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Abstract

Estrogen receptor alpha (ER/ESR1) is mutated in 30-40% of endocrine resistant ER-
positive (ER+) breast cancer. ESR1 mutations cause ligand-independent growth and
increased metastasis in vivo and in vitro. Despite the distinct clinical features and
changes in therapeutic response associated with ESR1 mutations, there are no data
about their potential role in intrinsic subtype switching. Applying four luminal and
basal gene set pairs, ESR1 mutant cell models and clinical samples showed a
significant enrichment of basal subtype markers. Among them, the six basal
cytokeratins (BCKs) were the most enriched genes. Induction of BCKs was
independent of ER binding and instead associated with chromatin reprogramming
centered around a progesterone receptor-orchestrated topological associated
domain at the KRT14/16/17 genomic region. Unexpectedly, high BCK expression in
ER+ primary breast cancer is associated with good prognosis, and these tumors
show enriched activation of a number of immune pathways, a distinctive feature
shared with ESR1 mutant tumors. S100A8 and S100A9 were among the most highly
induced immune mediators shared between high-BCKs ER+ and ESR1 mutant
tumors, and single-cell RNA-seq analysis inferred their involvement in paracrine
crosstalk between epithelial and stromal cells. Collectively, these observations
demonstrate that ESR1 mutant tumors gain basal features with induction of basal
cytokeratins via epigenetic mechanisms in rare subpopulation of cells. This is
associated with increased immune activation, encouraging additional studies of

immune therapeutic vulnerabilities in ESR1 mutant tumors.
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Introduction

Breast cancer is characterized by a high degree of heterogeneity, originally
identified through the use of immunohistochemistry and gene expression profiling*?.
Broadly, molecular subtypes can be grouped into luminal (luminal A and luminal B),
HERZ2-enriched and basal-like tumors, primarily driven by expression of ER, PR and
HER2 and Ki67°3. Tumors with different molecular subtypes show distinguishing
clinical features and therapeutic responses*®, including metastatic spread and

immune profiles®’.

The basal-like subtype, which represents 15-25% of all cases and overlaps
with triple negative breast cancers (TNBC), is characterized by a unique gene
expression profile similar to that of myoepithelial normal mammary cells®. Basal-like
breast cancers are more aggressive and patients suffer from shorter metastases-
free survival compared to those with luminal subtypes®®. Mechanisms underlying
increased invasive properties of basal-like tumors include deregulation of the
CCL5/CCRS5 axis'®, amplified EGFR*! kinase signaling and activation of TGF-B
signaling™. Despite multiple signaling aberrations providing challenges for efficient
therapeutic strategies, recent studies have unveiled unique vulnerabilities of basal-
like breast cancers, such as higher levels of PD-L1 expression along with
constitutive IFNy signaling activation3, in line with higher immune- infiltration
scores®. While the FDA has granted an accelerated approval for atezolizumab, a
monoclonal antibody drug targeting PD-L1, plus chemotherapy for the treatment of
TNBC", the potential application of immune therapies for patients with luminal

breast cancer remains largely unknown.
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Among the four intrinsic subtypes, basal and luminal subtypes show opposite
histochemical features and notable differences in prognosis*>*®, however there is
increasing evidence that these subtypes are on a continuum of “luminal-ness” and
“basal-ness” features. Models of breast cancer lineage evolution describe that basal
and luminal progenitor cells are derived from the same bipotential progenitors®’,
indicating the potential of lineage reprogramming during cancer progression. Such
subtype switching during tumor evolution has been described and is critical for
implementation of precision therapeutics'®2°. A recent study by Bi et al. reported
loss of luminal and gain of basal markers in endocrine resistant breast tumors?*.
Mechanisms underlying the intrinsic subtype plasticity are largely unknown, with
some exceptions. JARID1B?* and ARID1A® have been described as essential
luminal lineage driver genes and their mutations result in luminal-to-basal subtypes
switches. In addition, enhancer reprogramming at GATA3 and AP1 binding sites has

been highlighted as a pivotal epigenetic mechanism allowing lineage plasticity?*.

ER is well characterized as a luminal lineage marker?*. Hotspot mutations in
its ligand-binding domain occur in 30%-40% of endocrine resistant breast tumors,
promoting ligand-independent ER activation and metastasis®>?’. Several recent
studies showed that ESR1 mutant tumors are not only associated with endocrine
resistance, but also gain unexpected resistance towards CDK4/6 inhibitors?®, mTOR
inhibitors®® and radiation therapy® in a mutation subtype and context dependent

manner, suggesting potentially more complex re-wiring of ER mutant tumors.

We set out to examine whether ESR1 mutations alter the “luminal-ness” and

“basal-ness” balance in breast cancer cell line models and clinical specimens. We
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discovered that ER mutant tumors gain basal-like features, characterized by
elevated expression of basal cytokeratins as a result of epigenetic reprogramming.
Immune context analyses in clinical specimens revealed potential therapeutic
vulnerabilities accompanying the increased basal-ness in ESR1 mutant breast

cancer, a finding of potential clinical relevance.
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Results
Basal gene signatures are enriched in ESR1 mutant breast cancer

To examine whether ESR1 mutations alter “luminal-ness” and “basal-ness”
we utilized four independent luminal and basal gene signatures (Fig. 1A,

Supplementary Table S1). Gene sets from Charafe-Jauffret et al.*

and Huper et
al.** were obtained from MSigDB (Supplementary Fig. S1A and S1B), and in
addition we generated two other gene sets from i) intrinsic subtype genes®
differentially expressed between luminal (n=33) and basal (n=39) breast cancer cell

34-36

lines (Supplementary Table S2) and ii) genes differentially expressed between
luminal and basal primary tumors in TCGA * (Supplementary Fig. S1C and S1D).
Although the overlap among the different gene sets was limited (Fig.1B), likely
reflecting differences in methodology and sources, some well described lineage

marker genes (e.g. ESR1 and FOXAL1 as luminal markers, and KRT6A and KRT16

as basal markers) were observed in 3 out of 4 gene sets.

As expected, all four basal gene sets were significantly enriched in basal
versus luminal breast cancer cell lines and tumors (Supplementary Fig. S2A and
S2B), and vice versa for luminal gene sets except for the Huper luminal markers,
likely due to its derivation from normal mammary tissue (Supplementary Fig. S2C
and S2D). We found concordantly increased enrichment of basal gene sets in
Y537S and D538G MCF7 ESR1 genome-edited mutant cells, whereas no
differences were observed in estrogen treated ESR1 wildtype cells (Fig. 1C). In
contrast, we did not observe a consistent change in the luminal gene sets (Fig. 1D).

The enrichment of the basal gene sets in the ESR1 mutant cells was also seen in an
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independent CRISPR-engineered MCF7 ESR1 mutant cell model recently reported
by Arnesen et al*® (Supplementary Fig. S3A) and in our T47D ESR1 mutant cells?’
(Supplementary Fig. S3B). Of note, no consistent and strong alterations of luminal

and basal gene sets enrichment levels were detected in ESR1 WT endocrine

resistant ER+ breast cancer cell models *+%%%°

(8 tamoxifen resistant, 2 fulvestrant
resistant and 7 long-term estradiol deprivation (LTED) models), suggesting that the
“basal-ness” shift is a unique feature acquired as a result of ESR1 mutations

(Supplementary Fig. S3C)*.

We next sought to extend our findings to clinical specimens using RNA-seq
data composed of 51 intra-patient matched ER+ primary-metastatic tumor pairs (7
ESR1 mutant and 44 ESR1 WT pairs) (Supplementary Table S3). Similar to
observations in cell lines, ESR1 mutant metastatic breast cancers showed a
significant enrichment of basal gene signatures compared to tumors with WT ESR1
(Fig. 1E). We did not observe a concurrent decrease of luminal markers (Figure 1F).
Taken together, these findings suggested a novel and unexpected gain of “basal-

ness” in ESR1 mutant tumors.

Basal cytokeratins are elevated in ESR1 mutant breast cancer cells and

tumors

We next interrogated the union of the four basal gene sets (N=634) to identify
which basal marker genes were consistently induced in ESR1 mutant breast cancer
cells. Integrating RNA-seq results from MCF7 cell models?’ and clinical samples

identified a group of basal cytokeratins (KRT5, KRT6A, KRT6B, KRT14, KRT16, and
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KRT17) as the top consistently increased basal markers (Fig. 2A, Supplementary
Fig. S4A and Supplementary Table S4). Elevated basal cytokeratins (BCKs) mRNA
levels were further confirmed in independent gRT-PCR experiment in ESR1 mutant
MCF7 cells (Fig. 2B). Analyzing fold-change expression of all basal markers in a

d?>2"38 revealed

number of MCF7 ESR1 mutant cell models previously describe
KRT5,16 and 17 as the top increased basal genes (Supplementary Fig. S4B-D). In
the T47D ESR1 mutant cells, KRT16 was significantly increased (Supplementary
Fig. S4E), but the observed enrichment of basal marker genes (Supplementary Fig.
S3B) was also driven by other non-canonical basal genes such as WLS and HTRA1

(Supplementary Table S5), suggesting some context-dependent mechanisms for the

increased basal-ness.

We also queried KRT expression in overexpression models. In MCF7 cells
with stable overexpression of HA-tagged WT and mutant ER (Y537S and D538G)
(Supplementary Figure S5A and S5B), we again observed significant
overexpression of KRT5, KRT6A, KRT6B, KRT16, and KRT17 (Supplementary Fig.

S5C).

Given higher BCK mRNA expression in ESR1 mutant cells, we examined
their expression at the protein level. We confirmed higher CK5 and CK16 protein
levels in early passage (P6-8) ESR1 mutant cells, but curiously expression was not
detectable in later passages (P30-32) (Supplementary Fig. S6A). This finding was
consistent with prior reports on slower growth of CK5+ sub-populations*’, reflecting
selection forces eliminating BCK-positive subclones from luminal cell populations. To

determine whether BCK expression was limited to minor sub-populations in ESR1


https://doi.org/10.1101/2020.12.29.424777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424777; this version posted December 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

available under aCC-BY-NC-ND 4.0 International license.

mutant cells, we performed IF staining for CK5, CK16 and CK17 in early passage
cells (below P12) (Fig. 2C). No BCK positive clones were identified in MCF7-WT
cells, while 0.5-1% of Y537S and D538G ESR1 mutant cells exhibited strong diffuse
cytoplasmic CK5/16/17 expression. In addition, 3-5% of ESR1 mutant cells
displayed strong BCK signals localized as foci adjacent to the nucleus
(Supplementary Fig. S6B), and this was again not observed in the WT cells.
Furthermore, co-staining of CK5+CK16 and CK16+CK17 showed that the BCK
proteins were predominantly (in 75%-90% imaged cells) upregulated in the same
sub-population of cells (Supplementary Fig. S6C and S6D). In contrast, luminal
cytokeratin CK8 was homogenously expressed with stronger expression at the
edges of each cell cluster (Supplementary Fig. S6E), suggesting that the marked
heterogeneity was a unique feature for BCK expression in the luminal cell

background.

BCK induction is independent of mutant ER DNA binding but requires low ER
expression

2627 "and we thus

Mutant ER can function in a ligand-independent manner
tested whether induction of BCKs resulted from ligand-independent ER activity. We
interrogated eight publicly available RNA-seq and microarray data sets with estradiol
(E2) treatment in six different ER+ breast cancer cell lines 22”*%>% |n contrast to
strong E2 induction of classical ER target genes such as GREB1, TFF1 and PGR,

expression of basal and luminal cytokeratins genes was not regulated by E2 with the

exception of KRT7 (Fig. 3A). We then examined whether BCK expression was
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regulated via de novo genomic binding of mutant ER at BCK genes. We performed
ChIP-seq in MCF7 WT and ESR1 mutant cells in the absence and presence of E2.
As expected, in the absence of E2 we detected very few ER binding sites in WT
MCF7 cells (n=125), whereas E2 stimulation triggered substantial ER binding events
(n=12,472) (Supplementary Table S6). Consistent with previous studies®?°, Y537S
and D538G ER show strong ligand-independent binding, with 657 binding sites in
Y537S and 1,016 in D538G mutant cells (Supplementary Fig. S7A). The GREB1
gene locus is shown as a representative example (Fig 3B, left panel). Co-
occupancy analyses between WT-E2 and mutant-vehicle sets demonstrated that
one third of all Y537S (36%) and D538G (31%) ER binding sites were not detected
in the WT+E2 data suggesting gain-of-function novel binding sites (Supplementary
Fig. S7B); however, none of them mapped to the BCKs genes with increased
expression in ESR1 mutant cells (-/+ 50kb of transcriptional start sites) (Fig. 3B,

middle and right panel).

We then expanded our analyses and examined potential estrogen-regulation
of all basal marker genes, again using the union of the four basal gene sets (N=634).
Comparison of E2 and ESR1 mutation-conferred fold changes of these genes in
MCF7 cells revealed that the top upregulated basal markers in ESR1 mutant cells
were not E2-induced (Supplementary Fig. S7C and S7D). In addition, only 20 basal
genes (3%) harbor mutant ER binding sites at -/+ 50 kb of TSS (Supplementary Fig.
S7E), and 18 of those were not differentially expressed between WT and mutant

cells (Supplementary Fig. S7F). Taken together, these analyses suggest that the

10
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shift to “basal-ness” in ESR1 mutant cells was not mediated via ligand-independent

binding of mutant ER to BCK gene loci.

To further understand interplay between ESR1 and KRT gene expression, we
determined expression of basal and luminal KRT genes in ER+ primary breast
tumors. As shown in Figure 3C, the six BCKs were significantly negatively correlated
with ESR1 expression, whereas the luminal KRT were mostly positively correlated
with ESR1 (Fig. 3C). Luminal KRT7 was again the exception, being negatively
correlated with ESR1 expression, in line with it being repressed by ER (Figure 3A).
The inverse correlation between BCK and ESR1 expression was also reflected in
results from ER knockdown experiments, in which loss of ESR1 significantly
increased expression of BCKs in MCF7 WT and mutant cells (Fig. 3D). Similar
results were obtained in five additional ER+ breast cancer cell lines where we
observed a general increase of BCK expression after ESR1 knockdown
(Supplementary Fig. S8). In addition, co-staining of ER and CK5/CK16/17 in MCF7
ESR1 mutant cells showed significantly lower ER expression in BCK+ cells than in
the surrounding BCK- cells (Fig. 3E). Collectively, these data demonstrate that ER
serves as a negative regulator of BCKs expression independent of ligand and
mutational status, and suggest that low ER expression is likely necessary but not
sufficient to facilitate BCKs overexpression in a subpopulation of ESR1 mutant cells.
These data also support a role for mutant ER in regulating BCK expression via
epigenetic regulation, a mechanism that we have recently shown to be used by

mutant ER .

11
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PR regulation of BCK expression through binding at a CTCF-driven chromatin

loop at the KRT14/16/17 loci in ESR1 mutant cells

To investigate potential epigenetic regulation of KRT5/6A/6B and
KRT14/16/17, we first compared their regional epigenetic landscapes on
chromosome 12 and 17, respectively, in luminal and basal breast cancer cell lines
and tumors (Supplementary Fig. S9). Integrative analysis of ATAC-seq and ChlIP-
seq profiles of H3K4me2, H3K4me3, H3K9ac and H3K27ac suggested that these
two regions are epigenetically silent in MCF7 (Supplementary Fig. S9A), consistent
with low expression. In basal breast cancer cell lines and tumors, there is an
enrichment of H3K27 acetylation (Supplementary Fig. S9B) and number of ATAC-
seq peaks (Supplementary Fig. S9C) at BCK loci, consistent with increased mRNA
expression (Supplementary Fig. S9E and S9F). This is also observed in ESR1

mutant cell models (Supplementary Fig. S9G).

We recently reported CCCTC-binding factor (CTCF) motif as one of the top
enriched motifs in unique ESR1 mutant-regulated accessible genomic regions*®. To
determine whether CTCF has a role in the epigenetic regulation of BCK, we
developed a CTCF gene signature by identification of the top 100 differentially
expressed genes before and after CTCF knockdown in MCF7°2 (Supplementary
Table S1). The positively correlated CTCF signature (i.e. using genes that were
repressed after CTCF knockdown) was significantly enriched in both MCF7 ESR1
mutant cells (Fig. 4A) and metastatic tumors (Fig. 4B) compared to their WT
counterparts, whereas E2 stimulation had no effect (Fig. 4A). CTCF is a multimodal

epigenetic regulator in breast cancer®, in part through generating boundaries of

12
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topological associating domains (TADs) and guiding of DNA self-interaction™”.
Mapping the genomic occupancy of CTCF and three other cohesion complex
members (RAD21, STAG1 and SMC1A) in MCF7 cells®>®’ (Fig. 4C) identified five
putative TAD boundaries at the KRT14/16/17 (Fig. 4D) loci and three at the
KRT5/6A/6B (Supplementary Fig. S10A) loci. Integration of an additional MCF7
CTCF ChIA-PET dataset™ showed that a strong chromatin loop is predicted to span
the KRT14/16/17 genes, further supported by the pattern of convergent CTCF motif
orientations at the predicted TAD boundaries (Fig. 4C). Since the KRT5/6A/6B locus
did not harbor strong chromatin loops (>3 linkages), we focused our further analysis

on the KRT14/16/17 locus.

ChIP revealed strong enrichment of CTCF binding at the base of the
chromatin loops of the KRT14/16/17 locus in ESR1 mutant cells, however there was
a lack of E2 regulation (Fig. 4E). Decreasing CTCF levels led to increased
expression of KRT14, KRT16 and KRT17 mRNA levels in ESR1 mutant cells,
potentially reflecting a role for CTCF as “classical” insulator, suppressing high
expression of these BCKs through the identified super enhancer at the KRT14,
KRT16 locus (Figure 4F). Given identification of progesterone receptor (PR) binding
sites within this super enhancer, PR’s previously identified role in regulating KRT5

expression in luminal breast cancer cells*"°

, and finally its overexpression in
multiple ESR1 mutant cell models *"%° (Supplementary Fig. S10C and S10D), we

tested whether PR regulates KRT14/16/17 expression.

PR ChIP-seq revealed a ligand-inducible PR binding sites in MCF7 cells

approximately 32kb upstream of the KRT14/16/17 loop region®® (Fig. 4F). This PR

13
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binding site overlapped with a curated super-enhancer in MCF7 cells®?, which was
additionally supported by strong active histone modifications (Fig. S9). Knockdown
of PR partially rescued the increased expression of KRT14, 16 and 17 in both ESR1
mutants (Fig. 4G and Supplementary Fig. S10E). We also observed a similar rescue
effect for KRT5 (Supplementary Fig. S10E), consistent with previous studies®®.
Furthermore, both PR agonist (P4) and antagonist (RU486) treatment increased
KRT5, 16 and 17 expression in Y537S ESR1 mutant cells, while only RU486
triggered KRT5 and KRT16 expression in D538G mutant (Fig. 4H and
Supplementary Fig. S10F). The marked induction effect of RU486, a PR antagonist,
is likely due to its previously reported partial agonism via recruitment of
coactivators®®. The RU486-induced CK5 and CK16 increase was further examined
by IF, where CK5 (Supplementary Fig. S10G) and CK16 (Fig. 41 and 4J) positive
cells increased from 1% to 5%. Of note, CK17 positive cells were not increased by
RUA486 treatment (Supplementary Fig. S10G), suggesting translational efficiency
differences between different BCK subtypes. Together, these data demonstrated
that elevated PR expression in ESR1 mutant cells was essential for BCKs induction,
and this was possibly due to an orchestration with a super enhancer which is

accessible to regulate KRT14/16/17 genes via the CTCF-driven chromatin loop.

Enhanced immune activation, associated with S100A8-S100A9 secretion and

signaling in ESR1 mutant tumors

Finally, we investigated whether the increased expression of basal genes in

ESR1 mutant tumors confers basal-like features and potentially novel therapeutic

14


https://doi.org/10.1101/2020.12.29.424777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424777; this version posted December 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

available under aCC-BY-NC-ND 4.0 International license.

vulnerabilities. To identify basal cytokeratin-associated pathways enriched in ER
mutant tumors, we at first identified ER+ tumors with the top and bottom quantile of
BCK gene enrichment and then computed hallmark pathways differentially enriched
between these two groups (Supplementary Fig. S11A). Intersection of these BCKs-
associated pathways with those enriched in ESR1 mutant metastases uncovered
seven shared molecular functions, the top four of which are all related to immune
responses (Fig. 5A, Supplementary Fig. S11B, S11C and Supplementary Table S7).
An orthogonal approach - bioinformatic evaluation using ESTIMATE® - confirmed
enhanced immune activation in BCK-high vs BCK-low ER+ tumors albeit still lower
than in basal tumors (Fig. 5B). In addition, BCK-high tumors displayed higher
lymphocyte and leukocyte fractions according to a recent biospecimens report®® (Fig.
5C), and higher PDCD1 mRNA levels (Supplementary Fig. S11D). Intriguingly,
patients with BCK-high ER+ tumors experience improved outcomes (Fig. 5D), and
although entirely speculative at this point in time, one could hypothesize that this

might be due to increased anti-tumor immune activation.

Similar to BCK-high ER+ tumors, ESR1 mutant metastatic tumors exhibited
higher immune scores compared to those with ESR1 WT (Fig. 5E). Immune cell

subtype deconvolution®®®’

revealed significantly higher CD8+ T, NK and dendritic
cells, along with macrophages in ESR1 mutant tumors. Basal breast cancers harbor
high immune infiltrations at least in part due to higher tumor mutation burden

(TMBs)®, however, we did not detect higher TMB in BCK-high vs low ER+ tumors

(Supplementary Fig. S11E).
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To understand which factors might contribute to immune activation in ESR1
mutant and BCK-high ER+ tumors, we compared gene expression of major immune
genes derived from ESTIMATE®® (n=141) between ESR1 mutant and WT tumors,
and BCK-high vs BCK-low ER+ tumors. This analysis identified S100A8 and S100A9
as the two top consistently increased immune-related genes (Fig. 6A), and this
overexpression was also seen in MCF7 ESR1 mutant cell models (Supplementary
Fig. S11F). S100A8 and S100A9 are pro-inflammatory cytokines that form
heterodimers and play crucial roles in shaping immune landscapes**“®. As
expected, S100A8-A9 expression correlated positively with immune scores in ER+
tumors (Fig. 6B). BCKs levels failed to differentiate immune scores in ER+ tumors
among the subset of tumors exhibit high S100A8-A9 (Fig. 6B). S100A8-A9 are
secreted proteins and function as heterodimers. To confirm S100A8-A9 protein
overexpression, we measured S100A8-A9 heterodimer levels in plasma samples
from patients with ESR1 WT (n=7) and mutant (n=11) tumors (Supplementary Table
S8) (Fig. 6C). This analysis revealed significantly higher circulatory S100A8-A9

heterodimers concentrations in plasma from patients with ESR1 mutations (Fig. 6D).

S100A8-A9 heterodimer mainly stimulates downstream cascades through two
receptors: toll-like receptor 4 (TLR4) and receptor for advanced glycation end
products (RAGE), and both of them are widely reported to impact cancer immunity.
A further gene set variation analysis in WCRC/DFCI primary-matched paired
metastatic samples revealed consistent enrichment of both pathways in ESR1
mutant tumors (Fig. 6E, Supplementary Table S1), suggesting both TLR4 and RAGE

signaling are hyperactive in ESR1 mutant tumors.
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To further elucidate the specific cell-cell communication by S100A8/S100A9
signaling, we analyzed RAGE and TLR4 signaling via measuring ligand and receptor
expression in different cell types using single-cell RNA-seq data from two breast
cancer metastases. Highest expression of S100A8/S100A9 was seen in epithelial
cells, followed by fibroblast and macrophages. In contrast, TLR4 and AGER (RAGE)
showed low expression in the epithelial cells, but instead were widely expressed in
the stroma, especially in fibroblasts and macrophages. In general, AGER displayed

lower expression levels in all cell types compared to TLR4 (Fig. 6F and 6G).

Taken together, these data support the concept that the increase in basal-
ness of ESR1 mutant tumors is associated with immune activation, in part facilitated

by the paracrine S100A8/A9-TLR4 signaling.
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Discussion

Recurrence of ER+ breast cancer causes over 24,000 deaths each year in
the US alone. Given that ESR1 mutation occur in as many as 20-30% of metastatic
recurrences, it is imperative to identify therapeutic vulnerabilities through dissecting
mechanisms of action. In this study we have uncovered a previously unrecognized
plasticity of ESR1 mutant cells, reflected by enrichment of basal subtype genes in
ESR1 mutant tumors and in particular a gain of BCK expression, resulting from
epigenetic reprogramming of a mutant ER-specific PR-linked chromatin loop. This
molecular evolution, i.e. an increase of basal-like feature in the ESR1 mutant tumors
was associated with immune activation including enhanced S100A8/A9-TLR4
signaling (Fig 7).

Increased plasticity of tumors has previously been shown to be associated

with tumor initiation and progression®*4¢:7%72

. PAMS0 intrinsic subtype switching has
been described to occur in as many as 40% of breast cancer metastases®. Here we
show that ESR1 mutant cells gain basal-ness, and a similar observation was
recently reported by Gu et al.”® showing a luminal to basal switch in MCF7 ESR1
Y537S CRISPR cells compared to parental cells. However, luminal to basal subtype
switching is rare in breast cancer?®® and we have previously reported on clinically
relevant gene expression changes in brain metastases (increased in HER2 gene
expression) without clear subtype switching®®. These results are in line with the
increasing appreciation of the molecular subtypes being on a continuum rather than

representing discrete stages. Of note, we did not observe a similar gain of basal-

ness in a series of ESR1 wildtype endocrine resistant in vitro models, with the
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exception being a study revealing a “luminal-to-basal” switch in an estradiol-deprived
T47D xenograft derived cell line, indicating a potential role for the microenvironment

in mediating a similar switch in ER wildtype tumors”.

We propose that the observed ESR1 mutant-cancer cell state
interconversions are of potential clinical relevance due to increased stromal immune
activation associated with the induction of BCK. Using in silico gene expression,
pathway analyses and pathology information, we observed increased activation of a
number of immune-related pathways including S100A8/S100A9-TLR4 signaling and
increased lymphocytic infiltration. S100A8/S100A9 heterodimers exhibit pro-

75,76

inflammatory properties in different contexts in breast cancer™ ™, are associated

with poor prognosis in multiple cancer types® including breast cancer’’, and

1”8, We observed increased

blockade of their activity improves surviva
S100A8/S100A9 levels in blood from patients with ESR1 mutant tumors but given
complexity of tumor-cell intrinsic and extrinsic roles of the inflammatory mediators
and their receptors (also supported by our single cell sequencing analysis) additional
work is needed to understand if and how they contribute to tumor progression in
patients with ER mutant tumors. This should include an analysis of MDSC in this
setting since they have been described to play an important role in S100A8/A9
function’®’®. This is also supported by our recent studies showing an enrichment of
immune-suppressive macrophages in ER mutant tumors, along with increased
expression of interferon regulated genes®. Together, these data imply opportunities

for immune therapies for patients with ER mutant tumors that should be analyzed

further.
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We and others?®:27:38

previously identified genes that have altered expression
in ESR1 mutant cells but are not E2 regulated in WT cells. Here, all six BCK belong
to this group of novel, gain-of-function target genes. BCK are not regulated as a
result of ligand-mimicking nor de novo transactivation by mutant ER, and their
expression is strongly and negatively correlated with ER levels. A similar correlation
was also observed with P4-induced CK5+ luminal breast cancer cells displaying low
ER and PR levels®®. One possible explanation is that ER, regardless of its liganded
status or genotype, serves as a direct epigenetic suppressor that represses BCK
expression to maintain luminal identity. For example, it has been shown that ER
silences basal, EMT and stem cell related genes by recruiting pivotal methyl-
transferases like EZH2 and DNMTs to reshape the DNA and histone methylation
landscape®. More studies are required to further elucidate the regulatory network
between ER and BCKs. Given bi-directional interactions between tumor and stromal
cells in BCK regulation, it will be important to perform future studies in improved

model systems such as those recently described for analysis of complex regulation

of CK14 expression and function®.

Assessment of BCK expression revealed that a 50-fold increase in mMRNA
was reflected in only ~1% cells being positive for BCK protein. This finding is
consistent with a previous study showing that P4 stimulation of breast cancer cells
caused a 100-fold induction of CK5 promoter activation ultimately translating to 1-
10% of cells positive for CK5 protein®®. In addition, discordance between mRNA and
protein of CK7 and CK14 in breast cancer tissue has been documented®. It is

possible that BCK protein translation in luminal cells is aberrant, resulting in poorly
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localized or transported protein, consistent with our detection of BCK protein foci
rather than the broad distribution pattern over full cytoskeleton similar to what has
been previously reported for example for formation of CK17 foci. The discordance in
MRNA and protein expression may be due to the cell heterogeneity, with individual
cells having high mRNA and protein compared to the negative population, potentially
due to heterogenous expression of miRNAs regulating BCK expression®!. These
BCKs positive cells might be pre-selected by multiple genetic and epigenetic cues
including but not limited to low ER expression and chromatin loop formation as
identified in our study. The discordance between mRNA and protein expression may
also help to explain differences in prognosis using mRNA expression profiling like in

our study vs IHC in previous studies®®®.

We provide evidence to support BCK as emerging biomarkers of ESR1
mutant breast cancer and its prognosis, yet their direct functional impact remains
ambiguous. CK14 positive cells typically lead collective invasion across major
subtypes of breast cancer cells®’, and this is in line with previously identified
enhanced cell migration in ESR1 mutant cells®. In addition, as previously described,
CKS5 positive luminal cells acquire stem-like properties and chemotherapy
resistance*”*°. Importantly, we found several other consistently increased basal
marker genes such as interferon-alpha inducible protein 27 (IFI27). Previous studies
have reported a role of IFI27 in regulating innate immunity in breast cancer®® and
cisplatin resistance in gastric cancer®®. Thus, the “basal-ness” shift might confer

several broad functional alterations to ESR1 mutant tumors.
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We identified a PR-orchestrated TAD at the KRT14/16/17 genomic locus in
ESR1 mutant cells, and we propose that the simultaneous generation of a de novo
CTCF loop and ER ligand-independent PR overexpression is necessary for
KRT14/16/17 in ESR1 mutant cells. Intriguingly, knockdown of CTCF selectively
increased KRT14/16/17 mRNA levels whereas knockdown of PR blocked their
induction in ESR1 mutant cells. This unexpected discrepancy may highlight that
CTCF binding may simultaneously serve as a transcriptional insulator to restrict
KRT14/16/17 in an inactive compartment®>>. Importantly, data indicates that CTCF
knockdown alone is not sufficient to eliminate TAD but instead promotes the
formation of new chromatin interactions that alter gene expression®. We also
unexpectedly found that both PR agonist P4 and PR antagonist RU486 elevated
BCK expression, which was inconsistent with previous reported findings where P4
and RU486 exhibited opposite effects in regulating CK5>°. Given RU486 is well-
characterized for its partial agonism, it is possible that ESR1 mutant cells uniquely
express a particular strong PR coactivator that confers the partial agonism of RU486
in this context. Another possibility is that RU486 alternatively stimulates other

d®2 or potentially even androgen receptor®®

nuclear receptors such as glucocorticoi
to reprogram BCKs expression. The reversed PR pharmacological response in

ESR1 mutant cells is intriguing and warrants future investigation.

Our study discovered a unique aspect of ESR1 mutant cells and addressed
the underlying mechanisms as well as its clinical relevance, albeit with some
remaining limitations, such as limited numbers of clinical samples due to inherent

difficulties of obtaining metastatic tissues. The enhanced immune infiltration requires
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additional validation by TIL counting on ESR1 mutant tumor sections. Confirmation
and studies in in vivo models should be included into future studies. Our preliminary
analysis in a ESR1 Y541S (mouse ortholog of Y537S mutation) knockin mouse
model showed overexpression of BCK at RNA and protein level in mammary
tumors®. And finally, the in silico prediction of enhanced CTCF-driven chromatin
loop at the basal cytokeratin gene locus requires confirmation by orthogonal
approaches, such as chromosome conformation capture. Nonetheless, our study
serves as a robust pre-clinical report uncovering mechanistic insights into ESR1
mutations and their roles in conferring basal-like feature to ER+ breast cancer and

implicates the immune therapeutic vulnerabilities to this subset of patients.
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Materials and methods

Additional details are provided in the Supplementary Materials and Methods

section.
Human tissue and blood studies

51 paired primary matched metastatic samples were from DFCI (n=15) and
our Women’ s Cancer Research Center (WCRC) (n=36) cohorts as previously
reported®®. For all WCRC metastatic samples, ESR1 mutations status were called
from RNA-sequencing. For bone/brain/Gl metastatic lesions, ESR1 mutations status
were additionally examined using droplet digital PCR for Y537S/C/N and D538G
mutations in ESR1 LBD region as previously reported®’. For DFCI cohort, ESR1

mutations were all called from matched whole exome sequencing®.

For the study of patients’ blood, all patients provided written informed consent
and all procedures were approved by the University of Pittsburgh Institutional
Review Broad (PRO17080172). 18 patients diagnosed with late-stage metastatic
ER+ breast cancer were recruited. Procedure to identify hotspot ESR1 mutations

has been previously described by us®.
Cell culture

Establishments of rAAV-edited (Park lab)?’ , CRISPR-Cas9-edited (Gertz*®
and Ali* lab) and CRISPR-Cas9-edited T47D cells?’ were reported previously.
ZR75-1 (CRL-1500), MDA-MB-134-V| (HTB-23), MDA-MB-330 (HTB-127) and MDA-
MB-468 (HTB-132) were obtained from the ATCC. Development of BCK4 cells has

been previously reported®®.
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S100A8/S100A9 heterodimer ELISA

Human S100A8/S100A9 heterodimer amounts in human plasma samples
were guantified using S100A8/S100A9 heterodimer Quantikine ELISA kit (R&D
System, DS8900) following the manufacture protocol. All plasma samples were first

diluted in calibration buffer with 1:50 ratio and loaded into antibody-coated plate.

Chromatin-immunoprecipitation (ChlP) and sequencing analysis
ChIP was performed as previously described *'. ChlP-seq reads were aligned

to hg38 genome assembly using Bowtie 2.0 ***

, and peaks were called using
MACS2.0 with p value below 10E-5 %2, We used DiffBind package ' to perform
principle component analysis, identify differentially expressed binding sites and
analyze intersection ratios with other data sets. Heatmaps and intensity plots for
binding peaks were visualized by EaSeq. Annotation of genes at peak proximity was

conducted using ChiPseeker *%*

, taking the promoter region as +/- 3000 bp of the
transcriptional start site (TSS) and 50kb as peak flank distance.
RNA sequencing analysis

RNA sequencing data sets were analyzed using R version 3.6.1. Log2
(TPM+1) values were used for the RNA-seq of Oesterreich ESR1 mutant cell models
and TMM normalized Log2(CPM+1) values were used for Gertz RNA-seq data.
TCGA reads were reprocessed using Salmon v0.14.1'% and Log2 (TPM+1) values
were used. For the METABRIC data set, normalized probe intensity values were
obtained from Synapse. For genes with multiple probes, probes with the highest

inter-quartile range (IQR) were selected to represent the gene. For pan-breast

cancer cell line transcriptomic clustering, 97 breast cancer cell line RNA-seq data
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were reprocessed using Salmon and merged from three studies®*°, batch effects

were removed using “removeBatchEffect” function of “limma’®®”

package. Gene set
variation analysis was performed using “GSVA” package'”’. Survival comparisons
were processed using “survival” and “survminer” packages® using Cox

Proportional-Hazards model and log-rank test. Data visualizations were performed

using “ggpubr'®®”, “VennDiagram™® and “plot3D**"".

For the single cell RNA seq analysis, two fresh bilateral bone metastases
(BoMs) were collected from a patient initially diagnosed with ER+ primary breast
cancer, dissociated into single cells and a cell suspension with at least 70% viability
was submitted for library preparation using 10X genomics chromium platform (V3.0
chemistry) (Ding et al, manuscript in preparation). 6,000 cells were targeted for each
BoM, and the final libraries were sequenced at a depth of 67,000 reads per cell

using NOVAseq.
Tumor Mutation Burden Analysis

Tumor mutation burden (TMB) calculation was performed as previous
described**?. Briefly, TCGA mutation annotation files from 982 patients were
downloaded from FireBrowse and mutation subtypes were summarized using
“maftool” package'®. Mutations subtypes were classified into truncated (nonsense,
frame-shift deletion, frame-shift insertion, splice-site) and non-truncated mutations
(missense, in-frame deletion, in-frame insertion, nonstop). TMB was calculated as

2X Truncating mutation numbers + non-truncating mutation numbers.

Generation of Gene Sets
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For Sorlie et al., the original set of intrinsic genes were downloaded from

Stanford Genomics Breast Cancer Consortium (http://genome-

www.stanford.edu/breast _cancer/). 453 genes were annotated from 553 probes.

Expression of these 453 genes were examined in 33 luminal and 39 basal breast
cancer cell lines. Significantly higher (FDR<0.01) intrinsic genes in basal or luminal
cells were called as basal (n=75) or luminal (n=68) markers in Sorlie gene sets. For
the TCGA gene set, differentially expressed genes were called between basal and
luminal A or basal and luminal B ER+ tumors using raw counts. The top 200
increased genes of these two comparisons were further intersected. Overlapped DE
genes in basal (n=164) and luminal (n=139) tumors were called as TCGA gene sets.
For CTCF gene signature establishment, a previous RNA-seq data set on MCF7
cells with or without CTCF knockdown was downloaded and analyzed®?, top 100
downregulated genes with CTCF knockdown were used as the CTCF gene

signature.
Chromatin interaction data analysis

CTCF ChlA-PET data were downloaded from GSE72816. Chromatin linkages were

visualized on 3D genome browser (http://promoter.bx.psu.edu/hi-c/) after processed

with ChIA-PET tool'**. Confident TAD boundaries were defined by the colocalization

of CTCF and cohesion complex subunits together with called chromatin interactions.
Data Availability

ER ChIP-seq data from MCF7 ESR1 mutant cell model was deposited in
Gene Expression Omnibus with accession number of GSE125117. MSigDB curated

gene sets were downloaded from GSEA website
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(http://software.broadinstitute.org/gsea/msigdb/index.jsp). RNA-seq data and clinical

information from TCGA and METABRIC were obtained from the GSE62944 and
Synapse software platform (syn1688369) respectively. TCGA biospecimen immune
profile data were downloaded from Saltz et al®®>. TCGA mutation annotation format
(MAF) files and methylation data were downloaded from FireBrowse website

(http://firebrowse.org/). Complete RNA-Seq data for the DFCI metastases samples

will be published separately. RNA-Seq data from the WCRC cohorts are available at

Lee-Oesterreich Lab Github repository (https://github.com/leecesterreich). All the

raw data and scripts are available upon request from the corresponding author.
Sources of all public available data sets used in this study are summarized in

Supplementary Table S10.
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Figure legends

Figure 1. Basal breast cancer gene sets are enriched in ESR1 mutant breast
cancers

A) Four pairs of luminal/basal gene sets applied in this study with gene numbers

specified in each set.

B) Venn diagram representing the overlap of genes from the basal (left) and luminal

(right) gene sets. Genes overlapping in at least three gene sets are indicated.

C) and D) Dot plots showing GSVA score of the four pairs of basal (C) and luminal
(D) gene sets enrichment in MCF7 genome-edited cell models. Scores from luminal
and basal breast cancer cell lines were used as positive controls. Dunnett’s test was

used to compare with WT-vehicle set within each gene set. (* p<0.05, ** p<0.01)

E) and F) Box plots representing basal (E) and luminal (F) gene set enrichments in
intra-patient matched paired primary-metastatic samples. Delta GSVA score for
each sample was calculated by subtracting the scores of primary tumors from the
matched metastatic tumors. Mann-Whitney U test was performed to compare the
Delta GSVA scores between WT (N=44) or ESR1 mutation-harboring (N=7) paired

tumors. (* p<0.05)

Figure 2. Overexpression of basal cytokeratins (BCK) in ESR1 mutant breast
cancer cells and tumors

A) Correlation between basal gene fold changes (FC) in MCF7-Y537S/D538G cells
(normalized to WT vehicle) and intra-patient paired mutant tumors (normalized to

WT tumors) (N=634). Consistently increased or decreased genes in the two MCF7
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mutant cells and tumors compared to their WT counterparts were highlighted in red
or blue respectively, and six basal cytokeratin genes are indicated. Inconsistently

changed genes among the three comparisons are labelled in black.

B) KRT5/6A/6B/14/16/17 mRNA levels in MCF7 WT and ESR1 mutant cells.
Relative mRNA fold change normalized to WT cells and RPLPO levels measured as
the internal control. Each bar represents mean + SD with three biological replicates.
Representative results from three independent experiments are shown. Dunnett's

test was used to compare BCKs expression levels between WT and mutant cells.

C) Representative images of immunofluorescence staining on CK5, CK16 and CK17
in MCF7 WT and ESR1 mutant cells. Regions with CK positive cells were
highlighted in the magnified images. MDA-MB-468 was included as positive control.

Images were taken under 20x magnification.

D) Quantification of percentages of CK positive cells in MCF7 WT and ESR1 mutant
cells. Each bar represents mean + SD from four different regions. Data shown are
from one representative experiment of three independent experiments. Dunnett’s
test was used to compare BCKs positive cell prevalence between WT and mutant

cells. (* p<0.05, ** p<0.01)

Figure 3. Basal cytokeratins induction is independent of mutant ER genomic

binding but requires low ER expression.

A) Heatmap representing fold change mRNA expression (E2/veh) of six basal

cytokeratins and four luminal cytokeratins in ER+ breast cancer lines from six
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publicly available data sets (GSE89888, GSE94493, GSE108304, GSE3834,
GSE38132 and GSE50693). GREB1, PGR, and TFF1 are canonical E2-regulated
genes included as positive controls.

B) Genomic track showing ER binding intensities at KRT5/6A/6B and KRT14/16/17
loci from ER ChlP-seq data sets of MCF7 ESR1 mutant cells. GREB1 locus serve as

a positive control.

C) Graphic view of Pearson correlation between expression of ESR1 and each basal
or luminal cytokeratin in ER+ breast tumors in TCGA (n=808) and METABRIC
(n=1,505) cohorts. Color scale and size of dots represent correlation coefficient and

significance, respectively.

D) gRT-PCR measurement of ESR1, KRT5/6A/6B/14/16/17 mRNA levels in MCF7
WT and ESR1 mutant cells with ESR1siRNA knockdown for 7 days. mRNA fold
change normalized to WT cells; RPLPO levels were measured as internal control.
Each bar represents mean = SD with three biological replicates. Data shown are
representative from three independent experiments. Student’s t-test was used to
compare the gene expression between scramble and knockdown groups. (* p<0.05,

** n<0.01)

E) Representative images of ER, CK5, CK16 and CK17 staining in MCF7-Y537S
and D538G cells. BCKs positive cells are highlighted with white arrows. Images

were taken under 20x magnification.

F) Bar plots quantifying the ER intensities in BCKs positive (blue) and the
corresponding proximal negative (red) cells from each region. Each bar represents

mean + SD analyzed in five different regions per group from one experiment,
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representative of three independent experiments. Paired t test was applied to
compare ER intensities between BCKs positive and negative cells. (* p<0.05, **

p<0.01)

Figure 4. Basal cytokeratins are induced via a unique PR enhancer-associated
TAD in ESR1 mutant cells.
A) Dot plots showing enrichment levels of CTCF gene signature in MCF7 ESR1

mutant cells. Dunnett’s test was used to compare the difference. (** p<0.01)

B) Dot plots showing enrichment levels of CTCF gene signature in ESR1 WT (n=44)
and mutant (n=7) metastases. Mann-Whitney U test was used to compare

enrichment levels in tumors. (* p<0.05)

C) Genomic track illustrating the CTCF/cohesion complex binding at KRT14/16/17
proximal genomic region in MCF7 cells. CTCF and RAD21 ChiP-seq were
downloaded from ENCODE (ENCSR560BUE and ENCSR703TNG). STAG1 and
SMCI1A ChiP-seq data were from GEO (GSE25021 and GSE76893). CTCF motif
orientations of each peak is labelled with black arrows in the CTCF track. Y-axis

represents signal intensity of each track.

D) CTCF-driven chromatin loops visualized using a CTCF ChIA-PET data set in
MCF7 cells (GSE72816) at the 3D Genome Browser platform. Each linkage

represents a chromatin loop.

E) Bar graphs displaying CTCF binding events measured by ChIP-gPCR at binding

sites 1 and 5 illustrated in (C). CTCF binding fold enrichments were normalized to
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the average of IgG binding. Each bar represents mean + SD of fold changes from
three independent experiments. Pair-wise t-test on CTCF binding fold enrichment

between WT and each mutant was performed. (* p<0.05, ** p<0.01)

F) PR binding under R5020 and progesterone treatments visualized based on a
reported PR ChIP-seq data set in MCF7 cells (GSE68359). Y-axis represents signal
intensity of each track and is adjusted to the same scale. Super enhancer range was

highlighted below the genomic track.

G) gRT-PCR measurement of KRT14, 16 and 17 mRNA levels in MCF7 ESR1 WT
and mutant cells with PGR siRNA knockdown for 7 days. mRNA fold change
normalized to WT cells; RPLPO levels were measured as internal control. Each bar
represents mean + SD with three biological replicates. Data shown are
representative from three independent experiments. Student’s t-test was used to
compare the gene expression between scramble and knockdown groups. (* p<0.05,

** n<0.01)

H) gRT-PCR measurement of KRT5, 16 and 17 mRNA levels in MCF7 ESR1 WT
and mutant cells treated with 0.1% EtOH (vehicle),100 nM P4 or 1 uM RU486
treatment for 3 days. mRNA fold change normalized to WT cells; RPLPO levels
were measured as internal control. Each bar represents mean + SD with three
biological replicates. Data shown are representative from three independent

experiments. (* p<0.05, ** p<0.01)

I) Representative images of immunofluorescence staining of CK5 and CK16 in
MCF7 WT and ESR1 mutant cells after 3 day treatment with 1% EthOH (vehicle) or

1 uM RU486. Images were taken under 20x magnification.
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J) Quantification of the percentages of CK positive cells in MCF7 cells. Each bar
represents mean + SD from eight different regions combining from two independent
experiments. Student’s t test was used to compare % BCK+ cells before and after

treatment. (* p<0.05, ** p<0.01)

Figure 5. Gain of basal cytokeratin expression is associated with enhanced

immune activation in ESR1 mutant tumors.

A) Venn diagrams showing the intersection of significantly enriched hallmark
pathways in three sets of comparisons: BCK-high vs low in 1) TCGA ER+ tumors
(n=202 in each group), 2) METABRIC ER+ tumors (n=376 in each group) and 3)
ESR1 mutant (n=7) vs WT (n=44) metastatic tumors. BCKs high and low were
defined by the upper and bottom quartiles of each subset. The seven overlapping
pathways are shown in a frame, and immune-related pathways are highlighted in

red.

B) Immune scores based on ESTIMATE evaluations in basal tumors (METABRIC
n=328; TCGA n=190), BCK-high (METABRIC n=376; TCGA n=202) and low
(METABRIC n=376; TCGA n=202) subsets of ER+ tumors in TCGA and
METABRIC. Definition of BCK-high and low groups were the same in (A). Mann

Whitney U test was used for comparison. (** p<0.01)

C) Lymphocytes and leukocyte fractions as determined by a reported TCGA
biospecimen dataset®® comparing among basal subtype tumors (n=161), TCGA ER+

BCK-high (N=163) and low (N=179) tumors. Definition of BCK-high and low groups
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were the same in (A). Mann Whitney U test was applied to compare the fractions

between BCK-high and low tumors. (** p<0.01)

D) Kaplan-Meier plots showing the disease-specific survival (DSS) (METABRIC) and
overall survival (OS) (TCGA) comparing patients with ER+ BCKSs high vs low tumors.
BCKs high and low were defined by the upper and bottom quartiles of each subset.
Censored patients were labelled in cross symbols. Log rank test was used and

hazard ratio with 95% CI were labelled.

E) Immune scores based on ESTIMATE evaluations in ESR1 mutant (n=7) and WT

metastatic (n=44) lesions. Mann Whitney U test was used for comparison. (* p<0.05)

F) Dot plot showing the enrichment level alterations of immune cell subtypes in
ESR1 mutant metastatic lesions using Davoli®® and Tamborero®” immune cell
signatures. RNA seq data from intra-patient matched ESR1 mutant (N=7) and WT
(N=44) was used. Immune cell subtypes showing significant increase in ESR1

mutant tumors were labelled in red (p<0.05).

Figure 6. Immune activation in ESR1 mutant tumors is associated with

S100A8/A9-TLR4 paracrine crosstalk between epithelial and stromal cells.

A) Three-dimensional plot showing fold change (FC) expression changes of immune
genes from ESTIMATE (N=141)% comparing ER+ BCK-high vs low tumors (TCGA
and METABRIC) and intra-patient paired ESR1 WT/mutant tumors. Consistently

increased/decreased genes in TCGA and METABRIC BCK-high tumors and ESR1
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1058 mutant tumors were highlighted in red and blue. Inconsistently changed genes

1059 among the three comparisons are labelled in black.

1060 B) ER+ cases with BCK-high and low quantiles were further divided by the mean
1061  expression of S100A8 and S100A9. ESTIMATE immune scores were compared
1062  across all four subsets (n=188 and 101 in each group of METABRIC and TCGA)
1063 together with basal tumors (n=328 METABRIC and n=190 TCGA). Each

1064 corresponding comparison was tested using Mann Whitney U test. (**p<0.01)

1065 C) Graphical presentation of strategy to quantify and compare S100A8/9

1066 heterodimer abundance in plasma from patients with ER+ metastatic breast cancer.

1067 D) Box plot showing S100A8/9 heterodimer concentrations in plasma from patients
1068 with ESR1 WT (n=7) and mutant (n=11) metastatic breast cancer. Mann Whitney U

1069 test was utilized. (* p<0.05)

1070 E) Comparison of TLR4 (left) and RAGE (right) signaling signature enrichments in
1071 intra-patient matched ESR1 mutant (N=7) and WT (N=44) cohort. Delta GSVA score
1072 of each sample was calculated by subtracting the scores of primary tumors from the
1073 matched metastatic tumors. Mann-Whitney U test was performed between WT and

1074  mutant tumors. (**p<0.01)

1075 F) Violin plots showing S100A8, S100A9, TLR4 and AGER expression by log2
1076 normalized counts in different cell subtypes using single-cell RNA-seq data from two

1077 bone metastases from a patient with ER+ breast cancer.

1078 G) Percent of cells expressing S100A8, S100A9, TLR4 and AGER, using single cell

1079 RNA seq data shown in Figure 6F.
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Figure 7. Graphical presentation of proposed mechanisms and relevance of

basal cytokeratin induction in ESR1 mutant breast cancer.

ESR1 WT cells exhibit low basal cytokeratin expression with baseline TAD
prevalence spanning KRT14/16/17 loci. In contrast, a minor subpopulation of ESR1
mutant cells exhibit strong basal cytokeratin expression, due to PR activated
enhancer at the KRT14/16/17 gene locus-spanning TAD. Increased expression of
basal cytokeratin is associated with immune activation in ESR1 mutant tumor similar
to that seen in basal tumors, at least in part mediated via enhanced S100A8/A9-
TLRA4 paracrine crosstalk between epithelial and stromal cells, including

macrophages.
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Figure 1. Basal breast cancer gene signatures are enriched in ESR1 mutant
breast cancer
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Figure 4. Basal cytokeratins are induced via a unique PR enhancer associated

TAD in ESR1 mutant cells
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Figure 5. Gain of basal cytokeratins is associated with enhanced
immune activation in ESR1 mutant tumors
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Figure 6. Immune activation in ESR71 mutant tumors is associated with
S100A8/A9-TLR4 paracrine corsstalk between epithelial and stromal cells.
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Figure 7. Schema of proposed mechanisms of basal cytokeratin induction in
ESR1 mutant breast cancer.



