

1 Comparison of evertng sutures and the lateral tarsal strip with or without evertng sutures for
2 involutional lower eyelid entropion: A meta-analysis

3

4

5

6

7 Gyudeok Hwang¹, Hyo Sin Kim^{1†}, Jiyoung Lee^{1†}, Ji-Sun Paik^{1*}

8

9

10

11 ¹ Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul,
12 Republic of Korea

13

14

15

16

17

18 * Corresponding author:

19 E-mail: rollipopp@hanmail.net (JSP)

20

21 [†]These authors contributed equally to this work.

22

23

24

25

26 Abstract

27 There are three pathophysiologies of involutional entropion, vertical laxity (VL), horizontal laxity (HL),
28 and overriding of the preseptal orbicularis. The effects of methods to correct VL only, HL only, or both
29 VL and HL in patients with involutional entropion were compared using the published results of
30 randomized controlled trials (RCTs).

31 To find RCT studies that investigated methods to correct involutional entropion, a systematic search
32 was performed from database inception to April 2020 in the Medline, EMBASE, and Cochrane
33 databases. Two independent researchers conducted the literature selection and data extraction.
34 Evaluation of the quality of the reports was performed using the Cochrane Collaboration tool for
35 assessing the risk of bias (ROB 2.0). The data analysis was conducted according to the PRISMA
36 guidelines using Review Manager 5.3.

37 Two RCT studies were included in this meta-analysis. Surgery for involutional entropion was
38 performed on a total of 109 eyes. Evertting sutures (ES) were used on 57 eyes and lateral tarsal strips
39 (LTS) or combined procedures (LTS + ES) were performed on 52 eyes. At the end of the follow-up
40 periods, involutional entropion recurred in 18 eyes (31.6%) in the ES group and three eyes (5.8%) in
41 the LTS +/- ES group. Analysis of the risk ratio showed that the LTS +/- ES method significantly
42 lowered the recurrence rate compared to using ES only ($P = 0.007$).

43 Performing LTS +/- ES effectively lowered the recurrence rate of involutional entropion compared to
44 ES alone. However, some patients cannot tolerate more invasive corrections such as LTS. Therefore,
45 sequential procedures, in which ES is performed first and then when entropion recurs LTS +/- ES is
46 performed, or another methods depending upon the degree of HL may be used.

47

48 Keyword: Evertting sutures, Horizontal laxity, Involutional entropion, Lateral tarsal strip, Quickert
49 sutures, Vertical laxity

50

51 **Introduction**

52 Entropion is an eyelid malposition where the eyelid margin and eyelashes are turned toward the eyeball.
53 Entropion is divided into four types, cicatricial, congenital, acute spastic, and involutional [1].
54 Involutional entropion, also known as senile entropion, is most commonly observed in general
55 ophthalmic practice and increases in incidence with age [2, 3]. Also, the incidence of entropion in
56 Asians is higher than in non-Asians [4]. Patients with involutional entropion complain of dry eye
57 syndrome, superficial punctate keratopathy, chronic blepharitis, and chronic conjunctivitis [2]. Non-
58 surgical therapies such as the use of lubricating ointment, eyelid taping, and botulinum toxin injections
59 are used for the treatment of involutional entropion, but most are temporary treatments while the patient
60 awaits eyelid surgery, which is the definitive treatment [1, 5]. The causative factors of involutional
61 entropion are 1) vertical laxity of the lower eyelid, 2) horizontal laxity of the lower eyelid, and 3)
62 overriding of the preseptal orbicularis oculi muscle (OOM) [6, 7].

63 Various surgical methods have been attempted to correct each causative factor of involutional entropion.
64 The methods to correct vertical laxity of the lower eyelid include evertng sutures (ES), the Quickert
65 procedure, the Weis procedure, the Jones procedure, the Hotz procedure, lower eyelid retractor
66 advancement, and Bick's procedure. Lateral tarsal strips (LTS) and lateral wedge resection are used to
67 correct horizontal laxity of the lower eyelid and OOM transposition is a method of correcting overriding
68 of the pre-septal OOM. In addition, procedures combining these methods, such as ES with LTS or lower
69 eyelid retractor advancement with LTS, are also performed [5]. We performed a meta-analysis of
70 randomized controlled trial (RCT) results of the recurrence and complication rates after procedures
71 conducted to correct vertical laxity only, horizontal laxity only, or both in patients with involutional
72 entropion. In addition, we summarized all RCTs performed for involutional entropion and the results.

73

74 **Materials and Methods**

75 **Search strategy and study selection**

76 To identify RCTs comparing ES and LTS with ES or LTS only (LTS+/-ES) for involutional entropion,
77 a systematic search was performed from database inception to April 2020 in the Medline, EMBASE,
78 and Cochrane databases. To briefly describe the search strategy, the target diseases ‘involutional lower
79 eyelid entropion’, ‘involutional entropion’, and ‘senile lower eyelid entropion’, ‘senile entropion’,
80 which are used interchangeably, were used as the search terms. Among the searched articles, all RCTs
81 targeting involutional lower eyelid entropion were found and a meta-analysis was performed only for
82 RCTs comparing ES and LTS +/- ES. The selection criteria for the relevant studies were (1) randomized
83 controlled trials, (2) patients with involutional lower eyelid entropion, and (3) patients treated with ES
84 vs. LTS +/- ES. There was no restriction on the publication language of the articles if the abstracts were
85 in English. The exclusion criteria were (1) non-RCT trials, (2) other diseases, and (3) interventions other
86 than ES vs. LTS +/- ES.

87

88 **Data extraction**

89 Excluding data duplication, 351 articles were searched. Two investigators reviewed the titles and
90 abstracts independently and selected 158 potentially eligible studies. After that, a full-text review was
91 conducted. Disagreements in the literature selection were resolved by discussion between the two
92 investigators. Finally, two articles were selected [8, 9] (Fig 1).

93

94 **Fig 1. Flow diagram of studies included in this review.**

95

96 Information on the country where the study was conducted, the number and characteristics of the
97 participants, the follow-up period, and the number of surgeons was extracted from each article. The
98 outcomes were the number of recurrent patients and complications at each follow-up point. In this paper,
99 the term “end of study follow-up point” refers to the end of the trials or the last follow-up point of each
100 trial.

101

102 **Quality assessment**

103 A quality assessment of the included RCTs was performed with the Cochrane Collaboration tool for
104 assessing the risk of bias (ROB; ROB 2.0, version of 22 August 2019). Two investigators assessed the
105 ROB independently and resolved divergences through a consensus. Although blinding was not
106 mentioned in the abstract and full text and it is thought that the participants in the RCT studies knew
107 the aligned interventions in advance, the domain of ‘deviations from the intended interventions’ was
108 evaluated as ‘some concerns’ if the analysis process seemed to be performed as the protocol. If the
109 follow-up loss was more than 10% and analysis of the participant characteristics was not presented, the
110 domain of “missing outcome data” was evaluated as “some concerns.” Although it was not described
111 in the abstracts and full texts, the domain of “measurement of the outcome” was evaluated as high risk
112 if it was thought that the assessors knew the participants' aligned interventions in advance. The overall
113 ROB for each trial is presented in Table 1. The ROB for each domain analyzed using Review Manager
114 5.3 is presented in the graph in Fig 2 and the ROB summary is shown in Fig 3.

115

116 **Table 1. Characteristics of the included trials**

Trials	Country	Comparison arms (n)	Follow-up	Surgeons	Study design	Quality assessment
Nakos 2019	Greece	ES/LTS (28/26)	12 mo.	single	RCT	High risk of bias
Scheepers 2010	UK	ES/LTS+ES (29/26)	18 mo.	various	RCT	High risk of bias

117 ES, evertting sutures; LTS, lateral tarsal strip; RCT, randomized controlled trial; mo., months

118

119 **Fig 2. Risk of bias graph.** The reviewing authors' judgments on each risk of bias item in all included
120 studies are presented as percentages. “Unclear risk of bias” means “some concerns.”

121 **Fig 3. Risk of bias summary.** The reviewing authors' judgments on each risk of bias item in each
122 included study.

123

124 **Statistical analyses**

125 The outcome data were analyzed for recurrence and complication rates using Review Manager 5.3. In
126 this meta-analysis, the random-effects model and the Mantel-Haenszel method were used because
127 heterogeneity was suspected. The surgical methods used in each trial were not the same. One was ES
128 vs. LTS and the other was ES vs. LTS + ES. The end of the study follow-up times were 12 months and
129 18 months. For these reasons, the assumption that the different studies were estimating different, yet
130 related, intervention effects was applied [10]. Since the outcomes to be compared were dichotomous
131 variables classified as the presence or absence of recurrence, a risk ratio (relative risk) was used for
132 comparison. The I^2 statistic was used to evaluate the degree of heterogeneity. Moderate heterogeneity
133 was defined as an $I^2 > 25\%$ and severe heterogeneity was indicated by an $I^2 > 75\%$.

134

135 **Results**

136 **Characteristics of the included trials**

137 There were two trials in the two selected articles. One trial compared ES vs. LTS + ES and the other
138 one compared ES vs. LTS for involutional entropion (Table 1). Both trials were conducted in Europe,
139 Greece, and the UK. Interventions were performed on a total of 109 eyes. To correct vertical laxity
140 only, ES were used on 57 eyes. LTS used to correct horizontal laxity only or combined procedures to
141 correct both horizontal laxity and vertical laxity with LTS and ES(LTS +/- ES) was performed on 52
142 eyes. The smallest sample size was 26 eyes, the largest sample size was 29 eyes, and the median sample
143 size was 27 eyes. The follow-up periods in the trials were 12 months and 18 months.

144 None of the follow-up points in the two trials coincided with each other (Tables 2 and 3).

145

146 **Table 2. Recurrences at each follow-up point**

Trials	ES			LTS +/- ES		
	n (%)			n (%)		
	6 mo.	12 mo.	18 mo.	6 mo.	12 mo.	18 mo.
Nakos 2019	8 (28.6)	12 (42.9)		1 (3.8)	3 (11.5)	

Scheepers 2010			6 (20.7)			0 (0)
----------------	--	--	----------	--	--	-------

147 ES, evertng sutures; LTS, lateral tarsal strip; mo., months

148

149 **Table 3. Complications at each follow-up point**

Trials	ES			LTS +/- ES		
	6 mo.	12 mo.	18 mo.	6 mo.	12 mo.	18 mo.
Nakos 2019	0 (0)	0 (0)			1 (3.8)	
Scheepers 2010			2 (6.9)			0 (0)

150 ES, evertng sutures; LTS, lateral tarsal strip; mo., months

151

152 In the Nakos trial (2019) [8], entropion recurred in 12 of 28 eyes (42.9%) that underwent ES and three
153 of 26 eyes (11.5%) that underwent LTS after 12 months. In the Scheepers trial (2010) [9], recurrence
154 was observed in six of the 29 eyes (20.7%) that underwent ES, and recurrence was not observed in 26
155 eyes treated with LTS + ES (0%) after 18 months.

156 In the Nakos trial (2019) [8], no complications occurred among 28 eyes that underwent ES (0%), and
157 complications occurred in one of 26 eyes that underwent LTS (3.8%) after 12 months. In the Scheepers
158 trial (2010) [9], complications occurred in two of the 29 eyes that underwent ES (6.9%) and none of the
159 26 eyes that underwent LTS + ES (0%) after 18 months.

160

161 **Quality assessment**

162 The assessment of RCT quality using the Cochrane Collaboration tool (version 2.0; August 22, 2019)
163 for assessing ROB found that both trials had a high ROB (Table 1). In the last two selected articles,
164 there was no mention of blinding of the participants, surgeons, and assessors, and it seems likely that
165 they knew about the intervention assignments.

166

167 **Analysis**

168 The recurrence rate was compared at the end of the study follow-up points of each trial using Review
169 Manager 5.3 (Fig 4). At the end of the study follow-up points, 18 eyes (31.6%) in the ES group and
170 three eyes (5.8%) in the LTS +/- ES group experienced recurrences. The risk ratio for recurrence
171 between the ES group and the LTS +/- ES group was 4.37, and the recurrence rate in the LTS +/- ES
172 group was significantly lower than that in the ES group (95% confidence interval: 1.51 to 12.64 P =
173 0.007). Recurrences in the two trials showed low heterogeneity with $I^2 = 0\%$.

174

175 **Fig 4. Forest plots of the effect sizes for recurrences at the end of the study follow-up points.**

176

177 In the Nakos [8] and Scheepers trials [9], the risk ratios for recurrence between the ES group and LTS
178 +/- ES group were 3.71 (95% confidence interval (CI): 1.18 to 11.70, P = 0.02) and 11.70 (95% CI:
179 0.69 to 198.08, P = 0.09), respectively.

180

181 The complications were compared at the end of the study follow-up points of each trial (Fig 5). At the
182 end of the study follow-up points, complications occurred in two eyes in the ES group (3.5%) and one
183 eye in the LTS +/- ES group (1.9%), respectively. The risk ratio for complications between the ES group
184 and the LTS +/- ES group was 1.24. There were no statistically significant differences in the risk of
185 complications between the two groups (95% confidence interval: 0.09 to 17.11 P = 0.87). Moderate
186 heterogeneity was observed, with an $I^2 = 31\%$ for complications in the two trials.

187

188 **Fig 5. Forest plots of the effect sizes for complications at the end of the study follow-up points.**

189

190 In the Nakos trial [8], one patient in the LTS group developed an abscess in the lateral canthal area at
191 12 months. In the Scheepers trial [9], a suture-related granuloma was observed with two patients in the
192 ES group and no case of ectropion was observed. In the Nakos [8] and Scheepers trials [9], the risk
193 ratios for complications between the ES group and LTS +/- ES group were 0.31 (95% CI: 0.01 to 7.30,
194 P = 0.47) and 4.50 (95% CI: 0.23 to 89.62, P = 0.32), respectively.

195 A total of 10 RCTs have been performed on entropion to date. Except for the two articles included in
196 this meta-analysis, there was one unpublished RCT (ISRCTN 29030032), three RCTs for suture
197 materials, and four RCTs comparing surgical methods (Table 4).

198

199 **Table 4. Characteristics of the excluded randomized controlled trials**

Trials	Country	Comparison arms (n)	Follow-up	Surgeon	Summary of results
Suture materials					
Cartmill 2014	UK	ES using 5-0 Vicryl/7-0 Vicryl (21/21)	1 mo.	NA	Favors 7-0 Vicryl
Jensen 1983	Denmark	Celsus' technique using Dexon/Silk (29/20)	1 mo.	various	Favors Dexon
Singh 2008	Nepal	ES using silk/chromic catgut (25/25)	3 mo.	NA	Favors silk
Surgical methods					
Dulz 2019	Germany	QP [‡] /LTS+ES (36/30)	14 mo.	single	Similar
Jamison 2020*	UK	LTS+Jones/LTS+ES (15/16)	12 mo.	NA	Similar
Lopez-Garcia 2016	Spain	LTS/modified LTS (46/50)	6 yr.	single	Favors modified LTS
Xu 2015	China	OMS/OMS+Skin Ex. (63/63)	18 mo.	NA	Favors OMS+Skin Ex.

200

201 ES, everting sutures; NA, not available; RCT, randomized controlled trial; QP, Quickert procedure; LTS, lateral tarsal strip;
202 OMS, orbicularis oculi muscle shortening; mo., months; yr., year. * This trial result was from a comment on Nakos 2019, [‡]
203 This QP is for the correction of both vertical laxity and horizontal laxity.

204

205 Cartmill et al. [11] compared foreign body inflammatory responses in a group where 5-0 Vicryl (21
206 eyes) and a group where 7-0 Vicryl (21 eyes) was used to perform ES in a total of 42 eyes. The use of
207 7-0 Vicryl was found to significantly reduce the foreign body inflammatory response. Jensen et al. [12]
208 compared the success rate in a group where Dexon (29 eyes) and a group where silk (21 eyes) was used
209 when performing the Celsus technique in a total of 49 eyes and the success rate was not statistically

210 different between the groups. Although there was no significant difference, the study reported that the
211 immediate cosmetic satisfaction was increased and time consumption was reduced in the group sutured
212 using Dexon, an absorbable material. Singh et al. [13] compared the success rate and the cost of surgery
213 in groups using silk (25 eyes) or chromic catgut (25 eyes) for ES in a total of 50 eyes. Although there
214 was no statistically significant difference in the success rate between the two groups, the use of silk
215 significantly reduced the cost of surgery. Therefore, when selecting suture material for involutional
216 entropion surgery, it is better to use a thinner absorbable material, but the cost of surgery should be
217 considered in a country with low socioeconomic status.

218

219 Dulz et al. [14] performed a Quickert procedure, which corrects not only vertical laxity but also
220 horizontal laxity, on 36 eyes, LTS and ES simultaneously (LTS + ES) on 30 eyes in a total of 66 eyes.
221 The recurrence rates were compared and were not statistically significant between the two groups.
222 Jamison et al. [15], in a comment on the Nakos trial [8], compared the complications and recurrence
223 rates between a group (15 eyes) treated with LTS and the Jones procedure and a group (16 eyes) treated
224 with LTS and ES, for a total of 31 eyes. Because of the short-term follow-up period, subtle differences
225 were not revealed between the two groups. Lopez-Garcia et al. [16] compared the recurrence rate and
226 the changes in horizontal laxity between a group (46 eyes) treated with LTS and a group (50 eyes)
227 treated with modified LTS, for a total of 96 eyes. The modified LTS showed statistically significant
228 reductions in the recurrence rate and horizontal laxity. In a total of 126 eyes, Xu [17] showed that the
229 short-term effectiveness rate and long-term cure rates in the group (63 eyes) treated with the
230 combination of OOM shortening and skin excision were significantly increased compared to the group
231 (63 eyes) treated with OOM shortening alone.

232

233 **Discussion**

234 The ES technique introduced by Quickert & Rathbun [18] in 1971 is a method for correcting vertical
235 laxity. Several sutures are inserted through the conjunctiva, deep within the inferior fornix to evert the

236 lower eyelid [9]. The advantage of the ES technique is simplicity. Even in patients who cannot stop
237 anti-coagulation therapy, ES can be easily performed in outpatient clinics and can be applied to
238 bedridden patients in conditions making it difficult to enter operating rooms. The procedure can even
239 be performed by trained ophthalmic nurses [8]. Mohammed & Ford [19] performed nurse-led ES in 90
240 lids of 82 patients for involutional lower eyelid entropion at an outpatient clinic and showed a recurrence
241 rate of 20%. The disadvantage of the ES technique is its relatively high recurrence rate. In the case of
242 correction by ES only, the reported recurrence rates were 15% [20], 11.8% [21], and 49.3% [22].
243 The LTS technique introduced by Anderson & Gordy [23] in 1979 is a method for correcting horizontal
244 laxity. This technique is performed under local anesthesia, and initially, lateral canthotomy and inferior
245 cantholysis are performed to mobilize the lateral aspect of the eyelid. To prepare the outer tarsal strip
246 from the lateral edge of the eyelid, the anterior lamella, that is, the skin and orbicularis muscle, and the
247 lateral tarsus are separated, and the conjunctiva and the lid margin tissue are removed. Then, the
248 prepared outer tarsal strip is attached to the internal lateral orbital rim. The advantage of LTS is that it
249 has more rapid rehabilitation, better cosmetic results, and lower complications compared to other
250 surgical techniques used to correct horizontal laxity of the lower eyelid. [24] In addition, LTS shows
251 lower recurrence than ES. When LTS was combined with ES or Quickett's sutures or lower eyelid
252 retractor advancement (LERA), the recurrence rates were 18.2% [25], 12.2% [26], and 5.1% [27].
253 About 10 years ago, the first RCT paper [9] comparing the recurrence rates between ES and LTS + ES
254 was published, and nine years later, an additional RCT paper comparing the ES and LTS recurrence
255 rates was published. The meta-analysis of these two RCTs found statistically significantly lower
256 recurrence rates for LTS +/- ES than for ES for involutional entropion. The complication rates were not
257 significantly different from each other, and both surgical methods showed relatively low complication
258 rates of 0 – 6.9%. Therefore, to lower the recurrence rate in patients with involutional entropion,
259 horizontal laxity correction alone or a procedure combining LTS with or without ES, rather than
260 correcting only vertical laxity with ES is effective.
261 However, Lee et al. [28] evaluated horizontal laxity. LERA was performed on patients with involutional
262 entropion in Japan and the cases were divided into those with and without horizontal laxity. The

263 recurrence rate of the patients with horizontal laxity was 8.7%, but there were no recurrences in patients
264 without horizontal laxity after 22 months. In Korea, Jang et al. [22] reported that the recurrence rate
265 was 49.3% when only ES was performed for involutional entropion with horizontal laxity. However, in
266 China, Tsang et al. [21] reported a recurrence rate of 11.8% when only ES was performed for
267 involutional entropion without horizontal laxity. In the RCT conducted by Scheepers et al. [9], the
268 patients in the recurrence group had an average of 10.8 mm of horizontal laxity, more than the other
269 involutional entropion patients, although the average horizontal laxities of the ES group (9.6 mm) and
270 the ES+LTS group (9.5 mm) were not significantly different from each other.

271 That is, rather than performing LTS or LTS+ES for all involutional entropion cases, to lower the
272 recurrence rate, horizontal laxity should be evaluated first and the appropriate surgical method should
273 be selected accordingly. This is because there is an advantage of ES only, such as in cases where the
274 horizontal laxity is not severe or in patients whose conditions cannot tolerate more invasive horizontal
275 laxity correction, such as by LST. Consideration can be given to using sequential methods where ES is
276 performed first and then when the entropion recurs, horizontal laxity correction only or a combined
277 procedure is performed. Also, another method, such as ES for low horizontal laxity and LTS or LTS+ES
278 for higher horizontal laxity, dependent upon the degree of horizontal laxity may be considered.

279 In the two RCT studies selected for this meta-analysis, there was no mention of blinding, and all were
280 assessed as high risk of bias in quality assessment. It is more difficult to conceal group allocations in
281 surgical intervention RCTs than medication assignments in drug RCTs, but more rigorously designed
282 RCT studies are required to obtain more reliable results. In addition, although the characteristics of
283 entropion are different in Asians and non-Asians [4], the two RCT studies selected for this meta-analysis
284 were conducted only in Europe. Therefore, RCTs in Asian patients are necessary to confirm the results
285 reported here.

286

287 **Acknowledgments**

288 We gratefully acknowledge the help of Harrisco for providing editing services for this paper.

289

290

291

292 **References**

- 293 1. Pereira MG, Rodrigues MA, Rodrigues SA. Eyelid entropion. *Semin Ophthalmol*. 2010; 294 25(3):52-58. <https://doi.org/10.3109/08820538.2010.488573> PMID: 20590413
- 295 2. Damasceno RW, Osaki MH, Dantas PE, Belfort R, Jr. Involutional entropion and ectropion of 296 the lower eyelid: prevalence and associated risk factors in the elderly population. *Ophthalmic 297 Plast Reconstr Surg*. 2011; 27(5):317-320. <https://doi.org/10.1097/IOP.0b013e3182115229> 298 PMID: 21415800
- 299 3. Nishimoto H, Takahashi Y, Kakizaki H. Relationship of horizontal lower eyelid laxity, 300 involutional entropion occurrence, and age of Asian patients. *Ophthalmic Plast Reconstr 301 Surg*. 2013; 29(6):492-496. <https://doi.org/10.1097/IOP.0b013e3182a64f88> PMID: 24217480
- 302 4. Carter SR, Chang J, Aguilar GL, Rathbun JE, Seiff SR. Involutional entropion and ectropion 303 of the Asian lower eyelid. *Ophthalmic Plast Reconstr Surg*. 2000; 16(1):45-49. 304 <https://doi.org/10.1097/00002341-200001000-00009> PMID: 10674733
- 305 5. Marcket MM, Phelps PO, Lai JS. Involutional entropion: risk factors and surgical remedies. 306 *Curr Opin Ophthalmol*. 2015; 26(5):416-421. <https://doi.org/10.1097/icu.0000000000000186> 307 PMID: 26154839
- 308 6. Lin P, Kitaguchi Y, Mupas-Uy J, Sabundayo MS, Takahashi Y, Kakizaki H. Involutional 309 lower eyelid entropion: causative factors and therapeutic management. *Int Ophthalmol*. 2019; 310 39(8):1895-1907. <https://doi.org/10.1007/s10792-018-1004-1> PMID: 30315389
- 311 7. Miyamoto T, Eguchi H, Katome T, Nagasawa T, Mitamura Y, Crawford G. Efficacy of the 312 Quickert procedure for involutional entropion: the first case series in Asia. *J Med Invest*. 313 2012; 59(1-2):136-142. <https://doi.org/10.2152/jmi.59.136> PMID: 22450002
- 314 8. Nakos EA, Boboridis KG, Kakavouti-Doudou AA, Almaliotis DD, Sioulis CE, Karampatakis 315 VE. Randomized Controlled Trial Comparing Evertting Sutures with a Lateral Tarsal Strip for 316 Involutional Lower Eyelid Entropion. *Ophthalmol Ther*. 2019; 8(3):397-406. 317 <https://doi.org/10.1007/s40123-019-0189-3> PMID: 31127533

318 9. Scheepers MA, Singh R, Ng J, Zuercher D, Gibson A, Bunce C, et al. A randomized
319 controlled trial comparing evertng sutures with evertng sutures and a lateral tarsal strip for
320 involutional entropion. *Ophthalmology*. 2010; 117(2):352-355.
321 <https://doi.org/10.1016/j.ophtha.2009.06.056> PMID: 19875173

322 10. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986; 7(3):177-
323 188. [https://doi.org/10.1016/0197-2456\(86\)90046-2](https://doi.org/10.1016/0197-2456(86)90046-2) PMID: 3802833

324 11. Cartmill BT, Parham DM, Strike PW, Griffiths L, Parkin B. How do absorbable sutures
325 absorb? A prospective double-blind randomized clinical study of tissue reaction to polyglactin
326 910 sutures in human skin. *Orbit*. 2014; 33(6):437-443.
327 <https://doi.org/10.3109/01676830.2014.950285> PMID: 25244631

328 12. Jensen KB, Movin M, Eisgart F, Pugesgaard T. Absorbable intracutaneous skin closure after
329 skin resection in entropion operations. *Acta Ophthalmol (Copenh)*. 1983; 61(5):947-951.
330 PMID: 6362322

331 13. Singh SK, Das H, Lavaju P. Efficacy of lid evertng suture in the management of involutional
332 lower eyelid entropion using 4-0 silk versus 4-0 chromic catgut. *Nepal J Ophthalmol*. 2009;
333 1(1):37-42. <https://doi.org/10.3126/nepjoph.v1i1.3672> PMID: 21141020

334 14. Dulz S, Green S, Mehlan J, Schüttauf F, Keserü M. A comparison of the lateral tarsal strip
335 with evertng sutures and the Quickert procedure for involutional entropion. *Acta
336 Ophthalmol*. 2019; 97(6):e933-e936. <https://doi.org/10.1111/aos.14093> PMID: 30916886

337 15. Jamison A, Gilmour DF, Buchan J. Comments on: Randomized Controlled Trial Comparing
338 Evertng Sutures with a Lateral Tarsal Strip for Involutional Lower Eyelid Entropion.
339 *Ophthalmol Ther*. 2020; 9(2):365-367. <https://doi.org/10.1007/s40123-020-00238-w> PMID:
340 32096142

341 16. López-García JS, García-Lozano I, Giménez-Vallejo C, Jiménez B, Sánchez Á, de Juan IE.
342 Modified lateral tarsal strip for involutional entropion and ectropion surgery. *Graefes Arch
343 Clin Exp Ophthalmol*. 2017; 255(3):619-625. <https://doi.org/10.1007/s00417-016-3536-2>
344 PMID: 27817116

345 17. Xu QL. Clinical efficacy comparison of flabby skin excision combined orbicularis oculi
346 muscle shortening surgery in patients with senile entropion. *Int Eye Sci.* 2015; 15(7):1277-
347 1279. <https://doi.org/10.3980/j.issn.1672-5123.2015.7.48>

348 18. Quickert MH, Rathbun E. Suture repair of entropion. *Arch Ophthalmol.* 1971; 85(3):304-305.
349 <https://doi.org/10.1001/archopht.1971.00990050306012> PMID: 5542867

350 19. Mohammed BR, Ford R. Success rate of nurse-led evertng sutures for involutional lower lid
351 entropion. *Eye (Lond).* 2017; 31(5):732-735. <https://doi.org/10.1038/eye.2016.314> PMID:
352 28085138

353 20. Wright M, Bell D, Scott C, Leatherbarrow B. Evertng suture correction of lower lid
354 involutional entropion. *Br J Ophthalmol.* 1999; 83(9):1060-1063.
355 <https://doi.org/10.1136/bjo.83.9.1060> PMID: 10460776

356 21. Tsang S, Yau GS, Lee JW, Chu AT, Yuen CY. Surgical outcome of involutional lower eyelid
357 entropion correction using transcutaneous evertng sutures in Chinese patients. *Int
358 Ophthalmol.* 2014; 34(4):865-868. <https://doi.org/10.1007/s10792-013-9893-5> PMID:
359 24379170

360 22. Jang SY, Choi SR, Jang JW, Kim SJ, Choi HS. Long-term surgical outcomes of Quickert
361 sutures for involutional lower eyelid entropion. *J Craniomaxillofac Surg.* 2014; 42(8):1629-
362 1631. <https://doi.org/10.1016/j.jcms.2014.05.003> PMID: 24962041

363 23. Anderson RL, Gordy DD. The tarsal strip procedure. *Arch Ophthalmol.* 1979; 97(11):2192-
364 2196. <https://doi.org/10.1001/archopht.1979.01020020510021> PMID: 508189

365 24. Fradinho N, Pereira A, Rasteiro D, Sousa J, Tojo N, Martins J, et al. Lateral tarsal strip
366 technique for lower lid ectropion and entropion. *Int J Oral Maxillofac Surg.* 2013;
367 42(10):1322. <https://doi.org/https://doi.org/10.1016/j.ijom.2013.07.521>

368 25. Kreis AJ, Shafi F, Madge SN. Transconjunctival entropion repair - the backdoor approach.
369 *Orbit.* 2013; 32(5):271-274. <https://doi.org/10.3109/01676830.2013.815230> PMID: 23957757

370 26. Ho SF, Pherwani A, Elsherbiny SM, Reuser T. Lateral tarsal strip and quickert sutures for
371 lower eyelid entropion. *Ophthalmic Plast Reconstr Surg.* 2005; 21(5):345-348.

372 https://doi.org/10.1097/01.iop.0000179370.96976.ee PMID: 16234695

373 27. Chan JB, Looi AL. The Looi suture technique for anchoring the lateral tarsal strip to the

374 lateral orbital wall. Ann Acad Med Singapore. 2014; 43(5):263-266. PMID: 24919491

375 28. Lee H, Takahashi Y, Ichinose A, Kakizaki H. Comparison of surgical outcomes between

376 simple posterior layer advancement of lower eyelid retractors and combination with a lateral

377 tarsal strip procedure for involutional entropion in a Japanese population. Br J Ophthalmol.

378 2014; 98(11):1579-1582. <https://doi.org/10.1136/bjophthalmol-2013-304830> PMID:

379 24879812

380

382 S1 Appendix. PRISMA checklist

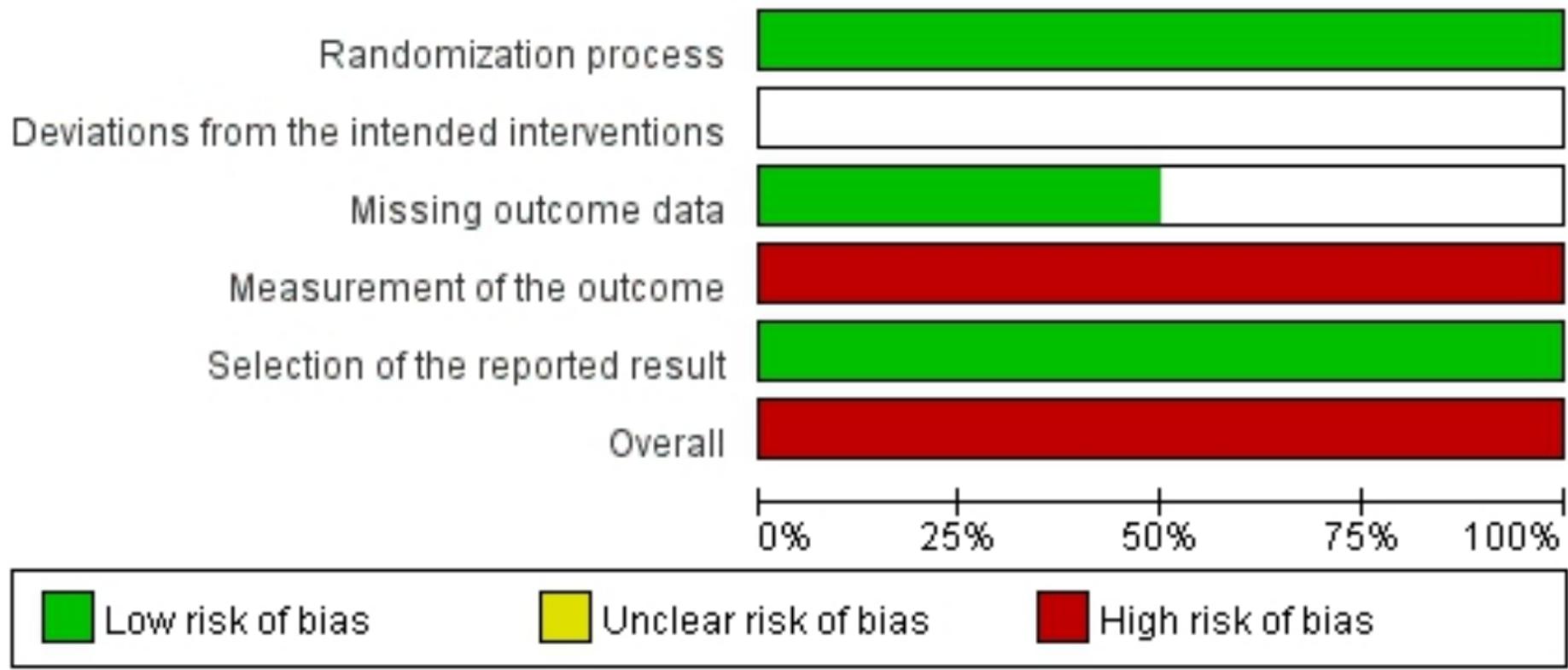


Figure 2

	Randomization process	Deviations from the intended interventions	Missing outcome data	Measurement of the outcome	Selection of the reported result	Overall
Nakos et al. 2019	+	?	+	-	+	-
Scheepers et al. 2010	+	?	?	-	+	-

Figure 3

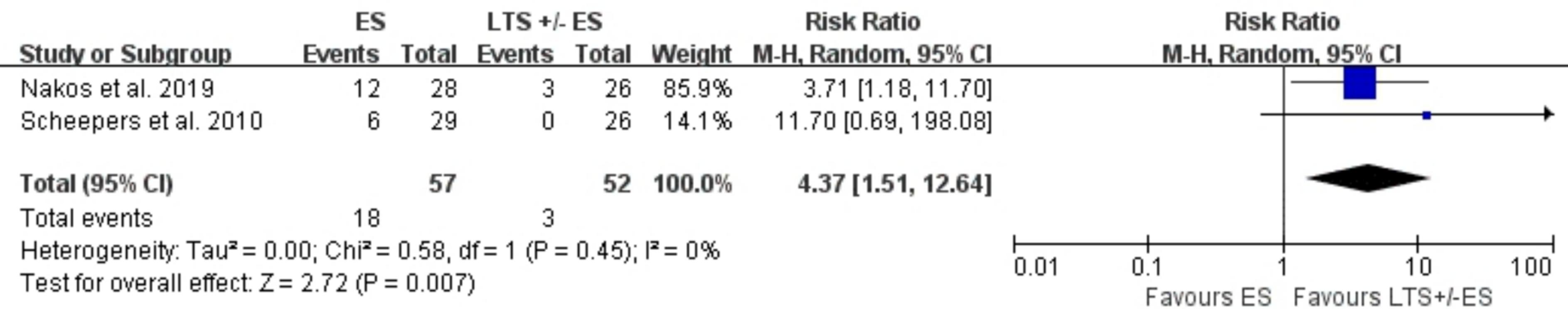


Figure 4

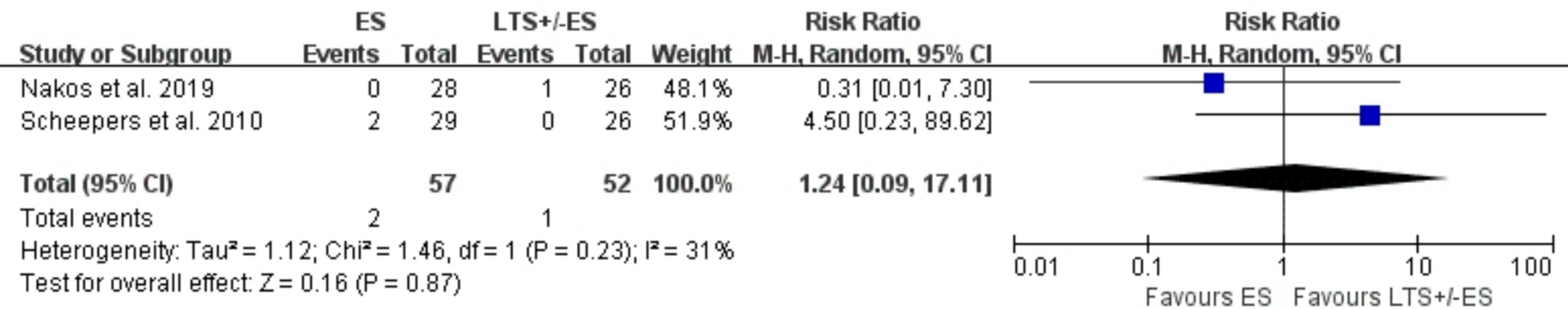


Figure 5

582 of records identified by systematic database searching

- PubMed: 281
- EMBASE: 284
- Cochrane: 17

bioRxiv preprint doi: <https://doi.org/10.1101/2020.12.30.424787>; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

351 of records after duplicates removed

347 of records screened

158 of full-text articles assessed for eligibility

2 of studies included in meta-analysis

231 of records removed with duplication

4 of records excluded in the first screening

- Animal(Not human): 3
- Non published RCT: 1

189 of records excluded

- Other diseases: 13
- Review, editorials, comments : 176

156 of records excluded in the second screening

- Single arm studies: 109
- Retrospective comparison: 27
- No extractable data: 13
- Other RCTs: 7

Figure 1