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ABSTRACT 

Type 1 diabetes is characterized by the autoimmune destruction of insulin secreting β cells. Genetic 

variations upstream at the insulin (INS) locus contribute to ~10% of type 1 diabetes heritable risk. 

Multiple studies showed an association between rs3842753 C/C genotype and type 1 diabetes 

susceptibility, but the molecular mechanisms remain unclear. To date, no large-scale studies have looked 

at the effect of genetic variation at rs3842753 on INS mRNA at the single cell level. We aligned all 

human islet single cell RNA sequencing datasets available to us in 2020 to the reference genome 

GRCh38.98 and genotyped rs3842753, integrating 2315 β cells and 1223 β-like cells from 13 A/A 

protected donors, 23 A/C heterozygous donors, and 35 C/C at-risk donors, including adults without 

diabetes and with type 2 diabetes. INS expression mean and variance were significantly higher in single β 

cells from females compared with males. Comparing across β cells and β-like cells, we found that 

rs3842753 C containing cells (either homozygous or heterozygous) had the highest INS expression. We 

also found that β cells with the rs3842753 C allele had significantly higher ER stress marker gene 

expression compared to the A/A homozygous genotype. These findings support the emerging concept that 
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inherited risk of type 1 diabetes may be associated with inborn, persistent elevated insulin production 

which may lead to β cell ER stress and fragility. 

INTRODUCTION 

Pancreatic β cells are the body’s primary source of insulin, a hormone that promotes glucose uptake 

from the bloodstream into tissues [1]. Type 1 diabetes constitutes ~10% of diabetes cases and is caused by 

the autoimmune destruction of a substantial proportion of β cells [1]. Type 1 diabetes is highly heritable 

with a twin concordance between 30% and 70% [2]. The HLA locus is the major genetic determinant of 

type 1 diabetes risk (OR = 0.02 to 11), but other genes play a significant role as well [3]. Gene mapping 

and GWAS studies identified the human insulin (INS) locus as the 2nd most important contributor of type 

1 diabetes genetic risk (OR = 2.38, ~10% of heritable risk) [4; 5]. The region of the INS locus implicated 

in type 1 diabetes susceptibility has three genetic variants in near-perfect linkage disequilibrium with each 

other [4-6]. Variants associated with increased type 1 diabetes risk are: a shortening of the repetitive 

region 400bp upstream of INS (class III INS-VNTR > class I INS-VNTR), a single nucleotide 

polymorphism (SNP) in the INS 5’ intronic region (rs689 T>A), and a SNP in the INS 3’UTR (rs3842753 

A>C) [4-8]. Often, the SNP alleles are examined as surrogates for INS-VNTR length [6; 8-10]. The 

rs3842753 C allele has been consistently correlated with increased type 1 diabetes susceptibility [5; 6; 8]. 

Despite genetic studies linking the rs3842753 C allele to increased type 1 diabetes susceptibility, there 

have only been three studies examining the effect of these genetic variants on INS expression in the 

pancreas [6; 9; 10]. The studies found an allele specific association between rs3842753 C allele and 

increased INS expression in heterozygous adult and fetal whole pancreas tissue, but were confounded by a 

lack of cell type specificity. Moreover, the sample sizes were small (n = 3, 1, and 10) [6; 9; 10]. These 

findings lend support to the β cell ER stress model of type 1 diabetes pathogenesis. It has been 

hypothesized that increased insulin demand could generate large proportions of misfolded or unfolded 

proinsulin, leading to ER stress [11]. Under glucose stimulation [12] and even basal conditions [13], 

insulin production is a significant source of ER stress. If the allele-specific increase in INS expression is 

translated into increased insulin production, there could be increased ER stress activated unfolded protein 

response leading to increased generation of unique antigen that present exclusively under specific 

conditions (neoautoantigens) [14]. Neoautoantigens derived from INS have been shown to stimulate T-

cell proliferation and cytokine production, though the role of these neoautoantigens on type 1 diabetes 

autoimmunity remain unclear [15]. 

Recently, multiple data sets of single cell RNA sequencing (scRNAseq) from human pancreatic islet 

cell have been produced [16-23]. Studies have found distinct subpopulations of β cells and β-like cells, 

with varying conclusions for differences in INS expression, confirming heterogeneity as a core feature of 

islet cell biology [18; 23]. Studies have also found transcriptomic differences in β cells from donors 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.12.06.413971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413971
http://creativecommons.org/licenses/by/4.0/


3 

 

without diabetes compared to donors with type 2 diabetes [16-18], although these have not always been 

reproducible between studies [24] (likely due to the complex type 2 diabetes etiology and limited sample 

size). We reasoned that integrating all available scRNAseq data from human pancreatic islets into one 

dataset and conducting analyses with a greater sample size could resolve true differences. 

In this study, we examined the effect of rs3842753 genotype, sex, and type 2 diabetes status on INS 

expression independently and in combination in single pancreatic β cells using an integrated dataset 

containing all available scRNAseq data. Our findings are consistent with the novel hypothesis that 

elevated β cell insulin production contributes to inherited type 1 diabetes risk by increasing β cell stress. 

 

 

METHODS 

Data inclusion 

We conducted all scRNAseq alignments and initial dataset integration analysis using the Cedar 

Compute Canada cloud compute resource (www.computecanada.ca). All subsequent analyses were done 

in RStudio version 3.6.0. We included all published pancreatic islet scRNAseq datasets obtained using 

Smart-seq2 or Smart-seq methods for library preparation due to their higher sequencing depth for accurate 

SNP genotyping. We also included the Human Pancreas Analysis Program (HPAP) data available at the 

time of our study [22]. We obtained the published datasets through the Gene Expression Omnibus (GEO) 

or the European Bioinformatics Institute (EMBL-EBI), and the HPAP datasets directly from investigators 

(Supplemental Table 1). All dataset metadata contain donor age, sex, and diabetes status. The read length 

ranges from 43bp to 100bp and median read depth per cell ranges from 0.75 to 4.4 million reads. In total, 

we used data from 71 donors, split into 48 donors without diabetes and 23 donors with type 2 diabetes. At 

the time of our analysis, single cell data was only available from 1 adult donor and 1 child donor with 

type 1 diabetes, precluding their use in our analysis which requires multiple donors of each genotype. We 

also expect that gene expression analysis of β cell from donors with type 1 diabetes would be severely 

confounded by the stresses associated with the disease. 

  

Read alignment and genotyping 

Single cell RNAseq reads were aligned to human reference genome GRCh38.98 using STAR version 

2.7.1a [25] with gene read counts obtained using --quantMode GeneCounts. Read count files were 

aggregated into study specific read count matrices using a custom code. Each cell was genotyped at SNP 

rs3842753 (chr 11:2159830), using Samtools mpileup version 1.9 [26]. Pancreatic β cells (indicated by 

total read count (DP4) at rs3842753 > 100) were used for donor genotype determination. Reference allele 
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Homozygosity was determined as reference or alternate allele percent > 80%, and heterozygosity 

otherwise. Donor genotype is determined as the majority of the individual’s β cells’ genotype. Less than 5% 

of individual β cells’ genotype are non-concordant with donor genotype. Genotype non-concordant cells 

are included in downstream analysis and re-labeled with donor genotype.   

 

Dataset filtering and cell type analysis  

Initial filtering removed cells with abnormally high total RNA counts and genes expressed (i.e. 

doublet cells) and cells with low number of expressed genes and/or high mitochondrial gene percent (low 

viability), through visual inspection of distribution graphs for each dataset. The upper and lower limits 

were specific to each dataset to account for library preparation and sequencing protocol differences. The 

highest mitochondrial gene percentage was set to 25%.Datasets were integrated into a single dataset in 

Seurat version 3.1 [27] using SCTransform [28] and clustered in UMAP space using default settings. Top 

ten differentially expressed genes in each cluster (compared to all other cells) was used to determine 

cluster cell type identify. As well, the location of pancreatic hormone genes (GCG, INS, PPY and SST) 

expression was used to determine Alpha (α), β, PP, and delta cell clusters, respectively. Enrichr (gene 

enrichment analysis) [29] was used when cluster identity could not be determined using previous methods. 

 

Gene expression analysis 

ER stress marker genes expression was normalized to all genes expressed in cell according to default 

Seurat settings. INS gene expression was normalized against select housekeeping genes rather than 

against all expressed genes in a cell due to the overwhelming amount of INS expression in pancreatic β 

cells (50% of all read counts) and to prevent self-normalization. Housekeeping genes for INS expression 

normalization were selected from a list of established human housekeeping gene (ACTB, GAPDH, PGK1, 

PPIA, RPLP0, B2M, SDHA, TFRC, GUSB, HMBS, HPRT1, TBP) for low inter-dataset variance and 

sufficient expression (relative to all genes in the cell). INS read counts in β cells and β-like cells were 

normalized against the sum of select housekeeping genes read counts, scaled to a total of 10000, and 

natural log transformed. All cells with zero values for INS read counts or select house-keeping genes read 

counts were excluded from the downstream analysis. We analyzed β cells and β-like cells separately. We 

checked for the expression of other genes in the rs3842753 linkage dis-equilibrium block (IGF2, TH), but 

did not find significant expression in single β cells, as expected.  
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Statistical analyses 

Shapiro-Wilk test was used to test for normality. Fligner-Killeen or Bartlett’s tests were used as a non-

parametric or parametric test for difference in variance. Wilcox Rank Sum was used to test for differences 

in normalized INS expression between sexes or between disease statuses. Pairwise Kruskal-Wallis test 

was used to test for differences in normalized INS expression between genotypes, adjusting for multiple 

comparisons with Bonferroni correction. We did not study the effect of sex or diabetes status on 

normalized INS expression within genotype.   

 

 

RESULTS 

Dataset genotype summary 

VNTR length cannot be determined directly with commonly used scRNAseq methods because reads 

are too short to span such large repetitive regions. Therefore, for each cell, rs384275 genotype was 

determined as a surrogate for INS-VNTR length and rs689 genotype due to the near perfect linkage 

disequilibrium between these gene variants in Caucasian populations. Also, there were no read alignments 

to the rs689 region. Within donors without diabetes, 9 donors had rs384275 A/A genotype, 12 had 

rs384275 A/C genotype, and 27 had rs384275 C/C genotype. Within donors with type 2 diabetes, 4 

donors had rs384275 A/A genotype, 11 had rs384275 A/C genotype, and 8 had rs384275 C/C genotype 

(Supplemental Table 2).  

 

Cell type clustering and identification 

We performed cluster analysis and labeling to identify specific cell types since our dataset included a 

mixture of cells from pancreatic islets. We found 14 distinct clusters within 13622 pancreatic islet cells 

(Figure 1A) and classified the clusters as α cells, β cells, PP cells, and delta cells based on expression of 

classical pancreatic hormone genes (GCG, INS, PPY, and SST) (Figure 1A, B, D). We also found 

endothelial cells, duct cells, and acinar cells based on PECAM1, SPP1, and PRSS1 expression localization 

(Figure 1A, C, D). We identified mesenchyme and CD14+ monocytes using Enrichr based on top ten 

conserved genes per cluster compared to all other cells (Figure 1A, D). We identified a cluster of β-like 

cells that exhibited high INS expression compared to other clusters, but lacked the congregation in UMAP 

space. These cells may be considered poorly differentiated or dedifferentiated β cells, or they may be 

derived from other islet endocrine cells that have adopted INS expression. We used, separately, the β cell 

cluster (2315 cells) and the β-like cluster (1223 cells) for INS expression analysis. 

 

Effects of female sex and type 2 diabetes status on INS mRNA in single β cells and β-like cells 
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Sex and diabetes status have been shown to affect gene expression in pancreatic islets [16-18; 30]. We 

first examined the effect of sex on INS expression in β cells and β-like cells. In β cells, we found that cells 

from females and from donors with type 2 diabetes have increased normalized INS expression variance 

compared to cells from males and from donors without diabetes (Figure 2A, C). Interestingly, in β-like 

cells, we found the opposite association of an increase in normalized INS expression variance in cells 

from males and donors without diabetes compared to cells from females and from donors with type 2 

diabetes (Figure 2B, D). In female donors, β cells, but not β-like cells, had increased levels of normalized 

INS expression compared to males (Figure 2A, B). 

Next, we examined whether INS expression in single β-cells was associated with type 2 diabetes. No 

significant difference in mean INS expression was observed between β cells from diabetic and non-

diabetic donors (Figure 2C). In the β-like cells, normalized INS expression was increased in cells from 

donors with type 2 diabetes (Figure 2D). Changes in INS expression variance between sex and diabetes 

status provide additional evidence for heterogeneity in pancreatic β cell and β-like cell expression profile. 

Since INS expression level and variance changes between sex and diabetes status, it is important to 

account for these factors when studying the effect of rs3842753 genotype on INS expression. 

 

rs3842753 C allele associates with increased INS expression in single β cells and β-like cells 

Previous studies used allele specific expression to show a correlation between the at-risk type 1 

diabetes rs3842753 C allele and increased pancreatic INS expression in a maximum of 10 heterozygous 

whole pancreas tissues [6; 9; 10]. Here, we substantially increased the sample size (n = 71) and focused 

on INS expression specifically in β cells and β-like cells. To account for the overwhelming expression of 

INS in pancreatic β cells, and to avoid self-normalization to INS, we normalized INS expression to B2M 

and RPLP0 expression, housekeeping genes we found to be both highly expressed and with a low inter-

dataset variability in this dataset (Supplemental Figure 1). In β cells, donors with the rs3842753 A/C 

genotype had the highest level and variance of normalized INS expression, followed by C/C genotype, 

then A/A genotype (Figure 3A). Similarly, in β-like cells, cells with the at-risk C allele (A/C or C/C 

genotype) had the highest level of normalized INS expression (Figure 3B).  

When examining the effect of rs3842753 genotype on INS expression within sex or diabetes status, β 

cells display the same trend of significantly increased variance of INS expression in donors with the 

heterozygous rs3842753 A/C genotype is present in cells from males and donors without diabetes (Figure 

3 C, E). Additionally, cells from females and either diabetes status with the rs3842753 A/C genotype 

significantly expressed the highest level of INS, followed by C/C genotype, then A/A genotype (Figure 3 

C, E). Regardless of sex or diabetes status, β-like cells also displayed increased INS expression associated 

with the rs3842753 C allele (either A/C or C/C genotype) (Figure 3D, F). Within either sex, there was no 
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association between rs3842753 genotype and INS expression variance in β-like cells (Figure 3D). Similar 

to β cells, there was a significant increase in INS expression variance in β-like cells with rs3842753 C 

allele in donors with or without diabetes (Figure 3F). Together, these results indicate rs3842753 C allele 

affects INS expression, with the C allele associated with both increased INS expression variance and level 

in β cells and β-like cells. We attempted to examine the effects of rs3842753 on other genes within the 

linkage disequilibrium block but were unsuccessful due to the near zero expression of insulin like growth 

factor 2 and tyrosine hydroxylase. 

 

rs3842753 C allele associates with increased ER stress markers in single β cells and β-like cells 

Insulin production has been shown to sustain chronic baseline ER stress [13]. Due to the increase in 

INS expression observed in cells with the at-risk rs3842753 C allele compared to the protective A allele, 

we were tested whether rs3842753 genotype also affected markers of ER stress. Indeed, the rs3842753 C 

allele was significantly associated with increased ERN1 and ATF6 expression in β cells (Figure 4A, B). 

There was no association between ERN1 or ATF6 expression and rs3842753 genotype in β-like cells 

(Figure 4C, D). These results indicate that rs3842753 C allele is associated with increased ER stress in 

‘mature’ β cells.  

 

 

DISCUSSION 

The linked genetic variants at the INS locus: Class I INS-VNTR, rs689 A allele, and rs3842753 C 

allele, are the main variants associated with increased type 1 diabetes susceptibility [5; 6; 8]. Previously, 

only three small studies using whole pancreas tissues examined the effect of these variants on INS 

expression [6; 9; 10]. The studies accounted for inter-donor differences by examining allele specific INS 

expression in heterozygous donors. Our study is focused on the genetic factors that would precede type 1 

diabetes. Beta-cells from type 1 diabetes donors would have been exposed to significant stress from type 

1 diabetes and the results might not be representative of the pre-diabetic stage. Our study using 2315 

single pancreatic β cells and 1223 β-like cells found that possession of a C allele at rs3842753 was 

associated with higher INS expression. These findings are consistent with the previous small studies using 

whole pancreas tissues that found that the C allele is associated with increased INS expression [6; 9; 10]. 

Sex distributions for previous studies were not reported. Our study included 71 adult donors (48 donors 

without diabetes and 23 donors with type 2 diabetes), which is a substantial improvement from previous 

studies with a maximum of ten fetal pancreas tissues. 

Our study represents the largest compilation of human islets single-cell RNA sequencing data to date 

and it offers several insights into the biology of INS gene expression. As with the individual studies, our 
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work re-enforces the substantial variability in insulin gene expression between cells. We also found that 

the heterozygous rs3842753 A/C genotype was associated with the highest variance of INS expression 

followed by A/A genotype, then by the C/C genotype in single pancreatic β cells. The increase in 

normalized INS expression variance in cells with A/C genotype could be due to the expression profile 

being influenced by both the rs3842753 A allele and C allele. This difference in variance supports the 

established model of heterogeneity of pancreatic β cells and perhaps the rs3842753 genotype plays a role 

in heterogeneity of INS expression [18; 23; 31]. Multiple other studies have found evidence of 

heterogeneity in β cells indicated by distinct subpopulations of β cells with varying INS expression [18; 

23]. In β-like cells, variance of INS expression was less affected by the rs3842753 genotype. This is 

unsurprising due to the variety of cells that compose the β-like cells cluster, including polyhormonal cells 

and cells with gene expression signatures similar to α cells, β cells, ductal cells, and acinar cells (Figure 

1A). Cell type variation in the β-like cells cluster was likely the primary factor affecting INS expression 

variance compared to the rs3842753 genotype. In other work from our lab, we have recently found that β 

cells can fluctuate between these states of high and higher insulin gene expression [31]. In the current 

study, we are unable determine whether comparatively high or low INS expression in single cells reflects 

dynamic or stable states. 

Sex and diabetes status play an important role in insulin secretion and insulin resistance. We found 

that female donors had more pancreatic β cell INS expression than males. This is consistent with previous 

findings that males secrete less insulin after glucose stimulation than females, though insulin secretion 

under basal conditions is less extensively studied [32]. Interestingly, we found an increase in INS 

expression variance in β cells from females and donors with type 2 diabetes compared to males and 

donors without diabetes, respectively. This is consistent with the hypothesis that female pancreatic β cells 

need to have more plasticity in gene expression to accommodate the physiological demands of the 

potential for pregnancy and T2D β cells could have more variance due to the range in disease state and its 

effects on cell health and function. Conversely, β-like cells from males and donors without diabetes 

displayed greater variance in INS expression compared to cells from females and donors with type 2 

diabetes, respectively. 

Our study found that the rs3842753 C allele was associated with increased INS expression level in 

both β-like cells or β cells, though the specific genotype (A/C or C/C) associated with the highest INS 

expression level was different. In β-like cells, the rs3842753 C allele in either genotype (A/C or C/C) was 

associated with the highest INS expression level. Though not significant, except within β-like cells from 

donors with type 2 diabetes, β-like cells with the C/C homozygous genotype had the highest INS 

expression level followed by the A/C genotype, then the A/A genotype. Perhaps, the decreased overall 

INS expression level in β-like cells allowed for a great variance of INS expression, especially at higher 
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INS expression levels, compared to ‘mature’ β cells. The effect of the rs3842753 genotype can be shown 

more clearly since the β-like cells are not expressing INS mRNA at their maximum capacity compared to 

‘mature’ β cells.  

In β cells, we made the perplexing finding that the highest INS mRNA expression was found in 

heterozygotes (A/C) donors. While we can only speculate, it is possible that such an overdominance mode 

of INS expression could be through a transcription factor competitive binding mechanism of action, 

proposed for other systems [33]. The rs3842753 C allele linked to shortening of INS-VNTR could 

increase accessibility of the chromatin by transcription factors at the INS loci and increase transcription of 

INS. At maximum INS expression capacity, transcription factor molecules in cells with the heterozygous 

genotype could exceed binding site availability, limiting competition. Cells with the homozygous allele 

have increased number of INS transcription factor binding sites, which theoretically could induce 

competition amongst binding sites for transcription factors (at INS loci or other locus) thus lowering 

transcription efficiency and decreasing INS expression. It would be interesting to conduct allele-specific 

INS expression analysis using SCALE or scBASE [34; 35]. However, we are unable to conduct those 

experiments using the current dataset due to the technical challenges of normalizing INS expression 

across multiple datasets with different sequencing protocols and donors.  

Our study has several limitations. This includes sample size limitation in the areas of age range, ethnic 

demographic, and sample size, which means that the results should be cautiously extrapolated and 

multiple subgroup analysis is challenging. Most cases of type 1 diabetes onset between 10 to 14 years of 

age [1], but studied the INS expression from adults donors. Sufficient single islet cell data from children 

without diabetes or with early stages of type 1 diabetes is not available. Gene expression in β cells 

subjected to autoimmune attack would likely be difficult to interpret and confounded. The field of type 1 

diabetes genetics in general is limited by an excessive focus on the Caucasian population [5; 6]. The near 

perfect linkage for the three genetic variants INS-VNTR, rs689, and rs3842753 has only been extensively 

studied in Caucasian populations with the correlation factor r2 unknown for other ethnicities [5]. Our 

dataset only included ethnicity metadata for 31 out of 71 donors (29 of Caucasian descent). Thus, our 

assumption that genotyping for SNP rs3842753 as a surrogate for INS-VNTR length could not be 

formally validated. Finally, despite compiling all available data at the time of our work, our study is still 

limited by the relatively small sample number (n = 71) compared to GWAS studies, though it is a major 

improvement compared to the previous studies ( n = 1, 3, 10) [9]. Due to this limited sample size, we 

could not account for each of the large range of factors which could affect INS expression including: age, 

BMI, dietary differences, and ethnicity [1]. To address these limitations, we would need to increase the 

sample size, especially in younger age ranges. 
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We argue for an increase in studies using integrated scRNAseq datasets to take advantage of the 

massive amount of publicly available data. Our integrated dataset includes the most recent pancreatic islet 

scRNAseq data and will be available upon request. Diabetes status, sex, and age are included in the 

metadata allowing for investigations focusing on diabetes status specific transcriptome differences, sex 

specific transcriptome differences and age mediated transcriptome changes. Though Enge et al. (2017) 

have examined the transcriptional signatures of aging in human pancreas data with eight non-diabetic 

donors [19], it would be interesting to study the transcriptional signatures of aging between pancreatic 

islet cells from donors without diabetes compared to donors with type 2 diabetes. It would also be 

important to determine whether the changes in INS expression due to rs3842753 genotype we showed 

could be translated into changes in INS protein abundance. For this study, we could only obtain whole 

islet protein abundance data for the Camunas-Soler et al. (2019) and HPAP datasets [21; 22]. Though we 

observed the same trend in INS protein abundance as in INS expression (highest protein abundance in 

donors with rs3842753 C allele – homozygous or heterozygous), we could not conduct any statistical tests 

as there were only two donors with the A/A homozygous genotype (unreported). Future studies would 

benefit greatly with increased sample size and robust single-cell protein measurements, although it should 

also be noted that insulin protein content does not necessarily reflect transcription or translation rates. 

What is the translational significance of these molecular genetic findings? Our results confirm the 

association between the rs3842753 C allele and increased INS expression, first proposed using whole 

pancreas from a small number of donors, at the single cell level using 2315 β cells and 1223 β-like cells 

from 71 donors. Our findings support the emerging concept that inherited risk of type 1 diabetes at SNP 

rs3842753 may be associated with elevated insulin production at the mRNA level and an increase in β 

cell ER stress. The insulin production-driven ER stress we have previously described [13] could make β 

cells, especially those near their maximal insulin synthesis and folding capacity, more fragile and 

sensitive to external stresses. Our data in β-like cells, which have lower absolute INS expression and do 

not display the same signs of ER stress, offers further support for that idea. Increased insulin production 

may also lead to errors in insulin mRNA translation, proinsulin protein processing and insulin peptide 

degradation, as well as other factors that could promote neoautoantigen generation and presentation, and 

the provocation of an autoimmune reaction (Figure 4 C) [11; 36]. Our results do not preclude a 

pathological role for VNTR-associated decrease in INS expression in the thymus, which has been 

proposed to impair central tolerance [37], although a dominant role for thymic negative selection in type 1 

diabetes has been questioned [38]. Taken all together, paradoxically elevated pancreatic insulin 

production from birth could make some β cell more vulnerable to stress, against the background of HLA-

driven autoimmunity. This hypothesis should be testable in animal models that have insulin production is 

specifically reduced in β cells [39], if they were crossed to a type 1 diabetes susceptibility background 
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such NOD. If this hypothesis is further supported, it would provide even stronger rationale for approaches 

to reduce β cell stress in people who are at risk for type 1 diabetes. 
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FIGURE LEGEND 

Figure 1: Cluster type clustering and identification of integrated dataset. UMAP projection of 

integrated dataset with cell type identity separated by colour (A). UMAP projection of integrated dataset 

with gene expression localization for pancreatic hormonal genes (B) and other cell type (C) markers. Each 

point represents one cell. (D) Table with each identified cluster cell number. 

 

Figure 2: Normalized INS expression in be β cells and β-like cells by sex and disease status. 

Distribution and mean normalized INS expression separated by sex (in β cells: A, and in β-like cells: B) 

and disease status (in β cells: C, and in β cells: D). Red vertical lines represent median, blue vertical lines 

represent 1st and 3rd quartiles. Each point represents one cell. Bonferroni adjusted p < 0.001 = ***. ND = 

no diabetes, T2D = type 2 diabetes. Fligner-Killeen and Wilcox Rank Sum tests were used as non-

parametric test for differences in variance and mean respectively. 

 

Figure 3: Normalized INS expression in β cells and β-like cells by genotype. Distribution and mean 

normalized INS expression separated by genotype (in β cells: A, and in β cell: B), genotype and sex (in β 

cells: C, and in β-like cells: D), and genotype and diabetes status (in β cells: E, and in β-like cells: F). Red 

vertical lines represent median, blue vertical lines represent 1st and 3rd quartiles. Each point represents 

one cell. Bonferroni adjusted P < 0.001 = ***. F = female, M = male, ND = no diabetes, D = type 2 

diabetes. Graphs are coloured by genotype. Fligner-Killeen and pairwise Kruskal-Wallis tests were used 

as non-parametric test for differences in variance and mean respectively. 

 

Figure 4: ER stress marked gene expression in β cells and β-like cells by genotype. Mean normalized 

ERN1 expression in β cells (A) and β-like cells (C), and ATF6 expression in β cells (B) and β-like cells 

(D), separated by genotype. Bonferroni adjusted P < 0.001 =***. Graphs are coloured by genotype. 

Pairwise Kruskal-Wallis tests was used as non-parametric test for differences in mean. (E) Working 

model–rs3842753 associates with increased INS mRNA levels, presumably resulting in increased INS 

translation and increased misfolded INS protein, leading to increased ER stress. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.12.06.413971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413971
http://creativecommons.org/licenses/by/4.0/


Alpha Beta Duct Beta-like Acinar PP Mesenchyme Delta Endothelial
CD14+ 
Monocyte

5519 2315 1502 1223 1188 586 531 451 226 81

B C

D

Beta

Beta-like

Alpha

Endothelial

Monocytes

Ductal

Mesenchymal

Delta

PP

Acinar

A

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.12.06.413971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413971
http://creativecommons.org/licenses/by/4.0/


Male

Female

***

A

T2D

ND

Normalized INS Expression

***

C

T2D

ND

Normalized INS Expression

***

D

B

Male

Female

Normalized INS Expression

***

Beta-cells

Beta-like cells

0 5 10 15 20

Normalized INS Expression
0 5 10 15 20 MaleFemale

N
or

m
al

iz
ed

 IN
S

E
xp

re
ss

io
n

***

10

15

5

T2DND

N
or

m
al

iz
ed

 IN
S

E
xp

re
ss

io
n

***

10

15

5

0

MaleFemale

10

15

5

0N
or

m
al

iz
ed

 IN
S

E
xp

re
ss

io
n

0

T2DND

N
or

m
al

iz
ed

 IN
S

E
xp

re
ss

io
n

10

15

5

0
0 5 10 15 20

0 5 10 15 20

Beta-cells

Beta-like cells

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.12.06.413971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413971
http://creativecommons.org/licenses/by/4.0/


A B

IN
S

A/A A/C C/C

*** ***
***

C/C

A/C

A/A

INS
0 5 10 15 20

IN
S

5

10

15

***
***

A/A A/C C/C

Beta-cells Beta-like cells

INS

***

***

***

5 10 15 20

C/C

A/C

A/A
5

10

15

C

INS

C/C

A/C

A/A

C/C

A/C

A/A

*

***
***

***

5 10 15 20
INS

C/C

A/C

A/A

C/C

A/C

A/A

5 10 15 200

F
em

al
e

M
al

e

D

A/A A/C C/C A/A A/C C/C

IN
S

***

***
***

***

*
***

10

15

5

IN
S

5

10

15

***
***

***
***

Female Male Female Male

A/A A/C C/C A/A A/C C/C

INS
5 10 15 20

IN
S

***
***

***

***

***
***

10

15

5

***
***

***
***

***

E F
C/C

A/C

A/A

C/C

A/C

A/A

C
on

tr
ol

T
2D

***
***

***

Control T2D

A/A A/C C/C A/A A/C C/C

INS
0 5 10 15 20

C/C

A/C

A/A

C/C

A/C

A/A

C
on

tr
ol

T
2D

***
***

***

A/A A/C C/C A/A A/C C/C

IN
S

5

10

15

Control T2D

F
em

al
e

M
al

e

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.12.06.413971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413971
http://creativecommons.org/licenses/by/4.0/


E Increased type 1 diabetes risk

C

A/A A/C C/C
Genotype

2

1

0

E
R

N
1

3

4

D

A/A A/C C/C
Genotype

2

1

0

A
T

F
6 3

5

4

A **

***
B

2

1

0

A
T

F
6 3

5

4

A/A A/C C/C
Genotype

***

***

2

1

0

E
R

N
1

3

4

A/A A/C C/C
Genotype

Beta-cells

Beta-like cells

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2020.12.06.413971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.413971
http://creativecommons.org/licenses/by/4.0/

