

1 **Hsp70 chaperons TDP-43 in dynamic, liquid-like phase and prevents it**
2 **from amyloid aggregation**

3

4 Jinge Gu^{1,2,4}, Chen Wang^{1,2,4}, Rirong Hu^{1,2,4}, Yichen Li³, Shengnan Zhang^{1,2}, Yunpeng Sun^{1,2},
5 Qiangqiang Wang¹, Dan Li³, Yanshan Fang^{1,2,*}, and Cong Liu^{1,2,*}

6 ¹Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic
7 Chemistry, Chinese Academy of Sciences, Shanghai 201203, China

8 ²University of Chinese Academy of Sciences, Beijing, 100049, China

9 ³Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric
10 Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.

11 ⁴These authors contributed equally

12

13 ***Correspondence to:**

14 Yanshan Fang: fangys@sioc.ac.cn

15 Cong Liu: liulab@sioc.ac.cn

16 **Tel:** +86-21-6858.2528

17

18 **Running title:** Hsp70 maintains liquid-like dynamics of TDP-43 NBs

19 **Keywords:** Heat shock protein, chaperon, TDP-43, nuclear body, phase separation, ALS,

20 FTD

21

22 **ABSTRACT** (< 250 words)

23 TAR DNA binding protein 43 kDa (TDP-43) undergoes liquid-liquid phase separation (LLPS)
24 and forms reversible, cytoprotective nuclear bodies (NBs) in response to stress in cells.
25 Abnormal liquid-to-solid phase transition condenses TDP-43 into irreversible pathological
26 fibrils, which is associated with neurodegenerative disorders including amyotrophic lateral
27 sclerosis (ALS) and frontotemporal degeneration (FTD). However, the mechanisms how cells
28 maintain the dynamics of TDP-43 NBs in stressed conditions are not well understood. Here,
29 we show that the molecular chaperon heat shock protein 70 (Hsp70) is recruited into TDP-43
30 NBs in stressed cells. It co-phase separates with TDP-43 and delays the maturation of
31 TDP-43 droplets *in vitro*. In cells, downregulation of Hsp70 not only diminishes the
32 formation but also reduces the dynamics of TDP-43 NBs especially during prolonged stress,
33 which potentiates the cytotoxicity of TDP-43. Using NMR, we reveal that Hsp70 binds to the
34 highly aggregation-prone, transient α -helix of TDP-43 via its nucleotide-binding domain,
35 which keeps TDP-43 in the highly dynamic, liquid-like phase and prevents pathological
36 aggregation of TDP-43 both *in vitro* and in cells. Collectively, our findings demonstrate a
37 crucial role of Hsp70 in chaperoning TDP-43 in the liquid-like phase, which provides a novel
38 layer of the molecular mechanism how chaperons help proteins to remain functional and
39 protect cells from stressed and/or diseased conditions.

40 INTRODUCTION

41 TDP-43 is a nuclear RNA-binding protein (RBP) that plays a pivotal role in RNA processing
42 and homeostasis (Birsa et al., 2020; Lee et al., 2011; Zhao et al., 2018). In response to stress,
43 TDP-43 undergoes dynamic and reversible LLPS, which is involved in the formation of
44 different membraneless organelles in the cell such as stress granules (SGs) and NBs (Li et al.,
45 2013; McGurk et al., 2018; Wang et al., 2020). Chronic stress and aging may cause aberrant
46 phase transition and the formation of irreversible amyloid aggregates of TDP-43 in the
47 nucleus and cytoplasm, which is associated with a variety of neurodegenerative diseases
48 including ALS, FTD and Alzheimer's disease (AD) (Chen-Plotkin et al., 2010; Ramaswami
49 et al., 2013; Shukla and Parker, 2016; Fahrenkrog and Harel, 2018; Gasset-Rosa et al., 2019).

50 In a recent study, we revealed that TDP-43 forms dynamic, liquid-like NBs that
51 mitigate the cytotoxicity in response to various conditions of cellular stresses. This process is
52 mediated by the long non-coding RNA (lncRNA) *Nuclear Enriched Abundant Transcript 1*
53 (*NEAT1*), which promotes TDP-43 phase separation and is required for the assembly of
54 TDP-43 NBs in stressed cells (Wang et al., 2020). Other types of RNAs such as tRNA
55 suppress the LLPS of TDP-43 and other disease-related RBPs (Maharana et al., 2018; Mann
56 et al., 2019). Stress upregulates *NEAT1* to trigger the LLPs of TDP-43 NBs in the general
57 suppressive environment of the nucleoplasm. In the meanwhile, TDP-43 is highly
58 aggregation-prone protein. Thus, it is important and challenging for cells not to
59 over-condense TDP-43 NBs and to keep them dynamic and reversible in order to survive
60 stress and regain function once stress is released. Nevertheless, the mechanism by which cells
61 maintain the highly aggregation-prone TDP-43 in the liquid-like phase and prevent TDP-43
62 NBs from aggregation under stressed conditions remains elusive.

63 Molecular chaperones play a crucial role in maintaining protein homeostasis in cells
64 (Hartl et al., 2011). For example, heat shock proteins (Hsp) such as Hsp70, Hsp40 and Hsp60

65 safeguard proteins against stress-induced misfolding and aggregation (Hartl, 1996). In
66 particular, Hsp70 is closely associated with the regulation of TDP-43 proteostasis – (1)
67 Hsp70 was found to co-exist with TDP-43 in SGs (Jain et al., 2016); (2) Hsp70 can interact
68 with TDP-43 in mammalian cell cultures (Freibaum et al., 2010; Udan-Johns et al., 2014;
69 Kitamura et al., 2018); (3) increase of Hsp70 can suppress TDP-43-mediated toxicity in fly
70 models (Estes et al., 2011; Coyne et al., 2017); and more importantly (4) Hsp70 expression in
71 the spinal cord of sporadic ALS patients with TDP-43 aggregates is significantly decreased
72 (Chen et al., 2016), suggesting that dysregulation of Hsp70 may be involved in pathological
73 aggregation of TDP-43 in ALS and related diseases.

74 In this study, we show that Hsp70 protein translocates to the nucleus and is co-localized
75 with TDP-43 NBs in response to stress. Further investigation reveals that Hsp70 co-phase
76 separates with TDP-43 *in vitro* and it promotes the assembly of TDP-43 NBs in cells. The
77 presence of Hsp70 in TDP-43 NBs helps to maintain them in the dynamic, liquid-like phase,
78 which increase the cell viability in stressed conditions. Hsp70 executes this function mainly
79 via its N-terminal domain (NTD) that binds to the hydrophobic and aggregation-prone region
80 of TDP-43, which stabilizes TDP-43 in the highly dynamic, liquid-like phase and prevents it
81 from abnormal liquid-to-solid transition and pathological aggregation. Together, the finding
82 of the participation and function of Hsp70 in TDP-43 NBs provides a new paradigm how
83 cells maintain the aggregation-prone RBPs such as TDP-43 in condensed but highly dynamic
84 NBs in response to stress.

85 **RESULTS**

86 **Hsp70 co-localizes with stress-induced TDP-43 NBs in cells and can co-phase separate**
87 **with TDP-43 *in vitro*.**

88 In a recent study, we reported that TDP-43 formed cytoprotective NBs in various conditions of
89 cellular stress (Wang et al., 2020). In this work, we set out to examine whether molecular
90 chaperons play a role in the regulation of TDP-43 NBs. Since Hsp70 was previously shown to
91 co-localize with TDP-43 in SGs (Jain et al., 2016), we asked whether Hsp70 was also
92 associated with TDP-43 in NBs. As shown in Fig. 1a-b, red fluorescent protein (RFP)-Hsp70
93 expressed in HeLa cells was mostly diffused and predominantly localized in the cytoplasm,
94 which was consistent with the expression pattern of endogenous Hsp70 protein as examined by
95 immunocytochemistry (Fig. S1a). Upon arsenic stress, Hsp70 displayed increased fluorescent
96 signal in nucleus and was co-localized with TDP-43 NBs (Fig. 1c-d). Of note, the recruitment
97 of Hsp70 into the TDP-43 NBs could be visualized by monitoring the fluorescence of the RFP
98 tag but not by immunostaining with the anti-Hsp70 antibody (Fig. S1b), likely because the
99 antibody could not penetrate into NBs as also reported by Yu, H., et al. (2020). This
100 unfortunately excluded the possibility to unambiguously demonstrate the co-localization of
101 endogenous Hsp70 with TDP-43 NBs. Nevertheless, as an additional layer of control, we
102 expressed RFP in HeLa cells, which was diffused and located in both the nucleus and the
103 cytoplasm (Fig. 1e-f), but it did not co-localize with TDP-43 NBs upon the arsenite treatment
104 (Fig. 1g-h). This result confirmed that the recruitment of RFP-Hsp70 into TDP-43 NBs in
105 response to stress was specific and not merely because Hsp70 was overexpressed.

106 As Hsp70 was co-localized with TDP-43 in stress-induced NBs in cells, we then examined
107 whether Hsp70 could co-phase separate with TDP-43 in the *in vitro* LLPS assay. Full-length
108 (FL) TDP-43 and Hsp70 proteins were purified and fluorescently labeled with Alexa 488 and
109 Alexa 647, respectively. As previous reported (McGurk et al., 2018; Wang et al., 2018; Wang

110 et al., 2020), TDP-43 underwent LLPS and formed liquid droplets in the *in vitro* de-mixing
111 system (Fig. 1i). Hsp70 did not phase separate on its own at this condition (Fig. 1j). However,
112 Hsp70 co-phase separated with TDP-43 in the droplets when mixed together with TDP-43 (Fig.
113 1k). Further, the fluorescence recovery after photobleaching (FRAP) assay showed that the
114 intensity of the TDP-43 fluorescence signal rapidly recovered to over 60% within 130 s after
115 photobleaching, and the FRAP of Hsp70 also exhibited similar recovery curve (Fig. 1l-o). This
116 indicated that the co-phase separated droplets of TDP-43 and Hsp70 were highly dynamic and
117 liquid-like. Together, these data indicated that Hsp70 could co-phase separate with TDP-43 *in*
118 *vitro* and was recruited into TDP-43 NBs in stressed cells.

119

120 **Knockdown (KD) of Hsp70 dysregulates TDP-43 NBs and potentiates the cytotoxicity in**
121 **prolonged stress.**

122 To understand the physiological significance of co-localization and co-phase separation of
123 Hsp70 with TDP-43 NBs, we sought to examine the impact of downregulation of Hsp70 on
124 TDP-43 NBs. Hsp70 protein is abundant in cells and the mammalian Hsp70 family has
125 multiple members (Tavaria et al., 1996; Bettencourt and Feder, 2002; Nikolaidis and Nei, 2004;
126 Brocchieri et al., 2008). We thus examined the basal mRNA expression levels of the main
127 Hsp70 genes in HeLa cells (Fig. S2a) and their changes in response to arsenic stress (Fig. S2b).
128 Among them, *HSPA8* (which encodes Hsc70) appeared to the most abundantly expressed,
129 accounting for ~62% of total Hsp70 mRNAs in normal conditions (Fig. S2a); whereas in
130 response to stress, *HSPA1A* (which encodes Hsp70) increased the most dramatically,
131 displaying an upregulation of over 18 folds (Fig. S2b). Of note, we confirmed that the most
132 abundant Hsp70 member, Hsc70, could also co-phase separate with TDP-43 *in vitro* and was
133 co-localized with stress-induced TDP-43 NBs in cells (Fig. S3).

134 Next, we knocked down Hsp70 and Hsc70 using small interference RNA (siRNA) of
135 *HSPA1A* and *HSPA8* (Fig. 2a-d; for simplicity, shown as si-Hsp70s). Strikingly, both the
136 percentage of cells forming TDP-43 NBs (Fig. 2e) and the average counts of TDP-43 NBs per
137 cell (Fig. 2f) in response to stress were significantly reduced in cells treated with si-Hsp70s
138 compared to the control cells treated with scrambled siRNA (si-Ctrl). In contrast, si-Hsp70s did
139 not significantly affect the formation of SGs as shown by the SG marker G3BP (Fig. 2g). And,
140 the western blotting assay confirmed that KD of *HSPA1A* and *HSPA8* by siRNAs could reduce
141 the total Hsp70 protein levels by about half (Fig. 2h-i).

142 We then examined how si-Hsp70s affected the dynamics of TDP-43 NBs by the FRAP
143 assay (Fig. 3a-j). Interestingly, KD of Hsp70 did not alter the liquid-like, dynamic feature of
144 TDP-43 NBs with a transient stress of 30-min arsenite treatment (Fig. 3b-d). However, when
145 the arsenic stress persisted to 60 min, TDP-43 NBs in the cells with si-Hsp70s showed marked
146 reduction of dynamics (Fig. 3e-g). And this was further worsened with prolonged stress of
147 120-min arsenite treatment, as the enhanced green fluorescence protein (EGFP) signal of
148 EGFP-TDP-43 in the NBs recovered to ~50% within 250 s after photobleaching in the control
149 cells while that of EGFP-TDP-43 NBs in the si-Hsp70s cells hardly recovered (Fig. 3h-j). As a
150 result, we found that KD of Hsp70 made the cells more vulnerable to TDP-43-induced
151 cytotoxicity and showed significantly decreased cell viability under prolonged cellular stress
152 (Fig. 3k). Overexpression (OE) of Hsp70 did not show a remarkable effect on TDP-43 NBs or
153 cell viability under stress (Fig. S4). Thus, although not sufficient, the recruitment of Hsp70 to
154 TDP-43 NBs was required for the assembly and sustaining of the highly dynamic, liquid-like
155 property of TDP-43 NBs during cellular stress.

156

157 **Hsp70 chaperones TDP-43 in the dynamic, liquid-like phase**

158 We went further to investigate the role of the co-LLPS of Hsp70 with TDP-43 and the
159 underlying mechanism by which the recruitment of Hsp70 helped TDP-43 NBs to maintain in
160 the liquid-like phase. Purified TDP-43 protein formed liquid-like droplets *in vitro*, which
161 matured along the time as the FRAP assays indicated that the dynamics of the TDP-43 droplets
162 dropped dramatically after 40 min of *in vitro* incubation (Fig. 4a). Strikingly, addition of
163 purified Hsp70 protein in the *in vitro* LLPS system significantly delayed the maturation
164 process, as the TDP-43 droplets with the presence of Hsp70 showed much faster and higher
165 fluorescence recovery after photobleaching (Fig. 4a).

166 TDP-43 consists of an NTD, two RNA recognized motif (RRM), and a prion-like, low
167 complexity domain (LCD) (Fig. 4b). To determine which region in the TDP-43 protein
168 mediated the regulatory effect of Hsp70, we purified the truncated TDP-43 LCD and TDP-43
169 Δ LCD proteins. We found that Hsp70 could co-phase separate with both the LCD and Δ LCD
170 of TDP-43 (Fig. 4c-g). However, Hsp70 significantly promoted the LLPS of TDP-43 LCD but
171 only showed minimal effect on that of TDP-43 Δ LCD (Fig. 4h-j), suggesting that the LCD of
172 TDP-43 played a significant role in mediating the interaction and co-LLPS of TDP-43 with
173 Hsp70.

174 TDP-43 LCD was previously identified as the key region in mediating liquid to solid phase
175 transition and pathological fibril formation of TDP-43 (Johnson et al., 2009; Babinchak et al.,
176 2019; Zhuo et al., 2020). Indeed, TDP-43 LCD formed liquid-like droplets on its own, which
177 underwent rapid maturation with dramatically decreased dynamics, recapitulating the
178 maturation process of the droplets formed by FL TDP-43 (Fig. 4k). Strikingly, the FRAP assay
179 showed that with Hsp70, the dynamics of the droplets of TDP-43 LCD were well maintained
180 even after an hour of incubation (Fig. 4k). Thus, Hsp70 was a potent “dynamics keeper”, whose
181 presence in the droplets of TDP-43 LCD effectively prevented them from maturation. To
182 further examine whether Hsp70 could prevent pathological amyloid fibrillation of TDP-43

183 LCD, we conducted Thioflavin T (ThT) fluorescence kinetic assay combined with
184 negative-staining transmission electron microscopy (TEM). As shown in Fig. 4l-m, TDP-43
185 LCD spontaneously formed amyloid fibrils, which were inhibited by Hsp70 in a
186 dose-dependent manner. Together, our results demonstrated that Hsp70 not only co-phase
187 separated with TDP-43, but also stabilized it in a liquid-like state by preferentially interacting
188 with the LCD of TDP-43, which prevented the amyloid fibrillation of TDP-43.

189

190 **Hsp70 binds to the transient α -helical region of TDP-43 LCD.**

191 We next investigated the structural basis underlying the interaction between Hsp70 and
192 TDP-43 LCD by using solution NMR spectroscopy. We prepared ^{15}N -labeled TDP-43 LCD
193 and titrated it by different concentrations of Hsp70. The 2D ^1H - ^{15}N HSQC spectra showed a
194 significant signal attenuation of a few residues upon Hsp70 titration, implying a direct binding
195 between Hsp70 and the LCD of TDP-43 (Fig. 5a-b). Strikingly, the results pinpointed to the
196 residues of amino acid (aa) 315-343 that counted for more than 50% of the signal attenuation
197 (Fig. 5a-b). This region was previously identified to adopt a transient α -helical conformation,
198 which is essential for mediating the LLPS and amyloid aggregation of TDP-43 (Conicella et al.,
199 2016; Jiang et al., 2016; Conicella et al., 2020).

200 Hsp70 contains a N-terminal nucleotide-binding domain (NBD), a substrate-binding
201 domain (SBD), and a C-terminal intrinsically disordered region (IDR) (Fig. 5c). To dissect
202 which domain of the Hsp70 protein was responsible for interacting with TDP-43 LCD, we
203 purified the truncated Hsp70-NTD (aa 1-385) and Hsp70-CTD (aa 386-641) proteins. The two
204 Hsp70 truncations were titrated to ^{15}N -labeled TDP-43 LCD, respectively. The 2D ^1H - ^{15}N
205 HSQC spectra revealed that similar to the FL Hsp70, titration of Hsp70-NTD induced a
206 remarkable intensity attenuation especially within the residues of aa 315-343 that contained the
207 transient α -helix region (Fig. 5c). In contrast, the signal attenuation caused by Hsp70-CTD was

208 much weaker including in the α -helix region of TDP-43 LCD (Fig. 5c). Moreover, the NTD of
209 Hsp70 exhibited a significantly stronger promotion of the LLPS of TDP-43 LCD than
210 Hsp70-CTD (Fig. 5d-e). Also, Hsp70-NTD was more potent than Hsp70-CTD in preventing
211 fibrillation of TDP-43 LCD (Fig. 5f-g). Together, our data indicated that Hsp70 directly
212 interacted with the transient α -helix region of TDP-43 LCD mainly via the NTD, which
213 stabilized TDP-43 in the liquid-like phase and prevented it from amyloid fibrillation.

214

215 **Hsp70 alleviates abnormal aggregation of ALS-associated TDP-43 mutant in cells**

216 To demonstrate that the interaction between Hsp70 and TDP-43 underlay the recruitment and
217 the anti-aggregation effect of Hsp70 in TDP-43 NBs, it would be ideal to test on TDP-43
218 mutants with disrupted Hsp70–TDP-43 interface. Toward this end, we prepared two TDP-43
219 LCD variants – a deletion of the residues of aa 313-319 (LCD Δ 313-319), which was adjacent
220 to the α -helix and exhibited a large signal attenuation upon Hsp70 titration, and an A326P
221 mutation, which disrupted the transient α -helix of TDP-43 LCD (Conicella et al., 2016).
222 Unfortunately, compared to WT, both variants showed severely impaired ability to phase
223 separate *in vitro* (Fig. S5a-b) and were unable to form stress-induced NBs in cells (Fig. S5c-k),
224 which excluded us from directly determining how the interaction and co-LLPS of Hsp70 with
225 TDP-43 impacted on the dynamics, maturation and aggregation of TDP-43 in cells.

226 We then took an alternative approach to examine the chaperone activity of Hsp70 against
227 pathological aggregation of TDP-43 NBs. An ALS/FTD kindred was recently reported to be
228 associated with a mutation of TDP-43 at K181E (TDP-43-K181E), which was unable to bind to
229 RNA and formed abundant aggregates in transfected cells (Chen et al., 2019). Indeed, cells
230 expressing TDP-43-K181E spontaneously formed nuclear inclusions (NIs) in the absence of
231 stress, of which a great portion showed large TDP-43 nuclear aggregates. Hsp70 was found to
232 co-localize with both small and large TDP-43-K181E NIs, however, only the large ones were

233 hyperphosphorylated (pTDP-43) (Fig. 6a-e). Of note, pTDP-43 at S409/410 was a
234 histopathological hallmark of ALS (Neumann et al., 2009).

235 Further, the FRAP assay revealed that, compared to diffused nuclear TDP-43-K181E or
236 small TDP-43-K181E NIs, large TDP-43-K181E NIs recovered the most slowly (Fig. 6f-h).
237 More importantly, we showed that OE of Hsp70s (together of *HSPA1A* and *HSPA8*) not only
238 markedly increased the dynamics of large TDP-43-K181E NIs (Fig. 6h), but also significantly
239 reduced the pTDP-43 levels of the K181E mutation in the nucleus (Fig. 6i-l). Collectively,
240 these data indicated that Hsp70 could chaperone TDP-43 NBs in dynamic, liquid-like phase,
241 which prevented them from forming pathological aggregation in cells under stressed or
242 diseased conditions.

243 DISCUSSION

244 Cellular stress triggers TDP-43 to undergo LLPS and condense into cytoprotective NBs. In a
245 recent study (Wang et al., 2020), we have demonstrated that WT TDP-43 does not
246 spontaneously phase separate into subnuclear compartments in normal cells, as the high
247 content of RNAs in the nucleoplasm suppresses TDP-43 LLPS. In response to stress, the
248 expression of lncRNA *NEAT1* is upregulated, which binds to TDP-43 preferentially via the
249 RRM1 and promotes the assembly of TDP-43 NBs. In the current work, we continue to
250 investigate the mechanisms regulating stress-induced TDP-43 NBs. We find that Hsp70 can
251 directly bind to the highly aggregation-prone α -helix region in the LCD of TDP-43. Thus,
252 although both *NEAT1* and Hsp70 appear to promote the assembly of TDP-43 NBs, they
253 recognize different regions of TDP-43, act through different mechanisms, and play different
254 roles in the regulation of TDP-43 NBs.

255 Previous studies show that both the LCD and Δ LCD (which contains the RRM1s) of
256 TDP-43 are capable of LLPS (Schmidt and Rohatgi, 2016; Duan et al., 2019; Wang et al.,
257 2020), however, the LCD plays a predominant role in mediating pathological amyloid
258 aggregation of TDP-43 (Johnson et al., 2009). While *NEAT1* preferentially binds to the
259 RRM1 and provides a “nucleation core” that triggers the assembly of TDP-43 NBs (Wang et
260 al., 2020), Hsp70 binds to the aggregation-prone region of TDP-43, which not only co-phase
261 separates with TDP-43 but also potently suppresses the liquid-to-solid phase transition of
262 TDP-43 NBs, keeping them in the highly dynamic, liquid-like phase. We notice that a
263 recently posted preprint reports that disrupting the RNA binding of TDP-43 by acetylation or
264 mutations in the RRM1s causes TDP-43 to form intranuclear liquid spherical annuli, of which
265 Hsp70 was identified as a key component (Yu et al., 2020). The findings are in line with our
266 conclusion that Hsp70 plays a crucial role in chaperoning TDP-43 NBs.

267 Hsp70 is a master chaperone in protein quality control, and it serves as a central
268 physical node for binding other chaperones, client protein and co-chaperones (Kampinga and
269 Craig, 2010). The NBD of Hsp70 binds to not only nucleotides but also other chaperones
270 such as Hsp40 and Hsp110 and co-chaperones such as Bag1 (Sondermann et al., 2001; Jiang
271 et al., 2007; Polier et al., 2008). Nucleotide-binding and ATP hydrolysis in the NBD mediate
272 the conformational rearrangement, which controls the binding and release of clients and other
273 chaperones (Rosenzweig et al., 2019). Intriguingly, our study reveals that the NBD mediates
274 the binding of Hsp70 to TDP-43. It will be interesting to explore whether and how ATP/ADP
275 and the binding partners such as Hsp40 and other co-chaperones are involved in the
276 regulatory role of Hsp70 in the assembly and maintenance of TDP-43 NBs.

277 Earlier studies report that upregulation of Hsp70 can suppress the age-dependent
278 degeneration of the fly eye caused by OE of either WT or A315T mutant TDP-43 (Estes et al.,
279 2011), and Hsp70 prevents aggregate accumulation of the 25-kDa C-terminal fragment of
280 TDP-43 (Kitamura et al., 2018). In this study, we find that although OE of Hsp70 is
281 insufficient to alter the assembly/disassembly, maturation or cytotoxicity of WT TDP-43 NBs,
282 it potently delays maturation of the ALS-causing mutant TDP-43-K181E and significantly
283 decreases the pTDP-43 levels without affecting the number of cells forming TDP-43-K181E
284 NBs. These data suggest that Hsp70 is less likely a key factor triggering the assembly of
285 TDP-43 NBs. Rather, it plays a major role in promoting the dynamics of TDP-43 NBs and
286 maintaining them in the liquid-like, non-pathological state. As such, the beneficial effect of
287 OE of Hsp70 is more prominent with the disease-causing TDP-43-K181E mutation.
288 Intriguingly, expression of Hsp70 is decreased in ALS patients associated with TDP-43
289 pathology (Chen et al., 2016), and OE of TDP-43 in both fly and mouse motor neurons leads

290 to reduced expression of Hsp70 (Coyne et al., 2017). Therefore, dysregulation of Hsp70 in
291 diseased conditions may contribute to and further worsen liquid-to-solid transition and
292 aggregation of TDP-43 in ALS and other related diseases.

293 **MATERIALS AND METHODS**

294 **Plasmid construction**

295 The pcDNA3.1-TDP-43-HA, pCMV-myc-TDP-43 and pCAG-EGFP-TDP-43 plasmids were
296 used as previously described (Sun et al., 2018; Wang et al., 2020). The
297 pcDNA3.1-TDP-43-HA and pCAG-EGFP-TDP-43 plasmids were used as the templates to
298 generate the following plasmids. The pcDNA3.1-TDP-43-A326P-HA,
299 pcDNA3.1-TDP-43-Δ(313-319)-HA and pCAG-EGFP-TDP-43-K181E plasmids were
300 generated by site-directed mutagenesis using the Fast Mutagenesis Kit II (Vazyme). To
301 generate the pCAG-RFP-Hsp70 and pCAG-RFP-Hsc70 plasmids, the Hsp70, Hsc70 and RFP
302 coding sequence were amplified from pET28a-His-Hsp70 (a gift from Dr. P. Chen),
303 pET28a-His-SUMO-Hsc70 (a gift from Dr. L. He) and pCAG-RFP, respectively, and then
304 subcloned into the pCAG plasmid using the ClonExpress MultiS One Step Cloning Kit
305 (Vazyme). The pcDNA3.1-Hsp70-HA, pcDNA3.1-Hsc70-HA, pCMV-myc-Hsp70 and
306 pCMV-myc-Hsc70 plasmids were generated using the same way.

307 For *E. coli* expression, genes of TDP-43 ΔLCD (aa 1-273) and TDP-43 LCD (aa
308 274-414) plasmids were used as previously described (Duan et al., 2019). FL Hsp70 were
309 cloned into pET28a with a N-terminal His-tag. TDP-43 LCD variants including TDP-43 LCD
310 A326P, Δ313-319 were generated from pET28a TDP-43 LCD wild-type (WT). The Hsp70
311 truncations including Hsp70-NTD (aa 1-385) and Hsp70-CTD (aa 386-641) were generated
312 from FL Hsp70. TDP-43 was cloned into pET9d with an TEV protease cleavable MBP-His
313 tag at C-terminus. Hsc70 was subcloned into pET28a vector with a N-terminal His-SUMO

314 tag. All constructs were verified by sequencing and the primers used for PCR to generate the
315 expression plasmids are summarized as following:
316 pcDNA3.1-TDP-43-A326P-HA and pET28a-His-TDP-43-LCD-A326P:
317 5'- CATGATGGCTGCCCGCAG -3'
318 5'- TAGTGCTGCCTGCGGGGC -3';
319 pcDNA3.1-TDP-43-Δ(313-319)-HA and pET28a-His-TDP-43-LCD-Δ(313-319):
320 5'- GATGAACCCAGCCATGATGGCTGCC -3'
321 5'- ATCATGGCTGGGTTCATCCCACCACCCATATTAC -3'
322 pCAG-GFP-TDP-43-K181E:
323 5'- TTCTGAGCAAAGCCAAGATGAGCCTTGAGAA -3'
324 5'- CTTGGCTTGCTCAGAATTAGGAAGTTGCAGTCACACC -3'
325 pCAG-RFP-Hsp70:
326 5'- CATCATTGGCAAAGAATTGCCACCATGGCCTCCTCCGAGGACGTC -3'
327 5'- CTTGGCCATGCTCCGCCGGCGCCGGT -3'
328 5'- CGGCGGAAGCATGGCAAAGCCGCGCG -3'
329 5'- GCTCCCCGGGGTACCTCGAGCTAATCTACCTCCTCAATGGTGGG -3'
330 pCAG-RFP-Hsc70:
331 5'- CATCATTGGCAAAGAATTGCCACCATGGCCTCCTCCGAGGACGTC -3'
332 5'- AGGTCCCTGGACATGCTCCGCCGGCGCCGGT -3'
333 5'- GAAGCATGTCCAAGGGACCTGCAGTT -3'
334 5'- GCTCCCCGGGGTACCTCGAGTTAACCTCTCAATGGTGGG -3'

335 pcDNA3.1-Hsp70-HA:

336 5'- CGTTAACGGGCCCTCTAGAGCCACCATGGCAAAGCCGGCGATC -3'

337 5'-

338 ATATCCAGCACAGTGGCGGCCGCTTAAGCGTAGTCTGGGACGTCGTATGGTAA

339 TCTACCTCCTCAATGGTGGGCC -3'

340 pcDNA3.1-Hsc70-HA:

341 5'- CGTTAACGGGCCCTCTAGAGCCACCATGTCCAAGGGACCTGCAGTTG -3'

342 5'-

343 ATATCCAGCACAGTGGCGGCCGCTTAAGCGTAGTCTGGGACGTCGTATGGTAA

344 TCAACCTTTCAATGGTGG -3'

345 pCMV-myc-Hsp70:

346 5'- ATGGCCATGGAGGCCGAATTGCCACCATGGCAAAGCCGGCGATC -3'

347 5'- CCGCGGCCGCGGTACCTCGAGCTAACCTACCTCCTCAATGGTGGG -3'

348 pCMV-myc-Hsc70:

349 5'- ATGGCCATGGAGGCCGAATTGCCACCATGTCCAAGGGACCTGCAGTTG -3'

350 5'- CCGCGGCCGCGGTACCTCGAGCTAACCTTTCAATGGTGGG -3'

351 pET28a-Hsp70-NTD:

352 5'- CAGCAAATGGTCGCGGATCCATGGCAAAGCCGGCG -3'

353 5'- GTGTGGTGGTGGTGCTCGAGTTACTCGGACTTGTCCCCCA -3'

354 pET28a-Hsp70-CTD:

355 5'- CAGCAAATGGTCGCGGATCCAACGTGCAGGACCTGCTGC -3'

356 5' - GTGGTGGTGGTGGTGGCTCGAGCTAATCTACCTCCTCAATGGTGGG -3'

357 pET9d-TDP-43-TEV-MBP-His:

358 5' - CTTAAGAAGGAGATACCATGTCTGAATATATTGGGTAACCG -3'

359 5' -CCGCCTCCCTGAAAATAAGATTCTCGCTTCCGCCATTCCCCAGCCAGAAGA

360 CTTA -3'

361 5' -

362 CTTTATTTCAGGGAGGCGGAAGCGGCCGAAGCATGAAAATCGAAGAAGGTAAA

363 CG -3'

364 5' - TGCCATAGCTACTGCTGCTTAATGATGATGATGGTGCATA -3'

365

366 **Protein expression and purification**

367 For protein purification, TDP-43 LCD WT and its variants were overexpressed in

368 BL21(DE3) *E. coli* cells by adding 1 mM IPTG with incubation at 37 °C for 12 h. Cells were

369 harvested and lysed in 50 mM Tris-HCl, pH 8.0, and 100 mM NaCl. Cell pellet was collected

370 by centrifugation (16,000 rpm, 4 °C, 1 h), and then was resuspended into the denatured buffer

371 containing 50 mM Tris-HCl, pH 8.0, 6 M guanidine hydrochloride with sonication. The

372 resuspended protein was loaded onto a Ni column (GE Healthcare, USA) after filtration.

373 Protein was then eluted by the denatured elution buffer containing 50 mM Tris-HCl, pH 8.0,

374 6 M guanidine hydrochloride and 100 mM imidazole. The eluted protein was desalted into

375 storage buffer (20 mM NaPhosphate, pH 7.0 and 8 M urea), and further concentrated into

376 over 30 mg/ml proteins, and flash frozen and kept at -80 °C for storage. For further
377 experiments, the protein was desalted into the buffer containing 20 mM MES, pH 6.0.

378 TDP-43 ΔLCD was overexpressed in BL21(DE3) *E. coli* cells and Hsp70s were
379 overexpressed in BL21(DE3) codon plus *E. coli* cells. Protein expression was induced by
380 adding 0.5 mM IPTG at 22 °C for 12 h. For protein purification, His-TDP-43 ΔLCD were
381 lysed in lysis buffer consisting of 50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 20 mM
382 imidazole, 4 mM β-mercaptoethanol, and 2 mM PMSF. RNase A (0.1mg/ml) was added into
383 lysis buffer to remove TDP-43 ΔLCD binding RNA. Proteins were loaded on Ni column and
384 further eluted with Ni elution buffer containing 50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 250
385 mM imidazole and 4 mM β-mercaptoethanol. Eluted proteins His-TDP-43 ΔLCD was further
386 desalted into storage buffer containing 50 mM Tris-HCl, pH 7.5, 500 mM NaCl and 2 mM
387 DTT.

388 As for purification of Hsp70s, His-SUMO-Hsc70, His-Hsp70 WT and its variants were
389 lysed in lysis buffer and eluted with Ni elution buffer, and then eluted proteins including
390 His-Hsp70 WT and its variants were fractionated via Superdex 200 16/600 column in 50 mM
391 Tris-HCl, pH 7.5, 100 mM NaCl and 2 mM DTT. As for Hsc70, His-Ulp1 was used to
392 remove His-SUMO tag before gel-filtration.

393 FL TDP-43 MBP was overexpressed in BL21(DE3) PlySs *E. coli* cells with 1 mM IPTG
394 at 16 °C for 16 h. Cells were harvested and lysed in 50 mM Tris-HCl, pH 7.5, 1 M NaCl, 2
395 mM DTT, 10% glycerol, 1 mM EDTA and 2 mM PMSF. After removing cell pellets by
396 centrifugation, protein was loaded onto MBP Trap HP column and then eluted with 50 mM

397 Tris-HCl, pH 7.5, 1 M NaCl, 2 mM DTT, 10% glycerol, and 10 mM maltose. Eluted protein
398 was purified over the gel filtration chromatography (Superdex 200 16/300; GE Healthcare)
399 equilibrated with storage buffer (50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 2 mM DTT).

400

401 **Fluorescent labeling of the proteins**

402 For labeling proteins with active thiol groups, proteins were desalted into reaction buffer (50
403 mM Tris-HCl, pH 7.5, 500 mM NaCl and 4 mM Tris (2-Carboxyethyl) Phosphine (TCEP)
404 (Invitrogen, T2556)) for removing DTT in storage buffer. The proteins were then incubated
405 with a 5-fold fluorescent dye (molar ratio), including Alexa 488 C₅-maleimide (Invitrogen,
406 A10254) for FL TDP-43 MBP, Alexa 555 C₂-maleimide (Invitrogen, A20346) for TDP-43
407 ΔLCD, and Alexa 647 C₂-maleimide (Invitrogen, A20347) for Hsp70 and Hsc70. The labeling
408 reaction was performed for over 1 h at room temperature (RT). The labeled proteins were
409 further purified using the Superdex 200 10/300 columns (GE Healthcare, USA). As for
410 TDP-43 LCD, the protein stored in denatured buffer was desalted with HPLC (Agilent) and
411 freeze-dried by the FreeZone lyophilizer (Thermo Fisher). The protein powder was dissolved
412 into 50 mM NaPhosphate (pH 7.0). Then, the protein solution was incubated with 10-fold
413 OregonGreen488 (Invitrogen, O6149) (molar ratio) at 37 °C for 1 h. The reaction was then
414 mixed with 20-fold volume of denature buffer containing 50 mM Tris-HCl, pH 8.0 and 8 M
415 urea, and further purified via Superdex 75 16/600 column in 20 mM MES, pH 6.0. For
416 further LLPS assay and confocal imaging, the unlabeled protein was mixed with labeled one
417 at the molar ratio of 49:1 (unlabeled: labeled).

418

419 ***In vitro* LLPS assay**

420 For co-LLPS experiments, 50 μ M FL TDP-43 MBP were mixed with 10 μ M Hsp70 or 10 μ M
421 Hsc70 under 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM DTT and 15% Dextran 70.
422 Protein phase separation was initiated with the addition of Dextran 70. As for co-LLPS
423 between Hsp70 and TDP-43 LCD or Δ LCD, Hsp70 was added at last step to achieve final
424 conditions as indicated. To compare phase separation ability between TDP-43 LCD WT and
425 its variants, 4 M NaCl was added to 20 μ L proteins to achieve final conditions as indicated.

426

427 **Turbidity measurement**

428 Turbidity of different samples were measured based on the optical absorption at 600 nm. The
429 measurements were recorded on a Varioskan Flash spectral scanning multimode reader
430 (Thermo Fisher) using a flat bottom 384-well plates (20 μ L pre well, Corning).

431

432 **DIC and fluorescent imaging for phase separated protein samples**

433 LLPS samples were loaded onto glass slide with coverslip. DIC and confocal images were
434 acquired on a Leica TCS SP8 microscope with a 100 \times objective (oil immersion) at RT.

435

436 **Nuclear magnetic resonance (NMR)**

437 Backbone assignment of TDP-43 LCD was accomplished according to the previous
438 publication (Conicella et al., 2016). All NMR titration experiments were performed at 298 K

439 on a Bruker 900 MHz spectrometer equipped with cryogeni probe in an NMR buffer of 20
440 mM MES (pH 6.0), 150 mM NaCl, 10% glycerol and 20% D₂O. Here, we increased salt
441 concentration and utilized glycerol to avoid LLPS of TDP-43 LCD with Hsp70. Each NMR
442 sample was made with a volume of 500 μL, containing ¹⁵N-TDP-43 LCD (20 μM) desalted
443 from denature buffer freshly with/without Hsp70 WT and its variants as indicated. Bruker
444 standard pulse sequence (hsqcetfpf3gpsi) was used to collect the 2D ¹H-¹⁵N HSQC spectrum
445 with 16 scans. And 2048 × 160 complex points were used for ¹H (14 ppm) and ¹⁵N (21 ppm)
446 dimension, respectively. All NMR data were processed by NMRpipe and analysed by
447 SPARK (Delaglio et al., 1995; Lee et al., 2015).

448 **ThT fluorescence kinetic assay**

449 ThT fluorescence kinetic assay was performed in the ThT assay buffer containing 20 mM
450 MES, pH 6.0, 150 mM NaCl, 4 mM DTT, and 0.05% NaN₃ with 20 μM TDP-43 LCD and
451 Hsp70 or its variants, respectively. The mixture was added into a 384-well plate (Corning)
452 with 50 mM ThT. The ThT fluorescence was monitored by a Varioskan Flash spectral
453 scanning multimode reader (Thermo Fisher Scientific) with excitation at 440 nm and
454 emission at 485 nm at 37 °C and the plate was shaken at 900 rpm. The morphology of
455 TDP-43 LCD fibril was visualized by TEM.

456

457 **Negative-staining transmission electron microscopy (TEM)**

458 Samples were incubated on carbon-coated grids for 1 min and washed with ddH₂O for twice
459 after staining with 8 μL uranyl acetate (2%, v/v) for 45 s. The grids were further assessed by

460 using Tecnai G2 Spirit transmission electron microscope with 120 kV voltage. The TEM
461 images were obtained by a 4000 × 4000 charge-coupled device camera (BM-Eagle, FEI
462 Tecnai).

463

464 **Cell cultures and transfection**

465 HEK293T and HeLa cells were cultured in Dulbecco's Modified Eagle Medium (DMEM,
466 Gibco) supplemented with 10% (v/v) fetal bovine serum (FBS, VISTECH) and 1%
467 penicillin/streptomycin at 37 °C in 5% CO₂. Transient transfection was performed using
468 PolyJetTM (SigmaGen) in DMEM. Cells were transfected for at least 24 h before the
469 subsequent drug treatments or examinations. For the knockdown experiment, the siRNA
470 (Genepharma) was transfected into the HeLa cells using the LipofectamineTM RNAiMax
471 Transfection Reagent (Invitrogen) according to the manufacturer's instruction. The siRNA
472 was incubated for 48-72 h before cells were harvested. The siRNA oligos used in this study
473 are listed below:

474 si-Ctrl: 5'- UUCUCCGAACGUGUCACGUTT -3';
475 si-Hsp70: 5'- CCAAGCAGACGCAGAUCUUTT -3';
476 si-Hsc70: 5'- GCUGUUGUCCAGUCUGAUATT -3'

477

478 **Arsenite treatment and washout assay**

479 HeLa cells were grown on the coverslips in the 24-well plate and transfected with the
480 indicated plasmids or siRNA. Cells were then treated with 250 µM NaAsO₂ or PBS for

481 30min, 1h or 2h at indicated. For arsenite washout assay, the arsenite-containing medium was
482 removed and washed in PBS, the cells were then incubated in fresh culture medium for the
483 indicated time.

484

485 **Immunocytochemistry and confocal imaging**

486 HeLa or HEK293T cells were grown on coverslips in the 24-well plate and HEK293T cells
487 were pre-coated with PLL (Sigma) in a 24-well plate before transcription and treatment. The
488 cells were then fixed in 4% paraformaldehyde in PBS for 30 min at RT, permeabilized in
489 0.5% TritonX-100 (Sigma) in PBS for 30 min and blocked with 3% goat serum in PBST
490 (0.3% goat serum in PBS for pTDP-43) for 1 h at RT. The primary and secondary antibodies
491 were then incubated in the blocking buffer at 4 °C overnight, or at RT for 1-2 h. After
492 washing for 3 times with PBST (PBS for pTDP-43), cells were mounted on glass slides using
493 the VECTASHIELD Antifade Mounting Medium with DAPI (Vector Laboratories).
494 Fluorescent images were taken using the Leica TCS SP8 or Light Sheet confocal microscopy
495 system using 63 × or 100 × oil objective (NA = 1.4).

496

497 **FRAP assay**

498 FRAP assay was performed using the FRAP module of the Leica SP8 or Light Sheet confocal
499 microscopy system using 100 × oil objective (NA= 1.4). For living cells, the EGFP-TDP-43
500 NB was bleached using a 488 nm laser at 100% laser power for twice. Bleaching was focused
501 on a 1 μm diameter region of interest. After photobleaching, time-lapse images were captured

502 every 8 s for about 5 min. As for *in vitro* FRAP, the assay was performed in similar way. An
503 aliquot of 20 μ L LLPS sample was applied to a glass bottom dish (40 mm \times 40 mm, 0.2 mm
504 at thinnest bottom) (Nest, 80100). Bleaching was also focused on the same size at the
505 droplets with similar diameter in the same group. After photobleaching, images were
506 continuously captured (1 image/2.58s). As for analysis of FRAP data, the fluorescent
507 intensity (I_t^m) recorded on the bleached region in each time point (t) were normalized to
508 fluorescent intensity (I_t^c) of nearby unbleached region, with the formula: $I_t = (I_t^m / I_0^m) / (I_t^c / I_0^c)$.
509 Fluorescence recovery fraction for bleached intensity was further calculated with the formula:
510 $(I_t - I_{min}) / (I_0 - I_{min})$. I_{min} is the unbleached fraction after photobleaching. ImageJ and
511 GraphPad Prism are used to measure and analyze the FRAP data.

512

513 **RNA extraction and real-time quantitative PCR (qPCR)**

514 For (qPCR), total RNA was isolated from HeLa cells using TRIzol (Invitrogen) according to
515 the manufacturer's instruction. After DNase (Promega) treatment, the reverse transcription
516 reactions were performed using reverse Transcriptase M-MLV (RNase H-) (TaKaRa). The
517 cDNA was then used for real-time qPCR using the SYBR Green qPCR Master Mix
518 (Bi-make) with the QuantStudio 6 Flex Real-Time PCR system (Life Technologies). The
519 mRNA levels of β -actin were used as an internal control to normalize the mRNA levels of
520 Hsp70s. The qPCR primers used in this study are listed below:

521 below:

522 *HSPA8*:

523 5'- TTGGAGTGGTTCGGTTCCC -3'

524 5'- TATTGGAGCCAGGCCTACAC -3';

525 *HSPA9*:

526 5'- CTTGTTCAAGGCAGGGATTATGC -3'

527 5'- GCAGGAGTTGGTAGTACCCAAA -3';

528 *HSPA5*:

529 5'- CATCACGCCGTCTATGTCG -3'

530 5'- CGTCAAAGACCGTGTCTCG -3';

531 *HSPA1A*:

532 AGCTGGAGCAGGTGTGTAAC

533 CAGCAATCTGGAAAGGCC;

534 *HSPA1B*:

535 5'- TCTGGGTCAAGGCCCTACCATT -3'

536 5'- AGCAGCAAAGTCCTTGAGTCC -3';

537 *HSPA2*:

538 5'- AGATCGACTCGCTCTACGAGG -3'

539 5'- CGAAAGAGGTCGGCATTGAG -3';

540 *HSPA1L*:

541 5'- TTACCGTGCAGCCTATTCA -3'

542 5'- AGCACATTAAGTCCAGCAATCA -3';

543 *hβ-actin*:

544 5'- GTTACAGGAAGTCCCTGCCATCC -3'

545 5'- CACCTCCCCGTGTGGACTTGGG -3';

546

547 **Cell viability assay**

548 Transfected HeLa cells were seeded in 96-well plates at the density of 10^4 cells/well and
549 cultured in 100 μ L of culture medium. After 48 h transfection, cells were treated with arsenite
550 (100 μ M) in different time points, and then cell viability was examined using the Cell
551 Counting Kit-8 (CCK-8) (Dojindo), according to the manufacturer's instructions. Briefly, 10
552 μ L of the CCK-8 solution was added to each well and incubated at 37 °C for 2.5 h. Finally,
553 the absorbance at 450 nm was measured with a Synergy2 microplate reader (BioTek
554 Instruments).

555

556 **Antibodies**

557 The following antibodies were used for Western blotting and immunocytochemistry assays:
558 mouse anti-G3BP (BD Biosciences, 611127), rabbit anti-HA (CST, C29F4), rabbit
559 anti-c-Myc (Sigma, c3956), mouse anti-pTDP-43 (Ser409/410, CosmoBio,
560 CAC-TIP-PTD-M01), mouse anti-Hsp70 (StressMarq Biosciences Inc, SMC-100A/B),
561 mouse anti-GAPDH (Proteintech, 60004-1). HRP conjugated secondary antibodies: goat
562 anti-mouse (Sigma, A4416), goat anti-rabbit (Sigma, A9169). Fluorescent secondary
563 antibodies: goat anti-rabbit-Alexa Flour 488 (Life Technologies, A11034), goat

564 anti-mouse-Alexa Flour 568 (Life Technologies, A11031), goat anti-mouse-Alexa Flour Cy5

565 (Life Technologies, A10524).

566

567 **Statistical analysis**

568 The statistical significance in this study is determined by the two-way ANOVA with

569 Bonferroni's post-hoc test or the unpaired, two-tailed Student's *t*-test at ${}^*p < 0.05$, ${}^{**}p < 0.01$,

570 and ${}^{***}p < 0.001$.

571

572 **ACKNOWLEDGMENTS**

573 We would like to thank the staffs in the National Center for Protein Science, Shanghai, for
574 their assistance on NMR data collection. This work was supported by grants from the National
575 Natural Science Foundation of China (NSFC) (91853113), the Science and Technology
576 Commission of Shanghai Municipality (STCSM) (201409003300), the NSFC (81671254,
577 31872716 and 31970697), the STCSM (18JC1420500, 20490712600, 20XD1425000 and
578 2019SHZDZX02), and the “Eastern Scholar” project supported by Shanghai Municipal
579 Education Commission.

580

581 **AUTHOR CONTRIBUTIONS**

582 Y.F. and C.L. conceived the research; J.G., C.W., R.H., Y.F. and C.L. designed the project.
583 J.G., C.W., R.H., Y.L., Y.S., Y.S. and Q.W. performed the experiments, J.G., C.W., R.H. and
584 Q. W. contributed important new reagents; J.G., C.W., R.H., Y.F. and C.L. analyzed the data
585 and interpreted the results; J.G., C.W. and R.H. prepared the figures; and D.L., Y.F. and C.L.
586 wrote the manuscript. All authors read and approved the final manuscript.

587

588 **CONFLICT OF INTERESTS**

589 The authors declare no competing interests.

590 **REFERENCES**

591 Babinchak, W.M., Haider, R., Dumm, B.K., Sarkar, P., Surewicz, K., Choi, J.K., and
592 Surewicz, W.K. (2019). The role of liquid-liquid phase separation in aggregation of the
593 TDP-43 low-complexity domain. *J Cell Biol* 294, 6306-6317.

594 Bettencourt, B.R., and Feder, M.E. (2002). Rapid concerted evolution via gene conversion at
595 the *Drosophila hsp70* genes. *J Mol Evol* 54, 569-586.

596 Birsa, N., Bentham, M.P., and Fratta, P. (2020). Cytoplasmic functions of TDP-43 and FUS
597 and their role in ALS. *Semin Cell Dev Biol* 99, 193-201.

598 Brocchieri, L., Conway de Macario, E., and Macario, A.J. (2008). *hsp70* genes in the human
599 genome: Conservation and differentiation patterns predict a wide array of overlapping
600 and specialized functions. *BMC Evol Biol* 8, 19.

601 Chen-Plotkin, A.S., Lee, V.M., and Trojanowski, J.Q. (2010). TAR DNA-binding protein 43
602 in neurodegenerative disease. *Nat Rev Neurol* 6, 211-220.

603 Chen, H.J., Mitchell, J.C., Novoselov, S., Miller, J., Nishimura, A.L., Scotter, E.L., Vance,
604 C.A., Cheetham, M.E., and Shaw, C.E. (2016). The heat shock response plays an
605 important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral
606 sclerosis. *Brain* 139, 1417-1432.

607 Chen, H.J., Topp, S.D., Hui, H.S., Zacco, E., Katarya, M., McLoughlin, C., King, A., Smith,
608 B.N., Troakes, C., Pastore, A., *et al.* (2019). RRM adjacent TARDBP mutations disrupt
609 RNA binding and enhance TDP-43 proteinopathy. *Brain* 142, 3753-3770.

610 Conicella, A.E., Dignon, G.L., Zerze, G.H., Schmidt, H.B., D'Ordine, A.M., Kim, Y.C.,
611 Rohatgi, R., Ayala, Y.M., Mittal, J., and Fawzi, N.L. (2020). TDP-43 alpha-helical

612 structure tunes liquid-liquid phase separation and function. Proc Natl Acad Sci U S A
613 117, 5883-5894.

614 Conicella, A.E., Zerze, G.H., Mittal, J., and Fawzi, N.L. (2016). ALS Mutations Disrupt
615 Phase Separation Mediated by alpha-Helical Structure in the TDP-43 Low-Complexity
616 C-Terminal Domain. Structure 24, 1537-1549.

617 Coyne, A.N., Lorenzini, I., Chou, C.C., Torvund, M., Rogers, R.S., Starr, A., Zaepfel, B.L.,
618 Levy, J., Johannesmeyer, J., Schwartz, J.C., *et al.* (2017). Post-transcriptional Inhibition
619 of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple
620 Models of ALS. Cell Rep 21, 110-125.

621 Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe:
622 a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6,
623 277-293.

624 Duan, Y., Du, A., Gu, J., Duan, G., Wang, C., Gui, X., Ma, Z., Qian, B., Deng, X., Zhang, K.,
625 *et al.* (2019). PARylation regulates stress granule dynamics, phase separation, and
626 neurotoxicity of disease-related RNA-binding proteins. Cell Res 29, 233-247.

627 Estes, P.S., Boehringer, A., Zwick, R., Tang, J.E., Grigsby, B., and Zarnescu, D.C. (2011).
628 Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila
629 model of ALS. Hum Mol Genet 20, 2308-2321.

630 Fahrenkrog, B., and Harel, A. (2018). Perturbations in Traffic: Aberrant Nucleocytoplasmic
631 Transport at the Heart of Neurodegeneration. Cells 7, 232.

632 Freibaum, B.D., Chitta, R.K., High, A.A., and Taylor, J.P. (2010). Global analysis of TDP-43
633 interacting proteins reveals strong association with RNA splicing and translation
634 machinery. J Proteome Res 9, 1104-1120.

635 Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., Melamed, Z.e., Guo, L., Shorter, J., Da Cruz, S.,
636 and Cleveland, D.W. (2019). Cytoplasmic TDP-43 De-mixing Independent of Stress
637 Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death.
638 *Neuron* *102*, 339-357.e337.

639 Hartl, F.U. (1996). Molecular chaperones in cellular protein folding. *Nature* *381*, 571-579.

640 Hartl, F.U., Bracher, A., and Hayer-Hartl, M. (2011). Molecular chaperones in protein
641 folding and proteostasis. *Nature* *475*, 324-332.

642 Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A., and Parker, R. (2016).
643 ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. *Cell*
644 *164*, 487-498.

645 Jiang, J., Maes, E.G., Taylor, A.B., Wang, L., Hinck, A.P., Lafer, E.M., and Sousa, R. (2007).
646 Structural Basis of J Cochaperone Binding and Regulation of Hsp70. *Mol Cell* *28*,
647 422-433.

648 Jiang, L.L., Zhao, J., Yin, X.F., He, W.T., Yang, H., Che, M.X., and Hu, H.Y. (2016). Two
649 mutations G335D and Q343R within the amyloidogenic core region of TDP-43
650 influence its aggregation and inclusion formation. *Sci Rep* *6*, 23928.

651 Johnson, B.S., Snead, D., Lee, J.J., McCaffery, J.M., Shorter, J., and Gitler, A.D. (2009).
652 TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked
653 mutations accelerate aggregation and increase toxicity. *J Biol Chem* *284*, 20329-20339.

654 Kampinga, H.H., and Craig, E.A. (2010). The HSP70 chaperone machinery: J proteins as
655 drivers of functional specificity. *Nat Rev Mol Cell Biol* *11*, 579-592.

656 Kitamura, A., Iwasaki, N., and Kinjo, M. (2018). Molecular chaperone HSP70 prevents
657 formation of inclusion bodies of the 25-kDa C-terminal fragment of TDP-43 by
658 preventing aggregate accumulation. *Cell Stress Chaperones* *23*, 1177-1183.

659 Lee, E.B., Lee, V.M., and Trojanowski, J.Q. (2011). Gains or losses: molecular mechanisms
660 of TDP43-mediated neurodegeneration. *Nat Rev Neurosci* *13*, 38-50.

661 Lee, W., Tonelli, M., and Markley, J.L. (2015). NMRFAM-SPARKY: enhanced software for
662 biomolecular NMR spectroscopy. *Bioinformatics* *31*, 1325-1327.

663 Li, Y.R., King, O.D., Shorter, J., and Gitler, A.D. (2013). Stress granules as crucibles of ALS
664 pathogenesis. *J Cell Biol* *201*, 361-372.

665 Maharana, S., Wang, J., Papadopoulos, D.K., Richter, D., Pozniakovsky, A., Poser, I., Bickle,
666 M., Rizk, S., Guillen-Boixet, J., Franzmann, T.M., *et al.* (2018). RNA buffers the phase
667 separation behavior of prion-like RNA binding proteins. *Science* *360*, 918-921.

668 Mann, J.R., Gleixner, A.M., Mauna, J.C., Gomes, E., DeChellis-Marks, M.R., Needham,
669 P.G., Copley, K.E., Hurtle, B., Portz, B., Pyles, N.J., *et al.* (2019). RNA Binding
670 Antagonizes Neurotoxic Phase Transitions of TDP-43. *Neuron* *102*, 321-338 e328.

671 McGurk, L., Gomes, E., Guo, L., Mojsilovic-Petrovic, J., Tran, V., Kalb, R.G., Shorter, J.,
672 and Bonini, N.M. (2018). Poly(ADP-Ribose) Prevents Pathological Phase Separation of
673 TDP-43 by Promoting Liquid Demixing and Stress Granule Localization. *Mol Cell* *71*,
674 703-717 e709.

675 Neumann, M., Kwong, L.K., Lee, E.B., Kremmer, E., Flatley, A., Xu, Y., Forman, M.S.,
676 Troost, D., Kretzschmar, H.A., Trojanowski, J.Q., *et al.* (2009). Phosphorylation of
677 S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43
678 proteinopathies. *Acta Neuropathol* *117*, 137-149.

679 Nikolaidis, N., and Nei, M. (2004). Concerted and nonconcerted evolution of the Hsp70 gene
680 superfamily in two sibling species of nematodes. *Mol Biol Evol* *21*, 498-505.

681 Polier, S., Dragovic, Z., Hartl, F.U., and Bracher, A. (2008). Structural basis for the
682 cooperation of Hsp70 and Hsp110 chaperones in protein folding. *Cell* *133*, 1068-1079.

683 Ramaswami, M., Taylor, J.P., and Parker, R. (2013). Altered ribostasis: RNA-protein
684 granules in degenerative disorders. *Cell* *154*, 727-736.

685 Rosenzweig, R., Nillegoda, N.B., Mayer, M.P., and Bukau, B. (2019). The Hsp70 chaperone
686 network. *Nat Rev Mol Cell Biol* *20*, 665-680.

687 Schmidt, H.B., and Rohatgi, R. (2016). In Vivo Formation of Vacuolated Multi-phase
688 Compartments Lacking Membranes. *Cell Rep* *16*, 1228-1236.

689 Shukla, S., and Parker, R. (2016). Hypo- and Hyper-Assembly Diseases of RNA-Protein
690 Complexes. *Trends Mol Med* *22*, 615-628.

691 Sondermann, H., Scheufler, C., Schneider, C., Hohfeld, J., Hartl, F.U., and Moarefi, I. (2001).
692 Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide
693 exchange factors. *Science* *291*, 1553-1557.

694 Sun, X., Duan, Y., Qin, C., Li, J.C., Duan, G., Deng, X., Ni, J., Cao, X., Xiang, K., Tian, K.,
695 *et al.* (2018). Distinct multilevel misregulations of Parkin and PINK1 revealed in cell
696 and animal models of TDP-43 proteinopathy. *Cell Death Dis* *9*, 953.

697 Tavaria, M., Gabriele, T., Kola, I., and Anderson, R.L. (1996). A hitchhiker's guide to the
698 human Hsp70 family. *Cell Stress Chaperones* *1*, 23-28.

699 Udan-Johns, M., Bengoechea, R., Bell, S., Shao, J., Diamond, M.I., True, H.L., Weihl, C.C.,
700 and Baloh, R.H. (2014). Prion-like nuclear aggregation of TDP-43 during heat shock is
701 regulated by HSP40/70 chaperones. *Hum Mol Genet* *23*, 157-170.

702 Wang, A., Conicella, A.E., Schmidt, H.B., Martin, E.W., Rhoads, S.N., Reeb, A.N., Nourse,
703 A., Ramirez Montero, D., Ryan, V.H., Rohatgi, R., *et al.* (2018). A single N-terminal
704 phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing.
705 *EMBO J* *37*, e97452.

706 Wang, C., Duan, Y., Duan, G., Wang, Q., Zhang, K., Deng, X., Qian, B., Gu, J., Ma, Z.,
707 Zhang, S., *et al.* (2020). Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43
708 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase
709 Separation. *Mol Cell* 79, 443-458 e447.

710 Yu, H., Lu, S., Gasior, K., Singh, D., Tapia, O., Vazquez-Sanchez, S., Toprani, D., Beccari,
711 M., Yates , J., Cruz, S., *et al.* (2020). TDP-43 and HSP70 phase separate into
712 anisotropic, intranuclear liquid spherical annuli. bioRxiv doi:
713 10.1101/2020.03.28.985986.

714 Zhao, M., Kim, J.R., van Bruggen, R., and Park, J. (2018). RNA-Binding Proteins in
715 Amyotrophic Lateral Sclerosis. *Mol Cells* 41, 818-829.

716 Zhuo, X.F., Wang, J., Zhang, J., Jiang, L.L., Hu, H.Y., and Lu, J.X. (2020). Solid-State NMR
717 Reveals the Structural Transformation of the TDP-43 Amyloidogenic Region upon
718 Fibrillation. *J Am Chem Soc* 142, 3412-3421.

719 **FIGURE LEGENDS**

720 **Fig. 1: Hsp70 co-localizes with TDP-43 NBs in stressed cells and co-phase separates with**
721 **TDP-43 *in vitro*.**

722 **a-h** Representative images (a, c, e, g) and the intensity profiles along the indicated line (b, d, f, h) of HeLa cells expressing RFP-Hsp70 (a-d) or RFP (e-h) together with TDP-43-HA in the absence or presence of cellular stress (250 μ M of arsenite, 30 min). DAPI, nuclear labeling; anti-HA for TDP-43-HA; arrows, co-localization of Hsp70 with TDP-43 NBs. **i-k** Representative confocal images showing the *in vitro* LLPS of TDP-43-MBP (Alexa Fluor 488, green) alone (i), Hsp70 (Alexa Fluor 647, red) alone (j), and them together (k). The concentration of each component in the *in vitro* LLPS assay: 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 15% Dextran 70, 50 μ M TDP-43-MBP and 10 μ M Hsp70. **l-o** The FRAP analyses (l-m) and images of representative droplets (n-o) of TDP-43 (l, n, green) and Hsp70 (m, o, red) in the co-phase separated droplets in k. The black arrow indicates the photobleaching. Data shown are mean \pm SEM, n = 5 (l and m). Scale bars, 5 μ m in (a, c, e and g), 10 μ m in (i-k) and 1 μ m in (n-o).

734

735 **Fig. 2: KD of Hsp70 reduces the assembly of TDP-43 NBs.**

736 **a-d** The effect of si-Hsp70s (both siRNAs against *HSPA1A* and *HSPA8*) on the assembly of stress-induced TDP-43 NBs compared to si-Ctrl (scrambled siRNA). Representative images of HeLa cells expressing TDP-43-HA in the absence (a-b) and presence (c-d) of arsenite (250 μ M, 30 min) are shown. DAPI, nucleus; anti-G3BP, SGs. **e-g** The percentage of cells forming TDP-43 NBs (e), the average count of TDP-43 NBs per cell (f), and the percentage of cells forming SGs (g) in a-d are quantified. **h-i** The KD efficiency of si-Hsp70s is examined by western blotting analysis (h) and quantified in (i). GAPDH is used as a loading control. Mean \pm SEM; n = ~80 cells per group in (e-f) and n = 20 cells in (g) from pooled results of 3

744 independent repeats, and $n = 6$ in (i). Statistical significance was determined by Student's t
745 test at $**p < 0.01$ and $***p < 0.001$; ns, not significant. Scale bar, 5 μm .

746

747 **Fig. 3: KD of Hsp70 accelerates liquid-to-solid maturation of TDP-43 NBs and**
748 **potentiates the cytotoxicity in prolonged cellular stress.**

749 **a** A representative image showing stress-induced EGFP-TDP-43 NBs in living HeLa cells
750 and the region (dashed line) subject to photobleaching in the FRAP assay in b-j. **b-j**
751 Representative images of EGFP-TDP-43 NBs (b, c, e, f, h, i) and the fluorescent intensity (FI)
752 recovery curves (d, g, j) of the FRAP assays. Cells transfected with scrambled siRNA (si-Ctrl)
753 or siRNAs against *HSPA1A* and *HSPA8* (si-Hsp70s) are treated with arsenite (250 μM) for 30
754 min (b-d), 60 min (e-g) or 120 min (h-j) as indicated. **k** The viability of HeLa cells
755 transfected with TDP-43-HA together with si-Ctrl or si-Hsp70 under stress (100 μM) for
756 different durations as indicated is assessed using the CCK-8 assay. Mean \pm SEM; $n = 8$ in (d,
757 g, j) and $n = 3$ in (k). Two-way ANOVA (d, g, j), Student's t test (k); $***p < 0.001$; ns, not
758 significant. Scale bars, 5 μm in (a) and 1 μm in (b-i).

759

760 **Fig. 4: Hsp70 maintains TDP-43 in dynamic liquid-droplets and prevents it from**
761 **amyloid aggregation.**

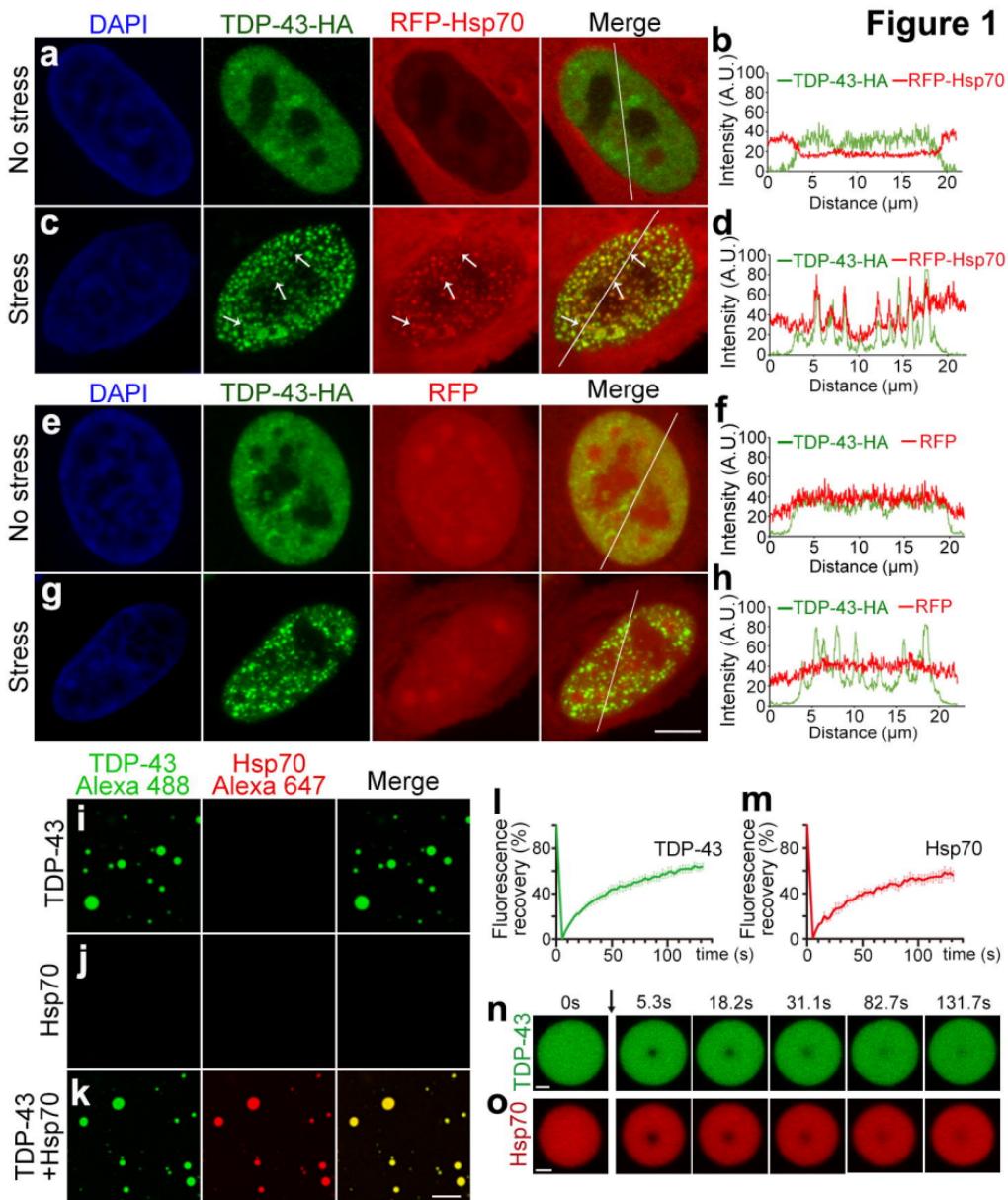
762 **a** FRAP analyses of TDP-43 liquid-droplets formed in the *in vitro* LLPS assay (50 μM
763 TDP-43-MBP, 150 mM NaCl, pH 7.5, 15% Dextran 70) in the absence or presence of Hsp70
764 (75 μM). The FRAP assay was performed right after mixing the proteins together (0 min) or
765 after co-incubation for 40 min. **b** Schematic of the TDP-43 domains. NTD, N-terminal
766 domain; RRM, RNA recognition motif; LCD, low-complexity domain; NLS, nuclear
767 localization signal; NES, nuclear export sequence. **c-g** Co-LLPS of Hsp70 (red) with TDP-43
768 LCD or TDP-43 Δ LCD (green). Fluorescence images show Hsp70 (15 μM) alone (c),

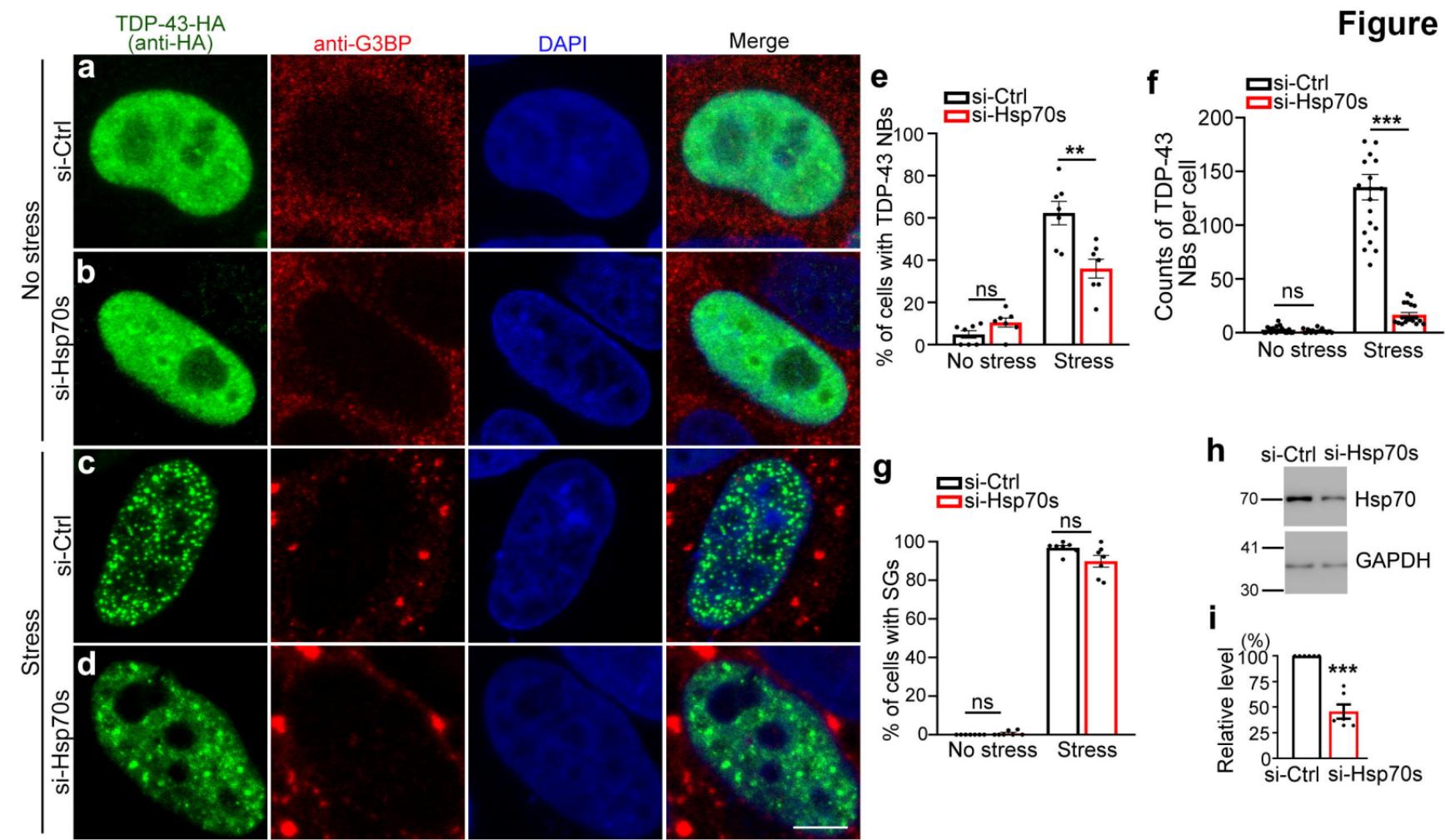
769 TDP-43 LCD (30 μ M) alone (d) or mixed with Hsp70 (15 μ M) (e) in 50 mM NaCl, 20 mM
770 MES, pH 6.0, and TDP-43 Δ LCD (30 μ M) alone (f) or mixed with Hsp70 (15 μ M) (g) in 50
771 mM NaCl, 20 mM Tris-HCl, pH 7.5. **h-j** The turbidity measurement (h) and representative
772 DIC images (i-j) of TDP-43 LCD or Δ LCD (30 μ M) with increasing concentrations of Hsp70
773 as indicated. The other conditions are same as in (c-g). **k** The FRAP assay of the LLPS liquid
774 droplets of TDP-43 LCD (60 μ M) in the absence or presence of Hsp70 (60 μ M) at 0 h or 1 h
775 after mixing (100 mM NaCl, pH 7.5). **l** The ThT fluorescence assay of TDP-43 LCD (20 μ M)
776 with different concentrations of Hsp70 as indicated. **m** Negative-staining TEM images of the
777 ThT samples at 30 h in (l). Mean \pm SEM; n = 6 in (a), n = 3 in (h), n = 5 in (k) and n = 3 in (l).
778 Two-way ANOVA in (a, k), one-way ANOVA in (h); *p < 0.05, **p < 0.01 and ***p < 0.001,
779 ns, not significant. Scale bars, 5 μ m in (c-g), 10 μ m in (i-j) and 200 nm in (m).

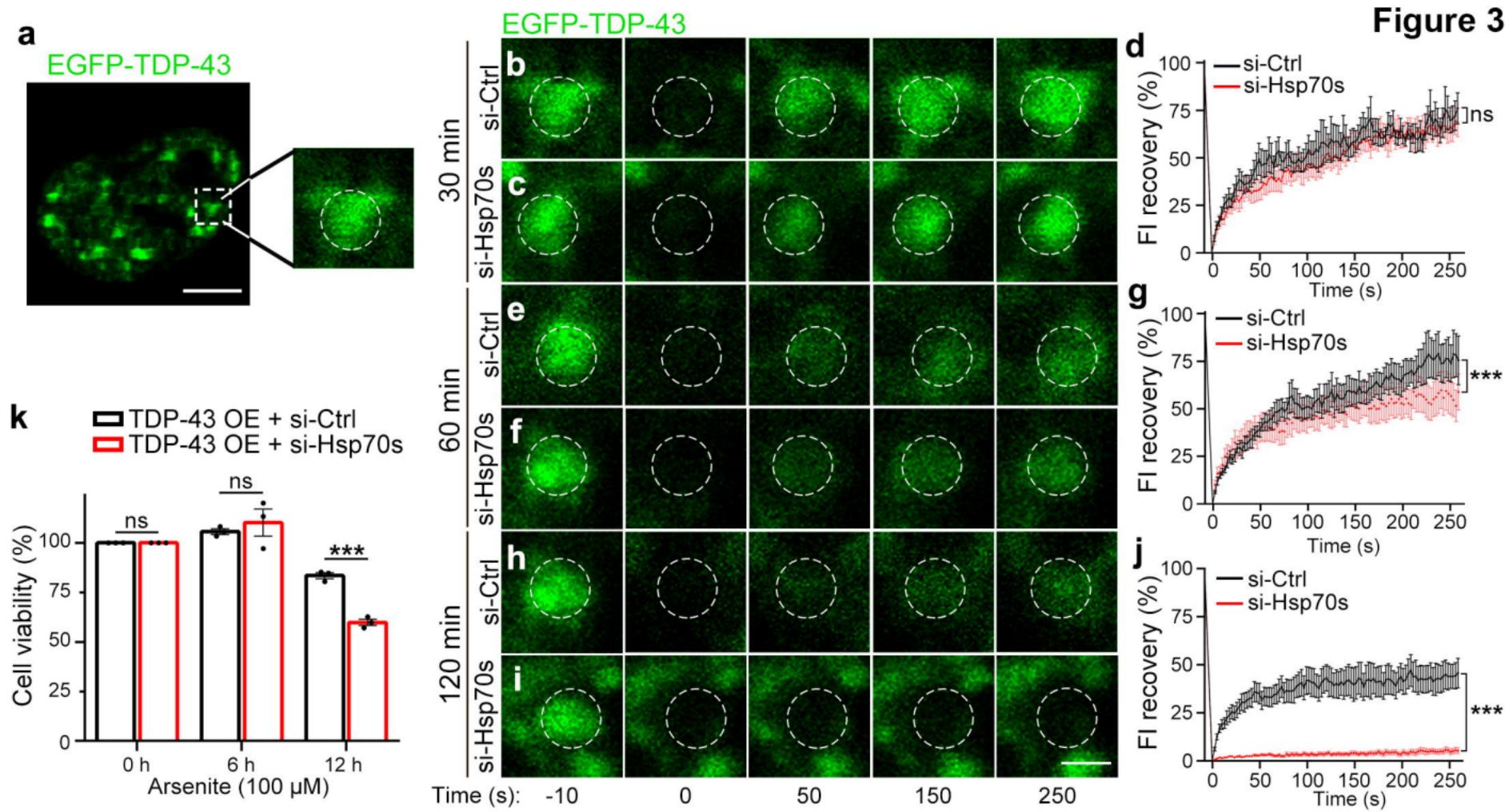
780

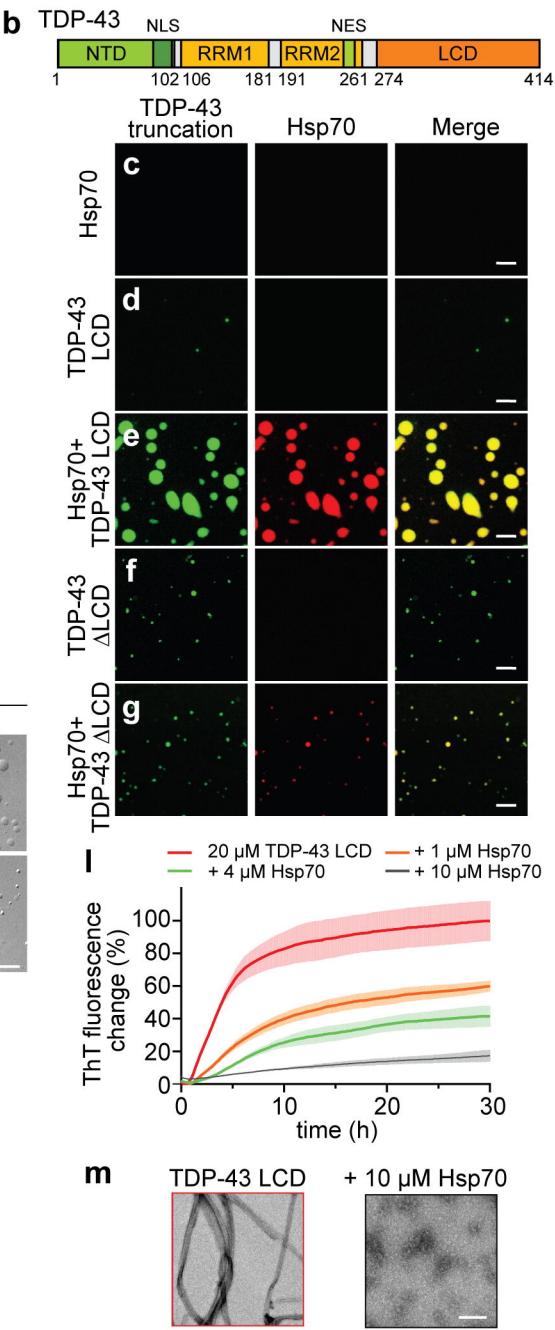
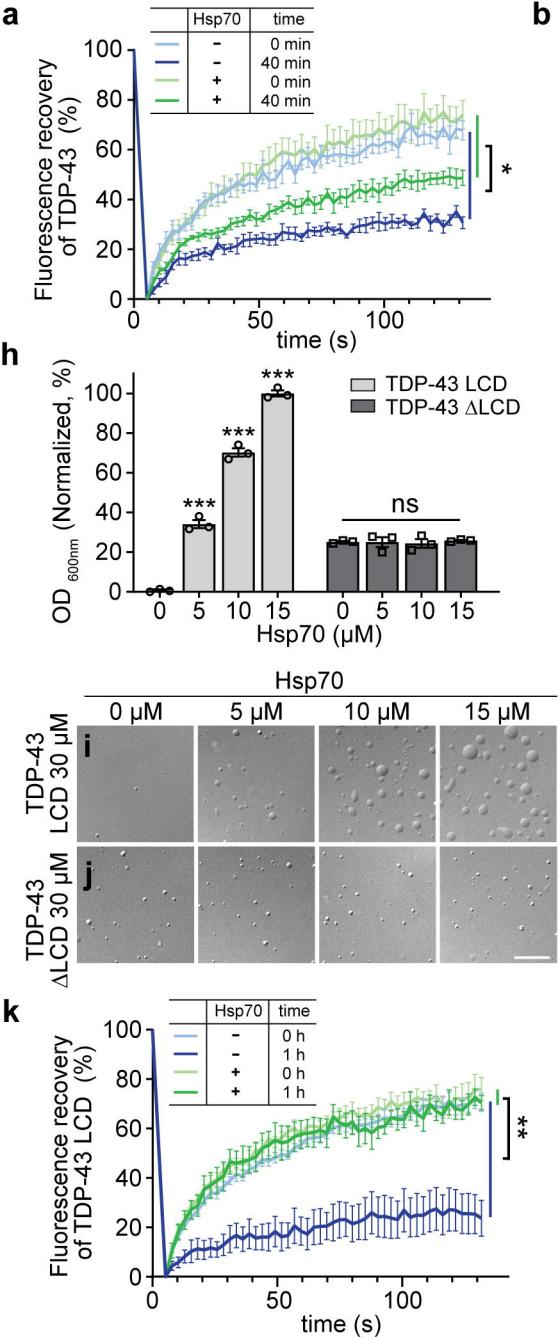
781 **Fig. 5: Structural characterization of the interaction between TDP-43 and Hsp70.**

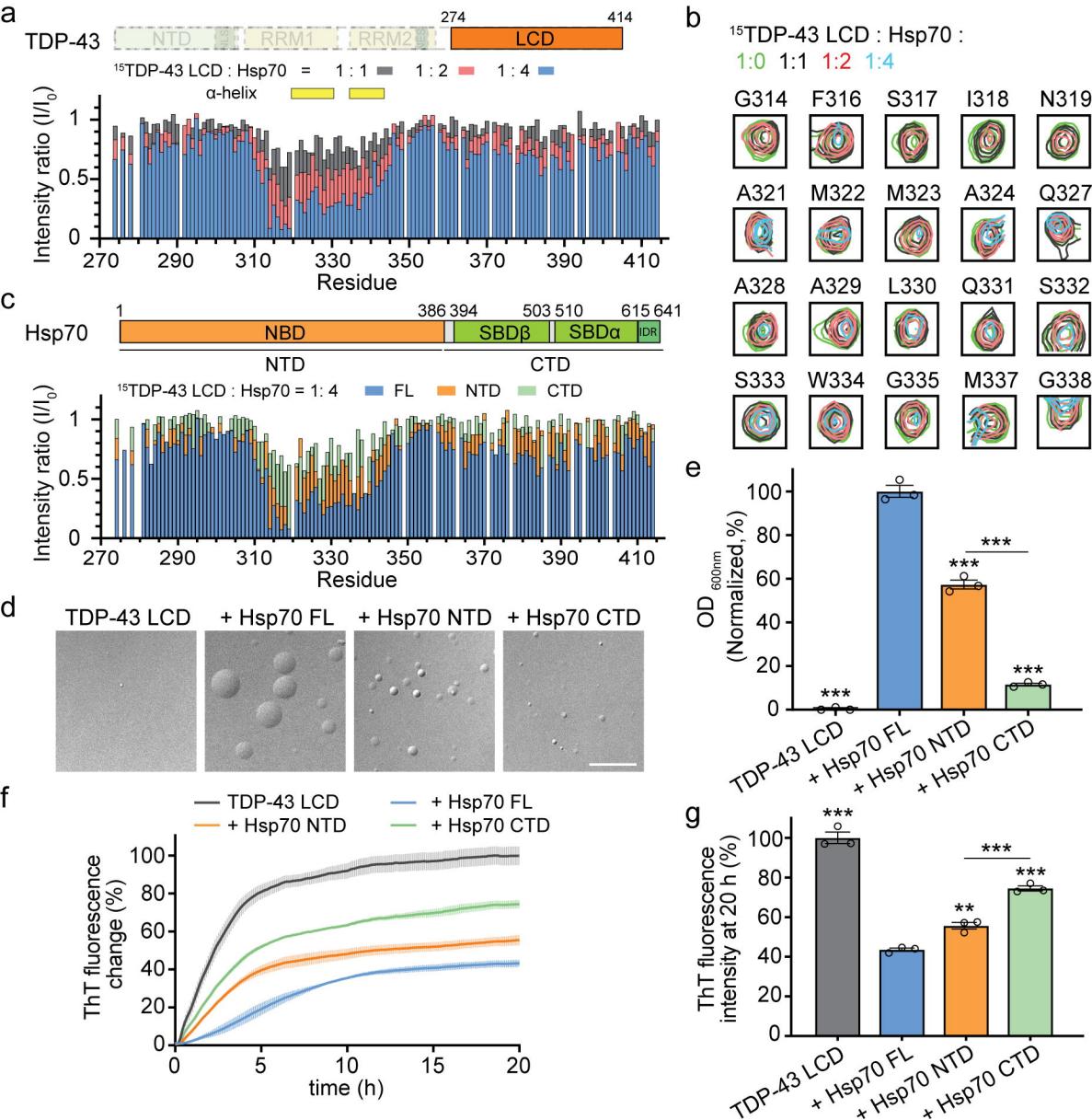
782 **a** Residue-specific intensity changes of signals in the 2D ^1H - ^{15}N HSQC spectra of
783 ^{15}N -labeled TDP-43 LCD (20 μ M) in the presence of different concentrations of Hsp70 as
784 indicated. The yellow blocks represent the previously identified transient \square -helix region in
785 TDP-43 LCD. **b** Representative residues with 2D ^1H - ^{15}N HSQC intensity signal attenuation
786 larger than 50% in (a, 1:4 ratio). **c** Schematic of the Hsp70 domains (upper). NBD,
787 nucleotide-binding domain; SBD, substrate-binding domain (divided into SBD β and SBD \square);
788 IDR, intrinsically disordered region. Residue-specific intensity changes of signals in the 2D
789 ^1H - ^{15}N HSQC spectra of ^{15}N -labeled TDP-43 LCD (20 μ M) with Hsp70 FL or truncations
790 (80 μ M) (lower). **d-e** Representative DIC images (d) and turbidity measurement (e) of
791 TDP-43 LCD (50 μ M) alone or mixed with Hsp70 FL or truncations (75 μ M) in 50 mM NaCl,
792 pH 6.0. **f-g** The ThT fluorescence assay (f) of TDP-43 LCD (20 μ M) with Hsp70 FL or
793 truncations (4 μ M). The graph (g) shows ThT fluorescence intensity at 20 h in f. Mean \pm


794 SEM; n=3 in (e-g). Student's *t* test (e and g); ***p* < 0.01, and ****p* < 0.001. Scale bar, 10 μ m in
795 (d).


796


797 **Fig. 6: Upregulation of Hsp70 suppresses pathological aggregation of ALS-associated**
798 **TDP-43-K181E mutation in the nucleus.**



799 **a-c** Representative illustrations and confocal images of three types of 293T cells when
800 expressing WT or K181E EGFP-TDP-43: Type A, TDP-43 is diffused in the nucleus (a);
801 Type B, TDP-43 forms small NBs or NIs (b); Type C, TDP-43 forms large NIs (c).
802 RFP-Hsp70 is co-localized with TDP-43 in both Type B and Type C cells, but only Type C is
803 immune-positive with anti-pTDP-43 (Ser409/410). **d-e** Classification and quantification of
804 different TDP-43 morphology according to a-c in cells expressing TDP-43-WT (d) or
805 TDP-43-K181E (e). **f-h** The FRAP assay evaluating the impact of OE of Hsp70s (*HSPA1A*
806 and *HSPA8*) in living 293T cells on the dynamics of different types of EGFP-TDP-43-K181E
807 nuclear inclusions. The dashed circles indicate the regions of the same size are photobleached
808 in different types of TDP-43 nuclear inclusions. **i-j** Representative confocal images of 293T
809 cells expressing EGFP-TDP-43 K181E and RFP (i) or RFP-Hsp70 (j), immunostained with
810 pTDP-43 (Ser409/410) antibody and DAPI. **k-l** Quantifications of the percentage of
811 transfected cells showing pTDP-43-positive nuclear inclusions (k) and the area of pTDP-43
812 (Ser409/410) nuclear inclusions normalized to the nuclear area (l). Mean \pm SEM; n = ~100
813 cells in (d-e), n = 8 cells in (f-h), n = ~60 cells in (k) and n = 25 cells in (l). Two-way
814 ANOVA in (f-h), Student's *t* test in (k-l); ****p* < 0.001; ns, not significant. Scale bars, 5 μ m in
815 (a-c and f-h) and 10 μ m (i and j).


Figure 1

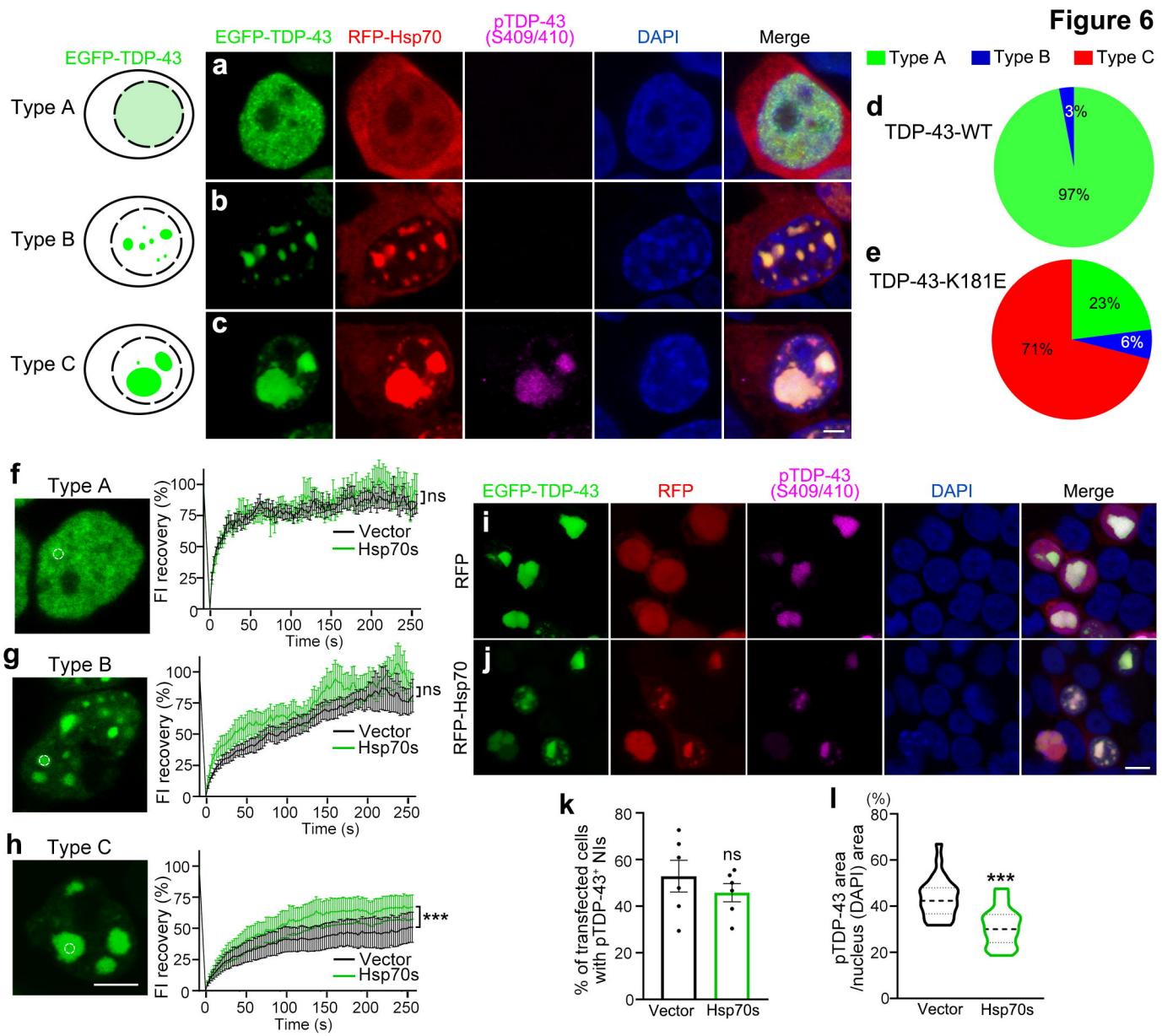


Figure 2

Figure 3

Figure 4

Figure 5

Figure 6