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ABSTRACT: Post-translational modification of proteins with poly(ADP-ribose) (PAR) is an important component of the DNA
damage response. Four PAR synthesis inhibitors have recently been approved for the treatment of breast, ovarian, and prostate can-
cers. Despite its clinical significance, a molecular understanding of PAR function, including its binding partners, remains incomplete.
In this work, we synthesize a PAR photoaffinity probe that captures and isolates endogenous PAR binders. Our method identified
dozens of known PAR-binding proteins and hundreds of novel binders involved in DNA repair, RNA processing, and metabolism.
PAR binding by eight candidates was confirmed using pull-down and/or electrophoretic mobility shift assays. Using PAR probes of
defined lengths, we detected proteins that preferentially bind to 40-mer over 8-mer PAR, indicating that polymer length may regulate
the outcome and timing of PAR signaling pathways. This investigation produces the first census of PAR-binding proteins, provides
a proteome-wide view of length-selective PAR binding, and associates PAR binding with RNA metabolism and the formation of
biomolecular condensates.

Poly(ADP-ribose) (PAR) is an NAD’-dependent post-
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cancers.’ Preclinical data also support repurposing these anti-
cancer drugs as therapeutics for neurodegeneration, cardiac

failure and inflammation.® A major function of PARylation is
the recruitment of proteins through non-covalent interactions.
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Figure 1. PARprolink selectively captures PAR-binding proteins in vitro. (a) PARprolink structure, where each PAR molecule contains one
randomly incorporated cross-linker. (b) PAGE analyses of PARprolink at each synthesis step. (¢) PARprolink (100 nM) was mixed with the
indicated concentrations of protein, irradiated at 350 nm, and PAR—protein cross-link formation detected with streptavidin. (d) Quantification
of streptavidin signal from c, values represent mean + s.d. (n = 3).
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Figure 2. Photo-affinity-based isolation of the endogenous PAR-binding proteome. (a) Proteomics workflow schematic. (b) Volcano plot of
protein enrichment ratios and —Log10(P-values) from proteomics experiments (n = 2). (c) Biotin—PAR pull-downs with candidate PAR-

binding proteins.

Antibody-based approaches have been used to characterize
the PAR interactome, which includes PAR binders, PARy-
lated proteins and indirect interactors, making it difficult to
identify direct PAR—protein interactions.'”'® To date, 92 pro-
teins have been shown to bind PAR directly.'**° This number
is relatively small compared to RNA- and DNA-binding pro-
teins (1,541 and 2,765 respectively).2"?* Therefore, we rea-
soned that many PAR-binding proteins remain undiscovered.
A census of the PAR-binding proteome would provide greater
insight into PAR-dependent pathways, such as DNA repair,
and may reveal novel biology.

Photo-cross-linking strategies have been used widely to
identify proteins that bind to RNA.**?* Cross-linking is advan-
tageous since it covalently traps binders, allowing for strin-
gent washes that remove indirect interactions. Since PAR and
RNA are structurally similar, we envisioned employing a
cross-linking strategy to identify PAR-binding proteins. We
synthesized a photoaffinity probe (PARprolink, Figure la)
consisting of: PAR of defined length, a biotin handle for en-
richment, and a single, randomly incorporated photo-induci-
ble cross-linker to stabilize PAR—protein interactions. PARs
of defined-length were purified from an in vitro enzymatic re-
action using anion exchange chromatography.”® The biotin
handle was incorporated at the 2’-OH-terminus of PAR using
the ELTA bioconjugation technique.’® We took advantage of
the selective modification of RNA hydroxyl groups by acti-
vated carboxylic acids to randomly incorporate the benzophe-
none tethered photo-inducible cross-linker on PAR via a nic-
otinic acid imidazolide (R).?™*° Polymers containing a single
benzophenone modification were purified from a PAR mix-
ture composed mostly of 0, 1 and 2 conjugated nicotinic acid
analogues by Cs-reverse phase HPLC (Figure 1b and Sla).

The specificity of PARprolink for PAR-binding proteins
was examined by incubating the probe with an increasing
amount of either the PAR-binding WWE domain from human
RNF146 or bovine serum albumin (BSA). Mixtures were then
irradiated (350 nm, 10 min), separated by SDS-PAGE and
transferred to nitrocellulose, which selectively retains protein
but not PAR.*® Irradiation of PARprolink incubated with
WWE, but not BSA, formed a protein cross-link that could be
detected with streptavidin in a dose-dependent manner (Fig-
ure 1c and S1b). This signal was dependent on UV irradiation

and the presence of PARprolink, consistent with covalent con-
jugation of the PAR-binding domain to the biotinylated probe.
PARprolink specificity was further demonstrated in a com-
plex background by cross-linking WWE domain dosed in cell
extracts (Figure S1c). Addition of unlabeled PAR reduced the
streptavidin signal on WWE (Figure S1d), suggesting that
cross-link formation depends on the PAR-WWE interaction.

To survey the human PAR-binding proteome, we irradiated
HeLa nuclear extract incubated with either an 8-mer PARpro-
link or biotinylated 8-mer PAR lacking benzophenone (nega-
tive control). PAR—protein cross-links were isolated with
streptavidin, then subjected to on-bead trypsin digestion (Fig-
ure 2a, Figure S2a; Supplementary Data File). LC-MS/MS
analysis of the pull-downs identified 798 proteins with two
unique peptides in two replicates, and their abundance was
quantified using the label-free quantification technology
MaxLFQ (Figure S2b).3! The majority (743, 93%) were at
least two-fold more abundant in the pull-down with PARpro-
link than in the no-cross-linker control (Figure 2b), demon-
strating that the stringent wash removed most non-covalent
interactions. There was no correlation between LFQ intensity
and protein copy number, further indicating a specific enrich-
ment by PARprolink (Figure S2c). The identified proteins
overlap significantly with those identified by two antibody-
based PAR interactome studies (P = 6.05 x 10", 1.10 x 10
13 Figure S2d and Supplementary Datafile).!”'® Although
PARprolink identified a similar number of overall proteins as
either antibody-based study, our cross-linking approach cap-
tured a greater percentage of known PAR binders (39 out of
92 (42%; Figure S2e, Supplementary Datafile).!>?

To further validate that PARprolink identifies direct PAR—
protein interactions, we expressed and purified eight candi-
dates (AK2, CAPRIN1, DDX6, G3BP2, UHRF1, G3BPI,
GAPDH, PARPI1) and subjected them to two PAR-binding
assays. Initially, the candidate proteins were incubated with a
mixture of biotinylated PAR of different lengths, followed by
streptavidin pull-down. The specificity of the assay was vali-
dated with the WWE domain and BSA as a negative control.
We confirmed a direct interaction between PAR and seven out
of eight candidates (Figure 2¢ and S3).
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Table 1. Summary of PAR—protein affinities measured
with EMSAs

Protein Kp (nM) 95% C.I. (nM) R?

AK2 ~46,000 33,000-65,000 0.88
CAPRINI1 ~3,400 1,500-7,700 0.82
G3BP2 ~313 197-497 0.91
DDX6 ~199 134-291 0.94
UHRF1 ~162 115-230 0.92
G3BP1 ~93 73-124 0.95
GAPDH ~54 37-79 0.94
PARPI1 ~27 20-38 0.93

The affinities of these candidates for 16-mer PAR were de-
termined by electromobility shift assays (EMSAs) (Table 1,
Figure S4). Consistent with our qualitative pull-down assay,
the same seven candidates had affinities for PAR within the
range reported for other PAR-binding proteins (Kp = 1 nM—
10 uM).?**2 The dissociation constant for AK2, which was not
detected in the pull-down experiment, was estimated to be 33—
65 uM, suggesting the AK2-PAR interaction may not be
physiologically relevant. Taken together, these results indi-
cate that PARprolink captured a substantial fraction of the
known PAR-binding proteome and enabled the discovery of
novel PAR binders.

Having validated that PARprolink identifies PAR-binding
proteins, we systematically investigated how endogenous pro-
teins bind to different lengths of PAR. Emergent data suggest
that signaling pathways are only activated when PAR length
exceeds a certain threshold. Parthanatos, a PAR-dependent
cell death pathway, is induced more strongly by long PAR
(~60-mer) than short PAR (~15-mer).** In addition, three
DNA repair-related proteins (XPA, DEK, p53) preferentially
bind long PAR, and the Chkl1 kinase is only activated by long
PAR.**¢ HeLa nuclear extract was cross-linked to either 8-
mer or ~40-mer PAR photoaffinity probes. Comparing the in-
tensities between these pull-downs uncovered 156 proteins
that prefer ~40-mer PAR (Log,fold change > 2; Figure 3a and
S5a; Supplementary Datafile). Importantly, we observed the
long PAR-binding preference of DEK,* validating that our
approach identifies length-selective PAR binders.

Intriguingly, our analyses revealed that the central DNA re-
pair protein PARP1 preferred binding to long PAR (~40-
mer/8-mer = 13, Figure 3a). To verify this finding, EMSAs
were performed with recombinant PARP1 and PAR of varied
lengths (Figure 3b and S5b-c). We observed a 16-fold increase
in PARP1-PAR affinity as PAR length increased from 4- to
16-mer. Importantly, the affinity of the PARP1-PAR interac-
tions for the 16- and 32-mers (Kp = 11-110 nM) is in the same
range as the reported affinities between PARP1 and nucleo-
somes (Kp = 2-100 nM).” Given that PAR length is con-
trolled temporally during DNA damage, where long polymers
(>22-mer) are rapidly synthesized by PARP1 and then slowly
degraded to shorter lengths,””® our data suggest that PAR
length may control the dissociation of PARP1 from the chro-
matin during DNA repair.
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Figure 3. Defined-length probes reveal length-specific PAR—
protein interactions. (a) Volcano plot of protein enrichment ratios
and —Log;o P-values from proteomics experiments using either 8-
or ~40-mer probes (n = 2). (b) The effect of PAR length on the
affinity towards PARP1 measured with EMSA (the mean + s.d.;
n = 3). (c) Gene ontology analysis of proteins that were more
abundant in the ~40-mer pull-down (enrichment ratio > 4).

Our investigation represents the first census of PAR bind-
ers. We took this opportunity to analyze global properties of
the PAR-binding proteome. Gene ontology (GO) analysis on
all 743 direct PAR binders (Figure 2) revealed the expected
enrichment of several DNA repair pathways (Figure S6).!
Yet, the enrichments of physiological processes such as RNA
splicing, RNA transport and DNA replication were even more
significant. Notably, long PAR binders are enriched with pro-
teins involved in nucleic acid metabolism, such as DNA repair
and RNA splicing (Figure 3c). STRING protein association
network analyses mapped two central cores—one involved in
DNA repair and chromatin remodeling, and the other in RNA
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Figure 4. Global analyses of the human PAR-binding proteome. (a) STRING network analysis of high-confidence PAR-binding candidates
(enrichment ratio > 8, P < 0.05, 416 genes) displaying at least one connection to another candidate. (b) Enrichment of known PAR-binding
and other domains. (c) pI distribution among PAR-, RNA- and DNA-binding proteins.

splicing and translation—along with distal clusters involved
in metabolism and tRNA synthesis (Figure 4a and S7). Con-
sistent with recent proteomic studies identifying ADP-
ribosylated substrates,'®'® our analysis of the PAR-binding
proteome strengthens the view that PAR has roles beyond
DNA repair in metabolism and RNA regulation. >

We next assessed the enrichment of protein domains from
the Pfam database in our dataset (Figure 4b and S8a-b; Sup-
plementary Datafile).*'™ We observed a significant enrich-
ment of multiple helicase-associated domains among direct
PAR binders. Consistently, helicase activity is the most en-
riched molecular function based on GO analyses (Figure S6).
Several known PAR-binding domains, such as WWE domain
and macrodomain were also enriched. Amongst them, the
most significant was the Tri-RGG motif, with 12 out of 16
Tri-RGG-containing proteins in the human proteome identi-
fied. In addition, we observed the enrichment of DNA/RNA-
binding domains known to bind PAR, e.g., the RNA recogni-
tion motif and OB-fold.* Therefore, it is not surprising that a
significant amount of PAR binders are also known DNA- or
RNA-binding proteins (P = 3.57 x 10", 2.00 x 107'3%; Supple-
mentary datafile).?'*> RNA- and DNA-binding proteins tend
to have higher isoelectric points (median pI = 7.93 and 7.38).
Unexpectedly, the median isoelectric point of PAR-binding
proteins was lower than the proteome (pl = 6.81 vs 7.15, Fig-
ure 4c and S8c-f). Together, these data suggest a specific in-
teraction between PAR and particular nucleic acid-binding
domains, rather than a non-specific enrichment of positively-
charged proteins.

In addition to defined motifs or domains, PAR-binding pro-
teins were statistically enriched with proteins containing low-

complexity sequence (P < 5.5 x 10°%),%6 which is critical for

the formation of biomolecular condensates.*’ Indeed, PAR-
prolink identified PAR-binding proteins are enriched with
components of biomolecular condensates such as DNA repair
foci, nucleoli and stress granules (P = 8.36 x 10!, 2.34 x 10-
37.5.97 x 10°%; Supplementary Datafile).***° Notably, PARy-
lation of the DNA repair factor p53 and the nucleolar helicase
DDX21 is dependent on their ability to bind PAR.>"** Con-
sistent with these studies, comparison with proteomics anal-
yses of ADP-ribosylated substrates revealed that most direct
PAR binders can also be ADP-ribosylated (647/743, 87%, P
=1.43 x 10%%; Supplementary datafile).>* Taken together, our
data suggest that one or more PARylation events may trigger
a wave of PAR binding-dependent PARylation in their vicin-
ity, building extensive PAR—protein interaction networks to
form biomolecular condensates in cells.®**

This work describes the first proteomics method developed
to identify direct PAR binders. Our census provides a global
view of PARylation in DNA repair, RNA regulation and bio-
molecular condensate formation, thereby serving as a rich re-
source to explore these frontiers in PAR biology.
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