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ABSTRACT

Type 1 diabetes is characterized by the autoimmune destruction of insulin secreting 3 cells. Genetic
variations upstream at the insulin (INS) locus contribute to ~10% of type 1 diabetes heritable risk.
Multiple studies showed an association between rs3842753 C/C genotype and type 1 diabetes
susceptibility, but the molecular mechanisms remain unclear. To date, no large-scale studies have looked
a the effect of genetic variation at rs3842753 on INS mRNA at the single cell level. We aligned all
human idet single cell RNA sequencing datasets available to us in 2020 to the reference genome
GRCh38.98 and genotyped rs3842753, integrating 2315 B cells and 1223 f-like cells from 13 A/A
protected donors, 23 A/C heterozygous donors, and 35 C/C at-risk donors, including adults without
diabetes and with type 2 diabetes. INS expression mean and variance were significantly higher in single 3
cells from females compared with males. Comparing across 3 cells and B-like cells, we found that
rs3842753 C containing cells (either homozygous or heterozygous) had the highest INS expression. We
also found that B cells with the rs3842753 C allele had significantly higher ER stress marker gene

expression compared to the A/A homozygous genotype. These findings support the emerging concept that
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inherited risk of type 1 diabetes may be associated with inborn, persistent elevated insulin production
which may lead to 3 cell ER stress and fragility.
INTRODUCTION

Pancreatic 3 cells are the body’s primary source of insulin, a hormone that promotes glucose uptake
from the bloodstream into tissues[1]. Type 1 diabetes constitutes ~10% of diabetes cases and is caused by
the autoimmune destruction of a substantial proportion of § cells [1]. Type 1 diabetes is highly heritable
with a twin concordance between 30% and 70% [2]. The HLA locus is the major genetic determinant of
type 1 diabetes risk (OR = 0.02 to 11), but other genes play a significant role as well [3]. Gene mapping
and GWAS studies identified the human insulin (INS) locus as the 2™ most important contributor of type
1 diabetes genetic risk (OR = 2.38, ~10% of heritable risk) [4; 5]. The region of the INS locus implicated
in type 1 diabetes susceptibility has three genetic variantsin near-perfect linkage disequilibrium with each
other [4-6]. Variants associated with increased type 1 diabetes risk are: a shortening of the repetitive
region 400bp upstream of INS (class IIl INSVNTR > class | INSVNTR), a single nucleotide
polymorphism (SNP) in the INS5’ intronic region (rs689 T>A), and a SNP in the INS3'UTR (rs3842753
A>C) [4-8]. Often, the SNP alleles are examined as surrogates for INSVNTR length [6; 8-10]. The
rs3842753 C alele has been consistently correlated with increased type 1 diabetes susceptibility [5; 6; 8].

Despite genetic studies linking the rs3842753 C allele to increased type 1 diabetes susceptibility, there
have only been three studies examining the effect of these genetic variants on INS expression in the
pancreas [6; 9; 10]. The studies found an allele specific association between rs3842753 C allele and
increased INS expression in heterozygous adult and fetal whole pancreas tissue, but were confounded by a
lack of cell type specificity. Moreover, the sample sizes were small (n = 3, 1, and 10) [6; 9; 10]. These
findings lend support to the B cell ER stress model of type 1 diabetes pathogenesis. It has been
hypothesized that increased insulin demand could generate large proportions of misfolded or unfolded
proinsulin, leading to ER stress [11]. Under glucose stimulation [12] and even basal conditions [13],
insulin production is a significant source of ER stress. If the allele-specific increase in INS expression is
translated into increased insulin production, there could be increased ER stress activated unfolded protein
response leading to increased generation of unique antigen that present exclusively under specific
conditions (necautoantigens) [14]. Neoautoantigens derived from INS have been shown to stimulate T-
cell proliferation and cytokine production, though the role of these neocautoantigens on type 1 diabetes
autoimmunity remain unclear [15].

Recently, multiple data sets of single cell RNA sequencing (ScCRNAseq) from human pancrestic islet
cell have been produced [16-23]. Studies have found distinct subpopulations of § cells and B-like cells,
with varying conclusions for differences in INS expression, confirming heterogeneity as a core feature of

islet cell biology [18; 23]. Studies have also found transcriptomic differences in  cells from donors
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without diabetes compared to donors with type 2 diabetes [16-18], although these have not always been
reproducible between studies [24] (likely due to the complex type 2 diabetes etiology and limited sample
size). We reasoned that integrating all available scRNAseq data from human pancreatic isets into one
dataset and conducting analyses with a greater sample size could resolve true differences.

In this study, we examined the effect of rs3842753 genotype, sex, and type 2 diabetes status on INS
expression independently and in combination in single pancreatic § cells using an integrated dataset
containing all available scRNAseq data. Our findings are consistent with the novel hypothesis that
elevated 3 cell insulin production contributes to inherited type 1 diabetesrisk by increasing 3 cell stress.

METHODS
Data inclusion

We conducted al scRNAseq aignments and initial dataset integration analysis using the Cedar
Compute Canada cloud compute resource (www.computecanada.ca). All subsequent analyses were done
in RStudio version 3.6.0. We included dl published pancreatic islet SCRNAseq datasets obtained using
Smart-seg2 or Smart-seq methods for library preparation due to their higher sequencing depth for accurate
SNP genotyping. We also included the Human Pancreas Analysis Program (HPAP) data available at the
time of our study [22]. We obtained the published datasets through the Gene Expression Omnibus (GEO)
or the European Bioinformatics Institute (EMBL-EBI), and the HPAP datasets directly from investigators
(Supplemental Table 1). All dataset metadata contain donor age, sex, and diabetes status. The read length
ranges from 43bp to 100bp and median read depth per cell ranges from 0.75 to 4.4 million reads. In total,
we used data from 71 donors, split into 48 donors without diabetes and 23 donors with type 2 diabetes. At
the time of our analysis, single cell data was only available from 1 adult donor and 1 child donor with
type 1 diabetes, precluding their use in our analysis which requires multiple donors of each genotype. We
also expect that gene expression analysis of B cell from donors with type 1 diabetes would be severely

confounded by the stresses associated with the disease.

Read alignment and genotyping

Single cell RNAseq reads were aligned to human reference genome GRCh38.98 using STAR version
2.7.1a [25] with gene read counts obtained using --quantMode GeneCounts. Read count files were
aggregated into study specific read count matrices using a custom code. Each cell was genotyped at SNP
rs3842753 (chr 11:2159830), using Samtools mpileup version 1.9 [26]. Pancreatic 3 cells (indicated by
total read count (DP4) at rs3842753 > 100) were used for donor genotype determination. Reference allele
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Reference_Forward_Read_Count+Reference_Reverse_Read_Count
(Ref = = = ! = = = ). The dternate

percentage was calculated as pa

(Alternate_Forward_Read_Count+Alternate_Reverse_Read_Count)
DP4

alele percentage was calculated as

Homozygosity was determined as reference or aternate allele percent > 80%, and heterozygosity
otherwise. Donor genotype is determined as the majority of the individual’s  cells' genotype. Less than 5%
of individual 3 cells genotype are non-concordant with donor genotype. Genotype non-concordant cells

areincluded in downstream analysis and re-labeled with donor genotype.

Dataset filtering and cell type analysis

Initial filtering removed cells with abnormally high total RNA counts and genes expressed (i.e.
doublet cells) and cells with low number of expressed genes and/or high mitochondrial gene percent (low
viability), through visual inspection of distribution graphs for each dataset. The upper and lower limits
were specific to each dataset to account for library preparation and sequencing protocol differences. The
highest mitochondrial gene percentage was set to 25%.Datasets were integrated into a single dataset in
Seurat version 3.1 [27] using SCTransform [28] and clustered in UM AP space using default settings. Top
ten differentially expressed genes in each cluster (compared to al other cells) was used to determine
cluster cell type identify. As well, the location of pancreatic hormone genes (GCG, INS, PPY and SST)
expression was used to determine Alpha (a), B, PP, and delta cell clusters, respectively. Enrichr (gene

enrichment analysis) [29] was used when cluster identity could not be determined using previous methods.

Gene expression analysis

ER stress marker genes expression was normalized to al genes expressed in cell according to default
Seurat settings. INS gene expression was normalized against select housekeeping genes rather than
against all expressed genes in a cell due to the overwhelming amount of INS expression in pancrestic 3
cells (50% of all read counts) and to prevent self-normalization. Housekeeping genes for INS expression
normalization were selected from alist of established human housekeeping gene (ACTB, GAPDH, PGK1,
PPIA, RPLPO, B2M, SDHA, TFRC, GUSB, HMBS, HPRT1, TBP) for low inter-dataset variance and
sufficient expression (relative to all genes in the cell). INSread counts in 3 cells and B-like cells were
normalized against the sum of select housekeeping genes read counts, scaled to a total of 10000, and
natural log transformed. All cells with zero values for INS read counts or select house-keeping genes read
counts were excluded from the downstream analysis. We analyzed B3 cells and B-like cells separately. We
checked for the expression of other genes in the rs3842753 linkage dis-equilibrium block (IGF2, TH), but

did not find significant expression in single B cells, as expected.
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Satistical analyses

Shapiro-Wilk test was used to test for normality. Fligner-Killeen or Bartlett’s tests were used as a non-
parametric or parametric test for difference in variance. Wilcox Rank Sum was used to test for differences
in normalized INS expression between sexes or between disease statuses. Pairwise Kruskal-Wallis test
was used to test for differences in normalized INS expression between genotypes, adjusting for multiple
comparisons with Bonferroni correction. We did not study the effect of sex or diabetes status on

normalized INS expression within genotype.

RESULTS
Dataset genotype summary

VNTR length cannot be determined directly with commonly used scRNAseq methods because reads
are too short to span such large repetitive regions. Therefore, for each cell, rs384275 genotype was
determined as a surrogate for INSVNTR length and rs689 genotype due to the near perfect linkage
disequilibrium between these gene variants in Caucasian populations. Also, there were no read alignments
to the rs689 region. Within donors without diabetes, 9 donors had rs384275 A/A genotype, 12 had
rs384275 A/C genotype, and 27 had rs384275 C/C genotype. Within donors with type 2 diabetes, 4
donors had rs384275 A/A genotype, 11 had rs384275 A/C genotype, and 8 had rs384275 C/C genotype
(Supplemental Table 2).

Cdll type clustering and identification

We performed cluster analysis and labeling to identify specific cell types since our dataset included a
mixture of cells from pancreatic islets. We found 14 distinct clusters within 13622 pancreatic islet cells
(Figure 1A) and classified the clusters as o cells, B cells, PP cells, and delta cells based on expression of
classical pancreatic hormone genes (GCG, INS, PPY, and SST) (Figure 1A, B, D). We aso found
endothelia cells, duct cells, and acinar cells based on PECAM1, SPP1, and PRSSL expression localization
(Figure 1A, C, D). We identified mesenchyme and CD14+ monocytes using Enrichr based on top ten
conserved genes per cluster compared to al other cells (Figure 1A, D). We identified a cluster of B-like
cellsthat exhibited high INS expression compared to other clusters, but lacked the congregation in UMAP
space. These cells may be considered poorly differentiated or dedifferentiated 3 cells, or they may be
derived from other islet endocrine cells that have adopted INS expression. We used, separately, the 3 cell
cluster (2315 cells) and the B-like cluster (1223 cells) for INS expression analysis.

Effects of female sex and type 2 diabetes status on INSmRNA in single B cellsand f-like cells
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Sex and diabetes status have been shown to affect gene expression in pancreatic islets [16-18; 30]. We
first examined the effect of sex on INSexpression in 3 cells and 3-like cells. In 3 cells, we found that cells
from females and from donors with type 2 diabetes have increased normalized INS expression variance
compared to cells from males and from donors without diabetes (Figure 2A, C). Interestingly, in B-like
cells, we found the opposite association of an increase in normalized INS expression variance in cells
from males and donors without diabetes compared to cells from females and from donors with type 2
diabetes (Figure 2B, D). In female donors, B cells, but not B-like cells, had increased levels of normalized
INS expression compared to males (Figure 2A, B).

Next, we examined whether INS expression in single 3-cells was associated with type 2 diabetes. No
significant difference in mean INS expression was observed between 3 cells from diabetic and non-
diabetic donors (Figure 2C). In the B-like cells, normalized INS expression was increased in cells from
donors with type 2 diabetes (Figure 2D). Changes in INS expression variance between sex and diabetes
status provide additional evidence for heterogeneity in pancreatic  cell and B-like cell expression profile.
Since INS expression level and variance changes between sex and diabetes status, it is important to

account for these factors when studying the effect of rs3842753 genotype on INS expression.

rs3842753 C allele associates with increased INS expression in single S cellsand S-like cells

Previous studies used allele specific expression to show a correlation between the at-risk type 1
diabetes rs3842753 C allele and increased pancreatic INS expression in a maximum of 10 heterozygous
whole pancreas tissues [6; 9; 10]. Here, we substantially increased the sample size (n = 71) and focused
on INS expression specificaly in B cells and B-like cells. To account for the overwhelming expression of
INSin pancreatic 3 cells, and to avoid self-normalization to INS, we normalized INS expression to B2M
and RPLPO expression, housekeeping genes we found to be both highly expressed and with a low inter-
dataset variability in this dataset (Supplemental Figure 1). In 3 cells, donors with the rs3842753 A/C
genotype had the highest level and variance of normalized INS expression, followed by C/C genotype,
then A/A genotype (Figure 3A). Similarly, in B-like cells, cells with the at-risk C alele (A/C or C/C
genotype) had the highest level of normalized INS expression (Figure 3B).

When examining the effect of rs3842753 genotype on INS expression within sex or diabetes status,
cells display the same trend of significantly increased variance of INS expression in donors with the
heterozygous rs3842753 A/C genotype is present in cells from males and donors without diabetes (Figure
3 C, E). Additionally, cells from females and either diabetes status with the rs3842753 A/C genotype
significantly expressed the highest level of INS, followed by C/C genotype, then A/A genotype (Figure 3
C, E). Regardless of sex or diabetes status, -like cells aso displayed increased INS expression associated
with the rs3842753 C alele (either A/C or C/C genotype) (Figure 3D, F). Within either sex, there was no
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association between rs3842753 genotype and INS expression variance in -like cells (Figure 3D). Similar
to B cells, there was a significant increase in INS expression variance in -like cells with rs3842753 C
alele in donors with or without diabetes (Figure 3F). Together, these results indicate rs3842753 C dlele
affects INS expression, with the C allele associated with both increased INS expression variance and level
in B cells and B-like cells. We attempted to examine the effects of rs3842753 on other genes within the
linkage disequilibrium block but were unsuccessful due to the near zero expression of insulin like growth

factor 2 and tyrosine hydroxylase.

rs3842753 C allele associates with increased ER stress markersin single 3 cellsand f-like cells

Insulin production has been shown to sustain chronic baseline ER stress [13]. Due to the increase in
INS expression observed in cells with the at-risk rs3842753 C allele compared to the protective A allele,
we were tested whether rs3842753 genotype aso affected markers of ER stress. Indeed, the rs3842753 C
allele was significantly associated with increased ERN1 and ATF6 expression in 3 cells (Figure 4A, B).
There was no association between ERN1 or ATF6 expression and rs3842753 genotype in B-like cells
(Figure 4C, D). These results indicate that rs3842753 C allele is associated with increased ER stress in

‘mature’ 3 cells.

DISCUSSION

The linked genetic variants at the INS locus: Class | INS-VNTR, rs689 A alele, and rs3842753 C
alele, are the main variants associated with increased type 1 diabetes susceptibility [5; 6; 8]. Previoudly,
only three small studies using whole pancreas tissues examined the effect of these variants on INS
expression [6; 9; 10]. The studies accounted for inter-donor differences by examining allele specific INS
expression in heterozygous donors. Our study is focused on the genetic factors that would precede type 1
diabetes. Beta-cells from type 1 diabetes donors would have been exposed to significant stress from type
1 diabetes and the results might not be representative of the pre-diabetic stage. Our study using 2315
single pancreatic B cells and 1223 B-like cells found that possession of a C alele at rs3842753 was
associated with higher INS expression. These findings are consistent with the previous small studies using
whole pancreas tissues that found that the C alele is associated with increased INS expression [6; 9; 10].
Sex distributions for previous studies were not reported. Our study included 71 adult donors (48 donors
without diabetes and 23 donors with type 2 diabetes), which is a substantial improvement from previous
studies with a maximum of ten fetal pancreas tissues.

Our study represents the largest compilation of human islets single-cell RNA sequencing data to date

and it offers several insights into the biology of INS gene expression. As with the individual studies, our

7


https://doi.org/10.1101/2020.12.06.413971
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.06.413971; this version posted March 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

work re-enforces the substantial variability in insulin gene expression between cells. We aso found that
the heterozygous rs3842753 A/C genotype was associated with the highest variance of INS expression
followed by A/A genotype, then by the C/C genotype in single pancreatic B cells. The increase in
normalized INS expression variance in cells with A/C genotype could be due to the expression profile
being influenced by both the rs3842753 A alele and C allele. This difference in variance supports the
established model of heterogeneity of pancreatic B cells and perhaps the rs3842753 genotype plays arole
in heterogeneity of INS expression [18; 23; 31]. Multiple other studies have found evidence of
heterogeneity in  cells indicated by distinct subpopulations of  cells with varying INS expression [18;
23]. In B-like cells, variance of INS expression was less affected by the rs3842753 genotype. This is
unsurprising due to the variety of cells that compose the B-like cells cluster, including polyhormonal cells
and cells with gene expression signatures similar to o cells, B cells, ductal cells, and acinar cells (Figure
1A). Cell type variation in the B-like cells cluster was likely the primary factor affecting INS expression
variance compared to the rs3842753 genotype. In other work from our lab, we have recently found that 3
cells can fluctuate between these states of high and higher insulin gene expression [31]. In the current
study, we are unable determine whether comparatively high or low INS expression in single cells reflects
dynamic or stable states.

Sex and diabetes status play an important role in insulin secretion and insulin resistance. We found
that female donors had more pancreatic 3 cell INS expression than males. Thisis consistent with previous
findings that males secrete less insulin after glucose stimulation than females, though insulin secretion
under basal conditions is less extensively studied [32]. Interestingly, we found an increase in INS
expression variance in p cells from females and donors with type 2 diabetes compared to males and
donors without diabetes, respectively. Thisis consistent with the hypothesis that female pancreatic 3 cells
need to have more plasticity in gene expression to accommodate the physiological demands of the
potential for pregnancy and T2D f cells could have more variance due to the range in disease state and its
effects on cell health and function. Conversely, B-like cells from maes and donors without diabetes
displayed greater variance in INS expression compared to cells from females and donors with type 2
diabetes, respectively.

Our study found that the rs3842753 C alele was associated with increased INS expression level in
both B-like cells or B cells, though the specific genotype (A/C or C/C) associated with the highest INS
expression level was different. In 3-like cells, the rs3842753 C allele in either genotype (A/C or C/C) was
associated with the highest INS expression level. Though not significant, except within B-like cells from
donors with type 2 diabetes, B-like cells with the C/C homozygous genotype had the highest INS
expression level followed by the A/C genotype, then the A/A genctype. Perhaps, the decreased overal

INS expression level in B-like cells alowed for a great variance of INS expression, especially at higher
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INS expression levels, compared to ‘mature’ 3 cells. The effect of the rs3842753 genotype can be shown
more clearly since the 3-like cells are not expressing INS mRNA at their maximum capacity compared to
‘mature’ 3 cells.

In B cells, we made the perplexing finding that the highest INS mRNA expression was found in
heterozygotes (A/C) donors. While we can only speculate, it is possible that such an overdominance mode
of INS expression could be through a transcription factor competitive binding mechanism of action,
proposed for other systems [33]. The rs3842753 C allele linked to shortening of INSVNTR could
increase accessibility of the chromatin by transcription factors at the INSloci and increase transcription of
INS. At maximum INS expression capacity, transcription factor molecules in cells with the heterozygous
genotype could exceed binding site availability, limiting competition. Cells with the homozygous allele
have increased number of INS transcription factor binding sites, which theoretically could induce
competition amongst binding sites for transcription factors (at INS loci or other locus) thus lowering
transcription efficiency and decreasing INS expression. It would be interesting to conduct allele-specific
INS expression analysis using SCALE or scBASE [34; 35]. However, we are unable to conduct those
experiments using the current dataset due to the technical challenges of normalizing INS expression
across multiple datasets with different sequencing protocols and donors.

Our study has several limitations. This includes sample size limitation in the areas of age range, ethnic
demographic, and sample size, which means that the results should be cautiously extrapolated and
multiple subgroup analysis is challenging. Most cases of type 1 diabetes onset between 10 to 14 years of
age [1], but studied the INS expression from adults donors. Sufficient single islet cell data from children
without diabetes or with early stages of type 1 diabetes is not available. Gene expression in 3 cells
subjected to autoimmune attack would likely be difficult to interpret and confounded. The field of type 1
diabetes genetics in general is limited by an excessive focus on the Caucasian population [5; 6]. The near
perfect linkage for the three genetic variants INSVNTR, rs689, and rs3842753 has only been extensively
studied in Caucasian populations with the correlation factor r* unknown for other ethnicities [5]. Our
dataset only included ethnicity metadata for 31 out of 71 donors (29 of Caucasian descent). Thus, our
assumption that genotyping for SNP rs3842753 as a surrogate for INSVNTR length could not be
formally validated. Finally, despite compiling all available data at the time of our work, our study is till
limited by the relatively small sample number (n = 71) compared to GWAS studies, though it is a magjor
improvement compared to the previous studies ( n = 1, 3, 10) [9]. Due to this limited sample size, we
could not account for each of the large range of factors which could affect INS expression including: age,
BMI, dietary differences, and ethnicity [1]. To address these limitations, we would need to increase the

sample size, especialy in younger age ranges.
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We argue for an increase in studies using integrated scRNAseq datasets to take advantage of the
massive amount of publicly available data. Our integrated dataset includes the most recent pancreatic islet
scRNAseq data and will be available upon request. Diabetes status, sex, and age are included in the
metadata allowing for investigations focusing on diabetes status specific transcriptome differences, sex
specific transcriptome differences and age mediated transcriptome changes. Though Enge et a. (2017)
have examined the transcriptional signatures of aging in human pancreas data with eight non-diabetic
donors [19], it would be interesting to study the transcriptional signatures of aging between pancreatic
islet cells from donors without diabetes compared to donors with type 2 diabetes. It would aso be
important to determine whether the changes in INS expression due to rs3842753 genotype we showed
could be translated into changes in INS protein abundance. For this study, we could only obtain whole
islet protein abundance data for the Camunas-Soler et a. (2019) and HPAP datasets [21; 22]. Though we
observed the same trend in INS protein abundance as in INS expression (highest protein abundance in
donors with rs3842753 C allele — homozygous or heterozygous), we could not conduct any statistical tests
as there were only two donors with the A/A homozygous genotype (unreported). Future studies would
benefit greatly with increased sample size and robust single-cell protein measurements, although it should
also be noted that insulin protein content does not necessarily reflect transcription or trandation rates.

What is the tranglational significance of these molecular genetic findings? Our results confirm the
association between the rs3842753 C alele and increased INS expression, first proposed using whole
pancreas from a small number of donors, at the single cell level using 2315 3 cells and 1223 B-like cells
from 71 donors. Our findings support the emerging concept that inherited risk of type 1 diabetes at SNP
rs3842753 may be associated with elevated insulin production at the mRNA level and an increase in 3
cell ER stress. The insulin production-driven ER stress we have previously described [13] could make 3
cells, especialy those near their maxima insulin synthesis and folding capacity, more fragile and
sensitive to external stresses. Our datain B-like cells, which have lower absolute INS expression and do
not display the same signs of ER stress, offers further support for that idea. Increased insulin production
may also lead to errors in insulin MRNA trandation, proinsulin protein processing and insulin peptide
degradation, as well as other factors that could promote neoautoantigen generation and presentation, and
the provocation of an autoimmune reaction (Figure 4 C) [11; 36]. Our results do not preclude a
pathological role for VNTR-associated decrease in INS expression in the thymus, which has been
proposed to impair central tolerance [37], although a dominant role for thymic negative selectionin type 1
diabetes has been questioned [38]. Taken al together, paradoxically elevated pancreatic insulin
production from birth could make some 3 cell more vulnerable to stress, against the background of HLA-
driven autoimmunity. This hypothesis should be testable in animal models that have insulin production is

specifically reduced in B cells [39], if they were crossed to a type 1 diabetes susceptibility background
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such NOD. If this hypothesisis further supported, it would provide even stronger rationale for approaches

to reduce 3 cell stressin people who are at risk for type 1 diabetes.
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FIGURE LEGEND

Figure 1: Cluster type clustering and identification of integrated dataset. UMAP projection of
integrated dataset with cell type identity separated by colour (A). UMAP projection of integrated dataset
with gene expression localization for pancreatic hormonal genes (B) and other cell type (C) markers. Each

point represents one cell. (D) Table with each identified cluster cell number.

Figure 2: Normalized INS expression in be B cells and B-like cells by sex and disease status.
Distribution and mean normalized INS expression separated by sex (in f cells: A, and in p-like cells: B)
and disease status (in 3 cells: C, and in B cells: D). Red vertical lines represent median, blue vertical lines
represent 1st and 3rd quartiles. Each point represents one cell. Bonferroni adjusted p < 0.001 = *** ND =
no diabetes, T2D = type 2 diabetes. Higner-Killeen and Wilcox Rank Sum tests were used as non-

parametric test for differences in variance and mean respectively.

Figure 3: Normalized INS expression in p cells and B-like cells by genotype. Distribution and mean
normalized INS expression separated by genotype (in 3 cells: A, and in 3 cell: B), genotype and sex (in f3
cells: C, and in 3-like cells: D), and genotype and diabetes status (in § cells: E, and in 3-like cells: F). Red
vertical lines represent median, blue vertical lines represent 1st and 3rd quartiles. Each point represents
one cell. Bonferroni adjusted P < 0.001 = ***, F = female, M = male, ND = no diabetes, D = type 2
diabetes. Graphs are coloured by genotype. Higner-Killeen and pairwise Kruskal-Wallis tests were used

as non-parametric test for differencesin variance and mean respectively.

Figure 4: ER stress mar ked gene expression in B cells and p-like cells by genotype. Mean normalized
ERN1 expression in 3 cells (A) and B-like cells (C), and ATF6 expression in 3 cells (B) and p-like cells
(D), separated by genotype. Bonferroni adjusted P < 0.001 =***, Graphs are coloured by genotype.
Pairwise Kruskal-Wallis tests was used as non-parametric test for differences in mean. (E) Working
model—s3842753 associates with increased INS mRNA levels, presumably resulting in increased INS
translation and increased misfolded INS protein, leading to increased ER stress.
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