

1 Biological Sciences: Biophysics and Computational Biology

2 **Lipid-based, protein-based, and steric interactions synergize to facilitate transmembrane**
3 **signaling stimulated by antigen-clustering of IgE receptors**

4 Nirmalya Bag*, Alice Wagenknecht-Wiesner, Allan Lee, Sophia Shi, David A. Holowka, Barbara A.
5 Baird*

6 Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853

7 *Corresponding authors: nb559@cornell.edu (N.B.) and bab13@cornell.edu (B.A.B.)

8

9 **Keywords**

10 Transmembrane signaling, Plasma membrane organization, ordered lipid domains, rafts,
11 Fluorescence Correlation Spectroscopy, Fc ϵ RI

12

13 ABSTRACT

14 Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-Fc ϵ RI) complexes in mast cells
15 stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered Fc ϵ RI by lipid-
16 anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn
17 and Fc ϵ RI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn
18 binds directly to cytosolic segments of Fc ϵ RI that it initially phosphorylates for amplified activity. Net
19 phosphorylation above a non-functional threshold is achieved in the stimulated state, but not in the
20 resting state, and current evidence supports the hypothesis that this relies on disruption by Ag-
21 crosslinking of a balance between Lyn and tyrosine phosphatase activities. However, the structural
22 interactions that underlie the stimulation process remain poorly defined. This study evaluates the
23 relative contributions and functional importance of different types of interactions leading to supra-
24 threshold phosphorylation of Ag-crosslinked IgE-Fc ϵ RI in live rat basophilic leukemia (RBL) mast
25 cells. Our high-precision diffusion measurements by Imaging Fluorescence Correlation
26 Spectroscopy (ImFCS) on multiple structural variants of Lyn and other lipid-anchored probes
27 confirm subtle, stimulated stabilization of the Lo-like nanodomains and concomitant sharpening of
28 segregation from liquid-disordered (Ld)-like regions. With other structural variants we determine that
29 lipid-based interactions are essential for access by Lyn leading to phosphorylation of and protein-
30 based binding to clustered Fc ϵ RI. By contrast, TM tyrosine phosphatase, PTP α , is excluded from
31 these regions by steric repulsion of TM segments and preference for Ld-like regions. Overall, we
32 establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM
33 signaling in mast cells.

34 SIGNIFICANCE STATEMENT

35 Lipid organization of the plasma membrane is known to be important for facilitating protein
36 interactions in transmembrane signaling. However, the orchestration of these interactions in live
37 cells has been elusive. We employed ImFCS to systematically investigate the interplay of lipids and
38 proteins during signaling in mast cells, initiated as phosphorylation of Ag-crosslinked IgE-Fc ϵ RI by
39 lipid-anchored Lyn kinase. We find lipid-based interactions are first required for protein-based
40 phosphorylation of the clustered Fc ϵ RI within Lo-like nanodomains. Transmembrane phosphatases
41 must be excluded from these regions, and we find this is mediated by their preference for Ld-like
42 regions and by steric exclusion from the clustered Fc ϵ RI proteins. ImFCS provides quantitative
43 characterization of the functional link between features of plasma membrane organization and
44 transmembrane signaling.

46 INTRODUCTION

47 Transmembrane (TM) signaling stimulated by antigen (Ag) occurs through cell surface
48 immunoreceptors that lack a cytosolic kinase module and require tyrosine phosphorylation that is
49 mediated by intermolecular coupling with a separate, plasma membrane localized kinase (1).
50 Effective coupling corresponds to a supra-threshold level of receptor phosphorylation that
51 surmounts dephosphorylation by proximal tyrosine phosphatases. Orchestrated modulation of
52 interactions among the signaling proteins (i.e, receptor, kinase, and phosphatase) (2, 3) and with
53 other proteins (e.g., actin cytoskeleton (4)) are key to Ag-stimulated TM signaling. Although
54 signaling studies have tended to focus on protein-protein interactions, contributions by lipid-based
55 interactions are increasingly appreciated. In particular, phase-like organization of the plasma
56 membrane provides capacity for co-localizing receptor and kinase while segregating phosphatase,
57 according to phase preferences (5). However, the relative importance remains a subject of debate
58 (6-11), largely because it is experimentally difficult to separate the signaling contributions of lipid-
59 based interactions from those of protein-based interactions in live cells.

60 Our group has worked to develop biophysical approaches that systematically delineate
61 signaling interactions in the context of a prototypical immunoreceptor signaling system: the high
62 affinity receptor for immunoglobulin E (IgE), Fc ϵ RI, in RBL mast cells (12, 13). Crosslinking of IgE-
63 Fc ϵ RI by soluble, multivalent Ag creates Fc ϵ RI nanoclusters (14, 15) that are phosphorylated by
64 Lyn, a src family tyrosine kinase anchored to the inner leaflet of the plasma membrane by saturated
65 acyl chains (Figure 1A). Phosphorylated tyrosines on cytosolic β and γ subunits of Fc ϵ RI provide
66 direct binding sites for Lyn-SH2 modules to amplify the phosphorylation activity and create a
67 binding site for Syk kinase and consequent assembly of a protein-based signaling platform that
68 incorporates LAT scaffold and links to activation of phospholipase Cy and attachment to the actin
69 cytoskeleton (16). In mast cells, stimulated coupling of clustered Fc ϵ RI with Lyn initiates the
70 cascade of cellular signaling and responses that underlie allergy and inflammation (12).

71 The role of lipids in stimulated Lyn/IgE-Fc ϵ RI coupling has been scrutinized in experimental
72 (15, 17-19) and theoretical (20) studies over two decades, yielding the view that Ag-crosslinking
73 stabilizes liquid ordered (Lo)-like nanodomains around the clustered IgE-Fc ϵ RI. Referred to
74 commonly (and roughly) as “rafts,” these proteo-lipid organizational features of plasma membranes
75 have variable properties that depend on cellular circumstance but generally resemble Lo domains
76 that co-exist with liquid disordered (Ld) regions at equilibrium in model membranes of defined
77 composition (21). Experiments in cells show that Lyn kinase preferentially partitions into Lo-like
78 nanodomains in the plasma membrane as mediated by its saturated lipid anchor

79 (palmitoyl/myristoyl, PM) (15, 22, 23). By contrast, a TM tyrosine phosphatase, PTP α , and a Ld-
80 preferring lipid anchor (geranyl/geranyl, GG) preferentially localize to Ld-like regions, away from Lo-
81 like nanodomains (15, 23, 24). In early studies, the functional relevance of this lipid-driven spatial
82 partitioning of the signaling components was shown by appearance of phosphorylated IgE-Fc ϵ RI in
83 the Lo-like, detergent resistant membrane (DRM) fraction only after Ag-stimulation (24-26). Further
84 functional evidence came from showing abrogated Fc ϵ RI phosphorylation after pharmacological
85 depletion of cholesterol, a key component of Lo-like nanodomain formation (26). However, both
86 DRM isolation and cholesterol depletion have known limitations (27) and they do not directly show
87 whether lipid-based partitioning of Lyn is necessary or sufficient for functional coupling with
88 clustered Fc ϵ RI.

89 Co-clustering of Lyn (and a PM lipid probe, but not a GG lipid probe) with Ag-crosslinked
90 IgE-Fc ϵ RI can be observed with fluorescence microscopy but requires pair cross-correlation
91 analysis of super-resolution images and is relatively modest in magnitude. The difficulty of detection
92 points to both lipid-based and protein-based interactions being weak and dynamic. Furthermore, the
93 difference between resting and stimulated state organization of the plasma membrane appears to
94 be subtle, also difficult to detect by conventional fluorescence microscopy and spectroscopy (15,
95 28, 29). Single particle tracking (SPT) can be successful in picking up small changes. For example,
96 Kusumi and colleagues developed high-speed SPT analysis built around microscope dedicated to
97 delineating transient interactions at single molecule level (30, 31). Both super-resolution and SPT
98 approaches are technically demanding and typically require special fluorescent tags. As a
99 complementary approach, we recently demonstrated that Imaging Fluorescence Correlation
100 Spectroscopy (ImFCS) quantifies subtle differences in the diffusion properties of comparable
101 probes and subtle changes in the diffusion of a particular probe under different cell treatments.
102 ImFCS images conventional fluorophores with a diffraction-limited total internal reflection
103 fluorescence (TIRF) microscope (32, 33). These measurements simultaneously evaluate probe
104 diffusion in hundreds of pixel units, which can be further extended over multiple cells, yielding
105 thousands of data points. Such large data statistics permit precise evaluation of diffusion
106 coefficients thereby enabling detection of small changes in diffusion of a given probe that arises
107 from the change in membrane organization. For example, by comparing Lo-preferring and Ld-
108 preferring probes, we previously detected changes in plasma membrane phase-like organization
109 after inhibition of actin polymerization (33).

110 Faced the challenge of delineating contributions of protein-based and lipid-based interaction
111 and subtle changes that occur in the plasma membrane after Ag-crosslinking of IgE-Fc ϵ RI, we have

112 now improved further the robustness of ImFCS data analysis. We combine with Fluorescence
113 Recovery after Photobleaching (FRAP) and a modified, image-based DRM assay (34), to compare
114 diffusion properties of multiple probes which, as a composite, represent membrane organization
115 under specified conditions. We compare probes for signaling components IgE-Fc ϵ RI, Lyn, and
116 PTP α as well as structural variants of these (Figure 1A), and we compare resting and Ag-stimulated
117 steady-states of RBL cells. By evaluating diffusion properties of passive lipid probes with variable
118 Lo-preference we characterize a relatively stable Lo-like environment around crosslinked Fc ϵ RI
119 nanoclusters in the stimulated steady-state. We construct Lyn variants to modify Lyn's lipid-based
120 partitioning, cytosolic protein-based interactions, and kinase activity. Comparative evaluation of
121 these variants reveals levels of contribution toward effective coupling with Ag-crosslinked Fc ϵ RI.
122 We show that Lyn's Lo-preference is essential for stimulated phosphorylation of IgE-Fc ϵ RI in a
123 reconstituted system. In contrast, we find that the tyrosine phosphatase, PTP α , is excluded from the
124 region of clustered Fc ϵ RI both because of its inherent Ld-preference and by steric hindrance of its
125 TM segments. Overall, this study provides key experimental evidence to explain how cells utilize
126 subtle changes in the membrane organization to initiate TM signaling.

127 **RESULTS**

128 Ag-crosslinking of IgE-Fc ϵ RI in RBL mast cells stimulates new interactions within the plasma
129 membrane to facilitate supra-threshold Fc ϵ RI phosphorylation by Lyn tyrosine kinase as the first
130 step of transmembrane (TM) signaling. To delineate comprehensively functional redistributions of
131 lipids and proteins we use multiple complementary approaches to monitor Ag-stimulated changes in
132 diffusion and other properties of selected probes (Figure 1A and following figures). We find that
133 shifts in distribution curves of diffusion coefficients derived from ImFCS provide an exceptionally
134 sensitive representation of membrane changes that occur to initiate signaling.

135

136 ***ImFCS readily detects subtle changes in lipid heterogeneity caused by IgE-Fc ϵ RI clustering.***

137 Crosslinking of AlexaFluor488-labeled IgE-Fc ϵ RI (AF488-IgE-Fc ϵ RI; Figure 1A) by Ag (DNP-
138 BSA) in RBL plasma membranes forms densely distributed nanoclusters that are visible by
139 diffraction-limited TIRF microscopy (Figure 1B). Our previous super-resolution imaging showed that
140 these individual nanoclusters have an average radius of ~80 nm (14). As previously measured by
141 FRAP (35, 36) and confirmed here, 70% of the crosslinked AF488-IgE-Fc ϵ RI are immobile, and the
142 30% mobile fraction diffuse slower (i.e., longer fluorescence recovery time) than monomeric AF488-
143 IgE-Fc ϵ RI (85% mobile) present in resting cells (Figure 1C and SI Figure S1A). By comparison, the
144 yellow fluorescent protein (YFP) tagged Ld-preferring probe, YFP-GL-GT46 (comprising the TM
145 segment of the LDL receptor and the cytoplasmic tail of CD46) (37-39) has a mobile fraction of 84%

146 with an insignificant shifts in that value of the fluorescence recovery time after Ag-crosslinking of
147 IgE-Fc ϵ RI (Figure S1B).

148 Changes in resistance to detergent solubilization provided some of the first evidence that
149 crosslinked IgE-Fc ϵ RI nanoclusters associate with and stabilize Lo-like nanodomains (5, 15, 22,
150 24), as similarly documented for B and T cell receptors (34, 40-43). Detergent resistant membranes
151 (DRMs) are Lo-like in lipid composition (44, 45) and retain co-associating proteins after solubilizing
152 cells with 0.04% Triton X 100 (TX100) and floating on sucrose gradients (25). We recently adapted
153 this basic methodology for evaluation of single cells by fluorescence microscopy (46), and we
154 quantify the detergent-resistance of a particular probe in the plasma membrane by a characteristic
155 retention (R) value (SI). R is taken as the ratio of median fluorescence per cell after treatment with
156 0.04% TX100 to that of untreated cells. A larger R value reflects stronger interaction of the probe
157 with membrane constituents that are not released under these conditions. We find that the R value
158 of AF488-IgE-Fc ϵ RI increases from 0.27 to 0.57 after antigen crosslinking (Figure 1D and S2A). By
159 comparison, the Ld-preferring TM probe YFP-GL-GT46 shows a slightly smaller R value after
160 crosslinking IgE-Fc ϵ RI (0.39 to 0.27; Figure 1E and S2B). These distinctive behaviors are
161 consistent with crosslinked AF488-IgE-Fc ϵ RI stabilizing Lo-like regions.

162 We recently established that diffusion properties of mobile membrane probes, and their
163 subtle changes after pharmacological treatments, can be quantified precisely by TIRF-based
164 ImFCS (33). This approach uses a fast camera and autocorrelates fluorescence fluctuations to
165 determine diffusion coefficients (D) of a particular probe at several hundreds of diffraction-limited
166 spatial locations (Px unit = 320 nm \times 320 nm) in single cells (Figure 2A,B). The D value determined
167 for an individual Px unit represents all nanoscopic environments that the probe moves through,
168 within that Px unit, during the data acquisition time (280 sec). Nanoscopic environments with more
169 interactions (e.g., higher effective viscosity) yield a slower D value, and less interactive
170 environments yield a faster D value (Figure 2B,C). By reflecting the interactions that structurally
171 distinct probes experience, distinctive diffusion properties provide information about membrane
172 organization. Pooling data from multiple cells, yields \sim 10,000 D values for a given probe, and the
173 resulting high level of precision enables subtle differences in diffusion properties among probes to
174 be discerned ((33); Table S1). As one measure of precision, the arithmetic average of pooled D
175 values, D_{av} , has a standard error of the mean (SEM) of less than 1% for every probe evaluated by
176 ImFCS in this study.

177 The probability distribution functions (PDFs) of D values determined by ImFCS for mobile
178 AF488-IgE-Fc ϵ RI from resting cells (red) and from cells stimulated with antigen (black) show a clear
179 shift to slower D values (Figure 2D), consistent with FRAP measurements (Figures 1C, S1A). To
180 quantify subpopulations we convert the pooled D values into cumulative distribution functions

181 (CDFs; Figure 2E) – a mathematically equivalent but bin-independent alternative to PDFs – which
182 can be unequivocally resolved into one or two Gaussian components (SI Eqns S3 and S4; (33)).
183 For two-component D CDFs, the fast and slow components, D_{fast} and D_{slow} represent the average
184 diffusion coefficient of a particular probe in, respectively, interaction-poor and interaction-rich
185 populations of Px units in the plasma membrane (Figure 2C). F_{slow} is the fraction of the interaction-
186 rich population and $(1 - F_{\text{slow}})$ is the fraction of the interaction-poor population. To test whether CDF
187 curves are overly influenced by outliers, and to provide a curve thickness related to level of
188 uncertainty, we routinely resample the D values by bootstrapping 30 times (with 50% of all data
189 each time), and the corresponding bootstrapped CDFs are fitted individually (See SI for more
190 details of the analysis). For all probes tested in this study we found narrowly distributed fitted values
191 of D_{fast} , D_{slow} , and F_{slow} , confirming the reliability and robustness of our analysis (Table S1; Figures
192 2-6 and S3).

193 After Ag-crosslinking AF488-IgE-Fc ϵ RI to form nanoclusters (14, 47), ImFCS measurements
194 show the mobile fraction (30% as measured by FRAP; Figure 1C) has ~35% smaller D_{av} than
195 monomeric AF488-IgE-Fc ϵ RI in resting cells (Figure 2D,E; Table S1). Mobile IgE-Fc ϵ RI in the
196 stimulated steady state are likely to be small oligomers, which have been shown to be signaling-
197 competent (48). These oligomers diffuse through interaction-poor and -rich populations of Px units
198 with ~30% reduction in both D_{fast} and D_{slow} , and unchanged F_{slow} after stimulation, compared to the
199 resting steady state (Table S1). It is also possible that immobilized IgE-Fc ϵ RI clusters reduce
200 effective membrane area accessible to mobile IgE-Fc ϵ RI oligomers and other TM proteins, thereby
201 restricting diffusion of the mobile TM species.

202 The CDF curves of D values measured with ImFCS and precise fitted values of diffusion
203 parameters (D_{av} , D_{fast} , D_{slow} , F_{slow}) were determined for all the probes evaluated in this study (Table
204 S1 and Figure S3). These parameters quantify how structurally distinct probes sense changes in
205 local environments caused by Ag-mediated clustering of IgE-Fc ϵ RI to stimulate TM signaling.
206 Visually striking are the distinctive shifts in the CDF curves that accompanies this stimulation
207 (Figures 2 – 6); these shifts represent changes in interactions for a given probe after stimulation.
208 Comparing such curve shifts for a panel of probes with defined structural features allows us to
209 evaluate contributions of individual structural features to changes in diffusion properties. In this
210 manner we can infer how stimulation changes lipid-based or protein-based interactions in the
211 plasma membrane and correspondingly changes in membrane organization.

212 To focus first on changes occurring in lipid phase-like properties and the Lo-like environment
213 stabilized by clustered IgE-Fc ϵ RI, we evaluated lipid probes that are phase-selective, but otherwise
214 passive in the signaling process. We employed three established inner leaflet lipid probes (Figure
215 1A; (23, 49)): PM-EGFP (Lo-preferring; (23)), EGFP-GG (Ld-preferring; (23)) and S15-EGFP (Ld-

216 preferring; (50)). Our previous super-resolution imaging demonstrated that the PM construct co-
217 clusters with crosslinked IgE-Fc ϵ RI but that the GG construct does not (15), and consistent results
218 were obtained with clustered B cell receptors (41). However, diffraction-limited TIRF imaging
219 reveals no visible changes in the distribution of any of these probes (Figure S6). We examined their
220 membrane interactions using DRM imaging, FRAP, and ImFCS.

221 For lipid probes, a larger R value in the DRM assay indicates stronger partitioning into Lo-
222 like nanodomains. In resting cells, we found R values to be consistent with their phase preferences
223 in membranes as reported previously (49-51): PM-EGFP > EGFP-GG \approx S15-EGFP (Figure 3A and
224 S4, red/pink). Although these R values are useful for monitoring Lo- vs Ld- phase preference, we
225 found the method to be insufficiently sensitive for detecting significant differences before and after
226 crosslinking IgE-Fc ϵ RI by Ag (Figure 3A and S4, compare red/pink to black/gray). Similarly, FRAP
227 measurements (Figure 3C, E, G and S5A-C) do not resolve significant differences among these
228 probes before and after stimulation. In contrast, Ag-crosslinking of IgE-Fc ϵ RI causes distinctive
229 shifts in the ImFCS CDF curves of these probes (Figure 3B,D,F): Lo-preferring probe PM-EGFP
230 shifts to slower D values, and Ld-preferring probes EGFP-GG and S15-EGFP shift to faster D
231 values. In terms of D_{av} values, the shifts are PM-EGFP (0.62 to 0.57 $\mu\text{m}^2/\text{sec}$; 8% slower), EGFP-
232 GG (0.64 to 0.69 $\mu\text{m}^2/\text{sec}$; 8% faster), S15 (0.90 to 0.92 $\mu\text{m}^2/\text{sec}$; 2% faster). This opposing
233 behavior of Lo- and Ld-preferring lipid probes is consistent with the Lo-like phase in the inner leaflet
234 of the plasma membrane becoming more ordered and stabilized against surrounding Ld-like
235 regions after Ag addition. Fitting these curves with one (S15-EGFP) or two Gaussian populations
236 yields distinctive values for D_{fast} , D_{slow} , and F_{slow} for each of these probes (Table S1), further
237 revealing how they differentially sense the same membrane milieu and providing additional insight
238 into stimulated changes in membrane organization. These ImFCS measurements on inner leaflet
239 lipid probes are consistent with and extend quantitative results from previous super-resolution
240 imaging (15) and high-speed SPT (30). Collectively, they characterize and quantify stabilization of
241 an Lo-like environment encompassing Ag-crosslinked IgE-Fc ϵ RI nanoclusters.

242

243 ***Lo-preference of lipid anchor is required for Lyn's initial coupling with crosslinked IgE-Fc ϵ RI.***

245 Nanoscopic co-localization of Lyn and crosslinked IgE-Fc ϵ RI nanoclusters is measurable but
246 weak, as demonstrated super-resolution imaging (15). This weak stimulated modulation in Lyn
247 interactions is not detectable in TIRF images (Figure S7A), DRM R values (Figure S7B), or by
248 FRAP curves (Figures 4C and S7C). However, ImFCS is more sensitive and detects the change by
249 resolving a shift of the CDF curves to lower D values (Figure 4B), corresponding to 10% reduction
250 of D_{av} of Lyn-EGFP after antigen addition (from 0.49 to 0.44 $\mu\text{m}^2/\text{s}$; Table S1).

251 Lyn-EGFP is highly detergent resistant (Figure 4A; (28)), as expected for the Lo-preference
252 of its palmitoyl/myristoyl membrane anchor and consistent with the stimulated shift in this probe's
253 diffusion properties being the consequence of more stable Lo-like nanodomains after antigen-
254 crosslinking of IgE-Fc ϵ RI. However, the shifts in the CDF curves are different for Lyn-EGFP (Figure
255 4B) compared to PM-EGFP (Figure 3B), as quantified by distinctive values and trends of D_{av} , D_{fast} ,
256 D_{slow} , and F_{slow} for the two probes (Figure S3; Table S1). These differences indicate that some of
257 Lyn-EGFP stimulated interactions are directly with the crosslinked Fc ϵ RI, in addition to those with
258 the surrounding stabilized Lo-like regions into which the PM lipid anchor partitions favorably.

259 To deconvolve lipid-based and protein-based interactions, we compared diffusion modes of
260 Lyn-EGFP in both resting and stimulated states to a Lyn chimera. S15-Lyn-EGFP was created by
261 replacing the first 15 amino acids of wt Lyn which possesses Lo-targeting palmitoylation and
262 myristylation sites with the first 15 amino acid of Ld-preferring lipid probe S15-EGFP (50). Unlike
263 Lyn-EGFP and PM-EGFP, S15-Lyn-EGFP is weakly detergent-resistant (Figure 4A) and has a
264 faster D_{av} in resting cells (– Ag conditions in Figures 3B and 4B,E; Table S1) and serves as an Ld-
265 preferring Lyn probe that possesses all functional protein modules. If protein-protein interactions
266 primarily drive stimulated reduction of Lyn-EGFP diffusion, we expect to see similar net change of
267 diffusion of S15-Lyn-EGFP after cross-linking IgE-Fc ϵ RI. However, the D_{av} of S15-Lyn-EGFP
268 (Figure 4E), in sharp contrast to D_{av} values for Lyn-EGFP (Figure 4B) and PM-EGFP (Figure 3B),
269 does not decrease after antigen addition. In fact, it increases slightly from 0.64 $\mu\text{m}^2/\text{s}$ to 0.67 $\mu\text{m}^2/\text{s}$
270 similar to the behavior of Ld-preferring lipid probes, EGFP-GG (Figure 3D) and S15-EGFP (Figure
271 3F). For direct numerical comparisons of these ImFCS values, see also Table S1 and Figure S3.
272 Notably, data statistics of FRAP are not sufficient to detect these differences (Figures 3C,E,G;
273 4C,F; S5A-C; and S7C-D). The slower diffusion of Lyn-EGFP and faster diffusion of S15-Lyn-EGFP
274 after crosslinking IgE-Fc ϵ RI are revealed by ImFCS, and these reflect a distinctive but subtle
275 change in the phase-like organization that is sensed by Lo- and Ld-preferring probes. These ImFCS
276 results for Lyn-EGFP, PM-EGFP and S15-Lyn-EGFP are consistent with the view that Lo-
277 preference is important for Lyn's interaction with clustered IgE-Fc ϵ RI, and also point to a role for
278 protein-based interactions for optimal coupling leading to receptor phosphorylation and downstream
279 signaling.

280
281 **Lyn-EGFP but not S15-Lyn-EGFP facilitates Ag-dependent tyrosine phosphorylation.**

282 To test directly a functional outcome inferred from our ImFCS results, we compared the
283 capacities of Lyn-EGFP and S15-Lyn-EGFP to facilitate stimulated phosphorylation in cells. We
284 used a reconstitution approach for this purpose: Fc ϵ RI stably expressed in Chinese Hamster Ovary
285 (CHO) cells that are transiently co-transfected with Lyn and an Ld-preferring TM tyrosine

286 phosphatase (PTP α). With this experimental system, we found previously that PTP α suppresses
287 Lyn kinase activity and minimizes its spontaneous phosphorylation of Fc ϵ RI, while facilitating Ag-
288 stimulated Fc ϵ RI phosphorylation (24). Importantly, an Lo-preferring chimeric version of PTP α failed
289 to reconstitute Ag-dependent Fc ϵ RI phosphorylation. In the current study we used immunostaining
290 to monitor tyrosine phosphorylation in CHO cells stably expressing Fc ϵ RI and transiently
291 transfected with PTP α and either Lyn-EGFP or S15-Lyn-EGFP, before and after addition of Ag. As
292 shown in Figure 4D, co-transfection with Lyn-EGFP causes a nearly two-fold enhancement of
293 tyrosine phosphorylation, compared to no Lyn construct, whereas co-transfection with S15-Lyn-
294 EGFP results in a somewhat reduced level of tyrosine phosphorylation. Results from this functional
295 assay are consistent with ImFCS diffusion measurements and show that Lo-preference is
296 prominently involved in Lyn's initial sensing of clustered IgE-Fc ϵ RI, leaving open the possibility that
297 protein-based interactions are also involved.

298

299 ***Intact protein modules of Lyn are necessary for its effective coupling with crosslinked IgE-
300 Fc ϵ RI.***

301 The cytosolic segments of Lyn comprise an SH2 module that docks on phosphotyrosine
302 (pY) sites, an SH3 module which interacts with polyproline (PxxP) motifs, and a kinase module (52).
303 To test the importance of direct interactions with Fc ϵ RI in stimulated cells, we evaluated the
304 diffusion properties of two point mutants (53): Lyn-mSH2-EGFP (Arg to Ala at position 135) and
305 Lyn-mSH3-EGFP (Trp to Ala at position 78), with intact PM lipid anchor but disabled binding
306 capabilities through SH2 and SH3 modules respectively. In resting cells, the detergent-resistance of
307 both mutants ($R \sim 0.6$) is less than Lyn-EGFP (Figure 5A), similar to PM-EGFP (Figure 3A) and
308 greater than Ld-preferring S15-Lyn-EGFP ($R \sim 0.2$; Figure 4A). Changes in diffusion properties of
309 Lyn-mSH2-EGFP and Lyn-mSH3-EGFP after addition of antigen to crosslink IgE-Fc ϵ RI are not
310 detected by FRAP (Figure 5C,E and S8B,C) but revealed by ImFCS (Figure 5B,D). Importantly,
311 ImFCS further reveals clear differences for these two Lyn mutants (Figure 5B,D) compared to Lyn-
312 EGFP (Figure 4B) in terms of shifts in CDF curves caused by Ag. This difference is quantified by
313 the values of D_{av} , D_{fast} , D_{slow} , and F_{slow} derived from these curves (Table S1, Figure S3). For
314 example, after antigen addition the D_{av} values of Lyn-EGFP decreases (Figure 4B), for Lyn-mSH2-
315 EGFP increases slightly (Figure 5B), and for Lyn-mSH3-EGFP decreases slightly (Figure 5D). This
316 comparison indicates that Lyn-mSH2-EGFP responds differently from PM-EGFP to stimulated
317 stabilization of Lo-like nanodomains, even though it is similarly detergent-resistant. One possible
318 explanation for differences is cytosolic steric hindrance due to scaffold proteins and cytoskeleton
319 components that are recruited to antigen-crosslinked IgE-Fc ϵ RI (13, 54, 55). Lo-preferring lipid, PM-
320 EGFP, with no Lyn protein modules in the cytoplasm, is likely to be less sensitive to these steric

321 factors. Unlike Lyn-EGFP, Lyn-mSH2-EGFP and Lyn-mSH3-EGFP cannot efficiently overcome
322 steric hindrance by docking at the pY219 site on clustered Fc ϵ RI. It appears that antigen-induced
323 changes in Lyn diffusion compared to these two Lyn mutants depend on interactions with Fc ϵ RI
324 rather than entirely on their Lo-preference.

325 We also measured the stimulated diffusion change of kinase-inactive Lyn mutant, Lyn-
326 K279R-EGFP (56), to test whether phosphorylation of Fc ϵ RI by Lyn stabilizes the coupling of these
327 two proteins. In resting cells, similar to Lyn-mSH2-EGFP and Lyn-mSH3-EGFP, Lyn-K279R-EGFP
328 shows weaker detergent-resistance ($R\sim 0.6$) than wt Lyn-EGFP (Figure 5A and S8D). This
329 consistent difference suggests that kinase activity and resulting protein-based interactions
330 contribute to Lyn's greater tendency to localize in an Lo-like environment. Lyn-K279R-EGFP, unlike
331 Lyn-mSH2-EGFP and Lyn-mSH3-EGFP, can undergo proper SH2/pY219 intermolecular docking
332 after Fc ϵ RI phosphorylation by the endogenous Lyn present in these cells (56). However, the shift
333 in the CDF curve to lower diffusion coefficients is clearly less for Lyn-K279R-EGFP (5% decrease of
334 D_{av} : 0.62 to 0.59 $\mu\text{m}^2/\text{sec}$; Figure 5F) compared to Lyn-EGFP (10% decrease of D_{av} : 0.49 to 0.44
335 $\mu\text{m}^2/\text{sec}$; Figure 4B), indicating competitive advantage of endogenous Lyn over Lyn-K279R in
336 associating with phosphorylated Fc ϵ RI. Again, FRAP failed to detect this modest difference (Figure
337 5G and S8D).

338 Collectively, the shifts in CDF curves (Figures 4B and 5B,D,F) and underlying ImFCS
339 parameters (Figure S3; Table S1) of Lyn-EGFP compared to the variants we tested support the
340 following view: the Lo-preference of Lyn, as mediated by saturated lipid anchors, is required for its
341 initial coupling with antigen-crosslinked Fc ϵ RI; then Lyn's kinase activity and Fc ϵ RI-docking
342 capacities serve to stabilize the interaction. Lyn variants with mutated modules that lose these
343 capacities may be subject to steric hindrance, resulting in reduced coupling.

344

345 ***Tyrosine phosphatase PTP α spatially segregates from Fc ϵ RI nanoclusters by steric and
346 lipid-based exclusion.***

347 Maintaining the phosphorylated state of Ag-crosslinked Fc ϵ RI above the stimulation
348 threshold, requires that access by phosphatases be minimized. As previously hypothesized (5, 22,
349 24, 57), tyrosine phosphorylation of Fc ϵ RI by Lyn kinase prior to antigen engagement is counter-
350 balanced by TM phosphatase-mediated dephosphorylation; transient nanodomains present in the
351 resting steady-state do not sufficiently co-confine Lo-preferring Lyn and Fc ϵ RI nor prevent access
352 by phosphatase to disrupt the balance. Lo-like nanodomains that are stabilized around the antigen-
353 clustered Fc ϵ RI preferentially include kinase, exclude phosphatase, and tip the balance to exceed
354 the phosphorylation threshold. We examined participation of the TM phosphatase within this

355 mechanism by measuring stimulated changes in diffusional and other properties of EGFP-tagged
356 protein tyrosine phosphatase α (PTP α -EGFP) variants.

357 Consistent with our previous observations that PTP α prefers an Ld-like environment (24),
358 we found that PTP α -EGFP is almost completely detergent-soluble ($R = 0.1$; Figure 6A and S9A).
359 ImFCS measurements of this probe in resting cells yielded $D_{av} = 0.23 \mu\text{m}^2/\text{s}$, which is slower than
360 lipid and lipid-anchored probes, as expected for a TM probe (33, 38). If the diffusion of PTP α -EGFP
361 is influenced only by its Ld-preference, we expect Ag-stimulation to increase its D_{av} , similar to
362 EGFP-GG or S15-EGFP (Figure 3D,F). However, the D_{av} of PTP α -EGFP is reduced by 13% after
363 receptor cross-linking (Figure 6B, Table S1). This decrease and corresponding shift in CDF curves
364 to lower diffusion coefficients (Figure 6B) is similar to that for Lyn-EGFP (Figure 4B), which
365 undergoes direct binding interactions with cytosolic segments of Fc ϵ RI. However, PTP α -EGFP
366 lacks cytosolic docking modules (58) and is preferentially excluded from the Lo-like regions
367 stabilized around clustered Fc ϵ RI (24). Therefore, some other stimulated change in the environment
368 of PTP α -EGFP apparently causes its reduced diffusion.

369 We considered the possibility that the IgE-Fc ϵ RI nanoclusters immobilized by Ag-
370 crosslinking (70% of total IgE-Fc ϵ RI; Figure 1C) impose impermeable diffusion obstacles for TM
371 probes in stimulated cells (59). In other words, these probes' TM domains (TMDs) are sterically
372 excluded from regions defined by TMDs of the immobilized Fc ϵ RI. We expect these regions are
373 much more accessible to lipid-anchored probes, which can diffuse into nanoclusters and explore
374 the lipid membrane among individual TMDs. To test this hypothesis, we created a construct, PTP α -
375 E-TM-EGFP comprising only the extracellular portion and TMD of PTP α and C-terminally fused to
376 EGFP (as illustrated in Figure 6D). Because this probe does not contain the catalytic or other
377 cytosolic modules, any Ag-stimulated change of its diffusion is not due to functional interactions.
378 PTP α -E-TM-EGFP shows strong detergent-solubility and FRAP similar to PTP α -EGFP (Figure
379 6A,C,E and S9A-C). The D_{av} ($0.27 \mu\text{m}^2/\text{s}$) of PTP α -E-TM-EGFP in resting cells is slightly greater
380 than the PTP α -EGFP (Table S1) possibly due to eliminated cytosolic interactions. After Ag-
381 crosslinking of IgE-Fc ϵ RI, the D_{av} of PTP α -E-TM-EGFP decreases by ~11%, and the shift in ImFCS
382 CDF curves is strikingly similar to PTP α -EGFP (Figure 6B,D), as quantified by ImFCS parameters
383 (D_{av} , D_{fast} , D_{slow} and F_{slow} ; Figure S3). This comparison indicates that Ag-stimulated reduction of
384 PTP α diffusion is not due cytosolic protein-based interactions. Instead, the stimulated diffusion
385 reduction of PTP α -EGFP is likely due to its TMD which are blocked by impermeable Fc ϵ RI
386 nanoclusters (60). We tested this hypothesis on YFP-GL-GT46, the Ld-preferring TM probe (37-39),
387 with both extracellular and cytosolic domains shorter than those of PTP α -EGFP. As expected, YFP-
388 GL-GT46 is highly detergent-soluble in resting cells (Figure 1E and 6A). After Ag-crosslinking of
389 IgE-Fc ϵ RI, this probe exhibits a clear shift in ImFCS CDF curves to lower diffusion coefficients that

390 is very similar to those of PTP α -EGFP and PTP α -E-TM-EGFP (Figure 6B,D,F), as quantified by
391 their respective ImFCS parameters (Figure S3). Together, these measurements support the view
392 that Ag-crosslinked, immobile IgE-Fc ϵ RI nanoclusters obstruct diffusion of mobile TM probes
393 (mobile fractions of AF488-IgE-Fc ϵ RI, Figure 1C and S1A; PTP α -EGFP, Figure 6C and S9B; PTP α -
394 E-TM-EGFP, Figure 6E and S9C; YFP-GL-GT46, Figure 6G and S1B), independently of respective
395 ectodomain size, cytosolic segments, and detergent-resistance.

396

397 **DISCUSSION**

398 Nanoclustering of TM receptors by extracellular ligands followed by local reorganization in
399 the plasma membrane to facilitate kinase coupling and receptor phosphorylation above a
400 stimulation threshold has become a general paradigm of signaling through cell surface
401 immunoreceptors. A large body of evidence supports the view that Ag-mediated nanoclustering of
402 sensitized mast cell receptors, IgE-Fc ϵ RI, coalesces Lo-like nanodomains (5, 6, 61). However, the
403 functional significance of lipid phase-like behavior in TM signaling mediated by this and other
404 immunoreceptors continues to be debated (21, 62, 63), and some have argued that stimulated
405 protein-protein interactions are sufficient (3). Although protein-based interactions may increasingly
406 dominate as signaling proceeds, the initial upshift in receptor phosphorylation appears to depend on
407 disrupting the balance between kinase and phosphatase access, and this is mediated primarily by
408 membrane lipids. Simply, stabilization of Lo-like nanodomains around Ag-crosslinked
409 immunoreceptors serves to co-localize Lo-preferring lipid-anchored kinase (e.g., Lyn) while
410 excluding Ld-preferring TM phosphatases (e.g., PTP α). In this study we used ImFCS and other
411 imaging approaches to quantify systematically the subtle shift in plasma membrane organization
412 that accompanies Ag-mediated stimulation. We confirm the primacy of lipid-based interactions and
413 unveil how these synergize with protein-based, and steric interactions among IgE-Fc ϵ RI, Lyn
414 kinase, and PTP α phosphatase. We evaluate particular contributions of these different types of
415 interactions for successful assembly of TM signaling components.

416 We previously established ImFCS as a statistically robust approach for quantifying subtle
417 differences in the diffusion properties of structurally distinct probes that collectively sense the
418 organization of the plasma membrane under a specified condition (33). The sampling provided by
419 our ImFCS measurements (~10,000 D data points for each probe) yields extremely precise values
420 for D_{av} . The CDF of D values for each probe are also highly precise, as demonstrated by
421 bootstrapping, and fit parameters D_{fast} , D_{slow} , and F_{slow} , further quantify the membrane environment
422 as it is experienced by a particular probe (33). As we demonstrate herein, ImFCS measurements on
423 13 independent probes are highly sensitive to subtle changes in plasma membrane organization
424 that result from Ag-stimulation. These changes are quantified by detailed changes in fit parameters

425 (Table S1), simply represented by D_{av} values and visually obvious in CDF curve shifts (Figures 3 –
426 6). By systematically changing key structural features, we can reconstruct participation of different
427 types of interactions experienced by the initial signaling components.

428

429 ***Ag crosslinking creates nanoclusters of IgE-Fc ϵ RI and stabilizes surrounding Lo-like***
430 ***membrane domains.***

431 The phase-like behavior of the plasma membrane in resting cells is represented by the
432 tendency of probes with saturated lipid anchors (PM-EGFP, Lyn-EGFP) to be more detergent-
433 resistant (Lo-preferring) than those with unsaturated lipid anchors (EGFP-GG, S15-EGFP, S15-
434 EGFP (Ld-preferring) (Figures 3A and 4A). However, the Lo-like domains in this resting state
435 appear to be small and transient (21) with relative weak distinction from Ld-like regions, as
436 suggested by small differences in D_{av} values for PM-EGFP and EGFP-GG ((33); Figure 3). This
437 relatively weak phase-like heterogeneity in the cell's resting state would allow access to Fc ϵ RI by
438 both Lyn kinase and TM phosphatase and limit net phosphorylation (64). That Ag crosslinking of
439 IgE-Fc ϵ RI leads to proximal coalescence and stabilization of Lo-like domains was clearly indicated
440 by functional studies (24) and by super-resolution imaging of co-clustering with IgE-Fc ϵ RI by PM
441 probes but not GG probes (15). However, this stabilization is not detected by DRM imaging and
442 FRAP measurements (Figure 3). In contrast, ImFCS measurements show subtle but distinctive
443 shifts in D CDF curves and D_{av} values for the multiple probes tested. The lipid-anchored probes are
444 driven by their intrinsic partitioning preferences: PM-EGFP and Lyn-EGFP shift to slower diffusion in
445 modulated Lo-like domains, whereas EGFP-GG and S15-EGFP shift to faster diffusion in proximal
446 Ld-like regions (Figure 3B; summarized together with other probes in Figure 7A). Stabilization of an
447 Lo-like environment that encompasses the clustered Fc ϵ RI may represent a thermodynamic
448 adjustment, such as overcoming a hydrophobic mismatch of the collected TMDs and surrounding
449 lipids (65). This adjustment may be accomplished by dynamic recruitment of the saturated lipids
450 from the Ld-like regions, thereby establishing a more distinctive, phase-like membrane organization
451 in the Ag-stimulated steady-state (18, 19, 66).

452 This remodeling of membrane organization would facilitate lipid-driven sorting of Lo-
453 preferring (e.g., Lyn) from Ld-preferring (e.g., PTP α) components as previously proposed (64).
454 However, quantitative comparison of CDF curve shifts for Lyn-EGFP and PM-EGFP indicates that
455 Lyn's cytosolic protein modules (SH2, SH3, kinase) are also involved. As described previously (33),
456 the fit parameters extracted from the D CDFs assess regions where a given probe interacts with
457 other membrane constituents more strongly (interaction-rich Px units, characterized by D_{slow}) and
458 more weakly (interaction-poor Px units, characterized by D_{fast}) (Figure 2C). Stimulated changes of
459 these two parameters and their relative fraction (F_{slow} , $F_{fast} = (1 - F_{slow})$) (Figure S3) provide further

460 insights on modulation of the membrane environment as experienced by a particular probe.
461 Notably, both D_{fast} and D_{slow} decrease for Lyn-EGFP while only D_{slow} decreases for PM-EGFP after
462 antigen stimulation. A reasonable interpretation is that IgE-Fc ϵ RI clusters in the interaction-poor Px
463 units do not adequately stabilize the Lo-like nanodomains to have an impact on the diffusion of PM-
464 EGFP, which undergoes only lipid-based interactions. However, even relatively weak stabilization of
465 Lo-like nanodomains in the interaction-poor Px units is sufficient to decrease the diffusion of Lyn-
466 EGFP in these units due to its additional protein-based interactions with clustered IgE-Fc ϵ RI.
467 ImFCS measurements of structural variants of Lyn and PTP α reveal a more complicated
468 mechanism as depicted in Figure 7B and discussed further below.
469

470 ***Lyn access to Ag-crosslinked IgE-Fc ϵ RI requires lipid-based filtering followed by protein
471 binding***

472 Comparing Lyn-EGFP to S15-Lyn-EGFP demonstrates that lipid-based sorting into
473 stabilized Lo-like domains is the primary requirement for Lyn's capacity to couple functionally with
474 IgE-Fc ϵ RI. Unlike Lyn-EGFP and PM-EGFP, D_{av} values and CDF curves for S15-Lyn-EGFP shift to
475 faster diffusion after Ag addition, similarly to EGFP-GG and S15-EGFP (Figures 4 and 7A). This
476 comparison shows that interactions mediated by Lyn's cytosolic protein modules do not serve to
477 slow diffusion unless Lyn's PM anchor steers it into stabilized Lo domains. We infer that the slowed
478 diffusion of Lyn-EGFP corresponds to Lyn partitioning into the Lo-like domains that surround Ag-
479 crosslinked IgE-Fc ϵ RI (Figure 7B, interaction mode 1 (15)), followed by phosphorylating tyrosines in
480 cytosolic segments of Fc ϵ RI (pTyr), and transiently binding to these pTyr via its SH2 module (Figure
481 7B, interaction mode 2; (67)). In comparison, S15-Lyn does not undergo interaction mode 1 and PM
482 does not undergo interaction mode 2 (Figure 7B). These interactions differences, manifest in
483 contrasting diffusion shifts after Ag addition (Figure 7A), are also manifest functionally: Ag addition
484 triggers tyrosine phosphorylation mediated by Lyn-EGFP but not by S15-Lyn-EGFP (Figure 4D).

485 ImFCS measurements on Lyn probes with variations in cytosolic protein modules further
486 show that protein interactions are involved in appropriate coupling with Ag-crosslinked IgE-Fc ϵ RI.
487 We found that if SH2-mediated binding to phosphorylated Fc ϵ RI is prevented by a mutation in this
488 module (53), then the diffusion of this Lyn-mSH2-EGFP shifts faster (rather than slower) after Ag
489 addition (Figure 7A). These results suggest that the clustered cytosolic segments of Ag-crosslinked
490 Fc ϵ RI sterically exclude the cytosolic protein modules of this Lyn variant (Figure 7B, interaction
491 mode 3) to counteract lipid-based partitioning of its PM anchor. This interpretation is consistent with
492 results with other Lyn variants. Unlike Lyn-mSH2-EGFP, the D CDFs and D_{av} values for Lyn-
493 K279R-EGFP and Lyn-mSH3-EGFP shift to slightly slower diffusion after Ag-crosslinking of IgE-
494 Fc ϵ RI, but the extent of this negative shift is less than that for Lyn-EGFP and PM-EGFP (Figures 4

495 and 7A). We expect kinase-inactive Lyn-K279R-EGFP to be steered to stabilized Lo-domains (via
496 PM anchor; interaction mode 1) resulting in slower diffusion, and this variant has the capacity to
497 bind to Fc ϵ RI tyrosines that are phosphorylated by endogenous Lyn in these cells (interaction mode
498 2). However, endogenous Lyn is likely to be more competitive for proximal binding to the tyrosines it
499 phosphorylates, and accordingly, Lyn-K279R-EGFP is probably more sensitive to steric exclusion
500 by the clustered cytosolic segments of Fc ϵ RI (interaction mode 3).

501 The Lyn-mSH3-EGFP variant has a PM anchor, kinase activity and an intact SH2 module.
502 However, the cytosolic SH3 module, which connects the PM anchor to SH2 and kinase modules,
503 has been found to provide conformational plasticity of Lyn cytosolic segments for optimal catalytic
504 activity and subsequent binding to pTyr in Fc ϵ RI (68). The impaired SH3 domain in Lyn-mSH3-
505 EGFP is expected to limit this optimizing effect rendering this variant more susceptible to steric
506 exclusion by the clustered Fc ϵ RI. These ImFCS results are consistent with our previous
507 observations that Lyn-mSH2-EGFP is not recruited and Lyn-mSH3-EGFP only weakly recruited to
508 micron-scale IgE-Fc ϵ RI clusters that form when cells are placed on antigen-micropatterned
509 surfaces (53). In contrast, both Lyn-EGFP and PM-EGFP are recruited to these micropatterns (17,
510 53). Overall, the balance among interaction modes 1, 2, and 3 after Ag addition results in slower
511 diffusion for Lyn-K279R-EGFP and Lyn-mSH3-EGFP but distinctively smaller shifts than for Lyn-
512 EGFP (Figure 7A and B). We conclude that after Ag crosslinking of IgE-Fc ϵ RI, the primary coupling
513 interaction is Lo-preference of Lyn's PM anchor to facilitate its phosphorylation of Fc ϵ RI cytosolic
514 segments followed by binding of its SH2 module to stabilize further the interaction. Despite these
515 stabilizing effects the interactions are dynamic and relatively weak, such that the overall slowing of
516 Lyn-EGFP diffusion is subtle (10% reduction in D_{av} ; Figure 7A).

517

518 ***PTP α access to Ag-crosslinked IgE-Fc ϵ RI is reduced by lipid-based filtering and further
519 limited by steric exclusion.***

520 As expected from previous results (24), PTP α -EGFP prefers an Ld-like environment as
521 reflected by its detergent solubility (low R value; Figure 6A) relative to Lyn-EGFP (Figure 5A). It is
522 surprising that the D CDF curves (Figure 6B,C) and D_{av} (Figure 7A) show shifts to slower diffusion
523 after Ag addition even though net localization of PTP α -EGFP in Ld-like regions, away from Lo-like
524 domains stabilized around the clustered Fc ϵ RI (Figure 7B, interaction mode 1). Our ImFCS
525 measurements further indicate that PTP α is sterically hindered from diffusing through the clustered
526 TM segments of Fc ϵ RI (Figure 7B, interaction mode 3), unlike lipid-anchored PM-EGFP. That 70%
527 of Ag-crosslinked IgE-Fc ϵ RI are immobilized would enhance this effect (Figure 1C) (60). The
528 dominance of Fc ϵ RI-TMDs in excluding PTP α is indicated by similarly slowed diffusion of a passive
529 TM probe (YFP-GL-GT46) and a PTP α variant (PTP α -E-TM-EGFP) without cytosolic protein

530 modules (Figure 7A). These ImFCS results point to the importance of both lipid-based and steric
531 exclusion processes in protecting Ag-crosslinked IgE-FcεRI, phosphorylated by Lyn, from
532 dephosphorylation from a TM phosphatase. We cannot rule out other causes for the stimulated
533 diffusional shifts of TM probes we evaluated. However, similar steric hindrance of TM phosphatase
534 and its impact on B cell signaling was recently reported (43).

535

536 CONCLUSION

537 As depicted by interaction modes in Figure 7B, a coordinated synergy of lipid-based and
538 protein-based interactions explains how Ag-crosslinking of IgE-FcεRI leads to its supra-threshold
539 tyrosine phosphorylation, both by facilitating access by Lyn kinase and limiting access by a TM
540 phosphatase. Based on many studies in our and other laboratories, we take the view that the
541 resting cell is poised to respond a specific stimulus and the change in membrane organization to
542 initiate signaling is subtle (15). The subtlety of the change has made detection challenging,
543 requiring super-resolution imaging, SPT, and other technically difficult approaches. The strength of
544 the mechanism proposed in Figure 7B rests on precise ImFCS measurements of small but
545 distinctive diffusion shifts stimulated by Ag for multiple structural variants of the key signaling
546 components and passive lipid probes. Although this suggested mechanism is based primarily on
547 diffusion measurements, these are both internally consistent and consistent with previous studies
548 cited here. In particular, we showed directly and provided the strongest evidence to date that Lyn's
549 lipid-based steering is necessary to initiate tyrosine phosphorylation. Overall, we demonstrated the
550 relative ease of applying ImFCS, using multiple probes and conventional fluorophores, to dissect
551 contributions of structural features to weak interactions that collectively have decisive impact in
552 stimulated TM signaling. We expect that ImFCS and the experimental strategies described herein
553 will be widely applicable to advance understanding of TM signaling where plasma membrane
554 organization is likely to play an integral role.

555

556 ACKNOWLEDGEMENTS

557 We thank Alex Batrouni and Prof. Jeremy Baskin (Cornell University) for the access of their
558 confocal microscope for FRAP measurements. We thank Henry Phan and Boyu Yin for discussions
559 on the DRM preparations. This work is supported by National Institute of General Medical Sciences
560 Grant R01GM117552. The content is solely the responsibility of the authors and does not
561 necessarily represent the official views of NIGMS or NIH.

562

563

564

565 **REFERENCES**

- 566 1. Sigalov A (2005) Multi-chain immune recognition receptors: spatial organization and signal
567 transduction. *Seminars in immunology* 17(1):51-64.
- 568 2. Su X, et al. (2016) Phase separation of signaling molecules promotes T cell receptor signal
569 transduction. *Science* 352(6285):595-599.
- 570 3. Douglass AD & Vale RD (2005) Single-Molecule Microscopy Reveals Plasma Membrane
571 Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules
572 in T Cells. *Cell* 121(6):937-950.
- 573 4. Andrews NL, et al. (2008) Actin restricts FcepsilonRI diffusion and facilitates antigen-induced
574 receptor immobilization. *Nat Cell Biol* 10(8):955-963.
- 575 5. Holowka D & Baird B (2016) Roles for lipid heterogeneity in immunoreceptor signaling.
576 *Biochimica et biophysica acta* 1861(8 Pt B):830-836.
- 577 6. Holowka D, et al. (2005) Lipid segregation and IgE receptor signaling: a decade of progress.
578 *Biochimica et biophysica acta* 1746(3):252-259.
- 579 7. Bugajev V, Bambouskova M, Draberova L, & Draber P (2010) What precedes the initial
580 tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? *FEBS*
581 *Lett* 584(24):4949-4955.
- 582 8. Goyette J, Nieves DJ, Ma Y, & Gaus K (2019) How does T cell receptor clustering impact on
583 signal transduction? *Journal of cell science* 132(4).
- 584 9. Pierce SK (2002) Lipid rafts and B-cell activation. *Nature reviews. Immunology* 2(2):96-105.
- 585 10. Balint S & Dustin ML (2017) Localizing order to boost signaling. *eLife* 6.
- 586 11. Resh MD (1996) Regulation of cellular signalling by fatty acid acylation and prenylation of
587 signal transduction proteins. *Cellular signalling* 8(6):403-412.
- 588 12. Rivera J & Gilfillan AM (2006) Molecular regulation of mast cell activation. *The Journal of*
589 *allergy and clinical immunology* 117(6):1214-1225; quiz 1226.
- 590 13. Rivera J, Fierro NA, Olivera A, & Suzuki R (2008) New insights on mast cell activation via the
591 high affinity receptor for IgE. *Adv Immunol* 98:85-120.
- 592 14. Shelby SA, Holowka D, Baird B, & Veatch SL (2013) Distinct stages of stimulated FcepsilonRI
593 receptor clustering and immobilization are identified through superresolution imaging.
594 *Biophysical journal* 105(10):2343-2354.
- 595 15. Shelby SA, Veatch SL, Holowka DA, & Baird BA (2016) Functional nanoscale coupling of Lyn
596 kinase with IgE-FcepsilonRI is restricted by the actin cytoskeleton in early antigen-stimulated
597 signaling. *Molecular biology of the cell* 27(22):3645-3658.
- 598 16. Kambayashi T & Koretzky GA (2007) Proximal signaling events in Fc epsilon RI-mediated
599 mast cell activation. *The Journal of allergy and clinical immunology* 119(3):544-552; quiz 553-
600 544.
- 601 17. Wu M, Holowka D, Craighead HG, & Baird B (2004) Visualization of plasma membrane
602 compartmentalization with patterned lipid bilayers. *Proceedings of the National Academy of*
603 *Sciences of the United States of America* 101(38):13798-13803.
- 604 18. Davey AM, Krise KM, Sheets ED, & Heikal AA (2008) Molecular perspective of antigen-
605 mediated mast cell signaling. *J Biol Chem* 283(11):7117-7127.
- 606 19. Davey AM, Walwick RP, Liu Y, Heikal AA, & Sheets ED (2007) Membrane order and molecular
607 dynamics associated with IgE receptor cross-linking in mast cells. *Biophysical journal*
608 92(1):343-355.
- 609 20. Mitra ED, Whitehead SC, Holowka D, Baird B, & Sethna JP (2018) Computation of a
610 Theoretical Membrane Phase Diagram and the Role of Phase in Lipid-Raft-Mediated Protein
611 Organization. *J Phys Chem B* 122(13):3500-3513.
- 612 21. Sezgin E, Levental I, Mayor S, & Eggeling C (2017) The mystery of membrane organization:
613 composition, regulation and roles of lipid rafts. *Nature reviews. Molecular cell biology*
614 18(6):361-374.

615 22. Field KA, Holowka D, & Baird B (1995) FceRI-mediated recruitment of p53/56^{lyn} to detergent-
616 resistant membrane domains accompanies cellular signaling. *Proceedings of the National
617 Academy of Sciences of the United States of America* 92:9201-9205.

618 23. Pyenta PS, Holowka D, & Baird B (2001) Cross-correlation analysis of inner-leaflet-anchored
619 green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft
620 components. *Biophysical journal* 80(5):2120-2132.

621 24. Young RM, Zheng X, Holowka D, & Baird B (2005) Reconstitution of regulated
622 phosphorylation of FcepsilonRI by a lipid raft-excluded protein-tyrosine phosphatase. *J Biol
623 Chem* 280(2):1230-1235.

624 25. Field KA, Holowka D, & Baird B (1999) Structural Aspects of the Association of FceRI with
625 Detergent-resistant Membranes. *J Biol Chem* 274:1753-1758.

626 26. Sheets ED, Holowka D, & Baird B (1999) Critical Role for Cholesterol in Lyn-mediated
627 Tyrosine Phosphorylation of FceRI and Their Association with Detergent-resistant
628 Membranes. *The Journal of cell biology* 145(877-887).

629 27. Goni FM (2019) "Rafts": A nickname for putative transient nanodomains. *Chemistry and
630 physics of lipids* 218:34-39.

631 28. Sengupta P, et al. (2011) Probing protein heterogeneity in the plasma membrane using PALM
632 and pair correlation analysis. *Nature methods* 8(11):969-975.

633 29. Veatch SL, et al. (2012) Correlation functions quantify super-resolution images and estimate
634 apparent clustering due to over-counting. *PloS one* 7(2):e31457.

635 30. Kinoshita M, et al. (2017) Raft-based sphingomyelin interactions revealed by new fluorescent
636 sphingomyelin analogs. *The Journal of cell biology*.

637 31. Koyama-Honda I, et al. (2020) High-speed single-molecule imaging reveals signal
638 transduction by induced transbilayer raft phases. *Journal of Cell Biology* 219(12).

639 32. Kannan B, et al. (2007) Spatially resolved total internal reflection fluorescence correlation
640 microscopy using an electron multiplying charge-coupled device camera. *Analytical chemistry*
641 79(12):4463-4470.

642 33. Bag N, Holowka DA, & Baird BA (2020) Imaging FCS delineates subtle heterogeneity in
643 plasma membranes of resting mast cells. *Molecular biology of the cell* 31(7):709-723.

644 34. Lingwood D & Simons K (2007) Detergent resistance as a tool in membrane research. *Nature
645 protocols* 2(9):2159-2165.

646 35. Menon AK, Holowka D, Webb WW, & Baird B (1986) Clustering, mobility, and triggering
647 activity of small oligomers of immunoglobulin E on rat basophilic leukemia cells. *The Journal
648 of cell biology* 102(2):534-540.

649 36. Pyenta PS, Schwille P, Webb WW, Holowka D, & Baird B (2003) Lateral diffusion of
650 membrane lipid-anchored probes before and after aggregation of cell surface IgE-receptors.
651 *J Phys Chem A* 107(40):8310-8318.

652 37. Pralle A, Keller P, Florin E-L, & Hörbor JKH (2000) Sphingolipid-Cholesterol Rafts Diffuse as
653 Small Entities in the Plasma Membrane of Mammalian Cells. *The Journal of cell biology*
654 148(5):997-1007.

655 38. Kenworthy AK, et al. (2004) Dynamics of putative raft-associated proteins at the cell surface.
656 *The Journal of cell biology* 165(5):735-746.

657 39. Sengupta P, et al. (2019) A lipid-based partitioning mechanism for selective incorporation of
658 proteins into membranes of HIV particles. *Nat Cell Biol* 21(4):452-461.

659 40. Sohn HW, Tolar P, Jin T, & Pierce SK (2006) Fluorescence resonance energy transfer in living
660 cells reveals dynamic membrane changes in the initiation of B cell signaling. *Proceedings of
661 the National Academy of Sciences of the United States of America* 103(21):8143-8148.

662 41. Stone MB, Shelby SA, Nunez MF, Wisser K, & Veatch SL (2017) Protein sorting by lipid
663 phase-like domains supports emergent signaling function in B lymphocyte plasma
664 membranes. *eLife* 6.

665 42. Zech T, et al. (2009) Accumulation of raft lipids in T-cell plasma membrane domains engaged
666 in TCR signalling. *The EMBO journal* 28(5):466-476.

667 43. Nunez MF, Wisser K, & Veatch SL (2020) Synergistic factors control kinase-phosphatase
668 organization in B-cells engaged with supported bilayers. *Molecular biology of the cell*
669 31(7):667-682.

670 44. Fridriksson EK, et al. (1999) Quantitative analysis of phospholipids in functionally important
671 membrane domains from RBL-2H3 mast cells using tandem high-resolution mass
672 spectrometry. *Biochemistry-US* 38(25):8056-8063.

673 45. Pathak P & London E (2011) Measurement of Lipid Nanodomain (Raft) Formation and Size
674 in Sphingomyelin/POPC/Cholesterol Vesicles Shows TX-100 and Transmembrane Helices
675 Increase Domain Size by Coalescing Preexisting Nanodomains But Do Not Induce Domain
676 Formation. *Biophysical journal* 101(10):2417-2425.

677 46. Holowka D, Thanapuasawan K, & Baird B (2018) Short chain ceramides disrupt
678 immunoreceptor signaling by inhibiting segregation of Lo from Ld Plasma membrane
679 components. *Biol Open* 7(9).

680 47. Larson DR, Gosse JA, Holowka DA, Baird BA, & Webb WW (2005) Temporally resolved
681 interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. *The
682 Journal of cell biology* 171(3):527-536.

683 48. Andrews NL, et al. (2009) Small, mobile Fc ϵ RI receptor aggregates are signaling
684 competent. *Immunity* 31(3):469-479.

685 49. Sengupta P, Hammond A, Holowka D, & Baird B (2008) Structural determinants for
686 partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane
687 vesicles. *Biochimica et biophysica acta* 1778(1):20-32.

688 50. Rodgers W (2002) Making Membranes Green: Construction and Characterization of
689 GFPFusion Proteins Targeted to Discrete Plasma Membrane Domains. *BioTechniques*
690 32:1044-1051.

691 51. Baumgart T, et al. (2007) Large-scale fluid/fluid phase separation of proteins and lipids in giant
692 plasma membrane vesicles. *Proceedings of the National Academy of Sciences of the United
693 States of America* 104(9):3165-3170.

694 52. Ingle E (2012) Functions of the Lyn tyrosine kinase in health and disease. *Cell
695 communication and signaling : CCS* 10(1):21.

696 53. Hammond S, Wagenknecht-Wiesner A, Veatch SL, Holowka D, & Baird B (2009) Roles for
697 SH2 and SH3 domains in Lyn kinase association with activated Fc ϵ RI in RBL mast cells
698 revealed by patterned surface analysis. *Journal of structural biology* 168(1):161-167.

699 54. Torres AJ, Vasudevan L, Holowka D, & Baird BA (2008) Focal adhesion proteins connect IgE
700 receptors to the cytoskeleton as revealed by micropatterned ligand arrays. *Proceedings of the
701 National Academy of Sciences of the United States of America* 105(45):17238-17244.

702 55. Wakefield DL, Holowka D, & Baird B (2017) The Fc ϵ RI Signaling Cascade and Integrin
703 Trafficking Converge at Patterned Ligand Surfaces. *Molecular biology of the cell*.

704 56. Kovarova M, et al. (2001) Structure-function analysis of Lyn kinase association with lipid rafts
705 and initiation of early signaling events after Fc ϵ RI aggregation. *Molecular and
706 cellular biology* 21(24):8318-8328.

707 57. Field KA, Holowka D, & Baird B (1997) Compartmentalized activation of the high affinity
708 immunoglobulin E receptor within membrane domains. *J Biol Chem* 272(7):4276-4280.

709 58. Pallen CJ (2003) Protein tyrosine phosphatase alpha (PTPalpha): a Src family kinase
710 activator and mediator of multiple biological effects. *Curr Top Med Chem* 3(7):821-835.

711 59. Trimble WS & Grinstein S (2015) Barriers to the free diffusion of proteins and lipids in the
712 plasma membrane. *The Journal of cell biology* 208(3):259-271.

713 60. Saxton MJ (1990) Lateral diffusion in a mixture of mobile and immobile particles. A Monte
714 Carlo study. *Biophysical journal* 58(5):1303-1306.

715 61. Holowka D & Baird B (2015) Nanodomains in early and later phases of Fc ϵ RI signalling.
716 *Essays in biochemistry* 57:147-163.

717 62. Honigmann A & Pralle A (2016) Compartmentalization of the Cell Membrane. *J Mol Biol*
718 428(24 Pt A):4739-4748.

719 63. Kenworthy AK (2008) Have we become overly reliant on lipid rafts? Talking Point on the
720 involvement of lipid rafts in T-cell activation. *EMBO reports* 9(6):531-535.

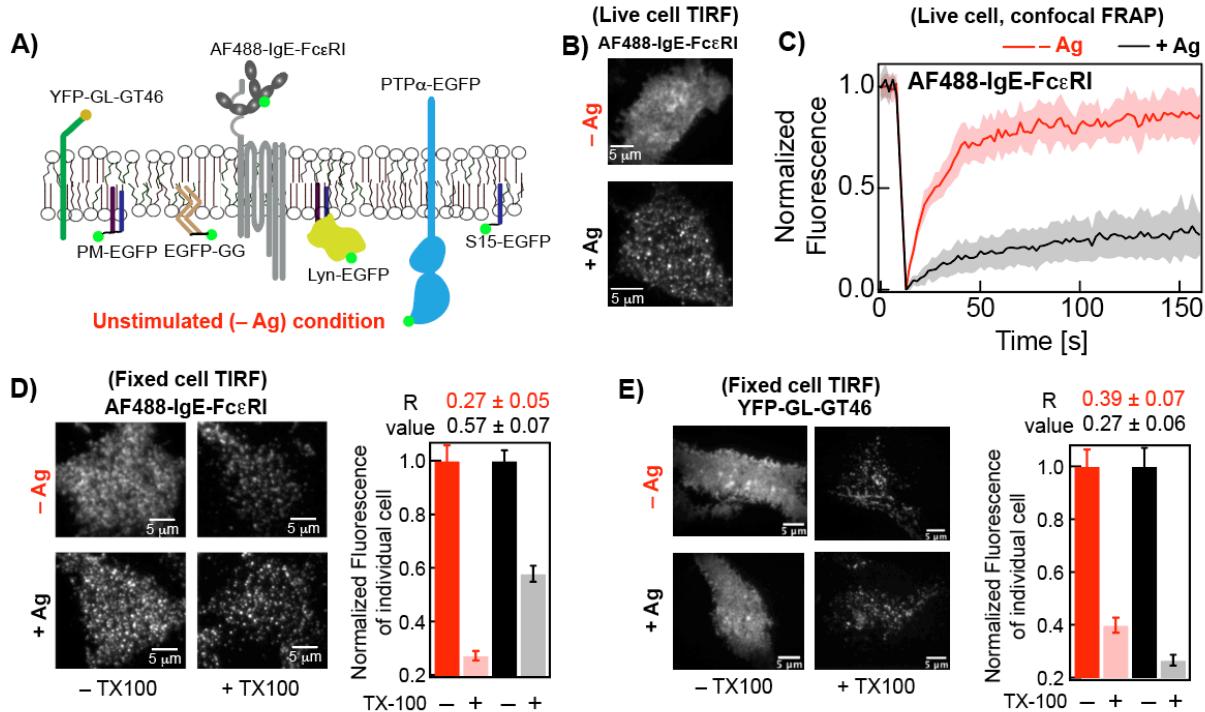
721 64. Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals.
Physiology (Bethesda) 21:430-439.

723 65. Lee AG (2011) Lipid-protein interactions. *Biochemical Society transactions* 39(3):761-766.

724 66. Surviladze Z, Harrison KA, Murphy RC, & Wilson BS (2007) Fc ϵ RI and Thy-1 domains have
725 unique protein and lipid compositions. *Journal of lipid research* 48(6):1325-1335.

726 67. Turner H & Kinet J-P (1999) Signalling through the high-affinity IgE receptor FCeRI. *Nature*
727 402.

728 68. Ingle E (2008) Src family kinases: regulation of their activities, levels and identification of new
729 pathways. *Biochimica et biophysica acta* 1784(1):56-65.


730

731 **MAIN TEXT FIGURES**

732

733 **Figure 1**

734

735 **Figure 1.** AF488-IgE-FcεRI is clustered, partially immobilized, and exhibits elevated detergent resistance after
736 crosslinking by soluble Ag (DNP-BSA) in RBL cells. **A)** Plasma membrane localization in resting cells (- Ag)
737 of AF488-IgE-FcεRI and other probes evaluated in this study. **B)** Representative TIRF images of AF488-IgE-
738 FcεRI on the ventral plasma membrane in live cells before (- Ag) and after (+ Ag) stimulation by Ag. **C)**
739 Normalized FRAP curves of AF488-IgE-FcεRI obtained from individual cells are overlaid in - Ag (pink) and +
740 Ag (grey) conditions. The solid red and black curves are average of the pink and grey curves, respectively.
741 Figure S1A shows representative fitted FRAP data and box plots of recovery time and mobile fraction of all
742 cells evaluated. **D)** Representative fixed cell TIRF images of AF488-IgE-FcεRI without (-TX100) and with (+
743 0.04% TX100) treatment of both - Ag and + Ag conditions. Fluorescence retained after +TX100 treatment is
744 normalized against corresponding -TX100 sample. The *R* values, corresponding to level of detergent
745 resistance, are calculated from the ratio of median fluorescence of multiple cells in +TX100 to -TX100
746 samples (SI, Eqn S2). The error of *R* values was determined by bootstrapping as described in SI. **E)**
747 Representative fixed cell TIRF images under -/+ Ag and -/+ TX100 conditions and *R* values for YFP-GL-
748 GT46. For each condition, 60-90 cells were imaged from at least two independent sample preparations for
749 both AF488-IgE-FcεRI and YFP-GL-GT46. Box plots of fluorescence values for individual cells under -/+ Ag
750 and -/+ TX100 conditions for both probes in representative experiments are provided in Figure S2.
751

752

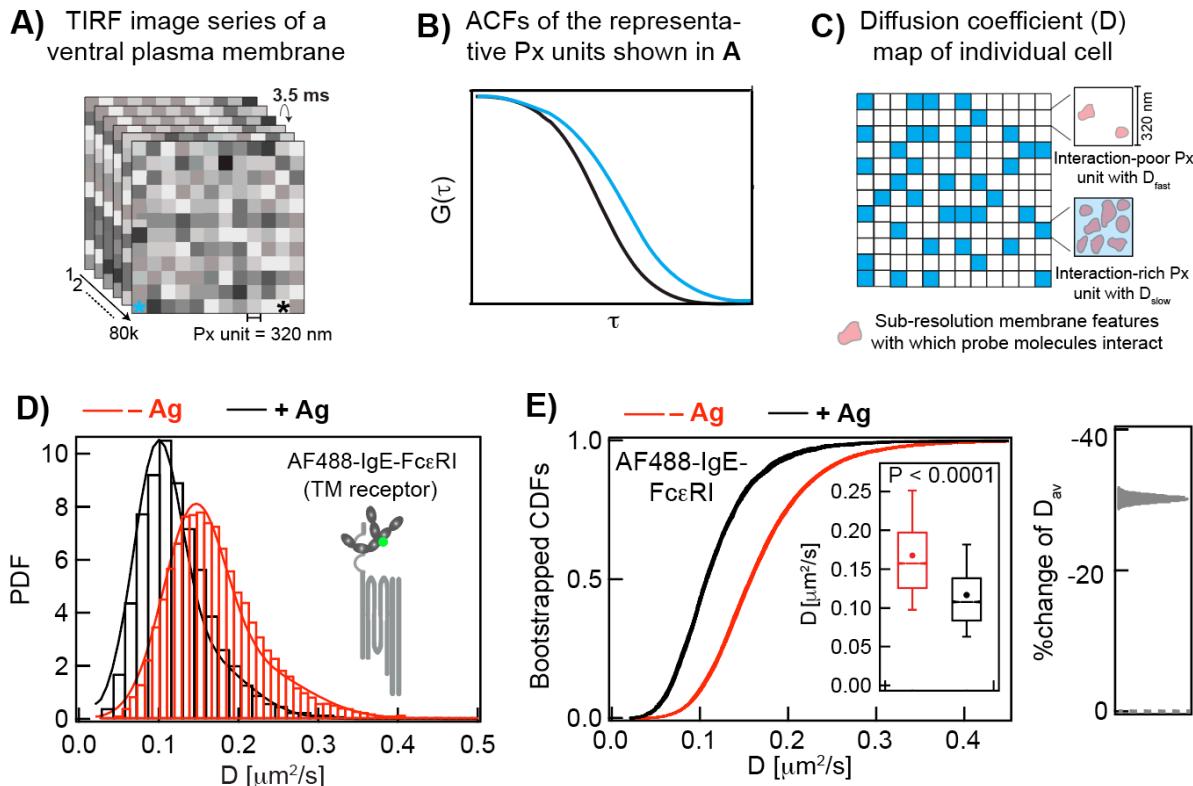
753

754

755

756

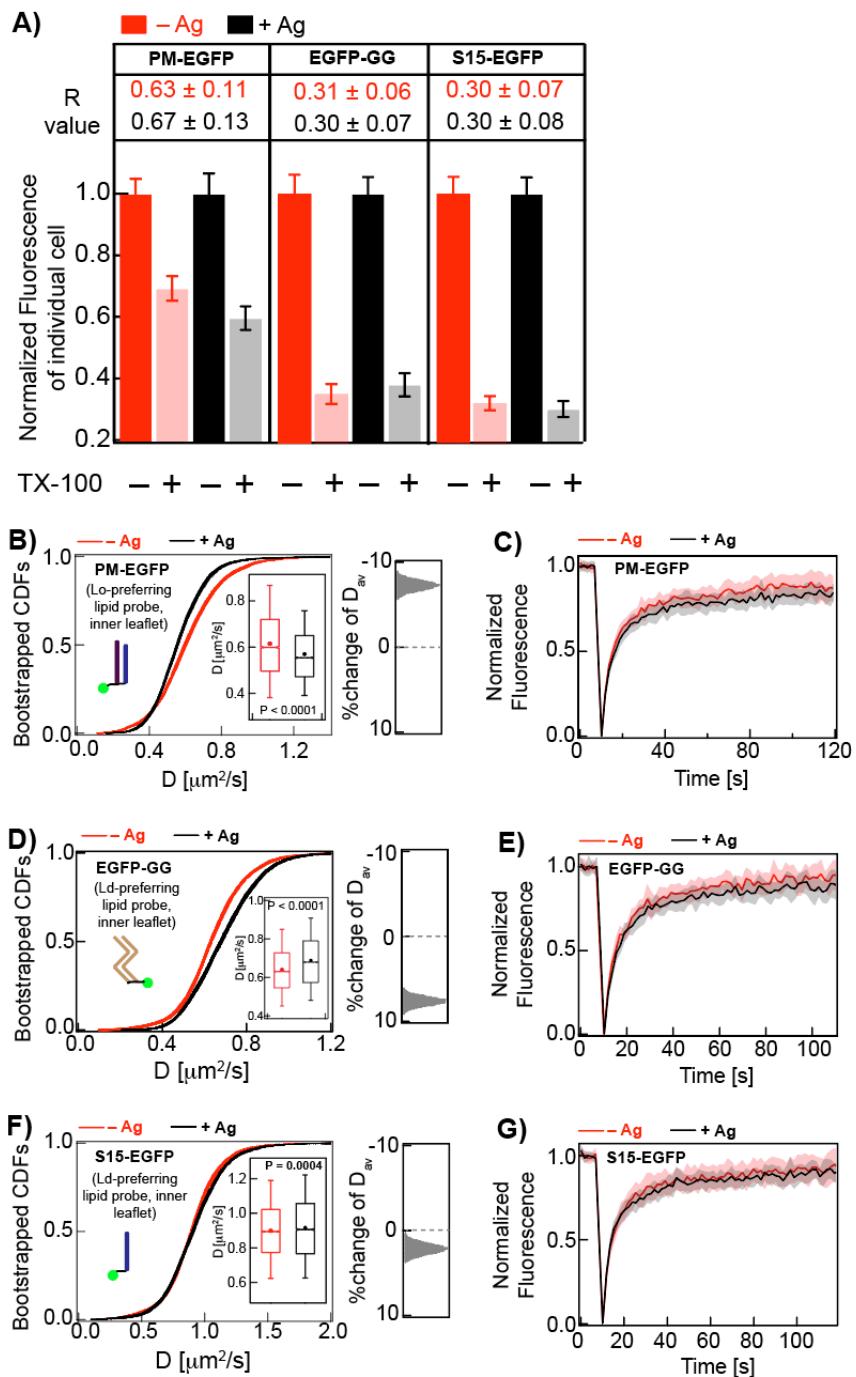
757


758

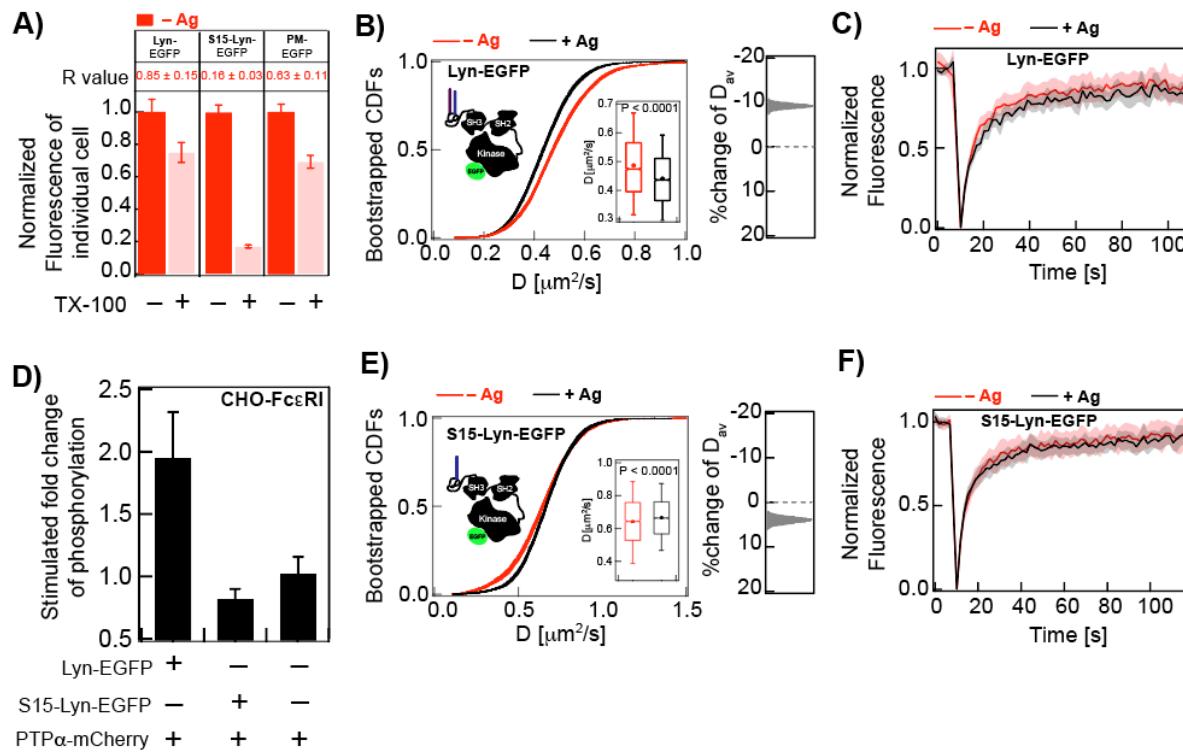
759

760

761


762 **Figure 2**
 763

764
 765 **Figure 2.** Large data sets of ImFCS precisely characterize spatially heterogeneous diffusion of plasma
 766 membrane probes in both unstimulated (– Ag) and stimulated (+ Ag) cells. **A-B** In a typical ImFCS recording,
 767 80,000 TIRFM images of fluorescently labeled ventral plasma membrane are collected at 3.5 ms/frame. The
 768 autocorrelation function (ACF) from a given Px unit (320 nm × 320 nm) decays faster if probes diffuse faster
 769 within that Px unit. The ACFs, corresponding to the Px units designated with asterisks of same color, illustrate
 770 probes diffusing slower (cyan) and faster (black). **C** Schematic diffusion coefficient (D) map, obtained after
 771 ACF analyses of all Px units, contains some Px units with relatively slower (D_{slow} , cyan) or faster (D_{fast} , white)
 772 diffusion coefficient, interpreted as interaction-rich and interaction-poor units, respectively. **D** Histograms of
 773 experimental D values (>10,000; SI Table S1) and probability distribution function (PDF) for AF488-IgE-FcεRI
 774 at –Ag (red) and +Ag (black) steady-states. PDFs are fitted using parameters derived from bin-independent
 775 cumulative distribution functions (CDFs; SI Eqn A2). **E** CDFs of the same D values as in part (D). Pooled D
 776 values are resampled 30 times by bootstrapping with 50% of all data each time and individual bootstrapped
 777 CDFs are fitted for D_{slow} , D_{fast} , and F_{slow} (SI Appendix; Table S1 and Figure S3). Individual raw bootstrapped
 778 CDFs of D values of AF488-IgE-FcεRI at each condition are overlaid and shown (red: –Ag and black: +Ag).
 779 Inset: Box plots of all D values. Box height corresponds to 25th to 75th percentile; error bars represent 9th to
 780 91st percentile of entire data set; mean and median values are represented as solid circle and bar,
 781 respectively; notches signify 95% confidence interval of the median. Stimulated %change of D_{av} : Distribution
 782 is calculated from the bootstrapped mean values at each condition.


783
 784
 785
 786
 787
 788
 789
 790

791 **Figure 3**

792
793 **Figure 3.** ImFCS, but not DRM and FRAP, detects subtle stabilization of Lo-like nanodomain in Ag-stimulated
794 RBL cells. **A)** Degree of detergent resistance for PM-EGFP, EGFP-GG, and S15-EGFP and *R* values for -Ag
795 (red) and +Ag (black) conditions. Box plots of fluorescence values of individual cells for -/+ TX100 and -/+ Ag
796 conditions for these probes are provided in Figure S4A-C. **B, D, F)** 30 bootstrapped CDFs of *D* values from
797 ImFCS measurements are overlaid for specified probes and conditions (-/+ Ag). Box plots of all *D* values and
798 distribution of stimulated %change of *D*_{av} as described for Figure 2E. Table S1 shows number of ACF and
799 cells measured for ImFCS analyses. **C, E, G)** Normalized FRAP curves for specified probe obtained from
800 many cells are overlaid for - Ag (pink) and + Ag (grey) conditions. Figure S5A-C show representative fitted
801 FRAP data and box plots of recovery time and mobile fraction for all cells.

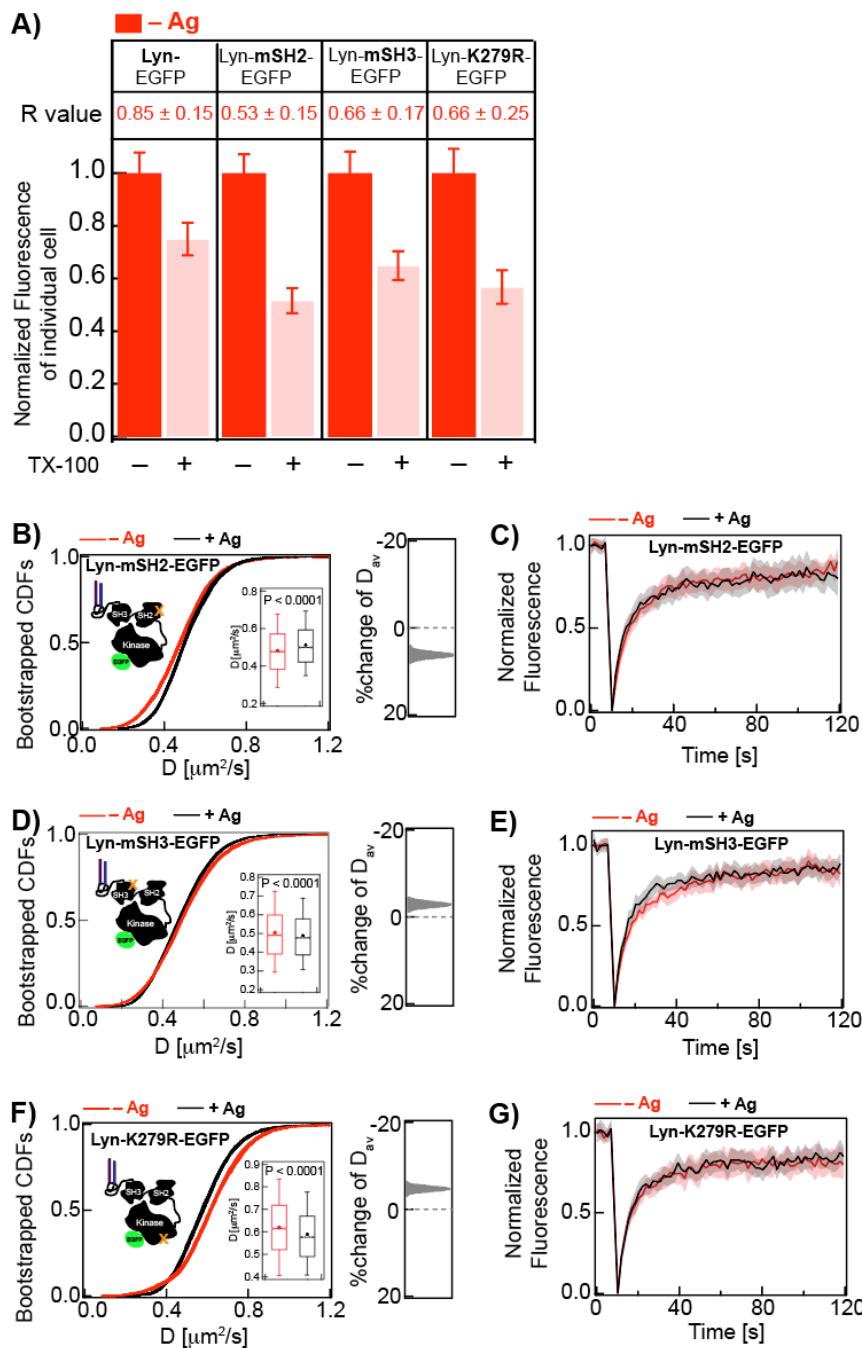
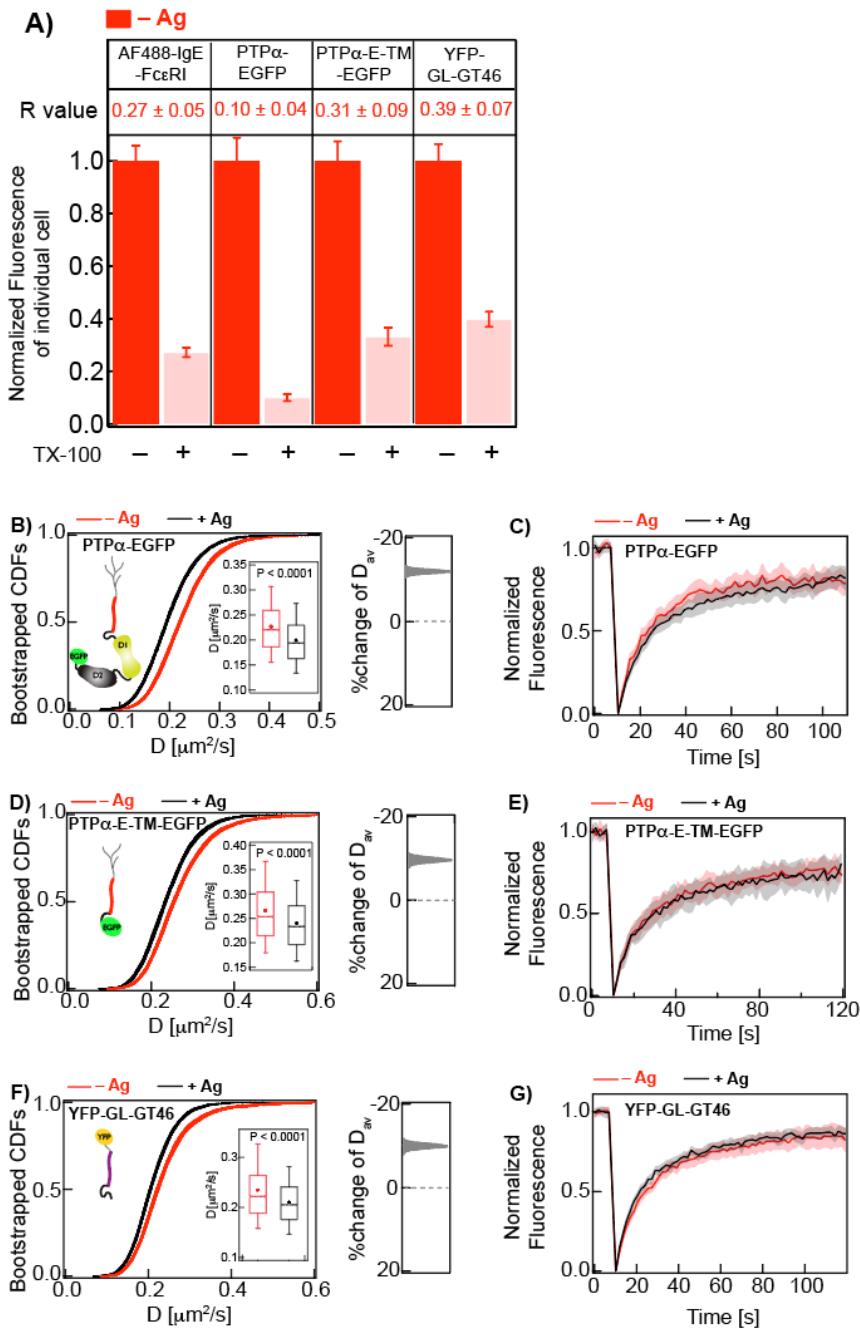
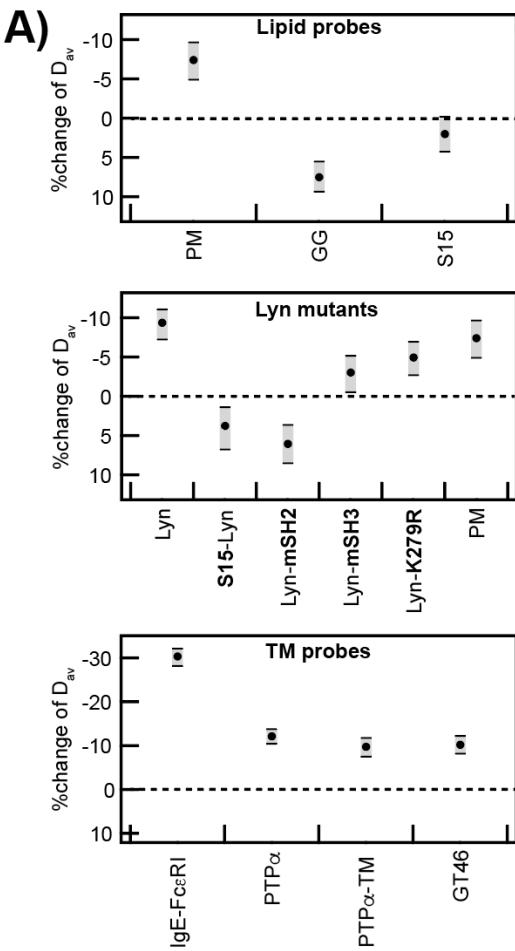

802 **Figure 4**

Figure 4. Lipid-driven Lo-preference of Lyn is necessary for functional coupling with Ag-crosslinked IgE-FcεRI. **A)** Detergent resistance of Lyn-EGFP, S15-Lyn-EGFP, and PM-EGFP represented by relative loss of fluorescence after TX100 treatment and corresponding R values in unstimulated (- Ag) RBL cells. Box plots of fluorescence values of individual cells under -/+ TX100 and -/+ Ag conditions are provided in Figures S4A (PM-EGFP) and S7B (Lyn-EGFP and S15-Lyn-EGFP). **B, E)** 30 bootstrapped CDFs of D values from ImFCS measurements are overlaid for specified probes and conditions (-/+ Ag). Box plots of all D values and stimulated %change of D_{av} are shown as described for Figure 2E. Table S1 shows number of ACF and cells measured for ImFCS analyses. **C, F)** Normalized FRAP curves for specified probes and conditions. Figure S7C-D show representative fitted FRAP data and box plots of recovery time and mobile fraction for all cells. **D)** Stimulated fold change of phosphorylation determined from anti-pTyr (4G10) immunostaining of CHO cells stably transfected with FcεRI and transiently transfected with specified Lyn variant and PTPα.


803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

830 **Figure 5**


831
832 **Figure 5.** Cytosolic protein modules of Lyn-EGFP contribute to detergent-resistance and reduction of diffusion
833 caused by Ag-crosslinking of IgE-Fc ϵ RI. **A)** Detergent resistance of Lyn-EGFP compared to point mutants Lyn
834 mSH2-EGFP, Lyn-mSH3-EGFP, and Lyn-K279R-EGFP as represented by relative loss of fluorescence after
835 TX100 treatment and corresponding *R* values in unstimulated (- Ag) RBL cells. Box plots of fluorescence
836 values of individual cells for -/+ TX100 and -/+ Ag conditions for these probes are provided in Figure S7B
837 (Lyn-EGFP) and S8A (Lyn-EGFP variants). **B, D, F)** 30 bootstrapped CDFs of *D* values from ImFCS
838 measurements are overlaid for specified probes and conditions (-/+ Ag). Box plots of all *D* values and
839 stimulated %change of *D*_{av} are shown as described for Figure 2E. Table S1 shows number of ACF and cells
840 measured for ImFCS analyses. **C, E, G)** Normalized FRAP curves for specified probes and conditions. Figure
841 S8B-D show representative fitted FRAP data and box plots of recovery time and mobile fraction for all cells.

842 **Figure 6**

843
844 **Figure 6.** TM probes are strongly detergent-soluble but show relatively slower diffusion in stimulated cells,
845 likely due to steric obstruction by TMDs of Ag-clustered Fc ϵ RI. **A)** Detergent resistance of AF488-IgE-Fc ϵ RI,
846 PTP α -EGFP, PTP α -E-TM-EGFP, and YFP-GL-GT46 as represented by relative loss of fluorescence after
847 TX100 treatment and corresponding *R* values in unstimulated (- Ag) RBL cells. Box plots of fluorescence
848 values of individual cells for -/+ TX100 and -/+ Ag conditions for these probes are provided in Figure S2
849 (AF488-IgE-Fc ϵ RI and YFP-GL-GT46) and S9A (PTP α - EGFP and PTP α -E-TM-EGFP). **B, D, F)** 30
850 bootstrapped CDFs of *D* values from ImFCS measurements are overlaid for specified probes and conditions
851 (-/+ Ag). Box plots of all *D* values and stimulated %change of *D*_{av} for these samples are shown as described
852 for Figure 2E. Table S1 shows number of ACF and cells measured for ImFCS analyses. **C, E, G)** Normalized
853 FRAP curves for specified probes and conditions. Figures S1 and S9B-C show representative fitted FRAP
854 data and box plots of recovery time and mobile fraction for all cells.

855 **Figure 7**

856
 857 **Figure 7.** Ag-crosslinking of IgE-FcεRI stabilizes surrounding Lo-like nanodomains, causing dynamic lipid-based and protein-based interactions that shift diffusion properties of signaling components and lead to supra-threshold phosphorylation by Lyn. A) Stimulated changes in D_{av} for passive lipid probes, Lyn variants, IgE-FcεRI, PTPα, and TM probes. B) Proposed interaction modes leading to functional coupling of Lyn with clustered FcεRI: Stabilized Lo-like environment preferentially includes Lo-preferring Lyn and excludes Ld-preferring S15-Lyn and PTPα (interaction mode 1). Preferentially proximal Lyn (interaction 1) phosphorylates clustered FcεRI via its kinase module and then binds to pTyr via its SH2 module as facilitated by its SH3 module (interaction mode 2); these cumulative interactions stabilize the coupling. Lyn variants with impaired kinase, SH2 or SH3 modules are sterically hindered by cytoplasmic segments of clustered FcεRI (interaction mode 3). PTPα preferentially excluded from Lo-like environments (interaction mode 1) is further limited in access to FcεRI-pTyr because of steric obstruction by clustered FcεRI-TMDs (interaction mode 3).

858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870