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Abstract:

The 2019 novel coronavirus, SARS-CoV-2, is an emerging pathogen of critical significance to international public
health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replica-
tion, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is
known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) in-
fections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to
presentation in different age groups or pre-existing inflammatory risk factors like diabetes. Given the nonlinear
interactions within and among each of these processes, multiscale simulation models can shed light on the
emergent dynamics that lead to divergent outcomes, identify actionable “choke points” for pharmacologic inter-
ventions, screen potential therapies, and identify potential biomarkers that differentiate patient outcomes. Given
the complexity of the problem and the acute need for an actionable model to guide therapy discovery and opti-
mization, we introduce and iteratively refine a prototype of a multiscale model of SARS-CoV-2 dynamics in lung
tissue. The first prototype model was built and shared internationally as open source code and an online inter-
active model in under 12 hours, and community domain expertise is driving rapid refinements with a two-to-four
week release cycle. In a sustained community effort, this consortium is integrating data and expertise across
virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance com-
puting, and other domains to accelerate our response to this critical threat to international health.
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Introduction

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has illuminated the global public health threat posed by highly pathogenic coronaviruses that emerge from zo-
onotic sources. With the majority of the world’s population immunologically naive and no available antivirals or
vaccines, over 14,000,000 infections and 600,000 deaths amassed by the end of July 2020". Coronavirus dis-
ease 2019 (COVID-19)—caused by SARS-CoV-2 infection—is characterized by a range of respiratory symp-
toms, including fever and cough?3, that can progress to acute respiratory distress syndrome (ARDS) in some
patients*®. Age and comorbidities appear to be the main risk factors for development of severe disease®?. How-
ever, the dynamics of virus replication, interaction with host immune responses, and spread within the respiratory
tract are still being established. Because a vaccine may not be available for 9-18 months, there is a critical need
to further understand the infection in order to quickly identify pharmacologic interventions and optimal therapeutic
designs that work to lessen virus replication and disease severity. However, this requires an international com-
munity effort that integrates expertise across a variety of domains and a platform that can be iteratively updated
as new information and data arises.

To aid this effort, we have assembled an international, multi-disciplinary coalition to rapidly develop an open
source, multi-scale tissue simulator that can be used to investigate mechanisms of intracellular viral replication,
infection of epithelial cells, host immune response, and tissue damage. The aim of this project is to concentrate
community modeling efforts to create a comprehensive multiscale simulation framework that can subsequently
be calibrated, validated, and used to rapidly explore and optimize therapeutic interventions for COVID-19. Once
the prototype has been completed (after several design iterations), this coalition will transition to maintain and
support the simulation framework and aggregate calibrated/validated parameter values.

To address the acute need for rapid access to an actionable model, we are using a community-driven coalition
and best open science practices to build and iteratively refine the model:

(1) Open source and GitHub: All simulation source code is shared as open source on GitHub, with well-
defined, versioned, and documented releases, and Zenodo-generated archives and DOls.

(2) Interactive cloud-hosted models: Every prototype version is rapidly transformed into a cloud-hosted,
interactive model to permit faster scientific communication across communities, particularly with virolo-
gists, immunologists, pharmacologists, and others who have essential insights but ordinarily would not
directly run the simulation models.

(3) Social media and virtual feedback: We enlist community participation (feedback, modeling contribu-
tions, software contributions, and data contributions) through social media, virtual seminars, web forms,
a dedicated Slack workspace, and weekly team meetings. We particularly encouraging feedback and
data contributions by domain experts in virology, epidemiology, immunology, and mathematical biology.

(4) Frequent preprint updates: Each model iteration is accompanied by a cloud-hosted, interactive app
(see #2) and an updated preprint on bioRXxiv.

(5) Integration of feedback: All community feedback is evaluated to plan the next set of model refinements
and recorded in an updated bioRxiv preprint.

Ouir first test of this workflow saw a first proof-of-concept software release (Steps 1-2) in 12 hours, and the first
integration of community feedback and preprint dissemination was complete within a week. We have begun
integrating community feedback, and it is our intention to continue rapid iteration, with a new candidate model
release every few weeks.

Goals and guiding principles
This project is community-driven, including the following contributions:

1) Community priorities: The community helps define the driving research questions, set the project
scope, and select the critical biological components to be modeled.

2) Consensus hypotheses: The community drives a shared, clearly-written consensus specification of the
underlying biological hypotheses.
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3) Mathematical modeling: The community helps develop, review, and refine the mathematical interpre-
tation of the biological hypotheses.

4) Computational implementation: The computational implementation is shared as open source with com-
munity definition of specifications, unit tests, coding, and code review.

5) Community feedback: Community feedback on the model realism, hypotheses, mathematics, compu-
tational implementation, and techniques is encouraged throughout the development process.

6) Community parameters and data: Community contributions of parameter estimates and data contribu-
tions are aggregated to assist in model development and constraint.

Project scope
While by definition the project scope can be refined by the community, the initial project scope is to:

1) Develop the general computational framework sufficiently to address many of the community-driven re-
search questions.

2) Deliver a working simulation framework for use by others to perform calibration and validation. That is,
the prototyping aims of this project are complete once the model is capable of demonstrating essential
biological behaviors qualitatively.

3) To provide a software framework whose underlying hypotheses, mathematics, and computational imple-
mentation have been rigorously assessed by appropriate domain experts.

In particular, while this project will work to constrain, estimate, and calibrate parameters to the greatest extent
possible, it is not within scope to delay software release until full calibration and validation. Those tasks are within
scope of fully funded teams with dedicated experiments.

This project aims to deliver software that one can reasonably expect to calibrate and validate, thus freeing funded
investigations from expensive early software development while providing a broad community consensus on key
biological hypotheses. By rapidly prototyping this software, we aim to accelerate many funded research efforts.

Essential model components
As part of defining the project scope, we have identified the following critical model components:

1) Virus dissemination in epithelial tissue

Virus binding, endocytosis, replication, and exocytosis

Infected cell responses, including changes to metabolism, secreted signals, and death

Inflammatory response

Ramp up of the immune response (particularly in lymph nodes)

Immune cell infiltration

Immune cell predation of infected and other cells

Tissue damage by death of cells due to infection or host response; serves as a surrogate marker for
organ dysfunction

SSRGS

Guiding principles
The coalition aims to model not merely the disease endpoints, but the disease dynamics. This will allow scientists
to investigate mechanistic “what if” questions on potential interventions: What if we could inhibit endocytosis?

What if we could introduce a cytokine early or late in the disease course? What if the infected cell apoptosis
could be accelerated or delayed?

To accomplish this, we use a modular design: an overall tissue-scale model integrates an array of targeted
submodels that simulate critical processes (e.g., receptor binding and trafficking and virus replication). Each
submodel is clearly specified to enable interoperability and to make it feasible for subteams to simultaneously
develop and test the model components in parallel. Throughout development, we use open source methodolo-
gies that enhance communication, transparency, and reproducibility. See Box 1.
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Guiding principles: motivation
e The model should investigate the dynamics of infection and treatment, not merely endpoints.
e The model should help the community ask “what if” questions to guide experiments and interventions® .
Guiding principles: approach
o Community consensus will be gathered and efforts pooled into a “standardized” model that captures key SARS-CoV-2 dynamics. The model will
be supplied to the community for parallel studies by multiple labs.
e The model framework will be built with relatively sparse data, relying upon domain expertise and observations to choose its general form and
assess its qualitative behavior.

e The model will be modular. Each submodel will have well-defined inputs and outputs, allowing parallel development and replacement of submodels
with improved versions without change to the overall integrated model or other submodels.

e As part of the model formulation, documentation, and dissemination, we will craft clearly delineated “conceptual model and hypotheses” to en-
courage development of independent models with distinct methodologies and software frameworks.

e The submodels will be independently executable and verifiable, allowing parallel development.

e The overall model framework will be released periodically released numbered versions (distributions) that bundle the best working version of each
submodel as it exists at the time of release, allowing end-users (the community) to use well-defined, well-tested snapshots of the project.

e The model (and known parameter values) will be made publicly available as open source for maximum public benefit.

e The model will be made publicly available as an interactive web app to encourage community participation, to accelerate scientific dissemination,
and to increase public educational benefit.

e Rapid prototyping will be used to encourage a fast develop-test-refine cycle, build expertise, and gain community feedback.
e Data and parameter sharing is encouraged throughout this effort for use in the user community following the model’s “completion.”

e The model will be developed to a point that it has correct qualitative behavior so that calibration is likely to succeed. This is the “product” for use
in subsequent investigations by multiple teams. See the scoping statements above.

o After the model prototyping is complete (the goal of this paper), a maintenance and support phase will be entered to fix bugs, support scientist
users, and add features identified by the user community.

Box 1: Guiding principles for the rapid prototyping a modular, multiscale model.

Critical questions for the model framework

The community identified a series of driving biological questions concerning COVID-19 to guide the development
of the model framework (see Box 2). It is expected that the model will not initially be able to address all of the
questions listed; rather, the development plan envisions that with each iteration of the model framework it will
expand in its representational capacity as directed by the topics listed in Box 2. Furthermore, as with all modeling
projects, we anticipate that as the framework develops it will generate new questions and/or be responsive to
the rapidly evolving knowledge-base concerning COVID-19.

What are the critical “choke points” in viral infection, replication, and propagation?

Which interventions could most effectively leverage identified vulnerabilities in viral replication?

What unanticipated dynamics can emerge from a single molecular-scale inhibition?

Does the initial level of exposure to the virus affect the severity of the progression of the disease and how could this be ameliorated?
What are the key points of virus-immune interactions that drive mild versus severe (e.g., ARDS) responses?

What are key differences at the target cell level during innate versus adaptive immune responses?

Are there threshold levels of infection at the cellular or tissue level that indicate a switch from asymptomatic to symptomatic or from mild to severe
disease in a patient?

Through what mechanisms do certain patient characteristics, pre-existing conditions, or background medications increase the likelihood of adverse
outcomes?

9. What interventions could accelerate immunity?

10. What interventions can reduce or reverse adverse immune reactions?

11. At what stage is an intervention most beneficial?

12. How does viral mutagenicity affect the robustness of a therapy or a therapeutic protocol?

13. How does cellular heterogeneity affect infection dynamics?

14. How does the nearby tissue environment, such as the mucus layer, affect infection dynamics?

15. How does the infection spread from its initial locus of infection to other tissues (in particular, from upper respiratory tract to the bronchi, bronchioles,
and alveoli within lungs)? How does stochasticity impact these dynamics?

16. How do tissues recover after clearance of local infection? Can scarring be minimized to reduce long-term adverse effects in recovered patients?
17. How do adverse effects in SARS-CoV-2 infected epithelia differ (mechanistically) from other infections and other modes of epithelial dysfunction?

Box 2: Community-selected scientific questions driving the model’s development.

N ok

©

Key biology for the simulation model

This rapid prototyping effort brings together specialists from a broad variety of domains: virology and infectious
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diseases, mathematical biology, computer science, high performance computing, data science, and other disci-
plines. Therefore, it is critical that all members of the project have access to a clear description of underlying
biology that drive the model’'s assumptions. In this section we outline key aspects of viral replication and host
response in functional terms needed for development of agent-based, multi-scale and multi-physics models.

Cell infection and viral replication
The key cell-level process is viral infection of a single cell, followed by replication to create new virions:

1. SARS-CoV-2 is a single-stranded enveloped RNA virus''. A virion (single virus particle) has a lipid coat-
ing (envelope) that protects the virus when outside a cell (or host). Each virus has dozens of spike gly-
coproteins that bind to ACE2 (receptors) on select cell membranes®'".

2. Virions travel in the tissue microenvironment to reach a cell membrane. The spike binds to an available
ACE2 receptor on the cell membrane. Prior to binding to the ACE2 receptor, the spike is cleaved by the
protease, TMPRSS2, which is required for efficient cell entry’?. Multiple modes of transport (e.g., passive
diffusion in fluids and porous tissues, mucociliary clearance, chemotaxis, ultrafiltration driven by hydro-
static and oncotic pressure through permeable cell junctions, and cellular active transport) may play a
role at slow and fast time scales. There may also be surface contact transmission between neighboring
cells.

The cell internalizes the adhered virus via endocytosis into a vesicle.

The endocytosed virion—now residing in a vesicle with lowered pH—is uncoated to release its mMRNA
contents into the cell cytoplasm.

Copying viral RNA creates a (-) RNA template, which is used for (+) RNA production.
RNA is used to synthesize viral RNA and proteins.

Viral proteins are transported to the interior surface of the cell membrane.

Viral proteins at the cell membrane are assembled into virions.

Assembled virions are exported from the cell by exocytosis.

= © © N o o

0. When a cell dies and lyses, some or all partly and fully assembled virions can be released into the tissue
microenvironment.

Once infected, an individual cell cannot “recover” (e.g., by actively degrading viral RNA and stopping endocyto-
sis) to return to normal function. Rather, the cell is irreversibly committed to eventual death. For further detail,
see review articles on RNA virus replication dynamics''4.

Infected cell responses

Although infected cells (e.g., type 1 or type 2 alveolar cells in the lung) cannot recover, their respond can slow
viral replication and reduce infection of nearby cells. Infected cells do this by secreting type | interferons (IFN-
o,3), which diffuse and bind to receptors on nearby cells to reduce viral replication following infection, activate
an inflammatory response, and induce gene transcription'® to minimize cycling and/or induce apoptosis in these
cells®. Secreted IFN-a, are important activators and regulators of the innate and adaptive immune responses’®.
Many respiratory viruses, including influenza and SARS-CoVs'’, have evolved to inhibit IFN activation®, and
evidence is emerging that certain non-structural proteins produced by SARS-CoV-2 infected cells interfere with
IFN-a, B and chemokines by inhibiting production and suppressing signaling”'8.

Eventually, infected cells die (by apoptosis, necroptosis, or pyroptosis'®), lyse, and release unassembled viral
components'’®. While the mechanism of cell death in SARS-CoV-2 is currently unknown, in other RNA virus
infections, cells can undergo apoptotic, necrotic, or pyroptotic death over the course of viral infection?°. Disruption
of cell metabolism and competition for critical substrates may also contribute to cell death?'22,
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Inflammatory and immune responses

Lethal SARS and MERS in humans has been correlated with elevated IFN-a,B 2%, myeloid activity, and impaired
T and B cells?*?%, with the timing of IFN-a, § critical?®?”. IFN-a, Bs secreted by infected cells or by immune cells
diffuse to surrounding cells and recruit innate immune cells, such as macrophages and neutrophils, to the area.
Recent studies comparing SARS-CoV-2 with SARS-CoV have revealed that SARS-CoV-2 replicates more effi-
ciently in pneumocytes and alveolar macrophages, but IFN-a, f secretion is blunted in SARS-CoV-2 infected
cells?®. In COVID-19 patients, decreased numbers of T cells, natural killer (NK) cells, and, to a lesser extent, B
cells occur, and the extent of depletion of T cells has been correlated with disease severity?*2°. Rapid inhibition
of viral replication requires early and high levels of IFN-a, 8 secretion and activation®. The production of excess
inflammatory cytokines, such as IL-1, IL-6 and TNF-a and other chemokines by infected cells results in increased
macrophage and neutrophil presence, which correlates with lung dysfunction®':32. Delayed IFN-a,B production
also promotes inflammatory macrophage recruitment that contributes to vascular leakage and impaired T-cell
function?6?’, Activated macrophages also produce other proinflammatory cytokines like IL-1, IL-6, and TNF-q,
among others, that enhance infiltration of immune cells and interact with endothelial cells to cause vasodilation®:.
The excess production of IL-1 and IL-6 may be related to several viral proteins shown to directly activate the
inflammasome pathway, the innate immune response responsible for IL-1B secretion®36. Moreover, epithelial
tissue death can reduce tissue integrity, contributing to further immune infiltration, fluid leakage and edema, and
acute respiratory distress®’-%°,

In severe cases, a “cytokine storm” of pro-inflammatory cytokines (e.g., IL-2, IL-7, IL-10, G-CSF, IP-10, MCP-1,
MIP-1A, and TNF-a) induces extensive tissue damage?'. During influenza virus infection, there is some evidence
that ARDS is correlated with the extent of infection in the lower respiratory tract and increased cytokine activity
resulting from exposure of the endothelium*. Increases in neutrophil counts and the neutrophil-to-lymphocyte
ratio (NLR) have been observed in patients with severe COVID-19%'. The NLR has also been shown to be an
important clinical predictor of disease severity*?, as it reflects the innate to adaptive immune response. Neutro-
phils generally produce reactive oxygen species ROS, which can induce the death of infected and healthy cells
in the local environment, further contributing to tissue damage®’.

Coronaviruses have been shown to evade and modulate various host immune responses*+°. In addition to
those discussed above, some evidence suggests that an antibody to spike protein enhances disease during
SARS-CoV infection by inducing macrophage switching from a wound healing phenotype to an inflammatory
phenotype*®. Furthermore, influenza viruses and other SARS-CoVs are known to infect macrophages and T
cells®#, raising the possibility for SARS-CoV-2 to similarly infect these cell types. However, it has not yet been
shown that SARS-CoV-2 infection of these cells is productive or simply alters their cytokine expression®'. How-
ever, the ACE2 receptor has been linked to acute lung injury for both influenza and SARS-CoV viruses*34°,

Links between inflammation and poor clinical outcomes

Coronavirus death is often correlated with pre-existing medical conditions such as diabetes, hypertension, car-
diac diseases and obesity®°*'. While the primary effect of SARS-CoV-2 is clearly the lung infection, several
secondary effects play a role in the clinical outcome for a given patient. The complex interactions of viral infection,
cytokine production, immune response, and pre-existing diseases is an active field of current research. Although
the underlying risk factors for an individual to develop ARDS in response to SARS-CoV-2 infection have not yet
been elucidated, it appears that a dysregulated immune response is central to this aspect of the disease?32%52,
In particular, chemokines are released following viral infection, which leads to the invasion of neutrophils and
macrophages and release of ROS. IL-6 levels have been associated with more severe disease as patients who
required ventilation exhibit increased systemic IL-6 levels, as reported by studies from Germany and China®3-%°.
In addition, replication in the lower airways and exposure of endothelial cells may further amplify the inflammatory
response®’. Collectively, this leads to extensive tissue damage and depletion of epithelial cells, which may be
connected to lethality®®. Within the alveolar tissue and systemically, the feedback between viral load, adaptive
and innate immune responses, and tissue damage is clearly a complex system. By utilizing a multi-scale frame-
work to implement these interactions, we aim to connect circulating biomarkers, putative treatments, and clini-
cally observed disease progression to pathophysiological changes at the cell and tissue level.
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Anticipated data to drive development and validation

It is important that model development takes into account the types of measurements and biological observations
that will be available for later model constraint, calibration, and validation. As participation by the virology and
pharmacology communities broadens, we anticipate that this list will grow. While we will endeavor to constrain
and validate submodels of the model framework independently, we anticipate human clinical data to not fully
determine parameters of the model. To address this concern, we will apply a “virtual population” approach and
sensitivity analysis to explore model variability within clinically relevant bounds®”*8. We anticipate the following
data:

Organoid data for viral replication and targeted inhibition

Aarthi Narayanan'’s virology lab is optimizing SARS-CoV-2 cultures in organoid model systems. These 3D model
systems infect epithelial cells co-cultured with fibroblasts and endothelial cells and track the viral replication
kinetics under control conditions and after treatment by inhibitors. These experiments measure (at various time
points) infectious viral titers and genomic copy numbers in supernatants (outside the cells), viral genomic copy
numbers in the infected cells, host cell death and inflammatory responses, and ATP and mitochondrial disrup-
tions. See Appendix 2 for further detail.

Inflammation, ACE2 binding, and host response data

The international focus on SARS-CoV-2 is generating an unprecedented amount of mechanistic clinical and
preclinical data. Randomized controlled interventional trials in general or specific populations will be of particular
value to test and refine the model. As of June 30 2020, there were 1,055 trials registered at clinicaltrials.gov
under the search term “COVID-19+Drug”. Within these 1,055 trials, there are multiple interventions at different
points of the pathophysiology, including, but not limited to: broad acting antivirals (e.g., remdesivir), hyperimmune
plasma, IL-6 antibody (e.g., tocilizumab), protease inhibitors (e.g., lopinavir/ritonavir), chloroquine/hydroxychlo-
roquine, and Janus kinase inhibitors (e.g., baricitinib). As this platform develops, we anticipate predicting the
responses to such therapies and refining the model with emerging data such that the range of clinical responses
are captured with adequate fidelity. In addition, data collected from patients or animals during infection, including
the presence of various immune cell subsets in lung tissue and systemic markers of inflammation, will serve to
differentiate responses to SARS-CoV-2. These data will be similarly integrated to calibrate and validate the
model to ensure accurate predictions of therapeutic outcomes based on clinical characteristics.

Relevant prior modeling

Spurred initially by the emergence of HIV and relevant to the present SARS-CoV-2 pandemic, the field of viral
dynamics modeling has been instrumental for understanding the evolution of host-virus interactions®%-’, predict-
ing treatment responses®72, and designing novel and more effective therapeutic approaches’75. The classic
within-host mathematical model of viral infection uses a system of ordinary differential equations (ODEs) to de-
scribe the dynamics between uninfected epithelial (“target”) cells, infected cells in the eclipse phase, infected
cells producing virus, and infectious virus’®. This basic model has been shown to capture dynamics of both acute
and chronic infection’’, and has been extended to also include multiple viral (potentially resistant) strains” and
various aspects of host immune responses’®’®. While such cell population-level ODE models generally do not
account for single-cell effects, they are effective for detailing viral load, host immune response, and pathology
dynamics®-8°. Moreover, they can often be used to constrain and estimate parameters for more detailed models,
develop novel hypotheses, and design confirmatory experiments8-87,

Some have modeled intracellular virus replication, including detailed models used for understanding replication
and intervention points®88, typically using systems of ODEs®®*°. These models often include virus-receptor bind-
ing, receptor trafficking, endocytosis, viral uncoating, RNA transcription, protein synthesis, viral assembly, and
viral exocytosis. However, to date no such model has been integrated with detailed spatiotemporal models of
viral propagation in 3D tissues with dynamical models of immune interactions.
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Agent-based models have been used to simulate viral propagation in 2D tissues with simplified models of viral
replication in individual cells, particularly in the field of influenza virus infection®'-%, spatial patterns from single-
cell infections for a variety of other viral infections®-°® such as SARS®, and oncolytic viral therapies'®®'%, These
models have generally not included detailed intracellular models of viral replication and individual cell responses
to infection. However, they demonstrate the potential for including detailed intracellular models of viral replication
in 2D and 3D tissues with the milieu of immune and epithelial cell types expected in actual patients, while also
offering the opportunity to test hypotheses on the impact of viral mutagenicity and host cell heterogeneity on
disease progression.

Agent-based models have also been used extensively to characterize the inflammatory dysfunction that pro-
duces the most severe manifestations of COVID19. The dynamics of forward feedback inflammation-induced
tissue damage was examined with an early agent-based model of systemic inflammation'®; this model was
further developed into the Innate Immune Response ABM (IIRABM), which was used to perform in silico trials of
anti-mediator/cytokine interventions (not too different from the types being tried for COVID19)'%. More recently,
the IIRABM has been used as a test platform for the application of genetic algorithms'%® and model-based deep
reinforcement learning"’ to discover multi-modal and potentially adaptive mediator-directed therapies for acute
systemic inflammation; this work is particularly relevant given the attempts to use anti-cytokine biologics during
the current COVID19 pandemic. Finally, the IRABM, as an endothelial-based model, was integrated with models
of epithelial dysfunction to simulate individual and multiple organ dysfunction and failure seen with systemic
hyper-inflammation'®. As noted above, there are significant differences between the pathophysiology of bacte-
rial sepsis and that of severe viral infections, but it appears that at some level of tissue damage the dynamics of
the innate system come to fore in terms of the clinical significance.

The rapid prototyping approach of this coalition will use a performance-driven agent-based modeling platform'®®
to combine detailed intracellular models of viral endocytosis, replication, and exocytosis, disruption of cell pro-
cesses (e.g., metabolism and compromised membranes) that culminate in cell death, inflammation signaling and
immune responses, tissue damage, and other key effects outlined above in a comprehensive, open source sim-
ulation platform. We will deploy and refine interactive, web-hosted versions of the model to critical contributions
by virologists, infectious disease modelers, and other domain experts. We will frequently update preprints to
foster the fastest possible scientific dialog to iteratively refine this community resource.

Related modeling efforts and other future data sources

We are coordinating with related modeling efforts by a number of groups, such as early pilot work by David Odde
and colleagues at the University of Minnesota, and early simulation work in Chaste''%'"" (James Osborne and
colleagues), Morpheus''? (Andreas Deutsch and colleagues), CompuCell3D"'3, and Biocellion'* (llya Shmule-
vich and co-workers). Thomas Hillen has hosted a COVID-19 Physiology Reading Group''® to exchange infor-
mation and progress. We are in regular contact with these communities to share data and biological hypotheses
and to seek feedback, parameter insights, and data and code contributions.

The COVID-19 Cell Atlas''® organizes a variety of cell-scale datasets relevant to COVID-19; these may be of
particular importance to intracellular modeling components of the project. The COVID-19 Disease Map''” also
has a wealth of host-pathogen interaction data. The Human Biomolecular Atlas Program (HUBMAP)''8 is creating
detailed maps of the human respiratory system at cell- and molecular-scale resolution; this will be an excellent
data source for tissue geometry in later versions of the model.

Methods

PhysiCell: agent-based cell modeling with extracellular coupling

PhysiCell is an open source simulation agent-based modeling framework for multicellular systems in 2D and 3D
dynamical tissue environments'®. (See Metzcar et al. (2019) for a general overview of agent-based modeling
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techniques in tissue-scale biology''®.) In this framework, each cell (of any type) is an off-lattice agent with inde-
pendent cell cycle progression, death processes, volume changes, and mechanics-driven movement. Each cell
agent can have independent data and models attached to it, allowing substantial flexibility in adapting the frame-
work to problems in cancer biology, microbiology, tissue engineering, and other fields. PhysiCell is coupled to
BioFVM (an open source biological diffusion solver)'? to simulate the chemical microenvironment. As part of
this coupling, each individual agent can secrete or uptake diffusing substrates and track the total amount of
material entering and leaving the cell.

Relevant applications of PhysiCell-powered models have included modeling cancer nanotherapy'?!, oncolytic
virus therapies'?, tissue biomechanical feedbacks during tumor metastatic seeding’?®, and cancer immunol-
ogy'09124125 The platform was built with a focus on computational efficiency and cross-platform compatibility: the
same source code can be compiled and run without modification on Linux, OSX, and Windows, and simulations
of up to 10 diffusing substrates on 10 mm?3 of tissue with 10* to 10° cells are routinely performed on desktop
workstations. The platform has been combined with high-throughput computing'* and active learning tech-
niques’?® to power large-scale model exploration on high performance computing resources.

Integration of intracellular models in PhysiCell agents

Custom functions can be attached to individual cell agents to model molecular-scale, intracellular processes and
to couple these with cell phenotypic parameters. These internal models are often implemented as systems of
ODEs. For example, cell uptake of diffusing substrates can be coupled with a metabolism model that is defined
by a system of ODEs, and the resulting energy output can be used to set the cycle progression and necrotic
death probability of a cell'?®. For small systems of ODEs, these models are currently coded “by hand” with stand-
ard finite difference techniques. More complex models are written in systems biology markup language
(SBML)'?" for reliable scientific communication. Development versions of PhysiCell can read and integrate an
individual SBML-encoded model in each cell agent using libRoadrunner—a highly efficient SBML integrator'?,
Similar approaches have been used to integrate Boolean signaling networks'?® in PhysiCell in the PhysiBoSS
extension3°,

These approaches will initially be used to assess (1) viral replication dynamics in each cell agent, (2) cell death
responses to viral load, (3) cell responses to interferons, and (4) changes in the virion endocytosis rate based
on the availability of ACE2 and its receptor trafficking dynamics.

Cellular Immunity Agent-Based Model (CIABM)

As an independent model component, co-authors An, Becker, and Cockrell are developing CIABM: an agent-
based model of immune system activation and expansion in lymph nodes in response to SARS-CoV-2 infections.
This model will be coupled with the overall simulator to mechanistically drive immune expansion and infiltration
during inflammatory responses.

The CIABM is intended to be a generalizable model of CD8* T cell dynamics, designed to represent different
disease states resulting from different perturbations (i.e., specific infections of specific pathogens, putative vac-
cines and their administration strategy). This is consistent with our philosophy of pathophysiological unification
through modeling. We have developed multiple ABMs related to the immune response and diseases related to
inflammation and immune dysfunction'''32 and will leverage this experience to integrate various aspects of
these models as components of the CIABM. Many of these models are based on the IRABM™', which is an
abstract representation and simulation of the human inflammatory signaling network response to injury; the
model has been calibrated such that it reproduces the general clinical trajectories seen in sepsis. The IRABM
operates by simulating multiple cell types and their interactions, including endothelial cells, macrophages, neu-
trophils, THO, TH1, and TH2 cells and their associated precursor cells. The simulated system dies when total
damage (defined as aggregate endothelial cell damage) exceeds 80%; this threshold represents the ability of
current medical technologies to keep patients alive (i.e., through organ support machines) in conditions that
previously would have been lethal. The IRABM will be used in the CIABM to represent the innate and host tissue
component of the CIABM.
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The design principles of the CIABM are 1) CD8* T-cell dynamics focused detail, 2) incorporation of the IIRABM
as the innate-host tissue module, and 3) incorporation of humoral and CD4" T-cell function at an abstracted
level. The justification for aggregating humoral and CD4* T-cell functions is that they are primarily governed by
interactions through the MHC2 complex, and, therefore, represent a distinct sensing/recognition capacity than
CD8*MHC1-mediated recognition. While we recognize that CD4-helper activity is known to assist the generation
of CD8* T cells, at the outset of this project we will attempt to see how well we can reproduce our clinically-
acquired data without having to explicitly represent CD4-helper function. If we are unable to satisfactorily map
CIABM behavior to our experimental/clinical data, we will then add these components.

As a general description, the initial components of the innate immune response represent the end-effector of the
system, primarily responsible for interactions influencing tissue damage, microbial killing, and abstracted tissue
reconstitution. This component incorporates both pro- and anti-inflammatory components, consistent with a self-
contained control structure befitting its role as a highly-evolutionarily conserved, fundamental function of multi-
cellular organisms. These agent types are: tissue, viral antigen, polymorphonuclear neutrophil cells (PMNs),
macrophages, dendritic cells, naive and cytotoxic CD8" T cells, and regulatory T cells.

HPC-driven model exploration and parameterization

The concurrent growth and advancements in the three areas of 1) mechanistic simulation modeling, 2) advanced,
Al-driven model exploration algorithms, and 3) high-performance computing (HPC) provides the opportunity for
large-scale exploration of the complex design spaces in detailed dynamical simulation models. However, if we
do not take deliberate efforts to formally facilitate this intersection across our research communities, we risk
producing a series of disparate individual efforts, limited in interoperability, transparency, reproducibility and
scalability. The EMEWS (extreme model exploration with Swift) framework'®® was developed to directly address
this issue and to provide a broadly applicable cyberinfrastructure to lower the barriers for utilization of advanced,
large-scale model exploration on HPC resources. The EMEWS paradigm allows for the direct exploitation of
cutting edge statistical and machine learning algorithms that make up the vibrant ecosystem of free and open
source libraries that are continually added to and updated as research frontiers are expanded, all while control-
ling simulation workflows that can be run anywhere from desktops to campus clusters and to the largest HPC
resources.

We have utilized EMEWS for learning-accelerated exploration of the parameter spaces of agent-based models
of immunosurveillance against heterogeneous tumors'?412°, The approach allowed for iterative and efficient dis-
covery of optimal control and regression regions within biological and clinical constraints of the multi-scale bio-
logical systems. We have applied EMEWS across multiple science domains'#'3%” and developed large-scale
algorithms to improve parameter estimation through approximate Bayesian computation (ABC) approaches .
These approaches, applied to the multi-scale modeling of SARS-CoV-2 dynamics, will provide the ability to ro-
bustly characterize model behaviors and produce improved capabilities for their interpretation.

nanoHUB platform

The nanoHUB platform (nanohub.org)' is a free, cloud-based service offering lectures, tutorials, and, of partic-
ular interest to us, interactive Web-based simulation tools. As its name implies, it is primarily focused on na-
noscale science education and research. To make their simulation tools easier to use, nanoHUB provides a
custom toolkit for developing graphical user interfaces (GUIs). However, since 2017, they have adopted and
promoted the use of Jupyter notebooks'?, with accompanying Python modules to provide GUI widgets and
visualization. Cloud-based computing and data analysis platforms are well established now, in both academic
and commercial settings. Those platforms, such as nanoHUB, that provide easy-to-use web-based GUIs and
APIls and offer affordable pricing will likely have their rate of adoption continue to increase, especially among
researchers who may lack the expertise or resources to install complex pieces of software.

xml2jupyter and cloud deployment of PhysiCell models

10
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Compiled PhysiCell models generate executable software that runs at the command line. Model parameters are
set by editing XML (extensible markup language) configuration files, and the models save data as a combination
of vector graphics outputs (scalable vector graphics: SVG) and XML and MATLAB data (.mat) files based on the
draft MultiCellDS data standard™".

To facilitate rapid cloud-hosted dissemination of PhysiCell-powered models on the nanoHUB platform, we de-
veloped xml2jupyter to automatically generate a Jupyter-based GUI for any PhysiCell model'?. The Jupyter
notebook includes widgets to set parameters, initiate a simulation run, and visualize diffusing substrates and cell
agents. In turn, we also developed a protocol to deploy the PhysiCell model and the Jupyter notebook interface
on nanoHUB as a cloud-hosted, interactive model. This allows developers to rapidly convert a locally executable
command-line model to a cloud-hosted shared model with graphical interface in a matter of minutes to hours
(depending upon testing speed on nanoHUB).

In our rapid prototyping, we use rapidly-generated nanoHUB apps for scientific communication across disci-
plines; virologists, pharmacologists, and other domain experts can explore and visualize the model prototypes
without need to download, compile, or understand the code. This facilitates faster multidisciplinary dialog and
helps to draw in broader community feedback and contributions.

Modular design

The model is being evolved with a modular architecture. The overall model and each individual model component
(submodel) have a separate GitHub software repository in the pc4COVID-19 GitHub organization, available at
https://github.org/pc4COVID-19.

Each submodel repository consists of a master branch that matches the latest numbered release and a devel-
opment branch. Contributors will fork the development branch, complete their milestones, and submit a pull
request to incorporate their progress in the development branch. Whenever a submodel team is ready to make
a numbered release, they will use a pull request from the development branch to the master branch and create
a numbered release.

The overall model framework and each submodel will keep a versioned design document to include:

A unique name for the model component

A clear version number and last update timestamp

A list of contributors, including 1-2 chief scientists who serve as primary points of contact

A “plain English” description of the primary purpose of the component

A statement of model inputs with units of measure

A clear statement of the biological hypotheses and assumptions of the component

A record of the current mathematical form of the model (generally maintained in a separate Overleaf

LaTeX document), with a snapshot of the equations in the main design document

Any computational implementation details needed to understand the code

A link to a GitHub repository

¢ Alist of model parameters, units, biophysical meaning, best estimate, and data source(s) for the param-
eter estimate (see the discussion in MultiCellDS'#")

o Aclear list of model outputs with units

A set of qualitative and/or quantitative unit tests to ensure proper functionality of the module.

A snapshot of this design document will be included in each release of the (sub)model.

The overall model releases will include a clear list of the version of each submodel included in its release.

Coalition structure

After group discussion and prioritization, coalition members self-assigned themselves to one or more subteams
responsible for developing the submodels. Each subteam has 1-2 chief scientists in charge of managing devel-
opment, while a technical contact approves pull requests from the subteam’s contributors and coordinates with
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the integration team (see below). The submodel chief scientist(s) meet regularly with their team to assign tasks,
set milestones, and assess when to make a release. The submodel chief scientist(s) also coordinate their pro-
gress with the other submodel teams.

The integration team—consisting of the overall leads (as of April 1, 2020: Paul Macklin, Randy Heiland, and
Yafei Wang) and other contributors—is responsible for developing and maintaining the overall integrated model,
integrating and testing updated submodels, and providing technical support to the subteams.

The core team consists of the overall leads and the chief scientists. They meet to coordinate progress of the
submodels, refine project scope, exchange ideas on model hypotheses, evaluate community feedback, and plan
overall strategy. They cooperate with the overall leads to create model releases (which will always bundle the
most stable version of each submodel), update the nanoHUB models, and update the bioRxiv preprint.

The current list of subteams can be found in Box 3.

Three main phases of community-driven development

Phase 1: Building the coalition and model infrastructure

In the first phase, the overall and integration leads build the overall tissue model structure (a model that integrates
several independent submodels) and create “placeholder” models that serve as working proof-of-concept start-
ing points for further expansion. This phase also builds and organizes the subteams responsible for the submod-
els and provides them with training and documentation on the model and submodel architecture.

We anticipate that Phase 1 will require six-to-eight weeks, although Phases 1 and 2 may overlap as individual
subteams assume full leadership of their submodel code repositories.

Phase 2: Community-driven development

In this phase, the integration team transitions the primary development of each of the submodels to appropriate
domain experts in the subteams, to ensure that each submodel reflects the best available science. During this
phase, the integration team supports each subteam in mathematical model development, PhysiCell implemen-
tation, and nanoHUB deployment for rapid subteam testing, dissemination, and community feedback on the
submodels.

The integration team continues to lead overall model integration, testing, and deployment as a cloud-hosted
model, and development of further infrastructure (e.g., HPC investigations) and PhysiCell and xml2jupyter re-
finements needed by the subteams (e.g., full support for SBML for molecular-scale model integration).

Once the integrated model can qualitatively produce expected viral and immune behaviors (as determined by
the core group) and receives no major domain expert or community critiques, the major goal of the coalition (and
this paper) will be met: to create a SARS-CoV-2 modeling framework suitable for subsequent calibration, valida-
tion, and exploration by the community. It will be submitted to scientific peer review, disseminated to the com-
munity, and maintained. This will mark the conclusion of Phase 2.

We anticipate that Phase 2 will require three to nine months.

Phase 3: widespread scientific use and model maintenance

Once the overall model and submodels are largely complete, the model will be a mature, open source community
resource available for use in scientific investigations. Moreover, due to our iterative approach, we envision that
teams will have begun using earlier versions of the model for investigations by this point. The integration team
will transition to supporting parallel investigations by independent groups using the models, and aggregating and
sharing best data, parameter estimation, and results. The integration team and subteams will coordinate to en-
courage full scientific publication of the overall model and the submodels, and resulting scientific investigations.
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This phase will also focus on code hardening, documentation, and development of training and outreach mate-
rials. This phase is critical for knowledge capture, so that the model remains usable beyond the involvement of
the original teams and can be rapidly adapted to emerging health challenges in the future. We also envision
continued refinement of the model to reflect improved biological knowledge.

Integration: Coordinates overall project and leads multiscale model integration and dissemination.

Chief scientist: Paul Macklin

Technical contact(s): Randy Heiland, Yafei Wang
Members: Paul Macklin, Randy Heiland, Michael Getz, Yafei Wang

Viral Replication: Builds the submodel of viral replication (and release) within individual cells.
Chief scientist(s): Jim Faeder

Technical contact(s): Yafei Wang, Ali Sinan Saglam

Members: Jim Faeder, Yafei Wang, Paul Macklin, Ali Sinan Saglam

Infected cell response: Builds the submodel of individual cell responses to infection, such as secretion of chemokines and apoptosis.
Chief scientist(s): Jason Shoemaker, James Glazier, Sara Hamis, Fiona Macfarlane

Technical contact(s): Jordan Weaver, Josua Aponte, Sara Hamis, Fiona Macfarlane

Members: Jason Shoemaker, Jim Faeder, Penny Morel, James Glazier, Ashok Prasad, Elsje Pienaar, Jordan Weaver, T.J. Sego,
Josua Aponte, Yafei Wang, Sara Hamis, Fiona Macfarlan

Pharmacodynamics: Modifies the submodels to simulate pharmacologic interventions.

Chief scientist(s): Robert Stratford, Morgan Craig

Technical contact(s): Tarunendu Mapder, Yafei Wang, Sara Hamis, Fiona Macfarlane

Members: Robert Stratford, Morgan Craig, Sara Quinney, Mark AJ Chaplain, Tarunendu Mapder, Yafei Wang, Sara Hamis, Fiona
Macfarlane, Richard F. Bergstrom

Receptor trafficking: Builds the submodel of ACE2 receptor trafficking, including virus binding and endocytosis.
Chief scientist(s): Padmini Rangaman

Technical contact(s): Andy Somogyi

Members: Padmini Rangamani, Andy Somogyi

Tissue immune response: Builds the submodels of individual immune cells and their interactions within an infected tissue.

Chief scientist(s): Morgan Craig, Courtney Davis, Amber Smith, Adrianne Jenner, Penny Morel

Technical contact(s): Adrianne Jenner

Members: Adrianne Jenner, Courtney Davis, Morgan Craig, Amber Smith, Penny Morel, Sofia Alfonso, Rosemary Aogo, Elsje Pienaar,
Dennis Hou

Lymph node: Builds the submodel of immune cell expansion at nearby lymph nodes to drive immune cell recruitment.

Chief scientist(s): Gary An, Tarunendu Mapde

Technical contact(s): TBD

Members: Gary An, Chase Cockrell, Marc-Andre Rousseau, James Glazier, T.J. Sego, Tarunendu Mapde, Juliano Ferrari Gianlupi

Tissue damage: Builds models of tissue damage (and potentially recovery).

Chief scientist(s): Ashlee Ford Versypt, Amber Smith

Technical contact(s): TBD

Members: Amber Smith, Ashlee Ford Versypt, Thomas Hillen, Mohammad Aminul Islam

Drug testing/experiment: Explores drug inhibiting virus endocytosis and replication in cell culture
Chief scientist(s): Aarthi Narayanan

Technical contact(s): Kenneth Risner

Members: Aarthi Narayanan, Kenneth Risner

SBML integration: Refines PhysiCell integration with libRoadrunner to support direct execution of SBML models
Chief scientist(s): Randy Heiland

Technical contact(s): Randy Heiland, Andy Somogyi

Members: Andy Somogyi, Randy Heiland, Furkan Kurtoglu, Pablo Maygrundter, Jim Faeder

Visualization and analytics: Refines standalone and integrated visualization and analytics for nanoHUB apps.

Chief scientist(s): Randy Heiland, Amber Smith, Courtney Davis

Technical contact(s): Randy Heiland, Dennis Hou

Members: Randy Heiland, Amber Smith, Courtney Davis , Hadi Taghvafard, Andy Somogyi, Furkan Kurtoglu, Pablo Mayrgundter,
Dennis Hou

Box 3: Current subteams.

lterative development
We use rapid prototyping using lessons learned from each step to drive iteration towards improving the model.
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Each submodel undergoes its own development sprints, contained within a broader development cycle for the
overall integrated model (See Fig. 0.1.).

Sprint planning Subteam review .
* update design doc * review core meeting feedback GitHub  nanoHub
* assign tasks * prioritize outstanding issues release app update
Subteams I } : : : : : I : : : : : : % e eee e eeseen Updlate preprint ees se ses s e
di d testi finali d GitHub  nanoHub
coding and testing inalize code release app update
Core I 1 1 1 1 1 1 I 1 1 1 1 1 1 | 1 1 1 1 1 1
T T T T T T T T T T T T T T T T T T
group | ' | ! | |
assist subteams assist subteams integrate updated submodel
) prepare tissue-scale model i prepare tissue-scale model .
Week 1 meeting Week 2 meeting Week 3 meeting

* review feedback * subteam updates and *+ integrated model
« set development goals model demos update and demo
« update strategic plan « cross-team feedback « cross-team feedback
* prioritize outstanding + plan preprint updates
issues

Fig 0.1: Overall development cycle: Throughout the overall development cycle, the core team (integration leads + subteam leads) set priorities and
coordinate work of the subteams. Each subteam performs a short sprint to update its submodel. At the end of the 3-week cycle, the integration team
bundles the most up-to-date submodels for the next overall model release, while the subteams update the preprint and refine domain knowledge and
mathematics for the next sprint.

Overall integrated model development cycle

We aim for a 3-week development cycle for the overall integrated model, although early development cycles
may last longer to accommodate building computational infrastructure, development of new core features to
support model development, and training.

Start of cycle

The design cycle starts with an initial core team meeting where we discuss feedback from prior design cycles
and set priorities for the current design cycle. In particular, we discuss:
o What changes are needed to the submodels? Prioritize changes that can be made within a 7-10 day
sprint.
e What changes are needed in the overall integrative framework to facilitate the improved submodels? Set
framework goals for early and mid-cycle development.
¢ Are any funding, personnel, scope, or other changes needed?

Within the working week, the subteams meet to further set and accomplish their sprint goals. (See Submodel
design cycle). The integration team (1) works on refinements to the PhysiCell and nanoHUB frameworks to
facilitate subteam work, (2) provides technical consulting to the subteams to implement their model refinements,
and (3) makes any final edits needed to the preprint from the last design cycle.

Mid-cycle advances
The design cycle continues with a core team meeting to discuss the current subteam model sprints:
e [Each team gives a brief report on their model advances and a live demo of either the standalone C++
code or a nanoHUB submodel app.
e The teams “cross-pollinate” to exchange ideas and give feedback on each of the submodels.
o The core team decides on any additional changes needed to continue the design cycle.
e The integration team and subteam chief scientists set final deadlines to end the sprints and release the
updated submodels.

Within the working week, the subteams continue and complete their developing and testing for their respective
sprints, create new submodel releases on GitHub, and update their submodel nanoHUB apps. The integration
team continues support for the subteam work and completes any changes to the overall integrative model
needed for the upcoming integration.
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As the subteams advance towards their releases, the integration team updates and tests the respective sub-
models in the overall framework and updates the overall nanoHUB app.

End of cycle

The design cycle nears completion with a core team meeting to discuss integration and preprinting:
e The integration team gives an update on current integration testing.
e The team coordinates any remaining submodel releases.
o The team sets plans for updating the preprint.

Within the working week, the subteams complete their releases (if not already complete in week 2) and begin
revising the preprint. They also begin testing the integrated model as it comes online to integrate new simulation
results and insights into the preprint.

The integration team updates the submodels, performs final testing, and creates both GitHub and nanoHUB
releases. Once complete, the integration team joins the subteams on preprint updates.

Submodel design cycle

Each submodel is developed in parallel with a unified design cycle (a 7-to-14-day software sprint) in coordination
with the other subteams during the weekly core team meetings and via a dedicated Slack workspace.

Start of sprint

The sprint cycle starts with an initial subteam meeting to communicate the results and priorities of the core team
meeting to the subteam. The team edits the submodel design document, discusses any necessary changes to
the mathematics and parameter values, and assigns implementation tasks. The team coordinates with the inte-
gration team via the Slack workspace for any needed assistance on model implementation.

End of sprint

The design cycle continues with a core team meeting to discuss the current subteam model sprints:
e Each team gives a brief report on their model advances and a live demo of either the standalone C++
code or a nanoHUB submodel app.
o The teams “cross-pollinate” to exchange ideas and give feedback on each of the submodels.
e The core team decides on any additional changes needed to continue the design cycle.
e The integration team and subteam chief scientists set final deadlines to end the sprints and release the
updated submodels.
Within the working week, the subteams continue and complete their developing and testing for their respective
sprints, create new submodel releases on GitHub, and update their submodel nanoHUB aps. The integration

team continues support for the subteam work and completes any changes to the overall integrative model
needed for the upcoming integration.

As the subteams advance towards their releases, the integration team updates and tests the respective sub-
models in the overall framework and updates the overall nanoHUB app.

See Appendix 4: Submodel development details for more implementation details.

Results

Version 1 (March 25-March 31, 2020)

Version 1 was designed as proof of concept rapid prototype to capture essential (but highly simplified) elements
of viral endocytosis, protein synthesis, viral assembly, release, and diffusion to infect other cells. The model was
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tailored to RNA viruses on a tissue monolayer (modeled as a layer of epithelium over a basement membrane).
This version was kept deliberately simple to create an early starting framework to help coalesce community
feedback and contributions. It was also designed to test the use of interactive cloud-hosted models to help ac-
celerate feedback by virologists and other domain experts through live demos.

The proof of concept model was created by the overall leads (Macklin, Heiland, Wang) while assembling the
modeling coalition as an initial starting point and feasibility test for rapid prototyping. Feedback on this version
drove the formulation of the design protocols reported above.

Submodels

The Version 1 model includes the following submodel components:
e T: tissue (which contains epithelial and other cells)
e V: viral endocytosis, replication, and exocytosis responses
e VR: cell response to viral replication, including cell death and IFN synthesis
e E: epithelial cell (incorporates V and VR).
The overall model components are summarized in Fig 1.1.

Biological hypotheses
In this proof of concept prototype, we modeled a simplified set of biological hypotheses:

1.T A1 Virus diffuses in the microenvironment with low diffusion coefficient

1.T.2 Virus adhesion to a cell stops its diffusion (acts as an uptake term)

1.V.1 Adhered virus undergoes endocytosis and then becomes uncoated

1.v.2 Uncoated virus (viral contents) lead to release of functioning RNA

1.V.3 RNA creates protein at a constant rate, unless it is degraded

1.V.4 Protein is transformed to an assembled virus state

1.V.5 Assembled virus is released by the cell

1.VR.1 As a proxy for viral disruption of the cell, the probability of cell death increases with the total

number of assembled virions

1.VR.2 Apoptosed cells lyse and release some or all of their contents
(In the above, X.C.Y denotes prototype X, model compo- e Y "
nent C, biological hypothesis Y, allowing us to easily refer \

to any individual hypothesis or assumption in discussion
and community feedback.) In the next version of this
model, we will use the design document protocols for each
of these components.

ex port

as SEmblv

/NA release

W, cein produciee

Intracellular

Fig. 1.1: Version 1 model schemat|c Left: In the overall model
structure, a tissue component (T) contains multiple epithelial
cells (E). Viral particles diffuse through this domain and can enter
the cells (by adhering as an uptake term) or be exported by cells.
Each cell includes an intracellular virus model (V) for viral replica-
tion kinetics and a viral response model (VR) which uses a phar-

Unit tests

The first prototype should demonstrate the following be-
haviors for a single cell infected by a single virion:

The virion progresses to the uncoated state.
The uncoated virion progresses to the RNA state.
With export and death off, RNA produces protein.
With export and death turned off, protein produces
and accumulates assembled virus (linearly).
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macodynamic model to control cell apoptotic response to viral load.
Right: Each epithelial cell individually models its viral kinetics: ad-
hered virions complete endocytosis, are uncoated, functionalize
their RNA, synthesize viral components, and assemble them into
virions that are subsequently exported to the external tissue com-
partment (T).
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e With export off and death on, cell undergoes apoptosis with increasing likelihood as assembled virus
accumulates.
With export on and death on, surrounding cells get infected and create virion.
Cells nearest the initial cell are infected first.
Apoptosis is most frequent nearest to the initial infected cell.

Translation to mathematics, rules, and model components

Extracellular virion transport (Tissue submodel T)

To rapidly implement extracellular viral transport using existing model capabilities, we approximated the process
as diffusion with a small diffusion coefficient as in prior nanoparticle models. Using the standard BioFVM formu-
lation'?, if p is the concentration or population density of virions (virions / um?), then the population balance is
modeled as a partial differential equation (PDE) for diffusion, decay, and sources and sinks from interactions
with cells:

d
=DV =dp+ > 6x—x)(~UVip +Ep), (1)

cellsi

where D is the diffusion coefficient, 1 is the net decay rate (which can include other removal processes), ¢ is the
Dirac delta function, x; is the position of the center of cell i, U is the uptake rate (by adhering to ACE2 and
initiating endocytosis), V is the volume of cell i, and E is the virion export rate from the cell. Note that in the
default BioFVM implementation, uptake processes are spread across the volume of a cell.

Note that virus propagation may require more explicit modeling of cell-cell surface contact in later versions, and
cilia-driven advective transport and virion deposition (e.g., through airway transport).

Intracellular viral replication dynamics (Virus intracellular model V)

Within each cell, we track V (adhered virions in the process of endocytosis), U (uncoated viral RNA and proteins),
R (viral RNA ready for protein synthesis; R = 1 denotes the total mMRNA of one virion), P (synthesized viral
proteins; P = 1 denotes sufficient viral protein to assemble a complete virion), and A (total assembled virions
ready for exocytosis). Virion import (a source term for V) is handled automatically by the mass conservation
terms for PhysiCell in the PDE solutions.

We model these dynamics of internalized virions through a simplified system of ODEs:

av

@ —-1ryV (2)

‘;—f V=1l 3)
‘;—}: — U — 4R @)
C;—I; = 1R —14P — ApP (5)
é—f =P (6)

Here, 1y is the viral uncoating rate, r; is the rate of preparing uncoated viral RNA for protein synthesis, rs is the
rate of protein synthesis, r, is the rate of virion assembly, A is the degradation rate of RNA, and A, is the
degradation rate of viral protein. We model exocytosis by setting the net export E of the assembled virions, in
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units of virions per time:

E =1:4, (7)

where 1 is the assembled virus export rate.

Cell response (Viral response submodel VR)

In this proof of concept prototype, we modeled apoptotic response to cell disruption but did not model interferon
processes. As a simplification, we modeled cell disruption as correlated with assembled virions A, and we used
a Hill function to relate the apoptosis rate of a cell to A:

ATL
AL+ AN ®)
where e is the effect, n is the Hill coefficient, and Ay is the amount of virions at which half of the maximum effect
is achieved. After calculating this effect e, we set the apoptotic death rate as

e

Tdeath = "max® (9)

where 1,4 is the maximum apoptosis rate (at full effect, e = 1). As analyzed for agent-based models with sto-
chastic death rates'®'*3 in any time interval [t, t+Af], the cell has probability 740, At Of apoptosing, and the
mean cell survival time (for fixed e and thus fixed rgeatn) iS 1/7geath-

In PhysiCell, we can set the lysing cells to release any fraction (0 < frejease < 1) of V, A, U, R, and P into the
extracellular environment as diffusing substrates.

Other implementation notes

To differentiate between incoming imported and exported virions within the computational implementation, we
modeled two diffusing fields (for extracellular concentrations of V and A). However, the models only require
extracellular V. At the end of each computational step (advancing by one diffusional time step), we iterate through
each voxel and transfer all of the extracellular diffusing A to V. We also created diffusing fields for uncoated
virions, RNA, and viral proteins, although these were removed from later model versions.

Software release

The core model associated with the v1 prototype is Version 0.1.3. The nanoHUB app associated with the v1
prototype is Version 1.0. GitHub releases and Zenodo snapshots are given in the Appendix.

Cloud-hosted model

We rapidly created and deployed a cloud-hosted model with an interactive web-based GUI running on nanoHUB
(nanohub.org) using xml2jupyter Version 1.1'*2. The web-hosted model can be run at:

https://nanohub.org/tools/pc4COVID-19.

This workflow uses a Python script that converts a PhysiCell configuration file (in XML) into a Jupyter notebook
and adds additional Python modules for the GUI. The automated process of converting a standalone PhysiCell
model into an interactive Jupyter notebook version (a GUI) takes just a few minutes. The resulting GitHub re-
pository is shared with the nanoHUB system administrators who install it for testing as an online, executable
model (an “app”). After we perform usability and other testing and finalize documentation, it is published and
becomes available for public use. The whole process (including the initial development of the core PhysiCell
model) took less than 12 hours for the Version 1 GUI on nanoHUB (Fig. 1.2).
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Fig. 1.2: Version 1 on nanoHUB: A. The About tab includes background information on the model, run directions, and a legend. B.
The Config basics tab allows users to set the domain size. (These should be not be edited in this version.) C. The Microenvironment
tab lets users set diffusion and decay coefficients, as well as initial and boundary conditions. The track_in_agents option must be
enabled for the model to work correctly. D. The User Params tab sets key model parameters. E-F. Sample outputs in the Out: Plots
tab. Users can scroll the “frame” tab to advance the simulation time and choose whether to plot the cells, a diffusing substrate, or
both. These plots display a sheet of epithelium (circles are individual cells). Brighter yellow cells contain more assembled virion. Black
cells are apoptotic, and clear spaces show tissue damage (where cells have apoptosed and have been removed.) This version of the
nanoHUB model was released at DOI 10.21981/19BB-HM69.

Model behavior: what does the current version teach us?

Except as noted below, all simulation results use the v1 model default parameters, which are supplied in the
XML configuration parameter file of the version 0.1.2 core model repository.

In all plots, dark blue cells have 0 assembled virus, pale blue cells have 1-9 assembled virions, grey cells have
10-99 assembled virions, light yellow cells have 100-999 assembled virions, and bright yellow cells contain 1000
or more assembled virions. Black cells are apoptotic, and white spaces show regions devoid of cells (extensive
tissue damage). See the legend in Fig. 1.2 (A) and the caption in Fig. 1.3 (A).

Behavior with default parameters

Running the overall model (with virus release turned on and off as appropriate for the respective unit tests) shows
that the v1 prototype satisfies all the qualitative unit tests. A single cell is infected with a virion in the center of
the tissue. Over time, the virion is uncoated to create functionalized RNA, which is synthesized to viral proteins
and assembled to functional virus. The graphical output shows this center cell turning to a bright yellow as as-
sembled virions accumulate. By enabling the substrate plot, we can see the diffusive field of virions first has zero
concentration (no virions have been released), but as the first cell’s viral production increases, it releases virus
particles that begin diffusing into the domain (Fig. 1.3 A).

Over time, neighboring cells also become infected and progress towards a higher viral load (increasingly bright
shades of yellow). The infection propagates outward from the initially infected cell into the remaining tissue. As
each cell’s viral load (here measured as number of assembled virions) increases, the viral response model cal-
culates the increasing effect e, and cells have greater probability of apoptosis. Cells nearest to the initial site of
infection apoptose earliest. As these cells degrade, they are removed from the simulation, leading to the creation
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Fig. 1.3: Version 1 sample model results at 6, 12, 18, and 24 hours (vertical columns). In all plots, epithelial cells are colored from blue (no
assembled virions) to bright yellow (1000 or more virions). Black cells are apoptotic, and white regions show damaged tissues where apoptotic cells
have degraded to expose (unmodeled) basement membrane. Bar: 200 um. A. Simulation time course for the default parameters. Note the spread of
the infection from an initial infected cell at the center, with apoptotic death events focused near the center. B. Decreasing the diffusion coefficient of
virions by a factor of 10 drastically reduces the rate of spread, although focusing exocytosed virions in a smaller diffusion distance increases the
number of virions infecting nearby cells, leading to faster apoptosis. C. Allowing apoptosed cells to release their assembled virions at lysis had a
negligible effect for these parameters, given the dominant effects of releasing virions throughout the cell survival times. D. Decreasing the tolerance
(half max) of cells to assembled virions prior to apoptosis accelerates tissue damage but does not drastically accelerate the spread of the infection.
E. Increasing the apoptosis rate (or decreasing the survival time) for infected cells drastically increases tissue degradation.

of a degraded, cell-free region near the center of the tissue. This degraded region spreads outwards from the
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initial site of infection over time.

See Fig. 1.3 A for a simulation with default parameters. The nanoHUB distribution of this model takes approxi-
mately 60-90 seconds to execute.

Impact of the virion diffusion coefficient

We tested the effect of the viral diffusion coefficient by reducing it from 900 um?/min to 90 yum?/min. Because the
viral particles spread more slowly after their release, the overall spread of the infection is slowed (Fig. 1.3 B).
We left D = 90 um?/min for all subsequent investigations of the v1 model.

Impact of the viral release at cell death

We tested the effect of releasing all assembled viral particles at the time of cell death by setting freiease = 1. For
this set of model parameters, the release of assembled virions had a negligent impact of the overall spread of
infection: Compare the final frame of Fig. 1.3 B (no release: feease = 0) to Fig. 1.3 C (complete release: freicase =
1). This is because cells release far more virions during their infected lifetimes, so the effect is dominant over
the one-time release of virions at cell death. We expect this behavior would change if the cells exocytosed virions
more slowly.

Impact of the cell tolerance to viral load

We decreased the cell tolerance to viral load by decreasing the Ay of Equation 8 from 500 virions to 10, while
leaving feease = 1. As expected, cell death and tissue damage occurred much more quickly under these param-
eters (Fig. 1.3 D). Interestingly (and contrary to intuition), this did not significantly alter the rate at which the
infection spread through the tissue. Compare the final frame of Fig. 1.3 C (higher tolerance to viral load) to Fig.
1.3 D (lower tolerance to viral load). This shows the importance of creating spatiotemporal models of viral repli-
cation in tissues, as the balance of competing processes can lead to unexpected dynamics at the tissue, organ,
and organism levels.

Impact of the cell survival time under high viral loads

We decreased the cell tolerance to viral load further by decreasing the mean cell survival time under high viral
loads, which is equivalent to increasing the maximum apoptosis rate rmax. Following prior analyses®'43, 1/rmax
is the mean expected survival time as A — . We increased rmax from 0.001 min-' (1000 minute expected lifetime
at high loads) to 0.01 min™' (100 minute expected lifetime at high viral loads). This drastically accelerated the
rate of tissue damage, leaving much more basement membrane (the assumed surface under the epithelial mon-
olayer) exposed (Fig. 1.3 E). In a later version of this model framework, we would expect this to lead to earlier
onset of fluid leakage, edema, and ultimately adverse respiratory outcomes such as ARDS. Interestingly, this
did not significantly increase the rate of spread of the infection. Compare the final frame of Fig. 1.3 D (higher
tolerance to viral load) to Fig. 1.3 E (lower tolerance to viral load).

Selected feedback from domain experts and the community

We gathered feedback from the multidisciplinary community, several of whom joined the coalition for future work.
We summarize the feedback below.

A virologist noted that more detail on endocytosis, viral uncoating, and synthesis would expose more actionable
points in the replication cycle. Preliminary SARS-CoV-2 experiments in her laboratory suggest that the time
course (and thus general order of magnitude of rate parameters) is very similar to Venezuelan equine encepha-
litis virus (VEEV) dynamics measured earlier?'?2, The exponential progression matches observations: the first
cell is infected with one virion and so at first produces virus slowly, but neighboring cells can be infected with
multiple virions and thus create virus particles more quickly.

A community member identified typographical errors in the original documentation but verified that that mathe-
matics in the C++ implementation were not affected. He emphasized the importance of implementing RNA decay
(as a rate limiting step in virus replication) and the importance of integrating ACE2 receptor trafficking (as a rate
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limiting step in virus adhesion and endocytosis).

A mathematician noted the potential to simplify the model by removing the diffusing U, R, and P fields and
reported bugs in the initialization (where no cells are initially infected for some domain sizes, due to hard-coding
of the initial seeding). Other mathematicians emphasized the importance of varying virion “uptake” with ACE2
receptor availability and hence the need to integrate receptor trafficking.

A mathematical biologist noted prior work on other respiratory viruses will help estimate parameters and build
initial immunologic regulation models. Lung pathology and disease severity are closely tied to the immunologic
reaction, and prior data and images from influenza will help with calibrating spatial considerations. She expects
animal and drug data available for SARS-CoV-2 in the coming months. She noted the importance of distinguish-
ing between mild and severe infections and ARDS. Matching the output to data will be imperative, with one quick
possibility to make this match data and distinguish between possibilities is to plot the resulting viral load. She
suggested that it would be helpful to show multi focal points of initial infection seeding (possibly of different initial
seeding size) that merge together over time, which would match observations of lung histology. Future work will
have a better impact if the models uses a true lung tissue geometry with immune cells limiting the peripheral
spread. The current model seems more relevant to in vitro growth of a single plaque, which may be scrutinized.

A quantitative systems pharmacologist pointed out the need for clearer scoping and diagrams to clearly lay out
the design of each submodel component. We will need procedures to choose future incorporations and changes
of scope. He also pointed out the need to understand what happens if you bind up a lot of ACE2 with receptor;
there are early insights online'4.

A bioengineer with tissue damage and inflammation expertise noted that the diffusion coefficient of 900 ym?/min
= 15 ym?/s = 1.5e-11 m?/s is not particularly small; prior analyses'® considered virion diffusion in an lung epi-
thelial monolayer for influenza with D = 3.18e-15m?/s estimating from experimental data. The virions for SARS-
CoV-2 could be more mobile though; it is uncertain. There are data’® about the diffusion coefficient for albumin
in tissue being on the order of 10-50 pm?/s. She stated that it makes sense for a virion (radius of 25-100 nm) to
move more slowly than a protein with radius < 5 nm unless “diffusive transport” in the model is encompassing
an active or facilitated transport mode beyond just classic diffusion. She also noted that her laboratory has looked
a lot at the renin-angiotensin-system systemically and in kidneys: the kinetics of Angll, ACE, and ACE2 in the
lungs would be of interest for connecting the next iteration of the ACE2 receptor model to connect to ARDS.
Pfizer may also have relevant related models.

A mathematical biologist with expertise in infectious diseases noted that the model could study immune re-
sponses and the impact of mucosal structure in future versions. She suggested quantifying damage or disease
metrics. She also noted that ultimately it would be useful to note which parameter estimates might be species-
specific and which are not, to be able to switch between experimental and clinical systems, e.g., it is worth
recording if current estimates are from human, macaque, etc. She also noted that it may be important to deter-
mine if apoptotic cells are replaced or if there is permanent damage (in the model). If the model is run longer, it
would be worthwhile to translate the visual sense of damage to a quantitative metric.

An independent team of clinically-focused modelers noted their work on modeling immune expansion in “off
screen” lymph nodes and offered to link their model to our immune infiltration functions.

A mathematical biologist with a focus on model and data standards noted the need for clearly specifying each
model's assumptions, inputs, and outputs to drive robust parallel development. He noted that it is critical to
consider information flow between submodels and revise these data flows as the iterations proceed. He sug-
gested that we state separate execution of submodels as a key design goal to support parallel development.
Lastly, he noted that software should be released in conjunction with validation data and methodologies.

Core team discussion and priorities for v2

The core team met by virtual conference on April 1, 2020 to discuss the first preprint, model results, and feed-
back. The core team set as priorities (1) to formalize design specifications for each individual model component
and interfaces between components, (2) form teams responsible for each component, (3) focus v2 development
on refactoring into this modular format, (3) begin development of the submodels, and (4) begin refine parameter

22


https://doi.org/10.1101/2020.04.02.019075
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.019075; this version posted July 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

estimates. The clearer specification and organization of submodels was the top priority. As time permits, it was
also viewed as important to begin a receptor trafficking model.

The core team agreed to keep working via the dedicated Slack workspace to rapidly coalesce on the submodel
teams. Each subteam has a separate channel in the workspace.

Version 2 (April 1-May 9, 2020)

Version 2 incorporated key v1 feedback, with a focus on introducing a more modular design, improving default
model parameters, better initialization options, and a new ACE2 receptor trafficking submodel. This design cycle
lasted longer due in part to work spent on subteam organization. As with Version 1, the Version 2 model was
developed by the overall leads (Macklin, Heiland, Wang) to refine key model infrastructure for the forming sub-
teams. (See the discussion in Three main phases of community-driven development.)

Version 2 also began work to test the design documents that were first discussed by the core team during the
v1 model feedback. The interactive nanoHUB model in-
cluded new usability refinements, notably an option to an-
imate the model outputs.

endocytosis &

Model changes

“Cytoplasm

The v2 model was expanded to include the following sub- ff ) N~ N
model components (Fig. 2.1): / ‘
e T: tissue (which contains epithelial and other cells)
RT: ACE2 receptor trafficking (including virus en-
docytosis)
e V:viral endocytosis, replication, and exocytosis re-
sponses )
e VR: cell response to viral replication, including cell 75 (VR |

®
Cotlgtn
<0\ i

death and IFN synthesis

E: epithelial cell (incorporates RT, V and VR). Fig. 2.1: Version 2 model schematic: In the overall model struc-
ture, a tissue component (T) contains multiple epithelial cells (E).
Viral particles diffuse through this domain and can enter the cells

: ‘s : : (by adhering as an uptake term) or be exported by cells. Each cell
Based on community feedback, the default virion d|ff2u3|9n includes an ACE2 receptor trafficking model (RT) where virus can
coefficient was reduced by a factor of 10 to 90 Mm /min. bind an unoccupied surface receptor, which is endocytosed to re-

We may reduce this parameter further based upon onco- lease its virion and eventually return to the surface. Each cell’s virus
lifecycle model (V) simulates viral replication kinetics, and its viral

Iyt'C VIFUIS therapy mOdelmg experience by Morgan Cra'Q response model (VR) uses a dose-response model to control cell
and Adrianne Jenner. apoptotic response to viral load.

Biological hypotheses

The v2 model was similar to v1 with a simplified set of biological hypotheses:
2.TA1 Virus diffuses in the microenvironment with low diffusion coefficient
2T.2 Virus adhesion to a cell stops its diffusion (acts as an uptake term)

2.RT.1 Virus adheres to unbound external ACE2 receptor to become external (virus)-bound ACE2

receptor

2.RT.2 Bound external ACE2 receptor is internalized (endocytosed) to become internal bound ACE2
receptor

2.RT.3 Internalized bound ACEZ2 receptor releases its virion and becomes unbound internalized re-

ceptor; the released virus is available for use by the viral lifecycle model V
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2.RT.4 Internalized unbound ACE2 receptor is returned to the cell surface to become external un-
bound receptor
2.RT.5 Each receptor can bind to at most one virus particle

2.V.A1 Internalized virus (previously released in 2.RT.3) is uncoated
2V.2 Uncoated virus (viral contents) lead to release of functioning RNA
2V.3 RNA creates viral protein at a constant rate unless it degrades
2V.4 Viral protein is transformed to an assembled virus state

2V.5 Assembled virus is released by the cell (exocytosed)

2.VR.1 As a proxy for viral disruption of the cell, the probability of cell death increases with the total
number of assembled virions
1.VR.2 Apoptosed cells lyse and release some or all of their contents

(In the above, X.C.Y denotes prototype X, model component C, biological hypothesis Y, allowing us to easily
refer to any individual hypothesis or assumption in discussion and community feedback.) In the next version of
this model, we will use the design document protocols for each of these components.

Unit tests

The v2 prototype had no changes in qualitative unit tests; once the ACE2 receptor trafficking model works cor-
rectly, the model will behave as in v1.

Translation to mathematics, rules and model components

Extracellular virion transport (Tissue submodel T)
There were no changes in this integration-scale tissue model (T) for v2.

ACE2 receptor trafficking (submodel RT)

For each cell, we track Reu (external unbound ACE2 receptors), Res (external virus-bound receptors), Ri (inter-
nalized virus-bound receptor), and R (internalized unbound receptor). We model hypotheses 2.RT.1-2.RT.5 as
a system of ordinary differential equations:

dr —Tbind™W Reu + TrecycleRiv (10)
d;?% = Thind™wREy — TendoREB (11)
d(};;B = TendoREB — TreleaseRip (12)
dg% = TreleaseRip — TrecycleRiu (13)

As in the v1 virus model, we estimate nv (the number of extracellular virions interacting with the cell) based upon
consistency with the BioFVM implementation and set

ThindwRey = UiVip (14)
where U is the cellular uptake rate and V is the volume of the cell, and so

ny = Vip (15)
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U; = "pinaREU (16)

Thus, the virus endocytosis rate varies with the availability of unbound externalized ACE2 receptor, as expected.
To link with the viral replication submodel, the unbinding of virus from internalized receptor must act as a source
term for the internalized virus:

Sourcey = TreleaseRip (1 7)

Intracellular viral replication dynamics (Virus lifecycle model V)

We make a small modification to the internalized virus model to account for the coupling with the receptor traf-
ficking model:

av

@ Sourcey — 1y V (18)
Z—erUV—rPU (19)
‘;_f — 1oU — AgR (20)

‘2—1; = 1R — 1,P — ApP (21)
Pk, (22)

We model exocytosis by setting the export rate Ex of the assembled virions, in units of virions per time:

E=rA (23)

Cell response (Viral response submodel VR)
There were no changes from the v1 model.

Initialization

In v2, we added the option to specify the multiplicity of infection (MOI): the ratio of initial virions to number of
epithelial cells. These virions are placed randomly in the extracellular space. We use a default MOI = 0.01 to
model a fine mist of virions landing on the tissue. Users can also set an option to only infect the centermost cell,
which sets V = 1 for that cell.

Refined parameter estimates

Detailed experimental characterization of ACE2 receptor trafficking in SARS-CoV'’ permits an initial estimation
of key model parameters. This experimental work reported that endocytosed receptors were observed in 3 hours
post infection, and that 10 hours later (13 hours elapsed time), receptors were observed in vesicles. This esti-
mates the time scale of binding and endocytosis to be on the order of 3 hours, and that virion release occurs on
the order of 10 hours. Thus:

1 1
+
rbind.REU (0) Tendo
25
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and

~ 10 hours. (25)

Trelease

Supposing that binding is relatively fast compared to endocytosis, we set — 1 min, and so
TbindREU (0) Tendo

3 hours. Recycled receptors were observedwithin 14 hours (1 hour after the appearance of endocytosed recep-
tors), so we set ~ 1 hour. Assuming there are 1,000 to 10,000 ACE2 receptors per cell, we set the param-

~

Trecycle

eters (to order of magnitude) at

Tping = 0.001 min~? (26)
Tendo = 0.01 min~1 (27)
Trelease = 0.001 min~? (28)
Trecycle = 0.01 min~! (29)

Tping = 0.001 min~1 (30)

The report observed expression of viral proteins by 18 hours (5 hours after viral release from endocytosed ACE2
receptors). Assuming that ryncoat ~ Tprep ~ Tsynth, €aCh parameter has magnitude 0.01 min~1. We similarly set

Tassemble = Texo = 0.01 min~1 in the v2 model.

Other implementation notes

To differentiate between incoming imported and exported virions within the computational implementation, we
modeled two diffusing fields (for extracellular concentrations of V and A). However, the models only require
extracellular V. At the end of each computational step (advancing by one diffusional time step), we iterate through
each voxel and transfer all of the extracellular diffusing A to V. We also created diffusing fields for uncoated
virions, RNA, and viral proteins, although these were removed from later model versions.

By setting the virus uptake rate U as noted above, PhysiCell (via BioFVM) automatically removes the correct
amount of virions from the extracellular diffusing field and places them in an internalized virus particle variable
n. By PhysiCell’s automated mass conservation:

ATl = AtrbinngREU = At ULVl‘D (31)

If n was previously set to zero, then the current value of n represents An. By assumption 2.RT.5, An is equal
to the change in the number of external virus-bound receptors (one virion per receptor). Thus, these receptors
(An) represent the net increase in bound external receptors. So at each time step, we:

1) Increase Res by n
2) Decrease Rey by n
3) Set n =0 (because these virions have been “delivered” to the receptor trafficking model)

Software release

The core model associated with the v2 prototype is Version 0.2.1. The nanoHUB app associated with the v2
prototype is Version 2.1. GitHub releases and Zenodo snapshots are given in the Appendix.

The cloud-hosted interactive model can be run at https://nanohub.org/tools/pc4COVID-19.
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Fig. 2.2: Version 2 sample model results at 30, 60, 120, and 180 hours. In all plots, epithelial cells are colored from blue (no assembled vmons) to
bright yellow (1000 or more virions). Black cells are apoptotic, and white regions show damaged tissues where apoptotic cells have degraded to
expose (unmodeled) basement membrane. Bar: 200 um. A. Simulation time course using the new initialization with an MOI (multiplicity of infection)
of 0.01. As virions land randomly on the tissue, they initiate multiple infections that spread and merge. B. After infecting a single cell (with the new
default parameters), the infected region (plaque) spreads radially as in the v1 model, but at a slower rate. As before, tissue degradation (black apoptotic
cells and white cleared tissue) has greatest frequency near the original site of infection. C. If the number of ACE2 receptors is cut by a factor of 10,
fewer virions infect cells, leading to slower viral replication. However, the reduced rate of virus binding and endocytosis leaves more extracellular viral
particles to disperse, leading to a larger spread of the region of infection. D. Decreasing instead the rate of virus release from internalized ACE2
receptor drastically slows the viral dynamics.

N
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Model behavior: what does the current version teach us?

Except as noted below, all simulation results use the v2 model default parameters, which are supplied in the
XML configuration parameter file of the version 0.2.1 core model repository.

In all plots, dark blue cells have 0 assembled virus, pale blue cells have 1-9 assembled virions, grey cells have
10-99 assembled virions, light yellow cells have 100-999 assembled virions, and bright yellow cells contain 1000
or more assembled virions. Black cells are apoptotic, and white spaces show regions devoid of cells (extensive
tissue damage).

Infection by a single virus versus a dispersion of virions

Compared to the previous method of initially infecting a single cell with a single virion, the v2 model simulation
using the new MOl initialization (MOI=0.01) showed viral particles nucleating multiple infections spread as inde-
pendent plaques that later merge (Fig. 2.2 A and Fig. 2.2 B). For higher MOls, some cells can be infected by
more than one virion, leading to faster viral replication.

Targeting the endocytosis cascade versus targeting ACE2 receptor

As more subcellular mechanisms are added to the model, we can ask what if questions about potential pharma-
cologic interventions®. Using the v2 model, we first investigated the impact of reducing the number of ACE2
receptors on each cell by a factor of 10 (e.g., by an intervention that targets ACE2 receptor or reduces its ex-
pression). We found that while this reduced the number of viral particles infecting each cell (thus slowing repli-
cation in individual cells), it paradoxically accelerated the spread of the infected region through the tissue (Fig.
2.2 C). This phenomenon can be understood by dimensional analysis: the effective transport length scale L of

the virus particle is L = \/%, where U is the uptake rate of the viral particles. In the v2 model, U is proportional to

the number of unbound external ACE2 receptors. If this number is reduced, then the length scale increases,
leading to a faster dissemination of virus particles, exposing more tissue to virus particles, and ultimately infecting
more cells earlier in the disease time course. On the other hand, with slower viral replication in individual cells,
tissue damage may be delayed. (Fig. 2.2 D).

We similarly investigated whether decreasing the rate of viral release from virus-bound endocytosed receptors
by reducing reiease by a factor of 10. This drastically impaired the spread of the infection: ACEZ2 receptors trapped
and internalized more viral particles, which then replicated more slowly, thus reducing the severity of the infec-
tion.

Selected feedback from domain experts within the coalition and the community
The core team reviewed the v2 model and project progress on weekly between April 8, 2020 and May 4, 2020.

The team discussed the potential need for an improved viral replication model. In particular, for low virus counts
early in cellular infection, the continuum hypothesis needed for ordinary differential equations may not hold, and
non-physical behaviors (e.g., infection by less than a single virus) may prevent the eradication of infections in
the model. A discrete modeling approach may be required, although limiting mass transfers (e.g., from Rey to
Reg) to integer amounts could also help address this issue. The core team also reaffirmed the need to create a
simplified immune system model to continue progress.

The core team also identified needed refinements in xml2jupyter, particularly the ability to run additional analytics
on simulation outputs and visualize the results in the Jupyter notebook interface.

The core team formed the subteams, identified chief scientists, and organized the first rounds of subteam meet-
ings. The core team also discussed the need to include subteam updates in the weekly core meetings. This was
firstimplemented in the May 4, 2020 call, and the development cycle discussed above reflects these community-
driven changes to team management.

We received additional feedback from the community from a postdoctoral fellow at Barcelona Supercomputing

28


https://doi.org/10.1101/2020.04.02.019075
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.019075; this version posted July 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Center (BSC), who noted the number of virion particles should be constrained to integer values. He also sug-
gested a branch of the sub-models may be reimplemented as stochastic differential equation. In addition, the
fellow pointed out that BSC is developing COVID-19 molecular disease maps, mainly by curating interactions
between viral and cellular proteins from several data sources and domain experts. It may be possible to “trans-
late” these process descriptions to activity flow models for Boolean network simulations in PhysiBoSS'°. Future
collaborations could test the COIVD-19 tissue simulator developed by this coalition in PhyiBoSS.

Core team discussion and priorities for v3

The highest priority for v3 is to start transitioning the development of the submodels to the subteams, thus moving
the project from Phase 1 to Phase 2. In particular, the team was keen to implement a basic immune model.

Version 3 (May 10 - July 27, 2020)

Version 3 focused on implementing a realistic representation of the tissue-level immune response to SARS-CoV-
2 and transitioning development of the submodels to the subteams. Due to the complexity of the immune system,
a significant portion of time was spent developing a realistic minimal model of the immune response.

This also represents the first model release to begin the transition from Phase 1 to Phase 2: the immune team
took on primary development of the C++ for their submodel. This development cycle also performed software
hardening on the core PhysiCell toolkit to facilitate complex immune behaviors (particularly phagocytosis and
CD8* T cell attacks on infected cells) while improving multithreading safety and cross-platform compatibility.
Moreover, we performed a code refactoring to take advantage of new cell definition functionality in PhysiCell
1.7.1, which eased the development of the immune model with multiple cell types.

Key hypotheses

The overall aim of this submodel is to include features of the immune response to SARS-CoV-2 that are specific
to the local tissue environment. The main immune cellular components included at this stage are tissue-resident
macrophages, infiltrating neutro-

phils, and CD8" T cells, which are | | ~~~~~ GOOO0000. O T-tissve.

recruited as the infection pro- a 3\ £ e eius

gresses. The general pattern of ¢ ( 7&“%«7 j (\ D R el response mode
LA 1 L@ ! © MPhi - macrophage

events that this model encom-
passes are summarized here.
When epithelial cells in the tissue
become infected with SARS-CoV-
2, they secrete chemokines that
cause macrophages to migrate to-
wards them following a chemokine
gradient. In addition, the infected
cells may die as a result of the in-
fection (see the cell response
model VR), and dead cells will re-
lease factors that cause macro-
phages to migrate towards them.
Macrophages phagocytose dead
cells and remove them from the tis-
sue. When macrophages encoun-

@ N - neutrophil
CD8 - CD8 T cell
Debris

A Cytokine

A Chemokine

recruitment

; Fig. 3.1: Immune submodel schematic. Immune cells (macrophages, neutrophils,
ter d.ead cells, they begln. to secrete and CD8* T cells) patrol within the tissue component (T), containing multiple epithelial
pro-lnflammatory cytokines, aI.’Id cells (E). Cells infected by virus secrete chemokine, which attracts immune cells along
phagocytose any dead cell material | the chemokine gradient. CD8* T cells induce apoptosis in infected cells, creating dead
they find. The result of pro-inflam- | cells that are phagocytosed by macrophages and neutrophils that are attracted along
matory cytokine secretion is the in- debris gradients. Upon activation, macrophages secrete cytokine that recruits other
immune cell types.
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filtration of neutrophils into the tissue. Neutrophils are short-lived cells and are replenished in the tissue as long
as pro-inflammatory cytokines are still being produced. CD8* T cells, presumed to be specific for SARS-CoV-2,
enter the tissue at a later time, and their role is to kill infected cells. CD8* T cell entry is dependent upon the
presence of pro-inflammatory cytokines. Death of an infected cell is more likely after prolonged contact with one
or more CD8" T cells. CD8* T cells may also interact with macrophages that have phagocytosed dead cells or
virus as these macrophages will now be able to present viral antigens to both CD4* and CD8* T cells; however
antigen presentation is not directly included in this initial version of the model. As described below, simulations
were performed using a field of already infected epithelial cells, and the behavior of the immune cells in this
tissue appears to follow the established rules.

Owing to the immune response cascade outlined above, we first integrated macrophages, neutrophils, and CD8*
T cells into the SARS-CoV-2 tissue model. The adaptive immune response in a naive host begins a few days
after innate immune action. For this version, we simplify dynamics by modeling only CD8" T cells, and we do not
yet model antigen presentation via dendritic cells or macrophages. Thus, we assume that CD8* T cells are
recruited around day 4 of infection in response to infected cells and pro-inflammatory cytokine production, where
infected cells are killed in response to sustained total contact with one or more CD8" T cells. It is assumed that
immune actions only affect infected cells that are past the eclipse phase and are thus generating virus.

Immune cells travel in a biased correlated random walk along chemical gradients'®. To control for spatial migra-
tion, the submodel contains three diffusing chemicals in addition to free virions: pro-inflammatory cytokines se-
creted by macrophages, CD8" T cells, and post-eclipse phase infected cells recruit immune cells into tissue from
blood or lymph nodes, which could ultimately be modeled in a separate submodel. We assume all immune cells
migrate in the tissue toward infected cells along a chemokine gradient, which is assumed to be secreted by
infected cells for simplicity. Infected cells and macrophages also secrete IFN-I, which will reduce viral burst size
from neighboring infected cells in future versions of the model.

Model changes
The v2 model was expanded to include the following submodel components (Fig. 3.1):

T: tissue (which contains epithelial and other cells, and diffusible factors)
RT: ACE2 receptor trafficking (including virus endocytosis)

V: viral endocytosis, replication, and exocytosis responses

VR: cell response to viral replication, including cell death and IFN synthesis

E: epithelial cell (includes RT, V and VR).
D: dead cell

MPhi: macrophage

N: neutrophil

CD8: CD8" T cell

Biological hypotheses

The v3 model introduced new assumptions regarding how the infected and dead cells are cleared and how im-
mune cells act in the model (indicated by X.C.Y, where X denotes prototype, C denoted modeling component,
and Y denotes a biological hypothesis, for easy reference):

3.T1 Virus diffuses in the microenvironment with low diffusion coefficient
3.T.2 Virus adhesion to a cell stops its diffusion (acts as an uptake term)
3.T.3 Pro-inflammatory cytokine diffuses in the microenvironment

3.T.4 Pro-inflammatory cytokine is taken up by recruited immune cells
3.T.5 Pro-inflammatory cytokine is eliminated or cleared

3.T.6 Chemokine diffuses in the microenvironment

3.T.7 Chemokine is taken up by immune cells during chemotaxis

3.T.8 Chemokine is eliminated or cleared

3.T.9 Debris diffuses in the microenvironment

3.T.10 Debris is taken up by macrophages and neutrophils during chemotaxis
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Debris is eliminated or cleared

Virus adheres to unbound external ACE2 receptor to become external (virus)-bound ACE2
receptor

Bound external ACE2 receptor is internalized (endocytosed) to become internal bound ACE2
receptor

Internalized bound ACE2 receptor releases its virion and becomes unbound internalized re-
ceptor. The released virus is available for use by the viral lifecycle model V

Internalized unbound ACE2 receptor is returned to the cell surface to become external un-
bound receptor

Each receptor can bind to at most one virus particle.

Internalized virus (previously released in 2.RT.3) is uncoated
Uncoated virus (viral contents) lead to release of functioning RNA
RNA creates viral protein at a constant rate unless it degrades
Viral protein is transformed to an assembled virus state
Assembled virus is released by the cell (exocytosis)

After infection, cells secrete chemokine

As a proxy for viral disruption of the cell, the probability of cell death increases with the total
number of assembled virions

Apoptosed cells lyse and release some or all of their contents

Live epithelial cells undergo apoptosis after sufficient cumulative contact time with adhered
CD8* T cells.

Live epithelial cells follow all rules of RT

Live epithelial cells follow all rules of V

Live epithelial cells follow all rules of VR

Dead epithelial cells follow all rules of D.

Dead cells produce debris

Resident (unactivated) and newly recruited macrophages move along debris gradients.
Macrophages phagocytose dead cells

Macrophages break down phagocytosed materials

After phagocytosing dead cells, macrophages activate and secrete pro-inflammatory cyto-
kines

Activated macrophages can decrease migration speed

Activated macrophages have a higher apoptosis rate

Activated macrophages migrate along chemokine and debris gradients

Macrophages are recruited into tissue by pro-inflammatory cytokines.

Macrophages die naturally and become dead cells.

Neutrophils are recruited into the tissue by pro-inflammatory cytokines
Neutrophils die naturally and become dead cells

Neutrophils migrate locally in the tissue along chemokine and debris gradients
Neutrophils phagocytose dead cells and activate

Neutrophils break down phagocytosed materials

Activated neutrophils reduce migration speed

Neutrophils uptake virus

CD8* T cells are recruited into the tissue by pro-inflammatory cytokines
CD8* T cells apoptose naturally and become dead cells
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3.CD8.3 CD8" T cells move locally in the tissue along chemokine gradients
3.CD8.4 CD8* T cells adhere to infected cells. Cumulated contact time with adhered CD8* T cells can
induce apoptosis (See 3.E.1)

Unit tests

To confirm the dynamics of the immune model qualitatively reproduce the in-situ dynamics, we monitored the
population numbers of immune cells (macrophages, neutrophils, CD8" T cells) over time and compared with our
biological expectations.

Translation to mathematics, rules, and model components

There were no changes to the ACE2 receptor trafficking model RT or the intracellular viral replication dynamics
model V.

Extracellular transport (Tissue submodel T)

Extracellular densities of pro-inflammatory cytokine and chemokine were modelled using the standard BioFVM
formulation'°, similar to that for extracellular virus (introduced above), i.e.:

ap .
=DV —Ap+ > 8= x)(Si(pi — p) = Uip)Vi, (32)

Jt
cellsi

where D is the diffusion coefficient of each substrate, 1 is the net decay rate, § is the discrete Dirac delta function,
x; is the position of the centre of cell i, S; is the secretion rate of cell i, p; is the saturation density at which cell i
stops secreting, U; is the uptake rate of the substrate by cell i, and V; is the volume of cell i. The concentration
p, represents the density of pro-inflammatory cytokine pcyokine, Chemokine pchemokine OF dead cell debris pgepris-

Similarly, diffusion, decay, secretion, and uptake parameters are all substrate specific rates, i.e. the diffusion
coefficients are D¢y tokines Dchemokine @Nd Dgebris; the decay rates are Acyiokines Achemokine 8Nd Agebris; the secretion

rates are Scytokines Schemokine 8Nd Sgebris; the uptake rates are Ucyiokines Uchemokine @Nd Ugebris; @nd the saturation
e * * *
densities are pcytokineJ Pchemokine and Pdebris-

Cell response (Viral response submodel VR)
We made a small addition to the cell response model. After infection, cells start secreting chemokine at a rate

] A
Schemokine min (1: A_) (33)
H

where A is the intracellular assembled virion count and Ay is the amount of assembled virions at which half of
the maximum effect of virus-induced cell apoptosis is achieved. Secretion continues until the cell dies either
through lysis or CD8" T cell induced apoptosis.

Signaling, degradation, and phagocytosis of apoptotic cells (Dead cell dynamics D)

Cells that die release debris that attracts phagocytes and signals that that they can be cleared from the micro-
environment. They secret these signals at a rate Sgepyis-

Chemotaxis (Chemotaxis model MPhi, N, and CD8)

Macrophages and neutrophils undergo chemotaxis up the chemokine gradient and dead-cell debris gradients
released by infected cells and dead cells respectively. The velocity of cell chemotaxis is

(1—b)é +bb
|(1 = b)¢ + bb||

(34)

= —
Umot = Smot
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where s,,,: is the speed of chemotaxis (cell-type-specific), 0 < b < 1 is the migration bias (also cell-type-spe-
cific), & is a random unit vector direction in 3D (or 2D) and b is the migration bias direction defined by

B _ Ochemokine VPchemokine t OdebrisV Paebris

(3%5)
||Uchemokine |7pchemokine + Odebris Vpdebrisll
where o pemokine @Nd daepris are the sensitivity of chemotaxis along either the chemokine or dead-cell debris
gradient. CD8" T cells also undergo chemotaxis, but along the chemokine gradient, i.e. g4epris =0 and

Ocnemokine = 1. Chemotaxing cells take up chemokine at a rate U pemokine-

Phagocytosis dynamics (Phagocytosis of apoptotic cells MPhi and N)

Once a macrophage or neutrophil has found a cell to phagocytose, it reduces its speed from s,,,,¢ 4 (active chem-
otaxis speed) to s,,,0¢, (Phagocytosis/attached speed) and starts searching locally for material to phagocytose.

If there is a dead cell in contact with a macrophage or neutrophil (i.e., if there is a dead cell in the cell's ~30
um mechanical interaction voxel as in PhysiCell'®), the immune cell will phagocytose the dead cell with rate
Tphag, Which is cell-type specific and reflects the efficacy with which each immune cell subtype clears debris. If
the immune cell is in contact with a dead cell over a period of [¢t,t + At], then the probability of phagocytosis is
Tpnag A t. When an immune cell phagocytoses a dead cell, the immune cell absorbs the volume of that cell and
subsequently increases its volume, i.e., the phagocytosing cell gains:

(a) all of the dead cell’s fluid volume;
(b) all of the dead cell’'s nuclear solid and cytoplasmic solid volume (which are added to the nuclear cyto-
plasmic solid volume)

This implies that after phagocytosis within time A4t, the volume of a macrophage or neutrophil i that phagocytoses
a dead cell j will be given by

Vcs,i(t + At) = Vcs,i(t) + Vcs,j (t) + Vns,j (t): ch,i(t + At) = ch,i(t) + VVf,j (t), (36)

where V  is the volume of the cytoplasmic solid volume in cell k, V,,s ;. is the volume of nuclear solid volume in
cell k, Vs is the cytoplasmic fluid volume in cell k, and Vy ¢ is the total fluid volume of cell k. Because this will
typically increase the cell’'s volume above its “target” equilibrium volume, the standard PhysiCell volume model'®®
will begin to shrink the cell’s volume back towards its resting volume, allowing us to model degradation of phag-
ocytosed materials. After phagocytosing dead material, macrophages start secreting pro-inflammatory cytokines
at arate Scytokine-

Neutrophil viral clearance (N)

Neutrophils take up extracellular virus at a rate U. We assume this uptake rate is equivalent to the ACE2 receptor
binding rate 1;4-

Immune cell recruitment (Mphi, N, and CD8)

Macrophages, neutrophils and CD8* T cells are recruited to the tissue by pro-inflammatory cytokines through
capillaries/vasculature in the lung. The density of vasculature accounts for approximately 8.8% of the tissue'®.
Accordingly, at the start of each simulation we randomly assign 8.8% of the tissue voxels as vasculature points
through which immune cells arrive randomly throughout the course of the simulation. (Note that the v1-v3 models
simulate a single layer of epithelium where immune cells are allowed to move freely through or just above the
tissue; this 2-D formulation is implemented as a single layer of 3D voxels'®.)

At regular time intervals A t;;,mune, W€ integrate the recruitment signal to determine the number of immune cells
recruited to the tissue. The number of cells recruited into the tissue between t and t + A tjmune Varies with the
pro-inflammatory cytokine recruitment signal across the tissue:

# of recruited cells = rrecruitf min (1, max (O, Peytokine — pmin)) dV Atimmune (37)
Q Psat — Pmin
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where Q is the computational domain, ...y i the recruitment rate (per volume), ppi, is the minimum recruit-
ment signal, pg,. is the maximum (or saturating), and pcyokine is the pro-inflammatory cytokine concentration.
The value of pyin, Psat, @Nd Trecruit are cell-type specific, i.e. macrophages, neutrophils, and CD8" T cells have
different minimum and saturating recruitment signal concentrations which results in heterogenous arrival times
into the tissue.

Recruited cells are randomly seeded at vessel locations. In the v3 model, we set A tjmune = 10 min. Notice
that the number of recruited cells scales with duration of the time interval and the size of the tissue.

CD8* T cell induction of infected cell apoptosis (CD8 dynamic model)

When a CD8* T cell is in contact with a cell (based on PhysiCell's mechanical interaction testing; see the note
in phagocytosis above) with intracellular assembled virion is greater than 1, i.e. A > 1, the T cell attempts to
attach to the infected cell with an attachment rate fatach. Following prior immune modeling work 24125 if the cell
is in contact for a duration At, then the probability of forming an attachment in that time period is 7,iacn At.
While the cells are attached, the immune cell’'s cumulative CD8* T cell contact time is increased by At. The T
cell has a mean attachment lifetime T,.,c- Between t and ¢t + At, the probability of detaching is given by

A t/ Tattach-

We assume that an infected cell will undergo apoptosis after its cumulative attachment time exceeds a threshold
Tcps_contact death- 1NiS can be either from a single or multiple T cell attachments. All attached T cells detach when
a cell undergoes apoptosis. When CD8" T cells adhere to another cell, their motility is turned off, i.e. s;,,4¢, = 0,
and when they detach from a cell, their speed returns to their active chemotaxis speed s,,5¢ 4-

Initialization
An initial population of MPhi, macrophages is seeded randomly throughout the tissue.

Estimates for immune parameters

The diffusion coefficient for the chemokine, pro-inflammatory cytokine, and debris, Dchemokines Deytokines @nd
Dgebris» Were set at 555.56 um?/min which was estimated by Matzavinos et al as the diffusion coefficient for
monoclonal antibodies’. This is equivalent to 8 x 1072 cm?/day, which is similar to 1.25 x 1073 ¢cm?/day es-
timated by Liao et al.”""?". Decay and secretion rates of the pro-inflammatory cytokine, chemokine, and debris
were assumed to be equivalent. Decay rates for the signaling substrates, Acnemokines Acytokine @Nd Agepris, Were
all set to 1.02 x 102 /min, which was estimated as the decay rate of IL-6 by Buchwalder et al.’*2.The secretion
rate for each signaling substrate, S.hemokines Scytokine @Nd Sgepris, Was 0.8254/p* 1/min, obtained through fitting
the secretion rate of infected cells to the production of IL-6 by infected basal epithelial cells measured by Ye et
al.” over 25 hour'®. The uptake rate of pro-inflammatory cytokine, Ugyrokine, Was estimated to be
0.0018 (pg/ml)~tday~! from measurements of the binding rate of IL-6 '®*. The chemokine uptake
rate, Uqnemokine, Was estimated to be 0.0510 (pgml)~1day ! '%°. The uptake rate of debris, U,pyis, Was assumed
to be equivalent to that of U ,emokine, D€Cause it acts as a chemoattractant.

Macrophages, neutrophils and CD8* T cells all have different sizes. Macrophages have an average diameter of
21 um %8, giving a total volume of 4849um?3. Neutrophils have an average diameter of 14 um %, giving a total
volume of 1437 um3. When activated, CD8* T cells have a diameter of 0.7 9.7 um'%®, giving a total volume of
478um3. For all immune cells, the volume of nucleus was assumed to be 10% of the cells total volume'®°.

The active migration rate of macrophages and CD8" T cells along the chemokine gradient was s,,,:, =
4um/min based on in vitro and in vivo measurements of leukocyte chemotaxis rates'®. We assume these cells
have a migration bias of 0.5 (unitless). Neutrophils move faster with stronger bias along the chemokine gradi-
ent at s,,,, = 19um/min, with a bias of 0.91'%. Once macrophages and neutrophils encounter material to
phagocytose, their motility reduces to s,,,¢, = 0.4um/min and if a CD8" T cell connects to an infected cell they

34


https://doi.org/10.1101/2020.04.02.019075
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.02.019075; this version posted July 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

are no longer motile, i.e., ;0 = Oum/min. Cells persist on their given trajectory for 5 minutes before a new
trajectory is chosen. All immune cells undergo apoptosis at different rates, with neutrophils undergoing apopto-
sis on average after 18.72 hours™ (i.e. a; y = 8.87 x 10~* min"), macrophages on average every 3.3 days'®?
(i.e. a; o = 2.083 x 10~* min™") and CD8* T on average every 2.5 days (i.e. a;r = 2.778 x 10~* min™")'®3,

Macrophages are well known for their capability in phagocytosing dead cell debris'®*. As such, we set the prob-
ability of a macrophage phagocytosing a dead cell in its neighborhood to p,nagmo = 1. To account for the fact
that neutrophils split their time between phagocytosing dead cells and taking up virus'®®, we set the probability
that neutrophils phagocytose dead cells as p,pqgy = 0.7.

For the recruitment of immune cells, parameters were chosen to achieve immunologically reasonable arrival
times for the immune cell subsets. Neutrophil and macrophage infiltration into tissue is faster than T cell infiltra-
tion, with neutrophils and macrophages arriving within 1 to 2 days after infection'® and CD8* T cells arriving
closer to 4-5 days after infection'®”. The minimum and saturated signal concentrations, p,,;,;, and pg,;, for mac-
rophages and neutrophils were, therefore, assumed to be equivalent and fixed as p,,;;, = 0.1 substrate/um?3 and
Psar = 0.3 substrate/um3. Whereas, CD8* T cells had higher signal concentrations for their minimum and satu-
rated recruitment signals, i.e. p,,in, = 0.4 substrate/um?3 and pg,, = 0.7 substrate/um3. The recruitment rate for
the different immune types was assumed to be equivalent, i.e. recruit = 4 X 1072 cells/min/um3 and the immune
recruitment rate time-step was At;mmune = 10 min.

Direct observations of CD8" T cell-infected cell interactions and quantification of infected cell fate revealed that
death required a median of 3.5 distinct CD8" T cell contacts. Killed infected cells have a cumulative median
contact time of 50 min and individual contacts between CD8" T cells and infected cells lasts on average 8.5
min'®®. We therefore set Tcpg contact death = 50 min.

Other implementation notes

This simplified immune model does not yet include many key immune agents, including dendritic cells, natural
killer (NK) cells, B cells, antibodies, the complement system, and most cytokines. No anti-inflammatory cytokines
are modeled, nor can this model return to homeostasis following potential infection clearance. Dynamics of cy-
tokine binding and unbinding to receptors are also omitted. The model does not yet incorporate known SARS-
CoV-2 immune evasion techniques, such as a delayed IFN-I response and lymphopenia (decreased CD8" T
cells) from early in infection. In addition, the antigen-presentation from macrophages and subsequent activation
process of CD4* and CD8* T cells has been omitted. Many of these important mechanisms are planned for
inclusion in future versions. See further discussion in v3 modeling results below.

Software release

The core model associated with the v3 prototype is Version 0.2.1. The nanoHUB app associated with the v3
prototype is Version 3.2. GitHub releases and Zenodo snapshots are given in the Appendix.

The cloud-hosted interactive model can be run at https://nanohub.org/tools/pc4COVID-19.

Model behavior: what does the current version teach us?

Except as noted below, all simulation results use the v3 model default parameters, which are supplied in the
XML configuration parameter file of the version 0.3.2 core model repository.

In all plots, dark blue cells have 0 assembled virus, pale blue cells have 1-9 assembled virions, grey cells have
10-99 assembled virions, light yellow cells have 100-999 assembled virions, and bright yellow cells contain 1000
or more assembled virions. Black cells are apoptotic, and white spaces show regions devoid of cells (extensive
tissue damage). Unactivated macrophages are green, activated macrophages are magenta, CD8* T cells are
red, and neutrophils are cyan. Apoptotic immune cells are light orange.
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Fig. 3.2: Version 3 model at 46, 72, 108, and 144 hours (default immune settlngs) In all plots, eplthellal ceIIs are colored from blue (no assembled
virions) to bright yellow (1000 or more virions). Black cells are apoptotic, and white regions show damaged tissues where apoptotic cells have degraded
to expose (unmodeled) basement membrane. Green cells are macrophages, magenta cells are activated macrophages, cyan cells are neutrophils,
and red cells are CD8* T cells. Bar: 200 um.

Rows 1-2: Simulated dynamics starting with an MOI (multiplicity of infection) of 0.10 without an immune response (Row 1) and with an immune
response (Row 2). Plots A-B show uninfected (blue), infected (orange), and dead (yellow) cell counts and total extracellular virion (purple) without an
immune response (A) and with an immune response (B). The immune response clears infected and dead cells more quickly and limits the maximum
extracellular viral load, but the underlying tissue is completely destroyed.

Rows 3-4: Simulated dynamics starting with an MOI (multiplicity of infection) of 0.01 without an immune response (Row 3) and with an immune
response (Row 4). Plots C-D show uninfected, infected, and dead cell counts and total extracellular virion without an immune response (C) and with
an immune response (D) (same coloring as A-B). The immune response slows the spread of the infection and increases uninfected cell survival.

Impact of adding the immune response (default parameters)

Figs. 3.2-3.5 demonstrate the results of simulating SARS-Cov-2 infection under different parameter regimes.
Fig. 3.2 simulates the dynamics without and with an immune response for a MOI of 0.10 (top results) and 0.01
(bottom results), using the default immune parameters. When the MOl is 0.10, most of tissue is destroyed, either
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by the virus (Fig. 3.2 top row) or the immune system (Fig. 3.2 second row). Reducing the MOI allows some of
the tissue to survive the infection in the absence (Fig. 3.2, third row) or presence (Fig. 3.2, fourth row) of the
immune response. All subsequent model results will show a MOI of 0.01 to highlight differences in dynamics to
changes in immune parameters. As discussed below, this may not be necessary once the interferon response
in infected cells is added to the model.

At high MOI, macrophages are rapidly activated (Fig. 3.2, first panel in row 2), and the release of inflammatory
cytokines results in the infiltration of CD8* T cells by day 3 (Fig. 3.2, second panel in row 2). The CD8* T cells
kill all infected cells and the tissue is destroyed. At low MOI (0.01), the number of tissue cells surviving is greater
(Fig. 3.2, fourth row, panel 4). However, macrophage activation is delayed, which further delays the infiltration
of CD8" T cells. At the end of the simulation, on day 6, there is a large number of infected cells (Fig. 3.2 D), and
the viral titers are still rising. This suggests that, under these default conditions, the lower MOI simply delays the
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Fig. 3.3: Version 3 model at 108 and 144 hours (modified T cell characteristics). We show late simulation times with MOI = 0.01 with the default
immune parameters (top row), faster T cell killing (middle row), and faster T cell recruitment (bottom row). A, D, and G plot immune cell dynamics,
B, E, and H plot infected cell and virion dynamics, and C, F, and | plot changes in signaling factors for each simulated scenario. Faster T cell killing
and faster T cell recruitment both slow infection dynamics and (nearly) control the infection by 6 days. Cells are colored as in Fig. 3.2.
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infection; the tissue is completely destroyed if the simulation is continued beyond 6 days, as seen with the higher

MOI of 0.10 (result not shown).

Changing T cell parameters

In the initial model v3 simulation results introduced in Fig. 3.2, it appeared that the dynamics of CD8" T cell
recruitment and activation relative to viral replication might be important. Thus, we varied some of the immune
cell parameters to determine whether the survival of the tissue could be improved. Fig. 3.3 (second row) shows
the results when the rate of CD8" T cell killing was doubled by reducing the threshold contact time for cell death
from 50 min to 25 min. Even macrophage, neutrophil, and CD8* T cell recruitment were slightly reduced com-
pared to the default parameters (compare Fig. 3.3 D to Fig. 3.3 A), the increased ability of CD8" T cells to Kkill

infected cells results in fewer infected cells and the viral titers are falling (Fig. 3.3 B and E).
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We also increased the recruitment rate of CD8* T cells to the tissue in response to inflammatory cytokines by
reducing pnin from 0.4 to 0.1, and by reducing ps,; from 0.7 to 0.4; see Fig. 3.3 (third row). This resulted in
greater sparing of tissue, and the virus was completely cleared under these conditions (Fig. 3.3 H).

Changing resident immune cell populations

We also investigated whether the outcome would be influenced by the number of macrophages and T cells that
might be resident within the tissue at the time of infection. We first increased the initial number of macrophages
from 50 to 150 (Fig. 3.4, second row). Interestingly, this did not result in an improved outcome over that seen
with the default parameters (compare Fig. 3.4, top row). CD8* T cell recruitment was enhanced (Fig. 3.4 D) but
the viral load was continuing to increase at day 6 (Fig. 3.4 B), suggesting that increased number of macrophages
did not result in more virus control. This could be because in the present model macrophages essentially re-
moved dead cells and do not have a role in killing infected cells. Moreover, because the model’s macrophages
cannot activate until dead infected cells are present, increasing the number of macrophages cannot trigger a
faster immune response. This suggests that after reaching a minimal number of macrophages, adding more
resident macrophages has a minimal impact on improving immune response.

In contrast, the presence of resident T cells (Fig. 3.4, bottom row) did result in an improved outcome, with more
tissue spared and essentially no viral replication (Fig. 3.4 H). The final viral count on day 6 was under 15 as T
cells were able to kill every infected cell before it could release a significant amount of assembled virions (Fig.
3.4 H). This drastically slowed the spread of the infection through the tissue. We also note that the faster T cell
killing resulted in earlier accumulation of apoptotic cells, leading to faster activation of macrophages and hence
accelerated immune cell recruitment (Fig. 3.4 G).

The addition of an interferon response (which could prevent nearby cells from endocytosing these few virions)
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or antibodies (which could directly neutralize the released virions) could potentially completely control the infec-
tion in future versions of the model.

Further comparison of v3 model results

When we compare these simulations side by side (Fig. 3.5) we can see that the two scenarios with the best
outcomes are those in which the recruitment rate of T cells is increased and when resident T cells are included.
These resulted in the largest amount of surviving uninfected tissue (Fig. 3.5 A) as well as viral clearance (Fig.
3.5 B). It is interesting to note that the increase in recruitment resulted in T cells arriving in the tissue only one
day earlier than the default scenario (Fig. 3.5 D), but this had a dramatic effect. Under these conditions, the virus
expanded but was cleared within 6 days of infection. This model provides a mechanism to explore how CD8* T
cell recruitment could be enhanced in COVID-19 patients. While the presence of resident T cells prevented the
viral infection from propagating there was still a significant amount of tissue loss in the current model.

Discussion of v3 model results

The inclusion of the basic tissue immune system to the model has provided some interesting new avenues for
research. It is important to note some of the caveats with the existing model. In order to be able to reliably see
the beneficial effect of the immune response we had to reduce the viral MOI tenfold. This was because at the
higher MOI, either the virus killed the tissue in the absence of the immune response, whereas when the immune
response was present it was the immune response that destroyed the tissue (although in this model, the immune
cells only destroyed infected cells and did not damage uninfected cells). It is important to note that the present
model does not include the cellular interferon response, which would have the effect of slowing viral replication
and making more cells resistant to viral infection. When this aspect is included, it is possible that the MOI will not
need to be reduced to the same degree.

The results of the simulations so far suggest that controlling the recruitment of CD8* T cells is a critical parameter
leading to viral clearance and reduced tissue destruction. Recent single cell RNA sequencing studies of cells
from bronchoalveolar lavage fluid from COVID-19 patients have demonstrated that individuals with moderate
disease have increased numbers of CD8* T cells infiltrating the lungs compared to those with severe disease'®.
This suggests that aspects of the model that can influence this parameter should be explored further. This could
include the addition of a more detailed lymph node model in which the kinetics of activation and proliferation of
specific CD8" T cells can be explored.

The presence of resident CD8* T cells prior to infection effectively prevented viral replication, although at the
cost of some tissue damage. It is known that resident memory CD8* T cells in the lung can provide protection
from subsequent infection'°. It is possible that certain individuals infected with SARS-CoV-2 have been exposed
to related coronaviruses and recent studies have observed that up to 40% of unexposed individuals have de-
tectable T cell responses to SARS-CoV-2 proteins'’"'72. Moreover, presence of CD8" T cells is plausible in
uninfected tissues that are adjacent to infected tissues: an initial infection may resemble the default scenario of
extensive damage, but the recruited CD8* T cells could provide protection to nearby tissues from such damage.
In the present simulations, it was assumed that all of the resident CD8" T cells could recognize SARS-CoV-2,
but, in reality, only a small fraction of these T cells would be specific for the virus. This can be explored in future
simulations.

The fact that increasing the macrophage number did not affect the outcome could reflect the fact that in the
present model, these cells have no role in removing infected cells and only remove cells once they have died.
Thus, they do not influence the infection beyond secreting inflammatory cytokines that are necessary for the
recruitment of CD8" T cells and neutrophils to the tissue. In subsequent model versions it may be possible to
add an interaction between macrophages that have taken up virus and/or dead infected cells with CD8* T cells.
This interaction could further activate macrophages and allow them to kill infected cells before they die.

Selected feedback from domain experts within the coalition and the community

During the extensive v3 model development cycle, the modeling coalition met weekly to discuss and refine the
model assumptions and record feedback for future work. Several members presented results at virtual seminars
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and virtual conferences; feedback from audience questions and interactions are also reflected here.

Several members noted that because the ACE2 and viral replication dynamics models use ODEs, it is possible
that a cell in a low extracellular viral concentration could endocytose less than one full virion. These cells (with <
1 endocytosed virion) can still synthesize viral proteins and assemble virions in the current ODE model, leading
to artificially fast viral propagation in the tissue. Future model versions must compensate for this by only allowing
integer numbers of virions to uncoat and replicate. Moreover, for a coated virus such as SARS-CoV-2, we must
ensure that only live cells release assembled virions; this is the default model setting in v3 (lysed cells release
0% of their assembled virions by default settings).

It was also widely noted the antiviral effects of interferons should be incorporated to more accurately model the
rate of spread of an infection. This is of critical importance in light of recent news reports that interferon beta
treatment is emerging as a treatment option'”>'74, Within infected cells, further feedbacks (e.g., on endocytosis)
may be needed to prevent further re-infection of those cells. We may also need to model heterogeneity in cells’
susceptibility to infection and cytokine production. Cytokine production by infected cells may or may not vary with
the amount of virus in those cells.

While the initial immune model in v3 was able to address open questions on the effect of T cells, further work is
needed, including explicit cross-talk and feedback between pro- and anti-inflammatory cytokines. Future models
should include more neutrophil behaviors, including their own secretion of pro-inflammatory cytokines.

Future immune models should also include activation of antigen-presenting cells (APCs) and T helper cells.
Macrophages that have taken up dead infected cells should present antigens to CD4* and CD8" T cells. Inter-
actions of macrophages with CD4* T cells should render them capable of killing infected cells, particularly those
with antibodies bound to their surface.

While lymphopenia is a topic of significant clinical interest'”>76, there is currently no mechanism for it in the
model. This could be addressed by linking T cell death to the level of inflammatory cytokines, since the degree
of lymphopenia has been correlated with levels of IL-6, IL-10 and TNF-a.'"®. Also, the current model only captures
a “cytokine storm” in the sense that as more macrophages are recruited, they also secrete pro-inflammatory
cytokines, leading to an accelerated accumulation of cytokines as macrophages accumulate. Future models will
need to address this more mechanistically.

In terms of the model development process, we found that there may need to be more flexibility in the length of
each development cycle. The transition from Phase 1 to Phase 2 of the project requires substantial training of
new developers and creation of software infrastructure. The two-to-three week development cycle noted above
is more appropriate to late Phase 2 when all this infrastructure is in place and model changes are more minor
from one version to the next.

Core team discussions and priorities for v4

In the next development cycle, we plan to introduce type | IFN secretion and its antiviral effects in nearby unin-
fected cells, particularly reduced receptor endocytosis and viral replication. This will allow us to investigate recent
reports on interferon beta

We also plan to introduce a refined, expert-driven model of viral replication to avoid the model artifacts discussed
above and to ensure that cells can only replicate virus if they are infected by at least one whole virion, that they
can only replicate viral proteins if they have at least one full set of viral RNA coated, and they can only assemble
virions if they have at least one set of replicated viral proteins. Adding discrete / integer checks on these behav-
iors may introduce delays analogous to delay differential equations that improve model realism.

We plan to continue refining the immune response submodel as addressed above, with a focus on improving
pro- and anti-inflammatory responses and adding missing immune cell types. We plan to link this with a new
lymph node model that will more mechanistically regulate T cell expansion, “education” and recruitment.

Discussion
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Within three weeks of the World Health Organization’s declaration of a global pandemic of COVID-19""7, com-
munity-based prototyping built upon an existing PhysiCell 3D cell-modeling framework to rapidly develop Version
1 of an intracellular and tissue-level model of SARS-CoV-2'%°. A growing coalition of domain experts from across
STEM fields are working together to ensure accuracy and utility of this agent-based model of intracellular, extra-
cellular, and multicellular SARS-CoV-2 infection dynamics. Version 1 development underscored the necessity of
clearly explaining model components, defining scope, and communicating progress as it occurs for invaluable
real-time feedback from collaborators and the broader community. This rapid prototyping already helped in grow-
ing the coalition and recruiting complementary expertise; for instance, a team modeling lymph node dynamics
and immune infiltration joined during the Version 1 cycle after seeing initial progress.

The version 1 prototype also showed the scientific benefit of rapid prototyping: even a basic coupling between
extracellular virion transport, intracellular replication dynamics, and viral response (apoptosis) showed the direct
relationship between the extracellular virion transport rate and the spread of infection in a tissue. More im-
portantly, it showed that for viruses that rapidly create and exocytose new virions, release of additional assem-
bled virions at the time of cell death does not significantly speed the spread of infection. Moreover, decreasing
the cell tolerance to viral load does not drastically change the rate at which the infection spreads, but it does
accelerate the rate of tissue damage and loss, which could potentially trigger edema and ARDS earlier. This
suggests that working to slow apoptosis may help preserve tissue integrity and delay adverse severe respiratory
responses. That such a simple model could already point to actionable hypotheses for experimental and clinical
investigations points to the value of rapid model iteration and investigation, rather than waiting for a “perfect”
model that incorporates all processes with mechanistic molecular-scale detail.

Version 2 showed promise of increasing mechanistic details to evaluate potential inhibitors. For example, it was
found that that reducing the expression of ACE2 receptors could paradoxically lead to faster spread of the infec-
tion across the tissue, although the individual infected cells would replicate virus more slowly. On the other hand,
taking advantage of high receptor expression but interfering with viral release from internalized receptors may
help slow infectious dynamics. Generally, adding sufficient actionable cell mechanisms to the model framework
allows us to ask pharmacologically-driven questions on potential pharmacologic interventions, and how these
findings are affected by heterogeneity, stochasticity, and the multiscale interactions in the simulated tissue.

Version 3 allowed our first investigations of immune system responses. We found that T cell behaviors are critical
to controlling the spread of an infection through the tissue. In particular, rapid recruitment as well as the presence
of “educated” CD8" T cells prior to infection (e.g., after responding to infection in a nearby tissue) had a significant
protective effect, even in the current model that does not explicitly model antibodies. This is consistent with
emerging studies that link T cell responses to patients with the best recovery'6%171.172,

As work on future versions progresses, teams will work in parallel on submodels to add, parameterize, and test
new model components. It will be important to balance the need for new functionality with the requirement for
constrained scope, while also balancing the importance of model validation with timely dissemination of results.
Thus, this preprint will be updated with every development cycle to invite feedback and community contributions.
Between cycles, the most up-to-date information about this model can be found at http://COVID-19.physicell.org.

Getting involved

To get involved, we welcome biological expertise, especially related to model assumptions, hypotheses, infection
dynamics, and interpretation of results. Mathematical contributions to the underlying model or model analysis
and data contributions for crafting, parameterizing, and validating model predictions are particularly sought.

We encourage the community to test the web-hosted hosted model at https://nanohub.org/tools/pc4COVID-19.
This model will be frequently updated to reflect progress, allowing the public to take advantage of this rapid
prototyping effort.

We avidly encourage the community to test the model, offer feedback, and join our growing coalition via Google
survey (https://forms.gle/12vmLR7aiMTHoD5YA), by direct messaging Paul Macklin on Twitter (@MathCancer),
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or by joining the pc4COVID-19 Slack workspace (invitation link). Updates will frequently be disseminated on
social media by Paul Macklin (@MathCancer), the PhysiCell project (@PhysiCell), the Society for Mathematical
Biology subgroup for Immunobiology and Infection Subgroup (@smb_imin), and others.

We also encourage developers to watch the pc4COVID-19 GitHub organization and to contribute bug reports
and software patches to the corresponding (sub)model repositories. See https://github.com/pc4COVID-19

We are encouraged by the fast recognition of the computational and infectious disease communities that we can
make rapid progress against COVID-19 if we pool our expertise and resources. Together, we can make a differ-
ence in understanding viral dynamics and suggesting treatment strategies to slow infection, improve immune
response, and minimize or prevent adverse immune responses. We note that this work will not only help us
address SARS-CoV-2 but will also provide a framework for readiness for future emerging pathogens.
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