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Abstract5

Range expansions accelerate evolution through multiple mechanisms including gene sur�ng and genetic drift.6

The inference and control of these evolutionary processes ultimately relies on the information contained in genealog-7

ical trees. Currently, there are two opposing views on how range expansions shape genealogies. In invasion biology,8

expansions are typically approximated by a series of population bottlenecks producing genealogies with only pairwise9

mergers between lineages—a process known as the Kingman coalescent. Conversely, traveling-wave models predict10

1

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424763
http://creativecommons.org/licenses/by-nc/4.0/


a coalescent with multiple mergers, known as the Bolthausen–Sznitman coalescent. Here, we unify these two ap-11

proaches and show that expansions can generate an entire spectrum of coalescent topologies. Speci�cally, we show12

that tree topology is controlled by growth dynamics at the front and exhibits large di�erences between pulled and13

pushed expansions. These di�erences are explained by the 
uctuations in the total number of descendants left by the14

early founders. High growth cooperativity leads to a narrow distribution of reproductive values and the Kingman15

coalescent. Conversely, low growth cooperativity results in a broad distribution, whose exponent controls the merger16

sizes in the genealogies. These broad distribution and non-Kingman tree topologies emerge due to the 
uctuations in17

the front shape and position and do not occur in quasi-deterministic simulations. Overall, our results show that range18

expansions provide a robust mechanism for generating di�erent types of multiple mergers, which could be similar19

those observed in populations with strong selection or high fecundity. Thus, caution should be exercised in making20

inferences about the origin of non-Kingman genealogies.21

Signi�cance statement22

Spatial dynamics are important for understanding genetic diversity in many contexts, such as cancer and infectious dis-23

eases. Coalescent theory o�ers a powerful framework for interpreting and predicting patters of genetic diversity in pop-24

ulations, but incorporating spatial structure into the theory has proven di�cult. Here, we address this long-standing25

problem by studying the coalescent in a spatially expanding population. We �nd the topology of the coalescent changes26

depending on the growth dynamics at the front. Using analytical arguments, we show that the transition between coales-27

cent topologies is universal and is controlled by a parameter related to the expansion velocity. Our theory makes precise28

predictions about the e�ects of population dynamics on genetic diversity at the expansion front, which we con�rm in29

simulations.30
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Introduction31

The genealogy of a population provides a window into its past dynamics and future evolution. By analyzing the relative32

lengths of di�erent branches in the genealogical tree, we can estimate mutation rates and the strength of genetic drift [1],33

or infer historical population sizes [2] and patterns of genetic exchange between species [3]. At the same time, we can use34

the structure of genealogies to make predictions about the speed of evolution [4] and even answer important practical35

questions, such as what the next strain of in
uenza will be [5].36

Typically, the full ancestry of the population is not known and has to be inferred from DNA samples using theoretical37

models. The most widely-used model is the Kingman coalescent [6, 7]. The Kingman coalescent describes the genealogies38

of a well-mixed population of constant size, in which all mutations are neutral. Because of its simplicity, many statistical39

properties of the Kingman coalescent can be calculated exactly [7]. These mathematical results have formed the basis of40

many commonly-used techniques to infer genealogical trees from DNA sequences. The de�ning characteristics of the41

trees generated from the Kingman coalescent are a large number of early mergers and long branches close to the common42

ancestor. Importantly, the Kingman coalescent contains only pairwise mergers between lineages. However, several studies43

have attempted to test these predictions directly in real populations and found signi�cant deviations [8–11].44

To resolve the inconsistencies between observed genetic diversity and theoretical predictions, numerous extensions of45

the classic Kingman coalescent have been proposed [12–16]. For example, many studies have analyzed the e�ects of time-46

dependent population sizes and spatial structure on the coalescent [2, 17]. Despite providing better �ts to the data, this47

generalized Kingman coalescent does not capture some of the qualitative features of empirical genealogies—namely the48

existence of multiple mergers in the genealogical trees [18, 19].49

Over time, several mechanisms that give rise to coalescents with multiple mergers have also been proposed. Theoretical50

studies have shown that highly fecund populations have multiple mergers in their genealogies [20, 21]. Selective sweeps can51

also lead to fat-tailed distributions in the number of o�spring. Mathematically, the genealogies of such populations can be52

described by a more general coalescent model known as the Λ-coalescent [20, 22]. However these mechanisms have limited53

applicability—most species have few o�spring and typical population sizes and selective pressures are unlikely to have a54

large e�ect on genealogies [23–25]. Here, we show that a ubiquitous demographic mechanism generates genealogical trees55

with a wide range of topologies, including topologies with exclusively pairwise mergers as well as topologies with multiple56
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mergers. This mechanism relies on unusually large genetic drift at the leading edge of expanding population fronts. Such57

expansions can occur in a variety of contexts, such as range expansions [26], range shifts due to climate change [27], or58

the growth of bacterial colonies [28, 29] and tumors [30, 31].59

Despite their importance, very little is known about the genealogies of spatially expanding populations. Two approaches60

have been used previously to study this problem, often leading to very di�erent conclusions [32–34]. The most common61

approach is to approximate spatial expansions by a series of discrete bottlenecks at the front [23, 32, 35]. This is known62

as the serial bottleneck approximation and it implicitly assumes that genealogies along the expansion are described by a63

series of replacement events (as illustrated in Fig. 1a, c), while those at the leading edge are described by the Kingman coa-64

lescent, with a potentially time-dependent population size [33, 36]. The Kingman structure of genealogies has also been65

recently proven for a certain class of range expansions with negative growth rates at the leading edge [37]. An alternative66

approach, introduced in Ref. [34], is based on an analogy between spatial expansions and traveling waves describing the67

increase in �tness in a population of constant size under strong selection [38–40]. Using heuristic arguments, supported68

by extensive numerical simulations, Brunet et al. conjectured that expansions under the Fisher-Kolmogorov-Petrovsky-69

Piskunov (FKPP) universality class are described by a di�erent type of coalescent, known as the Bolthausen–Sznitman70

coalescent
1

[34]. Unlike the standard Kingman coalescent, in which only pairwise mergers between branches are allowed,71

the Bolthausen–Sznitman coalescent is characterized by large merger events, during which a �nite fraction of branches72

can coalesce simultaneously [42, 43]. Despite subsequent investigations, reconciling these two diametrically opposed73

points of view is still an open problem [33, 36, 40].74

Recent studies by the authors point to a potential resolution of the above-mentioned contradiction [44, 45]. Speci�cally,75

we examined whether population dynamics at the front could lead to di�erences in the rate of diversity loss during range76

expansions. Surprisingly, we found that density dependence in either growth or migration has large e�ects on genetic77

diversity. These e�ects can be grouped into three distinct regimes. When density dependence is positive and large—such78

as when growth and migration are highly cooperative, for example—the time scale over which diversity is lost scales lin-79

early with the carrying capacity. This is the scaling expected from the Kingman coalescent and is consistent with the serial80

bottlenecks view. However, when cooperation is reduced, large 
uctuations in density at the front tip lead to sublinear81

scaling, as would be expected if multiple mergers were present in the genealogies [7]. Finally, when cooperation is absent,82

1
Such expansions fall within the broader class of “pulled” expansions and we will usually refer to them by this term. Subsequent work rigor-

ously proved that �tness waves are described by the Bolthausen–Sznitman coalescent [41], but no such proof exists for pulled spatial expansions,

to our knowledge.
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the timescale of diversity loss scales logarithmically with the carrying capacity, as would be expected from a population83

described by the Bolthausen–Sznitman coalescent [7]. These results lead to a natural hypothesis, that these changes in the84

rate of diversity loss are a result of changes in the underlying genealogies, driven by large 
uctuations in the low-density85

region of the front.86

In this paper, we elucidate the connection between population dynamics and genealogies during expansion. We focus87

on understanding the topology of genealogies in the well-mixed region close to the front of the expansion (Fig. 1b, d).88

Using simulations, we obtain genealogical trees and examine how they change as growth dynamics vary. We indeed �nd89

that changes in growth cooperativity lead to a transition from the Kingman to a non-Kingman coalescent with multiple90

mergers. The 
uctuations in the position and shape of the expansion front are crucial to these results because we observe91

only the Kingman coalescent when demographic 
uctuations of the front are arti�cially suppressed.92

To explain our �ndings, we developed an e�ective model of the expansion front using analytical arguments. We showed93

that the front can be treated as a well-mixed population with a broad distribution of number of o�spring (reproductive94

values). The tail of the distribution follows a power law with an exponent that depends only on the ratio of the expansion95

velocity and the geometric mean of the growth and dispersal rates at low population densities. The topology of the96

genealogies is described by a Λ-coalescent and is in turn determined by the exponent [21, 46, 47]. Thus, the distribution97

of merger sizes in the genealogies of expanding populations is dependent on the growth dynamics.98

Simulation results99

Expansion model100

We simulated a population expansion using a setup similar to the classic stepping stone model [48]. Speci�cally, we con-101

sider a one-dimensional landscape of demes (patches). For computational e�ciency, we use a simulation box ofL = 300102

demes, which moves with the expansion front such that the box is approximately half-�lled at all times. Each generation,103

individuals migrate between neighboring demes with probability m/2 and reproduce. The number of descendants is104

determined by the growth function that depends on the local population density (see Methods for details). On average,105

the population density increases to a maximum value set by the carrying capacity N . All individuals are resampled ev-106

ery generation, so demes that are at carrying capacity still experience genetic drift. As a result, the model reduces to a107
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Figure 1: Shape of genealogies in expanding populations depends on spatial location of sampled individuals.
The genealogies in two limiting sampling regimes are shown schematically. (a) When sampling is done over large distances

along the expansion, the coalescence time is mainly determined by the motion of the front. (b) In this regime, the lineage

coalescence depends on spatial locations and genealogies correspond to a series of replacement events. (c) When sampling

is done at the front, lineage coalescence is independent of spatial location and the motion of the front does not play an

important role. (d) In this regime, a characteristic coalescence time Tc emerges which is determined by the topology of

the genealogical tree.

Wright–Fisher process in the bulk and a branching process with Poisson distributed number of o�spring at the front.108

Methods109

The detailed implementation of the sampling of descendants can be found in the SI, Sec. IV. For our purposes here, the110

change in the local population sizenk, can be represented by a growth function r(nk), given by the following expression:111
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Figure 2: Genetic processes in spatially expanding populations are e�ectively well mixed on time scales larger
than the mixing time of the front. (a) The distribution of initial locations from which the ancestor position was

tracked backward in time. Due to the stochastic nature of the front the distribution of sampling locations has a �nite

width with respect to the average front pro�le shown in gray. (Inset) Shows �nal front from 30 independent runs used

to generate histograms in the main panel. For each run, two subpopulations were chosen, one close to the bulk (blue)

and another close to the edge of the front (orange), and the locations of their ancestors were recorded at di�erent times

in the past (see SI, Sec. V for exact sampling procedure). (b) Distribution of locations of ancestors of individuals shown

in panel (a) from 100 generations in the past.

r(nk) = r0(1− nk/N)(1 +Bnk/N), (1)

where k is the deme index and r0 is the growth rate at zero density. For convenience, we set the generation time to one112

and omit it from future expressions. The parameterB in (1) sets the growth cooperativity in the population. ForB = 0,113

(1) is the widely-used logistic growth function [49, 50], which has the maximum growth rate r(nk) = r0 at nk = 0. For114

B > 1, the position of the maximum shifts to nk > 0, and r(nk) becomes larger asB increases.115
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We showed previously that B in (1) controls the scaling between the carrying capacity N and the e�ective population116

size of the front Ne, which we de�ne as the time scale over which genetic diversity is lost. This dependence of Ne on117

N changes from a linear function for B ≥ 4, to a power law for 2 < B < 4, and then to ln3N for B < 2 [44].118

We refer to the three expansion classes as fully pushed, semi-pushed, and pulled, respectively [44, 45]. This terminology119

re
ects the fact that growth in pulled expansions occurs mainly at the edge of the front while, in semi-pushed and fully120

pushed expansions, it is in the bulk. We performed simulations with one value of B for each regime: B = 10 for fully121

pushed expansions,B = 3.33 for semi-pushed expansions, andB = 0 for pulled expansions. Although our simulations122

are based on the speci�c growth and migration model detailed above, our theoretical results are model-independent (see123

below). Therefore, we do not expect any of our conclusions to change if di�erent growth or migration models are used.124

Genealogies can be obtained by storing all ancestral relationships. This approach, however, would severely constrain125

the population size and duration of our simulations. Instead, we keep track of genealogies by periodically assigning a126

unique label to every individual in the population. After assignment, the size of surviving clones—de�ned as a group127

of individuals with the same label—increases, while other clones become extinct. After a �xed number of generations128

∆t, we relabel all individuals and store their previous labels. One can then trace the ancestry backward in time with129

temporal resolution ∆t. As long as ∆t is not too large compared to the generation time and the maximum clone size is130

small compared to the total population size, this procedure introduces only minor information loses in the genealogies131

for sample sizes much smaller than the carrying capacity.132

Descendant distribution in deterministic fronts133

Without demographic 
uctuations, the front pro�le nd(ζ) assumes a steady-state solution with a cuto� in the density134

determined by nd(ζc) = 1, since the number of individuals cannot be less than one. Thus, for values of ζ > ζc, the135

population density is zero. This density cuto� implies a maximum number of descendants
2 Wc, which can be calculated136

as discussed in the SI, Sec. I. Viewed backward in time, the ratio
Wc

Ne
is the maximum fraction of lineages that can merge at137

the same time, whereNe is the size of population at the front with a non-negligible probability of �xation. We �nd that138

Wc

Ne
→ 0 in the limit of largeN (SI, Sec. I). Hence, pairwise mergers should dominate, leading to the Kingman coalescent.139

2
The �xation probability u(ζ) is always monotonic in ζ for pulled and semi-pushed expansions, and thereforeWc ∝ u(ζc). In fully pushed

expansions, u(ζ) can have a maximum at ζ < ζc, in which case there would be no cuto� in P (W ). However, since fully pushed expansions are

described by the Kingman coalescent, this does not change the conclusions of our argument.
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Spatial self-averaging140

Range expansions are inherently heterogeneous in time and space. Therefore, ancestral relationships can in general de-141

pend on the times and locations of samples from the population. Consider two extreme sampling scenarios of either142

sampling individuals uniformly from the colonized range (Fig. 1a), or sampling all individuals from the front (Fig. 1b). In143

both cases, coalescent events primarily occur when ancestral lineages are at the front because genetic drift in the popula-144

tion bulk is much weaker. When two samples are taken from distant spatial locations, their lineages need to “wait” until145

both lineages are at the front. Viewed backward in time, this occurs when the front recedes past the left-most lineage (see146

Fig. 1a, c). Thus, in this sampling protocol, the shape of the genealogical tree explicitly depends on the spatial separation147

between the sampling locations. In contrast, there is no position-dependence when all individuals are sampled at the148

front because all lineages start merging at the same time (Fig. 1b, d).149

Previous work suggests that lineages sampled at the front can be viewed as if they are part of a well-mixed population150

comoving with the front [44, 51]. This approximation is valid on time scales longer than the mixing time.151

To test if the mixing time τm is indeed much shorter than the coalescence time, we tracked the spatial distribution of152

ancestors of individuals at the front. Speci�cally, we performed 30 independent simulations and sampled individuals153

from two spatial locations, one closer to the front and the other closer to the bulk. The inset in Fig. 2a shows the two154

sampling locations (blue and orange dots) together with the �nal front (grey line) for each run. The main panels show the155

distribution of ancestors of individuals from the two sampling locations shortly before the sampling time (Fig. 2a), and156

at a time close to τm (Fig. 2b). Importantly, we found that the time necessary for the ancestor distributions to become157

independent of sampling location was much shorter than the time to reach the common ancestor for the whole front.158

For example, from Fig. 2b we estimated τm ≈ 102
generations, compared to Tc ≈ 103

. These results show that the159

sampling positions do not a�ect genealogies and, therefore, the lineages can be considered exchangeable, which is a key160

requirement for describing them using the coalescent theory.161

Structure of genealogies162

We performed simulations using three levels of cooperativity that are expected to lead to qualitative di�erences in the ge-163

nealogies because they correspond to pulled, semi-pushed and fully pushed expansions. The genealogy of the population164

was obtained using the procedure described in the Methods section. The examples of these genealogies shown in Fig.165
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fully pushed semi-pushed pulleda) b) c) 

Figure 3: The genealogical tree of spatially expanding populations changes as the expansion transitions from
pulled to pushed. Sample genealogies from fully pushed (a), semi-pushed (b), and pulled (c) expansions are shown.

These trees were generated by randomly sampling 20 individuals from the �rst 15 occupied demes from the front, after

�xation. For illustration purposes, we chose representative trees from our simulations that provided good visual clarity.

3 have the qualitative features predicted by the theory. In fully pushed expansions genealogies have only pairwise merg-166

ers, whereas semi-pushed and pulled expansions show several examples of multiple mergers. Moreover, the genealogies167

in pulled expansions appear highly skewed, with most mergers occurring on one side of the tree, while in fully-pushed168

expansions branching is more symmetric. These features are consistent with our hypothesis that cooperativity drives the169

transition from the Bolthausen–Sznitman to the Kingman coalescent.170

To get a more quantitative measure of the changes in topology of the genealogies during expansion, we calculated two171

summary statistics
3

that can distinguish between coalescents: the site frequency spectrum (SFS), and the two-site fre-172

quency spectrum (2-SFS) [54, 55]. We found that both SFS and 2-SFS supported our hypothesis that genealogies change173

from the Kingman to a non-Kingman coalescent at the transition between fully pushed and semi-pushed expansions.174

Because it is simpler to quantitatively test the SFS against the theoretical predictions, we report these results in the main175

text and refer the interested reader to Sec. III of the SI for the analysis of the 2-SFS.176

The SFS provides a histogram of the number of sites in the genome that have a given frequency of mutations in the sample.177

3
Other summary statistics have also been used to describe the shape of genealogical trees. Perhaps the most popular of these is the total tree

length, which determines the number of segregating sites in sequencing data. However, this metric is known to be very sensitive demographic

expansions and is not a reliable indicator of coalescents with multiple mergers [52, 53].
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Assuming mutation rates are constant throughout the genome, the SFS is the mean length of internal branches with a178

given number of terminal branches (leaves) [7, 56]. We are particularly interested in the shape of SFS for high-frequency179

mutations (allele frequencies f ≈ 1) because SFS is qualitatively di�erent between the Kingman and the Bolthausen-180

Sznitman coalescent in this regime.181

High-frequency mutations occur on internal branches that have a large number of leaves. Genealogies with such muta-182

tions are highly skewed because one branch can contain the majority of leaves. Skewed trees are unlikely in the Kingman183

coalescent because each pairwise merger joins lineages randomly, independent of the number of their leaves. Thus SFS184

monotonically decays with the mutant frequency. In contrast, SFS for the Bolthausen-Sznitman coalescent is expected to185

have an uptick at high f because there is a high chance of nearly all lineages coalescing at a single multiple merger. Consis-186

tent with our hypothesis, we indeed �nd a monotonic SFS for fully pushed expansions (Fig. 4a), while semi-pushed and187

pulled expansions display the uptick at high allele counts characteristic of coalescents with multiple mergers (Fig. 4b, c).188

Moreover, both fully pushed and semi-pushed expansion SFS agree quantitatively with the predictions from the Kingman189

coalescent and the Beta-coalescent with β = 1.5, respectively (see SI, Sec. III for details). In the case of pulled expan-190

sions, we �nd the quantitative agreement is less good, which we believe is due to the very long relaxation times required191

to reach steady-state in the pulled regime (see SI, Sec. II). Nevertheless, taken together, these results clearly establish that192

the genealogies of the three expansion classes have distinct topologies.193

a) b) c)

Figure 4: The site frequency spectrum of genealogies reveals di�erences between pulled and pushed waves.
Approximately 100 trees were recorded from simulations of fully pushed (a), semi-pushed (b), and pulled (c) expansions,

respectively. Each full genealogy was sampled 10 times using a sample size of 20 individuals chosen from the front (see SI,

Sec V for sampling procedure). The resulting SFS, averaged over samples and simulations, is shown with colored dots.

The solid line shows the exact predictions for the SFS in each regime (see SI, Sec. V for details).
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Theoretical results194

Descendant distribution in stochastic fronts195

To develop an intuitive understanding of how genealogies emerge in range expansions, we developed a theoretical frame-196

work based on continuous reaction-di�usion equations. In this framework, it is easier to examine the dynamics of clones197

forward in time and relate the expansion of these clones to mergers in the genealogy. Previous work has shown that the198

frequency of a subpopulation fi(t, ζ) within the front changes according to the following equation [44, 51]:199

∂fi
∂t

= D
∂2fi
∂ζ2

+

[
v + 2D

∂ lnn

∂ζ

]
∂fi
∂ζ

, (2)

where D is the e�ective di�usion constant which describes the migration of individuals, v is the velocity of the front,200

n(ζ) is the population density, and ζ = x− vt is the position along the front in the comoving reference frame.201

From (2) we can calculate the distribution of descendants from a single individual at some position ζ0 as t→∞. In Sec.202

I of the SI, we show that this distribution has a time-independent form fi(t, ζ) ≈ u(ζ0) after sometime O(τm), which203

we denote as the “mixing time” of the front. As a result, on time scales longer than τm the distribution of surviving clones204

fi(t, ζ) loses all spatial information and u is simply proportional to the reproductive success of the ancestor.205

Because u greatly varies with ζ0, individuals at di�erent locations can have wildly di�erent reproductive valuesW , which206

are determined by their average number of o�spring after the mixing time [57, 58]. We can invert this dependence and207

consider ζ(W )—i.e., �nd the location of the initial individual with a given reproductive value. It is then straightforward208

to compute the probability distribution for W by �nding the number of organisms present at ζ(W ). Mathematically,209

this is accomplished by the following change of variables: P (W )dW = n(ζ)dζ∫+∞
−L n(x)dx

. In Sec. I of the SI, we use this change210

of variables to calculate P (W ) explicitly and �nd that it has a power law tail of the form211

P (W ) ∼ W−2−α. (3)
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a) b) c)

d) e) f)

Figure 5: Deterministic front approximation fails to capture full range of coalescent topologies. (a-c) Shows

long-time distribution of the frequency of one allele in stochastic two-allele simulations for each expansion type. His-

togram of allele frequencies are shown in gray and the theoretical predictions assuming the Kingman (panel a, blue) and

Bolthausen–Sznitman (panel c, red) coalescent are show with solid lines. (d-f ) Same as above, but for simulations with a

deterministic front. The dashed lines show the theoretical predictions, which are now given by the Kingman coalescent.

For each panel we ran 103
simulations and report the distribution of allele frequencies at a �xed time after the distribution

becomes quasi-stationary.

The origin of different topologies212

The exponent α is calculated exactly and depends only on v/vF , the ratio between the actual expansion velocity and the213

velocity that would occur in the absence of positive feedback vF = 2
√
r0D:214

α =
2
√

1− v2
F/v

2

1−
√

1− v2
F/v

2
. (4)

Note that the speci�c form of the density dependence in the growth and dispersal rates does not enter (4). In fact, all of215

our analyses have been carried out for an arbitrary model with short-range dispersal. Thus, the tails ofP (W ) are universal216
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and depend on a single, easy-to-measure parameter [59].217

For high cooperativity, when v/vF is greater than a critical value νc = 3
2
√

2
4
, the exponent α is greater than one and the218

variance ofW is �nite. Therefore, the clone frequencies only change by small amounts each generation and genealogies219

are described by the Kingman coalescent [60]. For intermediate values of cooperativity, de�ned by 1 < v/vF < νc, the220

exponent α is less than one and the variance of P (W ) diverges. This leads to occasional large jumps in clone frequencies221

and the appearance of multiple mergers in the coalescent [47]. Finally, when v/vF = 1, we have α = 0 and P (W ) ∼222

W−2
, which leads to a Bolthausen–Sznitman coalescent when the process is viewed backward in time [47, 61].223

To verify the change in descendant distribution predicted by theory, we measured clone sizes during range expansions in224

simulations. Direct measurements of P (W ) are challenging because the distribution emerges only over a time scale of225

O(τm), which we cannot determine precisely. However, we can circumvent this problem in two limits: on short time226

scales, on the order of a few multiples of τm, and on long time scales, when the population comprises two clones. In the227

�rst limit, we can consider all individuals at the front at some initial time as clones of size one. As the front expands, some228

clones go extinct while others increase in size. For short time scales (comparable to τm), clone sizes are small and each can229

be modeled as independent branching processes. In the second limit, we can track the dynamics of a population with230

only two clones—which we can think of as two alleles. As both alleles are neutral, the dynamics can be described by the231

frequency of one of them, which changes according to a Fleming-Viot process [61, 62].232

The branching process calculation makes two testable predictions about the clone size distributions. First, the average233

size of a surviving clone 〈W 〉+ increases as t1/α. Second, the probability to observe a clone s times larger than the av-234

erage clone decays as e−s for P(W) with a �nite variance and as s−1−α
when α < 1. In the SI we show the results of235

simulations for fully pushed expansions agree well with these predictions (Fig. S4). Outside of the fully pushed regime,236

we see a broadening in the clone size distribution which is inconsistent with the exponential prediction for a short-tailed237

descendant distribution (Fig. S4). However, due to the large carrying capacities required to allow for the relaxation of the238

transient dynamics in the semi-pushed and pulled regimes, we were not able to quantitatively verify the expected power239

law for F (s).240

The simulations of the Fleming-Viot process were more e�cient and allowed us to demonstrate a quantitative agreement241

4
The critical value is determined from (4) by �nding the value of v/vF for which α = 1.

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424763
http://creativecommons.org/licenses/by-nc/4.0/


with our theoretical predictions. Speci�cally, we started forward-in-time simulations with two clones of equal abundance242

and monitored the frequency f of one of the clones. Conditioned on having both clones present, the probability P (f)243

of observing a particular clone frequency approaches a steady state in simulations and can also be computed analytically.244

For the Kingman coalescent, P (f) = 1 [63] while for the Bolthausen–Sznitman coalescent P (f) = 1
f(1−f)

5
. Our245

simulations mach both of these predictions (Fig. 5a-c).246

The role of fluctuations in population density at the front247

All of our results so far explicitly account for demographic 
uctuations at the front. However, most studies of range248

expansions have ignored demographic 
uctuations, either because of the mathematical di�culties they introduce or be-249

cause their e�ects were thought to be small [32, 64, 65]. To understand to what extent density 
uctuations in
uence the250

dynamics at the front, we performed simulations in which the total population density was updated deterministically,251

while still allowing for genetic drift by stochastically sampling the front composition. In all simulations, we found that252

genealogies matched the Kingman coalescent (Fig. 5d-f).253

This unexpected result can be explained by considering the e�ect of deterministic population dynamics on the descendant254

distribution at the front. In the Methods section, we show that the deterministic approximation leads to a �nite variance255

in P (W ), through a cuto� Wc corresponding to the maximum reproductive value at the front. We also show that the256

cuto�Wc scales sublinearly with the carrying capacityN (see SI, Sec. I). This implies that the fraction of lineages which257

can merge in one event in the limit of largeN goes to zero. As large merger events are suppressed, we expect all genealogies258

to converge to the Kingman coalescent. Thus, demographic 
uctuations play a crucial role in the emergence of non-259

Kingman coalescents at the front.260

Discussion261

Many species, from microbes [66, 67] to humans [23], have undergone expansions in their history and many are cur-262

rently expanding due to globalization [68, 69] and climate change [27, 70]. Previous work has demonstrated that range263

expansions reduce the amount of genetic diversity in the population [32, 64, 71, 72] and allows for some alleles to become264

5
This prediction assumes the population size is in�nite, in which case P (f) widens in time and there is no strictly stationary distribution

[61]. However, within the range of 1/Ne � f � 1 − 1/Ne we expect the allele frequency distribution to match the theoretical prediction, as

we indeed see in simulations.
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dominant, through a process known as gene sur�ng [51, 65, 73]. However, underneath the overall decrease in diversity265

many patterns can be found which are still not well understood.266

Evolutionary dynamics during range expansions vary greatly depending on how much demographic 
uctuations and267

genetic drift at the leading edge in
uence future generations [44]. This dependence is captured by a single parameter268

v/vF . This ratio of the actual expansion velocity to the velocity that would occur without density dependence quanti�es269

the degree of cooperativity (or positive feedback) in growth and dispersal. When this parameter is large, the front makes270

a small contribution to the rate of expansion and allele frequencies change slowly. When v/vF is close to one, expansion271

proceeds primarily via a highly stochastic advancement of the population edge.272

We showed that these di�erences in evolutionary dynamics are captured by a simple and intuitive model, which de-273

scribes the front as an e�ective well-mixed population with broad distribution of reproductive values. As v/vF de-274

creases, the descendant distribution becomes broader until, at a critical value, the variance diverges—this signals the tran-275

sition from the Kingman to a non-Kingman coalescent. As v/vF decreases further, the distribution broadens until a276

Bolthausen–Sznitman coalescent is reached.277

Density 
uctuations are essential for all of our results. When these 
uctuations were ignored, all genealogies were de-278

scribed by the Kingman coalescent, as predicted from the serial bottleneck view [32]. More sophisticated models have279

attempted to replace the e�ects of demographic 
uctuations by a cuto� at n(ζc) = 1. While such a cuto� is appropri-280

ate for pulled expansions, for others it is not [74]. It has recently been discovered that for semi-pushed and fully pushed281

expansions, a di�erent cuto�, which depends on v/vF , should be used [44]. There, quantitative changes in the rate of di-282

versity loss were found when the wrong cuto� was used. Here, we found the choice of cuto� leads to qualitative changes283

in the genealogies. Thus, any theory that hopes to predict the dynamics of expansions needs to account for 
uctuations284

in the position and shape of the front.285

Our results provide a universal framework to link genetic diversity at the front to ecological dynamics. This framework286

can be used to infer the importance of density feedback in growth and dispersal or to predict evolution during range287

expansions. More importantly, the mechanism presented here provides a generic explanation for the skewed genealogies288

commonly observed in empirical studies [19, 75–77]. Previously such genealogies were attributed to either very strong289

selection or sweepstakes reproduction [19, 77], both of which could be less common than range expansions. Neverthe-290
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less, natural populations are both spatially structured and under various selection pressures—integrating both aspects is291

required for developing a complete theory of genealogical trees.292
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Supplemental Information475

I. Forward in time dynamics476

In this section, we show how the genealogy of an expanding population can be mapped to an e�ective well-mixed pop-477

ulation with a broad descendant distribution. We only consider the case of density-independent migration here, but the478

argument is analogous whenD depends on n. We consider a population with density n(t, x) described by479

∂n

∂t
= D

∂2n

∂x2
+ r(n)n. (S1)

We assume the population is comprised ofm neutral subtypes with relative fractions fi(t, x) and

∑m
i=1 fi(t, x) = 1. In480

the deterministic limit, it is then easy to show that fi(t, x) obey the following equation [1, 2]: descendant481

∂fi
∂t

= D
∂2fi
∂ζ2

+

[
v + 2D

∂ lnn

∂ζ

]
∂fi
∂ζ

, (S2)

where ζ ≡ x− vt is the spatial coordinate in the comoving reference frame. We can write the general solution for f(t, ζ)482

as:483

fi(t, ζ) = f
(0)
i + e−t/τmf

(1)
i (t, ζ) + ..., (S3)

where we have kept the two eigenvectors of the operator in Eq. (S2) with the slowest decay times. For large N , the484

timescale τm is smaller than the mean coalescence time Tc, and represents the time for an arbitrary distribution of neutral485

alleles to “mix” with the other individuals at the front and reach its steady state distribution [3]. We will, therefore, refer486

to τm as the mixing time of the front.487

Previous work has shown that limt→∞ f(t, ζ) = u(ζ), where u(ζ) is the �xation probability of a new mutant that488
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originates at position ζ (see Sec. III of SI of Ref. [3] for an extensive discussion). The �xation probability can be calculated489

explicitly and has the following form:490

u(ζ) =
n(ζ)evζ/D∫ +∞

∞ dζ ′n2(ζ ′)evζ′/D
. (S4)

If we interpretu(ζ) as the fraction of descendants of an individual at position ζ in the whole population, and usef(t, ζ) ≈491

f (0)
for t & τm, we can think of the population of the wave as an e�ective well-mixed population with a broad descendant492

distributionP (W ), and generation time τm. The relation between the number of descendantsW can then be computed493

using494

W (ζ) ∼ Nu(ζ), (S5)

where carrying capacityN is a necessary conversion factor because u(ζ) is a probability, and strictly less than one.495

We can compute the descendant distribution by using496

P (W )dW ∝ n(ζ)dζ, (S6)

to eliminate the position ζ . The result then reads497

P (W ) ∝ W
− 2

1−
√

1−v2
F

/v2 = W−2−α, (S7)

where498
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α =
2
√

1− v2
F/v

2

1−
√

1− v2
F/v

2
. (S8)

For pulled waves, v/vF = 1 and we haveP (W ) ∝ W−2
. This distribution has a divergent mean and leads to Bolthausen-499

Sznitman coalescent [4]. In the semi-pushed region, 1 < v
vF

< 3
2
√

2
, and the descendant distribution changes continu-500

ously from W−2
to W−3

. Finally, in fully-pushed waves, it decreases at least as fast as W−3
. In this case, the population501

is described by a Kingman coalescent [5].502

Cutoff in descendant distribution503

The above argument applies for deterministic dynamics ofn(t, x). However, it is not clear whether models with stochas-504

tic migration and growth behave the same way. Previously, we argued that stochasticity can be incorporated by using an505

e�ective cuto� in the population density [3], which for semi-pushed waves is given by506

ζmax =
1

q
lnN, (S9)

where q = v
2D

(
1−

√
1− v2

F/v
2
)

. Using this cuto� we can compute the maximum fraction of descendants in the507

population:508

fmax ∼ N−
k
qN

k+q
q N−1 = O(1), (S10)

where we have de�ned fmax ≡ Wc

N
. The above result shows that the cuto� does not depend on N, and does not in
uence509

the properties of coalescent for u � 1. However, this does not exclude a �nite cuto� at some uc < 1, which would510

change the frequency of very rare 
uctuations, were a fraction . 1 of lineages merge during one generation. A more511

detailed calculation is needed to check for this.512
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Deterministic waves513

If we apply the same reasoning when n(t, x) is discrete but changes deterministically, we get a very di�erent answer. In514

this case, we have a cuto� at n = 1, which occurs at515

ζmax =
1

k
lnN. (S11)

In the semi-pushed regime, this gives a maximum value forW :516

Wmax = N
q
k
−1. (S12)

Looking backward in time, we can express the cuto� at fmax in terms of the largest fraction of lineages in the population517

that can coalesce into one individual over a timescale of τm. The results reads518

fmax ∼
wmax

N
∼ N−

k−q
k . (S13)

Looking backward in time, umax represents the largest fraction of lineages in the population that can coalesce over the519

generation time τm. Since for pushed waves q < k, this shows that in the limit ofN →∞520

p(w)→ δ(w), (S14)

and the genealogical tree converges to a Kingman coalescent. This prediction is particularly striking since we have shown521

that Tc still has a power law scaling withN even for deterministic fronts [3].522

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424763doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424763
http://creativecommons.org/licenses/by-nc/4.0/


Distribution of allele fraction523

We can better understand the coalescent structure during expansions by studying the distribution of allele frequencies f524

for at long times. For a Kingman coalescent, the allele frequency is given by the classic result of Kimura [6]:525

lim
t→∞

P (t, f) = const. (S15)

At the other extreme, the Bolthausen-Sznitman coalescent is the dual of a jump-advection process, with the distribution526

[4]527

lim
t→∞

P (t, f) ∝ 1

f(1− f)
. (S16)

II. Effective clone size distribution528

In this section we calculate the clone size distribution at the front on times scales much longer than τm, by approximating529

the process in the e�ective well-mixed population by a branching process. The probability distribution can be obtained530

analytically for α = 1
2

and when the number of descendants has a �nite variance. We brie
y review the history and the531

relevant references and then summarize the key results explaining brie
y how they can be derived.532

Relevant literature533

Branching processes were �rst studied by Watson and Galton to describe the dynamics of British surnames [7]; there-534

fore they are often referred to as Galton-Watson processes. Branching processes have been applied to a number of �elds535

including branching of neutrons in nuclear reactions, population genetics, earthquakes, chemical reaction, birth-death536

processes, shot noise, and many others. The monograph by Harris [8] contains the historical details and detailed mathe-537

matical treatment of simple and generalized branching processes together with several applications. A simpler and more538

limited exposition can be found in Ref. [9]. A summary of the early progress in branching processes can be found in539

Ref. [10]. Branching processes were also called multiplicative processes possibly because of the application to the nuclear540
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reactions; see [11].541

The full solution for the branching process was developed by a great number of scientists who calculated di�erent prop-542

erties under di�erent assumptions. Some of the key results that are relevant for us were obtained in Ref. [12, 13]. The543

approach taken in the latter reference is very close to how a physicist would approach this problem and our discussion544

closely follows that of Ref. [13]. More recently, branching processes have been used in the study of avalanches and total545

popularity on networks [14, 15]. These references extend the classical results to compute the integral of the number of546

organisms over time for surviving lineages, i.e. avalanche size. On the mathematical sized, branching processes can be547

studied in the continuum limit, which is known as continuous state branching processes. This description is equivalent548

to a Levy process with a time change. All of the results, however, can be derived from the discrete number of individuals549

by taking the continuum limit [16–18].550

Problem formulation and general solution551

We consider a continuous time version of the branching process since it is simpler. The probability to observe n individ-552

uals at time t is denoted as pn(t). Unless speci�ed otherwise, we assume that pn(0) = δn,1. The probability to leave k553

descendants is qk.554

The master equation reads555

ṗk = r[−kpk +
k∑
l=0

ql(k − l + 1)pk−l+1], (S17)

where r is the branching rate. Since r only enters the problem through the time scale, we set r = 1 in the following.556

Note that the transition rates are proportional to the number of individuals since each can reproduce. The fact +1 in the557

last term accounts for the fact that the reproducing individual dies.558

The master equation can be solved using generating functions. We denote the generating functions for pn and qk by P559

andQ respectively:560
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P (t, z) =
∞∑
n=0

znpn(t), (S18)

Q(z) =
∞∑
k=0

znqk. (S19)

Upon di�erentiating Eq. (S18) with time and using Eq. (S17), we obtain561

∂P

∂t
= [Q(z)− z]

∂P

∂z
, (S20)

which can be solved using the method of characteristics. Assuming that we start with one individual, P (0, z) = z, and562

the implicit solution of Eq. (S20) reads563

t =

∫ P (t,z)

z

dζ

Q(ζ)− ζ . (S21)

This equation serves as the basis of our analysis in the rest of this summary.564

Before proceeding with the analysis, however, we point out that many references study branching processes from a dif-565

ferent starting point. Consider how the population can change in a short time dt at the start of the process when there566

is only one individual (similar to backward Kolmogorov equation). With probability 1 − dt, nothing happens and the567

generating function remains unchanged. With probability dt the organism reproduces and leaves k descendants with568

probability qk. After that we also have a branching process that lasts time t, but starts with k individuals. Since individu-569

als are independent the generating function for the sum of their progenies is the product of the generating functions for570

each starting organism. In other words, we obtain571
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P (t+ dt, z) = (1− dt)P (t− dt, z) + dt

∞∑
k=0

qkP (t− dt, z)k, (S22)

which simpli�es to572

∂P (t, z)

∂t
= Q[P (t, z)]− P (t, z). (S23)

It is easy to see by direct substitution that the implicit solution from Eq. (S21) satis�es Eq. (S23). The direct analysis of573

Eq. (S23) and its discrete-time analog involves functional equations and recurrences, which are more cumbersome than574

the implicit solution obtained above.575

Asymptotic analysis576

When the integral in Eq. (S21) can be evaluated one can obtainP (t, z) directly. For a generalQ(z), we focus on long time577

limit. In this limit, t→ +∞ and the integral must diverge. Therefore, the long time behavior ofP (t, z) is controlled by578

the root zc ofQ(zc) = zc and the behavior ofQ(z) around zc.579

It is easy to show that zc > 1 when the mean number of descendants 〈k〉 = Q′(1) < 1. In this case,P (t, z) approaches 1580

exponentially fast, which corresponds to guaranteed extinction. Note that any generating function needs to be less or581

equal to one for |z| ≤ 1.582

When 〈k〉 = Q′(1) > 1, zc < 1. In this case, the process has a �nite probability to survive, which is given by 1− zc. The583

population size of surviving realizations grows exponentially with time at a rate given by 〈k〉 − 1. More re�ned results584

can be obtained by expandingQ(z) in Taylor series around zc.585

When 〈k〉 = Q′(1) = 1, we have a critical branching process. This is the case that we will focus on in the following. In586

this case zc = 1 and the behavior of P (t, z) depends on the behavior of Q(z) around z = 1. If 〈k2〉 exists, Q(z) has587

a second derivative at z = 1 and can be approximated by Q(z) = z + 1/2Q′′(1)(1 − z)2
. If the variance is in�nite,588

thenQ(z) is not analytic around z = 1. We argue below that, when the number of descendants is distributed according589
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to a power law,Q(z) = z + g(1− z)1+α
with α ∈ (0, 1].590

In the next two sections, we evaluate the integral in Eq. (S21) using the approximations forQ(z) to obtain the long time591

asymptotics of P (t, z).592

Critical branching process with �nite variance593

594

Upon substitutingQ(z) = z + 1
2
(1− z)2

into Eq. (S21) and evaluating the integral, we obtain595

P (t, z) = 1− 1− z
1 + Q′′(1)t

2
(1− z)

. (S24)

The survival probability is given by596

S(t) = 1− P (t, 0) =
1

1 +Q′′(1)t/2
∼ 2

Q′′(1)t
. (S25)

The average size of a surviving lineage 〈n〉+(t) should be such that 〈n(t)〉 = 1. Therefore597

〈n〉+(t) =
1

S(t)
= 1 +Q′′(1)t/2. (S26)

To obtain pn(t), we expand P (t, z) in Taylor series around z = 0. The result for n > 0 reads598

pn(t) = Sn+1(t) ∼
(

2

Q′′(1)t

)2

e
− 2n

Q′′(1)t . (S27)
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The above expression can be recast in a simpler form by normalizing the population size by the expected population size599

of surviving realizations. Speci�cally, we let y = n/〈n〉+, which also a�ects the normalization constant, and divide pn600

by S(t) since we consider only surviving realizations. The distribution of scaled population sizes is then described by the601

following probability density function:602

p(y) = e−y, (S28)

where we omitted the time since the equation corresponds to the limit t → +∞. This relationship can also be derived603

in a more formal and general way that we describe below.604

Continuum limit from generating function605

Given P (t, z) how can we obtain p(t, y)? First, notice that606

Pr(n ≤ x|n > 0) =
1

S

n∑
m=1

pn ≈
1

S

∫ n

0

pndn ≈
1

S

∫ x/〈n〉+

0

p(t, y)dy. (S29)

Therefore607

p(t, y)dy ≈ 1

S
pn(t), (S30)

and608

p(t, y) ≈ 〈n〉+
S

pn(t). (S31)

Then, we can relate the generating function P (t, z) to the moment generating function of p(t, y):609
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M(t, σ) = E{e−σy} =

∫ +∞

0

p(t, y)e−σydy ≈
+∞∑
n=1

pn(t)

S(t)
e−σn/〈n〉+

=
1

S

[
P (t, z = e−σ/〈n〉+ − p0(t)

]
= 1− 1− P (t, z = e−σ/〈n〉+)

S(t)
,

(S32)

where we used p0 = 1− S. One can then obtain p(t, y) via an inverse Laplace transform ofM(t, σ). Note that for the610

critical branching process 〈n〉+ = 1/S.611

Since it is convenient to summarize simulation results in terms of the complementary (reverse) cumulative distribu-612

tion c(t, y), we also derive the connection between P (t, z) and the Laplace transform of c(t, y):613

C(t, σ) =
1−M(t, σ)

σ
=

1− P (t, z = e−σ/〈n〉+)

S(t)σ
. (S33)

We can apply this result to the branching process with �nite variance to obtain the long time limit of c(t, y) as follows:614

C(σ) = lim
t→+∞

C(t, σ) =
1

1 + σ
, (S34)

c(y) =
1

2πi

∫ i∞

−i∞
eσyC(σ)dσ = e−y, (S35)

which indeed describes the complementary cumulative distribution for p(y).615

Power-law tails and the behavior of the generating function616

Before repeating the analysis above for distributions of the number of descendants qk with diverging variance, we brie
y617

discuss the connection between the power law tail of qk and the singularity of Q(z) at z = 1. As a reminder, we focus618

only on critical branching processes with 〈k〉 = 1 and only on qk ∼ k−2−α
for large k. Under these assumptions,619
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Q(z) ≈ z + g(1− z)1+α
(S36)

around z = 1.620

To see this, one can compute qk from the equations above by expanding Q(z) in Taylor series around z = 0 using the621

Cauchy formula for the derivatives:622

qk =
1

k!

∮
z=0

Q(z)

zk+1
dz. (S37)

This integral can be evaluated by taking the branch cut along (1,+∞), moving the contour to hug the branch cut,623

changing the integration variable from x to ep, and observing that only p . 1/k. The �nal result reads624

qk ∼
g sin(πα)Γ(α + 2)

π
k−2−α = g

α(1 + α)

Γ(1− α)
k−2−α, (S38)

where Γ(x) is the Gamma function.625

Another way to derive the relationship is to choose a speci�c form of qk. A convenient choice is qk = k−(2+α)/ζ(1 +α)626

for k > 0 and q0 = 1 − ζ(2 + α)/ζ(1 + α), where ζ(·) is the Riemann zeta function. Note that this choice satis�es627

both the normalization condition and the requirement that the average number of descendants equals to one. It is easy628

to show via a Taylor expansion around z = 0 that the corresponding generating function is given by629

Q(z) = 1− ζ(2 + α)

ζ(1 + α)
+

z

ζ(1 + α)Γ(2 + α)

∫ +∞

0

e−pp1+α

1− ze−pdp, (S39)

where the last term without the zeta function is known as Li2+α(·), polylogarithm of order 2 + α. The asymptotics630
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ofQ(z) can be directly extracted from this integral representation or from the asymptotics of the polygarithm.631

Critical branching process with diverging variance632

To �nd P (t, z), we substitute the approximation forQ(z) (Eq. (S36)) into the implicit solution given by Eq. (S21). The633

result reads634

P (t, z) = 1− 1− z
(1 + αgt(1− z)α)1/α

. (S40)

This expression contains all the information that we need. In particular, one can pass to a continuum limit and ob-635

tainC(t, σ) and c(t, y). Inverse Laplace transform can be evaluated by moving the integration contour to hug the branch636

cut (−∞, 0). Below, we consider a few special cases where the calculations are particularly simple and provide additional637

insight.638

The survival probability and the average size of the surviving population are given by639

S(t) =
1

〈n〉+
= (1 + αgt)−1/α ∼ t−1/α. (S41)

Note that the relevant time scale is 1/(αg), which becomes ζ(1 + α)(1 + α)/Γ(1 − α). The latter expression scales640

as 1/α for α→ 0. Thus, one should expect very long transient dynamics for small α.641

The long time limit forC(t, σ) is given by642

C(σ) =
1

(1 + σα)1/α
. (S42)

The inverse Laplace transform yields the following asymptotics643
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c(y) ∼


1− yα

αΓ(1 + α)
, y � 1,

y−1−α

Γ(1− α)
, y � 1.

(S43)

The asymptotics for p(y) are obtained by di�erentiation with respect to y.644

For the special case of α = 1/2, one can obtain an analytic expression for c(y):645

c(y) = (1 + 2y)ey erfc(
√
y)− 2

√
y

π
∼


1− 4√

π

√
y, y � 1,

y−3/2

√
π
, y � 1.

(S44)

The smally asymptotics can also be derived directy from the generating function by expanding it in Taylor series aroundz =646

0. This yields647

pn = (αgt)−1−1/α Γ(m+ α)

Γ(1 + α)Γ(m+ 1)
∼ (αgt)−1−1/αn−1+α. (S45)

Clone sizes in a stationary process648

Note that the results above might seem surprising at �rst. Most of the time branching processes are not conditioned on649

starting at a particular time. Instead, one assumes that the process restarts once extinction occurs. The sampling from650

such a stationary process gives more weight to processes that survived for a long time and therefore had proportionally651

large chance to be sampled.652

It is easy to show that the distribution of the age p(a) of a process sampled at a random time is given byS(t = a). Indeed,653

Pr{a > x} ∝
∫ +∞

a

Pr{duration = τ}(τ − a)dτ (S46)
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then654

p(a)da = − d

da
Pr{a > x} ∝

∫ +∞

a

Pr{duration = τ}dτ = S(a). (S47)

The probability to observe a population of size n is then given by655

Pr{n} =

∫ +∞

0

Pr{n|a}p(a)da ∝ nα−2 1

g

∫ +∞

0

p(y)y1−αdy ∼ nα−2, (S48)

where we expressed Pr{n|a} as p(y = n/〈n〉+), i.e. using the probability distribution for the scaled population size656

de�ned in previous sections.657

Equation (S48) agrees with the classical results for the neutral model forα = 1 and describes the tail of the site-frequency658

spectrum for the Kingman and Bolthausen-Sznitman coalescents.659

III. Summary statistics of ancestral trees660

In this section we present other summary statistics we used to infer the topology of the ancestral trees obtained from661

simulations.662

Theoretical background663

Our analysis of the genealogies is based on the coalescent theory. The coalescent provides a model for the backward-664

in-time dynamics of lineages in a population without any internal structure
6
. Generally, such a model is completely665

described by the rates λb,k at which k out of b lineages merge. An important result shows that λb,k for any coalescent
7

can666

6
Mathematically, this property is referred to as exchangeability and is an underlying premise in coalescent theory.

7
This result applies to all Λ-coalescents, in which any number of lineages can merge at the same time, but merger events happen in succession.

An even more general class, known as the Ξ-coalescent, allows for multiple simultaneous merger events as well. Such models have mainly been

used to describe genealogies of diploid populations [19–21], but also populations under strong selection in the presence of recombination [22,

23].
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be written in the following form:667

λb,k =

∫ 1

0

dxxk(1− x)b−k
Λ(x)

x2
, (S49)

where
Λ(x)
x2

is the distribution of the merger sizes [5]. A few special choices of Λ(x) are worth noting. First, Λ(x) = δ(x)668

gives λb,2 = 1 and λb,k = 0 for k > 2. This is the standard Kingman coalescent, where only pairwise mergers are allowed669

and their rate is constant. Another important model is the Bolthausen–Sznitman coalescent and is given by Λ(x) = 1.670

The merger rates in this case are λb,k = (b−1)!
(k−2)!(b−k)!

, which implies that k = 2 and k = b mergers are equally likely and671

the most likely merger size is close to
b
2

. Such large merger events have been used to describe genealogies of populations672

under strong selection [24, 25]. Finally, one can interpolate between the two by using673

Λ(x) =
x1−β(1− x)β−1

Γ(2− β)Γ(β)
. (S50)

From (S50), it is easy to show that β = 1 gives the Bolthausen–Sznitman coalescent and β = 2 gives the Kingman coa-674

lescent. The coalescent described by (S50) is known as the Beta-coalescent and many of its properties have been studied675

previously [5]. For our purposes, it is important to note that the Beta-coalescent describes the genealogies of highly fecund676

populations, in which the descendant-number distribution P (W ) has a power law tail P (W ) ∼ W−(1+β)
. We demon-677

strate in the Results section that the descendant-number distribution has a power law tail in range expansions, when678

viewed over a few generations. We make use of this fact to argue that genealogies in range expansions can generically be679

described by a Beta-coalescent.680

The choice of Λ(x) in (S49) has important e�ects on the di�erent summary statistics which we use to characterize ge-681

nealogies. One such such statistic is the average time for two lineages to coalesce Tc, whose scaling with the population682

size is highly dependent on the coalescent [5]. Thus, in the Kingman coalescent, Tc is typically proportional to the pop-683

ulation size, while in the Bolthausen–Sznitman coalescent it has much weaker logarithmic dependence. These distinct684

scaling regimes match our previous results, showing that Tc ∼ N in fully pushed expansions, and Tc ∼ ln3N in pulled685

expansions, with semi-pushed expansion having a sublinear power law dependence with a tunable exponent and lying686
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in between [3]. Based on these results, we expect the genealogies in range expansions to be described by a continuum of687

Beta-coalescents as in (S50), spanning the range from the Kingman to the Bolthausen–Sznitman coalescent.688

We also consider the site frequency spectrum (SFS), which corresponds to the set of lengths of branches ξk subtending k689

leaves, for all values of k ∈ [1, n− 1]. As with the total tree length, the exact SFS can be obtained recursively for small n690

[26]. Asymptotic results for large n are also known for (S50), but they converge slowly with sample size [26] and we will691

not use them here. Similar results can be obtained for 2-SFS, which represents the covariances between branch lengths692

[26].693

Two-site frequency spectrum694

While the SFS of the Beta- and Kingman coalescents are quite di�erent as we have shown, relaxing the assumption of con-695

stant population size in the Kingman coalescent can lead to the site frequency spectra becoming more similar. Recently,696

it has been proposed that the two-site frequency spectrum (2-SFS) is a more robust measure to distinguish between King-697

man and non-Kingman coalescents [27]. The 2-SFS, pn(k, l), for a sample size n is the number of pairs of sites which698

have derived allele counts k and l. For constant mutation rates, the 2-SFS can be derived from the genealogical tree—in699

this case pn(k, l) is proportional to the second moment of the length of branchs that subtend k and l leaves. In the case of700

the Kingman coalescent, the long branches near the common ancestor lead to a large number of sites which co-occur or701

split the tree in half. This explains the high values of the 2-SFS seen on the diagonals. In addition, pairwise branching of702

ancestral lineages constrain the topology further down tree, leading to anticorrelations between rare alleles (Fig. S1a). In703

contrast, coalescents with multiple mergers have shorter branches near the common ancestor, decreasing the density along704

the diagonal of the 2-SFS. The tree topology of coalescents with multiple mergers is also less constrained by early mergers,705

resulting in less pronounced negative correlations between rare alleles in the Beta-coalescent, and positive correlations in706

the Bolthausen–Sznitman coalescent (Fig. S1b, c).707

We used the trees generated from simulations of fully pushed, semi-pushed, and pulled expansions to test 2-SFS against the708

theoretical predictions. We found that the patterns in the 2-SFS matched the theoretical predictions for Kingman, Beta-,709

and Bolthausen–Sznitman coalescents quite well (Fig. S1). In particular, fully pushed waves showed negative correlations710

outside of the main diagonals as expected, with correlations below the main diagonal smaller in absolute value than those711

above the main diagonal. Semi-pushed and pulled expansions, on the other hand, showed signatures of multiple mergers712
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in the form of an increase of correlations below the main diagonal, and higher positive correlations on the o�-diagonal,713

especially in the case of pulled expansions.714
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Figure S1: Comparison of two-site frequency spectra reveal signatures of multiple mergers in semi-pushed and
pulled expansions. Matrices show the correlation function between tree branches subtending di�erent number of leaves

for both the expected coalescents (top) and expansion simulations (bottom) for each expansion regime. The averaged 2-

SFS from simulations were generated using the same sampling procedure used for the SFS (SI, Sec. IV).

IV. Simulations715

In this section we explain the details of our expansion simulations and the data collection and processing pipelines.716

Expansion simulations717

We simulated the expansion of a population in a one-dimensional habitat modeled by an array of patches (demes), sep-718

arated by a distance ∆x. Demes contain individuals, which are labeled using integers. We denote by Ii(t, x) the label of719

the ith individual in deme x, with 1 ≤ x ≤ L and 1 ≤ i ≤ N . To allow for demes with less thanN individuals, we use720

vacancies, which are labeled by Iv = 0.721
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Figure S2: Summary statistics of 2-SFS show qualitative agreement with theoretical predictions. (Top) Mean

values and standard deviation of entries in the 2-SFS for the Kingman (blue), Beta- with β = 1.5 (green), and

Bolthausen–Sznitman (red) coalescents. For all three coalescents a sample size of n = 20 was used. The four bins

are de�ned as follows: upper diagonal = {(i, i) : bn/2c + 1 ≤ i ≤ n − 1}, o� diagonal = {(i, n − i) :
1 ≤ i < bn/2c or bn/2c < i < n}, lower triangle = {(i, j) : i + j < n − 1, i 6= j}, upper triangle

= {(i, j) : i + j > n − 1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1, i 6= j}. (Bottom) Same as upper panel, but using

2-SFS from simulations of fully pushed (blue), semi-pushed (green) and pulled (red) expansions. All simulation parame-

ters are identical to those for Fig. S1.

The population is initially localized on L/2 = 100 demes. Each deme is �lled with N individually labeled members of722

the population. Individuals are labeled sequentially, starting with the �rst individual in the leftmost deme and moving723

to the right of the population. Thus,724

Ii(0, x) = (x− 1)N + i+ 1, x ≤ L/2

Ii(0, x) = 0, x > L/2.

(S51)
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Each generation is updated in two steps. First, a migration step, in which demes are updated sequentially, starting725

from x = 1. For each deme, the number of migrants exchanged with the next deme is drawn from a binomial distri-726

bution:727

nmigrants
x = Binomial(nx,m/2), (S52)

wherem is the migration probability. To choose the migrants, the order of individuals in demesx andx+1 is randomized,728

and the �rst nmigrants
x from the demes are exchanged.729

Second, we perform a growth step. Following Ref. [2], the growth of the population was modeled by introducing a �tness730

di�erence between the vacancies and the actual species. Speci�cally, the �tness of the species was set to ws
x = 1 and the731

�tness of the vacancies was set towv
x = 1− r(nx)/(1− nx/N), where732

r(n) = r0(1− n/N)(1 +Bn/N), (S53)

nx(t) =
N∑
j=1

(1− δ0,Ii(t,x)), (S54)

and δlm is the Kronecker delta. The next generation is constructed by sampling, with replacement, a new set of la-733

bels Ii(t + 1, x) from the set of previous labels {I1(t, x), I2(t, x), ..., IN(t, x)} for each i ≤ N . The probability to734

sample the ancestor Ii(t, x) is proportional to the ratio of wix to the mean �tness of the population in the deme: w̄x =735

nx/N + wv(N − nx)/N = 1− r(nx).736

Recording genealogies737

The genealogy of the population is recorded in a custom tree class, in which all individuals in the simulation box are stored738

as nodes. Each node is assigned a unique parent node, and a set of child nodes, except for the most recent generation,739
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which have no children—we will refer to these nodes as the leaves of the tree. The tree is initialized with one node, which740

is designated as the root of the tree, and is continuously updated as follows. At the start of the simulation, all individuals741

at the front are assigned as leaves with the root as their parent. As the population expands, many labels become extinct742

and the average clone size of the surviving labels grows. After a �xed number of generations ∆t, we relabel all individuals743

and add them as new nodes on the tree. Each individual is assigned as a child node to one of the leaves of the tree, which is744

designated as its parent according to the previous label of the child node. After every individual is assigned to the tree, the745

newly added nodes are designated as the new leaves of the tree. At the end of this process, we prune the tree by removing746

all nodes which have no leaves among their descendants. The process is repeated until either the whole population has747

one common ancestor or a maximum number of generations Tmax for the simulation is reached.748

V. Data analysis749

In this section we explain how we analyze the data from simulations to obtain the �gures in the main text and the SI.750

Estimating τm751

We used the following procedure to determine the spatial distribution of ancestors in Fig. 2 in the main text. We ran 1000752

simulations of a fully pushed expansion, for which we estimated the coalescence time Tc ≈ 103
, using the following753

parameters: N = 350, B = 10, r0 = 0.01, m = 0.4, ∆t = 20. For each simulation we recorded the ancestry as754

described in Sec. IV. In order to determine the location of each ancestor from the population, we modi�ed the label755

assignment algorithm by using the following equation:756

Ii(t, x) = NL(t− 1) +Nx+ i+ 1, (S55)

where Ii(t, x) is the label of individual i from deme x in generation t. Using this equation, each label uniquely speci�es757

the position of the individual.758

Because fronts are stochastic it is di�cult to compare ancestral distributions across simulations. To minimize the variance759
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in the ancestral distribution due to variations in the �nal sampling location, we used the following procedure. We �rst760

determined the midpoint of the front, given by the deme closest to the mean position x along the front, weighted by the761

population size at x. Next, we determined the bulk and leading edge of the front, which we de�ned as least advanced762

location with population size below the carrying capacity and the most advanced location with a non-zero population763

size, respectively. Finally, the sampling location from the bulk and the front were chosen as the closest demes to the764

halfway distance between midpoint of the front, and the bulk edge and the front edge, respectively.765

We then collect the labels of all individuals from the two sampling locations. Using the ancestral trees, we traced back the766

labels of the ancestors of all the sampled individuals. Finally, we recorded the locations of these ancestors by solving for x767

in Eq. (S55) and plotted the distribution of these locations across all simulations.768

Sampling and analysis of SFS and 2-SFS769

We used the following procedure to sample and analyze the SFS and 2-SFS from the ancestral trees in our simulations.770

We �rst subsampled a number of individuals n from close to the edge of the front in the �nal population. As discussed771

in the main text, far from the front the e�ects of spatial structure become important and our well-mixed approximation772

breaks down. Empirically, we observed that sampling individuals from the farthest advanced 20 demes minimized the773

e�ects of spatial structure on both the SFS and the clone size distributions shown in Fig. S4. The value of n was chosen774

small enough to allow for comparison with the exact predictions for the di�erent colescent classes described below. Each775

ancestral tree was sampled independently 10 times in order to obtain better estimates for the averaged quantities we776

calculated.777

The simulations used to generate the ancestral trees were performed choosing three values ofB (10, 3.33, and 0, respec-778

tively) in Eq. (1) for each class of waves. Using Eq. (4) from the main text corresponding, the values of α for each of779

these expansions are approximately 1, 0.5, and 0, respectively. The coalescents for well-mixed populations with these780

descendant distributions are described by the Beta-coalescent from Eq.(S50) with the paramter β equal to 2, 1.5, and 1,781

respectively. To calculate the theoretical predictions for the SFS and 2-SFS we adapted a numerical implementation of782

the exact recurrence relations for the SFS and 2-SFS from Ref. [27], which was originally developed in Ref. [26].783
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VI. Supplemental figures784
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Figure S3: Allele frequency distributions quantitatively agree with theoretical predictions in both stochastic
and deterministic regimes. Shows the same data as Fig. 5 in the main text as a cumulative distribution for better quan-

titative comparison between theoretical prediction and simulations. Simulations were carried out using the following

parameters: N = 106
, r0 = 0.01, m = 0.4, B = 10 (fully pushed), B = 3.33 (semi-pushed), and B = 0 (pulled).

All simulations were started with equal frequency of the two alleles across the front. Distributions here and in Fig. 5 are

shown after 3, 980, 000 (fully pushed), 1, 527, 315 (semi-pushed), and 98, 827 (pulled) generations from the start for

stochastic waves and after 4, 980, 000 (fully pushed), 1, 507, 719 (semi-pushed), and 531, 529 (pulled) generations for

deterministic waves.
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Figure S4: Pulled expansions have broader clone size distribution compared to fully pushed expansions. Left

panel shows complementary cumulative distribution function of the normalized clone size s (where the normalization is

with respect to the mean clone size) for fully pushed and pulled expansions. A total of 100 simulations were run without

relabeling individuals and the sizes of distinct clones at the edge of the front were recorded every 500 generations. The

front was de�ned as the �rst 25 demes starting from the most advanced occupied deme. The right panel shows the same

data as cumulative distribution to emphasize the di�erences for small clone sizes. The growth function used is given by

Eq. (1) with B = 10 (fully pushed) andB = 0 (pulled) and all other parameters kept constant. The values of the other

simulation parameters wereN = 9600, r0 = 0.01,m = 0.4.
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