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ABSTRACT

The SARS-CoV-2 variant B.1.1.7 lineage, also known as clade GR from Global Initiative on Sharing All Influenza Data (GISAID),
Nextstrain clade 20B, or Variant Under Investigation in December 2020 (VUI — 202012/01), appears to have an increased
transmissability in comparison to other variants. Thus, to contain and study this variant of the SARS-CoV-2 virus, it is necessary
to develop a specific molecular test to uniquely identify it. Using a completely automated pipeline involving deep learning
techniques, we designed a primer set which is specific to SARS-CoV-2 variant B.1.1.7 with >99% accuracy, starting from
8,923 sequences from GISAID. The resulting primer set is in the region of the synonymous mutation C16176T in the ORF1ab
gene, using the canonical sequence of the variant B.1.1.7 as a reference. Further in-silico testing shows that the primer
set’s sequences do not appear in different viruses, using 20,571 virus samples from the National Center for Biotechnology
Information (NCBI), nor in other coronaviruses, using 487 samples from National Genomics Data Center (NGDC). In conclusion,
the presented primer set can be exploited as part of a multiplexed approach in the initial diagnosis of Covid-19 patients, or
used as a second step of diagnosis in cases already positive to Covid-19, to identify individuals carrying the B.1.1.7 variant.

Introduction

As the pandemic of SARS-CoV-2 continues to affects the planet, researchers and public health teams around the world
continue to monitor the virus for acquired mutations that may lead to higher threat for developing COVID-19. Although
SARS-CoV-2 mutates with an average evolutionary rate of 10-4 nucleotide substitutions per site each year!, a new variant has
been recently reported in the UK as a Variant Under Investigation (VUI - 202012/01)>3, which belongs to the B.1.1.7 lineage®*,
Nextstrain clade 20B>, or clade GR from GISAID (Global Initiative on Sharing All Influenza Data)®. This variant presents
14 non-synonymous mutations, 6 synonymous mutations and 3 deletions. The multiple mutations present in the viral RNA
encoding for the spike protein (S) are of most concern, such as the deletion A69-70, deletion A144, N501Y, A570D, D614G,
P681H, T7161, S982A, D1118H>*. The SARS-CoV-2 S protein mutation N501Y alters the protein interactions involved in
receptor binding domain. The N501Y mutation has been shown to enhance affinity with the host cells ACE2 receptor*” and to
be more infectious in mice®).

Even if the clinical outcomes and additive effects of the mutations present on the B.1.1.7 SARS-CoV-2 variant are still
unknown, its rate of transmission has been estimated to be 56%-70% higher, and its reproductive number (Rt) seems to
be up to 0.4 higher>°. The presence of the B.1.1.7 variant has been rapidly increasing in the UK*. This and other N501Y
carrying SARS-CoV-2 variants have also been identified in other parts of Europe, Australia, USA, Brazil, South Africa, and
Egypt>6: 1011,

Several diagnostic kits have been proposed and developed to diagnose SARS-CoV?2 infections. Most kits rely on the
amplification of one or several genes of SARS-Cov-2 by real-time reverse transcriptase-polymerase chain reaction (RT-
PCR)'% 13, Recently, Public Health England was able to identify the increase of the B.1.1.7 SARS-CoV-2 variant through the
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increase in S-gene target failure (negative results) from the otherwise positive target genes (N, ORF1ab) in their three target
gene assay. However, to the best of our knowledge, currently no specific test exists or has been developed to identify the
B.1.1.7 SARS-CoV-2 variant.

In a previous work'#, we developed a methodology based on deep learning, able to generate a primer set specific to
SARS-CoV-2 in an almost fully automated way. When compared to other primers sets suggested by GISAID, our approach
proved to deliver competitive accuracy and specificity. Our results, both in-silico and with patients, yielded 100% specificity,
and sensitivity similar to widely-used diagnostic gPCR methods. One of the main advantages of the proposed methodology was
its ease of adaptation to different viruses, given a sufficiently large number of sequences. In this work we improved the existing
semi-automated methodology, making the pipeline completely automated, and created a primer set for the SARS-CoV-2 variant
B.1.1.7 in an extremely reduced amount of time (16 hours). The developed primer set, tested in-silico, proves to be extremely
effective. With this new result, we believe that our method represents a rapid and effective diagnostic tool, able to support
medical experts both during the current pandemic, as new variants of SARS-CoV-2 may emerge, and possibly during future
ones, as still unknown virus strains might surface.

Results

As explained in the Methods section, the first step is to run a Convolution Neural Network (CNN) classifier on the data. This
yields an average classification accuracy of 99.66% on the testing subset. Secondly, from an analysis of the features constructed
by the CNN, we extract 7,127 features, corresponding to RNA subsequences. Next, we ran a state-of-the-art stochastic feature
selection algorithm 10 times, to uncover the most meaningful subsequences for the identification of variant B.1.1.7: as shown
in Fig. 1, while the best result corresponds to a set of 16 features, using only one is enough to obtain over 99% accuracy, a
satisfying outcome for our objective.
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Figure 1. 10 runs of the recursive ensemble feature selection algorithm in 803 sequences of training set.

These features are good candidates for forward primers. From the 10 runs, we get 9 different 21-bps features (1 was
repeated, found in two different runs): 5 out of the 10 point to mutation Q27stop (C27972T), 3 point to mutation 12230T
(T6954C) and 2 to a synonymous mutation (C16176T). Using Primer3Plus we calculate a primer set for each of the 10 features,
using sequence EPI_ISL,_601443 (see Table 1). From these, only the two features that include mutation C16176T are suitable
for a forward primer. The two features are ACC TCA AGG TAT TGG GAA CCT and CAC CTC AAG GTA TTG GGA
ACC: it is easy to notice that the two features are actually part of the same sequence, just displaced by a bps, and therefore
generate the same reverse primer CAT CAC AAC CTG GAG CAT TG with Tm 58.8°C and 60.6°C respectively for the
forward primer, and 60.1°C for the reverse primer.

Using just the feature ACC TCA AGG TAT TGG GAA CCT, it is possible to build a simple rule-based classifier that
assigns a sample to variant B.1.1.7 if the feature is present. For further validation, we test the rule-based classifier on the 893
sequences of the test set, yielding an area under the curve (AUC) of 0.98, a result considered as an excellent diagnostic accuracy
(AUC 0.9-1.0)'>16, see Fig. 2.
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Table 1. Results from Primer3Plus in sequence EPI_ISL_601443, attempting to use the ten features identified by the feature
selection process as primers. Only two features are acceptable primers, and both point to the same sequence.

21-bps Feature

Primer3Plus Result

TTCTAAACTGATAAATATTAC

Left primer is unacceptable:

Unacceptable GC content/Tm too low

TTAACATCAACCATATGTAGT

Left primer is unacceptable:

Tm too low/High end self complementarity

GATAAATATTACAATTTGGTT

Left primer is unacceptable:

Unacceptable GC content/Tm too low

ATATTACAATTTGGTTTTTAC

Left primer is unacceptable:

Unacceptable GC content/Tm too low

CTGATAAATATTACAATTTGG

Left primer is unacceptable:

Tm too low

CTGATAAATATTACAATTTGG Left primer is unacceptable: Tm too low
ACCTCAAGGTATTGGGAACCT CATCACAACCTGGAGCATTG
CACCTCAAGGTATTGGGAACC CATCACAACCTGGAGCATTG

TAACATCAACCATATGTAGTT

Left primer is unacceptable:

Tm too low/High end self complementarity

AATATTACAATTTGGTTTTTA

Left primer is unacceptable:

Unacceptable GC content/Tm too low
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Figure 2. ROC curve of a simple rule-based classifier checking the presence of feature ACC TCA AGG TAT TGG GAA

CCT, in a 10-fold cross-validation.
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We then validate our results on 487 samples of other coronaviruses from the National Genomics Data Center (NGDOC)'7.
Checking for the presence of feature ACC TCA AGG TAT TGG GAA CCT finds that it is exclusive to B.1.1.7 SARS-CoV-2,
with no appearance in any other coronavirus sample. Further validation on 20,571 samples belonging to other viruses from the
National Center for Biotechnology Information (NCBI)'®, shows no appearance of the sequence in any other virus.

Discussion

The 8,923 SARS-CoV-2 samples downloaded from the GISAID repository show 278 variants besides B.1.1.7. We check the
presence of mutations N501Y, AS70D, D614G, P681H, T716I, S982A, D1118H, and the forward primer ACC TCA AGG
TAT TGG GAA CCT among all samples. To verify the presence of mutations, we generated 21-bps sequences, with 10 bps
before and after the mutation: for example, mutation N501Y (A23063T) will be CCAACCCACT T ATGGTGTTGG. The
frequency of appearance of each mutation and the forward primer is reported in Table 2.

Table 2. Frequency of appearance of the most significant mutations and the forward primer in the 8,293 sequences from the
GISAID dataset.

B.1.1.7 Other Variants

# samples (%) # samples (%)
N501Y 1,985 (94.34%) 14 (0.02%)
A570D 2,013 (95.67%) 1(<0.01%)
D614G 2,096 (99.62%) 5,384 (78.96%)
P681H 2,014 (95.72%) 1 (<0.01%)
T7161 2,005 (95.29%) 1 (<0.01%)
S982A 2,008 (95.43%) 0 (0%)
D1118H 2,011 (95.57%) 0 (0%)

Forward Primer 2,007 (95.39%) 0 (0%)
Total Samples 2,104 (100%) 6,819 (100%)

The generated forward primer appears in 2,007 of 2,104 B.1.1.7 sequences, with a frequency of 95.4%. Nevertheless,
a further analysis shows that only 2,014 of the sequences labeled as B.1.1.7 present 5 or more of the 7 studied mutations,
which can point to an error in annotating the variant in the GISAID dataset, or several extra mutations in the generated 21-bps
sequences. If we consider as proper B.1.1.7 variants only sequences that show 5 or more of the mutations, then our primer
correctly identifies 2,095 out of 2,104 samples, for a 99.6% accuracy.

Considering we generated 21-bps sequences for the mutations, we can also test them as forward primers using Primer3Plus,
which yields TGA TAT CCT TGC ACG TCT TGA in spike gene (S982A) as a possible forward primer (see Table 3). The
Tm of the forward primer is 59.3°C and the reverse primer sequence will be GAG GTG CTG ACT GAG GGA AG.

Table 3. Result of the test of the sequences used to verify the presence of mutations when used as forward primers in sequence
EPI_ISL_601443.

21-bps Feature Primer3Plus Result

CCAACCCACTTATGGTGTTGG  Left primer is unacceptable: High self complementarity/High end self complementarity
AGAGACATTGATGACACTACT  Left primer is unacceptable: Tm too low

CTTTATCAGGGTGTTAACTGC  Left primer is unacceptable: Tm too low/High end self complementarity
ACTAATTCTCATCGGCGGGCA  Left primer is unacceptable: Tm too high/High 3’ stability
GCCATACCCATAAATTTTACT  Left primer is unacceptable: Tm too low/High end self complementarity
TGATATCCTTGCACGTCTTGA  GAGGTGCTGACTGAGGGAAG

CATTACTACACACAACACATT  Left primer is unacceptable: Tm too low

A wide variety of diagnostic tests have been used by high-throughput national testing systems around the world, to monitor
the SARS-CoV-2 infection!?. The arising prevalence of new SARS-CoV-2 variants such as B.1.1.7 has become of great concern,
as most RT-PCR test to date will not be able to distinguish these new variants because they where not designed for such a
purpose. Therefore, public health officials most rely on their current testing systems and their sequencing results to draw
conclusions on the prevalence of new variants in their territories. An example of such case has been seen in UK, where they
were able to identify the increase of the B.1.1.7 SARS-CoV-2 variant infection in their population only through an increase in
the S-gene target failure in their three target gene assay (N+, ORFlab+, S-) coupled with sequencing of the virus and RT-PCR
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amplicons products 2. Researchers believe that the S-gene target failure occurs due to the failure of one of the RT-PCR probes
to bind as a result of the /A69-70 deletion in the SARS-CoV-2 spike protein, present on B.1.1.72. This /A69-70 deletion, which
affects its N-terminal domain, has been recurrently occurring in different SARS-CoV-2 variants around the world®>:¢ and has
been associated with other spike protein receptor binding domain changes*. Due to the likeliness of mutation in the S-gene,
assays relying solely on its detection are not recommended, and a multiplex approach is required'>'>!°. This is consistent with
other existing designs like CoV2R-3 in the S-gene?, that will also yield negative results for the B.1.1.7 variant, as the reverse
primer sequence is in the region of mutation P681H. A more in-depth analyisis of S-dropout positive results can be found in
Kidd et al. 2!,

Given the concern of the increase in prevalence of the new variant SARS-CoV2 B.1.1.7 and its possible clinical implication
in the ongoing pandemic, diagnosing and monitoring the prevalence of such variant in the general population will be of critical
importance to help fight the pandemic and develop new policies. In this work, we propose 2 possible primer sets that can be used
to specifically identify B.1.1.7 SARS-CoV2 variant. We believe that our primers can be used in a multiplexed approach in the
initial diagnosis of Covid-19 patients, or used as a second step of diagnosis in cases already verified positive to SARS-CoV-2 to
identify individuals carrying the B.1.1.7 variant. In this way, health authorities could then better evaluate the medical outcome
of this patients, and adapt or inform new policies that can help curve the rise of variants of interest. Although the proposed
primer sets delivered by our automated methodology will still require laboratory testing to be validated, our deep learning
design can enable the timely, rapid, and low-cost operations needed for the design of new primer sets to accurately diagnose
new emerging SARS-CoV-2 variants and other infectious diseases.

Methods

From the GISAID repository we downloaded 10,712 SARS-CoV-2 sequences on December 23rd, 2020. After removing
repeated sequences, we obtain a total of 2,104 sequences labeled as B.1.1.7, and 6,819 sequences from other variants, for a total
of 8,923 samples. B.1.1.7 variants are assigned class label 0, while all the remaining samples are labeled as class 1.

Following the procedure described in Lopez et al.'4, there are 4 steps for the automated design of a specific primer for a
virus: (i) run a CNN for the classification of the target virus against other strains, (ii) translate the CNN weights into 21-bps
features, (iii) perform feature selection to identify the most promising features, and (iv) carry out a primer simulation with
Primer3Plus®? for the features uncovered in the previous step. While in'# the proposed pipeline was only partially automatic,
and still required human interventions between steps, in this work all steps have been automatized, and the whole pipeline has
been run with no human interaction. The experiments, from downloading the sequences to the final in-silico testing of the
primers, took around 16 hours of computational time on a standard end-user laptop.

In a first step, we train a convolution neural network (CNN) using 8,030 sequences for training and 893 for testing. The
architecture of the network is shown in Fig 3, and is the same as the one previously reported in'*. Next, as the classification
accuracy of the CNN is satisfying (>99%), using a subset of 803 training sequences we translate the CNN weights into 21-bps
features, necessary to differentiate between B.1.1.7 variant samples and the others. The length of the features is set as 21 bps,
as a normal length for primers to be used in RT-PCR tests is usually 18-22 bps. Then, we apply recursive ensemble feature
selection>2* to obtain the most meaningful features that separate the two classes. Finally, we simulate the results of using the
most promising features obtained in the previous step as primers, using Primer3Plus?? in the sequence EPI_ISL_601443, that is
the canonical variant of concern.

For further in-silico analysis, the resulting features will be compared against 487 sequences of other coronaviruses from the
NGDC repository, to check if our generated primers are specific enough to SARS-CoV-2 (Table 4). In addition, we used data
from NCBI with 20,571 viral samples from other taxa, for a total of more than 584 other viruses (not considering strains and
isolates). The whole procedure is summarized in Fig. 4.

Table 4. Organism and number of samples of other coronaviruses to compare specificity in the sequences.

Organism Number of Samples
MERS-CoV 240

HCoV-0C43 138

HCoV-229E 22

HCoV-4408 2

HCoV-NL63 58

HCoV-HKU1 17

SARS-CoV 10

Total Samples 487
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Figure 3. CNN Architecture to identify Variant B.1.1.7.
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Figure 4. Summary of construction of the primers and validation.
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