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Abstract 
Motivation: TBM (template-based modeling) is a popular method for protein structure prediction. When very good 

templates are not available, it is challenging to identify the best templates, build accurate sequence-template 

alignments and construct 3D models from alignments.  

Results: This paper presents a new method NDThreader (New Deep-learning Threader) to address the challenges of 

TBM. DNThreader first employs DRNF (deep convolutional residual neural fields), which is an integration of deep 

ResNet (convolutional residue neural networks) and CRF (conditional random fields), to align a query protein to 

templates without using any distance information. Then NDThreader uses ADMM (alternating direction method of 

multipliers) and DRNF to further improve sequence-template alignments by making use of predicted distance 

potential. Finally NDThreader builds 3D models from a sequence-template alignment by feeding it and sequence co-

evolution information into a deep ResNet to predict inter-atom distance distribution, which is then fed into PyRosetta 

for 3D model construction. Our experimental results on the CASP13 and CAMEO data show that our methods 

outperform existing ones such as CNFpred, HHpred, DeepThreader and CEthreader. NDThreader was blindly tested 

in CASP14 as a part of RaptorX server, which obtained the best GDT score among all CASP14 servers on the 58 

TBM targets. 

Availability and Implementation: available as a part of web server at http://raptorx.uchicago.edu 

Contact: jinboxu@gmail.com 

Supplementary Information: Supplementary data are available online. 

Introduction 

Predicting protein structure from its amino acid sequence is one of the most challenging problems in the 

field of computational biology. Template-based modeling (TBM), including protein threading and 

homology modeling, is a popular method for protein tertiary structure prediction. TBM predicts the 

structure of a query protein (called target) by aligning it to one or multiple templates with solved structures. 

Along with the growth of the PDB (protein data bank), TBM is able to predict structures for a good 

percentage of proteins1. When a protein under prediction does not have highly similar templates, TBM 

faces three major challenges: selection of the best templates, building an accurate sequence-template 

alignment, and constructing 3D models from the alignment. 

 

TBM uses a scoring function to guide sequence-template alignment. Existing methods such as 

HHpred2 and SPARKS-X3 employ a linear scoring function composed of sequential features such as 

sequence profile, predicted secondary structure and solvent accessibility. CNFpred4 uses a CRF 

(conditional random fields) plus a shallow CNN (convolutional neural network) to learn a scoring function 

from some reference alignments. Due to relatively simple scoring functions, these methods cannot capture 

the complex relationship between input features and protein alignment. As a result of recent progress on 

contact/distance prediction5–7, predicted contact and distance have been explored to improve protein 

alignments. For example, map_align8, EigenThreader9 and CEthreader10 make use of predicted contacts to 

improve alignments. DeepThreader10 is the first TBM method that makes use of predicted inter-residue 

distance potential. Blindly tested in CASP13 as a server RaptorX-TBM5, DeepThreader outperformed all 

the other pure threading-based servers and on the very hard targets even performed comparably to Robetta 

that utilized a combination of TBM, fragment-based and contact-assisted folding. Nevertheless, 

DeepThreader’s performance is still not very satisfactory because 1) it uses a shallow convolutional neural 
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network method CNFpred to generate an initial alignment. When it is very bad, DeepThreader cannot 

improve it much by using predicted distance potential; 2) the predicted distance potential used by 

DeepThreader in CASP13 is not accurate enough. 

 

Deep learning has greatly improved template-free protein modeling, but not much effort has been 

devoted to develop deep learning methods for template-based modeling. Since our proposal of deep ResNet 

for protein contact/distance prediction and template-free protein modeling5–7,11–13, deep ResNet has been 

widely used by many groups to predict inter-residue (-atom) relationships, such as DMPfold14, AlphaFold15 

and trRosetta16. Here we will show that deep ResNet works well for protein alignments even in the absence 

of predicted contact/distance information. In particular, we integrate deep ResNet and CRF (Conditional 

Random Fields)17 to form a new deep network DRNF (Deep Convolutional Residual Neural Fields) that 

may accurately align two proteins without predicted contact and distance. DRNF is able to capture context-

specific information from sequential features to improve protein alignment. Our experimental results show 

that DRNF generates better alignments and recognizes better templates than existing methods such as 

HHpred and CNFpred when predicted contact/distance information is not used. When combined with 

predicted distance potential, we may further greatly improve alignment accuracy, as evidenced by our test 

result on the CASP13 and CAMEO data. 

 

To build 3D models from a sequence-template alignment, MODELLER and RosettaCM are often 

used, but they usually generate models similar to the templates instead of the native structure of the protein 

under prediction. To address this issue, we build 3D models from an alignment using our own method by 

combining template information with sequence co-evolution information. In particular, we feed a sequence-

template alignment and sequence co-evolution information into a deep ResNet to predict inter-residue 

distance/orientation distribution, convert the distribution to distance/orientation potential and then 

minimize the potential through PyRosetta18 to build 3D models. In CASP14 our method obtained the best 

GDT score among all CASP14-participating servers on the 58 TBM targets. 

Results 

Overview of the method 
Fig. 1 shows the overall architecture of our method, which mainly consists of three modules. The first is a 

DRNF (Deep Convolutional Residual Neural Fields) module for query-template alignment without using 

any distance information. DRNF uses deep ResNet to capture context-specific information from sequential 

features and integrate it with CRF (Conditional Random Fields) to predict query-template alignments. The 

second module employs an ADMM13,19 algorithm and another deep ResNet to improve the DRNF-

generated alignments by making use of predicted distance potential of the query. Finally, the sequence-

template alignment and sequence co-evolution information is fed into a deep ResNet to predict inter-atom 

distance distribution, which is then fed into PyRosetta to build 3D models20. 

Here we use DRNF to denote our alignment method without using predicted distance information and 
NDThreader (New Deep Therader) to denote our alignment method that uses distance information. To 
evaluate alignment accuracy and threading performance, we compare our methods with several established 
methods including HHpred, CNFpred, CEThreader and DeepThreader. HHpred was run with two 
alignment modes: global with option ‘-mact 0’ and local with option ‘-mact 0.1’. Since DeepThreader is 
the first distance-based threading method and also performed the best among all pure threading-based 
methods in CASP13, we pay more attention to the comparison with DeepThreader.  
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Figure 1. The overall architecture of our template-based modelling method. 

Evaluation of alignment quality 

Alignment accuracy on in-house test set when distance information is not used 

Here we evaluate our method DRNF when distance information is not used. We train DRNF on DeepAlign-

generated alignments and use two methods Viterbi and MaxAcc (maximum expected accuracy) to predict 

query-template alignments. We divide the test set into 4 bins according to the query-template structure 

similarity: (0.45, 0.55], (0.55, 0.65], (0.65, 0.8] and (0.8, 1]. Table 1 shows that DRNF outperforms 

CNFpred and HHpred by a good margin in terms of both reference-dependent recall and precision 

especially when the sequence-template structure similarity is not very high. Even if trained by DeepAlign-

generated alignments, DRNF still has the best precision and recall when evaluated by the TMalign-

generated reference alignments. Table 2 and Fig. 2 show that DRNF also outperforms CNFpred and 

HHpred in terms of reference-independent accuracy. Here MODELLER21 is used to build 3D models from 

all the alignments. The DRNF-generated alignments have average TMscore and GDT 0.525 and 0.432, 

respectively, outperforming HHpred and CNFpred by a large margin. DRNF generates better alignments 

than HHpred and CNFpred for 852 and 781 out of 1000 protein pairs, respectively.  

Table 1. Reference-dependent alignment accuracy (precision and recall) on our in-house benchmark.  

 CNFpred HHpred-global HHpred-local DRNF-Viterbi DRNF-MaxAcc 

 recall prec recall prec recall prec recall prec recall prec 

 Evaluated by DeepAlign-generated reference alignments 

(0,1] 0.475 0.474 0.395 0.344 0.351 0.475 0.616 0.615 0.596 0.635 

(0.45,0.55] 0.240 0.236 0.141 0.111 0.118 0.268 0.382 0.377 0.353 0.394 
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(0.55,0.65] 0.422 0.426 0.338 0.282 0.284 0.435 0.591 0.594 0.579 0.628 

(0.65,0.8] 0.601 0.596 0.530 0.468 0.470 0.580 0.748 0.747 0.732 0.763 

(0.8,1] 0.830 0.829 0.778 0.732 0.774 0.865 0.848 0.845 0.816 0.837 

 Evaluated by TMalign-generated reference alignments  

(0,1] 0.436 0.426 0.318 0.358 0.435 0.322 0.545 0.532 0.526 0.548 

(0.45,0.55] 0.206 0.194 0.094 0.115 0.221 0.094 0.313 0.292 0.288 0.308 

(0.55,0.65] 0.377 0.369 0.255 0.296 0.391 0.252 0.510 0.497 0.495 0.521 

(0.65,0.8] 0.567 0.555 0.436 0.487 0.545 0.436 0.676 0.666 0.656 0.676 

(0.8,1] 0.779 0.780 0.704 0.751 0.756 0.865 0.815 0.814 0.801 0.825 

Table 2. Reference-independent alignment quality measured by TM-score and GDT on our in-house test set. GDT is 

scaled to [0, 1]. DRNF is trained by DeepAlign-generated alignments and uses Viterbi to build alignments. 

 CNFpred HHpred-global HHpred-local DRNF 

 TMscore GDT TMscore GDT TMscore GDT TMscore GDT 

(0,1] 0.469 0.383 0.415 0.338 0.341 0.290 0.525 0.432 

(0.45,0.55] 0.320 0.244 0.232 0.176 0.156 0.131 0.380 0.294 

(0.55,0.65] 0.426 0.331 0.374 0.290 0.283 0.234 0.493 0.389 

(0.65,0.8] 0.554 0.465 0.512 0.427 0.442 0.377 0.610 0.515 

(0.8,1] 0.709 0.635 0.691 0.614 0.673 0.596 0.723 0.648 

 

Figure 2. The TMscore of the 3D models built from the alignments generated by DRNF, CNFpred and HHpred on 

our in-house test set. (left) DRNF vs. CNFpred; (right) DRNF vs. HHpred. Each point represents two alignments 

generated by two competing methods for the same protein pair. 
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Alignment accuracy on the CASP13 data when distance information is used 

Fig. 3 summarizes the average alignment accuracy (TMscore and GDT) of  our methods DRNF and 

NDThreader, and shows their detailed comparison with DeepThreader and CNFpred. Here all the 3D 

models are built by MODELLER from the alignments. On average, the alignments produced by 

NDThreader have TMscore and GDT of 0.624 and 0.556. In terms of TMscore, NDThreader outperforms 

DeepThreader, DRNF and CNFpred by 6.1%, 12.4% and 19.9%, respectively. NDThreader outperforms 

DeepThreader on ~490 protein pairs, whereas DeepThreader outperforms NDThreader on only ~270 pairs. 

For those protein pairs with TMscore<0.6, NDThreader has a much larger advantage over DeepThreader. 

NDThreader generates better alignment than DRNF for ~650 (out of 764) pairs, which confirms that the 

predicted distance potential is very useful.  
 

 

Figure 3. Alignment quality (TM-score and GDT) comparison between DRNF, CNFpred, NDThreader and 

DeepThreader on the CASP13 alignment test set. Top: average alignment quality (TM-score and GDT) on the 

CASP13 alignment test set. GDT is scaled to [0, 1]. Bottom left: NDThreader vs. DeepThreader. Bottom right: DRNF 

vs. CNFpred. Each point represents the quality of two alignments generated by two competing methods for the same 

protein pair. 

Alignment accuracy on the CAMEO data when distance information is used 

Here we evaluate our methods DRNF and NDThreader in terms of reference-independent quality (TMscore 

and GDT) on the CAMEO test set. All the3D models are built by MODELLER from alignments. Fig. 4 

lists the average alignment quality and shows their head-to-head comparison with CNFpred and 

DeepThreader. On average NDThreader has the best alignment quality, 0.027 better than DeepThreader in 

terms of TMscore. DRNF has an average TM-score 0.515, 0.031 higher than CNFpred. The average score 

of NDThreader is not much higher than DeepThreader because many test pairs have very similar proteins 

and any methods can do well on them. NDThreader generates alignment better than DeepThreader on ~570 

protein pairs, whereas DeepThreader does better on ~230 pairs. NDThreader generates better alignment 

than DRNF on ~630 protein pairs, whereas DRNF is better than NDThreader on only ~190 pairs.  
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Figure 4. Alignment quality (TM-score and GDT) comparison between DRNF, CNFpred, NDThreader and 

DeepThreader on the CAMEO test set. Top: average alignment quality (TM-score and GDT) on the CAMEO test set. 

GDT is scaled to [0,1]. Bottom left: NDThreader vs. DeepThreader. Bottom right: DRNF vs. CNFpred. Each point 

represents two alignments generated by two competing methods for the same protein pair. 

Evaluation of threading performance 

Threading performance on the CASP13 targets 

We evaluate the threading performance of our methods, as shown in Table 3. Here all the 3D models are 

built by MODELLER from the alignments and only a single template is used to build one 3D model. 

CASP13 has 45 TBM-easy, 22 TBM-hard, 32 FM and 13 FM/TBM domains, respectively.  

On the FM targets, NDThreader outperforms DeepThreader by 32.4% and 31.5%, respectively, in 

terms of TMscore and GDT, when the first-ranked models are evaluated. When the best of the top 5 

templates are evaluated, NDThreader is 30% and 28.6% better than DeepThreader in terms of TM-score 

and GDT, respectively. Fig. 5 shows their head-to-head comparison when the first-ranked and the best of 

top 5 templates are considered. The best of top 5 models produced by NDThreader for the FM targets have 

an average TM-score 0.473, 8.2% higher than the first-ranked models. In terms of TM-score, NDThreader 

ranks the best of top 5 models first for only 9 out of 32 FM domains, which indicates that template selection 

by the raw alignment score is not very accurate for the FM targets.  

On the FM/TBM targets, DRNF is better than CNFpred by 0.018 TMscore and NDThreader is 

better than DeepThreader by 0.10 TMscore when the first-ranked models are evaluated. DeepThreader fails 

to produce good alignments for T0986s1, and to select good templates for T1008 and T0970. In terms of 

TMscore, NDThreader outperforms DRNF by 30% and DeepThreader outperforms CNFpred by 16%, 

which confirms that predicted distance indeed can greatly improve threading.  

On the TBM-hard targets, NDThreader is better than DeepThreader by 0.055 TMscore when the 

first-ranked models are evaluated. When the first-ranked models are considered, NDThreader only 

underperforms DeepThreader on T0979-D1 due to incorrect template selection. But when the best of the 

top 5 templates are considered, NDThreader has a good model for T0979-D1. DRNF outperforms CNFpred 

by 0.02 TMscore. DRNF predicts better first-ranked models than CNFpred for 14 of 22 TBM-hard targets.  

On the TBM-easy targets, NDThreader, DeepThreader, DRNF and CNFpred produce the first-

ranked models with average TMscore 0.819, 0.816, 0.791 and 0.785, respectively. That is, even on easy 

targets predicted distance potential still helps slightly. When the first-ranked models are evaluated, DRNF 
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outperforms CNFpred on 26 domains, while underperforms on 19 domains., NDThreader outperforms 

DeepThreader by 0.003 and 0.002 in terms of TMscore and GDT, respectively. In terms of the TMscore, 

NDThreader outperforms DeepThreader and DRNF on 26 and 36 domains, respectively.  

In summary, NDThreader generates better first-ranked models than DeepThreader on 76 of 112 

domains and better best-of-top-5 models on 79 domains. On average NDThreader has the best threading 

performance on all CASP13 targets. We also evaluate the NDThreader result against structurally the most 

similar templates detected by TMalign, as shown in Supplemental File. 

 
Table 3. The threading performance on the CASP13 targets. GDT is scaled to [0, 1]. 

 top 1 best of top 5 best of top 50 

 TM GDT (TM+GDT)/2 TM GDT (TM+GDT)/2 TM GDT (TM+GDT)/2 

45 TBM-Easy targets 

NDThreader 0.819 0.764 0.792 0.826 0.773 0.800 0.827 0.772 0.800 

DeepThreader 0.816 0.762 0.789 0.824 0.770 0.797 0.826 0.774 0.800 

DRNF 0.791 0.736 0.764 0.807 0.754 0.781 0.816 0.765 0.790 

CNFpred 0.785 0.732 0.758 0.802 0.750 0.776 0.805 0.753 0.779 

22 TBM-Hard targets 

NDThreader 0.716 0.612 0.419 0.743 0.630 0.687 0.748 0.635 0.692 

DeepThreader 0.654 0.547 0.600 0.678 0.568 0.623 0.701 0.589 0.645 

DRNF 0.619 0.510 0.564 0.655 0.543 0.599 0.672 0.563 0.617 

CNFpred 0.599 0.499 0.549 0.650 0.542 0.596 0.657 0.554 0.605 

13 FM/TBM targets 

NDThreader 0.578 0.550 0.564 0.604 0.581 0.593 0.617 0.588 0.603 

DeepThreader 0.478 0.449 0.463 0.546 0.510 0.528 0.581 0.549 0.565 

DRNF 0.429 0.408 0.418 0.462 0.437 0.449 0.507 0.478 0.492 

CNFpred 0.411 0.390 0.400 0.445 0.422 0.433 0.484 0.469 0.476 

32 FM targets 
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NDThreader 0.437 0.380 0.408 0.473 0.405 0.439 0.491 0.423 0.457 

DeepThreader 0.330 0.289 0.309 0.369 0.322 0.345 0.410 0.353 0.381 

 

 

 

Figure 5. Head-to-head comparison between NDThreader and DeepThreader on the CASP13 targets. Left: top 1 

models. Right: the best of top 5 models. Each point represents the quality (TM-score) of two models generated by 

NDThreader (x-axis) and DeepThreader (y-axis), respectively. 

Comparison with top CASP13 servers  

Table 4 summarizes the performance of our new methods NDThreader and DRNF and some top CASP13 

servers on the CASP13 targets. RaptorX-TBM5 and CETheader are two servers tested in CASP13 and 

mainly based upon pure threading methods. RaptorX-TBM used DeepThreader to select templates and 

generate alignments and then used RosettaCM22 to build 3D models. RaptorX-TBM used PDB90 as the 

template database while both DRNF and NDThreader use PDB40 created before CASP13. For some targets 

RaptorX-TBM used multiple templates to build 3D models, but NDThreader only uses a single template. 

CEThreader is a contact-assisted threading method, but it is unclear how its 3D models were built. 

NDThreader and DRNF build 3D models from alignments using MODELLER, which is slightly worse 

than RosettaCM. NDThreader outperforms RaptorX-TBM and CEThreader on the FM, FM/TBM and 

TBM-Hard targets. On the TBM-Easy targets, NDThreader has a similar performance as RaptorX-TBM. 

On FM, FM/TBM and TBM-Hard targets DRNF is not comparable to RaptorX-TBM and NDThreader 

because DRNF does not use any distance information. RaptorX-DeepModeller5, Zhang-Server and 

QUARK23,24 used a mix of template-based (one and multiple templates) and template-free techniques to 

build 3D models. They outperformed NDThreader on the FM targets, but did not show significant 

advantage on the TBM targets. 

Table 4. Threading performance on all CASP13 FM/TBM, TBM-Hard and TBM-Easy domains. 

 FM FM/TBM TBM-Hard TBMEasy 

 TMscore GDT TMscore GDT TMscore GDT TMscore GDT 
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NDThreader (this work) 0.44/0.47 37.98/40.51 0.58/0.60 55.02/58.08 0.72/0.74 61.17/63.01 0.82/0.83 76.40/77.24 

DRNF (this work) 0.26/0.32 22.51/26.98 0.43/0.46 40.77/43.7 0.61/0.65 50.79/54.33 0.79/0.81 73.59/75.40 

CEThreader 0.33/0.37 27.84/31.45 0.51/0.53 49.74/54.53 0.60/0.63 49.87/53.14 0.74/0.78 67.75/72.46 

RaptorX-TBM 0.41/0.42 35.12/36.45 0.55/0.56 53.28/54.3 0.69/0.71 58.96/60.71 0.82/0.82 77.01/77.22 

RaptorX-DeepModeller 0.47/0.5 41.24/43.86 0.58/0.6 56.49/58.57 0.68/0.69 58.99/59.92 0.83/0.84 78.12/79.18 

Zhang-Server 0.49/0.52 42.78/46.03 0.6/0.64 57.68/61.5 0.72/0.75 62.25/64.51 0.83/0.85 78.23/79.82 

QUARK 0.49/0.52 43.36/45.13 0.59/0.66 58.03/63.03 0.71/0.75 60.96/64.64 0.83/0.85 78.13/79.79 

Performance in CASP14 
We blindly tested our methods (as a part of RaptorX server) in CASP14, in which we employed 

NDThreader and DRNF to find the best templates for a TBM target (judged by HHpred E-value<1E-5) and 

built the sequence-template alignments. Instead of building 3D models using MODELLER and RosettaCM, 

we built 3D models using our own folding engine originally designed for template-free modeling20. In 

particular, we fed the co-evolution information of the test target, its alignment with the selected template 

and the template distance matrix into our deep convolutional residual network to predict the inter-atom 

distance and orientation distribution. Then we converted the predicted distribution into distance/orientation 

potential and used the gradient descent method in PyRosetta to build 3D models by minimizing the 

predicted potential. In fact we initiated this idea in CASP135 and further improved its implementation in 

CASP14. Table 5 shows that in terms of TMscore our server performed similarly as the other two top 

servers and in terms of GDT our server did slightly better.  

By the way, both Zhang-Server and Baker-Server and the top human group AlphaFold2 have 

implemented a similar idea in CASP14, i.e., feeding templates into deep neural networks to help model a 

TBM target. In addition to using templates, AlphaFold2 did much better by directly predicting atom 

coordinates instead of inter-atom distance distribution, employing a Transformer-like deep neural network 

and possibly other techniques. Note that for some TBM targets (especially TBM-hard targets), without 

using templates our template-free modeling method may generate 3D models of similar or higher quality 

than using templates. For example, for T1047s2-D2, T1065s1-D1, T1083-D1 and T1084-D1 and T1085-

D3, our template-free modeling method predicted 3D models with GDT 88.86, 88.44, 87.77, 90.84 and 

82.89, respectively. Since it is unclear which specific techniques are used by other groups on a specific 

target, here we list the performance of the three servers on all the TBM targets. 

Table 5. The performance of three top servers on the CASP14 TBM targets. Each entry has the average 

quality score of the 1st-ranked and the best of top 5 models. 

 27 TBM-Easy targets 31 TBM-Hard targets 

 TMscore GDT TMscore GDT 

RaptorX 0.860/0.864 79.44/80.30 0.697/0.732 62.23/65.35 

Zhang-Server 0.854/0.859 77.92/78.50 0.696/0.722 61.69/64.07 

BAKER-SERVER 0.837/0.846 77.32/78.30 0.716/0.725 63.49/64.75 
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Conclusion and Discussions 
We have presented two new methods DRNF and NDThreader for TBM. DRNF uses a deep convolutional 

residual neural network (ResNet) and CRF (Conditional Random Fields) to predict sequence-template 

alignment from sequential features and NDThreader uses predicted distance potential to further improve 

the alignments generated by DRNF. Our test results on the CASP13 and CAMEO data show that our 

methods can generate much better alignment and have better threading performance than existing methods, 

especially when very similar templates are not available. When predicted distance information is not used, 

DRNF can generate much better alignments than those methods that mainly rely on sequence profiles such 

as HHpred and CNFpred. When predicted distance potential is used NDThreader outperforms those 

methods that use predicted contact and/or distance such as CEthreader and DeepThreader. The methods 

presented here can also be used to align two proteins without solved structures, as long as we replace the 

native structure information of a template with predicted structure information. Instead of using 

MODELLER and RosettaCM to build 3D models from an alignment, we have also presented our own 

method to build 3D models from both alignments and sequence co-evolution information. The blind test in 

CASP14 confirmed that our method for protein alignment and 3D model building works well for TBM 

targets. One potential issue with our method is that several key modules are implemented independently. It 

may further improve modeling accuracy if we can build an end-to-end system that takes a pair of query 

protein and template as input and directly outputs the 3D model of the query. The ResNet method used in 

this work can also be replaced by GNN (Graphical neural network) to make use of the template structure 

in a better way. 

Method 

Training and test data 
Training and validation data. We constructed the training and validation data based upon a PDB40 database 

dated in August 2018, in which any two protein chains share <40% sequence identity.  

(1) Assign superfamily IDs to all protein chains in PDB40 based upon their classification in SCOP version 

2.06 25 created in February 2016. One multi-domain protein chain may have multiple superfamily IDs. A 

protein chain is discarded if it is not included in this SCOP, which implies that all our training proteins were 

deposited to PDB before 2016. 

(2) Divide all the protein chains into groups by their superfamily IDs so that proteins in one group share 

one common superfamily ID. A multi-domain protein chain may belong to multiple groups. If a group has 

more than 200 proteins, we just keep 200 proteins by random sampling. If a group has fewer than 20 

proteins, we merge it with another group sharing the same fold ID. In total we obtain about 400 groups and 

all proteins in one group are either in the same superfamily or have a similar fold. 

(3) Run DeepAlign 26 to calculate the structure similarity of any two proteins in the same group. Keep only 

the protein pairs with structure similarity (i.e., TMscore) between 0.45 and 0.95.  

(4) Divide all protein pairs into 4 groups by their structure similarity: (0.45, 0.65], (0.65, 0.75], (0.75, 0.85] 

and (0.85, 0.95]. Randomly sample protein pairs in each group so that the number of protein pairs in these 

groups are approximately in the ratio 1:2:2:1. That is, we emphasize more on those protein pairs at medium 

similarity level since for very similar proteins existing tools HHpred and CNFpred are good enough and 

for dissimilar proteins template-free modeling may work better. 

(5) Finally, we obtain ~190000 protein pairs, from which we randomly select 8000 for validation and 1000 

to form our in-house test set. The test protein pairs are selected so that they are not similar to any 

training/validation protein pairs. We say two protein pairs are similar if their query proteins share the same 

superfamily ID and so do their template proteins. 

Test data for evaluating alignment accuracy. (1) An in-house test set consists of 1000 protein pairs as described 
above. The proteins in this set have length from 32 to 655 and their structure similarity (TMscore) ranges 
from 0.45 to 0.95. This set is mainly used to test DRNF. 
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(2) CASP13 data. We use 112 official-defined domains with publicly available experimental structures. We 
run TMalign to find their structurally similar proteins (with TMscore>0.5) in the PDB40 database. We 
select up to top 5 similar templates for the FM and FM/TBM targets and top 10 similar templates for the 
TBM-Hard and TBM-Easy targets to form 765 protein pairs. Many protein pairs in this set have proteins 
of very different length, which makes it very challenging to build accurate sequence-template alignments.  

(3) CAMEO set. We select 131 CAMEO targets released after 2018 which are not similar to our 

training/validation proteins. Run TMalign to find their similar templates (TMscore>0.5) in PDB40 

excluding those templates sharing >40% sequence identity. Afterwards, for each CAMEO target, we select 

up to 10 most similar templates to form ~840 sequence-template pairs. 

  

Finally, we use two structure alignment tools TMalign and DeepAlign to generate reference alignments for 

a protein pair.  

Test data for threading. We test the threading performance using the CASP13 set. It consists of 112 officially 
defined domains. These domains are divided into 4 categories by their difficulty level: FM (template-free 
modeling targets), FM/TBM, TBM-hard (hard template-based modeling targets) and TBM-easy (easy TBM 
targets)27. We use the PDB40 dated in May 2018 as our template database. Any two proteins in PDB40 
share <40% sequence identity. We also examined the performance of our method in CASP14, in which 
PDB70 was used as the template database. 

Evaluation method 

Evaluate alignment accuracy. We calculate both reference-dependent and reference-independent alignment 
accuracy. To calculate reference-dependent accuracy, we use the structure alignment of two proteins as our 
reference alignment since usually structure alignment is more accurate than alignments generated by a 
threading method. There are many structure alignment tools and here we use TMalign and DeepAlign to 
build two different reference alignments for a protein pair. We use recall and precision to evaluate the 
reference-dependent accuracy. Precision is defined as the percentage of correctly aligned positions judged 
by the reference alignments. Recall is the percentage of aligned positions in the reference alignment that 
are also aligned by a threading method. For reference-independent evaluation, we build a 3D model for the 
query protein using MODELLER21 based on its sequence-template alignment generated by a threading 
method and then evaluate the quality of the 3D model mainly by TMscore and GDT. TMscore ranges from 
0 to 1 and GDT ranges from 0 to 100. The higher the score, the better the model quality. 

Evaluate threading performance. We evaluate threading performance by measuring the quality of 3D models 
built by MODELLER from the first-ranked, the best of top 5 templates and for hard targets the best of top 
50 templates. This allows us to study how well we may select the best templates for hard targets.  

Protein features 
We use the following sequential features to predict alignment score between a query residue and a template 

residue. 

(1) amino acid identity. It is 1 if the two residues are the same, otherwise 0.  

(2) amino acid substitution matrix. To handle proteins at different similarity levels, we use three amino acid 

substitution matrices BLOSUM80, BLOSUM62 and BLOSUM4528 to score the similarity of two residues. 

(3) sequence profile similarity. We calculate this by the inner product of PSFM (position-specific frequency 

matrix) and PSSM (position-specific scoring matrix) in two directions: query PSFM to template PSSM and 

template PSFM to query PSSM. Both PSFM and PSSM are derived from the profile HHM built by 

HHblits29 with E-value=0.001 and uniclust30 dated in October 2017. 

(4) Secondary structure score. We predict the 3-class and 8-class secondary structure types of the query 

protein using RaptorX-Property30, calculate the template secondary structure using DSSP31, and then 

calculate secondary structure similarity between the query and template proteins. 

(5) Solvent accessibility. We use RaptorX-Property to predict the solvent accessibility of the query protein, 

and DSSP 31 to calculate the solvent accessibility of the template.  
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We also use predicted distance information of the query protein and the native distance matrix of the 

template. We use the deep ResNet method  described in6 to predict 𝐶𝛽-𝐶𝛽discrete distance distribution for 

a query protein sequence and convert it to distance potential using the DFIRE reference state 32. We 

discretize inter-atom distance into 14 intervals: < 4Å, 5 to 6Å, ..., 14 to 15Å, 15-16Å and >16Å. Distance 

potential is used to quantify how well a pair of sequence residues can be aligned to a pair of template 

residues. While predicting distance potential, multiple sequence alignments (MSAs) are built from a 

sequence database created before March 2018 to ensure a fair comparison with other methods on the 

CASP13 data. 

Representation of protein alignment 
Let𝑇denote a template protein with a solved structure and𝑆a query protein sequence under prediction. Let 

𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝐿}denote an alignment between𝑇and𝑆where𝐿is the alignment length and 𝑎𝑖   is one of 

the five states 𝑀, 𝐼𝑥, 𝐼𝑦, 𝐺ℎ  and 𝐺𝑡. 𝑀represents two residues being aligned, 𝐼𝑥and 𝐼𝑦  represente insertion 

at the template and the query proteins, respectively. 𝐺ℎ  and𝐺𝑡  represent the head and tail gaps, respectively. 

As shown in Supplemental Fig. S1, one alignment can be represented as a sequence of 𝐿states, a path in the 

alignment matrix, and a sequence of 𝐿triples. Each triple consists of two residue indices and one state. Here 

residue index ranges from 0 to sequence length minus 1, and −1is used to indicate head and tail gaps. An 

alignment can also be represented by a set of 5𝑁1𝑁2binary variables: 

{𝑧𝑖𝑗
𝑢 : − 1 ≤ 𝑖 ≤ 𝑁1 − 1, −1 ≤ 𝑗 ≤ 𝑁2 − 1, 𝑢 ∈ {𝑀, 𝐼𝑥 , 𝐼𝑦, 𝐺ℎ , 𝐺𝑡}} 

where 𝑁1and 𝑁2are protein lengths, and𝑧𝑖𝑗
𝑢is equal to 1 if and only if the alignment path passes (𝑖, 𝑗) with 

state𝑢, i.e., the triple (i, j,𝑢) appears in the triple representation of the alignment. 

DRNF for protein alignment without distance information 
Our DRNF method uses two 1D deep ResNet, one 2D deep ResNet and one CRF (Conditional Random 

Fields), as shown in Supplemental Fig. S2. The 1D ResNet extracts sequential context of one residue in the 

template and query proteins and the 2D ResNet extracts pairwise context of a residue pair (one query residue 

and one template residue) and predicts the alignment score of this pair of residues. Outer concatenation is 

used to convert 1D sequential information to 2D pairwise information. The 1D ResNet consists of 10 

convolutional layers and the same number of instance normalization layers and RELU layers. The kernel 

size of a 1D convolutional layer is 3. The 2D ResNet is more important, consisting of 20 residual blocks, 

each having 3 convolutional layers, 3 instance normalization layers and 3 ReLU layers. We use 5 × 5 as the 

kernel size of a 2D convolution layer. To make a better use of GPU, we group the training protein pairs 

into minibatches by their length product. One minibatch may contain multiple pairs of small proteins (e.g. 

150 × 150) or only one pair of two large proteins (e.g. 600 × 600). We have also tested a few other slightly 

different network architectures such as adding 1D LSTM onto 1D ResNet, but have not observed any 

significant performance again. 

Deep ResNet can predict the alignment score of any two residues of the query protein and the 

template. To produce a complete sequence-template alignment, we employ CRF, a probabilistic graphical 

model that takes the alignment score produced by deep ResNet as input. CRF also needs a state transition 

matrix to score the transition from one state (e.g., M) to the other (e.g., Ix). As shown in Table S1, there are 

12 feasible state transitions and 13 forbidden transitions. Since we want to generate a local alignment, we 

do not penalize the head and tail gaps and thus, set the score of the following state transitions to 0: match 

to tail gap, head gap to match, head gap to head gap, tail gap to tail gap. In addition, we do not allow a 

direct transition from a head gap to a tail gap, which implies that each alignment shall contain at least one 

pair of aligned residues. To avoid generating multiple equivalent alignments, we allow only 𝐼𝑥  → 𝐼𝑦but not 

𝐼𝑦  → 𝐼𝑥. That is, when both insertions and deletions appear in the same region, we always place 𝐼𝑥before 

𝐼𝑦. 

We may use two methods to build an alignment based upon the CRF model: Viterbi33 and MaxAcc 

(maximum expected accuracy)34. Viterbi generates the alignment with the highest probability while 

MaxAcc produces the alignment with the maximum expected accuracy. Both methods have time 
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complexity proportional to the product of two protein lengths, but MaxAcc takes approximately twice the 

running time of Viterbi.  

We train DRNF by maximum-likelihood, i.e., maximizing the probability of the reference 

alignments of the training protein pairs. We find out that even if fixing the state transition matrix, we can 

still obtain a very good DRNF model. 

Protein alignment with predicted distance potential 

When templates are not very similar to a target, we use DRNF to generate initial alignments and then 
employ predicted distance potential to improve them. With predicted distance potential, we score a 
sequence-template alignment A as follows. 

𝑆 = 𝑤 ×  𝑆𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 + 𝑆𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 = 𝑤 × ∑

(𝑖,𝑗,𝑢)∈𝐴

𝜃𝑖𝑗
𝑢𝑧𝑖𝑗

𝑢 +  ∑

(𝑖,𝑗,𝑢)∈𝐴,(𝑘,𝑙,𝑣)∈𝐴 

𝜃𝑖𝑗𝑘𝑙
𝑢𝑣 𝑧𝑖𝑗

𝑢 𝑧𝑘𝑙
𝑣  

𝑠. 𝑡. ∑

𝑗,𝑢

𝑧𝑖𝑗
𝑢 = 1 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑖 

 

 

(1) 

 

Where w is a weight factor with a default value 1. When the template is very similar to the query (which 

can be determined by HHblits E-value), we may use a larger value for w (e.g., 20). 𝑧𝑖𝑗
𝑢  is a binary variable 

that equals to 1 if and only if the triple (i, j, u) is in the alignment A (see the representation of an alignment). 

𝜃𝑖𝑗
𝑢  represents the score generated by DRNF for residues i and j with state u. 𝜃𝑖𝑗𝑘𝑙

𝑢𝑣  is equal to 0 if either u or 

v is not the match state. Otherwise, it equals the potential of query residues j and l falling into a distance 

bin d where d is the distance bin into which the two template residues i and k fall. As mentioned before, the 

distance potential is predicted by our deep ResNet method described in6.  

 

To find an alignment maximizing Eq. (1) is computationally NP-hard. We have implemented two different 

methods to improve alignments using predicted distance potential: ADMM (Alternating Direction Method 

of Multipliers) and deep ResNet. The detailed ADMM for protein alignment is described in13,19 and the 

Supplemental. Briefly speaking, ADMM starts from an initial alignment and iteratively improves it by 

incorporating distance potential. But ADMM usually converges to a local optimal and thus, may not be 

able to find the best alignment. To overcome this, we initialize ADMM by 4 different initial alignments 

generated by four different DRNF models trained with two different input features (whether predicted 

secondary structure and solvent accessibility are used or not) and two different reference alignments 

(generated by TMalign or DeepAlign).  

 

We have also trained a deep ResNet to further improve alignments. The input of this ResNet includes an 

initial alignment generated by DRNF or ADMM, the alignment score 𝜃𝑖𝑗
𝑢  (see Eq. (1) ) generated by DRNF 

for any two residues i (in template) and j (in query), and the distance potential score between i and j. The 

initial alignment is represented as a binary matrix of dimension template length×target length. Given an 

initial alignment, we may calculate the distance potential score between i and j by summing up 𝜃𝑖𝑗𝑘𝑙
𝑢𝑣 (see 

Eq.(1)) over all (k, l) where template residue k is aligned to query residue l in the initial alignment and the 

Euclidean distance between i and k is less than 16Å. Since all the input information can be represented as 

a tensor of shape template length×target length×m where m is the number of features, we may use a 2D 

ResNet (which is very similar to the 2D ResNet used in DRNF) to predict a query-template alignment from the 

input. We train this deep ResNet using the same training set as DRNF. The deep ResNet method differs from 

ADMM mainly in that the former uses a neural network to integrate predicted distance potential while the latter 

uses a linear function.  

 

It is possible to use machine learning to select the best alignment for a protein pair. Here we use the 

following score. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 27, 2020. ; https://doi.org/10.1101/2020.12.26.424433doi: bioRxiv preprint 

https://paperpile.com/c/NcNcuf/2MrF
https://paperpile.com/c/NcNcuf/ijLO+L8f5
https://doi.org/10.1101/2020.12.26.424433
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 = 𝑤1 ×  𝑆𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 + 𝑆𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 + 𝑤2 ×  𝑆𝑛𝑜𝑟𝑚 (2) 

Where 𝑆𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛and 𝑆𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒are defined in Eq. (1) and 𝑆𝑛𝑜𝑟𝑚is𝑆𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒normalized by the number of 

aligned positions;𝑤1is set to 1 by default and can be elevated to 20 for easy targets; and 𝑤2has a default 

value 5. By using the normalized distance potential, we emphasize more on the quality of an alignment 

instead of the alignment length and thus, avoid generating a lengthy alignment for two large proteins in 

which many aligned positions are of low quality.  

3D model building from alignments 
In our self-benchmarking, we build 3D models from sequence-template alignments using MODELLER 

since it runs very fast and can finish a large-scale test very quickly. Nevertheless, in the CASP14 blind test, 

except when a test target shares  >40% sequence identity with its templates (where MODELLER was used), 

we built 3D models from a sequence-template alignment using our own folding engine originally developed 

for template-free modeling20. To fulfill this, we fed a sequence-template alignment, template distance 

matrix and sequence co-evolution into a 2D ResNet to predict inter-residue orientation/distance distribution 

and then converted this distribution into distance/orientation potential, which is then fed into PyRosetta to 

build 3D models by minimizing the potential. The idea of feeding templates into a deep neural network was 

initiated by our group in CASP135 and now has been adopted by quite a few groups in CASP14 such as 

AlphaFold2 and Rosetta. Different from AlphaFold2 and Rosetta that used multiple templates to build one 

3D model, in CASP14 we used only one template to build one 3D model since our multi-template modeling 

has yet to be implemented.   
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