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Abstract

We are far from having a complete mechanistic understanding of the brain com-
putations involved in language processing and of the role that syntax plays in those
computations. Most language studies do not computationally model syntactic structure,
and most studies that do model syntactic processing use effort-based metrics. These
metrics capture the effort needed to process the syntactic information given by every
word [9, 10, 25]. They can reveal where in the brain syntactic processing occurs, but not
what features of syntax are processed by different brain regions. Here, we move beyond
effort-based metrics and propose explicit features capturing the syntactic structure
that is incrementally built while a sentence is being read. Using these features and
functional Magnetic Resonance Imaging (fMRI) recordings of participants reading a
natural text, we study the brain representation of syntax. We find that our syntactic
structure-based features are better than effort-based metrics at predicting brain activity
in various parts of the language system. We show evidence of the brain representation
of complex syntactic information such as phrase and clause structures. We see that
regions well-predicted by syntactic features are distributed in the language system and
are not distinguishable from those processing semantics. Our results call for a shift in
the approach used for studying syntactic processing.

1 Introduction

Neuroscientists have long been interested in how the brain processes syntax. To date, there
is no consensus on which brain regions are involved in processing it. Classically, only a small
number of regions in the left hemisphere were thought to be involved in language processing.
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More recently, the language system was proposed to involve a set of brain regions spanning
the left and right hemisphere [14]. Similarly, some findings show that syntax is constrained
to specific brain regions [18, 24|, while other findings show syntax is distributed throughout
the language system |7, 13].

The biological basis of syntax was first explored through studies of the impact of brain
lesions on language comprehension or production 23] and later through non-invasive neu-
roimaging experiments that record brain activity while subjects perform language tasks, using
methods such as functional Magnetic Resonance Imaging (fMRI) or electroencephalography
(EEG). These experiments usually isolate syntactic processing by contrasting the activity
between a difficult syntactic condition and an easier one and by identifying regions that
increase in activity with syntactic effort [18]. An example of these conditions is reading a
sentence with an object-relative clause (e.g. “The rat that the cat chased was tired"), which
is more taxing than reading a sentence with a subject-relative clause (e.g. “The cat that
chased the rat was tired"). In the past decade, this approach was extended to study syntactic
processing in naturalistic settings such as when reading or listening to a story [9, 25, 43].
Because such complex material is not organized into conditions, neuroscientists have instead
devised effort-based metrics capturing the word-by-word evolving syntactic demands required
to understand the material. Brain regions with activity correlated with those metrics are
suggested to be involved in processing syntax.

We use the term effort-based metrics to refer to uni-dimensional measures capturing
word-by-word syntactic demands. A standard approach for constructing a syntactic effort-
based metric is to assume a sentence’s syntactic representation and estimate the number of
syntactic operations performed at each word. Node Count is popular such metric. It relies on
constituency trees (structures that capture the hierarchical grammatical relationship between
the words in a sentence). While traversing the words of the sentence in order, subtrees of the
constituency tree get completed; Node Count refers to the number of such subtrees that get
completed at each word, effectively capturing syntactic load or effort. Brennan et al. [9] use
Node Count to support the theory that the Anterior Temporal Lobe (ATL) is involved in
syntactic processing. Another example of an effort-based metric is given by an EEG study by
Hale et al. [25]. They show that parser action count (the number of possible actions a parser
can take at each word) is predictive of the P600, a positive peak in the brain’s electrical
activity occurring around 600ms after word onset. The P600 is hypothesized to be driven by
syntactic processing (to resolve incongruencies), and the results of Hale et al. [25] align with
this hypothesis.

Though effort-based metrics are a good proposal for capturing the effort involved in
integrating a word into the syntactic structure of a sentence, they are not reflective of the
entire syntactic information in play. Hence, these metrics cannot be used to study the brain
representation of syntactic constructs such as nouns, verbs, relationships and dependencies
between words, and complex hierarchical structure underlying phrases and sentences.

Constituency trees and dependency trees are the two main structures that capture a
sentence’s syntactic structure. Constituency trees are derived using phrase structure grammars
that encode valid phrase and clause structure (see Figure 1(A) for an example). Dependency
trees encode relations between pairs of words such as subject-verb relationships. We use
representations derived from both types of trees. We derive word level dependency (DEP)
labels from dependency trees, and we focus on encoding the structural information given by
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constituency trees since we want to analyze if the brain builds hierarchical representations of
phrase structure. We characterize the syntactic structure inherent in sentence constituency
trees by computing an evolving vector representation of the syntactic structure processed at
each word using the subgraph embedding algorithm by Adhikari et al. [4]. We show that our
syntactic structure embeddings — along with other simpler syntactic structure embeddings
built using conventional syntactic features such as part-of-speech (POS) tags and DEP tags
— are better than effort-based metrics at predicting the fMRI data of subjects reading text.
This indicates that representations of syntax, and not just syntactic effort, can be observed
in fMRI.

We also address the important question of whether regions that are predicted by syntactic
features are selective for syntax, meaning they are only responsive to syntax and not to
other language properties such as semantics. To answer this question, we model the semantic
properties of words using a contextual word embedding space [12]. We find that regions that
are predicted by syntactic features are also predicted by semantic features and thus are not
selective for syntax.

1.1 Scientific questions

We ask three main questions:

e How can we construct syntactic structure embeddings that capture the syntactic
structure inherent in phrases and sentences?

e Are these embeddings better at predicting brain activity compared to effort-based
metrics?

e Which brain regions are involved in syntactic processing and are they different from

regions involved in semantic processing?

1.2 Contributions

We make four main contributions:

e We propose a novel subgraph embeddings-based method to model the syntactic structure
inherent in phrases and sentences.

e We show that effort-based metrics can be complemented by syntactic structure embed-
dings.

e Using our syntactic structure embeddings, we find some evidence indicating that our
brain processes and represents complex syntactic information such as phrase and clause
structure.

e We find that syntactic processing appears to be distributed in the language network in
regions that are not selective for syntax.
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2 Methods

We first describe the syntactic features used in this study and their generation. All of the
features we use are incremental i.e. they are computed per word. We then describe our fMRI
data analyses.

2.1 Effort-based metrics

We use four effort-based metrics in our analyses - Node Count, Syntactic Surprisal, word
frequency and word length. Node Count is an effort-based metric popular in neuroscience.
To compute it, we obtain the constituency tree of each sentence using the self-attentive
encoder-based constituency parser by Kitaev & Klein [30]. We compute Node Count for
each word as the number of subtrees that are completed by incorporating this word into its
sentence. Syntactic Surprisal is another effort-based metric proposed by Roark et al. [37] and
is computed using an incremental top down parser [36]. Both of these metrics aim to measure
the amount of effort that is required to integrate a word into the syntactic structure of its
sentence. The word frequency metric is computed using the wordfreq package [39] as the Zipf
frequency of a word. This is the base-10 logarithm of the number of occurrences per billion
of a given word in a large text corpus. Finally, word length is the number of characters in
the presented word. The last two metrics approximate the amount of effort that is required
to read a word.

2.2 Constituency tree-based Graph Embeddings (ConTreGE)

Constituency trees are a rich source of syntactic information. We build three representations
of these trees that encode this information:

1. The largest subtree which is completed upon incorporating a word into a sentence (see
figure 1(B)) is representative of the implicit syntactic information given by the word.
Given that Node Count reduces all of the information present in these subtrees to just
one number, it is easy to see that it cannot effectively capture this information. POS
tags (categorize words into nouns, verbs, adjectives, etc.) also capture some of the
information present in these trees as they encode phrase structure to a certain extent.
But, they are incapable of completely encoding their hierarchical structure and the
parsing decisions which are made while generating them. In order to better encode
their structure, we first build subgraph embeddings of these completed subtrees called
ConTreGE Comp vectors.

2. We hypothesize that the brain not only processes structure seen thus far but also predicts
future structure from structure it already knows. To test this, we construct embeddings,
simply called ConTreGE vectors, using incomplete subtrees that are constructed by
retaining all the phrase structure grammar productions that are required to derive the
words seen till now, thereby allowing us to capture future sentence structure (in the form
of future constituents) before the full sentence is read (see figure 1 (C)). These subtrees
contain leaves that are non-terminal symbols unlike complete subtrees that only have
terminal symbols (words and punctuation) as leaves. In this context, a non-terminal
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symbol is a symbol that can be derived further using some rule in the phrase structure
grammar (ex. NP, VP, etc.). If incomplete subtrees are more representative of the
brain’s processes, it would mean that the brain expects certain phrase structures even
before the entire phrase or sentence is read. ConTreGE Comp and ConTreGE vectors
need to be built using accurate constituency trees constructed using the whole sentence.
Thus, we reuse the trees generated to compute Node Count to build them.

3. Further, the brain could be computing several possible top down partial parses that
can derive the words seen thus far (see figures 1 (D) and (E)) and modifying the
list of possible parses as future words are read. To test this hypothesis, we designed
Incremental ConTreGE (InConTreGE) vectors that are representative of the most
probable parses so far. For a given word, its InConTreGE vector is computed as:
v = Z?Zl e %W, where W; is the subgraph embedding of a partial parse tree built by
an incremental top-down parser (Roark 2001 CoLing) after reading the word and s; is
the score assigned to this partial parse that is inversely proportional to the parser’s
confidence in this tree.

A B C D E
S VBD S S S
/’\ be“fl"’ed /’\ /’ /‘
NP VP . NP \%3 . NP VP NP VP
NI‘\IP VBD/\NP l Nll\IP VBD/\NP Nll\lP \'I{ NI|\IP V H\/
Ha‘rry beli!aved Pll{P Halrry belileved Ha1rry belil:ved Ha|rry belileved

|

1t
Figure 1: Example of complete and incomplete subtrees and two possible partial parses:
Part A shows a sentence’s constituency tree generated by a self-attentive encoder-based
constituency parser [30] using all of its words. The largest completed subtree for “believed"
is shown in part B and the incomplete subtree generated till “believed" is shown in part C.
Incomplete subtrees are generally much deeper than complete ones. In parts D and E, we
can see two possible partial parses generated by an incremental top-down parser [36] only
using the words till "believed". We see that the POS tag assigned to "believed" is different
in the two parses.

To effectively capture the structure of all subtrees, we encode them using the subgraph
embeddings proposed by Adhikari et al. [4] which preserve the neighbourhood properties
of subgraphs. A long fixed length random walk on a subgraph is generated to compute
its embedding. Since consecutive nodes in a random walk are neighbours, a long walk can
effectively inform us about the neighbourhoods of nodes in the subgraph. Each node in a
walk is identified using its unique ID. So, a random walk can be interpreted as a “paragraph"
where the words are the node IDs. Finally, the subgraph’s embedding is computed as the
Paragraph Vector [31] of this paragraph that is representative of the subgraph’s structure.
Note that all of the subtrees of a given type (complete, incomplete or partial parse) are
encoded together. This ensures that all ConTreGE Comp vectors, all ConTreGE vectors and
all InConTreGE vectors are in our own spaces.
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-2,3, 0(1)0’ » 10001, 0.127, -1.674, 0.356,

1,2, 3, 10001, 3, 10001

NP VP . - 2 4 6 - g iﬂ 2?0 bg’ ;j’ ? ‘6‘- 5.454, -8.984, -7.595,
| P | P 54,2, 10008, 5,4,1,6, 4562, -8.215, 6.544,

NNP VBD NP 3 5 2 223 e 2.785,3.475, -7.997]
| | | |

Harry believed 10001 10002

Figure 2: Steps for encoding subtrees.

Figure 2 illustrates the subtree encoding process. First, every unique non-terminal in the
subtrees is mapped to a unique number (ex. S is mapped to 1, NP is mapped to 2, etc.) and
every terminal is mapped to a unique number that is representative of the order in which they
were presented (the first presented token is mapped to 10000, the second token is mapped to
10001 and so on). We did not map each unique terminal to a unique number (for instance,
we did not map all instances of "Harry" to one number) because a random walk through
the tree could give us word co-occurrence information and thus lead to the inclusion of some
semantic information in the vectors.

Every tree node’s label is then replaced by the number it was mapped to in the previous
step. The edge lists of these subtrees are supplied to the subgraph embedding generation
algorithm to finally obtain 15-dimensional vectors for every presented word. The length
of the random walks is set to 100000 and we use an extension of the Distributed Bag of
Nodes (DBON) model proposed by Le & Mikolov [31] for generating Paragraph Vectors
called Sub2Vec-DBON by Adhikari et al. [4]. The length of the sliding window is set to 5 and
the model is trained for 20 epochs. Since ConTreGE Comp, ConTreGE and InConTreGE
encode information about the neighbourhoods of all nodes in the constituency trees, they
can capture their hierarchical structure. Thus, brain regions predicted by these vectors are
likely to be involved in building and encoding hierarchical sentence structure.

2.3 Punctuation

We create one-hot binary vectors indicating the type of punctuation that was presented along
with a word (e.g. . or,). For example, a sentence might have ended with "Malfoy.". In
this punctuation-based feature space, the column corresponding to . will be set to 1 for this
word. While punctuation is seldom considered a syntactic feature, sentence boundaries are
highly correlated with changes in working memory load. These changes are bound to be a
great source of variability in the fMRI signal (as we will observe later). Failing to account for
sentence boundaries and working memory might be a source of confounding that has been
ignored in the literature.

2.4 Part-of-speech tags and dependency tags

We use two standard word-level syntactic features - POS and DEP tags. The POS tag of a
word is read off previously generated constituency trees. The DEP tag of a word (ex. subject,
object, etc.) correspond to its assigned role in the dependency trees of the presented sentences
which were generated using the spaCy English dependency parser [2]. We create one-hot
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binary vectors indicating the POS tag and the DEP tag of each word and concatenate them
to create one feature space which we refer to as simple syntactic structure embeddings.

2.5 Semantic features

We adapt the vectors obtained from layer 12 of a pretrained [1| cased BERT-large model [12]
to identify regions that process semantics. We use layer 12 because of previous work showing
that middle layers of sentence encoders are optimal for predicting brain activity |29, 40].
We obtain the contextual embeddings for a word by running the pretrained model only on
the words seen thus far, preventing the inclusion of future semantic information. Since a
presented word can be broken up into multiple subtokens, we compute its embedding as the
average of the subtokens’ embeddings. Using principal component analysis (PCA), we reduce
their dimensionality to 15 to match the ConTreGE vectors’ dimensionality.

2.6 fMRI data

We use the fMRI data of 9 subjects reading chapter 9 of Harry Potter and the Sorcerer’s
Stone [38], collected and made available by Wehbe et al. [41]. Words are presented one at a
time at a rate of 0.5s each. All the brain plots shown here are averages over the 9 subjects in
the Montreal Neurological Institute (MNI) space. Preprocessing details are in Appendix B.

2.7 Predicting brain activity

The applicability of a given syntactic feature in studying syntactic processing is determined by
its efficacy in predicting the brain data described above. Ridge regression is used to perform
these predictions and their coefficient of determination (R? score) measures the feature’s
efficacy. For each voxel of each subject, the regularization parameter is chosen independently.
We use Ridge regression because of its computational efficiency and because of the Wehbe
et al. [42] results showing that with such fMRI data, as long as the regularization parameter
is chosen by cross-validation for each voxel independently, different regularization techniques
lead to similar results. Indeed, Ridge regression is a common regularization technique used
for predictive fMRI models |28, 33, 34, 41].

For every voxel, a model is fit to predict the signals Y = [y, 42, . . ., y»] recorded in that
voxel where n is the number of time points (TR, or time to repetition). The words are first
grouped by the TR in which they were presented. Then, the features of words in every group
are summed to form a sequence of features X = [x1, zs, ..., z,| aligned with the brain signals.
The response measured by fMRI is an indirect consequence of brain activity that peaks about
6 seconds after stimulus onset. A common solution to account for this delay is to express
brain activity as a function of the features of the preceding time points |28, 34, 41]. Thus, we
train our models to predict any y; using x;_1,x;_o,x;_3 and x;_4.

We test the models in a cross-validation loop: the data is first split into 4 contiguous
and equal sized folds. Each model uses three folds of the data for training and one fold for
evaluation. The brain signals and the word features which comprise the training and testing
data for each model are individually Z-scored. After training we obtain the predictions for
the validation fold. The predictions for all folds are concatenated (to form a prediction for
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the entire experiment in which each time point is predicted from a model trained without
the data for that time point). Note that since all 3 ConTreGe vectors are stochastic, we
construct them 5 times each, and learn a different model each time. The predictions of the 5
models are averaged together into a single prediction. The R? score is computed for every
voxel using the predictions and the real signals.

We run a permutation test to test if R? scores are significantly higher than chance. We
permute blocks of contiguous fMRI TRs, instead of individual TRs, to account for the
slowness of the underlying hemodynamic response. We choose a common value of 10TRs [11].
The predictions are permuted within fold 5000 times, and the resulting R? scores are used as
an empirical distribution of chance performance, from which the p-value of the unpermuted
performance is estimated. We also run a bootstrap test to test if a model has a higher R?
score than another. The difference is that in each iteration, we permute (using the same
indices) the predictions of both models and compute the difference of their R? and use the
resulting distribution to estimate the p-value of the unpermuted difference. Finally, the
Benjamni-Hochberg False Discovery Rate correction [6] is used for all tests (appropriate
because fMRI data is considered to have positive dependence [22]). To compute Region of
Interest (ROI) statistics, left-hemisphere ROI masks for the language system obtained from a
“sentence vs. non-word" fMRI contrast [15] are obtained from [3| and mirrored to obtain the
right-hemisphere ROlIs.

3 Results

Figures 3 and 4 summarize our results (Appendix A has the raw prediction results). Many of
our features have overlapping information. POS tags include punctuation, BERT vectors
have been shown to encode syntactic information [27] and ConTreGE vectors, built from
constituency trees, encode some POS tags information. To detect brain regions sensitive to
the distinct information given by a feature space, we build hierarchical feature groups in
increasing order of syntactic information and test for significant differences in performance
between two consecutive groups. We start with the simplest feature — punctuation, and then
add more complex features in order: the effort-based metrics, POS and DEP tags, one of
the ConTreGE vectors and the vectors derived from BERT (which can be thought of as a
super-set of semantics and syntax). At each step, we test if the introduction of the new
feature space leads to significantly larger than chance improvement in R2.

3.1 Syntactic structure embeddings are more predictive of brain
activity than effort-based metrics

Figures 3 (b)-(e) show that there are very few voxels that are predicted by the effort based
metrics when taken in isolation. Figures 3 (f)-(i) indicate that although the information
provided by the effort metrics combined is predictive of brain activity to some degree (when
controlling for punctuation), there is still a considerable amount of structural information
that is contained in the POS and DEP tags and in ConTreGE that predict additional portions
of the activity. These results are made even clearer by Figure 4. Many voxels have significant
increase in the R? scores (above what is predicted by the effort metrics) after including POS
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(g) {PD, EF, PU} (h){kCC, PD, EF, PU}
77—{EF, PU} -{PD, EF, PU}

(i){C, PD, EF, PU}  (j){INC, PD, EF, PU} (k){BERT,C,PD,EF,PU}
{PD, EF, PU} -{PD, EF, PU} -{C, PD, EF, PU}

Figure 3: The first plot shows the number of subjects for which a given voxel is significantly
predicted by punctuation (p < 0.05). The others show the number of subjects for which
the difference in R? scores between two feature groups is significant (p < 0.05). Here, PU
= Punctuation, NC = Node Count, SS = Syntactic Surprisal, WF = Word Frequency,
WL = Word Length, EF = All effort-based metrics, PD = POS and DEP Tags, CC =
ConTreGE Comp, C = ConTreGE, INC = InConTreGE, BERT = BERT embeddings and
‘{,}’ indicates that these features were concatenated in order to make the predictions. ‘-’
indicates a hypothesis test for the difference in R? scores between the two feature groups
being larger than 0. The distinct information given by syntactic structure-based features
is more predictive of brain activity than that given by effort-based metrics. The semantic
vectors are also very predictive and many well-predicted regions overlap with those that are
predicted by syntax.

and DEP tags and ConTreGE. We also notice that ConTreGE Comp is not as predictive as
ConTreGE;, hinting that future syntactic information helps in predicting current brain activity.
Additionally, InConTreGE is not as predictive as ConTreGE, suggesting that the top down
parser might be generating partial parses that are not reflective of brain representations.

3.2 ConTreGE results suggest that complex syntactic information
is encoded in the brain

In this section we analyze the information in ConTreGE to interpret its brain prediction
performance. We estimate how much of the constituency tree is captured by each feature
by using it to predict the level N ancestor of a word (in its constituency tree). We vary N
from 2 to 9 and train a logistic regression model for each N. Since POS tags are the level
1 ancestors of words, we start the analysis at N=2. Because there are many phrase labels,
we group them into 7 larger buckets - noun phrases, verb phrases, adverb phrases, adjective
phrases, prepositional phrases, clauses and other miscellaneous labels. Also, if a word’s depth
in its tree is less than N, the root is considered its level N ancestor.
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Figure 4: Region of Interest (ROI) analysis of the prediction performance. |Left] Language
system ROIs by Fedorenko et al. [15] from [3]. [Right| Percentage of significantly predicted
ROI voxels. Each bar represents the average percentage across subjects and the error bars
show the standard error across subjects. We use the same abbreviations as in Figure 3 and
see the same trends across ROIs.

Table 1 shows the results of this analysis. We use the constituency trees generated by the
Kitaev & Klein [30] parser. Given the skewed label distribution, the optimal strategy for a
predictor that takes random noise as input is to always output the majority class ancestor at
that level. Chance performance is thus equal to the frequency of the majority label. The
effort-based metrics are not as predictive as ConTreGE at any level. POS and DEP tags
are predictive of labels at all levels and produce the highest accuracies for lower levels. The
InConTreGE vectors are not as predictive as ConTreGE or ConTreGE Comp, hinting that
the top down parser might not be very accurate. ConTreGE is the best predictor of higher
level ancestors but ConTreGE Comp is better than ConTreGE at predicting lower level
ancestors. This may be because graph embeddings of a tree tend to capture more of the
information near the tree’s root (a random walk through a somewhat balanced tree is likely
to contain more occurrences of nodes near the root). ConTreGE Comp vectors, created from
shallow complete trees, likely over-represent lower level ancestors while ConTreGE vectors,
created from relatively deeper trees, likely over-represent higher level ancestors. Given that
ConTreGE is predictive of brain activity and contains information about the higher level
ancestors of a word, this suggests that the brain represents complex hierarchical syntactic
information such as phrase and clause structure.

3.3 Syntax and semantics are processed in a distributed way in
overlapping regions across the language system

Our results indicate that syntactic and semantic information are processed in a distributed
fashion across the language network. While many regions are better predicted by semantic
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Feature Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | Level 7 | Level 8 | Level 9
Most Popular Label % 51 38.76 54.42 64.05 73.44 78.25 82.38 85.82
Node Count 51 42.6* 55.45%* 64.01 73.4 78.23 82.4 85.82
Syntactic Surprisal 50.21 41.48%* 54.42 64.05 73.44 78.25 82.38 85.82
Word Frequency 51 41.56* 57.13 66.58 76* 80.68 84.78 88.16
Word Length 50.99 39.18 54.42 64.22 73.44 78.28 83.31 88.68*

POS and DEP tags 92.23* | 71.27* | 67.06* 70%* 77.51% | 82.09* 86.26* 89.59*
ConTreGE Comp 66.76* 51.01%* 59.52%* 67.95% 77.28* 82.08%* 86.26* 89.68*

ConTreGE 52.91 45.42%* 57.37* 67.29 76.87* 82.3*% | 86.51*% | 90.39*
InConTreGE 52.46 45.59* 57.61%* 66.75 76.13 81.08 85.27* 89.1*
BERT Embeddings 52.18 45.73%* 58.62* 66.79 75.68 80.31 84.72 88.72

Table 1: 10-fold cross validation accuracies in predicting the ancestors of a given word.
* denotes accuracies significantly above chance (tested using Wilcoxon signed-rank test,
p < 0.01). POS and DEP tags best predict lower level ancestors while ConTreGE vectors
best predict higher level ones.

embeddings, there is a big overlap with those that are also predicted by syntactic features.

4 Discussion and Related Work

4.1 Syntactic representations

Apart from Brennan et al. [9] and Hale et al. [25], many others (ex. Boston et al. [§], Brennan
et al. [10], Frank et al. [17], Henderson et al. [26], Willems et al. [43]) use effort-based metrics
to study syntactic processing during natural reading or listening. However, a few studies
do explicitly encode syntactic structure: Wehbe et al. [41] find that POS and DEP tags are
the most predictive out of a set of word, sentence and discourse-level features. Moving away
from popular approaches that are dependent on effort-based metrics, we extended the work
of Wehbe et al. [41] by developing a novel graph embeddings-based approach to explicitly
capture the syntactic information provided by constituency trees. Our results showed that
these explicit features have substantially more information that is predictive of brain activity
than effort based metrics. Given these results, we believe that future work in this area should
supplement effort-based metrics with features that explicitly encode syntactic structure.

4.2 Syntax in the brain

Traditionally, studies have associated a small number of brain regions, usually in the left
hemisphere, with syntactic processing. These include parts of the inferior frontal gyrus (IFG),
ATL and Posterior Temporal Lobe (PTL) [18, 19, 24, 32|. However, some works point to
syntactic processing being distributed across the language system. Blank et al. [7] shows
that significant differences in the activities of most of the language system are greater when
reading hard to parse sentences than easier phrases.Wehbe et al. [41] use POS and DEP tags
to arrive at similar conclusions.

Previous work generally did not use naturalistic stimuli to study syntax. Instead, sub-
jects are usually presented with sentences or even short phrases that have subtle syntactic
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variations or violations. Regions with activity well correlated with the presentation of such
variations/violations are thought to process syntax [18]. Observations from such studies
have limited scope since these variations often cannot be representative of the wide range of
variations seen in natural language. This is possibly why such studies report specific regions:
it might be that the reported region is particularly sensitive to the exact conditions used.
By using one type of stimulus which evokes only one aspect of syntactic processing, syntax
might appear more localized than it really is. Our results support the hypothesis that it is
instead processed in a distributed fashion across the language system. We believe that our
results have a wider applicability since we use naturalistic stimuli and we leave for future
work the study of whether different syntactic computations are delegated to different regions.

Some studies have also doubted the importance of syntactic composition for the brain.
Pylkkénen [35] proposes that there is no conclusive evidence to indicate that the brain puts a
lot of weight on syntactic composition, and that even though studies (some with effort-based
metrics) have associated certain regions like the left ATL with syntactic processing, numerous
studies have later shown that the left ATL might instead be involved in a more conceptually
driven process. Gauthier & Levy [21]| showed that BERT embeddings which were fine-tuned
on tasks that removed dependency tree-based syntactic information were more reflective of
brain activity than those which contained this information. In contrast, our work uses purely
syntactic embeddings to show that we can indeed significantly predict many regions of the
language system. We attribute these differences in conclusions to our naturalistic stimuli and
word-by-word evolving representations of syntax. Pylkkénen [35]’s conclusions are mostly
based on studies that present a phrase with just two words (like "red boat"). Gauthier & Levy
[21] use data averaged over entire sentences instead of modeling word-by-word comprehension.
Since the syntactic structure of a sentence evolves with every word that is read, this approach
is not necessarily adept at capturing such information.

Furthermore, our analysis of the syntactic information contained in various features
highlighted that our ConTreGE vectors are good at encoding complex phrase or clause-
level syntactic information whereas POS and DEP tags are good at encoding local word-
level syntactic information. Several regions of the brain’s language system were predicted
by ConTreGE, hinting that the brain does indeed encode complex syntactic information.
Another potentially interesting observation is that including ConTreGE increases prediction
performance in the PTL and IFG by more than when we include POS and DEP tags (Figure
4) but not for the ATL and the Angular Gyrus (AG). These observations very loosely support
the theory by Matchin & Hickok [32] - that parts of the PTL are involved in hierarchical
lexical-syntactic structure building, the ATL is a knowledge store of entities and the AG is a
store of thematic relations between entities. This is because ConTreGE encodes hierarchical
syntactic information and word-level POS and DEP tags are very indicative of the presence
of various entities (various types of nouns) and the thematic relations between entities (verbs
associated with noun pairs). This hypothesis should be tested more formally in future work.

We also observe that ConTreGE is more predictive than ConTreGE Comp and InConTreGE
with the latter two being very weakly predictive. Thus, future syntactic information appears
to be very useful while predicting BOLD signals, indicating that that the brain anticipates
the eventual sentence structure while reading to a more accurate extent than an incremental
top down parser.
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4.3 Syntactic vs. semantic processing in the brain

Finally, our results support the theory that syntax processing is distributed throughout the
language network in regions that also process semantics. This theory is supported by other
studies [7, 13|. However, Friederici et al. [19] among others argue that syntax and semantics
are processed in specific and distinct regions by localizing the effects of semantic and syntactic
violations. Again, these differences might be due to the specialized stimuli and high statistical
thresholds that only reject the null hypotheses in the regions with the strongest effect size,
thereby precisely identifying small regions. A less conservative threshold might have revealed
a more distributed pattern without leading to type I errors.
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Appendix

A Raw prediction results

Figure 5 shows the prediction results obtained using each feature group. To be able to better
judge different levels of accuracy, instead of looking at the R? scores, we compute R?T, in
which we replace the positive R? values by their squared root, making them easier to resolve

visually, and the negative ones with 0.

a) {PU} b) {NC,PU} {ss PU} {WF PU}

‘ ‘ éf* ,

e) {WL, PU} f) {EF, PU} {CC PD, EF, PU}

ERLY ‘0

(i){C, PD, EF, PU}  (j){INC, PD, EF, PU} (k){BERT, C, PD, EF, PU}

Figure 5: Cross-subject prediction performance of all syntactic feature groups. The figures
show cross-subject average R** scores. Here, PU = Punctuation, NC = Node Count, SS —
Syntactic Surprisal, WF = Word Frequency, WL = Word Length, EF = All effort-based
metrics, PD = POS and DEP Tags, CC = ConTreGE Comp, C = ConTreGE, INC =
InConTreGE, BERT = BERT embeddings and ‘{,}’ indicates that these features were

concatenated in order to make the predictions.

B Acquiring and preprocessing the fMRI data

We obtained the raw data from Wehbe et al. [41]. This fMRI data is acquired at a rate of 2s
per image and comprise 3 x 3 x 3mm voxels. The data for each subject is slice-time and
motion corrected using SPM8 [5], then detrended and smoothed with an isotropic spherical
Gaussian kernel with a standard deviation of 3mm. The brain surface of each subject is
reconstructed using Freesurfer [16] and a grey matter mask is obtained. Pycortex [20] is used
to handle and plot the data. All subject results are converted to MNI space using pycortex.
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