

The N-terminal Tail of *C. elegans* CENP-A Interacts with KNL-2 and is Essential for Centromeric Chromatin Assembly

Christian de Groot^{*1,2}, Jack Houston^{*1}, Bethany Davis^{1,2,6}, Adina Gerson-Gurwitz^{1,2},
Joost Monen^{1,5}, Karen Oegema^{1,3,4}, Andrew K. Shiu^{1,2,3}, Arshad Desai^{1,3,4@}

¹Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA

²Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA

³Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA

⁴Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA

⁵School of Theoretical & Applied Science, Ramapo College of New Jersey, Mahwah, NJ

⁶Dept. of Biology and Chemistry, Embry-Riddle Aeronautical University, Prescott, AZ

*co-first authors

@: Corresponding author

Email: abdesai@ucsd.edu

Phone: (858)-534-9698

Fax: (858)-534-7750

Address: CMM-E Rm 3052, 9500 Gilman Dr, La Jolla, CA 92093-0653

Running Title: Essential role of the N-Tail of CENP-A in *C. elegans*

Key words: centromere, chromosome segregation, mitosis, aneuploidy, kinetochore, CenH3, CENPA, histone tail

1 ABSTRACT

2 Centromeres are epigenetically defined by the presence of the centromere-specific histone
3 H3 variant CENP-A. A specialized loading machinery, including the histone chaperone
4 HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is
5 missing from multiple lineages, including nematodes, which rely on a CENP-A-dependent
6 centromere. Here, we show that the extended N-terminal tail of *C. elegans* CENP-A contains
7 a predicted structured region that is essential for centromeric chromatin assembly. Removal
8 of this region of the CENP-A N-Tail prevents loading, resulting in failure of kinetochore
9 assembly and defective chromosome condensation. By contrast, the N-Tail mutant CENP-A
10 localizes normally in the presence of endogenous CENP-A. The portion of the N-Tail
11 containing the predicted structured region binds to KNL-2, a conserved SANTA and Myb
12 domain-containing protein (referred to as M18BP1 in vertebrates), that is specifically involved
13 in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode
14 *C. briggsae*, despite divergence of the N-Tail and KNL-2 primary sequences. Thus, the
15 extended N-Tail of CENP-A is essential for CENP-A chromatin assembly in *C. elegans* and
16 partially substitutes for the function of Scm3/HJURP, in that it mediates an interaction of the
17 specialized histone fold of CENP-A with KNL-2. These results highlight an evolutionary
18 variation on centromeric chromatin assembly in the absence of a dedicated CENP-A-specific
19 chaperone/targeting factor of the Scm3/HJURP family.

20 INTRODUCTION

21 Centromeres are specialized chromosomal loci that direct chromosome segregation.
22 In most species, active centromeres are defined by the presence of CENP-A, a histone
23 variant that replaces histone H3 in centromeric nucleosomes (Kixmoeller et al., 2020; Mitra
24 et al., 2020). CENP-A provides the physical foundation for assembly of the kinetochore, a
25 multiprotein complex mediating spindle microtubule attachment to chromosomes (Musacchio
26 and Desai, 2017). The cues leading to the centromere-restricted localization of CENP-A are
27 being actively investigated. The underlying centromeric DNA is not conserved and, with the
28 exception of budding yeasts, neither necessary nor sufficient to propagate CENP-A chromatin
29 (Allshire and Karpen, 2008; McKinley and Cheeseman, 2016).

30 A segment of the histone fold domain (HFD) of CENP-A, known as the CENP-A
31 targeting domain (CATD), when transferred into canonical histone H3 is sufficient to confer
32 centromere localization (Black et al., 2004). The CATD of CENP-A interacts with a CENP-A-
33 specific histone chaperone, known as Holliday junction repair protein (HJURP) in vertebrates
34 and Scm3 in fungi (Dunleavy et al., 2009; Foltz et al., 2009). This interaction is essential for
35 CENP-A centromere targeting during mitotic exit (Foltz et al., 2009; Jansen et al., 2007).
36 However, HJURP/Scm3 is not conserved in all species that build centromeres using CENP-
37 A, including insects and nematodes (McKinley and Cheeseman, 2016). In *Drosophila*
38 *melanogaster*, there is compelling evidence that the unrelated protein Cal1 acts as a
39 functional homologue of HJURP/Scm3 (Chen et al., 2014; Erhardt et al., 2008; Mellone et al.,
40 2011). By contrast, in *C. elegans*, no HJURP/Scm3-like activity has been identified to date.

41 In addition to promoting CENP-A nucleosome assembly, HJURP/Scm3 proteins target
42 the CENP-A/H4-HJURP/Scm3 prenucleosomal complex to the specific location of the
43 centromere by interaction with centromeric DNA/chromatin-bound targeting factors. In
44 budding yeast, the CBF3 complex specifically recognizes centromeric DNA and its subunit

45 Ndc10 interacts with HJURP/Scm3 of the prenucleosomal complex to localize new CENP-A
46 nucleosome assembly (Cho and Harrison, 2011). Outside of budding yeasts, where the CBF3
47 complex is not present, the Mis18 complex is the primary candidate for recognizing existing
48 centromeric chromatin domains and targeting the deposition of new CENP-A via an
49 interaction with HJURP/Scm3. The Mis18 complex is composed of Mis18 and/or KNL-
50 2/M18BP1, depending on the species: Mis18 α , Mis18 β & M18BP1 in humans (Fujita et al.,
51 2007); Mis18 only in *S. pombe* (Hayashi et al., 2004; Pidoux et al., 2009; Williams et al.,
52 2009); KNL-2 only in *C. elegans* (Maddox et al., 2007) and *Arabidopsis* (Lermontova et al.,
53 2013). *S. pombe* Mis18 and human Mis18 α/β interact with HJURP/Scm3 *in vitro* (Pan et al.,
54 2019; Pidoux et al., 2009; Wang et al., 2014) and Mis18 complex-mediated CENP-A
55 recruitment can be bypassed by artificial tethering of HJURP/Scm3 to chromatin (Barnhart et
56 al., 2011; Foltz et al., 2009; Ohzeki et al., 2012). In human cells, centromere localization of
57 the Mis18 complex precedes that of the CENP-A-H4-HJURP prenucleosomal complex during
58 mitotic exit-coupled new CENP-A chromatin assembly (Foltz et al., 2009; Jansen et al., 2007).
59 The Mis18 complex is proposed to recognize existing centromeric chromatin at least in part
60 by binding to CENP-C, the reader of CENP-A nucleosomes that directs kinetochore assembly
61 (Kato et al., 2013; Moree et al., 2011). However, in *C. elegans*, KNL-2 localizes to chromatin
62 independently of CENP-C (Maddox et al., 2007) and, even in non-mammalian vertebrates,
63 the Mis18 complex directly recognizes CENP-A nucleosomes (French et al., 2017; Hori et al.,
64 2017). KNL-2/M18BP1 family proteins contain a conserved Myb-like DNA binding domain
65 and a SANTA domain whose functions independent of CENP-C association are unclear
66 (French and Straight, 2019; Maddox et al., 2007; Ohzeki et al., 2012; Zhang et al., 2006).
67 Interestingly, in fungi where KNL-2/M18BP1 proteins are absent, Myb domains can be found

68 in HJURP/Scm3 proteins (Sanchez-Pulido et al., 2009), suggesting potential fusion of
69 multiple functions within a single polypeptide.

70 Here, we investigate CENP-A chromatin in *C. elegans*, which requires KNL-2/M18BP1
71 for its assembly but lacks an HJURP/Scm3 family member. *C. elegans* is holocentric, with
72 condensed mitotic chromosomes having two “stripes” of CENP-A chromatin—one per sister
73 chromatid—on geometrically opposite surfaces (Maddox et al., 2007; Melters et al., 2012).
74 Genomic approaches have localized CENP-A and KNL-2 to broad permissive domains in the
75 *C. elegans* genome that are transcriptionally inactive (Gassmann et al., 2012), although
76 restriction to specific sites has also been suggested (Steiner and Henikoff, 2014). We focused
77 on the unusually long amino-terminal tail (N-Tail) of *C. elegans* CENP-A, which, unlike the N-
78 termini of CENP-A from other species, is predicted to harbor a region with α -helical secondary
79 structure. Analysis of the divergent N-Tails of CENP-A family members have implicated them
80 in kinetochore assembly and epigenetic stability of centromeric chromatin (Fachinetti et al.,
81 2013; Folco et al., 2015; Ravi et al., 2010). Employing single copy, targeted transgene
82 insertion to replace endogenous CENP-A, we find that the N-Tail of *C. elegans* CENP-A is
83 essential for CENP-A loading, and we link this essential function to a direct interaction
84 between the N-Tail and the loading factor KNL-2/M18BP1. Interaction of the extended N-Tail
85 of *C. elegans* CENP-A to KNL-2/M18BP1 represents an evolutionary variation to
86 HJURP/Scm3-mediated targeting of the specialized histone fold of CENP-A to centromeres.

87 **RESULTS**

88 **The *C. elegans* CENP-A N-Tail has a Predicted Structured Region that is Essential for**
89 **Viability**

90 The *C. elegans* CENP-A N-Tail is unusually long at 189 amino acids and, based on
91 computational analysis (performed using PSIPRED; <http://bioinf.cs.ucl.ac.uk/psipred/>), is
92 predicted to be α -helical in the first 100 amino acids and unstructured afterwards (Fig. 1A).
93 The presence of a structured region in the N-tail is unexpected as the CENP-A tail is often
94 short (e.g. in fission yeast or humans, where it is 20 and 39 aa, respectively) and, even in
95 other species with extended CENP-A N-Tails—such as *D. melanogaster* (123 aa) or *S.*
96 *cerevisiae* (130 aa)—are not predicted to have any secondary structure (Fig. 1A).

97 To test the functional significance of the predicted structured region of the *C. elegans*
98 CENP-A N-Tail, we developed a transgene-based system to replace endogenous CENP-A
99 (named HCP-3 and referred to here as CENP-A^{HCP-3}) in *C. elegans* with engineered N-Tail
100 mutants. In brief, the nucleotide sequence of the *CENP-A*^{hcp-3} coding region was altered to
101 maintain the native amino acid sequence while enabling selective RNAi-mediated depletion
102 of endogenous CENP-A^{HCP-3}; in addition, an N-terminal GFP tag was added to monitor
103 localization (Fig. S1). The wildtype, as well as two mutant transgenes ($\Delta 109$, which removes
104 the predicted structured region, and $\Delta 184$, which removes the majority of the N-Tail), were
105 inserted in single copy at a fixed genomic location harboring a Mos transposon insertion (Fig.
106 1B; Fig. S1). The re-encoded *gfp::CENP-A*^{hcp-3} transgene fully rescued embryonic lethality
107 observed following depletion of endogenous CENP-A^{HCP-3} by RNAi as well as the lethality of
108 a deletion mutant (*hcp-3(ok1892)*, referred to as CENP-A^{hcp-3 Δ} ; Fig 1C). By contrast, deletion
109 of the predicted structured region ($\Delta 109$) and of the majority of the N-Tail ($\Delta 184$) resulted in
110 fully penetrant embryonic lethality (Fig. 1C). Immunoblotting with an antibody raised to the
111 unstructured linker (amino acids 105-183 of the N-Tail) indicated that the $\Delta 109$ mutant was

112 expressed similarly to endogenous CENP-A^{HCP-3} and the transgene-encoded WT
113 GFP::CENP-A^{HCP-3} (Fig. 1D). Hence, the observed lethality is not because the Δ109 N-Tail
114 mutant is not expressed. We therefore conclude that the predicted structured region of the N-
115 Tail of CENP-A is essential for viability of *C. elegans* embryos.

116 ***The CENP-A^{HCP-3} N-Tail Deletion Mutant Exhibits a Kinetochore-Null Phenotype in One-
117 Cell Embryos***

118 We next assessed the phenotype observed when endogenous CENP-A^{HCP-3} was replaced by
119 the Δ109 N-Tail mutant. We crossed an mCherry::H2b marker into strains harboring single-
120 copy transgenes expressing WT or Δ109 GFP::CENP-A^{HCP-3}, depleted endogenous CENP-
121 A^{HCP-3} by RNAi, and imaged one-cell embryos. As a control, we also depleted CENP-A^{HCP-3}
122 in the absence of any transgene. Depletion of CENP-A resulted in the characteristic
123 kinetochore-null phenotype, with two clusters of chromatin—one from each pronucleus—
124 instead of a metaphase plate, and a failure of segregation (Fig. 2A; (Desai et al., 2003;
125 Oegema et al., 2001). This severe phenotype was fully rescued by transgene-encoded RNAi-
126 resistant WT GFP::CENP-A^{HCP-3}. By contrast, the observed phenotype for the Δ109 N-Tail
127 mutant was similar to that of removal of CENP-A^{HCP-3} (Fig. 2A). Thus, deletion of the first 109
128 amino acids of the N-Tail of CENP-A^{HCP-3} results in a chromosome segregation phenotype
129 that is equivalent to CENP-A^{HCP-3} removal in the *C. elegans* embryo.

130 ***The CENP-A^{HCP-3} N-Tail Deletion Mutant Does Not Accumulate on Chromatin and Fails
131 to Support Kinetochore Assembly***

132 Stable incorporation of CENP-A into chromatin in yeast and humans involves a region
133 of the histone fold, referred to as the CATD, which is specifically bound by the chaperone
134 Scm3/HJURP (Black et al., 2007; Cho and Harrison, 2011; Hu et al., 2011). In these species,

135 the N-tail is not essential for CENP-A centromere targeting, and alterations of the N-Tail do
136 not phenocopy loss of CENP-A (Chen et al., 2000; Fachinetti et al., 2013; Folco et al., 2015).
137 The similar phenotypes observed for CENP-A^{HCP-3} removal and for the Δ109 N-Tail mutant of
138 *C. elegans* CENP-A suggested that the Δ109 N-Tail mutant, in contrast to the N-Tail mutants
139 in other species, does not accumulate on centromeric chromatin. To test this idea, we imaged
140 WT and Δ109 GFP::CENP-A^{HCP-3} in a strain co-expressing mCherry::H2b, and quantified the
141 GFP signal on metaphase chromosomes. In the presence of endogenous CENP-A^{HCP-3}, both
142 WT and Δ109 GFP::CENP-A^{HCP-3} localized to the diffuse kinetochores on the poleward faces
143 of the holocentric mitotic chromosomes (**Fig. 2B**) and quantification of fluorescence intensity
144 indicated equivalent localization of both (**Fig. 2C**). However, in the absence of endogenous
145 CENP-A^{HCP-3}, localization of Δ109 GFP::CENP-A^{HCP-3} was greatly reduced relative to WT
146 GFP::CENP-A^{HCP-3} (**Fig. 2B,C**). Thus, Δ109 GFP::CENP-A^{HCP-3} fails to localize to chromatin
147 on its own.

148 The absence of the Δ109 CENP-A^{HCP-3} mutant in chromatin should result in a
149 kinetochore assembly defect. To confirm that this was indeed the case, we analyzed the
150 localization of an RNAi-resistant mCherry-fusion of KNL-1, an outer kinetochore scaffold
151 protein (Desai et al., 2003; Espeut et al., 2012). We introduced the transgene expressing this
152 fusion into the strain expressing either WT or Δ109 GFP::CENP-A^{HCP-3}, depleted endogenous
153 KNL-1 and CENP-A^{HCP-3}, and imaged and quantified the KNL-1::mCherry signal. This
154 analysis revealed loss of KNL-1::mCherry localization in the Δ109 GFP::CENP-A^{HCP-3} mutant
155 was analogous to the CENP-A^{HCP-3} depletion (**Fig. 2D,E**). Thus, the Δ109 CENP-A^{HCP-3}
156 mutant does not form centromeric chromatin, resulting in a failure in kinetochore assembly.

157 ***The Failure of the CENP-A^{HCP-3} N-Tail Deletion Mutant to Accumulate on Chromatin is***
158 ***Not Due to a Kinetochore Assembly Defect***

159 CENP-A^{HCP-3} is essential for kinetochore assembly (Oegema et al., 2001). The severe
160 reduction of $\Delta 109$ CENP-A^{HCP-3} on condensed chromatin could be either due to a defect in its
161 loading or a secondary consequence of its inability to support kinetochore assembly. To
162 distinguish between these possibilities, we prevented kinetochore assembly by depleting
163 CENP-C^{HCP-4} or KNL-1, which are recruited downstream of CENP-A^{HCP-3} to build the outer
164 kinetochore (Desai et al., 2003; Oegema et al., 2001), and analyzed the effect on WT
165 GFP::CENP-A^{HCP-3} chromatin accumulation; endogenous CENP-A^{HCP-3} was also depleted.
166 As expected from prior work, both CENP-C^{HCP-3} and KNL-1 depletions resulted in a
167 kinetochore null phenotype. However, CENP-A^{HCP-3} accumulation on chromatin was similar
168 to WT controls (**Fig. 3A,B**), indicating that a failure in kinetochore assembly is not the reason
169 for the loss of CENP-A^{HCP-3} chromatin localization. Thus, the absence of $\Delta 109$ CENP-A^{HCP-3}
170 on chromatin is likely due to a defect in its loading, rather than a consequence of its inability
171 to support kinetochore assembly.

172 CENP-A^{HCP-3} depletion, in addition to the kinetochore-null phenotype, also leads to
173 defects in condensation of the holocentric *C. elegans* chromosomes (Maddox et al., 2007;
174 Maddox et al., 2006). By contrast, preventing kinetochore formation by depletion of CENP-
175 C^{HCP-4} does not result in a severe condensation defect (Maddox et al., 2006). We therefore
176 compared chromosome condensation in CENP-A^{HCP-3} and CENP-C^{HCP-4} depletion to that in
177 the $\Delta 109$ CENP-A^{HCP-3} tail mutant. This analysis focused on sperm pronuclei as they are
178 formed prior to injection of the dsRNA employed to deplete endogenous CENP-A^{HCP-3} and
179 are therefore free of potential meiotic defects (Maddox et al., 2006). Chromosome
180 condensation in the $\Delta 109$ CENP-A^{HCP-3} mutant resembled that resulting from CENP-A^{HCP-3}
181 depletion and not CENP-C^{HCP-4} depletion, providing additional support that the $\Delta 109$ mutant
182 is compromised for its loading onto chromatin. Taken together, the results from these two

183 distinct assays argue that the severe reduction of $\Delta 109$ mutant of CENP-A^{HCP-3} on chromatin
184 is not due to an inability to support kinetochore assembly but due to a defect in its loading.

185 ***The Predicted α -Helical Region of the CENP-A Tail Interacts with the CENP-A Loading***

186 ***Factor KNL-2***

187 The above results implicate the predicted structured region of the N-Tail of *C. elegans* CENP-
188 A^{HCP-3} in its loading on chromatin. In species with Scm3/HJURP, a key step in the loading
189 reaction is the interaction of the Scm3/HJURP-CENP-A complex with the Mis18 complex,
190 which includes the Myb domain-containing protein KNL-2 (also known as Mis18BP1, based
191 on its association with Mis18 α/β in human cells (French et al., 2017; Fujita et al., 2007;
192 Maddox et al., 2007; Pan et al., 2019; Wang et al., 2014); to date, a Mis18 α/β homolog has
193 not been identified in *C. elegans*). In addition, Scm3/HJURP functions as a chaperone for
194 assembly of CENP-A nucleosomes (Dunleavy et al., 2009; Foltz et al., 2009; Pidoux et al.,
195 2009; Shuaib et al., 2010; Williams et al., 2009).

196 To determine how the N-Tail of CENP-A^{HCP-3} contributes to its loading, we tested if it
197 interacts with KNL-2. KNL-2 family proteins are characterized by a conserved Myb-like DNA
198 binding domain and a predicted folded N-terminal domain referred to as the SANTA domain
199 (Fig. 4A; (Maddox et al., 2007; Zhang et al., 2006); in addition, they possess an
200 acidic/aromatic tail at the C-terminus (Fig. S2A). Using yeast two-hybrid analysis, we
201 observed a robust interaction between a segment of the middle region of KNL-2 (residues
202 267 to 470; predicted to be unstructured) and the predicted α -helical region of the N-Tail of
203 CENP-A^{HCP-3}; an interaction between KNL-2 and CENP-A^{HCP-3} was also reported in a large-
204 scale two-hybrid screen of proteins essential for *C. elegans* embryogenesis (Boxem et al.,
205 2008). This interaction was not observed with full-length KNL-2 but, as no interaction has
206 been observed with this fusion, this may be a false negative due to the full-length protein not

207 being properly expressed/folded in yeast. Importantly, an interaction between similar regions
208 of CENP-A^{HCP-3} and KNL-2 was also observed for the *C. briggsae* proteins (**Fig. 4B**), despite
209 primary sequence divergence (23.7% identity/43.5 % similarity for CENP-A^{HCP-3} N-Tail &
210 42.9% identity/55.1% similarity for KNL-2 middle region; **Fig. S2B**). The interaction was
211 species-specific, as the *C. briggsae* CENP-A^{HCP-3} N-Tail did not interact with *C. elegans* KNL-
212 2 middle region and vice versa (**Fig. 4B**).

213 To confirm the two-hybrid interaction, we performed pull-down assays with a purified
214 MBP-His6 fusion of the CENP-A^{HCP-3} N-Tail immobilized on nickel agarose and *in vitro*-
215 translated MBP-KNL-2 fragments. We first screened a series of overlapping fragments of
216 KNL-2 and found that, consistent with the yeast two-hybrid results, a fragment containing
217 residues 301-500 interacted with the N-tail (**Fig. 4C,E**). We next analyzed a series of
218 truncated fragments in this region and found that a central region of 50 amino acids (376-
219 425) was essential for the interaction (**Fig. 4D,E**). However, this 50 amino acid region on its
220 own did not interact with the CENP-A^{HCP-3} N-Tail (**Fig. 4E**), suggesting that residues on either
221 side are important for the observed interaction. We conclude that the predicted α -helical
222 region of the N-Tail of CENP-A^{HCP-3} that is important for chromatin loading *in vivo* interacts
223 directly with the CENP-A^{HCP-3} loading factor KNL-2 *in vitro* and that this interaction is
224 conserved in a related nematode species with a significantly diverged N-Tail sequence.

225 **DISCUSSION**

226 Here, we investigated how CENP-A chromatin is assembled in the absence of a
227 HJURP/Scm3 family protein in *C. elegans*. We found that the unusually long N-tail of *C.*
228 *elegans* CENP-A, which contains a predicted α -helical region, is required for CENP-A loading
229 onto chromatin. By contrast, the divergent N-Tails of CENP-A family members have been
230 proposed to contribute to kinetochore assembly and to epigenetic stability of centromeric
231 chromatin (Fachinetti et al., 2013; Folco et al., 2015; Ravi et al., 2010), but have not been
232 implicated in assembly of CENP-A chromatin. By comparing deletion of the predicted
233 structured region of the CENP-A N-Tail to two other perturbations that prevent kinetochore
234 assembly, we show that the absence of N-Tail-mutant CENP-A^{HCP-3} on chromatin is due to a
235 failure in loading and not a consequence of defective kinetochore assembly. In addition, as
236 the N-Tail-mutant CENP-A^{HCP-3} localizes normally in the presence of endogenous CENP-
237 A^{HCP-3}, the absence of localization cannot be attributed to misfolding or inability to interact
238 with histone H4. Thus, the N-Tail effectively acts as an intramolecular-targeting signal,
239 analogous to the CATD in HJURP/Scm3 containing species.

240 HJURP/Scm3 has two roles—one is to act as a chaperone promoting assembly of
241 CENP-A nucleosomes, and the second is to target this assembly reaction to centromeric
242 chromatin through an interaction with centromere recognition factors (Ndc10 in budding
243 yeast, Mis18 in fission yeast, KNL-2 in *C. elegans* and plants, Mis18 complex in vertebrates).
244 Through two-hybrid and in vitro biochemical assays, we provide evidence that the *C. elegans*
245 CENP-A N-Tail possesses the latter activity—it interacts directly with the middle region of
246 KNL-2 and this interaction is preserved in a species-specific manner in *C. briggsae*, despite
247 significant primary sequence divergence (especially in the N-Tail sequence). A recent study
248 independently described a CENP-A^{HCP-3} N-tail – KNL-2 interaction that is consistent with what
249 we report here (Prosée et al., 2020). Unfortunately, we have been unable to selectively

250 mutate this interaction and assess the consequences *in vivo*—this will be important future
251 work. An obvious question emerging from our results is whether the N-tail of CENP-A^{HCP-3}
252 also exhibits chaperone activity, analogous to HJURP/Scm3. In preliminary work, we have
253 not observed an interaction between the N-Tail and the histone-fold of CENP-A^{HCP-3} in two-
254 hybrid and *in vitro* binding assays, which would argue against presence of chaperone activity.
255 However, significant more effort needs to be placed on reconstitutions with purified
256 components to address whether these negative results are indeed due to absence of
257 chaperone activity. RNAi experiments have implicated the *C. elegans* ortholog of the histone-
258 binding WD40 domain chaperone RbAp46/48, LIN-53, in CENP-A chromatin assembly,
259 suggesting that it may work together with the N-tail – KNL-2 interaction described here to
260 assemble centromeric chromatin (Lee et al., 2016).

261 In conclusion, we provide evidence for an evolutionary variation on CENP-A chromatin
262 assembly in which the N-tail of CENP-A has acquired part of the function of the specialized
263 chaperone/targeting factor HJURP/Scm3 and become essential for loading onto chromatin.
264 This represents a distinct solution from *Drosophila*, which also lacks HJURP/Scm3 but
265 appears to have convergently evolved an HJURP/Scm3-like chaperone called Cal1 (Chen et
266 al., 2014; Erhardt et al., 2008; Medina-Pritchard et al., 2020; Phansalkar et al., 2012).
267 Understanding how different species build CENP-A chromatin at restricted genomic locations
268 should provide insight into the general principles by which the epigenetic state of centromeric
269 chromatin is defined and propagated.

270 **MATERIALS AND METHODS**

271 ***C. elegans* strains**

272 *C. elegans* strains (genotypes in *Table S1*) were maintained at 20°C. Engineered
273 GFP::CENP-A^{HCP-3} transgenes were cloned into pCFJ151 and injected into strain EG4322.
274 The KNL-1::mCherry transgene was cloned into pCFJ178 and injected into EG6700
275 (Frokjaer-Jensen et al., 2008). The amplified *hcp-3* genomic locus was flanked on the 5' end
276 by 5'-GACGACGCTCCGAATCATTGGGAG-3' and on the 3' end by 5'-
277 CTATTGTCAAATAATAAGATTCAATTGTAAATGAGAACATTTATTTAA-3'. For the
278 GFP::CENP-A^{HCP-3} transgenes the GFP sequence was inserted following the start codon and
279 preceded by a GGRAGSGGRAGSGGRAGS linker. All exons were reencoded in *CENP-A*<sup>hcp-
280 3</sup> to allow RNAi-mediated depletion of endogenous CENP-A without affecting the introduced
281 transgene. Single copy insertion was confirmed by PCR. Transgenic strains were crossed
282 into various marker or deletion strains using standard genetic procedures.

283 ***RNA-mediated interference (RNAi)***

284 Double-stranded RNAs were generated using oligos (*Table S2*) to amplify regions from N2
285 genomic DNA or cDNA. PCR reactions were used as templates for *in vitro* RNA production
286 (Ambion), and the RNA was purified using a MegaClear kit (Ambion). Eluted RNA from the
287 T3 and T7 reactions were mixed together, combined with 3x soaking buffer (32.7 mM
288 Na₂HPO₄, 16.5 mM KH₂PO₄, 6.3 mM KCl, 14.1 mM NH₄Cl), and annealed (68°C for 10 min.,
289 37°C for 30 min). dsRNA was injected into L3/L4 hermaphrodite worms 38-42 hours prior to
290 imaging. For double depletions dsRNAs were mixed in equal amounts (≥1-3 mg/ml for each
291 RNA).

292 ***Immunoblotting***

293 For immunoblotting a mixed population of worms growing at 20°C on an NGM+OP50 agar
294 plate were collected with M9+0.1% TritonX-100, pelleted, and washed. Worms were vortexed
295 in a mix of 100 µL M9+0.1% TritonX-100, 50 µL 4x sample buffer, and 100 µL glass beads
296 and boiled then vortexed and boiled again. Samples were run on an SDS-PAGE gel,
297 transferred to a PVDF membrane, probed with 1 µg/ml affinity-purified
298 anti-CENP-A^{HCP-3} (rabbit; antigen was CENP-A^{HCP-3}(105-183)::6xHis) and detected using an
299 HRP-conjugated secondary antibody (rabbit or mouse; GE Healthcare). For antibody
300 production CENP-A^{HCP-3}(105-183)::6xHis was expressed in *E. coli*, purified, and injected into
301 rabbits (Covance). Serum was affinity purified on a HiTrap NHS column to which CENP-A<sup>HCP-
302 3</sup>(105-183)::6xHis was covalently coupled.

303 ***Yeast Two Hybrid Screens***

304 Yeast two hybrid analysis was performed according to the manufacturer guidelines
305 (Matchmaker; Clontech Laboratories, Inc.). Genes of interest were cloned from wildtype (N2)
306 *C. elegans* or *C. briggsae* cDNA.

307 ***Imaging and Quantification***

308 For all experiments images were acquired using an inverted Zeiss Axio Observer Z1 system
309 with a Yokogawa spinning-disk confocal head (CSU-X1), a 63x 1.4 NA Plan Apochromat
310 objective, and a QuantEM 512SC EMCCD camera (Photometrics). Environmental
311 temperatures during experimental acquisitions averaged 19°C.

312 For live imaging of one-cell embryos, gravid hermaphrodite adult worms were
313 dissected into M9 buffer, embryos were manually transferred to 2% agarose pads, and

314 overlaid with a coverslip. To monitor chromosome localizations a 5x2 μm z-series was
315 collected every 10-15s in one-cell embryos.

316 All images and movies were processed, scaled, and analyzed using ImageJ (Fiji), and
317 Photoshop (Adobe). Quantification of CENP-A^{HCP-3} and KNL-1 kinetochore localization
318 during metaphase of one-cell embryos was performed on maximum intensity projections. A
319 rectangle was drawn around the fluorescence signal and average pixel intensity was
320 measured. The rectangle was expanded on all sides by a few pixels and the difference in
321 integrated intensity between the expanded rectangle and the original rectangle was used to
322 define the background intensity per pixel. Integrated fluorescence was then calculated for the
323 original rectangle after background subtraction (Moyle et al., 2014).

324 ***Protein Purification***

325 CENP-A^{HCP-3}(1-109)-MBP-6xHis was cloned into pET21a. HCP-3(1-109)-MBP-6xHis and
326 MBP::6xHis were expressed in BL21(DE3). *E. coli* cultures were grown to OD₆₀₀ 0.6-0.8 and
327 induced with 0.1 mM IPTG for 6 hours at 20°C. Induced BL21(DE3) cells were lysed in Lysis
328 Buffer (20 mM Tris [pH 7.5], 300 mM NaCl, 20 mM imidazole, 8 mM β -mercaptoethanol
329 [BME]) and clarified at 40,000 g for 45 min at 4°C. Ni-NTA agarose (Qiagen) was incubated
330 with clarified lysates for 45 min, washed with Wash Buffer (20 mM Tris [pH 7.5], 300 mM
331 NaCl, 50 mM imidazole, 8 mM BME), and eluted with 20 mM Tris [pH 7.5], 300 mM NaCl,
332 300 mM imidazole, 8 mM BME. The eluted protein was fractionated using a Superose10 gel
333 filtration column (GE Healthcare). Protein concentrations were determined using a NanoDrop
334 1000 spectrophotometer (Thermo Scientific).

335 ***In vitro Translation and Binding Assay***

336 KNL-2-MBP fragments were [³⁵S] labeled using TnT® Quick Coupled
337 Transcription/Translation System (Promega). 10 µl of the in vitro translation lysate was
338 incubated for 1hr at 4°C with 50 µg CENP-A^{HCP-3}(1-109)-MBP-His (in 20 mM Tris [pH7.5], 300
339 mM NaCl, 0.05 % NP40, 10 mM Imidazole) in a final volume of 50 µl, mixed with 25 µl of a
340 1:1 nickel agarose slurry equilibrated with the binding buffer for an additional hour at 4°C.
341 Beads were washed three times with binding buffer, eluted using sample buffer and the
342 elution analyzed by SDS-PAGE and autoradiography.

343 **ACKNOWLEDGMENTS**

344 This work was supported by an NIH grant (GM074215) to A.D., a German Research
345 Foundation (DFG) grant (GR 3859/1-1) to C.D.G., a NSF Graduate Research Fellowship to
346 J.H., and an EMBO Fellowship (ALTF 251-2012) to A.G-G. A.D., K.O. and A.K.S. received
347 salary and other support from Ludwig Cancer Research.

348 **FIGURE LEGENDS**

349 **Figure 1. The extended N-Tail of *C. elegans* CENP-A^{HCP-3} contains a predicted**
350 **structured region that is essential for viability.**

351 **(A)** Secondary structure predictions of CENP-A from different model organism species.

352 Secondary structure predictions were generated using PsiPred. Predicted alpha helical
353 segments are indicated as boxes. The histone fold domain (HFD) is marked in grey.

354 **(B)** Schematic of RNAi-resistant *gfp::CENP-A^{hcp-3}* single copy transgene insertions on
355 Chromosome II. The three variants of CENP-A^{HCP-3} expressed from single copy transgene
356 insertions are indicated below.

357 **(C)** Embryo viability analysis for the indicated conditions. *N* refers to the number of worms
358 and *n* to the total number of embryos scored. Error bars are the SEM.

359 **(D)** Anti-CENP-A^{HCP-3} immunoblot performed using an antibody raised to the linker region
360 (aa105-183) showing expression levels of WT GFP-CENP-A^{HCP-3} and the Δ 109 N-Tail
361 truncation mutant in the presence and absence of endogenous CENP-A^{HCP-3} (Δ indicates
362 homozygous *CENP-A^{hcp-3}* deletion mutant; (RNAi) indicates *CENP-A^{hcp-3}(RNAi)*). Asterisk (*)
363 marks a background band that serves as a loading control.

364 **Figure 2. Deletion of the predicted α -helical region of the CENP-A^{HCP-3} N-Tail results in**
365 **a kinetochore-null phenotype and failure to accumulate on mitotic chromatin.**

366 **(A)** mCherry::H2b images from timelapse sequences for the indicated conditions in
367 metaphase and anaphase-stage one-cell embryos. Similar results were obtained in at least
368 10 embryos per condition. Scale bar, 5 μ m.

369 **(B)** Images of WT and Δ 109 GFP::CENP-^{HCP-3} in metaphase stage embryos expressing
370 mCherry-H2b in the presence (*left set of panels*) or absence (*right set of panels*) of
371 endogenous CENP-A^{HCP-3}. Scale bar, 2.5 μ m.

372 (C) Quantification of integrated chromosomal GFP intensity in metaphase stage embryos for
373 the indicated conditions. t-tests were used to assess if indicated pair-wise comparisons were
374 significantly different. Error bars are the SD.
375 (D) Images of KNL-1::mCherry, expressed from an integrated single copy RNAi-resistant
376 transgene, in metaphase stage one-cell embryos for the indicated conditions; note that
377 endogenous KNL-1 was depleted in all cases. Scale bar, 5 μ m.
378 (E) Quantification of integrated KNL-1::mCherry kinetochore intensity in metaphase stage
379 embryos for the indicated conditions. Error bars are the SD.

380 **Figure 3: Inability of $\Delta 109$ CENP-A^{HCP-3} to accumulate on chromatin is not due to failure
381 of kinetochore assembly.**

382 (A) Images of WT GFP::CENP-A^{HCP-3} in metaphase stage embryos also expressing
383 mCherry::H2b that were depleted of endogenous CENP-A^{HCP-3} and KNL-1 (top) or CENP-
384 C^{HCP-4} (bottom). Scale bar, 5 μ m.

385 (B) Quantification of integrated chromosomal WT GFP::CENP-A^{HCP-3} intensity in metaphase
386 stage embryos for the indicated conditions. The *CENP-A^{hcp-3}(RNAi)* alone value is the same
387 as in *Fig. 2C*. Error bars are the SD. t-tests were employed to assess statistical significance
388 of indicated pair-wise comparisons.

389 (C) Images of mCherry::H2b in sperm pronuclei from timelapse sequences for the indicated
390 conditions. Times are in seconds after nuclear envelope breakdown (NEBD). Similar results
391 were observed in at least 10 embryos filmed per condition. Scale bar, 5 μ m.

392 **Figure 4. The N-Tail of CENP-A^{HCP-3} interacts with an unstructured middle region of
393 KNL-2.**

394 **(A)** Domain structure of KNL-2. The presence of the SANTA domain (PF09133) and the Myb
395 domain (also known as the SANT domain; PF00249) is conserved among the KNL-2/M18BP1
396 protein family. No secondary structure elements are predicted in the middle region of KNL-2.
397 **(B)** Yeast two-hybrid analysis of CENP-A^{HCP-3} N-Tail and KNL-2. The bait CENP-A^{HCP-3} N-
398 Tail fusions are listed on top and the prey KNL-2 fusions are listed on the left.
399 **(C)-(E)** Biochemical analysis of the CENP-A^{HCP-3}-KNL-2 interaction. Nickel-immobilized
400 recombinant CENP-A^{HCP-3}(1-109)-MBP-His₆ was used to pull-down indicated reticulocyte
401 lysate-expressed S³⁵-labeled MBP-KNL-2 fragments. In (C), S³⁵-autoradiogram (*top*) shows
402 Input (I) and bead-bound (B) KNL-2 fragments; Coomassie staining (*bottom*) shows input
403 lysate and CENP-A^{HCP-3}(1-109)-MBP-His₆ bait. In (D), fragments of the 301-500 amino acid
404 region of KNL-2 tested for binding to CENP-A^{HCP-3}(1-109) are schematized on the left. S³⁵-
405 autoradiogram (*top*) shows reticulocyte lysate-expressed MBP-KNL-2 fragments; S³⁵-
406 autoradiogram (*middle*) shows bound KNL-2 fragments; Coomassie staining (*bottom*) shows
407 CENP-A^{HCP-3} N-Tail bait. In (E), indicated KNL-2 fragments were tested for binding to control
408 (MBP-His₆) and CENP-A^{HCP-3}(1-109)-MBP-His₆ baits. S³⁵-autoradiogram (*top*) shows input
409 and bound fragments; Coomassie staining (*bottom*) shows input lysates and baits.

410 **SUPPLEMENTARY FIGURE LEGENDS:**

411 **Supplementary Figure 1. Design of the RNAi-resistant transgene used to replace**
412 **endogenous CENP-A^{HCP-3}.**

413 Schematic of the *gfp::hcp-3* RNAi-resistant single copy transgene. All of the exons of *hcp-3*
414 were re-encoded to preserve amino acid sequence but make the nucleotide sequence
415 resistant to a dsRNA generated using the *hcp-3* cDNA. The intron sequences (*indicated in*
416 *black*) were not altered.

417 **Supplementary Figure 2. Sequence alignment of KNL-2 protein family domains & C.**
418 ***C. elegans/C. briggsae* CENP-A N-tail predicted α -helical regions.**

419 **(A)** Alignment of KNL-2/M18BP1 domains from the following species: Ce, *Caenorhabditis*
420 *elegans*; Hs, *Homo sapiens*; Gg, *Gallus gallus*; Xt, *Xenopus tropicalis*; Dr, *Danio rerio*; Bm,
421 *Brugia malayi*; Sp, *Strongylocentrotus purpuratus*; Ci, *Ciona intestinalis*. Dark blue lines
422 indicate identical residues and lighter blue lines indicate similar residues among different
423 species. Red and magenta-colored residues in the bottom panel of the C-terminal end
424 highlight acidic and aromatic residues, respectively. Sequences alignments were performed
425 using Clustal Omega.

426 **(B)** Alignment of *C. elegans* and *C. briggsae* predicted N-tail α -helical region and of the
427 interacting middle region from KNL-2.

Table S1. *C. elegans* strains used in this study

Strain Number	Genotype
N2	Ancestral
OD56	<i>unc-119(ed3)</i> III; <i>ltIs37</i> [pAA64; <i>Ppie-1::mCherry::his-58</i> ; <i>unc-119 (+)</i>] IV
OD704	<i>unc-119(ed3)</i> III; <i>ltSi396</i> [pOD1368; <i>gfp::hcp-3</i> reencoded; <i>cb unc-119 (+)</i>] II
OD1290	<i>unc-119(ed3)</i> III; <i>ltSi409</i> [pOD1369; <i>gfp::hcp-3(Δ109)</i> reencoded; <i>cb unc-119 (+)</i>] III
OD1283	<i>unc-119(ed3)</i> III; <i>ltSi406</i> [pOD1372; <i>gfp::hcp-3(Δ184)</i> reencoded]; <i>cb unc-119 (+)</i>] III
OD1271	<i>unc-119(ed3)</i> III; <i>ltSi400</i> [pOD1366; <i>knl-1</i> reencoded:: <i>mCherry</i> ; <i>cb unc-119 (+)</i>] IV
OD2450	<i>unc-119(ed3)</i> III; <i>ltSi396</i> [pOD1368; <i>gfp::hcp-3</i> reencoded; <i>cb unc-119 (+)</i>] III; <i>ltIs37</i> [pAA64; <i>Ppie-1::mCherry::his-58</i> ; <i>unc-119 (+)</i>] IV
OD1292	<i>unc-119(ed3)</i> III; <i>ltSi409</i> [pOD1369; <i>gfp::hcp-3(Δ109)</i> reencoded; <i>cb unc-119 (+)</i>] III; <i>ltIs37</i> [pAA64; <i>Ppie-1::mCherry::his-58</i> ; <i>unc-119 (+)</i>] IV
OD2451	<i>unc-119(ed3)</i> III; <i>ltSi396</i> [pOD1368; <i>gfp::hcp-3</i> reencoded; <i>cb unc-119 (+)</i>] III; <i>ltSi400</i> [pOD1366; <i>knl-1</i> reencoded:: <i>mCherry</i> ; <i>cb unc-119 (+)</i>] IV
OD1291	<i>unc-119(ed3)</i> III; <i>ltSi409</i> [pOD1369; <i>gfp::hcp-3</i> reencoded(Mutant 110-288); <i>cb unc-119 (+)</i>] III; <i>ltSi400</i> [pOD1366; <i>knl-1</i> reencoded:: <i>mCherry</i> ; <i>cb unc-119 (+)</i>] IV
OD785	<i>unc-119(ed3)</i> III; <i>ltSi396</i> [pOD1368; <i>gfp::hcp-3</i> reencoded; <i>cb unc-119 (+)</i>] III; <i>hcp-3(ok1892)</i> III

Table S2. Oligos and templates used for dsRNA production

Gene	Oligonucleotide 1 (5'→3')	Oligonucleotide 2 (5'→3')	Template
<i>hcp-3</i> (F58A4.3)	5'-AATTAACCCTCACTAAAGGACACCC CAATTATTGAGGAATGCCGAGC-3'	5'-TAATACGACTCACTATAGGCGAAGGC AGAGACGTCTGTATAACTGAATATCC-3'	N2 cDNA
<i>hcp-4</i> (T03F1.9)	5'-AATTAACCCTCACTAAAGGCACTGT GGCTGAAGATGCTCCTGAAGAAC-3'	5'-TAATACGACTCACTATAGGGATT CGTGGCGGCGTTGAACCACC-3'	N2 cDNA
<i>knl-1</i> (C02F5.1)	5'-AATTAACCCTCACTAAAGGAA TCTCGAATCACCGAAATGTC-3'	5'-TAATACGACTCACTATAGGTT CACAAACTTGGAGGCCGCTG-3'	N2 cDNA

428 **References:**

429 Allshire, R.C., and G.H. Karpen. 2008. Epigenetic regulation of centromeric chromatin: old dogs,
430 new tricks? *Nat Rev Genet.* 9:923-937.

431 Barnhart, M.C., P.H. Kuich, M.E. Stellfox, J.A. Ward, E.A. Bassett, B.E. Black, and D.R. Foltz.
432 2011. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de
433 novo kinetochore. *J Cell Biol.* 194:229-243.

434 Black, B.E., D.R. Foltz, S. Chakravarthy, K. Luger, V.L. Woods, Jr., and D.W. Cleveland. 2004.
435 Structural determinants for generating centromeric chromatin. *Nature.* 430:578-582.

436 Black, B.E., L.E. Jansen, P.S. Maddox, D.R. Foltz, A.B. Desai, J.V. Shah, and D.W. Cleveland.
437 2007. Centromere identity maintained by nucleosomes assembled with histone H3
438 containing the CENP-A targeting domain. *Mol Cell.* 25:309-322.

439 Boxem, M., Z. Maliga, N. Klitgord, N. Li, I. Lemmens, M. Mana, L. de Lichtervelde, J.D. Mul, D.
440 van de Peut, M. Devos, N. Simonis, M.A. Yildirim, M. Cokol, H.L. Kao, A.S. de Smet, H.
441 Wang, A.L. Schlaitz, T. Hao, S. Milstein, C. Fan, M. Tipsword, K. Drew, M. Galli, K.
442 Rhrissorakrai, D. Drechsel, D. Koller, F.P. Roth, L.M. Iakoucheva, A.K. Dunker, R.
443 Bonneau, K.C. Gunsalus, D.E. Hill, F. Piano, J. Tavernier, S. van den Heuvel, A.A. Hyman,
444 and M. Vidal. 2008. A protein domain-based interactome network for *C. elegans* early
445 embryogenesis. *Cell.* 134:534-545.

446 Chen, C.C., M.L. Dechassa, E. Bettini, M.B. Ledoux, C. Belisario, P. Heun, K. Luger, and B.G.
447 Mellone. 2014. CAL1 is the *Drosophila* CENP-A assembly factor. *J Cell Biol.* 204:313-329.

448 Chen, Y., R.E. Baker, K.C. Keith, K. Harris, S. Stoler, and M. Fitzgerald-Hayes. 2000. The N
449 terminus of the centromere H3-like protein Cse4p performs an essential function distinct
450 from that of the histone fold domain. *Mol Cell Biol.* 20:7037-7048.

451 Cho, U.S., and S.C. Harrison. 2011. Recognition of the centromere-specific histone Cse4 by the
452 chaperone Scm3. *Proc Natl Acad Sci U S A.* 108:9367-9371.

453 Desai, A., S. Rybina, T. Muller-Reichert, A. Shevchenko, A. Shevchenko, A. Hyman, and K.
454 Oegema. 2003. KNL-1 directs assembly of the microtubule-binding interface of the
455 kinetochore in *C. elegans*. *Genes Dev.* 17:2421-2435.

456 Dunleavy, E.M., D. Roche, H. Tagami, N. Lacoste, D. Ray-Gallet, Y. Nakamura, Y. Daigo, Y.
457 Nakatani, and G. Almouzni-Pettinotti. 2009. HJURP is a cell-cycle-dependent
458 maintenance and deposition factor of CENP-A at centromeres. *Cell.* 137:485-497.

459 Erhardt, S., B.G. Mellone, C.M. Betts, W. Zhang, G.H. Karpen, and A.F. Straight. 2008. Genome-
460 wide analysis reveals a cell cycle-dependent mechanism controlling centromere
461 propagation. *J Cell Biol.* 183:805-818.

462 Espeut, J., D.K. Cheerambathur, L. Krenning, K. Oegema, and A. Desai. 2012. Microtubule
463 binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. *J Cell*
464 *Biol.* 196:469-482.

465 Fachinetti, D., H.D. Folco, Y. Nechemia-Arbely, L.P. Valente, K. Nguyen, A.J. Wong, Q. Zhu, A.J.
466 Holland, A. Desai, L.E. Jansen, and D.W. Cleveland. 2013. A two-step mechanism for
467 epigenetic specification of centromere identity and function. *Nat Cell Biol.* 15:1056-1066.

468 Folco, H.D., C.S. Campbell, K.M. May, C.A. Espinoza, K. Oegema, K.G. Hardwick, S.I.S. Grewal,
469 and A. Desai. 2015. The CENP-A N-tail confers epigenetic stability to centromeres via the
470 CENP-T branch of the CCAN in fission yeast. *Curr Biol.* 25:348-356.

471 Foltz, D.R., L.E. Jansen, A.O. Bailey, J.R. Yates, 3rd, E.A. Bassett, S. Wood, B.E. Black, and
472 D.W. Cleveland. 2009. Centromere-specific assembly of CENP-a nucleosomes is
473 mediated by HJURP. *Cell.* 137:472-484.

474 French, B.T., and A.F. Straight. 2019. CDK phosphorylation of *Xenopus laevis* M18BP1 promotes
475 its metaphase centromere localization. *EMBO J.* 38.

476 French, B.T., F.G. Westhorpe, C. Limouse, and A.F. Straight. 2017. *Xenopus laevis* M18BP1
477 Directly Binds Existing CENP-A Nucleosomes to Promote Centromeric Chromatin
478 Assembly. *Dev Cell.* 42:190-199 e110.

479 Frokjaer-Jensen, C., M.W. Davis, C.E. Hopkins, B.J. Newman, J.M. Thummel, S.P. Olesen, M.
480 Grunnet, and E.M. Jorgensen. 2008. Single-copy insertion of transgenes in
481 *Caenorhabditis elegans*. *Nat Genet.* 40:1375-1383.

482 Fujita, Y., T. Hayashi, T. Kiyomitsu, Y. Toyoda, A. Kokubu, C. Obuse, and M. Yanagida. 2007.
483 Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and
484 M18BP1. *Dev Cell.* 12:17-30.

485 Gassmann, R., A. Rechtsteiner, K.W. Yuen, A. Muroyama, T. Egelhofer, L. Gaydos, F. Barron, P.
486 Maddox, A. Essex, J. Monen, S. Ercan, J.D. Lieb, K. Oegema, S. Strome, and A. Desai.
487 2012. An inverse relationship to germline transcription defines centromeric chromatin in
488 *C. elegans*. *Nature.* 484:534-537.

489 Hayashi, T., Y. Fujita, O. Iwasaki, Y. Adachi, K. Takahashi, and M. Yanagida. 2004. Mis16 and
490 Mis18 are required for CENP-A loading and histone deacetylation at centromeres. *Cell.*
491 118:715-729.

492 Hori, T., W.H. Shang, M. Hara, M. Ariyoshi, Y. Arimura, R. Fujita, H. Kurumizaka, and T.
493 Fukagawa. 2017. Association of M18BP1/KNL2 with CENP-A Nucleosome Is Essential
494 for Centromere Formation in Non-mammalian Vertebrates. *Dev Cell.* 42:181-189 e183.

495 Hu, H., Y. Liu, M. Wang, J. Fang, H. Huang, N. Yang, Y. Li, J. Wang, X. Yao, Y. Shi, G. Li, and
496 R.M. Xu. 2011. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone
497 HJURP. *Genes Dev.* 25:901-906.

498 Jansen, L.E., B.E. Black, D.R. Foltz, and D.W. Cleveland. 2007. Propagation of centromeric
499 chromatin requires exit from mitosis. *J Cell Biol.* 176:795-805.

500 Kato, H., J. Jiang, B.R. Zhou, M. Rozendaal, H. Feng, R. Ghirlando, T.S. Xiao, A.F. Straight, and
501 Y. Bai. 2013. A conserved mechanism for centromeric nucleosome recognition by
502 centromere protein CENP-C. *Science.* 340:1110-1113.

503 Kixmoeller, K., P.K. Allu, and B.E. Black. 2020. The centromere comes into focus: from CENP-A
504 nucleosomes to kinetochore connections with the spindle. *Open Biol.* 10:200051.

505 Lee, B.C., Z. Lin, and K.W. Yuen. 2016. RbAp46/48(LIN-53) Is Required for Holocentromere
506 Assembly in *Caenorhabditis elegans*. *Cell Rep.* 14:1819-1828.

507 Lermontova, I., M. Kuhlmann, S. Friedel, T. Rutten, S. Heckmann, M. Sandmann, D. Demidov, V.
508 Schubert, and I. Schubert. 2013. *Arabidopsis* kinetochore null2 is an upstream component
509 for centromeric histone H3 variant cenH3 deposition at centromeres. *Plant Cell.* 25:3389-
510 3404.

511 Maddox, P.S., F. Hyndman, J. Monen, K. Oegema, and A. Desai. 2007. Functional genomics
512 identifies a Myb domain-containing protein family required for assembly of CENP-A
513 chromatin. *J Cell Biol.* 176:757-763.

514 Maddox, P.S., N. Portier, A. Desai, and K. Oegema. 2006. Molecular analysis of mitotic
515 chromosome condensation using a quantitative time-resolved fluorescence microscopy
516 assay. *Proc Natl Acad Sci U S A.* 103:15097-15102.

517 McKinley, K.L., and I.M. Cheeseman. 2016. The molecular basis for centromere identity and
518 function. *Nat Rev Mol Cell Biol.* 17:16-29.

519 Medina-Pritchard, B., V. Lazou, J. Zou, O. Byron, M.A. Abad, J. Rappaport, P. Heun, and A.A.
520 Jeyaprakash. 2020. Structural basis for centromere maintenance by *Drosophila* CENP-A
521 chaperone CAL1. *EMBO J.* 39:e103234.

522 Mellone, B.G., K.J. Grive, V. Shteyn, S.R. Bowers, I. Oderberg, and G.H. Karpen. 2011. Assembly
523 of *Drosophila* centromeric chromatin proteins during mitosis. *PLoS Genet.* 7:e1002068.

524 Melters, D.P., L.V. Paliulis, I.F. Korf, and S.W. Chan. 2012. Holocentric chromosomes:
525 convergent evolution, meiotic adaptations, and genomic analysis. *Chromosome Res.*
526 20:579-593.

527 Mitra, S., B. Srinivasan, and L.E.T. Jansen. 2020. Stable inheritance of CENP-A chromatin: Inner
528 strength versus dynamic control. *J Cell Biol.* 219.

529 Moree, B., C.B. Meyer, C.J. Fuller, and A.F. Straight. 2011. CENP-C recruits M18BP1 to
530 centromeres to promote CENP-A chromatin assembly. *J Cell Biol.* 194:855-871.

531 Moyle, M.W., T. Kim, N. Hattersley, J. Espeut, D.K. Cheerambathur, K. Oegema, and A. Desai.
532 2014. A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached
533 kinetochores to initiate the spindle checkpoint. *J Cell Biol.* 204:647-657.

534 Musacchio, A., and A. Desai. 2017. A Molecular View of Kinetochore Assembly and Function.
535 *Biology (Basel)*. 6.

536 Oegema, K., A. Desai, S. Rybina, M. Kirkham, and A.A. Hyman. 2001. Functional analysis of
537 kinetochore assembly in *Caenorhabditis elegans*. *J Cell Biol.* 153:1209-1226.

538 Ohzeki, J., J.H. Bergmann, N. Kouprina, V.N. Noskov, M. Nakano, H. Kimura, W.C. Earnshaw,
539 V. Larionov, and H. Masumoto. 2012. Breaking the HAC Barrier: histone H3K9
540 acetyl/methyl balance regulates CENP-A assembly. *EMBO J.* 31:2391-2402.

541 Pan, D., K. Walstein, A. Take, D. Bier, N. Kaiser, and A. Musacchio. 2019. Mechanism of
542 centromere recruitment of the CENP-A chaperone HJURP and its implications for
543 centromere licensing. *Nat Commun.* 10:4046.

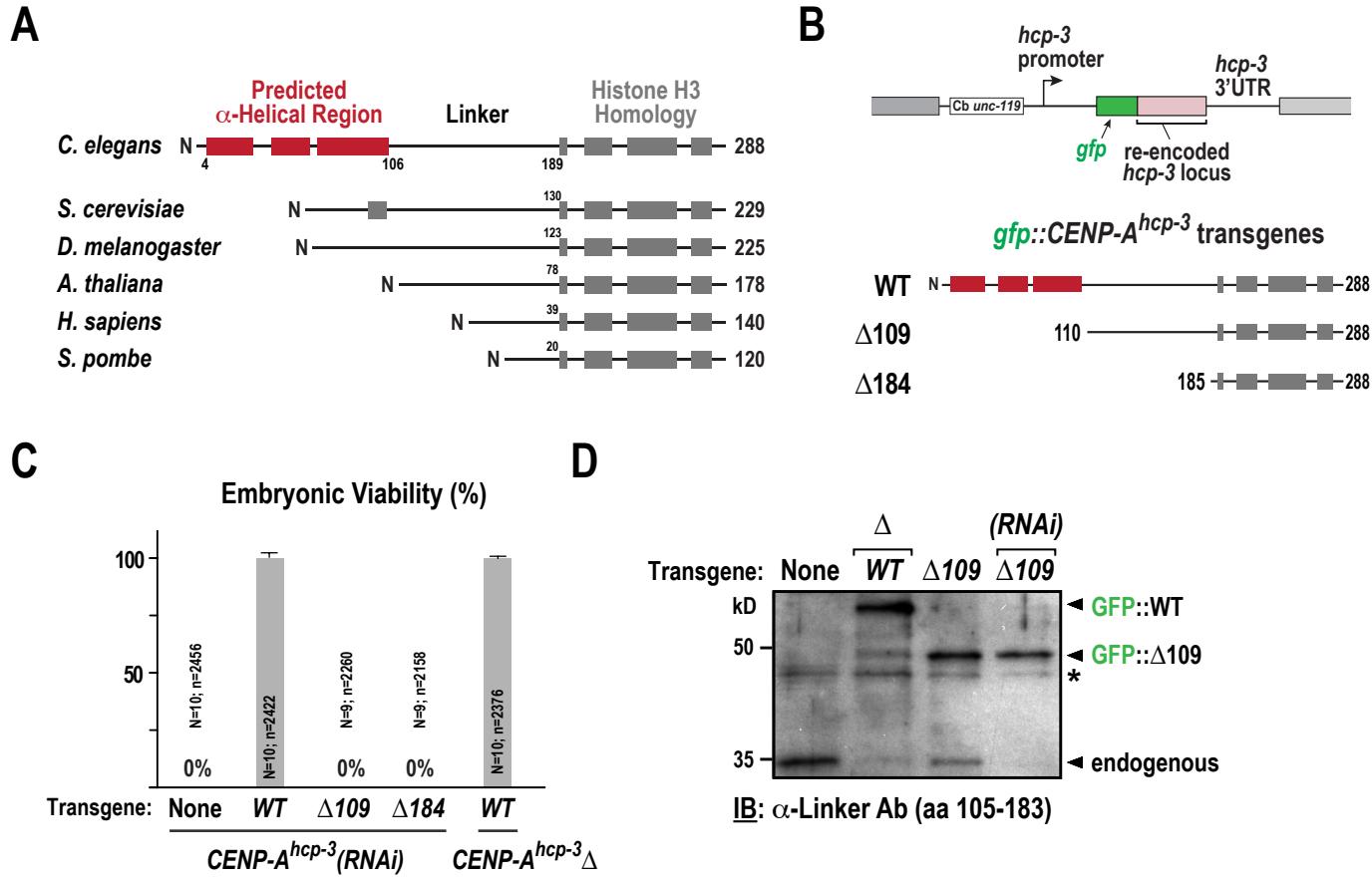
544 Phansalkar, R., P. Lapierre, and B.G. Mellone. 2012. Evolutionary insights into the role of the
545 essential centromere protein CAL1 in *Drosophila*. *Chromosome Res.* 20:493-504.

546 Pidoux, A.L., E.S. Choi, J.K. Abbott, X. Liu, A. Kagansky, A.G. Castillo, G.L. Hamilton, W.
547 Richardson, J. Rappaport, X. He, and R.C. Allshire. 2009. Fission yeast Scm3: A CENP-
548 A receptor required for integrity of subkinetochore chromatin. *Mol Cell.* 33:299-311.

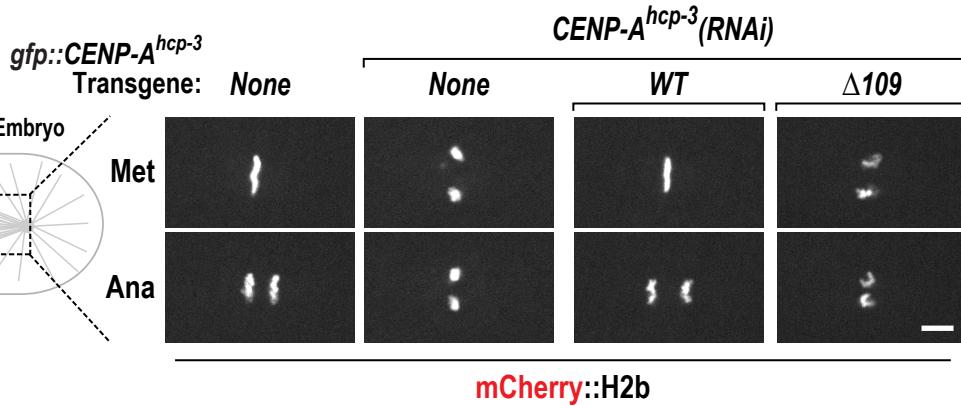
549 Prosée, R.F., J.M. Wenda, C. Gabus, K. Delaney, F. Schwager, M. Gotta, and F.A. Steiner. 2020.
550 Trans-generational inheritance of centromere identity requires the CENP-A N-terminal tail
551 in the *C. elegans* maternal germ line. *bioRxiv*.

552 Ravi, M., P.N. Kwong, R.M. Menorca, J.T. Valencia, J.S. Ramahi, J.L. Stewart, R.K. Tran, V.
553 Sundaresan, L. Comai, and S.W. Chan. 2010. The rapidly evolving centromere-specific
554 histone has stringent functional requirements in *Arabidopsis thaliana*. *Genetics*. 186:461-
555 471.

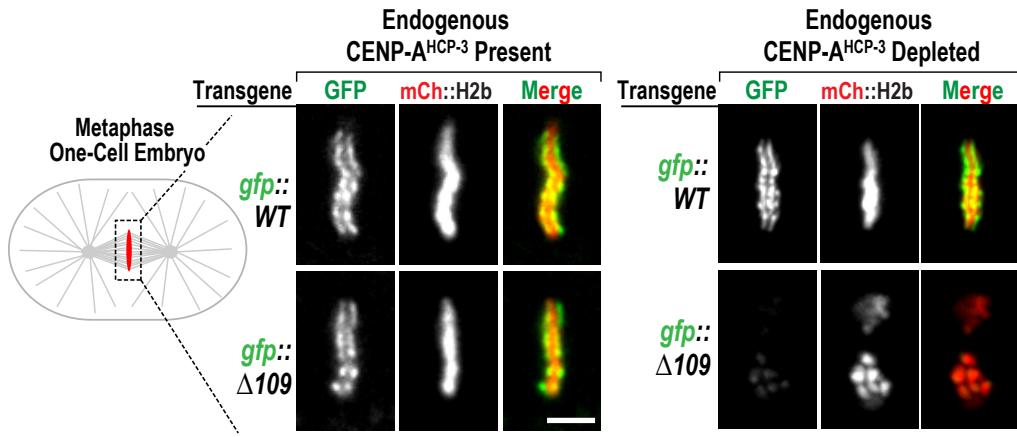
556 Sanchez-Pulido, L., A.L. Pidoux, C.P. Ponting, and R.C. Allshire. 2009. Common ancestry of the
557 CENP-A chaperones Scm3 and HJURP. *Cell.* 137:1173-1174.

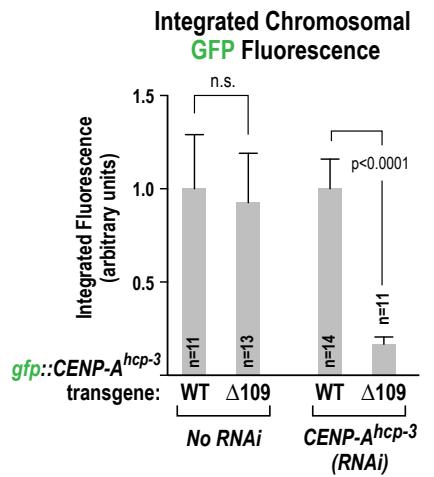

558 Shuaib, M., K. Ouararhni, S. Dimitrov, and A. Hamiche. 2010. HJURP binds CENP-A via a highly
559 conserved N-terminal domain and mediates its deposition at centromeres. *Proc Natl Acad
560 Sci U S A.* 107:1349-1354.

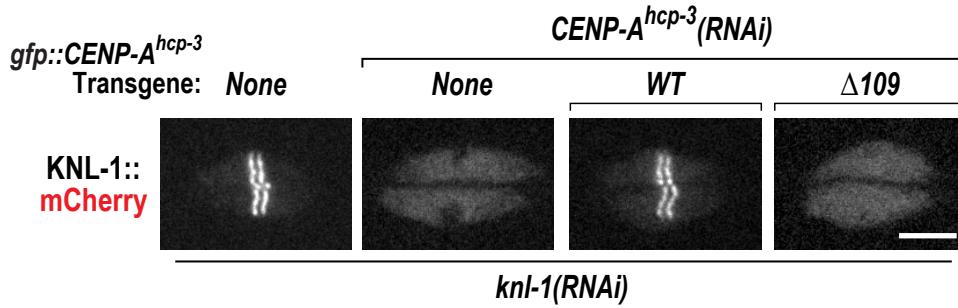
561 Steiner, F.A., and S. Henikoff. 2014. Holocentromeres are dispersed point centromeres localized
562 at transcription factor hotspots. *Elife.* 3:e02025.

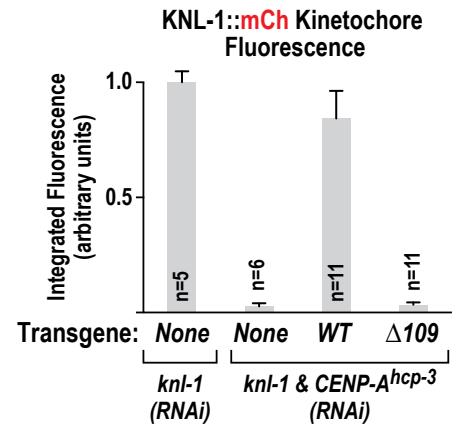

563 Wang, J., X. Liu, Z. Dou, L. Chen, H. Jiang, C. Fu, G. Fu, D. Liu, J. Zhang, T. Zhu, J. Fang, J.
564 Zang, J. Cheng, M. Teng, X. Ding, and X. Yao. 2014. Mitotic regulator Mis18beta interacts
565 with and specifies the centromeric assembly of molecular chaperone holliday junction
566 recognition protein (HJURP). *J Biol Chem.* 289:8326-8336.

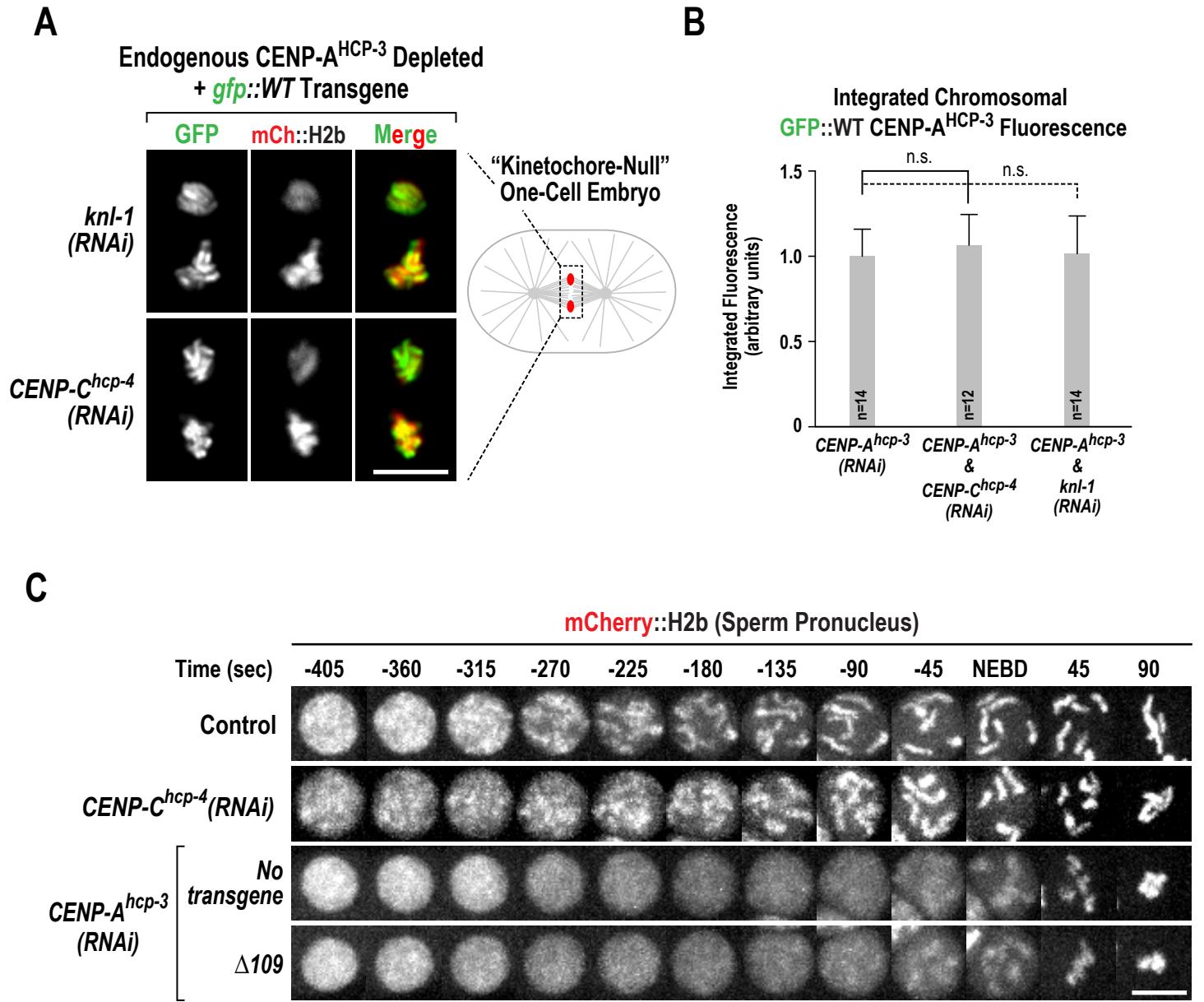
567 Williams, J.S., T. Hayashi, M. Yanagida, and P. Russell. 2009. Fission yeast Scm3 mediates
568 stable assembly of Cnp1/CENP-A into centromeric chromatin. *Mol Cell.* 33:287-298.


569 Zhang, D., C.J. Martyniuk, and V.L. Trudeau. 2006. SANTA domain: a novel conserved protein
570 module in Eukaryota with potential involvement in chromatin regulation. *Bioinformatics*.
571 22:2459-2462.

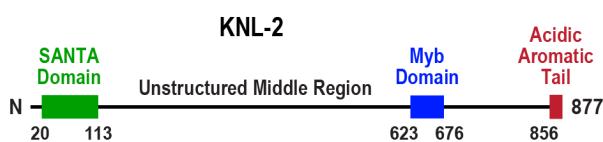

A


B

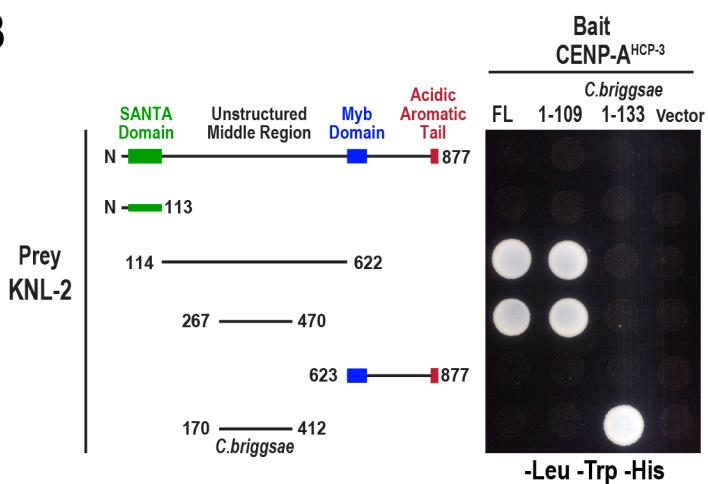

C



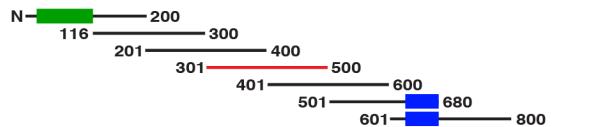
D



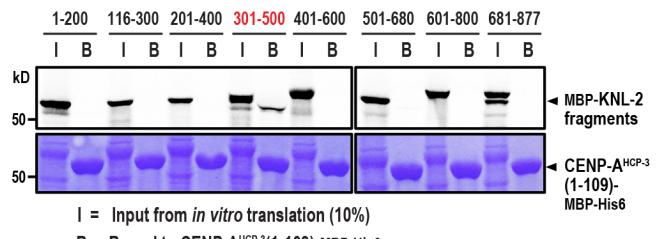
E



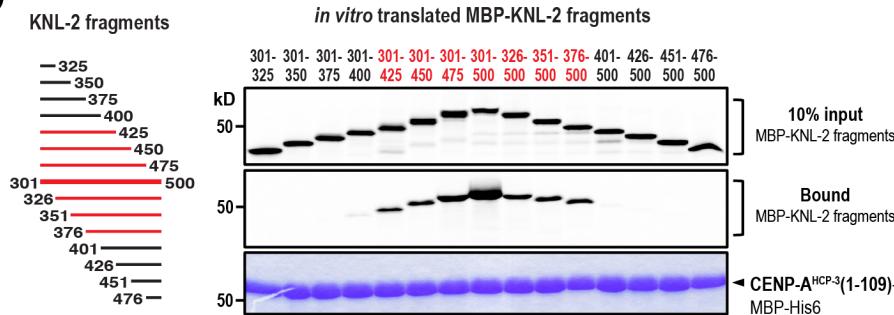
A



B

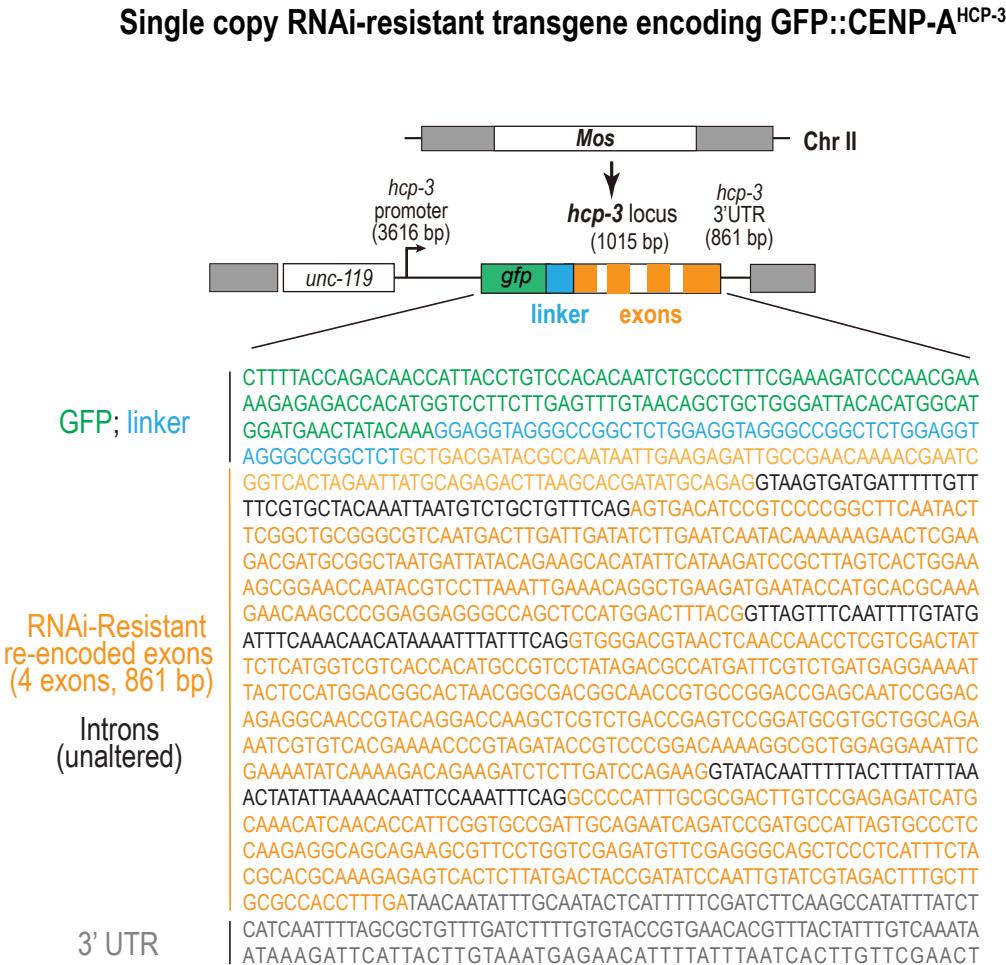


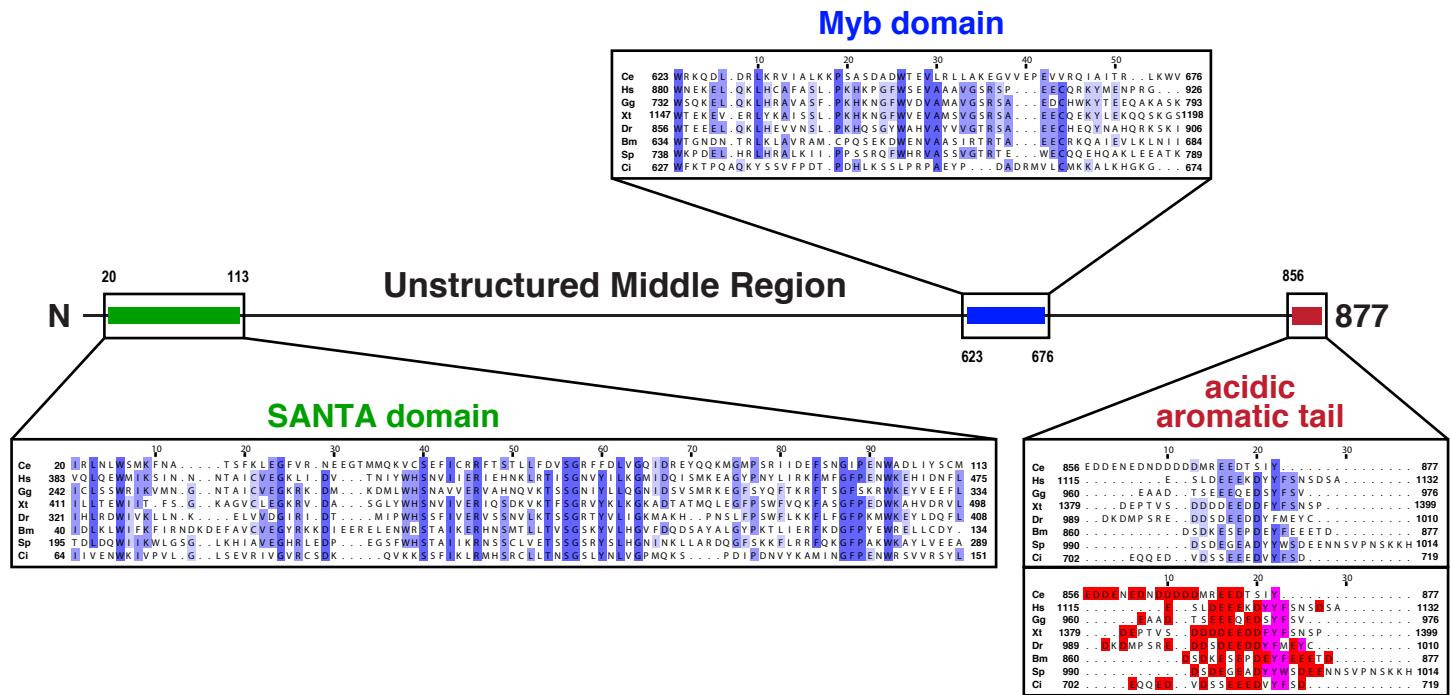
C


Overlapping KNL-2 fragments (*in vitro* translated)

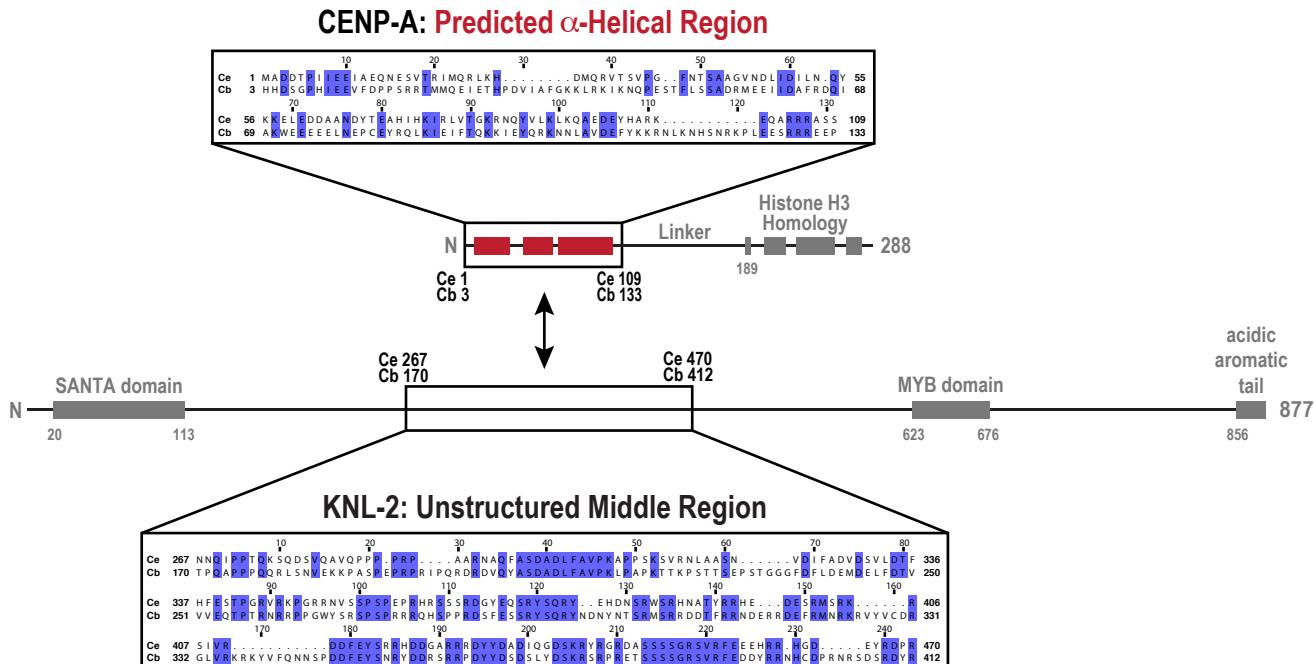
MBP-KNL-2 fragments




D


E

in vitro translated MBP-KNL-2 fragments



A

B

