) experiments, see Supp. Fig. S6b for details. Error bars correspond to the
standard error of the sample mean, but are not visible due to their small values. e. Total strength
of output synapses from a Pyr neuron predicts the average effect perturbing it has on other neurons.
Dashed line is the result of a linear regression, while r and its associated p-value correspond to the
Pearson correlation.
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effect (Fig. 4d, Supp. Fig. S6b). This confirms that a “blanket of inhibition” does not account for221

feature-specific suppression between excitatory neurons [Sadeh and Clopath, 2020].222

To better understand this behaviour, we use the Pyr-Pyr receptive field correlations to compute223

the coefficient of determination for all pairs (R2, which quantifies how well the receptive field of one224

Pyr neuron predicts that of another). Learning changes the correlative structure in the network (Supp.225

Fig. S6a), and thereby decreases the coefficient of determination on average, indicating a reduction in226

Pyr-Pyr correlations within the network (E[R2] = 0.06 before learning, 0.02 after). Thus, plasticity227

suppresses some of the strongest correlations, resulting in “feature competition” which is believed to228

aid sensory processing [Lochmann et al., 2012, Moreno-Bote and Drugowitsch, 2015].229

While on average the network exhibits feature competition, the influence of individual Pyr neurons230

on the rest of the network is highly variable. According to recent modeling work [Sadeh and Clopath,231

2020], the strength of Pyr → PV synapses strongly influences whether a network will exhibit feature232

competition. In our network, the total out-going weight of a Pyr cell onto the PV neurons indeed233

predicts the average influence that neuron will have on the rest of the network when perturbed (Fig. 4e;234

r = −0.6).235

In summary, the stimulus-specific feedback inhibition that emerges in the model also captures236

the paradoxical suppression of similarly tuned excitatory neurons observed in single-cell perturbation237

experiments.238

Discussion239

The idea that feedback inhibition serves as a ”blanket of inhibition” [Packer and Yuste, 2011, Fino240

and Yuste, 2011] that can be selectively broken [Karnani et al., 2016] has been gradually relaxed over241

recent years and replaced by the notion that feedback inhibition can be rather selective [Rupprecht and242

Friedrich, 2018] and could thereby support specific neuronal computations [Vogels and Abbott, 2009,243

Hennequin et al., 2014, Denève and Machens, 2016, Najafi et al., 2020], even in networks without244

topographic organisation [Znamenskiy et al., 2018, Rupprecht and Friedrich, 2018]. Here, we used245

a computational model to show that the development of E/I assemblies similar to those observed246

in mouse V1 [Znamenskiy et al., 2018] or zebrafish olfactory areas [Rupprecht and Friedrich, 2018]247

can be driven by a homeostatic form of plasticity of the in- and outgoing synapses of inhibitory248

interneurons. Based on the results of virtual knock-out experiments we suggest that, on their own,249

input or output plasticity of interneurons are insufficient to explain the Pyr-PV microcircuitry in250

mouse V1 and that input and output plasticity in interneurons must act in synergy for stimulus-251
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specific feedback inhibition to develop. To investigate how the presence of E/I assemblies affects252

interactions between excitatory neurons, we mimicked a perturbation experiment and found that—as253

in mouse visual cortex—stimulating single excitatory cells paradoxically suppresses similarly tuned254

neurons [Chettih and Harvey, 2019]. Our findings suggest that, by driving the development of tuned255

feedback inhibition, plasticity of interneurons can fundamentally shape cortical processing.256

The learning rules for the input and output synapses of PV interneurons are based on a single257

homeostatic objective that aims to keep the net synaptic current onto Pyr neurons close to a given258

target for all stimuli. The two forms of plasticity fulfil different purposes, however. Plasticity of input259

synapses is required for interneurons to acquire a stimulus selectivity, whereas plasticity of output260

synapses can exploit interneuron selectivity to shape inhibitory currents onto excitatory cells. The261

output plasticity we derived for our recurrent network is very similar to a previously suggested form262

of inhibitory plasticity [Vogels et al., 2011, Sprekeler, 2017]. Homeostatic plasticity rules for inhibitory263

synapses are now used regularly in computational studies to stabilise model circuits [Vogels et al.,264

2011, Hennequin et al., 2017, Landau et al., 2016]. In contrast, a theoretically grounded approach for265

the plasticity of excitatory input synapses onto inhibitory neurons is missing.266

Homeostatic changes in excitatory synapses onto interneurons in response to lesions or sensory267

deprivation have been reported [Keck et al., 2011, Takesian et al., 2013, Kuhlman et al., 2013], but the268

specific mechanisms and functions of this form of interneuron plasticity are not resolved. The plasticity269

rule we derived for the input synapses of interneurons effectively changes the selectivity of those neurons270

according to the demands of the Pyr cells, i.e. such that the interneurons can best counteract deviations271

of Pyr activity from the target. By which mechanisms such a (nearly teleological) form of plasticity272

can be achieved is at its core a problem of credit assignment, whose biological implementation remains273

open [Lillicrap et al., 2016, Guerguiev et al., 2017, Sacramento et al., 2018].274

Here, we used a local approximation of the gradient, backpropagation rules, which produces qual-275

itatively similar results, and which we interpret as a recurrent variant of feedback alignment, applied276

to the specific task of a stimulus-specific E/I balance [Lillicrap et al., 2016, Akrout et al., 2019]. The277

excitatory input connections onto the interneurons serve as a proxy for the transpose of the output278

connections. The intuition why this replacement is reasonable is the following: The task of balancing279

excitation by feedback inhibition favours symmetric connections, because excitatory cells that strongly280

drive a particular PV interneuron should receive a strong feedback connection in return. Therefore,281

E/I balance favours a positive correlation between the incoming and outgoing synapses of PV neurons282

and thus the two weight matrices will be aligned in a final balanced state [Lillicrap et al., 2016, Akrout283

et al., 2019]. This weight replacement effectively replaces the ”true” feedback errors by a deviation284
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of the total excitatory input to the PV neurons from a target [Hertäg and Sprekeler, 2020]. The rule285

therefore has the structure of a homeostatic rule for the recurrent excitatory drive received by PV286

neurons.287

A cellular implementation of such a plasticity rule would require the following ingredients: i) a288

signal that reflects the cell-wide excitatory current ii) a mechanism that changes Pyr → PV synapses289

in response to variations in this signal. On PV interneurons, NMDA receptors are enriched in excitatory290

feedback relative to feedforward connections [Le Roux et al., 2013]. Intracellular sodium and calcium291

could hence be a proxy of recurrent excitatory input. In addition, the activation of NMDA receptors has292

been shown to track intracellular sodium concentration [Yu and Salter, 1998] which at least partially293

reflects glutamatergic synaptic currents. Due to a lack of spines in PV dendrites, both postsynaptic294

sodium and calcium are expected to diffuse more broadly in the dendritic arbor [Hu et al., 2014,295

Kullmann and Lamsa, 2007], and thus might provide a signal for overall dendritic excitatory currents.296

Depending on how the excitatory inputs are distributed on PV interneuron dendrites [Larkum and297

Nevian, 2008, Jia et al., 2010, Grienberger et al., 2015], this integration does not need to be cell-wide,298

but could be local, e.g. to a dendrite, if the local excitatory input is a proxy for the global input. NMDA299

receptors at IN excitatory input synapses can mediate Hebbian long-term plasticity [Kullmann and300

Lamsa, 2007], and blocking excitatory currents can abolish plasticity in those synapses [Le Roux et al.,301

2013]. Furthermore, NMDAR-dependent plasticity is expressed postsynaptically, and seems to require302

presynaptic activation [Kullmann and Lamsa, 2007]. Other molecular signals that reflect excitatory303

activity have been implicated in the homeostatic regulation of synapses onto INs, including Narp and304

BDNF [Chang et al., 2010, Rutherford et al., 1998, Lamsa et al., 2007]. In summary, we conjecture305

that PV interneurons and their excitatory inputs have the necessary prerequisites to implement the306

suggested local Pyr → PV plasticity rule.307

If excitatory inputs to Pyr neurons are much larger than required to reach the target, the homeo-308

static objective of bringing net currents to that target effectively requires a balance of excitation and309

inhibition on a stimulus-by-stimulus basis, with a small overshoot of excitation (or, in spiking networks,310

membrane potential fluctuations) that allows Pyr neurons to fire at the target rate. We speculate that311

E/I assemblies could be learned not only from the homeostatic objective used here, but by any other312

objective that enforces a positive correlation of the stimulus tuning of excitatory and inhibitory inputs313

to neurons in the circuit.314

We expect that the rules we suggest here are only one set of many that can establish E/I assemblies.315

Given that the role of the input plasticity in the interneurons is the formation of a stimulus specificity,316

it is tempting to assume that this could equally well be achieved by classical forms of plasticity like the317
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Bienenstock-Cooper-Munro (BCM) rule [Bienenstock et al., 1982], which is commonly used in models318

of receptive field formation. However, in our hands, the combination of BCM plasticity in Pyr → PV319

synapses with homeostatic inhibitory plasticity in the PV → Pyr synapses showed complex dynamics,320

an analysis of which is beyond the scope of this article. In particular, this combination of rules often321

did not converge to a steady state, probably for the following reason. BCM rules tend to make the322

postsynaptic neuron as stimulus-selective as possible. Given the limited number of interneurons in323

our circuit, this can lead to a situation in which parts of stimulus space are not represented by any324

interneurons. As a result, Pyr neurons that respond to those stimuli cannot recruit inhibition and325

maintain a high firing rate far above the target. Other Pyr cells, which have access to interneurons326

with a similar stimulus tuning, can recruit inhibition to gradually reduce their firing rates towards327

the target rate. Because the BCM rule is Hebbian, it tends to strengthen input synapses from Pyr328

neurons with high activity. This shifts the stimulus tuning of the interneurons to those stimuli that329

were previously underrepresented. However, this in turn renders a different set of stimuli uncovered by330

inhibition and withdraws feedback inhibition from the corresponding set of Pyr cells, which can now331

fire at high rates.332

We suspect that this instability can also arise for other Hebbian forms of plasticity in interneuron333

input synapses when they are combined with homeostatic inhibitory plasticity [Vogels et al., 2011] in334

their output synapses. The underlying reason is that for convergence, the two forms of plasticity need335

to work synergistically towards the same goal, i.e., the same steady state. For two arbitrary synaptic336

plasticity rules acting in different sets of synapses, it is likely that they aim for two different overall337

network configurations. Such competition can easily result in latching dynamics with a continuing338

turn-over of transiently stable states, in which the form of plasticity that acts more quickly gets to339

reach its goal transiently, only to be undermined by the other one later.340

Both Pyr→ PV and PV→ Pyr plasticity have been studied in slice [for reviews, see, e.g., Kullmann341

and Lamsa, 2007, Vogels et al., 2013], but mostly in isolation. The idea that the two forms of plasticity342

should act in synergy suggests that it may be interesting to study both forms in the same system, e.g.,343

in reciprocally connected Pyr-PV pairs.344

Like all computational models, the present one contains simplifying design choices. First, we did345

not include stimulus-specific feedforward inhibition, because the focus lay on the formation of stimulus-346

specific feedback inhibition. The model could be enriched by feedforward inhibition in different ways. In347

particular, we expect that the two forms of plasticity will establish E/I assemblies even in the presence348

of stimulus-selective external inputs to the interneurons, because stimulus-specific external excitation349

should always be more supportive of the homeostatic objective than unspecific inputs. It may be350
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worth exploring whether adding feedforward inhibition leaves more room for replacing the PV input351

plasticity that we used by classical Hebbian rules, because the activity of the external inputs remains352

unaltered by the plasticity in the network (such that the complex instability described above may be353

mitigated). Given that the focus of this work was on feedback inhibition, an extensive evaluation of354

the different variants of feedforward inhibition are beyond the scope of the present article.355

Second, we neglected much of the complexity of cortical interneuron circuits by including only one356

class of interneurons. We interpret these interneurons as PV-expressing interneurons, given that PV357

interneurons provide local feedback inhibition [Hu et al., 2014] and show a stimulus-selective circuitry358

akin to E/I assemblies [Znamenskiy et al., 2018]. With their peri-somatic targets on Pyr cells, PV-359

expressing (basket) cells are also a prime candidate for the classical feedback model of E/I balance360

[van Vreeswijk and Sompolinsky, 1996]. Note that our results do not hinge on any assumptions that361

are specific to PV neurons, and may thus also hold for other interneuron classes that provide feedback362

inhibition [Tremblay et al., 2016]. Given that the division of labour of the various cortical interneuron363

classes is far from understood, an extension to complex interneuron circuits [Litwin-Kumar et al., 2016,364

Hertäg and Sprekeler, 2019, 2020] is clearly beyond the present study.365

Similarly tuned pyramidal cells tend to be recurrently connected [Cossell et al., 2015, Harris and366

Mrsic-Flogel, 2013], in line with the notion that excitatory cells with similar tuning mutually excite367

each other. This notion is questioned by a recent perturbation experiment demonstrating feature-368

specific suppression between pyramidal cells with similar tuning [Chettih and Harvey, 2019]. It has369

been suggested that this apparently paradoxical effect requires strong and tuned connections between370

excitatory and inhibitory neurons [Sadeh and Clopath, 2020]. The E/I assemblies that develop in our371

model provide sufficiently strong and specific inhibitory feedback to cause a suppression between simi-372

larly tuned Pyr neurons in response to perturbations. Hence, despite the presence of stimulus-specific373

excitatory recurrence, Pyr neurons with similar stimulus preference effectively compete. Computa-374

tional arguments suggest that this feature competition may be beneficial for stimulus processing, e.g.375

by generating a sparser and more efficient representation of the stimuli [Olshausen and Field, 2004,376

Denève and Machens, 2016].377

In addition to predicting that knocking out plasticity of inhibitory input or output synapses should378

prevent the development of E/I assemblies, our model also predicts different outcomes for single neu-379

ron perturbation experiments in juvenile and adult mice. Given that in rodents, stimulus-tuning of380

inhibitory currents occurs later in development than that of excitation [Dorrn et al., 2010], we ex-381

pect that in juvenile mice single-cell perturbations would not cause feature-specific suppression but382

amplification due to excitatory recurrence and unspecific feedback inhibition.383
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Materials & Methods384

Network & stimuli385

We use custom software to simulate a rate-based recurrent network model containing NE = 512386

excitatory and N I = 64 inhibitory neurons. The activation of the neurons follows Wilson-Cowan387

dynamics:388

τE
d

dt
hE = −hE +WE←ErE −WE←IrI + Ibg + I(s) (1a)

τI
d

dt
hI = −hI +W I←ErE −W I←IrI + Ibg . (1b)

Here, rE = [hE]+, rI = [hI]+ denote the firing rates of the excitatory and inhibitory neurons, which are389

given by their rectified activation. WY←X denotes the matrix of synaptic efficacies from population X390

to population Y (X,Y ∈ {E, I}). The external inputs I(s) to the excitatory neurons have a bell-shaped391

tuning in the three-dimensional stimulus space consisting of spatial frequency, temporal frequency and392

orientation [Znamenskiy et al., 2018]. To avoid edge effects, the stimulus space is periodic in all three393

dimensions, with stimuli ranging from -π to π. The stimulus tuning of the external inputs is modeled394

by a von Mises function with a maximum of 50 Hz and a tuning width κ = 1. The preferred stimuli395

of the NE = 512 excitatory cells cover the stimulus space evenly on a 12× 12 × 12 grid. All neurons396

receive a constant background input of Ibg = 5 Hz.397

Recurrent connections WE←E among excitatory neurons have synaptic weight between neurons i398

and j that grows linearly with the signal correlation of their external inputs:399

WE←E
ij = [corr(Ii(s), Ij(s))− C]+ . (2)

The cropping threshold C is chosen such that the overall connection among the excitatory neurons400

probability is 0.6. The remaining synaptic connections (E→I, I→E, I→I) are initially random, with a401

connection probability p = 0.6 and log-normal weights. For parameters please refer to Table 1.402

During learning, we repeatedly draw all 12 × 12 × 12 preferred stimuli of the Pyr neurons, in403

random order. This procedure is repeated 500 times to ensure convergence of synaptic weights. To404

reduce simulation time, we present each stimulus long enough for all firing rates to reach steady state405

and only then update the synaptic weights.406
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Synaptic plasticity407

The PV → Pyr and Pyr → PV synapses follow plasticity rules that aim to minimize the deviation of408

the excitatory activations from a target rate ρ0 (ρ0 = 1 Hz):409

E
(
hE
)

=

〈
1

2

NE∑
j=1

(
hEj − ρ0

)2〉
s

, (3)

where 〈·〉s denotes the average over all stimuli. When plastic, synaptic weights change according to

∆WE←I
ji ∝

(
hEj − ρ0

)
rIi , (4a)

∆W I←E
ij ∝

NE∑
k=1

W I←E
ik

(
hEk − ρ0

) rEj (4b)

≈

NE∑
k=1

W I←E
ik

(
rEk − ρ0

) rEj
=
(
IE,rec
i − I0

)
rEj . (4c)

After every update of the Pyr → PV matrix, the incoming weights for each PV interneuron are410

multiplicatively scaled such that their sum is J I←E [Akrout et al., 2019]. In that case, the rule in411

Eq. (4b) is approximately local in that it compares the excitatory input current IE,rec
i received by412

the postsynaptic PV neuron to a target value I0 = J I←Eρ0, and adjusts the incoming synapses in413

proportion to this error and to presynaptic activity [see Eq. (4c)].414

Both plasticity rules are approximations of the gradient of the objective function Eq. (3). Interested415

readers are referred to the supplementary methods for their mathematical derivation. For the results416

in Supp. Fig. S4, we use the Adaptive Moment Estimation (Adam) algorithm [Kingma and Ba, 2014]417

to improve optimisation performance.418

We used a standard reparameterization method to ensure the sign constraints of an E/I network.419

Moreover, all weights are subject to a small weight-dependent decay term, which aids to keep the420

firing rates of the interneurons in a reasonable range. For details, please refer to the Supplementary421

Methods. The learning rule Eq. (4a) for the output synapses of the inhibitory neurons is similar to422

the rule proposed by Vogels et al. [2011], wherein each inhibitory synapse increases in strength if the423

deviation of the postsynaptic excitatory cell from the homeostatic target ρ0 is positive (and decreases424

it when negative). In contrast, the learning rule Eq. (4b) increases activated input synapses for an425

interneuron if the weighted sum of deviations in its presynaptic excitatory population is positive (and426
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decreases them if it is negative). Though it is local, when operating in conjunction with the plasticity of427

Eq. (4a), this leads to feedback alignment in our simulations, and effectively performs backpropagation428

without the need for weight transport [Akrout et al., 2019].429

Note that the objective function Eq. (3) can also be interpreted differently. The activation hE430

of a neuron is essentially the difference between its excitatory and inhibitory inputs. Therefore, the431

objective function Eq. (3) is effectively the mean squared error between excitation and inhibition, aside432

from a small constant offset ρ0. The derived learning rules can therefore be seen as supervised learning433

of the inhibitory inputs, with excitation as the label. They hence aim to establish the best co-tuning434

of excitation and inhibition that is possible given the circuitry.435

Perturbation experiments436

The perturbation experiments in Fig. 4 are performed in a network in which both forms of plasticity437

have converged. The network is then exposed to different stimuli, while the afferent drive to a single438

excitatory cell i is transiently increased by ∆I = 10 Hz. For each stimulus, we compute the steady439

state firing rates rj of all excitatory cells both with and without the perturbation. The influence of440

the perturbation of neuron i on neuron j is defined as the difference between these two firing rates,441

normalized by the pertubation magnitude [Sadeh and Clopath, 2020]. This stimulation protocol is442

repeated for 90 randomly selected excitatory neurons. The dependence of the influence on the tuning443

similarity (Fig. 4d) is obtained by binning the influence of the perturbed neuron i and the influenced444

neuron j according to their stimulus response correlation, and then averaging across all influences in445

the bin. During the perturbation experiments, synaptic plasticity was disabled.446

Quantitative measures447

The response similarity (RS) of the stimulus tuning of two neurons i and j is measured by the dot448

product of their steady state firing rates in response to all stimuli, normalized by the product of their449

norms [Znamenskiy et al., 2018]:450

RS(ri, rj) =

∑
s ri(s)rj(s)(∑

s (ri(s))
2∑

s (rj(s))
2
)1/2 . (5)

The same measure is used for the similarity of synaptic currents onto excitatory neurons in Supp.451

Fig. S2c & S4d.452

There is no structural plasticity, i.e. synapses are never added or pruned. However, when calculating453
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NE 512 N I 64 Number of exc. & inh. neurons.

τE 50 ms τI 25 ms Rate dynamics time constants.

dt 1 ms Numerical integration time step.

pE←X 0.6 pI←X 0.6 Connection probability to exc. & inh. neurons.

JE←E
i 2 J I←E

i 5 Total of exc. weights onto neuron i:
∑

j W
X←E
ij

JE←I
i 1 J I←I

i 1 Total of inh. weights onto neuron i:
∑

j W
X←I
ij

σE←X 0.65 σI←X 0.65 Std. deviation of the logarithm of the weights.

θE←I 10−4 θI←E 10−4 Experimental detection threshold for synapses.

Ibg 5 Hz max (I(s)) 50 Hz Background & maximum stimulus-specific input.

NS 12× 12× 12 N trials 500 Number of stimuli & trials.

RS 2π × 2π × 2π κ 1 Range of stimuli & Pyr RF von Mises width.

∆I 10 Hz Change of input for perturbation experiments.

ηApprox. 10−5 ηGrad. 10−3 Learning rates (approx. & gradient rules).

δE←I 0.1 δI←E 0.1 Weight decay rates.

ρ0 1 Hz Homeostatic plasticity target.

β1 0.9 β2 0.999 Adam parameters for gradient rules.

ε 10−9

Table 1: Model parameters.
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Pearson’s correlation between synaptic weights and RS, we exclude synapses that are too weak to be454

detected using the experimental protocol employed by Znamenskiy et al. [2018]. The threshold values455

θE←I & θI←E were chosen to be approximately four orders of magnitude weaker than the strongest456

synapses in the network. The rules that we investigate here tend to produce bimodal distributions of457

weights, with the lower mode well below this threshold (Supp. Fig. S7).458

The stimulus selectivity of the neurons is measured by the skewness of their response distribution459

across all stimuli:460

γi =

〈
(ri(s)− r̄i)3

〉
s〈

(ri(s)− r̄i)2
〉3/2
s

(6)

where r̄i = 〈ri(s)〉s. Both the response similarity Eq. (5) and the stimulus selectivity Eq. (6) are461

adapted from Znamenskiy et al. [2018].462

Finally, the angle θ between the gradient G from Eq. (15) and its approximation A from Eq. (4) is463

given by:464

θ = arccos

 ∑
ij GijAij(∑

ij G
2
ij

∑
ij A

2
ij

)1/2
 (7)

References465

H. Adesnik, W. Bruns, H. Taniguchi, Z. J. Huang, and M. Scanziani. A neural circuit for spatial466

summation in visual cortex. Nature, 490(7419):226–231, 2012.467

M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed. Deep learning without weight468

transport. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett,469
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Supplementary Materials674

Plasticity rules675

The general framework we follow to derive homeostatic rules is to minimise the mean squared deviation676

of individual excitatory (Pyr) neuron activations from a target for all stimuli. More specifically, we677

perform gradient descent on the following objective function:678

E
(
hE
)

=

〈
1

2

NE∑
j=1

(
hEj − ρ0

)2〉
s

.

Note that the activations hE are given by the difference between the excitatory and the inhibitory679

inputs to the excitatory neurons. Our approach can hence be interpreted as supervised learning of680

the inhibitory circuitry, with the goal of minimising the mean squared loss between the inhibitory and681

the excitatory inputs (plus the constant target ρ0). In this sense, the derived gradient rules aim to682

generate the best possible E/I balance across stimuli that is possible with the circuitry at hand.683

For reasons of readability, we will first simply state the derived rules. The details of their derivation684

can be found in the following section.685

The sign constraints in excitatory-inhibitory networks require all synaptic weights to remain posi-686

tive. To ensure this, we reparameterised all plastic weights of the network by a strictly positive soft-plus687

function W = s+(V ) = α−1 ln (1 + expαV ) and optimised the weight parameter V by gradient descent.688

In summary, the derived learning rules for the synaptic weight parameters between excitatory689

neuron j and inhibitory interneuron i are given by690

∆V E←I
ji = ηI

(
hEj − ρ0

) ∂WE←I
ji

∂V E←I
ji

rIi − δIWE←I
ji , (8a)

∆V I←E
ij = ηE

NE∑
k=1

W I←E
ik

(
hEk − ρ0

) ∂rIi
∂hIi

∂W I←E
ij

∂V I←E
ij

rEj − δEW I←E
ij . (8b)

Please note that we added a small weight decay to both learning rules. The purpose of this decay term691

is to avoid an ambiguity in the solution. When the firing rates of the interneurons are increased, but692

their output weights are decreased accordingly, the firing rates of the excitatory population remain693

unchanged. Pure gradient-based rules can therefore generate extreme values for the synaptic weights,694

in which the interneurons have biologically unrealistic firing rates. The additional decay terms in the695

learning rules solve this issue.696
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Finally, we replaced the derivative ∂r
∂h (which should be a Heaviside function, because rates are the697

rectified activations) by the derivative of a soft-plus function with finite sharpness (α = 1). This allows698

interneurons to recover from a silent state, in which all gradients vanish. Note that this replacement699

is done only in the learning rules. The firing rates are still the rectified activations. This method is700

similar to recent surrogate gradient approaches in spiking networks [Neftci et al., 2019].701

Derivation of the homeostatic plasticity rules in recurrent networks702

The challenging aspect of the derivation of the learning rules lies in the recurrence of the network.703

The effects of changes in individual synapses can percolate through the network and thereby change704

the firing rates of all neurons. Moreover, the temporal dynamics of the network would in principle705

require a backpropagation of the gradient through time. We circumvent this complication by assuming706

that the external stimuli to the network change slowly compared to the dynamical time scales of the707

network, and that the network adiabatically follows the fixed point in its dynamics as the stimulus708

changes. This assumption significantly simplifies the derivation of the gradient.709

The goal is to minimise the total deviation of the excitatory activations hE from the homeostatic710

target value ρ0. To this end, we calculate the gradient of the objective function in Eq. (3) with respect711

to a given synaptic weight parameter v ∈ {V I←E
ij , V E←I

ji }:712

∂

∂v
E(hE) =

〈(
hE − ρ0

)T ∂hE

∂v

〉
s

. (9)

We therefore need the gradient of the activations hE of excitatory cells with respect to a parameter v.713

In the steady state, the activations are given by714

hE = WE←ErE −WE←IrI + Ibg + I(s) . (10)

The gradient of the activations hE is therefore given by the following implicit condition:715

∂hE

∂v
= WE←EDE ∂h

E

∂v
−
[
∂WE←I

∂v
rI +WE←IDI ∂h

I

∂v

]
, (11)

where we introduced the diagonal matrices D
E/I
ij := δij∂r

E/I
i /∂h

E/I
i for notational convenience, δij716

being the Kronecker symbol. Derivatives of expressions that do not depend on any of the synaptic717

weights in question are excluded.718

Eq. (11) requires the gradient ∂hI

∂v of the inhibitory activations with respect to the parameter v,
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which can be calculated by a similar approach

∂hI

∂v
=

∂

∂v

(
W I←ErE −W I←IrI + Ibg

)
=

(
∂W I←E

∂v
rE +W I←EDE ∂h

E

∂v

)
−W I←IDI ∂h

I

∂v
.

Introducing the effective interaction matrix M := I + W I←IDI among the interneurons (I being the

identity matrix) allows to solve for the gradient of hI:

∂hI

∂v
=M−1

[
W I←EDE ∂h

E

∂v
+
∂W I←E

∂v
rE
]

Inserting this expression into Eq. (11) yields

∂hE

∂v
=
[
WE←EDE −WE←IDIM−1W I←EDE

] ∂hE

∂v
− ∂WE←I

∂v
rI −WE←IDIM−1 ∂W

I←E

∂v
rE ,

Introducing the effective interaction matrix W = I−WE←EDE +WE←IDIM−1W I←EDE among the719

excitatory neurons yields an explicit expression for the gradient of hE:720

∂hE

∂v
= −W−1 ∂W

E←I

∂v
rI −W−1WE←IDIM−1 ∂W

I←E

∂v
rE , (12)

To obtain gradients with respect to a particular network parameter, we simply substitute the chosen721

parameter into Eq. (12). For the parameters V I←E
ij of the input synapses to the interneurons, the722

gradient reduces to723

∂hE

∂V I←E
= −W−1WE←IDIM−1 ∂W

I←E

∂V I←E
rE , (13)

and for the parameters V E←I
ij of the output synapses from the interneurons we get724

∂hE

∂V I←E
= −W−1 ∂W

E←I

∂V E←I
rI . (14)

By inserting these expressions into Eq. (9) and dropping the average, we obtain online learning rules

for the input and output synapses of the interneurons:

∆V I←E ∝
[
(hE − ρ0)ᵀW−1WE←IDIM−1

] ∂W I←E

∂V I←E
rE (15a)

∆V E←I ∝
[
(hE − ρ0)ᵀW−1

] ∂WE←I

∂V E←I
rI . (15b)

Note that the same approach also yields learning rules for the threshold and the gain of the transfer
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function of the inhibitory interneurons, if those are parameters of the system. Although we did not use

such intrinsic plasticity rules, we include them here for the interested reader. We assumed a threshold

linear transfer function of the interneurons: rIi = gi
[
hIi − θi

]+
, where gi is the gain of the neuronal

transfer function and θi a firing threshold. While the firing threshold can become negative, gain is

reparameterised via the strictly positive soft-plus gi = s+(vgi ).

The gradient-based learning rule for the firing thresholds θi of the interneurons is given by

∆θi ∝ −
[(
hE − ρ0

)ᵀW−1WE←IM−1
]
i

∂rIi
∂θi

, (16)

and the corresponding learning rule for the interneuron gain gi is

∆vgi ∝
[(
hE − ρ0

)ᵀW−1WE←IM−1
]
i

∂rIi
∂gi

∂gi
∂vgi

. (17)

Approximating the gradient rules725

In the gradient-based rules derived in the previous section, the W−1 and M−1 terms account for the726

fact that a change in a given synaptic connections percolates through the network. As a result, the727

learning rules are highly nonlocal and hard to implement in a biologically plausible way. To resolve728

this challenge, we begin by noting that729

W−1 =
(
I− Ŵ

)−1
=
∞∑
k=0

Ŵk,

which holds if ||Ŵ|| < 1. Ŵ is a matrix that depends on the synaptic weights in the network. A similar

relation holds for M−1. Since those matrices are contained in Eq. (15a), we substitute the equivalent

sums into the relevant sub-expression and truncate the geometric series after the 0-th order, as in

W−1WE←IDIM−1 =

( ∞∑
k=0

Ŵk

)
WE←IDI

( ∞∑
k=0

M̂k

)

= WE←IDI + ŴWE←IDI +WE←IDIM̂+

( ∞∑
k=1

Ŵk

)
WE←IDI

( ∞∑
k=1

M̂k

)

≈WE←IDI.

The truncation to 0-th order in the last line should yield an acceptable approximation if synapses are730

sufficiently weak. The effect of higher-order interactions in the network can then be ignored. This731

approximation can be substituted into Eq. (15a) and yields an equation that resembles a backpropa-732
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gation rule in a feedforward network (E→ I→ E) with one hidden layer—the interneurons. The final,733

local approximation used for the simulations in the main text is then reached by replacing the output734

synapses of the interneurons by the transpose of their input synapses. While there is no mathematical735

argument why this replacement is valid, it turns out to be in the simulations, presumably because of736

a mechanism akin to feedback alignment [Lillicrap et al., 2016], see discussion in the main text. In737

feedback alignment, the matrix that backpropagates the errors is replaced by a random matrix B.738

Here, we instead use the feedforward weights in the layer below. Similar to the extension to feedback739

alignment of Akrout et al. [2019], those weights are themselves plastic. However, we believe that the740

underlying mechanism of feedback alignment still holds. The representation in the hidden layer (the741

interneurons) changes as if the weights to the output layer (the Pyr neurons) were equal to the weight742

matrix they are replaced with (here, the input weights to the PV neurons). To exploit this representa-743

tion, the weights to the output layer then align to the replacement weights, justifying the replacement744

post-hoc (Fig. 1G).745

Note that the condition for feedback alignment to provide an update in the appropriate direction746

(eTBTWe > 0, where e denotes the error, W the weights in the second layer, and B the random747

feedback matrix) reduces to the condition that WE←IW I←E is positive definite (assuming the errors748

are full rank). One way of assuring this is a sufficiently positive diagonal of this matrix product, i.e.749

a sufficiently high correlation between the incoming and outgoing synapses of the interneurons. A750

positive correlation of these weights is one of the observations of Znamenskiy et al. [2018] and also a751

result of learning in our model.752

While such a positive correlation is not necessarily present for all learning tasks or network models,753

we speculate that it will be for the task of learning an E/I balance in networks that obey Dale’s law.754

The same logic of using a 0-th order approximation of W−1 that neglects higher order interactions755

is employed to recover the inhibitory synaptic plasticity rule of Vogels et al. [2011] from Eq. (15b).756

Overall, the local approximation of the learning rule relies on three assumptions: Slowly varying757

inputs, weak synaptic weights and alignment of input and output synapses of the interneurons. These758

assumptions clearly limit the applicability of the learning rules for other learning tasks. In particular,759

the learning rules will not allow the network to learn temporal sequences.760
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Supplementary Figures761

Figure S1: Synaptic plasticity and convergence. a. Schematics of PV→ Pyr plasticity (left) and

Pyr→ PV plasticity (right). PV→ Pyr plasticity follows a simple logic: A given inhibitory synapse is

potentiated if the postsynaptic Pyr neuron fires above target, and is depressed if below. The Pyr→ PV

plasticity compares the excitatory input current received by the postsynaptic PV neuron to a target

value, and adjusts the incoming synapses in proportion to this error and to presynaptic activity. b.

Time plots of the Pyr population firing rate (top), mean of all PV → Pyr synaptic weights (middle)

and Pyr → PV weights (bottom). Columns correspond to simulations in which both PV → Pyr and

Pyr → PV plasticity are present (left), only Pyr → PV is present (middle), and only PV → Pyr is

present (right).
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Figure S2: Synaptic currents onto Pyr neurons. a. Excitatory (red) and inhibitory (blue)
synaptic currents onto a random selection of Pyr neurons, as a function of temporal and spatial
stimulus frequency (averaged over all orientations), when both incoming and outgoing PV synapses
are plastic. b. The network-averaged excitatory (first row) and inhibitory (second row) synaptic
currents onto Pyr neurons, both centred according to the peak excitatory current before averaging.
After averaging their difference is taken (third row), and a slice is plotted (bottom row). When both
plasticities are present, currents are well-balanced across stimuli with a modest excitatory bias for
preferred stimuli. c. Quality of E-I current co-tuning for every Pyr in the network quantified by the
distribution of their cosine similarities. Only when both plasticities are present do most Pyr neurons
receive well co-tuned E-I synaptic currents.
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Figure S3: Both in- and output synapses must be plastic for feedback alignment to occur.
In a network with both local rules (left column), the update to Pyr → PV synapses rapidly align to
the gradient (i.e. when the angle between the approximate update and the gradient is below π/2;
bottom left). While updates to the Pyr → PV weights occasionally point away from the gradient,
79% of samples are below π/2. For the knock-out (KO) experiments (right column), output plasticity
closely follows the PV → Pyr gradient even if input plasticity is absent (upper right). In contrast, if
output (PV → Pyr) plasticity is absent the approximate Pyr → PV rule does not follow the gradient
(lower right).
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Figure S4: Gradient rules also require plasticity of both in- and output synapses of PV
interneurons. a. In a network learning with the derived gradient rules of Eq. (15), significant
correlations are reliably detected between response similarity (RS) and excitatory weights (red bars),
RS and inhibitory weights (blue bars), and excitatory & inhibitory weights for reciprocally connected
Pyr-PV cell pairs (black bars) only if both synapse types are plastic. b. Interneurons fail to develop
stimulus selectivity if their input weights do not change according to the gradient rule of Eq. (15a). c.
Synaptic currents onto Pyr neurons only develop reliable, strong excitatory-inhibitory (E/I) co-tuning
if both in- and output synapses are updated using the gradient rules. Currents are averaged across all
Pyr neurons after centering according to the neuron’s preferred stimulus. The bottom row is a slice
through the difference (third row) of the average excitatory (first row) and inhibitory currents (second
row). d. Violin plot of the distribution of E/I synaptic current similarity values for all Pyr neurons in
the network (see Methods).
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Figure S5: Correlation between weights and response similarity. Scatter plots containing every
synapse in networks without PV → Pyr plasticity (top), or without Pyr → PV plasticity (bottom).
Pearson correlation is always highly significant, though sometimes weak.
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Figure S6: In- and output plasticity together change correlations between pyramidal (Pyr)
neurons, while plasticity knock-out (KO) eliminates feature competition. a. Receptive-
field correlations (Pearson) between Pyr neurons, before (top) and after (bottom) learning with both
PV → Pyr and Pyr → PV synaptic plasticity. b. The effect of perturbing a Pyr neuron on the
response of other Pyr neurons (to random stimuli) as a function of their receptive-field correlation (see
Materials & Methods). On their own, both Pyr → PV and PV → Pyr plasticity have little effect on
the feature amplification observed prior to learning. c. Despite the absence of feature competition on
average in the KO networks, the total strength of Pyr → PV synapses from a given Pyr neuron is still
predictive of its influence on the rest of the network: The stronger its total weight, the more likely a
Pyr is to suppressing the response of other Pyr neurons.
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Figure S7: Some networks contain experimentally undetectable weights. a. Plots of 2D
histograms for PV → Pyr (top) and Pyr → PV (bottom) weight versus response similarity (RS), in
different networks trained with the local plasticity rules (columns). White lines indicate the threshold
of experimental detectability. Any weight < 10−4 is not included when computing Pearson’s correlation
between RS and synaptic weight, or weight-weight correlations. b. Same plots as (a), but for networks
trained with the gradient rules.
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