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Abstract

Motivation: TBM (template-based modeling) is a popular method for protein structure prediction. When very good
templates are not available, it is challenging to identify the best templates, build accurate sequence-template
alignments and construct 3D models from alignments.

Results: This paper presents a new method NDThreader (New Deep-learning Threader) to address the challenges of
TBM. DNThreader first employs DRNF (deep convolutional residual neural fields), which is an integration of deep
ResNet (convolutional residue neural networks) and CRF (conditional random fields), to align a query protein to
templates without using any distance information. Then NDThreader uses ADMM (alternating direction method of
multipliers) and DRNF to further improve sequence-template alignments by making use of predicted distance
potential. Finally NDThreader builds 3D models from a sequence-template alignment by feeding it and sequence co-
evolution information into a deep ResNet to predict inter-atom distance distribution, which is then fed into PyRosetta
for 3D model construction. Our experimental results on the CASP13 and CAMEO data show that our methods
outperform existing ones such as CNFpred, HHpred, DeepThreader and CEthreader. NDThreader was blindly tested
in CASP14 as a part of RaptorX server, which obtained the best GDT score among all CASP14 servers on the 58
TBM targets.

Availability and Implementation: available as a part of web server at http://raptorx.uchicago.edu
Contact: jinboxu@gmail.com
Supplementary Information: Supplementary data are available online.

Introduction

Predicting protein structure from its amino acid sequence is one of the most challenging problems in the
field of computational biology. Template-based modeling (TBM), including protein threading and
homology modeling, is a popular method for protein tertiary structure prediction. TBM predicts the
structure of a query protein (called target) by aligning it to one or multiple templates with solved structures.
Along with the growth of the PDB (protein data bank), TBM is able to predict structures for a good
percentage of proteins!. When a protein under prediction does not have highly similar templates, TBM
faces three major challenges: selection of the best templates, building an accurate sequence-template
alignment, and constructing 3D models from the alignment.

TBM uses a scoring function to guide sequence-template alignment. Existing methods such as
HHpred? and SPARKS-X2 employ a linear scoring function composed of sequential features such as
sequence profile, predicted secondary structure and solvent accessibility. CNFpred* uses a CRF
(conditional random fields) plus a shallow CNN (convolutional neural network) to learn a scoring function
from some reference alignments. Due to relatively simple scoring functions, these methods cannot capture
the complex relationship between input features and protein alignment. As a result of recent progress on
contact/distance prediction®>”, predicted contact and distance have been explored to improve protein
alignments. For example, map_align8, EigenThreader® and CEthreader® make use of predicted contacts to
improve alignments. DeepThreader'® is the first TBM method that makes use of predicted inter-residue
distance potential. Blindly tested in CASP13 as a server RaptorX-TBM?®, DeepThreader outperformed all
the other pure threading-based servers and on the very hard targets even performed comparably to Robetta
that utilized a combination of TBM, fragment-based and contact-assisted folding. Nevertheless,
DeepThreader’s performance is still not very satisfactory because 1) it uses a shallow convolutional neural
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network method CNFpred to generate an initial alignment. When it is very bad, DeepThreader cannot
improve it much by using predicted distance potential; 2) the predicted distance potential used by
DeepThreader in CASP13 is not accurate enough.

Deep learning has greatly improved template-free protein modeling, but not much effort has been
devoted to develop deep learning methods for template-based modeling. Since our proposal of deep ResNet
for protein contact/distance prediction and template-free protein modeling®"-13 deep ResNet has been
widely used by many groups to predict inter-residue (-atom) relationships, such as DMPfold4, AlphaFold®
and trRosetta'®. Here we will show that deep ResNet works well for protein alignments even in the absence
of predicted contact/distance information. In particular, we integrate deep ResNet and CRF (Conditional
Random Fields)'” to form a new deep network DRNF (Deep Convolutional Residual Neural Fields) that
may accurately align two proteins without predicted contact and distance. DRNF is able to capture context-
specific information from sequential features to improve protein alignment. Our experimental results show
that DRNF generates better alignments and recognizes better templates than existing methods such as
HHpred and CNFpred when predicted contact/distance information is not used. When combined with
predicted distance potential, we may further greatly improve alignment accuracy, as evidenced by our test
result on the CASP13 and CAMEOQ data.

To build 3D models from a sequence-template alignment, MODELLER and RosettaCM are often
used, but they usually generate models similar to the templates instead of the native structure of the protein
under prediction. To address this issue, we build 3D models from an alignment using our own method by
combining template information with sequence co-evolution information. In particular, we feed a sequence-
template alignment and sequence co-evolution information into a deep ResNet to predict inter-residue
distance/orientation distribution, convert the distribution to distance/orientation potential and then
minimize the potential through PyRosetta'® to build 3D models. In CASP14 our method obtained the best
GDT score among all CASP14-participating servers on the 58 TBM targets.

Results

Overview of the method

Fig. 1 shows the overall architecture of our method, which mainly consists of three modules. The first is a
DRNF (Deep Convolutional Residual Neural Fields) module for query-template alignment without using
any distance information. DRNF uses deep ResNet to capture context-specific information from sequential
features and integrate it with CRF (Conditional Random Fields) to predict query-template alignments. The
second module employs an ADMM?**® algorithm and another deep ResNet to improve the DRNF-
generated alignments by making use of predicted distance potential of the query. Finally, the sequence-
template alignment and sequence co-evolution information is fed into a deep ResNet to predict inter-atom
distance distribution, which is then fed into PyRosetta to build 3D models®.

Here we use DRNF to denote our alignment method without using predicted distance information and
NDThreader (New Deep Therader) to denote our alignment method that uses distance information. To
evaluate alignment accuracy and threading performance, we compare our methods with several established
methods including HHpred, CNFpred, CEThreader and DeepThreader. HHpred was run with two
alignment modes: global with option ‘-mact 0” and local with option ‘-mact 0.1°. Since DeepThreader is
the first distance-based threading method and also performed the best among all pure threading-based
methods in CASP13, we pay more attention to the comparison with DeepThreader.
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Figure 1. The overall architecture of our template-based modelling method.

Evaluation of alignment quality

Alignment accuracy on in-house test set when distance information is not used

Here we evaluate our method DRNF when distance information is not used. We train DRNF on DeepAlign-
generated alignments and use two methods Viterbi and MaxAcc (maximum expected accuracy) to predict
guery-template alignments. We divide the test set into 4 bins according to the query-template structure
similarity: (0.45, 0.55], (0.55, 0.65], (0.65, 0.8] and (0.8, 1]. Table 1 shows that DRNF outperforms
CNFpred and HHpred by a good margin in terms of both reference-dependent recall and precision
especially when the sequence-template structure similarity is not very high. Even if trained by DeepAlign-
generated alignments, DRNF still has the best precision and recall when evaluated by the TMalign-
generated reference alignments. Table 2 and Fig. 2 show that DRNF also outperforms CNFpred and
HHpred in terms of reference-independent accuracy. Here MODELLER?! is used to build 3D models from
all the alignments. The DRNF-generated alignments have average TMscore and GDT 0.525 and 0.432,
respectively, outperforming HHpred and CNFpred by a large margin. DRNF generates better alignments
than HHpred and CNFpred for 852 and 781 out of 1000 protein pairs, respectively.

Table 1. Reference-dependent alignment accuracy (precision and recall) on our in-house benchmark.

CNFpred HHpred-global | HHpred-local | DRNF-Viterbi | DRNF-MaxAcc

recall prec recall prec recall prec recall prec recall prec

Evaluated by DeepAlign-generated reference alignments

0,1] 0.475 | 0.474 | 0.395 | 0.344 | 0.351 | 0.475 | 0.616 | 0.615 | 0.596 | 0.635

(0.45,0.55] | 0.240 | 0.236 | 0.141 | 0.111 | 0.118 | 0.268 | 0.382 | 0.377 | 0.353 | 0.394
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(0.55,0.65] | 0.422 | 0.426 | 0.338 | 0.282 | 0.284 | 0.435 | 0.591 | 0.594 | 0.579 | 0.628

(0.65,0.8] 0.601 | 0.596 | 0.530 | 0.468 | 0.470 | 0.580 | 0.748 | 0.747 | 0.732 | 0.763

(0.8,1] 0.830 | 0.829 | 0.778 | 0.732 | 0.774 | 0.865 | 0.848 | 0.845 | 0.816 | 0.837

Evaluated by TMalign-generated reference alignments

(0,1] 0.436 | 0.426 | 0.318 | 0.358 | 0.435 | 0.322 | 0.545 | 0.532 | 0.526 | 0.548

(0.45,0.55] | 0.206 | 0.194 | 0.094 | 0.115 | 0.221 | 0.094 | 0.313 | 0.292 | 0.288 | 0.308

(0.55,0.65] | 0.377 | 0.369 [ 0.255 | 0.296 | 0.391 | 0.252 | 0.510 | 0.497 | 0.495 | 0.521

(0.65,0.8] 0.567 | 0.555 | 0.436 | 0.487 | 0.545 | 0.436 | 0.676 | 0.666 | 0.656 | 0.676

(0.8,1] 0.779 | 0.780 | 0.704 | 0.751 | 0.756 | 0.865 | 0.815 | 0.814 | 0.801 | 0.825

Table 2. Reference-independent alignment quality measured by TM-score and GDT on our in-house test set. GDT is
scaled to [0, 1]. DRNF is trained by DeepAlign-generated alignments and uses Viterbi to build alignments.

CNFpred HHpred-global HHpred-local DRNF

TMscore GDT TMscore GDT TMscore GDT TMscore GDT

(0,1] 0.469 0.383 0.415 0.338 0.341 0.290 0.525 0.432

(0.45,0.55] 0.320 0.244 0.232 0.176 0.156 0.131 0.380 0.294

(0.55,0.65] 0.426 0.331 0.374 0.290 0.283 0.234 0.493 0.389

(0.65,0.8] 0.554 0.465 0.512 0.427 0.442 0.377 0.610 0.515

(0.8,1] 0.709 0.635 0.691 0.614 0.673 0.596 0.723 0.648
DRNF vs. CNFpred on in-house test set DRNF vs. HHpred on in-house test set
1 - 1
e
of
7
] 353’" ’
0.8 . 2 _.'_ 08
= 0.6 0.6
=
5 2
B =
Z =
o 0.4 m 0.4
0.2 0.2
0 . 0
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
DRNF DRNF

Figure 2. The TMscore of the 3D models built from the alignments generated by DRNF, CNFpred and HHpred on
our in-house test set. (left) DRNF vs. CNFpred; (right) DRNF vs. HHpred. Each point represents two alignments
generated by two competing methods for the same protein pair.
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Alignment accuracy on the CASP13 data when distance information is used

Fig. 3 summarizes the average alignment accuracy (TMscore and GDT) of our methods DRNF and
NDThreader, and shows their detailed comparison with DeepThreader and CNFpred. Here all the 3D
models are built by MODELLER from the alignments. On average, the alignments produced by
NDThreader have TMscore and GDT of 0.624 and 0.556. In terms of TMscore, NDThreader outperforms
DeepThreader, DRNF and CNFpred by 6.1%, 12.4% and 19.9%, respectively. NDThreader outperforms
DeepThreader on ~490 protein pairs, whereas DeepThreader outperforms NDThreader on only ~270 pairs.
For those protein pairs with TMscore<0.6, NDThreader has a much larger advantage over DeepThreader.
NDThreader generates better alignment than DRNF for ~650 (out of 764) pairs, which confirms that the
predicted distance potential is very useful.

NDThreader  DeepThreader DRNF CNFpred HHpred
TM-score 0.624 0.59 0.557 0.522 0.468
GDT 0.556 0.525 0.495 0.466 0.416
NDThreader vs. DeepThreader on CASP13 set DRNF vs. CNFpred on CASP13 set
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Figure 3. Alignment quality (TM-score and GDT) comparison between DRNF, CNFpred, NDThreader and
DeepThreader on the CASP13 alignment test set. Top: average alignment quality (TM-score and GDT) on the
CASP13 alignment test set. GDT is scaled to [0, 1]. Bottom left: NDThreader vs. DeepThreader. Bottom right: DRNF
vs. CNFpred. Each point represents the quality of two alignments generated by two competing methods for the same
protein pair.

Alignment accuracy on the CAMEO data when distance information is used

Here we evaluate our methods DRNF and NDThreader in terms of reference-independent quality (TMscore

and GDT) on the CAMEDO test set. All the3D models are built by MODELLER from alignments. Fig. 4
lists the average alignment quality and shows their head-to-head comparison with CNFpred and
DeepThreader. On average NDThreader has the best alignment quality, 0.027 better than DeepThreader in
terms of TMscore. DRNF has an average TM-score 0.515, 0.031 higher than CNFpred. The average score
of NDThreader is not much higher than DeepThreader because many test pairs have very similar proteins
and any methods can do well on them. NDThreader generates alignment better than DeepThreader on ~570
protein pairs, whereas DeepThreader does better on ~230 pairs. NDThreader generates better alignment
than DRNF on ~630 protein pairs, whereas DRNF is better than NDThreader on only ~190 pairs.
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NDThreader  DeepThreader DRNF CNFpred
TM-score 0.557 0.53 0.515 0.484
GDT 0.459 0.436 0.421 0.395
NDThreader vs. DeepThreader on CAMEO set DRNF vs, CNFpred on CAMEO set
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Figure 4. Alignment quality (TM-score and GDT) comparison between DRNF, CNFpred, NDThreader and
DeepThreader on the CAMEO test set. Top: average alignment quality (TM-score and GDT) on the CAMEO test set.
GDT is scaled to [0,1]. Bottom left: NDThreader vs. DeepThreader. Bottom right: DRNF vs. CNFpred. Each point

represents two alignments generated by two competing methods for the same protein pair.

Evaluation of threading performance

Threading performance on the CASP13 targets

We evaluate the threading performance of our methods, as shown in Table 3. Here all the 3D models are
built by MODELLER from the alignments and only a single template is used to build one 3D model.
CASP13 has 45 TBM-easy, 22 TBM-hard, 32 FM and 13 FM/TBM domains, respectively.

On the FM targets, NDThreader outperforms DeepThreader by 32.4% and 31.5%, respectively, in
terms of TMscore and GDT, when the first-ranked models are evaluated. When the best of the top 5
templates are evaluated, NDThreader is 30% and 28.6% better than DeepThreader in terms of TM-score
and GDT, respectively. Fig. 5 shows their head-to-head comparison when the first-ranked and the best of
top 5 templates are considered. The best of top 5 models produced by NDThreader for the FM targets have
an average TM-score 0.473, 8.2% higher than the first-ranked models. In terms of TM-score, NDThreader
ranks the best of top 5 models first for only 9 out of 32 FM domains, which indicates that template selection
by the raw alignment score is not very accurate for the FM targets.

On the FM/TBM targets, DRNF is better than CNFpred by 0.018 TMscore and NDThreader is
better than DeepThreader by 0.10 TMscore when the first-ranked models are evaluated. DeepThreader fails
to produce good alignments for T0986s1, and to select good templates for T1008 and T0970. In terms of
TMscore, NDThreader outperforms DRNF by 30% and DeepThreader outperforms CNFpred by 16%,
which confirms that predicted distance indeed can greatly improve threading.

On the TBM-hard targets, NDThreader is better than DeepThreader by 0.055 TMscore when the
first-ranked models are evaluated. When the first-ranked models are considered, NDThreader only
underperforms DeepThreader on T0979-D1 due to incorrect template selection. But when the best of the
top 5 templates are considered, NDThreader has a good model for T0979-D1. DRNF outperforms CNFpred
by 0.02 TMscore. DRNF predicts better first-ranked models than CNFpred for 14 of 22 TBM-hard targets.

On the TBM-easy targets, NDThreader, DeepThreader, DRNF and CNFpred produce the first-
ranked models with average TMscore 0.819, 0.816, 0.791 and 0.785, respectively. That is, even on easy
targets predicted distance potential still helps slightly. When the first-ranked models are evaluated, DRNF
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outperforms CNFpred on 26 domains, while underperforms on 19 domains., NDThreader outperforms
DeepThreader by 0.003 and 0.002 in terms of TMscore and GDT, respectively. In terms of the TMscore,
NDThreader outperforms DeepThreader and DRNF on 26 and 36 domains, respectively.

In summary, NDThreader generates better first-ranked models than DeepThreader on 76 of 112
domains and better best-of-top-5 models on 79 domains. On average NDThreader has the best threading
performance on all CASP13 targets. We also evaluate the NDThreader result against structurally the most
similar templates detected by TMalign, as shown in Supplemental File.

Table 3. The threading performance on the CASP13 targets. GDT is scaled to [0, 1].

top 1 best of top 5 best of top 50

T | GDT | (TM+GDT)2 | ™™ | GDT | (TM+GDT)2 | T™ GDT | (TM+GDT)/2

45 TBM-Easy targets

NDThreader 0.819 | 0.764 0.792 0.826 | 0.773 0.800 0.827 | 0.772 0.800
DeepThreader | 0.816 | 0.762 0.789 0.824 | 0.770 0.797 0.826 | 0.774 0.800
DRNF 0.791 | 0.736 0.764 0.807 | 0.754 0.781 0.816 | 0.765 0.790
CNFpred 0.785 | 0.732 0.758 0.802 | 0.750 0.776 0.805 | 0.753 0.779

22 TBM-Hard targets

NDThreader 0.716 | 0.612 0.419 0.743 | 0.630 0.687 0.748 | 0.635 0.692
DeepThreader 0.654 | 0.547 0.600 0.678 | 0.568 0.623 0.701 | 0.589 0.645
DRNF 0.619 | 0.510 0.564 0.655 | 0.543 0.599 0.672 | 0.563 0.617
CNFpred 0.599 | 0.499 0.549 0.650 | 0.542 0.596 0.657 | 0.554 0.605

13 FM/TBM targets

NDThreader 0.578 | 0.550 0.564 0.604 | 0.581 0.593 0.617 | 0.588 0.603
DeepThreader | 0.478 | 0.449 0.463 0.546 | 0.510 0.528 0.581 | 0.549 0.565
DRNF 0.429 | 0.408 0.418 0.462 | 0.437 0.449 0.507 | 0.478 0.492
CNFpred 0.411 | 0.390 0.400 0.445 | 0.422 0.433 0.484 | 0.469 0.476

32 FM targets
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NDThreader 0.437 | 0.380 0.408 0.473 | 0.405 0.439 0.491 | 0.423 0.457
DeepThreader | 0.330 | 0.289 0.309 0.369 | 0.322 0.345 0.410 | 0.353 0.381
NDThreader vs. DeepThreader topl on CASP13 set NDThreader vs. DeepThreader top5 on CASP13 set
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Figure 5. Head-to-head comparison between NDThreader and DeepThreader on the CASP13 targets. Left: top 1
models. Right: the best of top 5 models. Each point represents the quality (TM-score) of two models generated by
NDThreader (x-axis) and DeepThreader (y-axis), respectively.

Comparison with top CASP13 servers

Table 4 summarizes the performance of our new methods NDThreader and DRNF and some top CASP13
servers on the CASP13 targets. RaptorX-TBM® and CETheader are two servers tested in CASP13 and
mainly based upon pure threading methods. RaptorX-TBM used DeepThreader to select templates and
generate alignments and then used RosettaCM? to build 3D models. RaptorX-TBM used PDB90 as the
template database while both DRNF and NDThreader use PDB40 created before CASP13. For some targets
RaptorX-TBM used multiple templates to build 3D models, but NDThreader only uses a single template.
CEThreader is a contact-assisted threading method, but it is unclear how its 3D models were built.
NDThreader and DRNF build 3D models from alignments using MODELLER, which is slightly worse
than RosettaCM. NDThreader outperforms RaptorX-TBM and CEThreader on the FM, FM/TBM and
TBM-Hard targets. On the TBM-Easy targets, NDThreader has a similar performance as RaptorX-TBM.
On FM, FM/TBM and TBM-Hard targets DRNF is not comparable to RaptorX-TBM and NDThreader
because DRNF does not use any distance information. RaptorX-DeepModeller®, Zhang-Server and
QUARKZ2 ysed a mix of template-based (one and multiple templates) and template-free techniques to
build 3D models. They outperformed NDThreader on the FM targets, but did not show significant
advantage on the TBM targets.

Table 4. Threading performance on all CASP13 FM/TBM, TBM-Hard and TBM-Easy domains.

FM FM/TBM TBM-Hard TBMEasy

TMscore GDT TMscore GDT TMscore GDT TMscore GDT
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NDThreader (this work)[ 0.44/0.47] 37.98/40.51f 0.58/0.60| 55.02/58.08 0.72/0.74| 61.17/63.01f 0.82/0.83| 76.40/77.24

DRNF (this work) 0.26/0.32| 22.51/26.98 0.43/0.46| 40.77/43.7| 0.61/0.65| 50.79/54.33] 0.79/0.81| 73.59/75.40
CEThreader 0.33/0.37| 27.84/31.45( 0.51/0.53| 49.74/54.53 0.60/0.63| 49.87/53.14] 0.74/0.78| 67.75/72.46
RaptorX-TBM 0.41/0.42| 35.12/36.45( 0.55/0.56| 53.28/54.3| 0.69/0.71| 58.96/60.71] 0.82/0.82 77.01/77.22

RaptorX-DeepModeller| 0.47/0.5| 41.24/43.86] 0.58/0.6 | 56.49/58.57] 0.68/0.69| 58.99/59.92( 0.83/0.84| 78.12/79.18

Zhang-Server 0.49/0.52( 42.78/46.03 0.6/0.64 | 57.68/61.5| 0.72/0.75 62.25/64.51| 0.83/0.85| 78.23/79.82

QUARK 0.49/0.52( 43.36/45.13] 0.59/0.66| 58.03/63.03 0.71/0.75 60.96/64.64] 0.83/0.85| 78.13/79.79

Performance in CASP14

We blindly tested our methods (as a part of RaptorX server) in CASP14, in which we employed
NDThreader and DRNF to find the best templates for a TBM target (judged by HHpred E-value<1E-5) and
built the sequence-template alignments. Instead of building 3D models using MODELLER and RosettaCM,
we built 3D models using our own folding engine originally designed for template-free modeling®. In
particular, we fed the co-evolution information of the test target, its alignment with the selected template
and the template distance matrix into our deep convolutional residual network to predict the inter-atom
distance and orientation distribution. Then we converted the predicted distribution into distance/orientation
potential and used the gradient descent method in PyRosetta to build 3D models by minimizing the
predicted potential. In fact we initiated this idea in CASP13°® and further improved its implementation in
CASP14. Table 5 shows that in terms of TMscore our server performed similarly as the other two top
servers and in terms of GDT our server did slightly better.

By the way, both Zhang-Server and Baker-Server and the top human group AlphaFold2 have
implemented a similar idea in CASP14, i.e., feeding templates into deep neural networks to help model a
TBM target. In addition to using templates, AlphaFold2 did much better by directly predicting atom
coordinates instead of inter-atom distance distribution, employing a Transformer-like deep neural network
and possibly other techniques. Note that for some TBM targets (especially TBM-hard targets), without
using templates our template-free modeling method may generate 3D models of similar or higher quality
than using templates. For example, for T1047s2-D2, T1065s1-D1, T1083-D1 and T1084-D1 and T1085-
D3, our template-free modeling method predicted 3D models with GDT 88.86, 88.44, 87.77, 90.84 and
82.89, respectively. Since it is unclear which specific techniques are used by other groups on a specific
target, here we list the performance of the three servers on all the TBM targets.

Table 5. The performance of three top servers on the CASP14 TBM targets. Each entry has the average
guality score of the 1st-ranked and the best of top 5 models.

27 TBM-Easy targets 31 TBM-Hard targets
TMscore GDT TMscore GDT
RaptorX 0.860/0.864 79.44/80.30 0.697/0.732 62.23/65.35
Zhang-Server 0.854/0.859 77.92/78.50 0.696/0.722 61.69/64.07
BAKER-SERVER 0.837/0.846 77.32/78.30 0.716/0.725 63.49/64.75
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Conclusion and Discussions

We have presented two new methods DRNF and NDThreader for TBM. DRNF uses a deep convolutional
residual neural network (ResNet) and CRF (Conditional Random Fields) to predict sequence-template
alignment from sequential features and NDThreader uses predicted distance potential to further improve
the alignments generated by DRNF. Our test results on the CASP13 and CAMEO data show that our
methods can generate much better alignment and have better threading performance than existing methods,
especially when very similar templates are not available. When predicted distance information is not used,
DRNF can generate much better alignments than those methods that mainly rely on sequence profiles such
as HHpred and CNFpred. When predicted distance potential is used NDThreader outperforms those
methods that use predicted contact and/or distance such as CEthreader and DeepThreader. The methods
presented here can also be used to align two proteins without solved structures, as long as we replace the
native structure information of a template with predicted structure information. Instead of using
MODELLER and RosettaCM to build 3D models from an alignment, we have also presented our own
method to build 3D models from both alignments and sequence co-evolution information. The blind test in
CASP14 confirmed that our method for protein alignment and 3D model building works well for TBM
targets. One potential issue with our method is that several key modules are implemented independently. It
may further improve modeling accuracy if we can build an end-to-end system that takes a pair of query
protein and template as input and directly outputs the 3D model of the query. The ResNet method used in
this work can also be replaced by GNN (Graphical neural network) to make use of the template structure
in a better way.

Method

Training and test data

Training and validation data. We constructed the training and validation data based upon a PDB40 database
dated in August 2018, in which any two protein chains share <40% sequence identity.

(1) Assign superfamily 1Ds to all protein chains in PDB40 based upon their classification in SCOP version
2.06 % created in February 2016. One multi-domain protein chain may have multiple superfamily IDs. A
protein chain is discarded if it is not included in this SCOP, which implies that all our training proteins were
deposited to PDB before 2016.
(2) Divide all the protein chains into groups by their superfamily IDs so that proteins in one group share
one common superfamily ID. A multi-domain protein chain may belong to multiple groups. If a group has
more than 200 proteins, we just keep 200 proteins by random sampling. If a group has fewer than 20
proteins, we merge it with another group sharing the same fold ID. In total we obtain about 400 groups and
all proteins in one group are either in the same superfamily or have a similar fold.
(3) Run DeepAlign ¢ to calculate the structure similarity of any two proteins in the same group. Keep only
the protein pairs with structure similarity (i.e., TMscore) between 0.45 and 0.95.
(4) Divide all protein pairs into 4 groups by their structure similarity: (0.45, 0.65], (0.65, 0.75], (0.75, 0.85]
and (0.85, 0.95]. Randomly sample protein pairs in each group so that the number of protein pairs in these
groups are approximately in the ratio 1:2:2:1. That is, we emphasize more on those protein pairs at medium
similarity level since for very similar proteins existing tools HHpred and CNFpred are good enough and
for dissimilar proteins template-free modeling may work better.
(5) Finally, we obtain ~190000 protein pairs, from which we randomly select 8000 for validation and 1000
to form our in-house test set. The test protein pairs are selected so that they are not similar to any
training/validation protein pairs. We say two protein pairs are similar if their query proteins share the same
superfamily 1D and so do their template proteins.

Test data for evaluating alignment accuracy. (1) An in-house test set consists of 1000 protein pairs as described
above. The proteins in this set have length from 32 to 655 and their structure similarity (TMscore) ranges
from 0.45 to 0.95. This set is mainly used to test DRNF.
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(2) CASP13 data. We use 112 official-defined domains with publicly available experimental structures. We
run TMalign to find their structurally similar proteins (with TMscore>0.5) in the PDB40 database. We
select up to top 5 similar templates for the FM and FM/TBM targets and top 10 similar templates for the
TBM-Hard and TBM-Easy targets to form 765 protein pairs. Many protein pairs in this set have proteins
of very different length, which makes it very challenging to build accurate sequence-template alignments.

(3) CAMEO set. We select 131 CAMEO targets released after 2018 which are not similar to our
training/validation proteins. Run TMalign to find their similar templates (TMscore>0.5) in PDB40
excluding those templates sharing >40% sequence identity. Afterwards, for each CAMEO target, we select
up to 10 most similar templates to form ~840 sequence-template pairs.

Finally, we use two structure alignment tools TMalign and DeepAlign to generate reference alignments for
a protein pair.

Test data for threading. We test the threading performance using the CASP13 set. It consists of 112 officially
defined domains. These domains are divided into 4 categories by their difficulty level: FM (template-free
modeling targets), FM/TBM, TBM-hard (hard template-based modeling targets) and TBM-easy (easy TBM
targets)?’. We use the PDB40 dated in May 2018 as our template database. Any two proteins in PDB40
share <40% sequence identity. We also examined the performance of our method in CASP14, in which
PDB70 was used as the template database.

Evaluation method

Evaluate alignment accuracy. We calculate both reference-dependent and reference-independent alignment
accuracy. To calculate reference-dependent accuracy, we use the structure alignment of two proteins as our
reference alignment since usually structure alignment is more accurate than alignments generated by a
threading method. There are many structure alignment tools and here we use TMalign and DeepAlign to
build two different reference alignments for a protein pair. We use recall and precision to evaluate the
reference-dependent accuracy. Precision is defined as the percentage of correctly aligned positions judged
by the reference alignments. Recall is the percentage of aligned positions in the reference alignment that
are also aligned by a threading method. For reference-independent evaluation, we build a 3D model for the
query protein using MODELLER? based on its sequence-template alignment generated by a threading
method and then evaluate the quality of the 3D model mainly by TMscore and GDT. TMscore ranges from
0to 1 and GDT ranges from 0 to 100. The higher the score, the better the model quality.

Evaluate threading performance. We evaluate threading performance by measuring the quality of 3D models
built by MODELLER from the first-ranked, the best of top 5 templates and for hard targets the best of top
50 templates. This allows us to study how well we may select the best templates for hard targets.

Protein features

We use the following sequential features to predict alignment score between a query residue and a template
residue.

(1) amino acid identity. It is 1 if the two residues are the same, otherwise 0.
(2) amino acid substitution matrix. To handle proteins at different similarity levels, we use three amino acid
substitution matrices BLOSUM80, BLOSUM®62 and BLOSUM452% to score the similarity of two residues.
(3) sequence profile similarity. We calculate this by the inner product of PSFM (position-specific frequency
matrix) and PSSM (position-specific scoring matrix) in two directions: query PSFM to template PSSM and
template PSFM to query PSSM. Both PSFM and PSSM are derived from the profile HHM built by
HHblits? with E-value=0.001 and uniclust30 dated in October 2017.
(4) Secondary structure score. We predict the 3-class and 8-class secondary structure types of the query
protein using RaptorX-Property®’, calculate the template secondary structure using DSSP®, and then
calculate secondary structure similarity between the query and template proteins.
(5) Solvent accessibility. We use RaptorX-Property to predict the solvent accessibility of the query protein,
and DSSP *! to calculate the solvent accessibility of the template.


https://paperpile.com/c/NcNcuf/qFOp
https://paperpile.com/c/NcNcuf/nplB
https://paperpile.com/c/NcNcuf/9uBt
https://paperpile.com/c/NcNcuf/Nm3p
https://paperpile.com/c/NcNcuf/5vdI
https://paperpile.com/c/NcNcuf/Ddr5
https://paperpile.com/c/NcNcuf/Ddr5
https://doi.org/10.1101/2020.12.26.424433
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.26.424433; this version posted December 27, 2020. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

12

We also use predicted distance information of the query protein and the native distance matrix of the
template. We use the deep ResNet method described in® to predict Cp-Cpdiscrete distance distribution for
a query protein sequence and convert it to distance potential using the DFIRE reference state 2. We
discretize inter-atom distance into 14 intervals: < 4A, 5 to 6A, ..., 14 to 15A, 15-16A and >16A. Distance
potential is used to quantify how well a pair of sequence residues can be aligned to a pair of template
residues. While predicting distance potential, multiple sequence alignments (MSAs) are built from a
sequence database created before March 2018 to ensure a fair comparison with other methods on the
CASP13 data.

Representation of protein alighment

LetTdenote a template protein with a solved structure andSa query protein sequence under prediction. Let
A = {a4,a,,as, ..., a; ydenote an alignment betweenTandSwhereLis the alignment length and a; is one of
the five states M, Iy, I, G, and G;. Mrepresents two residues being aligned, I,and I, represente insertion

at the template and the query proteins, respectively. G, andG, represent the head and tail gaps, respectively.
As shown in Supplemental Fig. S1, one alignment can be represented as a sequence of Lstates, a path in the
alignment matrix, and a sequence of Ltriples. Each triple consists of two residue indices and one state. Here
residue index ranges from 0 to sequence length minus 1, and —1is used to indicate head and tail gaps. An
alignment can also be represented by a set of 5N; N,binary variables:

{zy%: = 1< i< N = 1,-1<j <Ny = Lu € (M 1,1, Gy, G}

where N;and N,are protein lengths, andz;;*is equal to 1 if and only if the alignment path passes (i, j) with
stateu, i.e., the triple (i, j,u) appears in the triple representation of the alignment.

DRNF for protein alignment without distance information

Our DRNF method uses two 1D deep ResNet, one 2D deep ResNet and one CRF (Conditional Random
Fields), as shown in Supplemental Fig. S2. The 1D ResNet extracts sequential context of one residue in the
template and query proteins and the 2D ResNet extracts pairwise context of a residue pair (one query residue
and one template residue) and predicts the alignment score of this pair of residues. Outer concatenation is
used to convert 1D sequential information to 2D pairwise information. The 1D ResNet consists of 10
convolutional layers and the same number of instance normalization layers and RELU layers. The kernel
size of a 1D convolutional layer is 3. The 2D ResNet is more important, consisting of 20 residual blocks,
each having 3 convolutional layers, 3 instance normalization layers and 3 ReL U layers. We use 5 x 5 as the
kernel size of a 2D convolution layer. To make a better use of GPU, we group the training protein pairs
into minibatches by their length product. One minibatch may contain multiple pairs of small proteins (e.g.
150 x 150) or only one pair of two large proteins (e.g. 600 x 600). We have also tested a few other slightly
different network architectures such as adding 1D LSTM onto 1D ResNet, but have not observed any
significant performance again.

Deep ResNet can predict the alignment score of any two residues of the query protein and the
template. To produce a complete sequence-template alignment, we employ CRF, a probabilistic graphical
model that takes the alignment score produced by deep ResNet as input. CRF also needs a state transition
matrix to score the transition from one state (e.g., M) to the other (e.g., Ix). As shown in Table S1, there are
12 feasible state transitions and 13 forbidden transitions. Since we want to generate a local alignment, we
do not penalize the head and tail gaps and thus, set the score of the following state transitions to 0: match
to tail gap, head gap to match, head gap to head gap, tail gap to tail gap. In addition, we do not allow a
direct transition from a head gap to a tail gap, which implies that each alignment shall contain at least one

pair of aligned residues. To avoid generating multiple equivalent alignments, we allow only I,, — I, but not
I, - I,. That is, when both insertions and deletions appear in the same region, we always place I,before
I,.
y

We may use two methods to build an alignment based upon the CRF model: Viterbi® and MaxAcc
(maximum expected accuracy)®. Viterbi generates the alignment with the highest probability while

MaxAcc produces the alignment with the maximum expected accuracy. Both methods have time
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complexity proportional to the product of two protein lengths, but MaxAcc takes approximately twice the
running time of Viterbi.

We train DRNF by maximum-likelihood, i.e., maximizing the probability of the reference
alignments of the training protein pairs. We find out that even if fixing the state transition matrix, we can
still obtain a very good DRNF model.

Protein alignment with predicted distance potential

When templates are not very similar to a target, we use DRNF to generate initial alignments and then
employ predicted distance potential to improve them. With predicted distance potential, we score a
sequence-template alignment A as follows.

— _ u,u uv u, v
S=wX Ssingleton + Spairwise =wX Z Gijzij + Z Hijklzijzkl
(i,j,u)eA (L,j,u)€A,(kLv)EA (1)

s.t.z zjj =1 foranyi
Ju

Where w is a weight factor with a default value 1. When the template is very similar to the query (which
can be determined by HHblits E-value), we may use a larger value for w (e.g., 20). z;; is a binary variable
that equals to 1 if and only if the triple (i, j, u) is in the alignment A (see the representation of an alignment).
6;; represents the score generated by DRNF for residues i and j with state u. 6}, is equal to 0 if either u or
Vv is not the match state. Otherwise, it equals the potential of query residues j and | falling into a distance
bin d where d is the distance bin into which the two template residues i and k fall. As mentioned before, the
distance potential is predicted by our deep ResNet method described in®.

To find an alignment maximizing Eq. (1) is computationally NP-hard. We have implemented two different
methods to improve alignments using predicted distance potential: ADMM (Alternating Direction Method
of Multipliers) and deep ResNet. The detailed ADMM for protein alignment is described in***° and the
Supplemental. Briefly speaking, ADMM starts from an initial alignment and iteratively improves it by
incorporating distance potential. But ADMM usually converges to a local optimal and thus, may not be
able to find the best alignment. To overcome this, we initialize ADMM by 4 different initial alignments
generated by four different DRNF models trained with two different input features (whether predicted
secondary structure and solvent accessibility are used or not) and two different reference alignments
(generated by TMalign or DeepAlign).

We have also trained a deep ResNet to further improve alignments. The input of this ResNet includes an
initial alignment generated by DRNF or ADMM, the alignment score 011-‘]- (see Eq. (1)) generated by DRNF
for any two residues i (in template) and j (in query), and the distance potential score between i and j. The
initial alignment is represented as a binary matrix of dimension template lengthxtarget length. Given an
initial alignment, we may calculate the distance potential score between i and j by summing up 911-‘]-’,’(1(566

Eq.(1)) over all (k, 1) where template residue k is aligned to query residue | in the initial alignment and the
Euclidean distance between i and k is less than 16A. Since all the input information can be represented as
a tensor of shape template lengthxtarget lengthxm where m is the number of features, we may use a 2D
ResNet (which is very similar to the 2D ResNet used in DRNF) to predict a query-template alignment from the
input. We train this deep ResNet using the same training set as DRNF. The deep ResNet method differs from
ADMM mainly in that the former uses a neural network to integrate predicted distance potential while the latter
uses a linear function.

It is possible to use machine learning to select the best alignment for a protein pair. Here we use the
following score.
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Selection Score = w; X Ssingieton + Spairwise T W2 X Snorm (2)

Where Sgingieton@Nd Spairwisedre defined in Eq. (1) and SyormiSSpairwiseNormalized by the number of
aligned positions;w;is set to 1 by default and can be elevated to 20 for easy targets; and w;has a default
value 5. By using the normalized distance potential, we emphasize more on the quality of an alignment
instead of the alignment length and thus, avoid generating a lengthy alignment for two large proteins in
which many aligned positions are of low quality.

3D model building from alignments

In our self-benchmarking, we build 3D models from sequence-template alignments using MODELLER
since it runs very fast and can finish a large-scale test very quickly. Nevertheless, in the CASP14 blind test,
except when a test target shares >40% sequence identity with its templates (where MODELLER was used),
we built 3D models from a sequence-template alignment using our own folding engine originally developed
for template-free modeling®. To fulfill this, we fed a sequence-template alignment, template distance
matrix and sequence co-evolution into a 2D ResNet to predict inter-residue orientation/distance distribution
and then converted this distribution into distance/orientation potential, which is then fed into PyRosetta to
build 3D models by minimizing the potential. The idea of feeding templates into a deep neural network was
initiated by our group in CASP13® and now has been adopted by quite a few groups in CASP14 such as
AlphaFold2 and Rosetta. Different from AlphaFold2 and Rosetta that used multiple templates to build one
3D model, in CASP14 we used only one template to build one 3D model since our multi-template modeling
has yet to be implemented.
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