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Abstract Recent studies of ASD have mostly supported the existence of heterogeneity and
genomic variation in ASD which have hindered and restrained development of any effective and
targetable treatment for a long time. As numerous studies have shown, both genetic and
phenotypic heterogeneity is presented in ASD, however, heterogeneity in genetic level is not fully
understood which is the key challenges for the further research. Even dozens of ASD
susceptibility genes have been discovered which is commonly accounting for 10 to 20 percent of
ASD cases, the internal complex combination of mutated genes that determine the epigenetic
factors of ASD is still not comprehensively recognized by the recent studies. First by discouraging
the traditional method that have been applied in most of the current research of diseases, this
research will then focus on dissecting the heterogeneity of polygenic diseases and analyzing with
an unconventional approach for acquiring Differently Expressed Genes (DEGs) in Gupta’s Dataset
that provided transcriptome of frontal cortex of ASD patients. Divide categories by using
unsupervised learning strategy, the results yielded by analyzing within clusters of ASD have
supported the feasibility of the attempts to use heterogeneity to reveal its underlying mechanism.
This study puts forward the inference that the heterogeneity of polygenic diseases will obscure
the molecular signals related to the disease, and at the same time attempts to use heterogeneity
to reveal the underlying mechanism.

Introduction
Autism Spectrum Disorder (ASD) is referred as a heterogeneous neurodevelopment disorder char-
acterized by a series of behavioral and physiological symptoms that mainly diagnosed by the im-
pairments in three key facets: language acquisition and verbal expression, social interaction, and
range of interests (Tordjman, 2012). About 1 out of 54 children has been identified with autism
spectrum disorder (ASD) according to estimates from CDC's Autism and Developmental Disabili-
ties Monitoring (ADDM) Network. The heritability of ASD has been studied in a lot of research, but
all these findings can only illustrate less than 20% genetic mechanism (El-Fishawy et al., 2010), and
we still need to invest a lot of exploration.

There is a high level of variation between individuals diagnosed with autism. The phenotypic
heterogeneity of ASD is noticeable at every aspects, ranging from the profile to the severity of
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sensory features—the various range of sensory symptoms in individuals ASD patients that can en-
compass hyper-responsiveness, hypo-responsiveness, and unusual sensory interest (Al-Sadi et al.,
2015; Schauder and Bennetto, 2016). As numerous studies have shown, both genetic and pheno-
typic heterogeneity is presented in ASD, indicating the high level of variation between each patient
diagnosed with autism. However, heterogeneity typically in genetic level is not fully understood,
which also brings complexity to the research.

Genome-wide investigations support a complex genetic architecture based on major genes and
polygenic factors having different extent of contribution across the ASD spectrum. Several etiolog-
ical hypotheses for ASD exist, as for example altered synaptic dysfunction leading to an imbalance
of excitatory and inhibitory neurotransmission, although a unifying etiological theory is still miss-
ing. Abnormalities in brain tissue at the molecular level, including transcriptional and splicing dys-
regulations, have been shown to correlate with neuronal dysfunctions. A recent meta-analysis of
blood-based transcriptome investigations in ASD remarks the hypothesis of1 implication of the
immunologic function(Tylee et al., 2017).

Comparing to the phenotypic heterogeneity, genetically heterogeneous difference is more likely
to worth an insight as it will set forth a preciser investigation and deduction in regards of the eti-
ology and pathophysiology of ASD. Currently, genetic etiology is not comprehensively recognized.
In the past decade, dozens of ASD susceptibility genes have been discovered which is commonly
accounting for 10 to 20 percent of ASD cases in which the de novo and heritable Copy numbervari-
ations (CNVs) are the two that mainly being identified as they accounts for about 10% of randomly-
occurred ASD. A variety of genomic analyzing methods adequately demonstrated that the distur-
bance of core biological pathways (BP) are predominantly related to other relevant neurodevelop-
ment abnormalities. Plenty evidences for converged molecular pathways are suggested in many
current studies that other than convergent brain pathways, there are also a significant conver-
gence to the extent of molecular mechanisms of ASD (Geschwind, 2008; Karthik et al., 2014). Even
through the emergence of the considerable genetic heterogeneity that supported by dozen genetic
linkage studies, it has often resulted in identification of non-overlapping interested areas and lead
to failures for formally replication of autism linkage discovery about the genome-wide understand-
ing(Dao et al., 2017).

The investigations on post-mortem tissue from ASD patients have shed light on the molecular
mechanisms underlying the disorder at brain level, confirming the importance of transcriptional
analysis in disease characterization. However, the search for a reliable molecular signature for ASD
based on peripheral samples, which might help clinicians in early diagnosis and in the identification
of ASD subgroups, is still ongoing. Several attempts in this direction have been performed by gene
expression analysis of lymphoblastoid cell lines. Overall, these studies suggest the implication of
several signaling pathways and the immune response in ASD, but a consistent set of diagnostic
biomarkers remains elusive.

In neurodevelopment disorders, causality of multiple mutations in general transcription fac-
tors gives rise that changes in the general quantity of gene expression regulation may associate
with disease risk in random cases of autism. By assessing alternation in the net distribution of
gene expression, the premise in the above statement can be tested (Masi et al., 2017). Hence, the
fundamental challenge needed to be overcome in making progress in investigation of treatments
for ASD is the heterogeneity, ranging from determining the hidden heritable genetic information of
ASD and dissecting the epigenetic factors more thoroughly in individuals to attempting to converge
different possibility of the combined expression of genetic forms of ASD to obtain a controllable
set of targetable metabolism pathways for the treatment (Meltzer and Van de Water, 2017). That
is why any significant progress in the effective treatments of ASD are hindered and refrained. Re-
search shown that there are more than 100 gene mutations associated with autism with a high risk
in which every single mutation partaking for only a minor selection of cases.

Accordingly, there was significant heterogeneity in all aspects of ASD, including onset time,
course of disease, symptoms, and developmental outcomes (Van Gent et al., 1997). Most investiga-
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tions on heterogeneity of ASD is grounded on the observation of phenotypic behaviors of patients
in which 10 subtypes are mostly well-established based on clinical behavioral presentation of the
disorder.

Secondly, most of the recent studies on RNA-Seq of ASD patients are based on the assumption
of gross similarities between controls and patients, which clustering all ASD patients as a group
which supposition of no genetic heterogeneity presented in between ASD patients. To be spe-
cific, the first attempting of my research is using statistics from GEO Dataset ‘GSE25507' (Masi
et al., 2017) in which more than 47,000 RNA transcriptome profiled by microarrays were purified
from peripheral blood lymphocytes with autism (N = 82) and controls (N = 64). While analyz-
ing this dataset, the results—obtained by the cell deconvolution method which is performed by
WGCNA—turn out to be unsatisfying: signals of any differential expression genes are manifestly
low. Clearly, the genetic complexity and heterogeneity should be taken into account in respects
with determining the differential expression genes of ASD for uncovering of the etiological mecha-
nisms of ASD. Therefore, the conventional approach of using statistics of controls and ASD patients
for any inquisition in conducting research is seemingly inappropriate as for its fine-grained signal
and value due to the significant heterogeneity of ASD.

Reflecting from the above substantiation of current research, my research will be viewing from
a different direction based on the internal structure of the transcriptome profiles. ASD relative
frontal cortex samples were divide categories by unsupervised learning strategy, according to the
heterogeneity of the data. Through a new perspective, some well-known autism-related genes that
hidden in previous transcriptome-based study, like PAX6, GLI2, HFE, AHI1, OXTR, CACNA1G can also
be well revealed.

Results

To further support the existence of heterogeneity of ASD that hinder the progress of research and
is unfitting for the traditional way, three frontal cortex tissue transcriptomes are collected from
published research. Two micro-array datasets (GSE28475 & GSE28521) and one RNA-sequencing
dataset (Gupta's) are downloaded and preprocessed by a consistent cutoff (see Method).

Autism-relative signatures are hidden in conventional study.
Pairwise correction analysis shown that the quality of each dataset is relatively high (Figure 1), and
the samples are comparable. The Pearson’s R correlations between all samples combinations are
greater than 0.7. Samples were clustered by their similarity and visualized by dendrogram, and
each sample was label by the diagnosis information, autism samples or control samples. Autism
and control samples are not well separated in the three datasets (Figure 1A-C)). This indicate that
the overall feature of the transcriptome fail to reflect the difference between patients and normal
people. Therefore, we need to compare the autism group with the control group locally, that is, to
compare transcriptome profile gene by gene. Analytical strategies based on statistical models are
often used to discover the differentially expressed genes (DEGs) between two sets of samples.
Thus, these three data were used respectively to find the DEGs by comparing between autism
and control, and the genes that differ significantly, with a p-value ranked in the top 1000, were
taken out. Only 82 genes have been observed in more than two studies, and only 2 genes have
been observed in more than three studies. (Figure 1D)) The fraction of overlapped genes are lower
than the null hypotheses, a random sampling process. Even though previous studies have found a
tiny fraction of DEGs related to autism, to some extent, most of these genes are not universal and
general and fail to reflect the characteristics of autism. Finally, it's supported that the conclusion
drawn by the previous studies may be skewed by the noisy signal, whereas the real transcriptome
signature of autism still remains hidden and also explain why researches frequently yielded results
in identification of non-overlapping interested areas.
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Figure 1. The difference between autism patient and control group in the transcriptome cannot be
distinguished by conventional analysis. Heatmap in panel A, B and C are showing the pairwise correlation
between every two samples in Dataset GSE28475, GSE28521 and Gupta respectively. Autism and control
samples are labelled orange and grey respectively. The dendrogram is representing the similarity among the
samples. D) The numbers of overlapping DEGs among three datasets are shown in Venn's Diagram.
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Figure 2. The heterogeneity of samples are measured by Coefficient of Variation (CV). The expression
data are categorized by diagnosis types. A-C. The variance in the expression level among different samples
for each gene is shown by violin plot. D-F. The variance in the expression level among different genes for each
sample is shown by box plot. The p-value is annotated on each panel.

The heterogeneity among autism cases is considerable.
To explain why the transcriptome cannot reflect a common characteristics of autism cases, and
why the results of previous studies are so different, we speculate that the autism cases are very
heterogeneous. The heterogeneity of biological samples is already a widely accepted concept in
tumor research, but it is still well considered in the research of autism

The coefficient of variation (CV) is used as a measure of the heterogeneity. The usage of CV in-
stead of variance is due to the immense differences in expression levels among genes, and CV was
the variation after correction of the mean value, therefore, CV could provide a better and thorough
expression about the data. Firstly, transcriptome profiles are split into autism group and control
group. Then, both CV among samples and CV among genes were calculated. CV among samples
for each gene (Figure 2A-C) indicate from a local perspective, that some genes have indeed under-
gone dysregulation. The p-values are all less than 2.22 x 10~!¢. CV among genes for each sample
(Figure 2D-F) indicate from a global perspective, that autism-related transcriptome are deviated
from the normal state. These results imply that heterogeneity cannot be ignored in autism study.
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Heterogeneous genes are associate with autism signature.

Autism is a multiple gene disease, and each gene basically only contributes a small part of the phe-
notype, and the abnormalities of some genes are not enough to trigger the occurrence of disease.
Thus, comparison between autism case with control group is not sufficient to reveal all the disease
relative signatures in case of small dataset(Figure 3A).

The transcriptome profiles can be viewed from a different direction based on unsupervised
clustering strategy. ASD relative frontal cortex samples were divide categories according to the
heterogeneity of the data. Of the three datasets, we choose Gupta’s dataset which is based one
RNA-sequencing method, and the quality is higher than another two datasets that based on micro-
array method. Looking into details about Gupta’s dataset, firstly, to reduce dimensions in datasets
that close to its intrinsic dimension and produce a new readable visual dataset with lesser num-
ber of dimensions, | applied Principal Component Analysis (PCA) with technique tsne, spaced into
dataset of autism group of Gupta's dataset into two-dimensional (fig. 3B,C). Verifying with two
clustering techniques (kmeans clustering, hierarchical clustering), two clusters of autism samples
have clearly demonstrated, differentiating by color blue and orange which respectively represent
Cluster 1 and Cluster 2. Indicating from the two clusters shown in transciptome of brain tissue
cortex autism samples of Gupta's dataset, the genetic heterogeneity of ASD was supported and
been introducing in this dataset. The running of unsupervised learning method into cluster anal-
ysis, helped this exploratory data analysis better in finding hidden patterns or grouping in data
accurately and precisely.

Arranging the two clusters discovered into two groups for further analysis, the database was
utilized to attain the DEGs within two subgroups of autism. By plotting the volcano plot (Figure 4A),
164 down-regulated and 640 up-regulated gene are found. Enriching the found DEGs on their re-
spective pathway by GO and KEGG enrichment (Figure 4B,C) , these DEGs can enriched in pathways
and function module that relate to immune system, epidermal cell differentiation, visual percep-
tion and sensory perception of light stimulus (Dakin and Frith, 2005; Milne et al., 2009; Kikkawa
et al., 2019; Moreno et al., 2014). All the term have been reported to be closely related to the
emergence of autism.

Hidden autism signatures can be revealed by heterogeneity-based clustering.
Some well-known autism-related genes that hidden in previous transcriptome-based study, like
PAX6, GLI2, HFE, AHI1, OXTR, CACNA1G can also be well revealed (Figure 5). Manipulating these six
DEGs found within Clusters 1 and 2 of autism, we map these genes on the box plot but compare
between autism and control. Not surprisingly, all of the six genes shown no significant difference
in expression between autism and controls.

For example, PAX6 has an essential role in formation of tissues and organ in embryonic stage
of development and expressed in regions like the olfactory bulbs, epithalamus, the ventral thala-
mus, striatum and amygdaloid complex during developing phrase of brain that controls brain and
nervous tissue development and gliogenesis. PAX6 was also discovered for a new function as a
chromatin modulator that changes the chromatin position of ASD genes in which lead to various
phenotypes of ASD and other relative neurodevelopmental disorders. (Umeda et al., 2010; Scott
and Deneris, 2005; Gebril and Meguid, 20117). GLI2 is one of the subclass of the GL/ family zinc fin-
ger 2 which regards as a strong oncogenes in the embryonal carcinoma cell, having an important
function when embryogenesis takes place (Valente et al., 2006). HFE gene besides discovered on
the surface of intentional and liver cells, but also on immune system cells (Wu et al., 2005). AHI1
is a gene regulates the function of cerebellar and other parts of the brain. It is reported to lead
to Joubert, a inherited disease of brain development (Strom et al., 2010). OXTR is a well studied
gene which related to autism. Large amounts of research has supported that OXTR regulates the
behavior of social recognition (Coutelier et al., 2015). CACNATG is a T-type Cav3.1 regulation gene,
related to development from fetal to human brain (Careaga et al., 2010; Ritchie et al., 2015a).

As can be seen from the above listing of the functions of the found six DEGs, there is conspic-
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Figure 3. t-—-SNE clustering revels heterogeneity in transcriptome profiles of prefrontal cortex. (A)
Diagram illustrated the complexity in study polygenic diseases. (B) k-means clustering of the expression
profile in which each dot represents a single individual.Upset plot for the number of scarring paths detected
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uous finding in common for almost all of the DEGs which their collective correlation with early
and embryonic development, especially early development of innate immune system which some
studies have recognized Gu et al. (2076). Seen the aspects of early and embryonic development,
current research did not have much effort been made, but it's worth a deeper insight into other
facet of embryonic development, other than immune system.

Discussion

A variation of complex genetic and non-genetic aspects partake in the etiology of ASD. Concluding
from the result yielded from above analysis, the characteristics of ASD as a polygenic diseases that
caused by its internal complex combination of etiology is vastly substantial. For certain combina-
tions of specific risk genes, if they are dysregulated at the same time, it can lead to autism. In the
case of a small sample size, each individual may have its own pattern.

As can be evidently demonstrated, the variation within ASD is relatively high, and the patho-
genesis of ASD patients is diverse. To be specific, the abnormality in regulation of one gene may
not likely to affect the expression of symptoms of ASD, even if the gene is confirmed to have cor-
relation with ASD. Therefore, it can be reasonably interpreted that the etiology is polygenic which
a certain combination of gene dysregulation become a causative factors will result in a particular
symptoms or subtypes of ASD.

To support the statement that heterogeneity of polygenic diseases complicate the molecular
signals related to the disease, the sketch map (Fig.3 A) is plotted that simulate the high-risk mutated
gene which is labels with letters in the red boxes. Normally, the procedure of conventional studies
will first cluster the groups by controls and autism, followed by calculating the difference in gene
expression index for tracking down potential the DEGs. However, as the heterogeneity of polygenic
diseases is presented, each of the mutated gene is only accounting for a small fraction of cases.
Although Gene loci D is a high-risk ASD related gene, shown in Fig.3 A, the only mutation of loci
D will not affect the individual to become autistic, indicating by the second members of control
group. Due to the polygenic characteristics of ASD, only by jointly mutating of ASD related gene
at particular amount, the phenotypic traits of ASD will then expressed. Reasonably inferred from
the explanation, in certain dataset, there is no significant difference in frequencies of abnormal
expression of loci D. Therefore, by using the conventional differential genes expression analysis,
it is unlikely that Loci D is correctly determined and identified on transcriptome level because of
singular mutation of one gene is inadequate for resulting in ASD. Due to the polygenic network of
ASD, the genes are deciding the phenotypic expression in different ways for different individuals.
Therefore, we can successfully reach the verification of the hypothesis — without the occurrence of
dysregulation of particular auxiliary gene, the symptoms may not be manifested even if the people
is carrying one of the gene that is confirmed to code for ASD.

Moreover, as can be inferred from the great variation of ASD, there is a random deviation of
trajectory for ASD patients whereas there will be only one trajectory for the normals, leading to
the genetic heterogeneity of ASD. This is very similar to the tumorigenesis, which are caused by
deviations from the normal developmental trajectory, and there are many types of errors. At the
same time, the types of errors can be diverse. On the other hand, genes with high heterogeneity
may also be key nodes involved in the gene network of autism. By locating more heterogeneous
gene, such as PAX6, GLI2, OXTR, etc., we can understand the whole picture of of autism facilitated
by network analysis. This provides effective way for studying of complex diseases in-depth.

Hence, this research not only supports the genetic heterogeneity of ASD, but also discover an
unconventional approach to overcome the variation of ASD which conducive for the breakthrough
of studies of transcriptomes of ASD between by substantiating its high comparability within ASD
itself.
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Methods and Materials

Data acquisition.
This research exploit three publicly available datasets from previous studies that were retrieved
from public repositories.

Gupta's dataset:

The frozen brain samples obtained through the Autism Tissue Program were dissected and used
for RNA library construction and high throughput sequencing. Constructed library were sequenced
by lllumina HiSeq-2000 platform. Afterwards, the reads were mapped to human reference genome
(version GRCh37), and expression level of each gene was quantified by read counts. Manifold
cortical tissues are included in this dataset, but only the frontal cortex samples were selected to
minimize between tissue variability and also because frontal cortex is more relevant to ASD. 14
BA10 (anterior prefrontal cortex) and 28 BA44 (a part of the frontal cortex) samples are remained,
which resulted in a total of 17 control and 10 autism samples. For downstream analysis, the read
count table was firstly transformed in to FPKM (fragments per kilobase of exon model per million
reads mapped) table by customized R script.

GSE28475 dataset:

Postmortem frozen and formalin fixed brain tissue from autistic and control individuals were pre-
pared by standard RNA extraction protocol, and the expression profiles of each samples were
measured by Illumina HumanRef-8 v3.0 expression beadchip. Only frontal cortex samples (N=25)
of the micro-array expression data (N=143) used in this study, which resulted in a total of 17 con-
trol and 8 autism samples. The data was downloaded from Gene Expression Omnibus (GEO) under
accession number GSE28475. Expression table were log2 transformed and normalized with limma
(Ritchie et al., 2015b) package in R.

GSE28521 dataset:

Total RNA was extracted from approximately 100mg of postmortem brain tissue representing
frontal cortex, temporal cortex and the cerebellum, from autistic and control individuals. The data
was also downloaded from GEO data under accession number GSE28521. The expression profiles
of each samples were quantified by lllumina HumanRef-8 v3.0 expression beadchip, and were nor-
malized by a same pipeline as GSE28475 dataset. Only frontal cortex samples (N = 32) of the
micro-array expression data (N = 79) used in this study, which resulted in a total of 16 control and
16 autism samples.

Pairwise similarity comparison.

For each dataset, the expression profiles of every two samples were extracted, and similarity be-
tween them are calculated by Pearson’ R correction. The distance between two samples were
measured correlation distance, and the dendrogram were generated by hierarchical clustering.
The comparision plots were rendered by ComplexHeatmap package.

Transcriptome variability.

The expression table of each dataset was split into autism subset and control subset respectively.
For each pair, the coefficient of variations (CV) were calculated both for each gene and for each
sample. CV was defined as the standard deviation of the expression level divided by its average.
The significance of difference between autism and control subset was verified by Student's t-test.

Sample clustering.

Expression profiles were in Gupta’s dataset were clustered by t-SNE (t-distributed stochastic neigh-
bor embedding) strategy. For simplicity, the diverse profile can be divided into two main categories.
The samples were labeled by two unsupervised methods without the input of clinical information.
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k-means clustering and hierarchical clustering method showed consistent results. The analysis
were achieved by Rtsne package and some customized scripts.

Differential expression genes (DEGs) analysis.

13 samples in cluster 1 and 14 samples in cluster 2 were included in this analysis. Gene-level dif-
ferential expression was analyzed using limma package. In brief, a linear model was fit for each
gene given the expression table of Gupta’s dataset, least squares method was chosen in the fitting
process. Then the fitted model was re-orientates with a experimental design matrix, and the co-
efficients were re-calculated in terms of the contrasts. Empirical Bayes moderation strategy were
used to calibrate the t-statistics, F-statistic, and the odds ratio of differential expression genes. For
RNA-sequencing data, genes with an absolute fold change (FC) greater 2 and a p-value less than
0.05 were selected for the downstream analysis.

Functional enrichment.
DEGs were annotated by pre-defined terminologies such as Gene ontology (GO) and KEGG path-
way, and over-representation analysis (ORA) were performed by clusterProfiler package.
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