

1 Genealogical structure changes as range expansions transition 2 from pushed to pulled

3 Gabriel Birzu,

Department of Physics, Boston University, Boston, MA 02215, USA

Oskar Hallatschek,

Departments of Physics and Integrative Biology,

University of California, Berkeley, California 94720, USA

and

Kirill S. Korolev

Department of Physics and Graduate Program in Bioinformatics,

Boston University, Boston, MA 02215, USA

korolev@bu.edu

4 December 29, 2020

5 Abstract

6 Range expansions accelerate evolution through multiple mechanisms including gene surfing and genetic drift.

7 The inference and control of these evolutionary processes ultimately relies on the information contained in genealog-
8 ical trees. Currently, there are two opposing views on how range expansions shape genealogies. In invasion biology,
9 expansions are typically approximated by a series of population bottlenecks producing genealogies with only pairwise
10 mergers between lineages—a process known as the Kingman coalescent. Conversely, traveling-wave models predict

11 a coalescent with multiple mergers, known as the Bolthausen–Sznitman coalescent. Here, we unify these two ap-
12 proaches and show that expansions can generate an entire spectrum of coalescent topologies. Specifically, we show
13 that tree topology is controlled by growth dynamics at the front and exhibits large differences between pulled and
14 pushed expansions. These differences are explained by the fluctuations in the total number of descendants left by the
15 early founders. High growth cooperativity leads to a narrow distribution of reproductive values and the Kingman
16 coalescent. Conversely, low growth cooperativity results in a broad distribution, whose exponent controls the merger
17 sizes in the genealogies. These broad distribution and non-Kingman tree topologies emerge due to the fluctuations in
18 the front shape and position and do not occur in quasi-deterministic simulations. Overall, our results show that range
19 expansions provide a robust mechanism for generating different types of multiple mergers, which could be similar
20 to those observed in populations with strong selection or high fecundity. Thus, caution should be exercised in making
21 inferences about the origin of non-Kingman genealogies.

22 **Significance statement**

23 Spatial dynamics are important for understanding genetic diversity in many contexts, such as cancer and infectious dis-
24 eases. Coalescent theory offers a powerful framework for interpreting and predicting patterns of genetic diversity in pop-
25 ulations, but incorporating spatial structure into the theory has proven difficult. Here, we address this long-standing
26 problem by studying the coalescent in a spatially expanding population. We find the topology of the coalescent changes
27 depending on the growth dynamics at the front. Using analytical arguments, we show that the transition between coales-
28 cent topologies is universal and is controlled by a parameter related to the expansion velocity. Our theory makes precise
29 predictions about the effects of population dynamics on genetic diversity at the expansion front, which we confirm in
30 simulations.

31 Introduction

32 The genealogy of a population provides a window into its past dynamics and future evolution. By analyzing the relative
33 lengths of different branches in the genealogical tree, we can estimate mutation rates and the strength of genetic drift [1],
34 or infer historical population sizes [2] and patterns of genetic exchange between species [3]. At the same time, we can use
35 the structure of genealogies to make predictions about the speed of evolution [4] and even answer important practical
36 questions, such as what the next strain of influenza will be [5].

37 Typically, the full ancestry of the population is not known and has to be inferred from DNA samples using theoretical
38 models. The most widely-used model is the Kingman coalescent [6, 7]. The Kingman coalescent describes the genealogies
39 of a well-mixed population of constant size, in which all mutations are neutral. Because of its simplicity, many statistical
40 properties of the Kingman coalescent can be calculated exactly [7]. These mathematical results have formed the basis of
41 many commonly-used techniques to infer genealogical trees from DNA sequences. The defining characteristics of the
42 trees generated from the Kingman coalescent are a large number of early mergers and long branches close to the common
43 ancestor. Importantly, the Kingman coalescent contains only pairwise mergers between lineages. However, several studies
44 have attempted to test these predictions directly in real populations and found significant deviations [8–11].

45 To resolve the inconsistencies between observed genetic diversity and theoretical predictions, numerous extensions of
46 the classic Kingman coalescent have been proposed [12–16]. For example, many studies have analyzed the effects of time-
47 dependent population sizes and spatial structure on the coalescent [2, 17]. Despite providing better fits to the data, this
48 generalized Kingman coalescent does not capture some of the qualitative features of empirical genealogies—namely the
49 existence of multiple mergers in the genealogical trees [18, 19].

50 Over time, several mechanisms that give rise to coalescents with multiple mergers have also been proposed. Theoretical
51 studies have shown that highly fecund populations have multiple mergers in their genealogies [20, 21]. Selective sweeps can
52 also lead to fat-tailed distributions in the number of offspring. Mathematically, the genealogies of such populations can be
53 described by a more general coalescent model known as the Λ -coalescent [20, 22]. However these mechanisms have limited
54 applicability—most species have few offspring and typical population sizes and selective pressures are unlikely to have a
55 large effect on genealogies [23–25]. Here, we show that a ubiquitous demographic mechanism generates genealogical trees
56 with a wide range of topologies, including topologies with exclusively pairwise mergers as well as topologies with multiple

57 mergers. This mechanism relies on unusually large genetic drift at the leading edge of expanding population fronts. Such
58 expansions can occur in a variety of contexts, such as range expansions [26], range shifts due to climate change [27], or
59 the growth of bacterial colonies [28, 29] and tumors [30, 31].

60 Despite their importance, very little is known about the genealogies of spatially expanding populations. Two approaches
61 have been used previously to study this problem, often leading to very different conclusions [32–34]. The most common
62 approach is to approximate spatial expansions by a series of discrete bottlenecks at the front [23, 32, 35]. This is known
63 as the serial bottleneck approximation and it implicitly assumes that genealogies along the expansion are described by a
64 series of replacement events (as illustrated in Fig. 1a, c), while those at the leading edge are described by the Kingman co-
65 lescent, with a potentially time-dependent population size [33, 36]. The Kingman structure of genealogies has also been
66 recently proven for a certain class of range expansions with negative growth rates at the leading edge [37]. An alternative
67 approach, introduced in Ref. [34], is based on an analogy between spatial expansions and traveling waves describing the
68 increase in fitness in a population of constant size under strong selection [38–40]. Using heuristic arguments, supported
69 by extensive numerical simulations, Brunet et al. conjectured that expansions under the Fisher-Kolmogorov-Petrovsky-
70 Piskunov (FKPP) universality class are described by a different type of coalescent, known as the Bolthausen–Sznitman
71 coalescent¹ [34]. Unlike the standard Kingman coalescent, in which only pairwise mergers between branches are allowed,
72 the Bolthausen–Sznitman coalescent is characterized by large merger events, during which a finite fraction of branches
73 can coalesce simultaneously [42, 43]. Despite subsequent investigations, reconciling these two diametrically opposed
74 points of view is still an open problem [33, 36, 40].

75 Recent studies by the authors point to a potential resolution of the above-mentioned contradiction [44, 45]. Specifically,
76 we examined whether population dynamics at the front could lead to differences in the rate of diversity loss during range
77 expansions. Surprisingly, we found that density dependence in either growth or migration has large effects on genetic
78 diversity. These effects can be grouped into three distinct regimes. When density dependence is positive and large—such
79 as when growth and migration are highly cooperative, for example—the time scale over which diversity is lost scales lin-
80 early with the carrying capacity. This is the scaling expected from the Kingman coalescent and is consistent with the serial
81 bottlenecks view. However, when cooperation is reduced, large fluctuations in density at the front tip lead to sublinear
82 scaling, as would be expected if multiple mergers were present in the genealogies [7]. Finally, when cooperation is absent,

¹Such expansions fall within the broader class of “pulled” expansions and we will usually refer to them by this term. Subsequent work rigorously proved that fitness waves are described by the Bolthausen–Sznitman coalescent [41], but no such proof exists for pulled spatial expansions, to our knowledge.

83 the timescale of diversity loss scales logarithmically with the carrying capacity, as would be expected from a population
84 described by the Bolthausen–Sznitman coalescent [7]. These results lead to a natural hypothesis, that these changes in the
85 rate of diversity loss are a result of changes in the underlying genealogies, driven by large fluctuations in the low-density
86 region of the front.

87 In this paper, we elucidate the connection between population dynamics and genealogies during expansion. We focus
88 on understanding the topology of genealogies in the well-mixed region close to the front of the expansion (Fig. 1b, d).
89 Using simulations, we obtain genealogical trees and examine how they change as growth dynamics vary. We indeed find
90 that changes in growth cooperativity lead to a transition from the Kingman to a non-Kingman coalescent with multiple
91 mergers. The fluctuations in the position and shape of the expansion front are crucial to these results because we observe
92 only the Kingman coalescent when demographic fluctuations of the front are artificially suppressed.

93 To explain our findings, we developed an effective model of the expansion front using analytical arguments. We showed
94 that the front can be treated as a well-mixed population with a broad distribution of number of offspring (reproductive
95 values). The tail of the distribution follows a power law with an exponent that depends only on the ratio of the expansion
96 velocity and the geometric mean of the growth and dispersal rates at low population densities. The topology of the
97 genealogies is described by a Λ -coalescent and is in turn determined by the exponent [21, 46, 47]. Thus, the distribution
98 of merger sizes in the genealogies of expanding populations is dependent on the growth dynamics.

99 **Simulation results**

100 **Expansion model**

101 We simulated a population expansion using a setup similar to the classic stepping stone model [48]. Specifically, we con-
102 sider a one-dimensional landscape of demes (patches). For computational efficiency, we use a simulation box of $L = 300$
103 demes, which moves with the expansion front such that the box is approximately half-filled at all times. Each generation,
104 individuals migrate between neighboring demes with probability $m/2$ and reproduce. The number of descendants is
105 determined by the growth function that depends on the local population density (see Methods for details). On average,
106 the population density increases to a maximum value set by the carrying capacity N . All individuals are resampled ev-
107 ery generation, so demes that are at carrying capacity still experience genetic drift. As a result, the model reduces to a

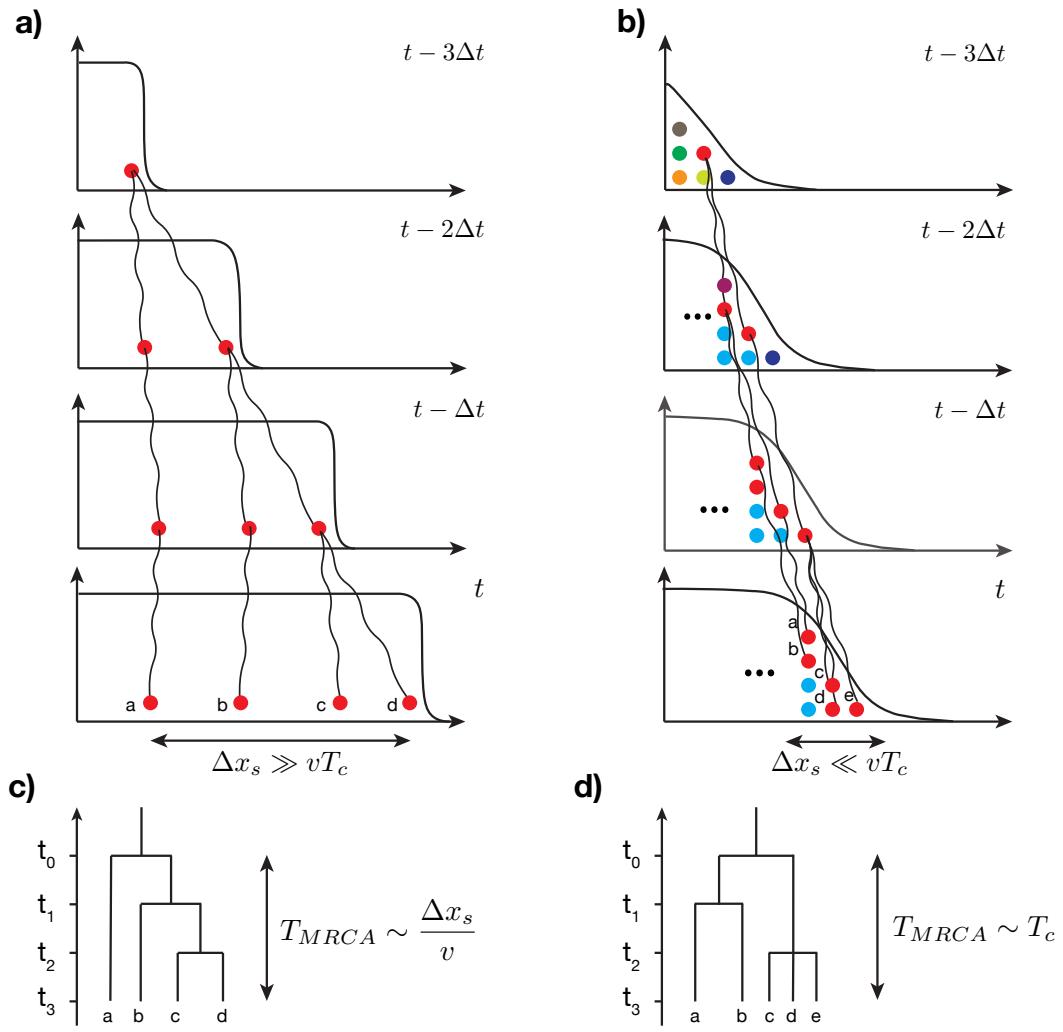


Figure 1: Shape of genealogies in expanding populations depends on spatial location of sampled individuals. The genealogies in two limiting sampling regimes are shown schematically. **(a)** When sampling is done over large distances along the expansion, the coalescence time is mainly determined by the motion of the front. **(b)** In this regime, the lineage coalescence depends on spatial locations and genealogies correspond to a series of replacement events. **(c)** When sampling is done at the front, lineage coalescence is independent of spatial location and the motion of the front does not play an important role. **(d)** In this regime, a characteristic coalescence time T_c emerges which is determined by the topology of the genealogical tree.

108 Wright–Fisher process in the bulk and a branching process with Poisson distributed number of offspring at the front.

109 **Methods**

110 The detailed implementation of the sampling of descendants can be found in the SI, Sec. IV. For our purposes here, the
 111 change in the local population size n_k , can be represented by a growth function $r(n_k)$, given by the following expression:

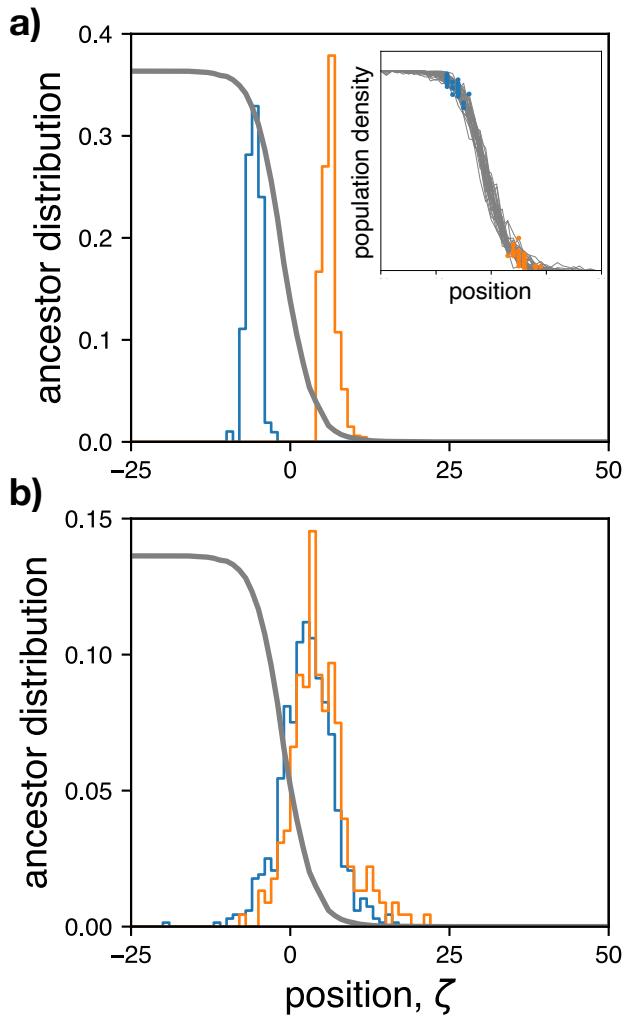


Figure 2: Genetic processes in spatially expanding populations are effectively well mixed on time scales larger than the mixing time of the front. (a) The distribution of initial locations from which the ancestor position was tracked backward in time. Due to the stochastic nature of the front the distribution of sampling locations has a finite width with respect to the average front profile shown in gray. (Inset) Shows final front from 30 independent runs used to generate histograms in the main panel. For each run, two subpopulations were chosen, one close to the bulk (blue) and another close to the edge of the front (orange), and the locations of their ancestors were recorded at different times in the past (see SI, Sec. V for exact sampling procedure). (b) Distribution of locations of ancestors of individuals shown in panel (a) from 100 generations in the past.

$$r(n_k) = r_0(1 - n_k/N)(1 + Bn_k/N), \quad (1)$$

112 where k is the deme index and r_0 is the growth rate at zero density. For convenience, we set the generation time to one
 113 and omit it from future expressions. The parameter B in (1) sets the growth cooperativity in the population. For $B = 0$,
 114 (1) is the widely-used logistic growth function [49, 50], which has the maximum growth rate $r(n_k) = r_0$ at $n_k = 0$. For
 115 $B > 1$, the position of the maximum shifts to $n_k > 0$, and $r(n_k)$ becomes larger as B increases.

116 We showed previously that B in (1) controls the scaling between the carrying capacity N and the effective population
117 size of the front N_e , which we define as the time scale over which genetic diversity is lost. This dependence of N_e on
118 N changes from a linear function for $B \geq 4$, to a power law for $2 < B < 4$, and then to $\ln^3 N$ for $B < 2$ [44].
119 We refer to the three expansion classes as fully pushed, semi-pushed, and pulled, respectively [44, 45]. This terminology
120 reflects the fact that growth in pulled expansions occurs mainly at the edge of the front while, in semi-pushed and fully
121 pushed expansions, it is in the bulk. We performed simulations with one value of B for each regime: $B = 10$ for fully
122 pushed expansions, $B = 3.33$ for semi-pushed expansions, and $B = 0$ for pulled expansions. Although our simulations
123 are based on the specific growth and migration model detailed above, our theoretical results are model-independent (see
124 below). Therefore, we do not expect any of our conclusions to change if different growth or migration models are used.

125 Genealogies can be obtained by storing all ancestral relationships. This approach, however, would severely constrain
126 the population size and duration of our simulations. Instead, we keep track of genealogies by periodically assigning a
127 unique label to every individual in the population. After assignment, the size of surviving clones—defined as a group
128 of individuals with the same label—increases, while other clones become extinct. After a fixed number of generations
129 Δt , we relabel all individuals and store their previous labels. One can then trace the ancestry backward in time with
130 temporal resolution Δt . As long as Δt is not too large compared to the generation time and the maximum clone size is
131 small compared to the total population size, this procedure introduces only minor information loses in the genealogies
132 for sample sizes much smaller than the carrying capacity.

133 Descendant distribution in deterministic fronts

134 Without demographic fluctuations, the front profile $n_d(\zeta)$ assumes a steady-state solution with a cutoff in the density
135 determined by $n_d(\zeta_c) = 1$, since the number of individuals cannot be less than one. Thus, for values of $\zeta > \zeta_c$, the
136 population density is zero. This density cutoff implies a maximum number of descendants² W_c , which can be calculated
137 as discussed in the SI, Sec. I. Viewed backward in time, the ratio $\frac{W_c}{N_e}$ is the maximum fraction of lineages that can merge at
138 the same time, where N_e is the size of population at the front with a non-negligible probability of fixation. We find that
139 $\frac{W_c}{N_e} \rightarrow 0$ in the limit of large N (SI, Sec. I). Hence, pairwise mergers should dominate, leading to the Kingman coalescent.

²The fixation probability $u(\zeta)$ is always monotonic in ζ for pulled and semi-pushed expansions, and therefore $W_c \propto u(\zeta_c)$. In fully pushed expansions, $u(\zeta)$ can have a maximum at $\zeta < \zeta_c$, in which case there would be no cutoff in $P(W)$. However, since fully pushed expansions are described by the Kingman coalescent, this does not change the conclusions of our argument.

140 Spatial self-averaging

141 Range expansions are inherently heterogeneous in time and space. Therefore, ancestral relationships can in general de-
142 pend on the times and locations of samples from the population. Consider two extreme sampling scenarios of either
143 sampling individuals uniformly from the colonized range (Fig. 1a), or sampling all individuals from the front (Fig. 1b). In
144 both cases, coalescent events primarily occur when ancestral lineages are at the front because genetic drift in the popula-
145 tion bulk is much weaker. When two samples are taken from distant spatial locations, their lineages need to “wait” until
146 both lineages are at the front. Viewed backward in time, this occurs when the front recedes past the left-most lineage (see
147 Fig. 1a, c). Thus, in this sampling protocol, the shape of the genealogical tree explicitly depends on the spatial separation
148 between the sampling locations. In contrast, there is no position-dependence when all individuals are sampled at the
149 front because all lineages start merging at the same time (Fig. 1b, d).

150 Previous work suggests that lineages sampled at the front can be viewed as if they are part of a well-mixed population
151 comoving with the front [44, 51]. This approximation is valid on time scales longer than the mixing time.

152 To test if the mixing time τ_m is indeed much shorter than the coalescence time, we tracked the spatial distribution of
153 ancestors of individuals at the front. Specifically, we performed 30 independent simulations and sampled individuals
154 from two spatial locations, one closer to the front and the other closer to the bulk. The inset in Fig. 2a shows the two
155 sampling locations (blue and orange dots) together with the final front (grey line) for each run. The main panels show the
156 distribution of ancestors of individuals from the two sampling locations shortly before the sampling time (Fig. 2a), and
157 at a time close to τ_m (Fig. 2b). Importantly, we found that the time necessary for the ancestor distributions to become
158 independent of sampling location was much shorter than the time to reach the common ancestor for the whole front.
159 For example, from Fig. 2b we estimated $\tau_m \approx 10^2$ generations, compared to $T_c \approx 10^3$. These results show that the
160 sampling positions do not affect genealogies and, therefore, the lineages can be considered *exchangeable*, which is a key
161 requirement for describing them using the coalescent theory.

162 Structure of genealogies

163 We performed simulations using three levels of cooperativity that are expected to lead to qualitative differences in the ge-
164 nealogies because they correspond to pulled, semi-pushed and fully pushed expansions. The genealogy of the population
165 was obtained using the procedure described in the Methods section. The examples of these genealogies shown in Fig.

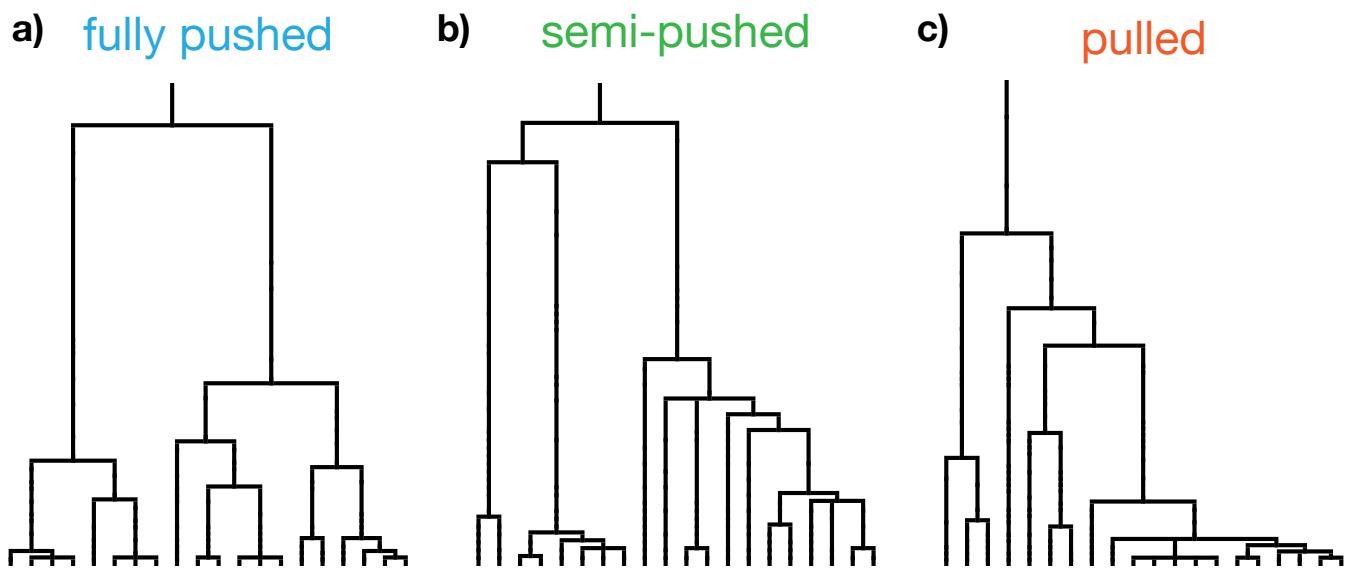


Figure 3: The genealogical tree of spatially expanding populations changes as the expansion transitions from pulled to pushed. Sample genealogies from fully pushed (a), semi-pushed (b), and pulled (c) expansions are shown. These trees were generated by randomly sampling 20 individuals from the first 15 occupied demes from the front, after fixation. For illustration purposes, we chose representative trees from our simulations that provided good visual clarity.

166 3 have the qualitative features predicted by the theory. In fully pushed expansions genealogies have only pairwise merg-
167 ers, whereas semi-pushed and pulled expansions show several examples of multiple mergers. Moreover, the genealogies
168 in pulled expansions appear highly skewed, with most mergers occurring on one side of the tree, while in fully-pushed
169 expansions branching is more symmetric. These features are consistent with our hypothesis that cooperativity drives the
170 transition from the Bolthausen–Sznitman to the Kingman coalescent.

171 To get a more quantitative measure of the changes in topology of the genealogies during expansion, we calculated two
172 summary statistics³ that can distinguish between coalescents: the site frequency spectrum (SFS), and the two-site fre-
173 quency spectrum (2-SFS) [54, 55]. We found that both SFS and 2-SFS supported our hypothesis that genealogies change
174 from the Kingman to a non-Kingman coalescent at the transition between fully pushed and semi-pushed expansions.
175 Because it is simpler to quantitatively test the SFS against the theoretical predictions, we report these results in the main
176 text and refer the interested reader to Sec. III of the SI for the analysis of the 2-SFS.

177 The SFS provides a histogram of the number of sites in the genome that have a given frequency of mutations in the sample.

³Other summary statistics have also been used to describe the shape of genealogical trees. Perhaps the most popular of these is the total tree length, which determines the number of segregating sites in sequencing data. However, this metric is known to be very sensitive to demographic expansions and is not a reliable indicator of coalescents with multiple mergers [52, 53].

178 Assuming mutation rates are constant throughout the genome, the SFS is the mean length of internal branches with a
 179 given number of terminal branches (leaves) [7, 56]. We are particularly interested in the shape of SFS for high-frequency
 180 mutations (allele frequencies $f \approx 1$) because SFS is qualitatively different between the Kingman and the Bolthausen-
 181 Sznitman coalescent in this regime.

182 High-frequency mutations occur on internal branches that have a large number of leaves. Genealogies with such muta-
 183 tions are highly skewed because one branch can contain the majority of leaves. Skewed trees are unlikely in the Kingman
 184 coalescent because each pairwise merger joins lineages randomly, independent of the number of their leaves. Thus SFS
 185 monotonically decays with the mutant frequency. In contrast, SFS for the Bolthausen-Sznitman coalescent is expected to
 186 have an uptick at high f because there is a high chance of nearly all lineages coalescing at a single multiple merger. Consis-
 187 tent with our hypothesis, we indeed find a monotonic SFS for fully pushed expansions (Fig. 4a), while semi-pushed and
 188 pulled expansions display the uptick at high allele counts characteristic of coalescents with multiple mergers (Fig. 4b, c).
 189 Moreover, both fully pushed and semi-pushed expansion SFS agree quantitatively with the predictions from the Kingman
 190 coalescent and the Beta-coalescent with $\beta = 1.5$, respectively (see SI, Sec. III for details). In the case of pulled expa-
 191 sions, we find the quantitative agreement is less good, which we believe is due to the very long relaxation times required
 192 to reach steady-state in the pulled regime (see SI, Sec. II). Nevertheless, taken together, these results clearly establish that
 193 the genealogies of the three expansion classes have distinct topologies.

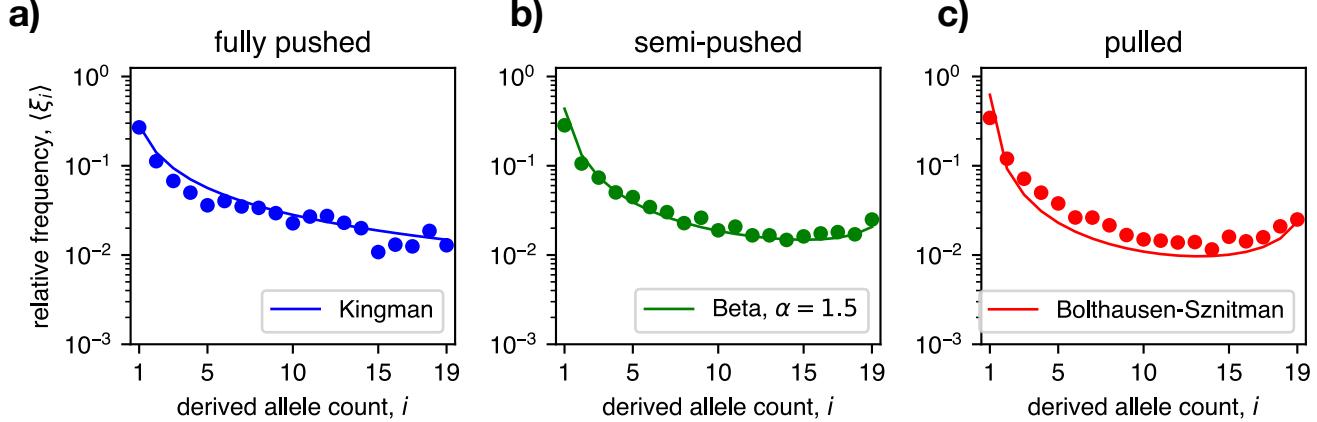


Figure 4: **The site frequency spectrum of genealogies reveals differences between pulled and pushed waves.** Approximately 100 trees were recorded from simulations of fully pushed (a), semi-pushed (b), and pulled (c) expansions, respectively. Each full genealogy was sampled 10 times using a sample size of 20 individuals chosen from the front (see SI, Sec V for sampling procedure). The resulting SFS, averaged over samples and simulations, is shown with colored dots. The solid line shows the exact predictions for the SFS in each regime (see SI, Sec. V for details).

194 **Theoretical results**

195 **Descendant distribution in stochastic fronts**

196 To develop an intuitive understanding of how genealogies emerge in range expansions, we developed a theoretical frame-
197 work based on continuous reaction-diffusion equations. In this framework, it is easier to examine the dynamics of clones
198 forward in time and relate the expansion of these clones to mergers in the genealogy. Previous work has shown that the
199 frequency of a subpopulation $f_i(t, \zeta)$ within the front changes according to the following equation [44, 51]:

$$\frac{\partial f_i}{\partial t} = D \frac{\partial^2 f_i}{\partial \zeta^2} + \left[v + 2D \frac{\partial \ln n}{\partial \zeta} \right] \frac{\partial f_i}{\partial \zeta}, \quad (2)$$

200 where D is the effective diffusion constant which describes the migration of individuals, v is the velocity of the front,
201 $n(\zeta)$ is the population density, and $\zeta = x - vt$ is the position along the front in the comoving reference frame.

202 From (2) we can calculate the distribution of descendants from a single individual at some position ζ_0 as $t \rightarrow \infty$. In Sec.
203 I of the SI, we show that this distribution has a time-independent form $f_i(t, \zeta) \approx u(\zeta_0)$ after sometime $O(\tau_m)$, which
204 we denote as the “mixing time” of the front. As a result, on time scales longer than τ_m the distribution of surviving clones
205 $f_i(t, \zeta)$ loses all spatial information and u is simply proportional to the reproductive success of the ancestor.

206 Because u greatly varies with ζ_0 , individuals at different locations can have wildly different reproductive values W , which
207 are determined by their average number of offspring after the mixing time [57, 58]. We can invert this dependence and
208 consider $\zeta(W)$ —i.e., find the location of the initial individual with a given reproductive value. It is then straightforward
209 to compute the probability distribution for W by finding the number of organisms present at $\zeta(W)$. Mathematically,
210 this is accomplished by the following change of variables: $P(W)dW = \frac{n(\zeta)d\zeta}{\int_{-L}^{+\infty} n(x)dx}$. In Sec. I of the SI, we use this change
211 of variables to calculate $P(W)$ explicitly and find that it has a power law tail of the form

$$P(W) \sim W^{-2-\alpha}. \quad (3)$$

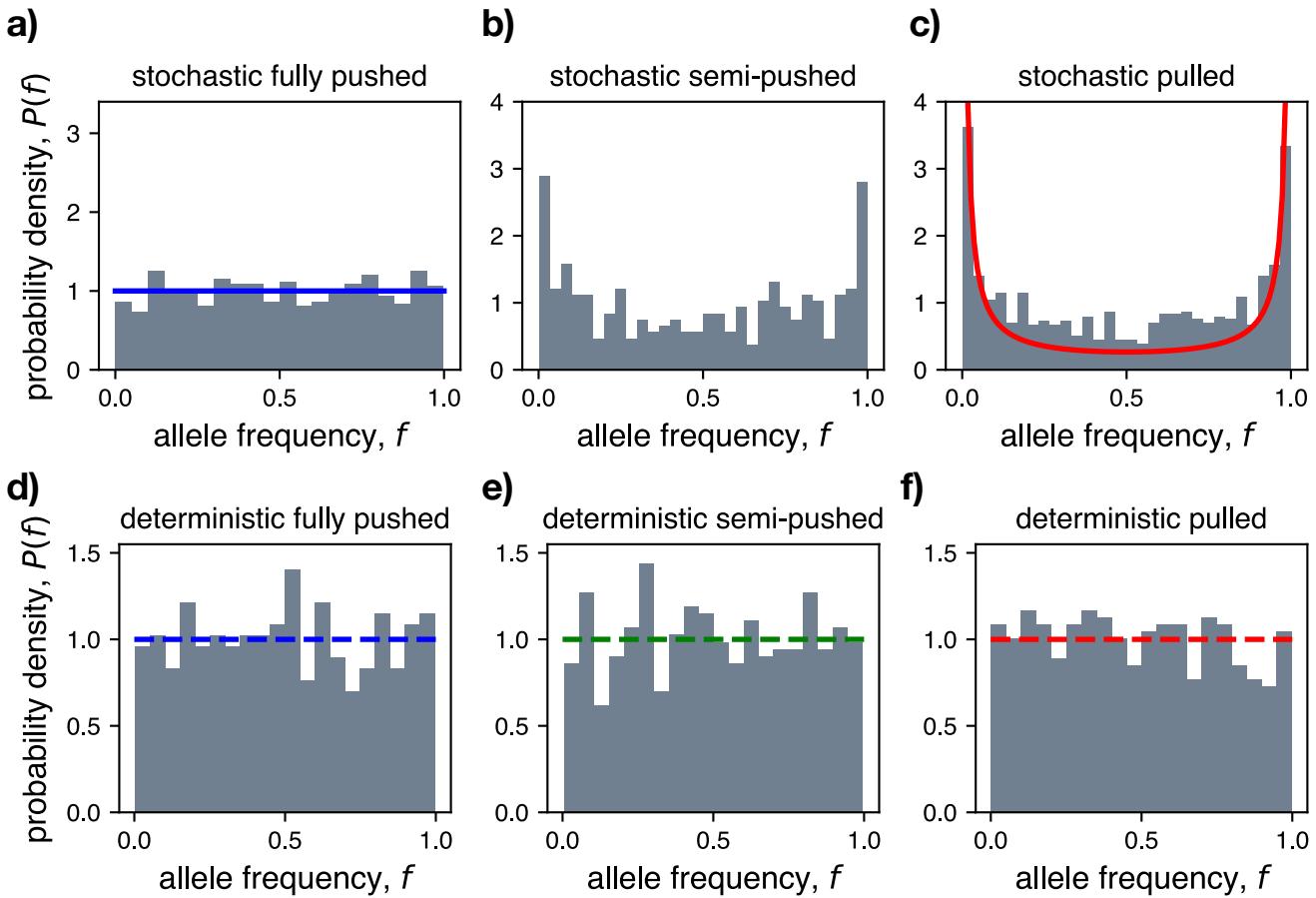


Figure 5: Deterministic front approximation fails to capture full range of coalescent topologies. (a-c) Shows long-time distribution of the frequency of one allele in stochastic two-allele simulations for each expansion type. Histograms of allele frequencies are shown in gray and the theoretical predictions assuming the Kingman (panel a, blue) and Bolthausen–Sznitman (panel c, red) coalescent are shown with solid lines. (d-f) Same as above, but for simulations with a deterministic front. The dashed lines show the theoretical predictions, which are now given by the Kingman coalescent. For each panel we ran 10^3 simulations and report the distribution of allele frequencies at a fixed time after the distribution becomes quasi-stationary.

212 The origin of different topologies

213 The exponent α is calculated exactly and depends only on v/v_F , the ratio between the actual expansion velocity and the
 214 velocity that would occur in the absence of positive feedback $v_F = 2\sqrt{r_0 D}$:

$$\alpha = \frac{2\sqrt{1 - v_F^2/v^2}}{1 - \sqrt{1 - v_F^2/v^2}}. \quad (4)$$

215 Note that the specific form of the density dependence in the growth and dispersal rates does not enter (4). In fact, all of
 216 our analyses have been carried out for an arbitrary model with short-range dispersal. Thus, the tails of $P(W)$ are universal

217 and depend on a single, easy-to-measure parameter [59].

218 For high cooperativity, when v/v_F is greater than a critical value $\nu_c = \frac{3}{2\sqrt{2}}$ ⁴, the exponent α is greater than one and the
219 variance of W is finite. Therefore, the clone frequencies only change by small amounts each generation and genealogies
220 are described by the Kingman coalescent [60]. For intermediate values of cooperativity, defined by $1 < v/v_F < \nu_c$, the
221 exponent α is less than one and the variance of $P(W)$ diverges. This leads to occasional large jumps in clone frequencies
222 and the appearance of multiple mergers in the coalescent [47]. Finally, when $v/v_F = 1$, we have $\alpha = 0$ and $P(W) \sim$
223 W^{-2} , which leads to a Bolthausen–Sznitman coalescent when the process is viewed backward in time [47, 61].

224 To verify the change in descendant distribution predicted by theory, we measured clone sizes during range expansions in
225 simulations. Direct measurements of $P(W)$ are challenging because the distribution emerges only over a time scale of
226 $O(\tau_m)$, which we cannot determine precisely. However, we can circumvent this problem in two limits: on short time
227 scales, on the order of a few multiples of τ_m , and on long time scales, when the population comprises two clones. In the
228 first limit, we can consider all individuals at the front at some initial time as clones of size one. As the front expands, some
229 clones go extinct while others increase in size. For short time scales (comparable to τ_m), clone sizes are small and each can
230 be modeled as independent branching processes. In the second limit, we can track the dynamics of a population with
231 only two clones—which we can think of as two alleles. As both alleles are neutral, the dynamics can be described by the
232 frequency of one of them, which changes according to a Fleming-Viot process [61, 62].

233 The branching process calculation makes two testable predictions about the clone size distributions. First, the average
234 size of a surviving clone $\langle W \rangle_+$ increases as $t^{1/\alpha}$. Second, the probability to observe a clone s times larger than the av-
235 erage clone decays as e^{-s} for $P(W)$ with a finite variance and as $s^{-1-\alpha}$ when $\alpha < 1$. In the SI we show the results of
236 simulations for fully pushed expansions agree well with these predictions (Fig. S4). Outside of the fully pushed regime,
237 we see a broadening in the clone size distribution which is inconsistent with the exponential prediction for a short-tailed
238 descendant distribution (Fig. S4). However, due to the large carrying capacities required to allow for the relaxation of the
239 transient dynamics in the semi-pushed and pulled regimes, we were not able to quantitatively verify the expected power
240 law for $F(s)$.

241 The simulations of the Fleming-Viot process were more efficient and allowed us to demonstrate a quantitative agreement

⁴The critical value is determined from (4) by finding the value of v/v_F for which $\alpha = 1$.

242 with our theoretical predictions. Specifically, we started forward-in-time simulations with two clones of equal abundance
243 and monitored the frequency f of one of the clones. Conditioned on having both clones present, the probability $P(f)$
244 of observing a particular clone frequency approaches a steady state in simulations and can also be computed analytically.
245 For the Kingman coalescent, $P(f) = 1$ [63] while for the Bolthausen–Sznitman coalescent $P(f) = \frac{1}{f(1-f)}$ ⁵. Our
246 simulations match both of these predictions (Fig. 5a-c).

247 **The role of fluctuations in population density at the front**

248 All of our results so far explicitly account for demographic fluctuations at the front. However, most studies of range
249 expansions have ignored demographic fluctuations, either because of the mathematical difficulties they introduce or be-
250 cause their effects were thought to be small [32, 64, 65]. To understand to what extent density fluctuations influence the
251 dynamics at the front, we performed simulations in which the total population density was updated deterministically,
252 while still allowing for genetic drift by stochastically sampling the front composition. In all simulations, we found that
253 genealogies matched the Kingman coalescent (Fig. 5d-f).

254 This unexpected result can be explained by considering the effect of deterministic population dynamics on the descendant
255 distribution at the front. In the Methods section, we show that the deterministic approximation leads to a finite variance
256 in $P(W)$, through a cutoff W_c corresponding to the maximum reproductive value at the front. We also show that the
257 cutoff W_c scales sublinearly with the carrying capacity N (see SI, Sec. I). This implies that the fraction of lineages which
258 can merge in one event in the limit of large N goes to zero. As large merger events are suppressed, we expect all genealogies
259 to converge to the Kingman coalescent. Thus, demographic fluctuations play a crucial role in the emergence of non-
260 Kingman coalescents at the front.

261 **Discussion**

262 Many species, from microbes [66, 67] to humans [23], have undergone expansions in their history and many are cur-
263 rently expanding due to globalization [68, 69] and climate change [27, 70]. Previous work has demonstrated that range
264 expansions reduce the amount of genetic diversity in the population [32, 64, 71, 72] and allows for some alleles to become

⁵This prediction assumes the population size is infinite, in which case $P(f)$ widens in time and there is no strictly stationary distribution [61]. However, within the range of $1/N_e \ll f \ll 1 - 1/N_e$ we expect the allele frequency distribution to match the theoretical prediction, as we indeed see in simulations.

265 dominant, through a process known as gene surfing [51, 65, 73]. However, underneath the overall decrease in diversity
266 many patterns can be found which are still not well understood.

267 Evolutionary dynamics during range expansions vary greatly depending on how much demographic fluctuations and
268 genetic drift at the leading edge influence future generations [44]. This dependence is captured by a single parameter
269 v/v_F . This ratio of the actual expansion velocity to the velocity that would occur without density dependence quantifies
270 the degree of cooperativity (or positive feedback) in growth and dispersal. When this parameter is large, the front makes
271 a small contribution to the rate of expansion and allele frequencies change slowly. When v/v_F is close to one, expansion
272 proceeds primarily via a highly stochastic advancement of the population edge.

273 We showed that these differences in evolutionary dynamics are captured by a simple and intuitive model, which de-
274 scribes the front as an effective well-mixed population with broad distribution of reproductive values. As v/v_F de-
275 creases, the descendant distribution becomes broader until, at a critical value, the variance diverges—this signals the tran-
276 sition from the Kingman to a non-Kingman coalescent. As v/v_F decreases further, the distribution broadens until a
277 Bolthausen–Sznitman coalescent is reached.

278 Density fluctuations are essential for all of our results. When these fluctuations were ignored, all genealogies were de-
279 scribed by the Kingman coalescent, as predicted from the serial bottleneck view [32]. More sophisticated models have
280 attempted to replace the effects of demographic fluctuations by a cutoff at $n(\zeta_c) = 1$. While such a cutoff is appropri-
281 ate for pulled expansions, for others it is not [74]. It has recently been discovered that for semi-pushed and fully pushed
282 expansions, a different cutoff, which depends on v/v_F , should be used [44]. There, *quantitative* changes in the rate of di-
283 versity loss were found when the wrong cutoff was used. Here, we found the choice of cutoff leads to *qualitative* changes
284 in the genealogies. Thus, any theory that hopes to predict the dynamics of expansions needs to account for fluctuations
285 in the position and shape of the front.

286 Our results provide a universal framework to link genetic diversity at the front to ecological dynamics. This framework
287 can be used to infer the importance of density feedback in growth and dispersal or to predict evolution during range
288 expansions. More importantly, the mechanism presented here provides a generic explanation for the skewed genealogies
289 commonly observed in empirical studies [19, 75–77]. Previously such genealogies were attributed to either very strong
290 selection or sweepstakes reproduction [19, 77], both of which could be less common than range expansions. Neverthe-

291 less, natural populations are both spatially structured and under various selection pressures—integrating both aspects is
292 required for developing a complete theory of genealogical trees.

293 **Acknowledgments**

294 The authors would like to thank Benjamin H. Good for helpful discussions and comments. K.S.K. and G.B. were partially
295 supported by the Simons Foundation Grant #409704; K.S.K. also acknowledges the support by the Research Corpora-
296 tion for Science Advancement through Cottrell Scholar Award #24010 and by NIGMS through grant #R01GM138530-
297 01. G.B. was also partly supported by the Simons Foundation Postdoctoral Fellowship Award #730295. O.H. acknowl-
298 edges the support from the Simons Foundation Grant #409704, the National Science Foundation Career Award #1555330,
299 and the National Institute of General Medical Sciences of the National Institutes of Health Award R01GM115851. Simu-
300 lations were carried out on the Boston University Shared Computing Cluster.

301 **References**

- 302 1. Donnelly, P. & Tavaré, S. Coalescents and genealogical structure under neutrality. *Annu. Rev. Genet.* **29**, 401–421.
303 ISSN: 00664197 (1995).
- 304 2. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. *Nature*
305 **475**, 493–496. ISSN: 1476-4687. <https://doi.org/10.1038/nature10231> (July 2011).
- 306 3. Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. Coalescent-based species delimita-
307 tion in an integrative taxonomy. *Trends in Ecology & Evolution* **27**, 480–488. ISSN: 0169-5347. <http://www.sciencedirect.com/science/article/pii/S0169534712001000> (Sept. 2012).
- 308 4. Dayarian, A. & Shraiman, B. I. How to Infer Relative Fitness from a Sample of Genomic Sequences. *Genetics* **197**,
309 913. <http://www.genetics.org/content/197/3/913.abstract> (July 2014).
- 310 5. Neher, R. A., Russell, C. A. & Shraiman, B. I. Predicting evolution from the shape of genealogical trees. *Elife* **3**,
311 1–18. ISSN: 2050084X. arXiv: 1406.0789 (2014).
- 312 6. Kingman, J. F. C. The coalescent. *Stochastic processes and their applications* **13**, 235–248 (1982).
- 313 7. Berestycki, N. Recent progress in coalescent theory. *Ensaios Matematicos* **16**, 1–193 (2009).

315 8. Sella, G., Petrov, D. A., Przeworski, M. & Andolfatto, P. Pervasive Natural Selection in the *Drosophila* Genome? *PLOS Genetics* **5**. Publisher: Public Library of Science, e1000495. <https://doi.org/10.1371/journal.pgen.1000495> (June 2009).

316 9. Corbett-Detig, R. B., Hartl, D. L. & Sackton, T. B. Natural Selection Constrains Neutral Diversity across A Wide
317 Range of Species. *PLOS Biology* **13**. Publisher: Public Library of Science, e1002112. <https://doi.org/10.1371/journal.pbio.1002112> (Apr. 2015).

318 10. Kern, A. D. & Hahn, M. W. The Neutral Theory in Light of Natural Selection. *Molecular Biology and Evolution*
319 **35**, 1366–1371. ISSN: 0737-4038. <https://doi.org/10.1093/molbev/msy092> (2019) (May 2018).

320 11. Menardo, F., Gagneux, S. & Freund, F. Multiple merger genealogies in outbreaks of *Mycobacterium tuberculosis*.
321 *bioRxiv* **12**, 885723 (2019).

322 12. Hudson, R. R. & Kaplan, N. L. The coalescent process in models with selection and recombination. *Genetics* **120**,
323 831. <http://www.genetics.org/content/120/3/831.abstract> (Nov. 1988).

324 13. Nei, M. & Takahata, N. Effective population size, genetic diversity, and coalescence time in subdivided populations.
325 *Journal of Molecular Evolution* **37**. Publisher: Springer, 240–244. ISSN: 0022-2844 (1993).

326 14. Wakeley, J. Distinguishing migration from isolation using the variance of pairwise differences. *Theoretical population
327 biology* **49**. Publisher: Elsevier, 369–386. ISSN: 0040-5809 (1996).

328 15. Nordborg, M. Structured Coalescent Processes on Different Time Scales. *Genetics* **146**, 1501. <http://www.genetics.org/content/146/4/1501.abstract> (Aug. 1997).

329 16. Charlesworth, B., Charlesworth, D. & Barton, N. H. The effects of genetic and geographic structure on neutral
330 variation. *Annual Review of Ecology, Evolution, and Systematics* **34**, 99–125 (2003).

331 17. Wakeley, J. & Aliacar, N. Gene Genealogies in a Metapopulation. *Genetics* **159**, 893. <http://www.genetics.org/content/159/2/893.abstract> (Oct. 2001).

332 18. Sargsyan, O. & Wakeley, J. A coalescent process with simultaneous multiple mergers for approximating the gene
333 genealogies of many marine organisms. *Theoretical Population Biology* **74**, 104–114. ISSN: 0040-5809. <http://www.sciencedirect.com/science/article/pii/S0040580908000580> (Aug. 2008).

334 19. Rödelsperger, C. *et al.* Characterization of Genetic Diversity in the Nematode *Pristionchus pacificus* from Population-Scale Resequencing Data. *Genetics* **196**, 1153. <http://www.genetics.org/content/196/4/1153.abstract> (Apr. 2014).

335 336 337 338 339 340 341 342

343 20. Schweinsberg, J. Coalescents with simultaneous multiple collisions. *Electronic Journal of Probability* **5** (2000).

344 21. Eldon, B. & Wakeley, J. Coalescent processes when the distribution of offspring number among individuals is highly
345 skewed. *Genetics* **172**, 2621–2633 (2006).

346 22. Pitman, J. Coalescents with multiple collisions. *Annals of Probability* **27**. Publisher: JSTOR, 1870–1902. ISSN: 0091-
347 1798 (Oct. 1999).

348 23. Ramachandran, S. *et al.* Support from the relationship of genetic and geographic distance in human populations
349 for a serial founder effect originating in Africa. *Proceedings of the National Academy of Sciences of the United States
350 of America* **102**, 15942–15947 (2005).

351 24. Pierce, A. A. *et al.* Serial founder effects and genetic differentiation during worldwide range expansion of monarch
352 butterflies. *Proceedings of the Royal Society B: Biological Sciences* **281**. Publisher: Royal Society, 20142230. <https://doi.org/10.1098/rspb.2014.2230> (2020) (Dec. 2014).

354 25. Britton, J. R. & Gozlan, R. E. How many founders for a biological invasion? Predicting introduction outcomes
355 from propagule pressure. *Ecology* **94**. Publisher: John Wiley & Sons, Ltd, 2558–2566. ISSN: 0012-9658. <https://doi.org/10.1890/13-0527.1> (2020) (Nov. 2013).

357 26. Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. *Nature* **439**.
358 Publisher: Nature Publishing Group, 803–803. ISSN: 1476-4687 (2006).

359 27. Hellberg, M. E., Balch, D. P. & Roy, K. Climate-Driven Range Expansion and Morphological Evolution in a Marine
360 Gastropod. *Science* **292**, 1707. <http://science.sciencemag.org/content/292/5522/1707.abstract>
361 (June 2001).

362 28. Hallatschek, O., Hersen, P., Ramanathan, S. & Nelson, D. R. Genetic drift at expanding frontiers promotes gene
363 segregation. *Proceedings of the National Academy of Sciences* **104**, 19926–19930 (2007).

364 29. Cremer, J. *et al.* Chemotaxis as a navigation strategy to boost range expansion. *Nature* **575**, 658–663. ISSN: 1476-
365 4687. <https://doi.org/10.1038/s41586-019-1733-y> (Nov. 2019).

366 30. Gerlee, P. & Nelander, S. The impact of phenotypic switching on glioblastoma growth and invasion. *PLoS Computational Biology* **8**, e1002556 (2012).

368 31. Sottoriva, A. *et al.* A Big Bang model of human colorectal tumor growth. *Nature Genetics* **47**, 209–216. ISSN: 1546-
369 1718. <https://doi.org/10.1038/ng.3214> (Mar. 2015).

370 32. Slatkin, M. & Excoffier, L. Serial founder effects during range expansion: A spatial analog of genetic drift. *Genetics*
371 **191**, 171–181. ISSN: 00166731 (2012).

372 33. DeGiorgio, M., Jakobsson, M. & Rosenberg, N. A. Explaining worldwide patterns of human genetic variation us-
373 ing a coalescent-based serial founder model of migration outward from Africa. *Proceedings of the National Academy*
374 *of Sciences* **106**, 16057. <http://www.pnas.org/content/106/38/16057.abstract> (Sept. 2009).

375 34. Brunet, E., Derrida, B., Mueller, A. H. & Munier, S. Effect of selection on ancestry: an exactly soluble case and its
376 phenomenological generalization. *Physical Review E* **76**, 041104 (2007).

377 35. Excoffier, L., Foll, M. & Petit, R. J. Genetic Consequences of Range Expansions. *Annual Review of Ecology, Evo-
378 lution, and Systematics* **40**, 481–501. <http://www.annualreviews.org/doi/abs/10.1146/annurev.ecolsys.39.110707.173414> (Dec. 2009).

380 36. DeGiorgio, M., Degnan, J. H. & Rosenberg, N. A. Coalescence-Time Distributions in a Serial Founder Model of
381 Human Evolutionary History. *Genetics* **189**, 579. <http://www.genetics.org/content/189/2/579.abstract> (Oct. 2011).

383 37. Etheridge, A. & Penington, S. Genealogies in bistable waves. *arXiv preprint* **9**, 2009.03841 (2020).

384 38. Tsimring, L. S., Levine, H. & Kessler, D. A. RNA virus evolution via a fitness-space model. *Physical review letters*
385 **76**, 4440 (1996).

386 39. Rouzine, I. M., Wakeley, J. & Coffin, J. M. The solitary wave of asexual evolution. *Proceedings of the National
387 Academy of Sciences* **100**, 587–592 (2003).

388 40. Hallatschek, O. The noisy edge of traveling waves. *Proceedings of the National Academy of Sciences* **108**, 1783–1787
389 (2011).

390 41. Schweinsberg, J. Rigorous results for a population model with selection II: genealogy of the population. *Electron.
391 J. Probab.* **22**, 54 pp. <https://doi.org/10.1214/17-EJP58> (2017).

392 42. Bolthausen, E. & Sznitman, A.-S. On Ruelle's Probability Cascades and an Abstract Cavity Method. *Communica-
393 tions in Mathematical Physics* **197**, 247–276. ISSN: 1432-0916. <https://doi.org/10.1007/s002200050450>
394 (Oct. 1998).

395 43. Neher, R. A. & Hallatschek, O. Genealogies of rapidly adapting populations. *Proceedings of the National Academy
396 of Sciences* **110**, 437–442 (2013).

397 44. Birzu, G., Hallatschek, O. & Korolev, K. S. Fluctuations uncover a distinct class of traveling waves. *Proc. Natl. Acad. Sci.* **115**, E3645–E3654. <https://doi.org/10.1073/pnas.1715737115> (Apr. 2018).

398 45. Birzu, G., Matin, S., Hallatschek, O. & Korolev, K. S. Genetic drift in range expansions is very sensitive to density dependence in dispersal and growth. *Ecology Letters* **22**, 1817–1827. ISSN: 1461-023X. <https://doi.org/10.1111/ele.13364> (Nov. 2019).

399 46. Sagitov, S. The general coalescent with asynchronous mergers of ancestral lines. *Journal of Applied Probability* **36**, 1116–1125 (1999).

400 47. Schweinsberg, J. Coalescent processes obtained from supercritical Galton–Watson processes. *Stochastic processes and their Applications* **106**, 107–139 (2003).

401 48. Kimura, M. & Weiss, G. H. The stepping stone model of population structure and the decrease of genetic correlation with distance. *Genetics* **49**, 561. <http://www.genetics.org/content/49/4/561.abstract> (Apr. 1964).

402 49. Dennis, B. & Taper, M. L. Density Dependence in Time Series Observations of Natural Populations: Estimation and Testing. *Ecological Monographs* **64**. Publisher: John Wiley & Sons, Ltd, 205–224. ISSN: 0012-9615. <https://doi.org/10.2307/2937041> (2020) (Feb. 1994).

403 50. May, R. & McLean, A. R. *Theoretical ecology: principles and applications* ISBN: 0-19-920999-5 (Oxford University Press on Demand, 2007).

404 51. Hallatschek, O. & Nelson, D. R. Gene surfing in expanding populations. *Theoretical Population Biology* **73**, 158–170 (2008).

405 52. Tajima, F. The effect of change in population size on DNA polymorphism. *Genetics* **123**, 597. <http://www.genetics.org/content/123/3/597.abstract> (Nov. 1989).

406 53. Rice, D. P., Novembre, J. & Desai, M. M. Distinguishing multiple-merger from Kingman coalescence using two-site frequency spectra. *bioRxiv preprint* **11**, 461517 (2018).

407 54. Hudson, R. R. Two-Locus Sampling Distributions and Their Application. *Genetics* **159**, 1805. <http://www.genetics.org/content/159/4/1805.abstract> (Dec. 2001).

408 55. Ferretti, L. *et al.* The neutral frequency spectrum of linked sites. *Theoretical Population Biology* **123**, 70–79. ISSN: 0040-5809. <http://www.sciencedirect.com/science/article/pii/S0040580917301399> (Sept. 2018).

425 56. Fu, Y. Statistical Properties of Segregating Sites. *Theoretical Population Biology* **48**, 172–197. ISSN: 0040-5809. <http://www.sciencedirect.com/science/article/pii/S0040580985710258> (Oct. 1995).

426

427 57. Fisher, R. A. *The Genetical Theory of Natural Selection* (Oxford University Press, Oxford, United Kingdom, 1999).

428 58. Barton, N. H. & Etheridge, A. M. The relation between reproductive value and genetic contribution. *Genetics* **188**, 953–973 (2011).

429

430 59. Gandhi, S. R., Korolev, K. S. & Gore, J. Cooperation mitigates diversity loss in a spatially expanding microbial population. *Proceedings of the National Academy of Sciences* **116**, 23582–23587 (2019).

431

432 60. Möhle, M. & Sagitov, S. A classification of coalescent processes for haploid exchangeable population models. *The Annals of Probability* **29**. Publisher: Institute of Mathematical Statistics, 1547–1562. ISSN: 0091-1798 (2001).

433

434 61. Hallatschek, O. Selection-like biases emerge in population models with recurrent jackpot events. *Genetics* **210**, 1053–1073 (2018).

435

436 62. Donnelly, P. & Kurtz, T. G. Genealogical Processes for Fleming-Viot Models with Selection and Recombination. *The Annals of Applied Probability* **9**. Publisher: Institute of Mathematical Statistics, 1091–1148. ISSN: 1050-5164. <http://www.jstor.org/stable/2667143> (2020) (1999).

437

438

439 63. Kimura, M. Solution of a process of random genetic drift with a continuous model. *Proceedings of the National Academy of Sciences* **41**, 144. <http://www.pnas.org/content/41/3/144.abstract> (Mar. 1955).

440

441 64. Austerlitz, F., Jung-Muller, B., Godelle, B. & Gouyon, P.-H. Evolution of coalescence times, genetic diversity and structure during colonization. *Theoretical Population Biology* **51**. Publisher: Elsevier, 148–164. ISSN: 0040-5809 (1997).

442

443

444 65. Roques, L., Garnier, J., Hamel, F. & Klein, E. K. Allee effect promotes diversity in traveling waves of colonization. *Proceedings of the National Academy of Sciences* **109**, 8828–8833 (2012).

445

446 66. Fierer, N., Nemergut, D., Knight, R. & Craine, J. M. Changes through time: integrating microorganisms into the study of succession. *Research in Microbiology* **161**, 635–642. ISSN: 0923-2508. <http://www.sciencedirect.com/science/article/pii/S0923250810001385> (Oct. 2010).

447

448

449 67. Challagundla, L. *et al.* Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant *Staphylococcus aureus*. *mBio* **9** (ed Barbour, A. G.) eprint: <https://mbio.asm.org/content/9/1/e02016-17.full.pdf>. <https://mbio.asm.org/content/9/1/e02016-17> (2018).

450

451

452 68. Phillips, B. L., Brown, G. P., Greenlees, M., Webb, J. K. & Shine, R. Rapid expansion of the cane toad (*Bufo mari-*
453 *nus*) invasion front in tropical Australia. *Austral Ecology* **32**, 169–176 (2007).

454 69. Gray, M. E., Sappington, T. W., Miller, N. J., Moeser, J. & Bohn, M. O. Adaptation and invasiveness of western
455 corn rootworm: intensifying research on a worsening pest. *Annual review of entomology* **54**, 303–321 (2009).

456 70. Pateman, R. M., Hill, J. K., Roy, D. B., Fox, R. & Thomas, C. D. Temperature-dependent alterations in host use
457 drive rapid range expansion in a butterfly. *Science* **336**, 1028–1030 (2012).

458 71. Reiter, M., Rulands, S. & Frey, E. Range Expansion of Heterogeneous Populations. *Physical Review Letters* **112**.
459 Publisher: American Physical Society, 148103. <https://link.aps.org/doi/10.1103/PhysRevLett.112.148103> (Apr. 2014).

460 72. Marculis, N. G., Lui, R. & Lewis, M. A. Neutral genetic patterns for expanding populations with nonoverlapping
461 generations. *Bulletin of Mathematical Biology* **79**, 828–852 (2017).

462 73. Klopstein, S., Currat, M. & Excoffier, L. The Fate of Mutations Surfing on the Wave of a Range Expansion. *Molecu-*
463 *lar Biology and Evolution* **23**, 482–490. ISSN: 0737-4038. <https://doi.org/10.1093/molbev/msj057> (2020)
464 (Mar. 2006).

465 74. Kessler, D. A., Ner, Z. & Sander, L. M. Front propagation: precursors, cutoffs, and structural stability. *Physical
466 Review E* **58**, 107 (1998).

467 75. Desai, M. M., Walczak, A. M. & Fisher, D. S. Genetic diversity and the structure of genealogies in rapidly adapting
468 populations. *Genetics* **193**, 565–585 (2013).

469 76. Good, B. H., Walczak, A. M., Neher, R. A. & Desai, M. M. Genetic Diversity in the Interference Selection Limit.
470 *PLOS Genetics* **10**, e1004222. <https://doi.org/10.1371/journal.pgen.1004222> (Mar. 2014).

471 77. Schrider, D. R., Shanku, A. G. & Kern, A. D. Effects of Linked Selective Sweeps on Demographic Inference and
472 Model Selection. *Genetics* **204**, 1207. <http://www.genetics.org/content/204/3/1207.abstract> (Nov.
473 2016).

474

475

Supplemental Information

476 I. Forward in time dynamics

477 In this section, we show how the genealogy of an expanding population can be mapped to an effective well-mixed pop-
478 ulation with a broad descendant distribution. We only consider the case of density-independent migration here, but the
479 argument is analogous when D depends on n . We consider a population with density $n(t, x)$ described by

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2} + r(n)n. \quad (\text{S1})$$

480 We assume the population is comprised of m neutral subtypes with relative fractions $f_i(t, x)$ and $\sum_{i=1}^m f_i(t, x) = 1$. In
481 the deterministic limit, it is then easy to show that $f_i(t, x)$ obey the following equation [1, 2]: descendant

$$\frac{\partial f_i}{\partial t} = D \frac{\partial^2 f_i}{\partial \zeta^2} + \left[v + 2D \frac{\partial \ln n}{\partial \zeta} \right] \frac{\partial f_i}{\partial \zeta}, \quad (\text{S2})$$

482 where $\zeta \equiv x - vt$ is the spatial coordinate in the comoving reference frame. We can write the general solution for $f(t, \zeta)$
483 as:

$$f_i(t, \zeta) = f_i^{(0)} + e^{-t/\tau_m} f_i^{(1)}(t, \zeta) + \dots, \quad (\text{S3})$$

484 where we have kept the two eigenvectors of the operator in Eq. (S2) with the slowest decay times. For large N , the
485 timescale τ_m is smaller than the mean coalescence time T_c , and represents the time for an arbitrary distribution of neutral
486 alleles to “mix” with the other individuals at the front and reach its steady state distribution [3]. We will, therefore, refer
487 to τ_m as the mixing time of the front.

488 Previous work has shown that $\lim_{t \rightarrow \infty} f(t, \zeta) = u(\zeta)$, where $u(\zeta)$ is the fixation probability of a new mutant that

489 originates at position ζ (see Sec. III of SI of Ref. [3] for an extensive discussion). The fixation probability can be calculated
 490 explicitly and has the following form:

$$u(\zeta) = \frac{n(\zeta)e^{v\zeta/D}}{\int_{\infty}^{+\infty} d\zeta' n^2(\zeta') e^{v\zeta'/D}}. \quad (\text{S4})$$

491 If we interpret $u(\zeta)$ as the fraction of descendants of an individual at position ζ in the whole population, and use $f(t, \zeta) \approx$
 492 $f^{(0)}$ for $t \gtrsim \tau_m$, we can think of the population of the wave as an effective well-mixed population with a broad descendant
 493 distribution $P(W)$, and generation time τ_m . The relation between the number of descendants W can then be computed
 494 using

$$W(\zeta) \sim N u(\zeta), \quad (\text{S5})$$

495 where carrying capacity N is a necessary conversion factor because $u(\zeta)$ is a probability, and strictly less than one.

496 We can compute the descendant distribution by using

$$P(W)dW \propto n(\zeta)d\zeta, \quad (\text{S6})$$

497 to eliminate the position ζ . The result then reads

$$P(W) \propto W^{-\frac{2}{1-\sqrt{1-v_F^2/v^2}}} = W^{-2-\alpha}, \quad (\text{S7})$$

498 where

$$\alpha = \frac{2\sqrt{1 - v_F^2/v^2}}{1 - \sqrt{1 - v_F^2/v^2}}. \quad (\text{S8})$$

499 For pulled waves, $v/v_F = 1$ and we have $P(W) \propto W^{-2}$. This distribution has a divergent mean and leads to Bolthausen-
500 Sznitman coalescent [4]. In the semi-pushed region, $1 < \frac{v}{v_F} < \frac{3}{2\sqrt{2}}$, and the descendant distribution changes continu-
501 ously from W^{-2} to W^{-3} . Finally, in fully-pushed waves, it decreases at least as fast as W^{-3} . In this case, the population
502 is described by a Kingman coalescent [5].

503 **Cutoff in descendant distribution**

504 The above argument applies for deterministic dynamics of $n(t, x)$. However, it is not clear whether models with stochas-
505 tic migration and growth behave the same way. Previously, we argued that stochasticity can be incorporated by using an
506 effective cutoff in the population density [3], which for semi-pushed waves is given by

$$\zeta_{\max} = \frac{1}{q} \ln N, \quad (\text{S9})$$

507 where $q = \frac{v}{2D} \left(1 - \sqrt{1 - v_F^2/v^2}\right)$. Using this cutoff we can compute the maximum fraction of descendants in the
508 population:

$$f_{\max} \sim N^{-\frac{k}{q}} N^{\frac{k+q}{q}} N^{-1} = O(1), \quad (\text{S10})$$

509 where we have defined $f_{\max} \equiv \frac{W_c}{N}$. The above result shows that the cutoff does not depend on N , and does not influence
510 the properties of coalescent for $u \ll 1$. However, this does not exclude a finite cutoff at some $u_c < 1$, which would
511 change the frequency of very rare fluctuations, were a fraction $\lesssim 1$ of lineages merge during one generation. A more
512 detailed calculation is needed to check for this.

513 Deterministic waves

514 If we apply the same reasoning when $n(t, x)$ is discrete but changes deterministically, we get a very different answer. In
 515 this case, we have a cutoff at $n = 1$, which occurs at

$$\zeta_{\max} = \frac{1}{k} \ln N. \quad (\text{S11})$$

516 In the semi-pushed regime, this gives a maximum value for W :

$$W_{\max} = N^{\frac{q}{k}-1}. \quad (\text{S12})$$

517 Looking backward in time, we can express the cutoff at f_{\max} in terms of the largest fraction of lineages in the population
 518 that can coalesce into one individual over a timescale of τ_m . The results reads

$$f_{\max} \sim \frac{w_{\max}}{N} \sim N^{-\frac{k-q}{k}}. \quad (\text{S13})$$

519 Looking backward in time, u_{\max} represents the largest fraction of lineages in the population that can coalesce over the
 520 generation time τ_m . Since for pushed waves $q < k$, this shows that in the limit of $N \rightarrow \infty$

$$p(w) \rightarrow \delta(w), \quad (\text{S14})$$

521 and the genealogical tree converges to a Kingman coalescent. This prediction is particularly striking since we have shown
 522 that T_c still has a power law scaling with N even for deterministic fronts [3].

523 **Distribution of allele fraction**

524 We can better understand the coalescent structure during expansions by studying the distribution of allele frequencies f
525 for at long times. For a Kingman coalescent, the allele frequency is given by the classic result of Kimura [6]:

$$\lim_{t \rightarrow \infty} P(t, f) = \text{const.} \quad (\text{S15})$$

526 At the other extreme, the Bolthausen-Sznitman coalescent is the dual of a jump-advection process, with the distribution
527 [4]

$$\lim_{t \rightarrow \infty} P(t, f) \propto \frac{1}{f(1-f)}. \quad (\text{S16})$$

528 **II. Effective clone size distribution**

529 In this section we calculate the clone size distribution at the front on times scales much longer than τ_m , by approximating
530 the process in the effective well-mixed population by a branching process. The probability distribution can be obtained
531 analytically for $\alpha = \frac{1}{2}$ and when the number of descendants has a finite variance. We briefly review the history and the
532 relevant references and then summarize the key results explaining briefly how they can be derived.

533 **Relevant literature**

534 Branching processes were first studied by Watson and Galton to describe the dynamics of British surnames [7]; there-
535 fore they are often referred to as Galton-Watson processes. Branching processes have been applied to a number of fields
536 including branching of neutrons in nuclear reactions, population genetics, earthquakes, chemical reaction, birth-death
537 processes, shot noise, and many others. The monograph by Harris [8] contains the historical details and detailed mathe-
538 matical treatment of simple and generalized branching processes together with several applications. A simpler and more
539 limited exposition can be found in Ref. [9]. A summary of the early progress in branching processes can be found in
540 Ref. [10]. Branching processes were also called multiplicative processes possibly because of the application to the nuclear

541 reactions; see [11].

542 The full solution for the branching process was developed by a great number of scientists who calculated different prop-
543 erties under different assumptions. Some of the key results that are relevant for us were obtained in Ref. [12, 13]. The
544 approach taken in the latter reference is very close to how a physicist would approach this problem and our discussion
545 closely follows that of Ref. [13]. More recently, branching processes have been used in the study of avalanches and total
546 popularity on networks [14, 15]. These references extend the classical results to compute the integral of the number of
547 organisms over time for surviving lineages, i.e. avalanche size. On the mathematical sized, branching processes can be
548 studied in the continuum limit, which is known as continuous state branching processes. This description is equivalent
549 to a Levy process with a time change. All of the results, however, can be derived from the discrete number of individuals
550 by taking the continuum limit [16–18].

551 **Problem formulation and general solution**

552 We consider a continuous time version of the branching process since it is simpler. The probability to observe n individ-
553 uals at time t is denoted as $p_n(t)$. Unless specified otherwise, we assume that $p_n(0) = \delta_{n,1}$. The probability to leave k
554 descendants is q_k .

555 The master equation reads

$$\dot{p}_k = r[-kp_k + \sum_{l=0}^k q_l(k-l+1)p_{k-l+1}], \quad (\text{S17})$$

556 where r is the branching rate. Since r only enters the problem through the time scale, we set $r = 1$ in the following.

557 Note that the transition rates are proportional to the number of individuals since each can reproduce. The fact +1 in the
558 last term accounts for the fact that the reproducing individual dies.

559 The master equation can be solved using generating functions. We denote the generating functions for p_n and q_k by P
560 and Q respectively:

$$P(t, z) = \sum_{n=0}^{\infty} z^n p_n(t), \quad (\text{S18})$$

$$Q(z) = \sum_{k=0}^{\infty} z^n q_k. \quad (\text{S19})$$

561 Upon differentiating Eq. (S18) with time and using Eq. (S17), we obtain

$$\frac{\partial P}{\partial t} = [Q(z) - z] \frac{\partial P}{\partial z}, \quad (\text{S20})$$

562 which can be solved using the method of characteristics. Assuming that we start with one individual, $P(0, z) = z$, and
 563 the implicit solution of Eq. (S20) reads

$$t = \int_z^{P(t,z)} \frac{d\zeta}{Q(\zeta) - \zeta}. \quad (\text{S21})$$

564 This equation serves as the basis of our analysis in the rest of this summary.

565 Before proceeding with the analysis, however, we point out that many references study branching processes from a dif-
 566 ferent starting point. Consider how the population can change in a short time dt at the start of the process when there
 567 is only one individual (similar to backward Kolmogorov equation). With probability $1 - dt$, nothing happens and the
 568 generating function remains unchanged. With probability dt the organism reproduces and leaves k descendants with
 569 probability q_k . After that we also have a branching process that lasts time t , but starts with k individuals. Since individu-
 570 als are independent the generating function for the sum of their progenies is the product of the generating functions for
 571 each starting organism. In other words, we obtain

$$P(t + dt, z) = (1 - dt)P(t - dt, z) + dt \sum_{k=0}^{\infty} q_k P(t - dt, z)^k, \quad (\text{S22})$$

572 which simplifies to

$$\frac{\partial P(t, z)}{\partial t} = Q[P(t, z)] - P(t, z). \quad (\text{S23})$$

573 It is easy to see by direct substitution that the implicit solution from Eq. (S21) satisfies Eq. (S23). The direct analysis of
 574 Eq. (S23) and its discrete-time analog involves functional equations and recurrences, which are more cumbersome than
 575 the implicit solution obtained above.

576 **Asymptotic analysis**

577 When the integral in Eq. (S21) can be evaluated one can obtain $P(t, z)$ directly. For a general $Q(z)$, we focus on long time
 578 limit. In this limit, $t \rightarrow +\infty$ and the integral must diverge. Therefore, the long time behavior of $P(t, z)$ is controlled by
 579 the root z_c of $Q(z_c) = z_c$ and the behavior of $Q(z)$ around z_c .

580 It is easy to show that $z_c > 1$ when the mean number of descendants $\langle k \rangle = Q'(1) < 1$. In this case, $P(t, z)$ approaches 1
 581 exponentially fast, which corresponds to guaranteed extinction. Note that any generating function needs to be less or
 582 equal to one for $|z| \leq 1$.

583 When $\langle k \rangle = Q'(1) > 1$, $z_c < 1$. In this case, the process has a finite probability to survive, which is given by $1 - z_c$. The
 584 population size of surviving realizations grows exponentially with time at a rate given by $\langle k \rangle - 1$. More refined results
 585 can be obtained by expanding $Q(z)$ in Taylor series around z_c .

586 When $\langle k \rangle = Q'(1) = 1$, we have a critical branching process. This is the case that we will focus on in the following. In
 587 this case $z_c = 1$ and the behavior of $P(t, z)$ depends on the behavior of $Q(z)$ around $z = 1$. If $\langle k^2 \rangle$ exists, $Q(z)$ has
 588 a second derivative at $z = 1$ and can be approximated by $Q(z) = z + 1/2Q''(1)(1 - z)^2$. If the variance is infinite,
 589 then $Q(z)$ is not analytic around $z = 1$. We argue below that, when the number of descendants is distributed according

590 to a power law, $Q(z) = z + g(1 - z)^{1+\alpha}$ with $\alpha \in (0, 1]$.

591 In the next two sections, we evaluate the integral in Eq. (S21) using the approximations for $Q(z)$ to obtain the long time
592 asymptotics of $P(t, z)$.

593 **Critical branching process with finite variance**

594

595 Upon substituting $Q(z) = z + \frac{1}{2}(1 - z)^2$ into Eq. (S21) and evaluating the integral, we obtain

$$P(t, z) = 1 - \frac{1 - z}{1 + \frac{Q''(1)t}{2}(1 - z)}. \quad (\text{S24})$$

596 The survival probability is given by

$$S(t) = 1 - P(t, 0) = \frac{1}{1 + Q''(1)t/2} \sim \frac{2}{Q''(1)t}. \quad (\text{S25})$$

597 The average size of a surviving lineage $\langle n \rangle_+(t)$ should be such that $\langle n(t) \rangle = 1$. Therefore

$$\langle n \rangle_+(t) = \frac{1}{S(t)} = 1 + Q''(1)t/2. \quad (\text{S26})$$

598 To obtain $p_n(t)$, we expand $P(t, z)$ in Taylor series around $z = 0$. The result for $n > 0$ reads

$$p_n(t) = S^{n+1}(t) \sim \left(\frac{2}{Q''(1)t} \right)^2 e^{-\frac{2n}{Q''(1)t}}. \quad (\text{S27})$$

599 The above expression can be recast in a simpler form by normalizing the population size by the expected population size
 600 of surviving realizations. Specifically, we let $y = n/\langle n \rangle_+$, which also affects the normalization constant, and divide p_n
 601 by $S(t)$ since we consider only surviving realizations. The distribution of scaled population sizes is then described by the
 602 following probability density function:

$$p(y) = e^{-y}, \quad (\text{S28})$$

603 where we omitted the time since the equation corresponds to the limit $t \rightarrow +\infty$. This relationship can also be derived
 604 in a more formal and general way that we describe below.

605 **Continuum limit from generating function**

606 Given $P(t, z)$ how can we obtain $p(t, y)$? First, notice that

$$\Pr(n \leq x | n > 0) = \frac{1}{S} \sum_{m=1}^n p_m \approx \frac{1}{S} \int_0^n p_m dn \approx \frac{1}{S} \int_0^{x/\langle n \rangle_+} p(t, y) dy. \quad (\text{S29})$$

607 Therefore

$$p(t, y) dy \approx \frac{1}{S} p_n(t), \quad (\text{S30})$$

608 and

$$p(t, y) \approx \frac{\langle n \rangle_+}{S} p_n(t). \quad (\text{S31})$$

609 Then, we can relate the generating function $P(t, z)$ to the moment generating function of $p(t, y)$:

$$\begin{aligned}
 M(t, \sigma) &= \mathbb{E}\{e^{-\sigma y}\} = \int_0^{+\infty} p(t, y) e^{-\sigma y} dy \approx \sum_{n=1}^{+\infty} \frac{p_n(t)}{S(t)} e^{-\sigma n/\langle n \rangle_+} \\
 &= \frac{1}{S} [P(t, z = e^{-\sigma/\langle n \rangle_+} - p_0(t)] = 1 - \frac{1 - P(t, z = e^{-\sigma/\langle n \rangle_+})}{S(t)},
 \end{aligned} \tag{S32}$$

610 where we used $p_0 = 1 - S$. One can then obtain $p(t, y)$ via an inverse Laplace transform of $M(t, \sigma)$. Note that for the
 611 critical branching process $\langle n \rangle_+ = 1/S$.

612 Since it is convenient to summarize simulation results in terms of the complementary (reverse) cumulative distribu-
 613 tion $c(t, y)$, we also derive the connection between $P(t, z)$ and the Laplace transform of $c(t, y)$:

$$C(t, \sigma) = \frac{1 - M(t, \sigma)}{\sigma} = \frac{1 - P(t, z = e^{-\sigma/\langle n \rangle_+})}{S(t)\sigma}. \tag{S33}$$

614 We can apply this result to the branching process with finite variance to obtain the long time limit of $c(t, y)$ as follows:

$$C(\sigma) = \lim_{t \rightarrow +\infty} C(t, \sigma) = \frac{1}{1 + \sigma}, \tag{S34}$$

$$c(y) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} e^{\sigma y} C(\sigma) d\sigma = e^{-y}, \tag{S35}$$

615 which indeed describes the complementary cumulative distribution for $p(y)$.

616 **Power-law tails and the behavior of the generating function**

617 Before repeating the analysis above for distributions of the number of descendants q_k with diverging variance, we briefly
 618 discuss the connection between the power law tail of q_k and the singularity of $Q(z)$ at $z = 1$. As a reminder, we focus
 619 only on critical branching processes with $\langle k \rangle = 1$ and only on $q_k \sim k^{-2-\alpha}$ for large k . Under these assumptions,

$$Q(z) \approx z + g(1 - z)^{1+\alpha} \quad (\text{S36})$$

620 around $z = 1$.

621 To see this, one can compute q_k from the equations above by expanding $Q(z)$ in Taylor series around $z = 0$ using the
622 Cauchy formula for the derivatives:

$$q_k = \frac{1}{k!} \oint_{z=0} \frac{Q(z)}{z^{k+1}} dz. \quad (\text{S37})$$

623 This integral can be evaluated by taking the branch cut along $(1, +\infty)$, moving the contour to hug the branch cut,
624 changing the integration variable from x to e^p , and observing that only $p \lesssim 1/k$. The final result reads

$$q_k \sim \frac{g \sin(\pi\alpha) \Gamma(\alpha + 2)}{\pi} k^{-2-\alpha} = g \frac{\alpha(1 + \alpha)}{\Gamma(1 - \alpha)} k^{-2-\alpha}, \quad (\text{S38})$$

625 where $\Gamma(x)$ is the Gamma function.

626 Another way to derive the relationship is to choose a specific form of q_k . A convenient choice is $q_k = k^{-(2+\alpha)} / \zeta(1 + \alpha)$
627 for $k > 0$ and $q_0 = 1 - \zeta(2 + \alpha) / \zeta(1 + \alpha)$, where $\zeta(\cdot)$ is the Riemann zeta function. Note that this choice satisfies
628 both the normalization condition and the requirement that the average number of descendants equals to one. It is easy
629 to show via a Taylor expansion around $z = 0$ that the corresponding generating function is given by

$$Q(z) = 1 - \frac{\zeta(2 + \alpha)}{\zeta(1 + \alpha)} + \frac{z}{\zeta(1 + \alpha) \Gamma(2 + \alpha)} \int_0^{+\infty} \frac{e^{-p} p^{1+\alpha}}{1 - z e^{-p}} dp, \quad (\text{S39})$$

630 where the last term without the zeta function is known as $\text{Li}_{2+\alpha}(\cdot)$, polylogarithm of order $2 + \alpha$. The asymptotics

631 of $Q(z)$ can be directly extracted from this integral representation or from the asymptotics of the polylogarithm.

632 **Critical branching process with diverging variance**

633 To find $P(t, z)$, we substitute the approximation for $Q(z)$ (Eq. (S36)) into the implicit solution given by Eq. (S21). The
634 result reads

$$P(t, z) = 1 - \frac{1 - z}{(1 + \alpha g t (1 - z)^\alpha)^{1/\alpha}}. \quad (\text{S40})$$

635 This expression contains all the information that we need. In particular, one can pass to a continuum limit and ob-
636 tain $C(t, \sigma)$ and $c(t, y)$. Inverse Laplace transform can be evaluated by moving the integration contour to hug the branch
637 cut $(-\infty, 0)$. Below, we consider a few special cases where the calculations are particularly simple and provide additional
638 insight.

639 The survival probability and the average size of the surviving population are given by

$$S(t) = \frac{1}{\langle n \rangle_+} = (1 + \alpha g t)^{-1/\alpha} \sim t^{-1/\alpha}. \quad (\text{S41})$$

640 Note that the relevant time scale is $1/(\alpha g)$, which becomes $\zeta(1 + \alpha)(1 + \alpha)/\Gamma(1 - \alpha)$. The latter expression scales
641 as $1/\alpha$ for $\alpha \rightarrow 0$. Thus, one should expect very long transient dynamics for small α .

642 The long time limit for $C(t, \sigma)$ is given by

$$C(\sigma) = \frac{1}{(1 + \sigma^\alpha)^{1/\alpha}}. \quad (\text{S42})$$

643 The inverse Laplace transform yields the following asymptotics

$$c(y) \sim \begin{cases} 1 - \frac{y^\alpha}{\alpha \Gamma(1 + \alpha)}, & y \ll 1, \\ \frac{y^{-1-\alpha}}{\Gamma(1 - \alpha)}, & y \gg 1. \end{cases} \quad (\text{S43})$$

644 The asymptotics for $p(y)$ are obtained by differentiation with respect to y .

645 For the special case of $\alpha = 1/2$, one can obtain an analytic expression for $c(y)$:

$$c(y) = (1 + 2y)e^y \operatorname{erfc}(\sqrt{y}) - 2\sqrt{\frac{y}{\pi}} \sim \begin{cases} 1 - \frac{4}{\sqrt{\pi}}\sqrt{y}, & y \ll 1, \\ \frac{y^{-3/2}}{\sqrt{\pi}}, & y \gg 1. \end{cases} \quad (\text{S44})$$

646 The small y asymptotics can also be derived directly from the generating function by expanding it in Taylor series around $z =$
 647 0. This yields

$$p_n = (\alpha g t)^{-1-1/\alpha} \frac{\Gamma(m + \alpha)}{\Gamma(1 + \alpha)\Gamma(m + 1)} \sim (\alpha g t)^{-1-1/\alpha} n^{-1+\alpha}. \quad (\text{S45})$$

648 Clone sizes in a stationary process

649 Note that the results above might seem surprising at first. Most of the time branching processes are not conditioned on
 650 starting at a particular time. Instead, one assumes that the process restarts once extinction occurs. The sampling from
 651 such a stationary process gives more weight to processes that survived for a long time and therefore had proportionally
 652 large chance to be sampled.

653 It is easy to show that the distribution of the age $p(a)$ of a process sampled at a random time is given by $S(t = a)$. Indeed,

$$\Pr\{a > x\} \propto \int_a^{+\infty} \Pr\{\text{duration} = \tau\}(\tau - a)d\tau \quad (\text{S46})$$

654 then

$$p(a)da = -\frac{d}{da}\Pr\{a > x\} \propto \int_a^{+\infty} \Pr\{\text{duration} = \tau\}d\tau = S(a). \quad (\text{S47})$$

655 The probability to observe a population of size n is then given by

$$\Pr\{n\} = \int_0^{+\infty} \Pr\{n|a\}p(a)da \propto n^{\alpha-2} \frac{1}{g} \int_0^{+\infty} p(y)y^{1-\alpha}dy \sim n^{\alpha-2}, \quad (\text{S48})$$

656 where we expressed $\Pr\{n|a\}$ as $p(y = n/\langle n \rangle_+)$, i.e. using the probability distribution for the scaled population size
657 defined in previous sections.

658 Equation (S48) agrees with the classical results for the neutral model for $\alpha = 1$ and describes the tail of the site-frequency
659 spectrum for the Kingman and Bolthausen-Sznitman coalescents.

660 III. Summary statistics of ancestral trees

661 In this section we present other summary statistics we used to infer the topology of the ancestral trees obtained from
662 simulations.

663 Theoretical background

664 Our analysis of the genealogies is based on the coalescent theory. The coalescent provides a model for the backward-
665 in-time dynamics of lineages in a population without any internal structure⁶. Generally, such a model is completely
666 described by the rates $\lambda_{b,k}$ at which k out of b lineages merge. An important result shows that $\lambda_{b,k}$ for any coalescent⁷ can

⁶Mathematically, this property is referred to as exchangeability and is an underlying premise in coalescent theory.

⁷This result applies to all Λ -coalescents, in which any number of lineages can merge at the same time, but merger events happen in succession. An even more general class, known as the Ξ -coalescent, allows for multiple simultaneous merger events as well. Such models have mainly been used to describe genealogies of diploid populations [19–21], but also populations under strong selection in the presence of recombination [22, 23].

667 be written in the following form:

$$\lambda_{b,k} = \int_0^1 dx x^k (1-x)^{b-k} \frac{\Lambda(x)}{x^2}, \quad (\text{S49})$$

668 where $\frac{\Lambda(x)}{x^2}$ is the distribution of the merger sizes [5]. A few special choices of $\Lambda(x)$ are worth noting. First, $\Lambda(x) = \delta(x)$
 669 gives $\lambda_{b,2} = 1$ and $\lambda_{b,k} = 0$ for $k > 2$. This is the standard Kingman coalescent, where only pairwise mergers are allowed
 670 and their rate is constant. Another important model is the Bolthausen–Sznitman coalescent and is given by $\Lambda(x) = 1$.
 671 The merger rates in this case are $\lambda_{b,k} = \frac{(b-1)!}{(k-2)!(b-k)!}$, which implies that $k = 2$ and $k = b$ mergers are equally likely and
 672 the most likely merger size is close to $\frac{b}{2}$. Such large merger events have been used to describe genealogies of populations
 673 under strong selection [24, 25]. Finally, one can interpolate between the two by using

$$\Lambda(x) = \frac{x^{1-\beta}(1-x)^{\beta-1}}{\Gamma(2-\beta)\Gamma(\beta)}. \quad (\text{S50})$$

674 From (S50), it is easy to show that $\beta = 1$ gives the Bolthausen–Sznitman coalescent and $\beta = 2$ gives the Kingman co-
 675 lescent. The coalescent described by (S50) is known as the Beta-coalescent and many of its properties have been studied
 676 previously [5]. For our purposes, it is important to note that the Beta-coalescent describes the genealogies of highly fecund
 677 populations, in which the descendant-number distribution $P(W)$ has a power law tail $P(W) \sim W^{-(1+\beta)}$. We demon-
 678 strate in the Results section that the descendant-number distribution has a power law tail in range expansions, when
 679 viewed over a few generations. We make use of this fact to argue that genealogies in range expansions can generically be
 680 described by a Beta-coalescent.

681 The choice of $\Lambda(x)$ in (S49) has important effects on the different summary statistics which we use to characterize ge-
 682 nealogies. One such such statistic is the average time for two lineages to coalesce T_c , whose scaling with the population
 683 size is highly dependent on the coalescent [5]. Thus, in the Kingman coalescent, T_c is typically proportional to the pop-
 684 ulation size, while in the Bolthausen–Sznitman coalescent it has much weaker logarithmic dependence. These distinct
 685 scaling regimes match our previous results, showing that $T_c \sim N$ in fully pushed expansions, and $T_c \sim \ln^3 N$ in pulled
 686 expansions, with semi-pushed expansion having a sublinear power law dependence with a tunable exponent and lying

687 in between [3]. Based on these results, we expect the genealogies in range expansions to be described by a continuum of
688 Beta-coalescents as in (S50), spanning the range from the Kingman to the Bolthausen–Sznitman coalescent.

689 We also consider the site frequency spectrum (SFS), which corresponds to the set of lengths of branches ξ_k subtending k
690 leaves, for all values of $k \in [1, n - 1]$. As with the total tree length, the exact SFS can be obtained recursively for small n
691 [26]. Asymptotic results for large n are also known for (S50), but they converge slowly with sample size [26] and we will
692 not use them here. Similar results can be obtained for 2-SFS, which represents the covariances between branch lengths
693 [26].

694 Two-site frequency spectrum

695 While the SFS of the Beta- and Kingman coalescents are quite different as we have shown, relaxing the assumption of con-
696 stant population size in the Kingman coalescent can lead to the site frequency spectra becoming more similar. Recently,
697 it has been proposed that the two-site frequency spectrum (2-SFS) is a more robust measure to distinguish between King-
698 man and non-Kingman coalescents [27]. The 2-SFS, $p_n(k, l)$, for a sample size n is the number of pairs of sites which
699 have derived allele counts k and l . For constant mutation rates, the 2-SFS can be derived from the genealogical tree—in
700 this case $p_n(k, l)$ is proportional to the second moment of the length of branches that subtend k and l leaves. In the case of
701 the Kingman coalescent, the long branches near the common ancestor lead to a large number of sites which co-occur or
702 split the tree in half. This explains the high values of the 2-SFS seen on the diagonals. In addition, pairwise branching of
703 ancestral lineages constrain the topology further down tree, leading to anticorrelations between rare alleles (Fig. S1a). In
704 contrast, coalescents with multiple mergers have shorter branches near the common ancestor, decreasing the density along
705 the diagonal of the 2-SFS. The tree topology of coalescents with multiple mergers is also less constrained by early mergers,
706 resulting in less pronounced negative correlations between rare alleles in the Beta-coalescent, and positive correlations in
707 the Bolthausen–Sznitman coalescent (Fig. S1b, c).

708 We used the trees generated from simulations of fully pushed, semi-pushed, and pulled expansions to test 2-SFS against the
709 theoretical predictions. We found that the patterns in the 2-SFS matched the theoretical predictions for Kingman, Beta-,
710 and Bolthausen–Sznitman coalescents quite well (Fig. S1). In particular, fully pushed waves showed negative correlations
711 outside of the main diagonals as expected, with correlations below the main diagonal smaller in absolute value than those
712 above the main diagonal. Semi-pushed and pulled expansions, on the other hand, showed signatures of multiple mergers

713 in the form of an increase of correlations below the main diagonal, and higher positive correlations on the off-diagonal,
 714 especially in the case of pulled expansions.

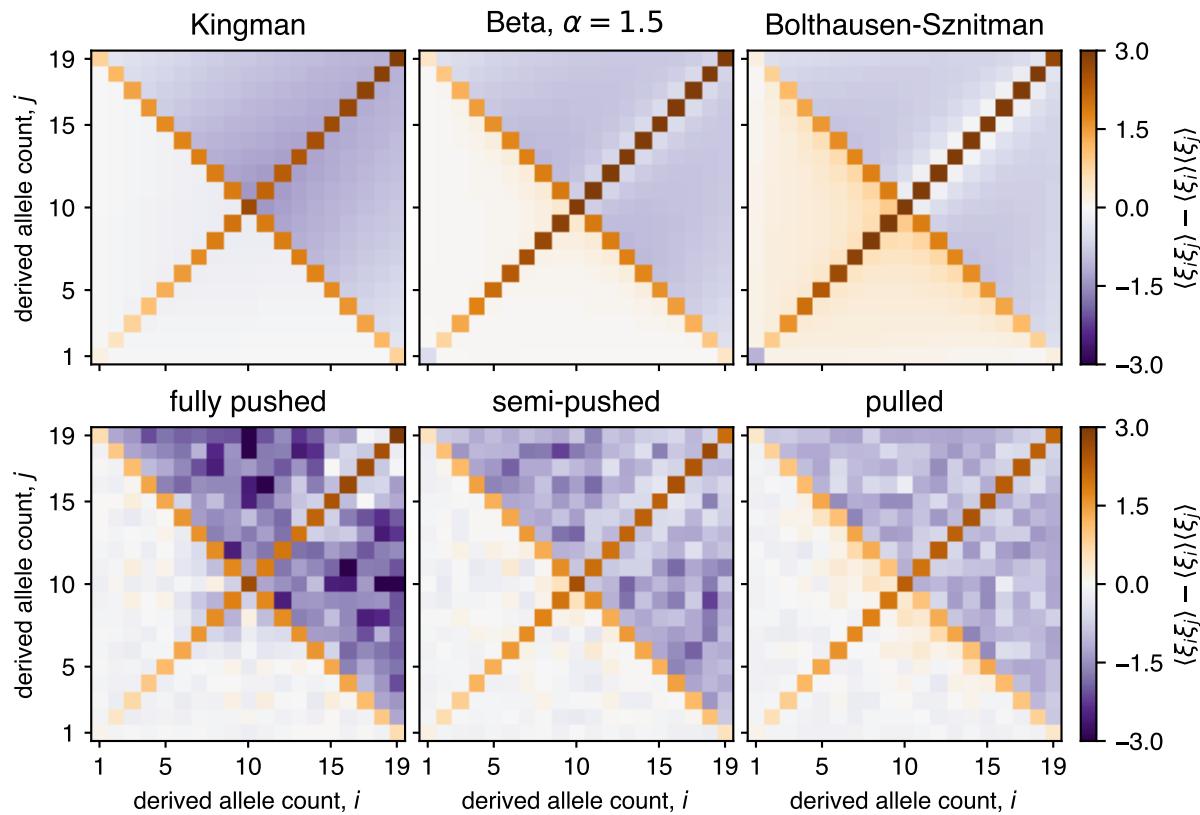


Figure S1: **Comparison of two-site frequency spectra reveal signatures of multiple mergers in semi-pushed and pulled expansions.** Matrices show the correlation function between tree branches subtending different number of leaves for both the expected coalescents (top) and expansion simulations (bottom) for each expansion regime. The averaged 2-SFS from simulations were generated using the same sampling procedure used for the SFS (SI, Sec. IV).

715 **IV. Simulations**

716 In this section we explain the details of our expansion simulations and the data collection and processing pipelines.

717 **Expansion simulations**

718 We simulated the expansion of a population in a one-dimensional habitat modeled by an array of patches (demes), sep-
 719 arated by a distance Δx . Demes contain individuals, which are labeled using integers. We denote by $I_i(t, x)$ the label of
 720 the i th individual in deme x , with $1 \leq x \leq L$ and $1 \leq i \leq N$. To allow for demes with less than N individuals, we use
 721 vacancies, which are labeled by $I^v = 0$.

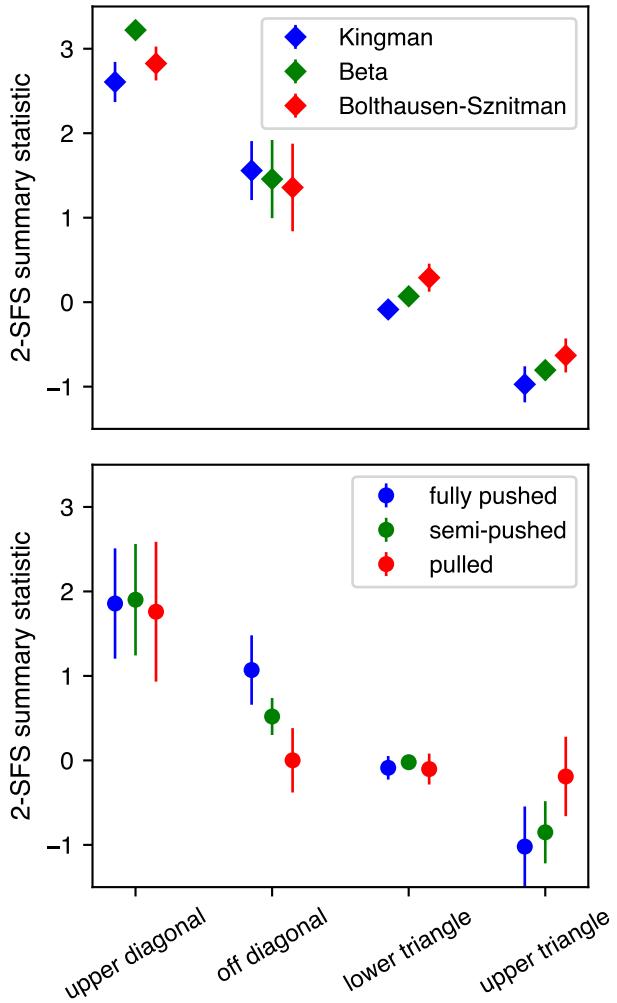


Figure S2: Summary statistics of 2-SFS show qualitative agreement with theoretical predictions. (Top) Mean values and standard deviation of entries in the 2-SFS for the Kingman (blue), Beta- with $\beta = 1.5$ (green), and Bolthausen–Sznitman (red) coalescents. For all three coalescents a sample size of $n = 20$ was used. The four bins are defined as follows: upper diagonal = $\{(i, i) : \lfloor n/2 \rfloor + 1 \leq i \leq n - 1\}$, off diagonal = $\{(i, n - i) : 1 \leq i < \lfloor n/2 \rfloor \text{ or } \lfloor n/2 \rfloor < i < n\}$, lower triangle = $\{(i, j) : i + j < n - 1, i \neq j\}$, upper triangle = $\{(i, j) : i + j > n - 1, 1 \leq i \leq n - 1, 1 \leq j \leq n - 1, i \neq j\}$. (Bottom) Same as upper panel, but using 2-SFS from simulations of fully pushed (blue), semi-pushed (green) and pulled (red) expansions. All simulation parameters are identical to those for Fig. S1.

722 The population is initially localized on $L/2 = 100$ demes. Each deme is filled with N individually labeled members of
 723 the population. Individuals are labeled sequentially, starting with the first individual in the leftmost deme and moving
 724 to the right of the population. Thus,

$$I_i(0, x) = (x - 1)N + i + 1, \quad x \leq L/2 \quad (S51)$$

$$I_i(0, x) = 0, \quad x > L/2.$$

725 Each generation is updated in two steps. First, a migration step, in which demes are updated sequentially, starting
 726 from $x = 1$. For each deme, the number of migrants exchanged with the next deme is drawn from a binomial distri-
 727 bution:

$$n_x^{\text{migrants}} = \text{Binomial}(n_x, m/2), \quad (\text{S52})$$

728 where m is the migration probability. To choose the migrants, the order of individuals in demes x and $x+1$ is randomized,
 729 and the first n_x^{migrants} from the demes are exchanged.

730 Second, we perform a growth step. Following Ref. [2], the growth of the population was modeled by introducing a fitness
 731 difference between the vacancies and the actual species. Specifically, the fitness of the species was set to $w_x^s = 1$ and the
 732 fitness of the vacancies was set to $w_x^v = 1 - r(n_x)/(1 - n_x/N)$, where

$$r(n) = r_0(1 - n/N)(1 + Bn/N), \quad (\text{S53})$$

$$n_x(t) = \sum_{j=1}^N (1 - \delta_{0, I_i(t, x)}), \quad (\text{S54})$$

733 and δ_{lm} is the Kronecker delta. The next generation is constructed by sampling, with replacement, a new set of la-
 734 bels $I_i(t + 1, x)$ from the set of previous labels $\{I_1(t, x), I_2(t, x), \dots, I_N(t, x)\}$ for each $i \leq N$. The probability to
 735 sample the ancestor $I_i(t, x)$ is proportional to the ratio of w_{ix} to the mean fitness of the population in the deme: $\bar{w}_x =$
 736 $n_x/N + w^v(N - n_x)/N = 1 - r(n_x)$.

737 **Recording genealogies**

738 The genealogy of the population is recorded in a custom tree class, in which all individuals in the simulation box are stored
 739 as nodes. Each node is assigned a unique parent node, and a set of child nodes, except for the most recent generation,

740 which have no children—we will refer to these nodes as the leaves of the tree. The tree is initialized with one node, which
741 is designated as the root of the tree, and is continuously updated as follows. At the start of the simulation, all individuals
742 at the front are assigned as leaves with the root as their parent. As the population expands, many labels become extinct
743 and the average clone size of the surviving labels grows. After a fixed number of generations Δt , we relabel all individuals
744 and add them as new nodes on the tree. Each individual is assigned as a child node to one of the leaves of the tree, which is
745 designated as its parent according to the previous label of the child node. After every individual is assigned to the tree, the
746 newly added nodes are designated as the new leaves of the tree. At the end of this process, we prune the tree by removing
747 all nodes which have no leaves among their descendants. The process is repeated until either the whole population has
748 one common ancestor or a maximum number of generations T_{\max} for the simulation is reached.

749 V. Data analysis

750 In this section we explain how we analyze the data from simulations to obtain the figures in the main text and the SI.

751 Estimating τ_m

752 We used the following procedure to determine the spatial distribution of ancestors in Fig. 2 in the main text. We ran 1000
753 simulations of a fully pushed expansion, for which we estimated the coalescence time $T_c \approx 10^3$, using the following
754 parameters: $N = 350$, $B = 10$, $r_0 = 0.01$, $m = 0.4$, $\Delta t = 20$. For each simulation we recorded the ancestry as
755 described in Sec. IV. In order to determine the location of each ancestor from the population, we modified the label
756 assignment algorithm by using the following equation:

$$I_i(t, x) = NL(t - 1) + Nx + i + 1, \quad (S55)$$

757 where $I_i(t, x)$ is the label of individual i from deme x in generation t . Using this equation, each label uniquely specifies
758 the position of the individual.

759 Because fronts are stochastic it is difficult to compare ancestral distributions across simulations. To minimize the variance

760 in the ancestral distribution due to variations in the final sampling location, we used the following procedure. We first
761 determined the midpoint of the front, given by the deme closest to the mean position x along the front, weighted by the
762 population size at x . Next, we determined the bulk and leading edge of the front, which we defined as least advanced
763 location with population size below the carrying capacity and the most advanced location with a non-zero population
764 size, respectively. Finally, the sampling location from the bulk and the front were chosen as the closest demes to the
765 halfway distance between midpoint of the front, and the bulk edge and the front edge, respectively.

766 We then collect the labels of all individuals from the two sampling locations. Using the ancestral trees, we traced back the
767 labels of the ancestors of all the sampled individuals. Finally, we recorded the locations of these ancestors by solving for x
768 in Eq. (S55) and plotted the distribution of these locations across all simulations.

769 Sampling and analysis of SFS and 2-SFS

770 We used the following procedure to sample and analyze the SFS and 2-SFS from the ancestral trees in our simulations.
771 We first subsampled a number of individuals n from close to the edge of the front in the final population. As discussed
772 in the main text, far from the front the effects of spatial structure become important and our well-mixed approximation
773 breaks down. Empirically, we observed that sampling individuals from the farthest advanced 20 demes minimized the
774 effects of spatial structure on both the SFS and the clone size distributions shown in Fig. S4. The value of n was chosen
775 small enough to allow for comparison with the exact predictions for the different coalescent classes described below. Each
776 ancestral tree was sampled independently 10 times in order to obtain better estimates for the averaged quantities we
777 calculated.

778 The simulations used to generate the ancestral trees were performed choosing three values of B (10, 3.33, and 0, respec-
779 tively) in Eq. (i) for each class of waves. Using Eq. (4) from the main text corresponding, the values of α for each of
780 these expansions are approximately 1, 0.5, and 0, respectively. The coalescents for well-mixed populations with these
781 descendant distributions are described by the Beta-coalescent from Eq.(S50) with the parameter β equal to 2, 1.5, and 1,
782 respectively. To calculate the theoretical predictions for the SFS and 2-SFS we adapted a numerical implementation of
783 the exact recurrence relations for the SFS and 2-SFS from Ref. [27], which was originally developed in Ref. [26].

784 VI. Supplemental figures



Figure S3: **Allele frequency distributions quantitatively agree with theoretical predictions in both stochastic and deterministic regimes.** Shows the same data as Fig. 5 in the main text as a cumulative distribution for better quantitative comparison between theoretical prediction and simulations. Simulations were carried out using the following parameters: $N = 10^6$, $r_0 = 0.01$, $m = 0.4$, $B = 10$ (fully pushed), $B = 3.33$ (semi-pushed), and $B = 0$ (pulled). All simulations were started with equal frequency of the two alleles across the front. Distributions here and in Fig. 5 are shown after 3,980,000 (fully pushed), 1,527,315 (semi-pushed), and 98,827 (pulled) generations from the start for stochastic waves and after 4,980,000 (fully pushed), 1,507,719 (semi-pushed), and 531,529 (pulled) generations for deterministic waves.

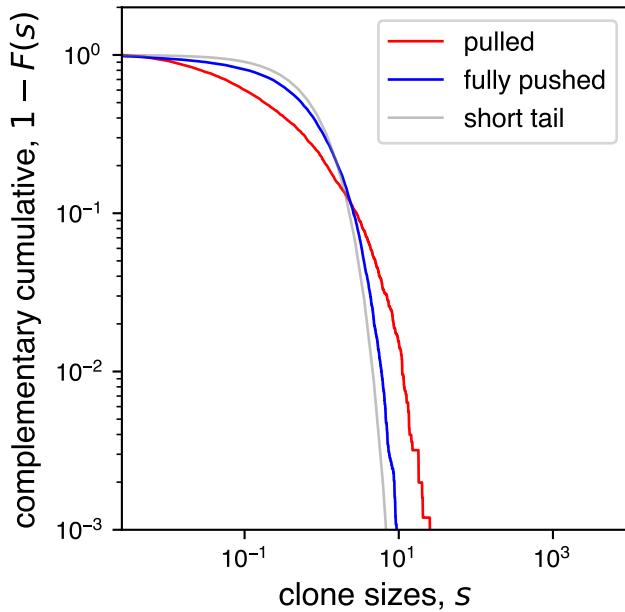


Figure S4: Pulled expansions have broader clone size distribution compared to fully pushed expansions. Left panel shows complementary cumulative distribution function of the normalized clone size s (where the normalization is with respect to the mean clone size) for fully pushed and pulled expansions. A total of 100 simulations were run without relabeling individuals and the sizes of distinct clones at the edge of the front were recorded every 500 generations. The front was defined as the first 25 demes starting from the most advanced occupied deme. The right panel shows the same data as cumulative distribution to emphasize the differences for small clone sizes. The growth function used is given by Eq. (1) with $B = 10$ (fully pushed) and $B = 0$ (pulled) and all other parameters kept constant. The values of the other simulation parameters were $N = 9600$, $r_0 = 0.01$, $m = 0.4$.

785 References

- 786 1. Roques, L., Garnier, J., Hamel, F. & Klein, E. K. Allee effect promotes diversity in traveling waves of colonization.
787 *Proceedings of the National Academy of Sciences* **109**, 8828–8833 (2012).
- 788 2. Hallatschek, O. & Nelson, D. R. Gene surfing in expanding populations. *Theoretical Population Biology* **73**, 158–170
789 (2008).
- 790 3. Birzu, G., Hallatschek, O. & Korolev, K. S. Fluctuations uncover a distinct class of traveling waves. *Proc. Natl. Acad.
791 Sci.* **115**, E3645–E3654. <https://doi.org/10.1073/pnas.1715737115> (Apr. 2018).
- 792 4. Hallatschek, O. Selection-like biases emerge in population models with recurrent jackpot events. *Genetics* **210**, 1053–
793 1073 (2018).
- 794 5. Berestycki, N. Recent progress in coalescent theory. *Ensaio Matematico* **16**, 1–193 (2009).
- 795 6. Kimura, M. Solution of a process of random genetic drift with a continuous model. *Proceedings of the National
796 Academy of Sciences* **41**, 144. <http://www.pnas.org/content/41/3/144.abstract> (Mar. 1955).
- 797 7. Watson, H. W. & Galton, F. On the probability of the extinction of families. *The Journal of the Anthropological
798 Institute of Great Britain and Ireland* **4**, 138–144 (1875).
- 799 8. Harris, T. E. *The theory of branching processes* (Courier Corporation, 2002).
- 800 9. Durrett, R. *Probability: theory and examples* (Cambridge university press, 2010).
- 801 10. Harris, T. E. *Some mathematical models for branching processes* tech. rep. (RAND CORP SANTA MONICA CA,
802 1950).
- 803 11. Otter, R. The multiplicative process. *The Annals of Mathematical Statistics*, 206–224 (1949).
- 804 12. Kolmogorov, A. N. On the solution of a biological problem. *Proceedings of Tomsk University* **2**, 7–12 (1938).
- 805 13. Zolotarev, V. M. More exact statements of several theorems in the theory of branching processes. *Theory of Probab-
806 ility & Its Applications* **2**, 245–253 (1957).
- 807 14. Goh, K.-I., Lee, D.-S., Kahng, B. & Kim, D. Sandpile on Scale-Free Networks. *Physical Review Letters* **91**. Publisher:
808 American Physical Society, 148701. <https://link.aps.org/doi/10.1103/PhysRevLett.91.148701>
809 (Oct. 1, 2003).
- 810 15. Gleeson, J. P., Lee, W. T., Ward, J. A. & O’Sullivan, K. P. Competition-induced criticality in a model of meme
811 popularity. *Phys. Rev. Lett.* **112**, 048701 (2014).

812 16. Foucart, C., Hénard, O., *et al.* Stable continuous-state branching processes with immigration and Beta-Fleming-
813 Viot processes with immigration. *Electronic Journal of Probability* **18** (2013).

814 17. Li, Z. Continuous-state branching processes. *arXiv preprint arXiv:1202.3223* (2012).

815 18. Kyprianou, A. E. & Pardo, J.-C. Continuous-state branching processes and self-similarity. *Journal of Applied Prob-
816 ability* **45**, 1140–1160 (2008).

817 19. Möhle, M. & Sagitov, S. Coalescent patterns in diploid exchangeable population models. *Journal of Mathematical
818 Biology* **47**, 337–352. ISSN: 1432-1416. <https://doi.org/10.1007/s00285-003-0218-6> (Sept. 1, 2003).

819 20. Birkner, M., Blath, J. & Eldon, B. An Ancestral Recombination Graph for Diploid Populations with Skewed Off-
820 spring Distribution. *Genetics* **193**, 255. <http://www.genetics.org/content/193/1/255.abstract> (Jan. 1,
821 2013).

822 21. Birkner, M., Liu, H., Sturm, A., *et al.* Coalescent results for diploid exchangeable population models. *Electronic
823 Journal of Probability* **23** (2018).

824 22. Durrett, R. & Schweinsberg, J. Approximating selective sweeps. *Theoretical Population Biology* **66**, 129–138. ISSN:
825 0040-5809. <http://www.sciencedirect.com/science/article/pii/S0040580904000607> (Sept. 1,
826 2004).

827 23. Durrett, R. & Schweinsberg, J. A coalescent model for the effect of advantageous mutations on the genealogy of a
828 population. *Stochastic Processes and their Applications* **115**, 1628–1657. ISSN: 0304-4149. <http://www.sciencedirect.com/science/article/pii/S0304414905000608> (Oct. 1, 2005).

829 24. Desai, M. M., Walczak, A. M. & Fisher, D. S. Genetic diversity and the structure of genealogies in rapidly adapting
830 populations. *Genetics* **193**, 565–585 (2013).

831 25. Neher, R. A. & Hallatschek, O. Genealogies of rapidly adapting populations. *Proceedings of the National Academy
832 of Sciences* **110**, 437–442 (2013).

833 26. Birkner, M., Blath, J. & Eldon, B. Statistical Properties of the Site-Frequency Spectrum Associated with Lambda-
834 Coalescents. *Genetics* **195**, 1037. <http://www.genetics.org/content/195/3/1037.abstract> (Nov.
835 2013).

836 27. Rice, D. P., Novembre, J. & Desai, M. M. Distinguishing multiple-merger from Kingman coalescence using two-site
837 frequency spectra. *bioRxiv preprint* **11**, 461517 (2018).