

1 Development of novel *in vitro* human alveolar epithelial cell 2 models to study distal lung biology and disease

3
4
5 Evelyn Tran^{1,2,3}, Tuo Shi^{1,2,3}, Xiuwen Li^{2,4}, Adnan Y. Chowdhury⁵, Du Jiang⁵, Yixin Liu⁶,
6 Hongjun Wang⁶, Chunli Yan^{1,2}, William D. Wallace⁷, Rong Lu⁵, Amy L. Ryan^{5,6}, Crystal N.
7 Marconett^{1,2,3}, Beiyun Zhou^{2,6}, Zea Borok^{2,3,6}, Ite A. Offringa^{1,2,3,†}

8
9
10¹Department of Surgery, Keck School of Medicine, USC, Los Angeles, CA, USA; ²USC Norris
11 Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA, USA;
12 ³Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los
13 Angeles, CA, USA; ⁴Department of Translational Genomics, Keck School of Medicine, USC,
14 Los Angeles, CA, USA; ⁵Department of Stem Cell Biology and Regenerative Medicine, Eli and
15 Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of
16 Medicine, USC, Los Angeles, CA, USA; ⁶Hastings Center for Pulmonary Research and Division
17 of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of
18 Medicine, USC, Los Angeles, CA, USA; ⁷Department of Pathology, Keck School of Medicine,
19 USC, Los Angeles, CA, USA

20
21 [†]For correspondence: Ite A. Offringa (ilaaird@usc.edu)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

44 ABSTRACT

45

46 Many acute and chronic lung diseases affect the distal lung alveoli. Although airway-derived
47 human cell lines exist, alveolar epithelial cell (AEC)-derived lines are needed to better model these
48 diseases. We have generated and characterized novel immortalized cell lines derived from human
49 AECs. They grow as epithelial monolayers expressing lung progenitor markers SOX9 and SOX2,
50 with little to no expression of mature AEC markers. Co-cultured in 3-dimensions (3D) with lung
51 fibroblasts, the cells form NKX2-1⁺ organoids expressing mature AEC markers AQP5 and
52 GPRC5A. Single-cell RNA sequencing of an AEC line in 2D *versus* 3D revealed increased cellular
53 heterogeneity and induction of cytokine and lipoprotein signaling, consistent with organoid
54 formation. Activating WNT and FGF pathways resulted in larger organoids. Our approach appears
55 to yield lung progenitor lines that retain a genetic and structural memory of their alveolar cell
56 lineage despite long-term expansion and whose differentiation may be modulated under various
57 3D conditions. These cell lines provide a valuable new system to model the distal lung *in vitro*.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84 **INTRODUCTION**

85
86 Diseases affecting the distal lung, including lung cancer, chronic obstructive pulmonary disease
87 (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary viral infections are a significant
88 health burden across communities worldwide. In the United States, lung cancer is still the leading
89 cause of cancer-related deaths (Siegel et al., 2020) and chronic lower respiratory diseases account
90 for approximately 5.7% of all deaths (Centers for Disease Control and Prevention, 2018). With the
91 recent outbreak of COVID-19, respiratory emergencies are at an all-time high, greatly surpassing
92 those during the 2003 SARS-CoV outbreak and the 2009 H1N1 swine flu pandemic (Centers for
93 Disease Control and Prevention, 2020; World Health Organization, 2020; World Health
94 Organization, 2003; Shrestha et al., 2011; Simonsen et al., 2013; Dawood et al., 2012). Because
95 of the susceptibility of the distal lung to severe damage and the current state of public health, there
96 is an urgent need to generate *in vitro* models to study mechanisms underlying distal lung diseases
97 and rapidly screen for novel therapeutics.

98 The respiratory epithelium is lined by a variety of epithelial cell types, each with distinct
99 functions. Along the airways, mucous-secreting goblet cells and ciliated, club, and basal cells form
100 a pseudostratified columnar epithelium that traps and removes inhaled foreign particles (Rackley
101 and Stripp, 2012; Tata and Rajagopal, 2017). The bronchiolar epithelium ends in saccular
102 respiratory units, the alveoli. Alveoli are composed of two epithelial cell types: cuboidal alveolar
103 type 2 cells (AT2) responsible for producing and secreting surfactant, and large, delicate type 1
104 cells (AT1) enveloped by a network of capillaries to allow gas exchange (Tata and Rajagopal,
105 2017; Rock and Hogan, 2011; Rackley and Stripp, 2012). AT2 cells have been extensively
106 investigated due to their role as stem cells in the regeneration of damaged lung epithelium (Khalil
107 et al., 1994; Liu et al., 2011; Barkauskas et al., 2013). AT2 cells can both proliferate and
108 differentiate into AT1 cells in response to lung injury (Evans and Bils, 1969; Adamson and
109 Bowden, 1974; Beers and Morrisey, 2011). In contrast, the fragile AT1 cells have been less
110 extensively studied due to the difficulty in purifying and culturing these cells. Until recently, AT1
111 cells were thought to be terminally differentiated (Evans and Hackney, 1972; Hackney et al.,
112 1975). However, recent reports suggest that AT1 cells, or at least a subpopulation thereof, may
113 have greater cellular plasticity than previously thought, having the ability to reenter the cell cycle
114 and differentiate into AT2 cells (Borok et al., 1998; Jain et al., 2015; Wang et al., 2018; Yang et
115 al., 2016; Little et al., 2019). Thus, AT1 cells may also play a role in alveolar regeneration, albeit
116 a more limited one.

117 In the last 30 years, numerous human lung cell lines have been used to study lung disease
118 and homeostasis *in vitro*. The most common cell models available are immortalized primary
119 airway epithelial cells. These lines were established using viral and non-viral immortalization

120 methods aimed at overcoming cellular senescence and crisis, events marked by growth arrest and
121 telomeric attrition, respectively (Reddel, 2000; Campisi, 2013; Herranz and Gil, 2018; Hahn and
122 Weinberg, 2002). Human bronchial epithelial cells were first immortalized with viral proteins
123 Simian virus 40 Large T antigen (SV40 LgT) or human papillomavirus (HPV) E6 and E7 in
124 conjunction with the human catalytic subunit of telomerase (hTERT). BEAS-2B and small airway
125 (SA) cells are well-known examples of such immortalized bronchial epithelial cells (Reddel et al.,
126 1988; Lundberg et al., 2002; Piao et al., 2005; Schiller et al., 1994; Zabner et al., 2003). Subsequent
127 non-viral methods using hTERT combined with expression of either a mutant cyclin-dependent
128 kinase 4 (CDK4^{R24C}) that is insensitive to p16^{INK4A} and p15^{INK4B} inhibition, or knockdown of
129 p16^{INK4A}/p19^{ARF} (at the *CDKN2A* locus) gave rise to the human bronchial epithelial cell line,
130 HBEC (Ramirez et al., 2004), and the small airway epithelial cell line, SAEC (Sasai et al., 2011;
131 Smith et al., 2016).

132 In contrast to the wide selection of airway epithelial cell lines showing phenotypic and
133 morphologic similarities to primary cells, few human alveolar epithelial cell (AEC) lines have
134 been available. Kemp *et al.* and Kuehn *et al.* immortalized purified AT2 cells from human lung
135 tissue using SV40 LgT plus hTERT (Kemp et al., 2008) or a cocktail of proprietary
136 ‘immortalizing’ genes (Kuehn et al., 2016). These cells quickly lost their AT2 phenotype upon 2D
137 culturing and resembled AT1 cells in morphology and by limited marker staining of caveolin-1
138 (CAV1). Bove *et al.* (2014) also attempted to subculture purified AT2 cells using media containing
139 the small molecule ROCK inhibitor, Y-27632 along with feeder cells, but reported loss of AT2
140 signatures after two passages and adoption of an “AT1-like” phenotype marked by expression of
141 aquaporin 5 (AQP5) and podoplanin (PDPN). Continued growth of these cells beyond 2 months
142 was not reported. As an alternative approach, other laboratories have derived AECs by directed
143 differentiation of induced pluripotent stem cells (iPSC). These iPSC-derived AECs formed at
144 varying efficiencies and with different AT2:AT1 compositions depending on the alveolarization
145 media used (Gotoh et al., 2014; Dye et al., 2015; Jacob et al., 2017; McCauley et al., 2017;
146 Yamamoto et al., 2017; Kanagaki et al., 2020). When suspended in Matrigel, these cells generated
147 structures similar to purified human AT2 cells under organotypic culture (Barkauskas et al., 2013;
148 Zacharias et al., 2018). This morphologic property has allowed for modeling of numerous alveolar
149 pathologies (Hiemstra et al., 2018; Heo et al., 2019; Shafa et al., 2018; Korogi et al., 2019; Leibel
150 et al., 2019; Porotto et al., 2019; Schruf et al., 2020). However, the time and experience required
151 to differentiate iPSCs properly towards a distal lung lineage are not trivial. It takes a minimum of
152 50 days to generate iPSC-derived AECs (Gotoh et al., 2014; Dye et al., 2015; Jacob et al., 2017).
153 Furthermore, improper maintenance of human fibroblasts and iPSCs can reduce conversion
154 efficiency (Meng et al., 2012; Volpato and Webber, 2020). A simple method for deriving long-
155 term proliferating human AECs that are rapidly expandable under standard culturing conditions

156 and retain the ability to form functional 3D alveolar structures would be of great value to the
157 scientific community.

158 Here, we report the establishment and characterization of a collection of immortalized cell
159 lines derived from isolated adult human AT2 cells. Under 2D culture conditions, the cells grow as
160 an epithelial monolayer and exhibit lung progenitor-like expression patterns. In 3D organotypic
161 culture, they form diverse organoid structures and express mature AEC markers, AQP5 and
162 GPRC5A. Cell lines derived from the alveolar epithelium are essential for the study of diseases
163 arising from lung alveoli as they are best suited to recapitulate the pathogenesis of disease. Our
164 novel AEC lines may therefore serve as a powerful *in vitro* model for studying genetic and
165 environmental mechanisms underlying distal lung diseases as well as for investigating the
166 regulation of alveolar epithelial cell homeostasis.

167

168

169 RESULTS

170

171 **Direct transduction of isolated primary adult human AT2 cells does not result in** 172 **immortalized epithelial cells**

173 Primary human AECs do not proliferate in culture (Isakson et al., 2002; Mao et al., 2015), making
174 them challenging to manipulate and limiting their suitability for *in vitro* modeling. AT1 cells are
175 too fragile to purify and culture, therefore, we focused on the immortalization of primary human
176 AT2 cells.

177 We initially attempted direct transduction of both freshly isolated and previously
178 cryopreserved human AT2 cells with lentiviruses carrying CDK4^{R24C} and hTERT (**Figure 1 –**
Supplement 1 and **Figure 1 – Supplement 2A-C**) based on the reported success in human
179 bronchial epithelial cells (Ramirez et al., 2004). This approach resulted in early proliferation of
180 cells, followed by either growth arrest or adoption of a fibroblast-like morphology at later passages
(Figure 1 – Supplement 2A-C). Re-transduction of seemingly growth arrested cells with SV40
181 LgT resulted in fibroblast-like cells (**Figure 1- Supplement 2A, last panel**). Failure to derive
182 proliferating AECs by direct transduction motivated us to refine our immortalization strategy. In
183 culture, AT2 cells spontaneously transdifferentiate into AT1-like cells over the course of 6 days
(Cheek et al., 1989; Dobbs, 1990; Foster et al., 2007; Fuchs et al., 2003; Marconett et al., 2013).
184 These AT1-like cells have attenuated cell bodies and a high overall surface area, similar to AT1
185 cells *in vivo*. We considered that our failure to immortalize primary AECs by direct transduction
186 with lentiviruses carrying immortalizing genes might be because cells undergoing terminal
187 transdifferentiation may not be molecularly susceptible to respond to mutant CDK4 and hTERT.
188 In the literature, we found that successful immortalization seemed to be possible for purified
189 primary human cells exhibiting at least some proliferative capacity (Herbert et al., 2002; O'Hare
190
191

193 et al., 2001). Indeed, primary human bronchial epithelial cells were first subcultured before
194 immortalization with retroviruses (Ramirez et al., 2004). We therefore hypothesized that
195 successful immortalization of primary AECs would require first stimulating the cells to proliferate
196 in culture, then transducing the dividing cells with lentiviruses carrying immortalizing genes
197 (Figure 1 – Supplement 2D).

198
199 **Optimization of culture media conditions to propagate primary adult human AECs**
200 To determine optimal cell expansion conditions, we performed a small-scale screen of media
201 containing growth factors and small molecules reported to promote survival and proliferation of
202 primary epithelial cells (Figure 1 – Source Data 1). Using previously cryopreserved isolated
203 human AT2 cells from Lung-FT (Table 1), we cultured approximately 6250 cells per well of a 96-
204 well multiplate in each media condition. In the first two days after plating, most cells did not attach,
205 and growth media contained noticeable levels of cellular debris. Wells containing ROCK inhibitor
206 (Y-27632), keratinocyte growth factor (KGF or FGF7), 6'-bromoindirubin-3'-oxime (BIO), and
207 20% fetal bovine serum (FBS) showed several cells attached, but not yet flattened (data not
208 shown). Eventually, only medium containing 10 μ M Y-27632 supported cell survival and
209 proliferation. By visual inspection, only 10-20% of the well was populated by cells. About six
210 weeks post-plating, we passaged cells using Accutase, a gentler detachment solution compared to
211 0.05% trypsin-EDTA (Bajpai et al., 2008). From this passage on, cells grown in medium
212 containing Y-27632 maintained their proliferative capacity even after detachment and re-plating.
213 These cells (referred to as “AEC-FT-ROCKinh”) grew as a monolayer and were contact-inhibited
214 (Figure 1A, a).

215
216 **Derivation of a collection of proliferative human AEC lines**
217 Although growth in medium containing Y-27632 greatly expands the lifespan of primary human
218 cells (Liu et al., 2012; Horani et al., 2013; Chapman et al., 2014), this proliferative state is
219 conditional and is not sufficient for immortalization (Martinovich et al., 2017; Suprynowicz et al.,
220 2012; Bove et al., 2014). Viral oncogenes, such as HPV 15/16, EBV, and SV40 LgT have been
221 shown previously to immortalize human cells even in the absence of hTERT (Band et al., 1991;
222 Liu et al., 2006; Reddel et al., 1988; Neufeld et al., 1987; Christian et al., 1987). To maintain the
223 proliferative potential of the derived AEC-FT-ROCKinh cells from Lung-FT, we transduced these
224 cells with different combinations of lentiviruses: hTERT alone, CDK4^{R24C} alone,
225 CDK4^{R24C}+hTERT, and SV40 LgT alone (Figure 1A). We passaged transduced cells with
226 Accutase and maintained them in media containing ROCK inhibitor. Epithelial-like cells resulted
227 following each transduction (Figure 1A, a-e). Cells appeared proliferative, but at full confluence,
228 formed a contact inhibited, cobblestone monolayer, suggesting maintenance of an epithelial

229 identity. We noted that cells transduced with SV40 LgT were compact compared to cells
230 transduced with hTERT alone, CDK4^{R24C} alone, or CDK4^{R24C}+hTERT. We also observed that the
231 SV40 LgT-transduced cells (henceforth referred to as AEC-FT) were much more rapidly
232 expandable in culture compared to the other lines. We were easily able to maintain these cells with
233 routine passaging for at least one year. We therefore generated biological replicates of the AEC-
234 FT cell line from two additional human donor lungs (**Table 1**). The two additional SV40 LgT-
235 transduced (AEC-LgT) cell lines, termed AEC-ON (from Lung-ON) and AEC-TN (from Lung-
236 TN), exhibited epithelial-like morphology and were contact-inhibited upon confluence (**Figure**
237 **1B, C**).

238

239 **Characterization of the transformation state of human AEC lines**

240 Since these AEC lines were generated using chemical and genetic modifications, it was possible
241 that the cells had acquired additional changes precluding their use as “normal” cell models. To
242 determine whether the newly derived cells might have acquired any characteristics of oncogenic
243 transformation, we performed proliferation and soft agar assays. As a reference for full cellular
244 transformation, we used the lung adenocarcinoma cell line, A549 ([Giard et al., 1973](#)). We assessed
245 the rate of proliferation by seeding cells into a multiwell plate and counted the total number of
246 cells every day for six days. On days 4, 5, and 6, we noted statistically significant differences in
247 the number of A549, AEC-FT, and AEC-CDK4^{R24C} cells compared to AEC-FT-ROCKinh cells
248 (**Figure 1D**). AEC-FT cells proliferated faster than AEC-FT-ROCKinh, AEC-hTERT, AEC-
249 CDK4^{R24C}, and AEC-CDK4^{R24C}+hTERT cells, reaching exponential growth around day 4 (**Figure**
250 **1D**). To determine whether the extended lag phase of the slow-growing cells was due to initial
251 seeding density or truly reflective of the cell’s replicative capacity, we performed the same
252 proliferation assay with a higher initial seed number of 5000 cells. Under these conditions, AEC-
253 FT-ROCKinh, AEC-hTERT, AEC-CDK4^{R24C}, and AEC-CDK4^{R24C}+hTERT cells still did not
254 achieve exponential growth; therefore population doubling times (PDTs) were not calculated
255 (**Figure 1 – Supplement 3A, B**). AEC-ON and AEC-TN cell lines exhibited a similar extended
256 lag phase to AEC-FT-ROCKinh, AEC-CDK4^{R24C}, AEC-hTERT, and AEC-CDK4^{R24C}+hTERT
257 cells and did not reach exponential growth (**Figure 1E**). However, when plated at a higher density,
258 cells proliferated readily, reaching exponential growth 4 days after plating, with PDT of 1.1 ± 0.05
259 days for AEC-ON and 2.1 ± 0.4 days for AEC-TN (**Figure 1 – Supplement 3B**).

260 To determine whether the cells exhibited anchorage-independent growth, a common
261 feature of transformed cells, we performed soft agar assays on all AEC lines, suspending 5000
262 cells in agarose melted in growth media containing ROCK inhibitor. We assessed colony
263 formation after one month by crystal violet staining using A549 cells as a positive control (**Figure**
264 **1F**). No colonies were detected for AEC-FT-ROCKinh, AEC-hTERT, AEC-CDK4^{R24C}, or AEC-

265 CDK4^{R24C}+hTERT cells. In contrast, AEC-FT cells consistently generated soft agar colonies (246
266 ± 55 colonies per well), comparable to A549 cells (284 ± 186 colonies; the difference was not
267 significant by Wilcoxon nonparametric test, p-value = 0.78) (**Figure 1G**). AEC-ON and AEC-TN
268 cells did not form appreciable colonies; rare small colonies were visible under 10X brightfield
269 magnification (**Figure 1F, inset**). Quantification of colonies yielded 2 ± 1 colonies per well for
270 AEC-ON cells and 3 ± 2 colonies for AEC-TN, which was statistically significantly different from
271 A549 cells (p = 1.4 X 10⁻⁷ and p = 1.5 X 10⁻⁷, respectively, by nonparametric Wilcoxon test)
272 (**Figure 1G**).

273

274 **AEC-LgT cell lines exhibit different growth potentials in nude mice**

275 We noted that the BEAS-2B cell line, derived from bronchial epithelial cells immortalized using
276 SV40 LgT, also form colonies in soft agar, but do not form tumors in nude mice. We therefore
277 subcutaneously injected the three AEC-LgT lines (AEC-FT, AEC-ON, AEC-TN) into nude mice
278 to test cell tumorigenicity. We used AEC-hTERT cells as a negative control because they were
279 moderately proliferative out of the four slow growing cell lines (see Figure 1D), but did not form
280 colonies in soft agar. A549 cells, which are known to form colonies in soft agar (Jiang et al., 2001)
281 and tumors in mouse xenografts (Kang et al., 2006), were used as a positive control. We injected
282 1x10⁶ cells of each cell line suspended in Matrigel into the flanks of nude mice and monitored the
283 size of growths beginning 3 weeks post-injection. After 3 months, mice transplanted with A549
284 cells and AEC-ON cells displayed prominent nodules (**Figure 1H**). Excised nodules were
285 evaluated by an expert pathologist blind to sample identities. A549-derived nodules were solid
286 tumors of adenocarcinoma histology, whereas AEC-ON-derived nodules were non-malignant,
287 fluid-filled cysts lined by a simple epithelium with areas of pseudostratified cells (**Figure 1I**). In
288 one case (1 out of 8 flanks), AEC-TN cells formed a nodule less than 20 mm³ that was too small
289 to resect. This nodule did not significantly change in volume during the 3-month experimental
290 period (**Figure 1J**). Neither AEC-FT nor negative control AEC-hTERT cells formed nodules.
291 Taken together, although SV40 LgT transduction conferred cell immortality, it did not appear to
292 induce malignant transformation.

293

294 **AEC lines are transcriptomically distinct from primary human AECs and LUAD cell lines**

295 To determine how similar the transcriptomic identities of our novel alveolar epithelial cell lines
296 are to their parental purified primary AECs, we compared their transcriptomes to those of primary
297 AECs by paired-end RNA-sequencing. We also compared our AEC lines to lung fibroblasts to test
298 for epithelial-to-mesenchymal transition gene signatures, as well as to LUAD cancer cell lines to
299 determine if our novel cells bore transcriptional hallmarks of oncogenic transformation. We
300 isolated total RNA from our novel AEC lines and the human lung fibroblast cell line HLF-133

301 cultured at subconfluence. For the primary AEC sample group, total RNA was harvested from
302 purified human AT2 cells and AT2 cells transdifferentiated on filters for 2 (D2), 4 (D4), and 6
303 (D6) days into AT1-like cells (Danto et al., 1995) from three donor lungs designated “AEC-f,”
304 “AEC-m,” and “AEC-a” (**Figure 2 – Source Data 1**). We downloaded additional RNA-seq data
305 for lung fibroblasts and LUAD cancer cell lines from publicly available databases ENCODE
306 (www.encodeproject.org) and DBTSS (www.dbtss.hgc.jp), analyzing a total of 42 samples
307 (**Figure 2 – Source Data 1**).

308 To examine relationships between samples based on their gene expression patterns, we
309 performed Principal Component Analysis (PCA) and sample-sample distance matrix analyses on
310 the top 500 most variable genes across the data set. Our analyses showed six clusters: lung
311 fibroblasts, the original AEC lines from Lung-FT (5) together, the biological replicate AEC-LgT
312 lines from Lung-ON and -TN, fetal lung tissue, LUAD cancer lines, and primary AECs (**Figure**
313 **2A**). Human fetal lung tissue clustered away from all samples. Although the biological replicate
314 lines AEC-ON and AEC-TN were generated by transduction of SV40 LgT in a similar fashion to
315 AEC-FT cells, these two lines clustered separately from the original collection of ROCKinh-
316 derived cells from Lung-FT. Thirty-nine percent of the variation in the data captured by principal
317 component 1 (PC1) divided the entire sample set into clusters containing long-term cultured cells
318 (LUAD, fibroblasts, AEC lines) and the other cells (primary AECs and fetal lung tissue),
319 underlining the possible effects of growing cells in culture. Groups identified in the sample
320 distance matrix were generally in agreement with the PCA analysis; however, lung fibroblasts
321 were found to be grouped in a distinct cluster from AEC lines based on dissimilarity calculations
322 represented by a dendrogram tree (**Figure 2B**).

323 To determine which genes drive segregation of the different sample clusters, we performed
324 unsupervised hierarchical clustering using the top 500 most variable genes across the data set.
325 Consistent with PCA and sample distance matrix plots, primary AECs and fetal lung tissue were
326 more related to each other than to the remaining groups of samples, as shown in the column
327 dendrogram (**Figure 2C**). Nine salient gene clusters were identified within the top 500 genes
328 (**Figure 2 – Supplement 1A**). Most of the clusters had at least one Gene Ontology (GO) term
329 related to tissue development, morphogenesis, and cellular response to the environment (**Figure 2**
330 – **Supplement 1B**). Inspection of the differences in overall gene expression across the sample
331 types (fetal lung tissue, primary AT2, *in vitro*-derived AT1-like, AEC lines, lung fibroblasts, and
332 LUAD) revealed a group of genes with higher expression in non-cancer samples compared to
333 LUAD samples (**Figure 2C, dashed box**). Genes associated with this group had GO terms for
334 “surfactant homeostasis,” “regulation of immune system process,” “response to external biotic
335 stimuli,” and “tube development” (**Figure 2D**). Highlighted in Figure 2D, gene clusters A, B, and
336 C distinguished fetal lung tissue, primary AECs, lung fibroblasts, and AEC lines from LUAD

337 cancer cell lines and were enriched in genes involved in normal lung physiology (**Figure 2 –**
338 **Source Data 2**).

339 We next performed differential gene expression analyses between the AEC lines and each
340 of the other groups: AT2 cells, AT1-like cells, lung fibroblasts, and LUAD cancer lines. Volcano
341 plots for each comparison were generated to visualize statistically significant differentially
342 expressed genes. Comparing AEC lines to primary AT2 cells, a total of 14,404 genes were
343 differentially expressed, the largest number in the four pairwise comparisons (**Figure 2E**).
344 Compared to AT1-like cells, 9366 total genes were differentially expressed in AEC lines (**Figure**
345 **2F**). Comparing the AEC lines and lung fibroblasts, 4918 genes were significantly differentially
346 expressed, the least number of gene differences of the four pairwise comparisons (**Figure 2G**).
347 Comparing the AEC lines to LUAD cancer lines, a total of 10,190 genes were significantly
348 differentially expressed (**Figure 2H**). Notably, although the range of fold change values for these
349 genes was similar to the fold change ranges for the other comparisons (Log₂FoldChange axis
350 between -15 and 15, shown in **Figure 2E-H**), the -Log₁₀ BH adjusted p-values associated with the
351 top upregulated genes were orders of magnitude more significant (**Figure 2H** y-axis compared to
352 y-axes in **2E-G**). Examining GO terms of the top upregulated genes between the AEC lines and
353 both AT2 and AT1-like cells, we found genes related to alterations in cell adhesion and
354 extracellular matrix signaling, in line with the altered cell morphology and proliferative potential
355 of the AEC lines compared to primary AECs. GO terms associated with downregulated genes in
356 the AEC lines compared to primary AECs were related to respiratory and surfactant homeostasis
357 (**Figure 2I-J**). When compared to lung fibroblasts, upregulated genes in the AEC lines were
358 associated with telomere maintenance and morphogenesis. Downregulated genes were associated
359 with cell migration and extracellular matrix organization (**Figure 2K**). GO terms for top
360 upregulated genes in AEC lines *versus* LUAD cancer lines corresponded to cell signaling,
361 metabolism and nucleosome remodeling, indicating significant differences between non-cancer-
362 and cancer-derived cell lines. For the top downregulated protein-coding genes, associated GO
363 terms were generally related to cell cycling and transcription (**Figure 2L**).

364 Based on differential gene expression analyses and PCA clustering, the AEC lines appeared
365 to be more similar to lung fibroblasts than to primary AECs, suggesting a possible loss in lung
366 epithelial cell-specificity and adoption of a more mesenchymal phenotype. To determine whether
367 the AEC lines retained their lung-specific gene expression patterns, we subset the expression data
368 on 75 lung-related genes manually curated from published bulk RNA-seq and single-cell RNA-
369 seq data (Treutlein et al., 2014; Xu et al., 2016) (**Figure 2 – Source Data 3**). As shown in **Figure**
370 **2 – Supplement 2A**, compared to purified primary AECs, expression of these lung-related genes
371 was low in the AEC lines. However, compared to lung fibroblasts, the AEC lines expressed these
372 genes at a much higher level (**Figure 2 – Supplement 2B**). This suggests that the similarity

373 between the AEC lines and fibroblasts calculated by PCA analysis could be driven by the fact that
374 fibroblasts are the only other cell type that was non-cancer, of normal ploidy, and cultured on
375 plastic.

376

377 **AEC-LgT cells express features of lung progenitor cells**

378 The ROCK inhibitor Y-27632 is a commonly used small molecule to promote stem cell survival
379 and proliferation (Claassen et al., 2009; Vernardis et al., 2017). The addition of ROCK inhibitor
380 and feeder cells has also been shown to enhance culturing of primary epithelial cells from
381 mammary, prostate, and upper airway lung tissues (Liu et al., 2012). However, in this process of
382 facilitating cell survival, adult cells are reprogrammed to a stem-like state (Suprynowicz et al.,
383 2012). In the mouse lung, SOX9 regulates distal lung cell fate, committing early cells to an alveolar
384 epithelial cell lineage (Rockich et al., 2014; Chang et al., 2013), whereas SOX2 is an important
385 regulator of proximal lung cell fate, committing early lung stem cells to the basal cell lineage
386 (Ochieng et al., 2014; Daniely et al., 2004). In the human lung, however, recent reports described
387 a new population of progenitors, located at budding distal epithelial tips during fetal lung
388 development, that co-express SOX9 and SOX2 (Danopoulos et al., 2018; Nikolić et al., 2017). We
389 therefore assessed the expression of lung progenitor markers SOX9 and SOX2 in the three AEC-
390 LgT lines by immunofluorescence (IF) staining and found that all three co-expressed SOX9 and
391 SOX2 proteins (Figure 3A). In agreement with the IF staining, RNA-seq showed the AEC lines,
392 as a group, expressed both SOX9 and SOX2 genes more highly than primary AECs (Figure 3 –
393 **Supplement 1**).

394 To examine the expression status of mature lung markers in the three AEC-LgT cell lines,
395 we again performed IF staining on monolayer cultures. We first determined that all AEC-LgT lines
396 were positive for SV40 LgT and E-cadherin (ECAD), an epithelial cell-cell junction protein,
397 indicating the cells retained their epithelial cell phenotype. All three cell lines were negative for
398 mature AT1 cell markers AQP5 and homeodomain-only protein (HOPX), and AT2 cell marker
399 pro-surfactant C (pro-SPC). AEC-FT and AEC-TN were negative for NKX2-1 (also known as
400 thyroid transcription factor-1, TTF1). In contrast, AEC-ON cells expressed NKX2-1, although at
401 variable levels across the cell population (Figure 3B). NKX2-1 is a central transcriptional
402 regulator of lung endoderm specification, branching morphogenesis, and both proximal and distal
403 lung cell differentiation during development (Herriges and Morrisey, 2014; Minoo, 2000; Yuan et
404 al., 2000). Patients with NKX2-1 haploinsufficiency exhibit recurring pulmonary complications
405 and respiratory distress, among other physiological dysfunctions (Hamvas et al., 2013). Notably,
406 although NKX2-1 regulates expression of the AT2 cell marker surfactant protein C (SFTPC)
407 (Kelly et al., 1996), we did not detect expression of SFTPC in AEC-ON cells, as marked by its
408 precursor protein, pro-SPC. Taking our transcriptomic analyses and IF staining data together, we

409 speculated that AEC-LgT cells in 2D culture favored a transcriptional program promoting cell
410 proliferation and cell survival over one specifying alveolar epithelial cell lineage. We therefore
411 investigated whether, under certain conditions, AEC-LgT cells could be induced to differentiate
412 to a phenotype resembling human adult AECs.

413

414 **AEC-LgT cells can form lung organoids in 3D co-culture**

415 Purified AT2 cells from mouse and human lungs have been shown to form organoids when
416 cultured with stromal cells and suspended in Matrigel (Barkauskas et al., 2013; Jain et al., 2015;
417 Zhou et al., 2018; Zacharias et al., 2018). This 3D culture system has also been used to assess
418 differentiation capabilities of both AT2 progenitor cells and iPSC-derived distal lung cells (Jacob
419 et al., 2017; McCauley et al., 2017; Yamamoto et al., 2017). To determine whether AEC-LgT cells
420 possess the ability to form 3D structures, we mixed exponentially-growing AEC-FT, AEC-ON,
421 and AEC-TN cells with neonatal mouse fibroblast cells (MLg) in Matrigel and co-cultured them
422 in Transwell dishes (Figure 4A). All three cell lines formed organoids from a single-cell
423 suspension (Figure 4B), in contrast to the dense cell clusters formed by A549 cells under similar
424 conditions (Figure 4 – Supplement 1). In the absence of MLg fibroblasts, we did not observe
425 organoid formation from any of the AEC-LgT cell lines after 1 month of culture (Figure 4 –
426 Supplement 2).

427 Mouse and human AT2 cells form organoids within several weeks of culturing (Jain et al.,
428 2015; Barkauskas et al., 2013; Zacharias et al., 2018), whereas SOX9⁺/SOX2⁺ human distal tip
429 progenitors form organoids in as early as 12 hours (Nikolić et al., 2017). To examine the rate of
430 organoid formation of all three AEC-LgT cell lines, we carried out a time-course experiment.
431 AEC-FT cells were noticeably slower in forming organoids than either AEC-TN or AEC-ON cells
432 (Figure 4C), requiring at least 5 weeks to form detectable spheres at 2.5X magnification on a
433 stereomicroscope (Figure 4C, b), compared to 3-4 weeks for AEC-TN (Figure 4C, k-l), and < 2
434 weeks for AEC-ON cells (Figure 4C, f). We noted that the rates of organoid formation for the
435 three AEC-LgT cell lines did not coincide with their rates of proliferation in 2D culture, suggesting
436 this structural change was not merely determined by cell division.

437 To quantitatively characterize organoid growth of the AEC-LgT lines, we calculated
438 organoid formation efficiency and size after two months of culture. Organoid formation efficiency
439 was defined as the total number of organoids divided by the initial cell seeding number (5000
440 epithelial cells). The mean organoid formation efficiency for AEC-FT was $0.35 \pm 0.1\%$, for AEC-
441 ON, $1.2 \pm 0.5\%$, and for AEC-TN cells, $0.2 \pm 0.08\%$ (Figure 4D). Organoid size (diameter) was
442 measured as the largest distance between two points on the organoid membrane. Only organoids
443 greater than 20 μm diameter were considered for these measurements. The range of sphere sizes
444 for AEC-FT was 25 – 445 μm (median 64 μm), for AEC-ON, 24 – 661 μm (median 108 μm), and

445 for AEC-TN, 25 – 427 μm (median 44 μm) (**Figure 4E**). **Figure 4 – Source Data 1** summarizes
446 the results.

447 Organoid shapes were variable across cultures for each AEC-LgT line; however general
448 growth patterns were observed. Under brightfield microscopy, AEC-FT cells formed organoids of
449 predominantly round morphology with a single lumen. Occasionally, across different 3D cultures
450 of these cells, organoids containing multiple lumens were observed (**Figure 4 – Supplement 3A**).
451 AEC-TN cells also formed rounded, single lumen organoids more commonly than multi-lumen
452 organoids. However, the multi-lumen organoids, although rare, tended to appear more complex in
453 structure than those from AEC-FT cells (**Figure 4 – Supplement 3C**). In contrast, AEC-ON
454 organoids were more heterogeneous in morphology. A subpopulation of them were large and
455 floret-like, exhibiting a lobulated structure (**Figure 4 – Supplement 3B**).
456

457 **AEC-LgT organoids robustly express alveolar epithelial markers**

458 We found that AEC-LgT cells formed organoids in 3D culture, an ability well-documented in
459 primary mouse and human AT2 cells grown under similar conditions. However, AT2 cell-derived
460 organoids tend to be relatively dense with a small central lumen (Barkauskas et al., 2013; Zacharias
461 et al., 2018; Zhou et al., 2018). AEC-LgT cell organoids, in contrast, were more reminiscent of
462 organoids formed by multipotent distal tip progenitors (Nikolić et al., 2017), having marked
463 spherical to lobulated morphologies and large lumens. To determine whether this morphological
464 behavior was accompanied by changes in lung-specific marker expression, we performed IF
465 staining for mature alveolar markers on organoid sections. Organoids from AEC-ON and AEC-
466 TN cells were fixed after approximately one month of growth; organoids from AEC-FT cells were
467 fixed after two months of 3D growth due to their slower rate of organoid formation.

468 By IF staining, organoids were composed of SV40 LgT⁺/ ECAD⁺ epithelial cells. All
469 organoids contained Ki67⁺ proliferative cells that were distributed throughout the structure
470 (**Figure 4F-H**). Upon probing for mature alveolar markers (NKX2-1, pro-SPC, AQP5, HOPX),
471 we found that all organoids robustly expressed AQP5 and NKX2-1, whereas HOPX expression
472 was variable (**Figure 4F-H** and **Figure 4 – Supplement 4A-C**), and pro-SPC was negative
473 (**Figure 4 – Supplement 4D**). The commonly used AT2 cell-specific marker for sorting, HTII280,
474 was also negative across all lines (**Figure 4 – Supplement 5A-B**). We also probed for the newly
475 identified AT1 marker, G-protein coupled receptor family C, group 5A (GPRC5A) (Horie et al.,
476 2020), finding that all three AEC-LgT organoids were positive, specifically along the apical lining
477 of the lumens (**Figure 4 – Supplement 5B**), in contrast to the ubiquitous GPRC5A expression
478 observed in all three monolayer cultures (**Figure 4 – Supplement 5A**). In AEC-FT (**Figure 4F**)
479 and AEC-TN organoids (**Figure 4H**), 3D co-culture conditions appeared to reactivate AQP5 and
480 NKX2-1 expression from their silenced state in 2D culture. In contrast, AEC-ON cells maintained

481 NKX2-1 expression in both 2D and 3D cultures, and expressed AQP5 only in 3D culture (**Figure**
482 **4G**).

483

484 **Single-cell transcriptomic analyses of AEC-ON organoids reveal increased cellular**
485 **heterogeneity in response to organotypic culture**

486 As shown in **Figure 4G** and **Figure 4 – Supplement 4B**, AEC-ON organoids exhibited the most
487 dramatic morphologies and marked expression of the AT1-enriched gene *AQP5*, whereas the AT2
488 cell marker *SFTPC* was not expressed, despite the presence of its upstream regulator *NKX2-1*.
489 Currently, purified primary human AT2 cells have been shown to form organoids; as of yet, the
490 same ability has not been reported for human AT1 cells. Because AEC-ON cells may possess
491 expression profiles of AT2 and AT1 cells that are too nuanced to detect by IF staining, we
492 investigated the transcriptomes of these cells grown in 2D and in 3D in greater detail by single-
493 cell RNA-sequencing (scRNA-seq). AEC-ON cells grown on standard tissue culture plastic in
494 ROCKinh media constituted the “2D” sample and one month-old AEC-ON organoids constituted
495 the “3D” sample. AEC-ON organoids were gently detached and purified from the surrounding
496 Matrigel by sequential rounds of Dispase protease treatment and centrifugation. Surrounding
497 single cells that did not form organoids were excluded from the collection by modulating Dispase
498 treatment times followed by low-speed centrifugation and visual inspection of the sample
499 suspension. Dissociated and FACS-sorted GFP⁺ single cells derived from AEC-ON 2D and 3D
500 organoids were then processed using the 10x Genomics Chromium platform (**Figure 5A**). Uniform
501 Manifold Approximation and Projection (UMAP) dimensional reduction was performed on 10,965
502 total cells. AEC-ON cells grown under standard 2D conditions clustered separately from cells
503 comprising lung organoids (**Figure 5B, left**). Cluster analyses revealed 7 distinct groups: one
504 cluster (Cluster 0) encompassed all 2D cells and the remaining clusters (Cluster 1-6) were
505 identified in the 3D sample, indicating increased cellular heterogeneity among cells comprising
506 AEC-ON organoids *versus* cells in the monolayer population (**Figure 5B, right**). Cell numbers
507 per cluster are shown in **Figure 5C**.

508 To determine the set of marker genes distinguishing each called cluster, we performed
509 differential gene expression analyses. **Figure 5D** shows a heat map of the top 20 genes in each
510 cluster ranked by average Log₂Fold Change over all cells. Associated GO terms for the top 50
511 genes ordered by p-value are shown in **Figure 5E**. For Cluster 5, GO analysis was performed on
512 the top 75 genes, since the top 50 genes yielded no statistically significant results. Cluster 0
513 containing all cells from the 2D sample showed marked enrichment for genes associated with cell
514 adhesion processes, consistent with cell growth as a monolayer (**Figure 5E**). Cluster 2 was
515 enriched with cell cycling genes, representing actively proliferating cells within AEC-ON
516 organoids. The remaining clusters (1, 3-6) were enriched in genes associated with response to

517 external stimuli such as immune response, inflammation, and type 1 interferon signaling,
518 suggesting that cells interacted with the surrounding microenvironment by secreting cytokines and
519 lipoproteins. Clusters 1 and 3-5 were also significantly enriched for genes involved in
520 development, morphogenesis, and epithelial cell differentiation, consistent with structural changes
521 required for organoid formation (**Figure 5E**).

522 Feature maps of marker genes representative of AT2 cells, AT1 cells, and alveolar
523 epithelial progenitor (AEP) cells (Zacharias et al., 2018) revealed a higher proportion of positive
524 cells in 3D organoids than in 2D cultured cells (**Figure 5F-H**). Examining the AT2 cell panels, we
525 observed numerous cells in the 3D sample expressing *ABCA3* and *LAMP3*, encoding markers of
526 specialized organelles in AT2 cells called lamellar bodies, where surfactant is produced and stored.
527 Consistent with expression of these genes, we detected several cells expressing surfactant proteins
528 A2 (*SFTPA2*), B (*SFTPB*), and D (*SFTPD*) (**Figure 5F**). We did not observe a significant number
529 of cells expressing *SFTPC*, the most lung and AT2 cell-specific surfactant produced by lamellar
530 bodies. Examining the plots of AT1-enriched markers, we found that cells comprising the
531 organoids highly expressed transcripts of the actin-binding protein *LMO7* and, to a lesser extent,
532 the chloride channel protein *CLIC5*, but expressed *AQP5* at a lower level than expected from our
533 IF staining (**Figure 5G**), possibly due to insufficient transcript capture rate. Thus, the results we
534 observe may be an underestimate of actual expression levels and cell distribution. Overall, the
535 mixed population of organoid cells expressing both AT2 and AT1 genes suggests the presence of
536 immature AT2-like cells or an AT2-AT1 intermediate cell type (Liebler et al., 2015).

537 AEPs were previously found to highly express the surface marker *TM4SF1* and the
538 cytoplasmic protein *AXIN2*, and to be WNT- and FGF-responsive (Zacharias et al., 2018).
539 Compared to cells grown in 2D, we found a number of AEC-ON cells in 3D expressing *AXIN2*
540 and a much greater proportion expressing *TM4SF1*. In addition, AEC-ON cells expressed genes
541 of the WNT (*TCF12*, *LEF1*, and *CTNNB1*) and FGF pathways (*FGFR2*) (**Figure 5H**). We
542 examined lung-related transcription factor expression in AEC-ON cells in 2D *versus* 3D, finding
543 a higher number of cells expressing *NKX2-1*, *GATA6*, *FOXA1*, *FOXA2*, and *CEBPA* in 3D than in
544 2D. *SOX2* and *SOX9* were also highly expressed in 3D samples (**Figure 5I**). Since AEC-ON
545 organoids contained AEP-like cells expressing genes related to WNT and FGF pathways, we
546 investigated whether activation of these signals can modulate organoid growth characteristics.
547

548 **Activation of WNT or FGF signaling has cell line-specific effects on organoid growth**

549 WNT and FGF signaling pathways are important for patterning and growth of the developing
550 lung bud, as well as maintaining adult lung homeostasis. During lung development, WNT
551 signaling is crucial for alveologenesis and maturation through regulation of AT2 cell self-
552 renewal (Nabhan et al., 2018; Frank et al., 2016). FGF7 (also known as keratinocyte growth

553 factor, KGF) regulates lung branching at the distal tips by promoting AEC proliferation (Cardoso
554 et al., 1997; Padela et al., 2008) and FGF10 regulates branching by maintaining cells in a
555 progenitor-like state (Park et al., 1998; Yuan et al., 2018).

556 To determine the effects of WNT and FGF signaling on organoid growth, we treated AEC-
557 ON 3D cultures with the GSK3 inhibitor, CHIR99021 (CHIR), or a mixture of FGF7 and FGF10
558 protein ligands (FGF7+10). GSK3 kinase negatively regulates the WNT/β-catenin pathway by
559 maintaining the phosphorylation state of β-catenin (Wu et al., 2010). Inhibition of GSK3 kinase
560 activity results in activation of WNT signaling. **Figure 6A** shows brightfield images of
561 representative wells for vehicle (DMSO), CHIR-, and FGF7+10-treated AEC-ON cells after 2
562 months of organoid growth. The median sphere sizes for vehicle-treated AEC-ON cells were
563 consistent with median sphere sizes reported under no additive conditions (**Figure 4 – Source**
564 **Data 1** compared to **Figure 6 – Source Data 1**). Treatment of AEC-ON cultures with either CHIR
565 or FGF7+10 resulted in a statistically significant difference in sphere size. Under CHIR, median
566 sphere size increased from 83 μm to 155 μm (p-value < 2.2 X 10⁻¹⁶). Under FGF7+10 treatment,
567 median sphere size increased from 83 μm to 174 μm (p-value < 2.2 X 10⁻¹⁶) (**Figure 6B**). Sphere
568 formation efficiencies did not change upon either CHIR or FGF7+10 treatment (**Figure 6C**). AEC-
569 FT and AEC-TN cells were also treated with CHIR or FGF7+10 in 3D culture (**Figure 6 –**
570 **Supplement 1A, D**). After 2 months of sphere growth, no change in sphere size was detected for
571 either line (**Figure 6 – Supplement 1B, E**). Treatment of AEC-FT cells with FGF7+10 resulted
572 in an increased mean percentage sphere efficiency from 0.3 ± 0.1% to 0.6 ± 0.2% (p-value = 0.03)
573 (**Figure 6 – Supplement 1C**). We noted an increase in number of larger sized “outlier” spheres
574 under FGF7+10 treatment in both AEC-FT- and AEC-TN cultures compared to either vehicle or
575 CHIR conditions (data points lying outside of the upper whisker in **Figure 6 – Supplement 1B,**
576 **E**). **Figure 6 – Source Data 1** summarizes the growth metrics for the treatment study. In sum, we
577 found that changes in sphere size did not correlate with changes in sphere formation efficiency and
578 that AEC-ON organoids were WNT and FGF responsive, reminiscent of human AEPs.

579
580
581
582
583
584
585
586
587
588
589

590

591 **DISCUSSION**

592
593 The lung is highly susceptible to environmental damage, but is exquisitely engineered to deal with
594 these insults. Upon lung injury, specific cells are mobilized to aid in repair. Depending on the
595 region injured, improper repair and regeneration of the epithelium results in a variety of acute and
596 chronic pulmonary diseases. Having a full spectrum of cell models available to investigate the
597 complete pathophysiology of these diseases would greatly benefit the field. Here, we established
598 a practical method for immortalizing alveolar epithelial cells from human adult lung tissue by first
599 expanding purified AT2 cells in ROCK inhibitor medium followed by SV40 LgT lentiviral
600 transduction. We show that the method works robustly, using cells from three different donor
601 lungs. Gene expression analyses of the cell lines show they are transcriptomically distinct from
602 primary alveolar epithelial cells, lung fibroblasts, and LUAD cancer lines. Our novel AEC-LgT
603 lines proliferate well in 2D culture and despite the absence of mature lung markers, retain the
604 ability to form lung organoids expressing markers of alveolar epithelial cells in 3D co-culture.

605 Our original goal was to derive immortalized cell lines from purified human AECs. In the
606 process of accomplishing this, we incidentally found that the cells exhibited gene signatures
607 suggestive of either an “intermediate” alveolar epithelial cell state or a distal lung progenitor cell
608 state. In the lung, the alveolar epithelium is maintained by proliferation of AT2 cells and
609 transdifferentiation of a subpopulation of AT2 daughter cells into AT1 cells (Evans et al., 1975;
610 Barkauskas et al., 2013; Nabhan et al., 2018). Liebler et al. (2015) found remarkable cellular
611 heterogeneity within the adult lung under homeostatic conditions, identifying populations of
612 ‘intermediate’ or ‘transitory’ AECs expressing combinations of AT2 and AT1 cell markers. AT2
613 cells in transition (‘late AT2’ cells and ‘early AT1’ cells) lacked SFTPC, but expressed both
614 NKX2-1 and mature AT1 cell markers, AQP5 and HOPX. Interestingly, AQP5 and HOPX did not
615 always overlap. While early *in vitro* transdifferentiation studies did not suggest functions for these
616 intermediate cells, recent studies using scRNA-seq reveal potentially new roles for intermediate
617 or transitory lung cells in injury resolution, which when disrupted may facilitate disease
618 progression, particularly in IPF (Adams et al., 2020; Strunz et al., 2020). AT2 cells have long been
619 considered the cell of origin for many distal lung diseases, but increasing reports from mouse
620 studies are finding that AT1 cells exhibit more cellular plasticity than originally thought; a limited
621 number of AT1 cells is capable of proliferating and transdifferentiating into AT2 cells following
622 pneumonectomy *in vivo* and can generate alveolar-like organoids *in vitro* (Wang et al., 2018; Yang
623 et al., 2016; Jain et al., 2015; Kanagaki et al., 2020). Thus, AT1 cells may not only play a role in
624 alveolar regeneration, but due to their plasticity may also be a source of lung diseases such as
625 cancer or fibrosis. Our characterization studies suggest that cells comprising the AEC-LgT
626 organoids generally represent an intermediate AEC state, exhibiting AT1-like cell expression

627 patterns (AQP5⁺/GPRC5A⁺;SFTPC⁻/HTII280⁻) and possessing AT2-derived ‘alveolosphere’
628 structural complexity recently reported by Katsura *et al.* (2020).

629 Distal lung progenitors in the mouse adult lung have been identified as rare subpopulations
630 within the greater ‘bulk’ AT2 population and are not all equally fated. AXIN2⁺/TM4SF1⁺ resident
631 AEPs, comprising ~20% of bulk AT2 cells, give rise to lineage-labeled AT2 and AT1 cells at sites
632 of lung injury after H1N1 influenza infection (Zacharias *et al.*, 2018). AT2 ‘ancillary’ progenitors
633 express AXIN2 when activated upon lung injury, induced by WNT signaling from surrounding
634 stromal cells (Nabhan *et al.*, 2018). While intermediate alveolar cells and alveolar progenitors
635 exhibit different gene expression patterns, the presence of these cell types indicates that the
636 alveolar epithelium has considerable cellular plasticity, which primes the lung to respond to injury
637 expeditiously despite its slow turnover. We discovered our AEC-LgT organoids, particularly AEC-
638 ON cells, exhibit expression patterns of both alveolar ‘intermediate’ and progenitor cells,
639 expressing both NKK2-1 and AQP5, AXIN2, and TM4SF1. Furthermore, AEC-ON organoids
640 were WNT- and FGF-responsive, reminiscent of AEPs, suggesting that under certain growth
641 conditions these cells may be induced to differentiate into mature AT2 or AT1 cell lineages. We
642 are currently investigating this possibility.

643 In our characterization of the three AEC-LgT cell lines, we found that although these lines
644 were more similar to each other than to primary human AECs or lung fibroblasts, they showed
645 differences in 2D growth kinetics and in the frequency and complexity of organoids formed. These
646 differences could arise from many sources, including genetic differences between subjects,
647 epigenetic differences related to numerous factors including age, gender, environmental exposures,
648 manner of death, and/or ventilation time, and technical differences between experiments related to
649 AEC preparation or cellular response to culture conditions. These aspects will be important to
650 study as additional cell lines are made from a wider range of individuals.

651 Each of the AEC-LgT cell lines we derived will likely have specific applications of interest
652 for further study. Because the cell lines are easy to expand in 2D culture, they can also be
653 genetically manipulated using genome engineering strategies to develop a series of isogenic cell
654 lines with altered genes of interest, allowing studies of defined differences (including single
655 nucleotide polymorphisms or SNPs) in the same genetic background. In the near future, we intend
656 to apply our methodology to lung tissues from diverse racial/ethnic individuals, filling a
657 longstanding void in research tools to study diseases in underrepresented groups. Our cell lines
658 will likely be easier to use for many laboratories than iPSC-derived AECs, which require extensive
659 stem cell expertise to properly develop and maintain. We envision that human AEC lines will be
660 widely applicable to study the roles of a variety of lung diseases affecting the distal lung, such as
661 cancer, emphysema, and pulmonary viral infections.

662

663 **ACKNOWLEDGEMENTS AND FUNDING**

664

665 Acknowledgements: The authors wish to thank Monica Flores and Juan Ramon Alvarez for their
666 assistance in isolating and cryopreserving human AT2 cells, members of the Offringa and
667 Marconett laboratories for their helpful critiques, members of the Ryan lab for sharing reagents
668 and imaging resources, Bernadette Masinsin and Jeff Boyd at the USC Broad Stem Cell Core for
669 help with FACS, Yibu Chen and Meng Li of the USC Libraries Bioinformatics Services for
670 assisting with data analyses, and USC's Center for High-Performance Computing for providing
671 computing resources.

672

673 Funding: This study was supported by NIH grant (1 R01 HL114094) to IAO and ZB, R35
674 HL135747 to ZB, the Hastings Foundation and generous donations from Conya and Wallace
675 Pembroke and Judy Glick. ET was supported by the California Community Foundation BAPP-15-
676 121814 and a Hastings Center for Pulmonary Research postdoctoral fellowship. ZB is the Ralph
677 Edgington Chair in Medicine. The bioinformatics software and computing resources used in the
678 analysis are funded by the USC Office of Research and the USC Libraries. This work was
679 supported in part by the Norris Comprehensive Cancer Center core grant, award number
680 P30CA014089 from the National Cancer Institute. The content is solely the responsibility of the
681 authors and does not necessarily represent the official views of the National Cancer Institute or the
682 National Institutes of Health. The funders had no role in study design, data collection and analysis,
683 decision to publish, or preparation of the manuscript.

684

685

686 **COMPETING INTERESTS**

687

688 The authors have no competing interests.

689

690

691 **REFERENCES**

692

693 Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, Chu SG, Raby BA, DeIuliis
694 G, Januszyk M, Duan Q, Arnett HA, Siddiqui A, Washko GR, Homer R, Yan X, Rosas IO,
695 Kaminski N. (2020). Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell
696 populations in idiopathic pulmonary fibrosis. *Science advances*, 6(28), eaba1983. doi:
697 10.1126/sciadv.aba1983. PMID: 32832599.

698

699 Adamson IY & Bowden DH. (1974). The type 2 cell as progenitor of alveolar epithelial
700 regeneration. A cytodynamic study in mice after exposure to oxygen. *Laboratory investigation; a
701 journal of technical methods and pathology*, 30(1), 35–42. PMID: 4812806.

702
703 Bajpai R, Lesperance J, Kim M, Terskikh AV. (2008). Efficient propagation of single cells
704 Accutase-dissociated human embryonic stem cells. *Molecular reproduction and development*,
705 75(5), 818–827. doi: 10.1002/mrd.20809. PMID: 18157870.

706
707 Ballard PL, Lee JW, Fang X, Chapin C, Allen L, Segal MR, Fischer H, Illek B, Gonzales LW,
708 Kolla V, Matthay MA. (2010). Regulated gene expression in cultured type II cells of adult
709 human lung. *Am J Physiol Lung Cell Mol Physiol*. Jul;299(1):L36-50. doi:
710 10.1152/ajplung.00427.2009. PMID: 20382749.

711
712 Band V, De Caprio JA, Delmolino L, Kulesa V, Sager R. (1991). Loss of p53 protein in human
713 papillomavirus type 16 E6-immortalized human mammary epithelial cells. *Journal of virology*,
714 65(12), 6671–6676. doi: 10.1128/JVI.65.12.6671-6676.1991. PMID: 1658367.

715
716 Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble
717 PW, Hogan BL. (2013). Type 2 alveolar cells are stem cells in adult lung. *J Clin Invest*,
718 123(7):3025-36. doi: 10.1172/JCI68782. PMID: 23921127.

719
720 Beers MF & Morrissey EE. (2011). The three R's of lung health and disease: repair, remodeling,
721 and regeneration. *J Clin Invest*, 121(6):2065-73. doi: 10.1172/JCI45961. PMID: 21633173.

722
723 Borok Z, Lubman RL, Danto SI, Zhang XL, Zabski SM, King LS, Lee DM, Agre P, Crandall
724 ED. (1998). Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro:
725 expression of aquaporin 5. *American journal of respiratory cell and molecular biology*, 18(4),
726 554–561. doi: 10.1165/ajrcmb.18.4.2838. PMID: 9533944.

727
728 Borowicz, S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK,
729 Winn RA. (2014). The Soft Agar Colony Formation Assay. *J. Vis. Exp*, (92), e51998,
730 doi:10.3791/51998. PMID: 25408172.

731
732 Bove PF, Dang H, Cheluvaraju C, Jones LC, Liu X, O'Neal WK, Randell SH, Schlegel R,
733 Boucher RC. (2014). Breaking the in vitro alveolar type II cell proliferation barrier while
734 retaining ion transport properties. *Am J Respir Cell Mol Biol*, 50(4):767-76. doi:
735 10.1165/rcmb.2013-0071OC. PMID: 24191670.

736
737 Butler A, Hoffman P, Smibert P, Papalex E, Satija R. (2018). Integrating single-cell
738 transcriptomic data across different conditions, technologies, and species. *Nature biotechnology*,
739 36(5), 411–420. doi: 10.1038/nbt.4096. PMID: 29608179.

740
741 Campisi J. (2013). Aging, cellular senescence, and cancer. *Annu Rev Physiol*. 75:685-705. doi:
742 10.1146/annurev-physiol-030212-183653. PMID: 23140366.

743
744 Cardoso WV, Itoh A, Nogawa H, Mason I, Brody JS. (1997). FGF-1 and FGF-7 induce distinct
745 patterns of growth and differentiation in embryonic lung epithelium. *Developmental dynamics* :

746 *an official publication of the American Association of Anatomists*, 208(3), 398–405. doi:
747 10.1002/(SICI)1097-0177(199703)208:3<398::AID-AJA10>3.0.CO;2-X. PMID: 9056643.
748

749 Centers for Disease Control and Prevention. (2018). *Table 6. Leading causes of death and*
750 *numbers of deaths, by sex, race, and Hispanic origin: United States, 1980 and 2017* [Fact Sheet].
751 https://www.cdc.gov/nchs/hus/contents2018.htm#Table_006
752

753 Centers for Disease Control and Prevention. (2020, May 31). *Coronavirus Disease 2019*
754 (*COVID-19*) *Cases in the U.S.* <https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html>
755

756

757 Chang DR, Martinez Alanis D, Miller RK, Ji H, Akiyama H, McCrea PD, Chen J. (2013). Lung
758 epithelial branching program antagonizes alveolar differentiation. *Proc Natl Acad Sci U S A*,
759 110(45), 18042–18051. doi: 10.1073/pnas.1311760110. PMID: 24058167.
760

761 Chapman S, McDermott DH, Shen K, Jang MK, McBride AA. (2014). The effect of Rho kinase
762 inhibition on long-term keratinocyte proliferation is rapid and conditional. *Stem cell research &*
763 *therapy*, 5(2), 60. doi: 10.1186/scrt449. PMID: 24774536.
764

765 Cheek JM, Evans MJ, Crandall ED. (1989). Type I cell-like morphology in tight alveolar
766 epithelial monolayers. *Experimental cell research*, 184(2), 375–387. doi: 10.1016/0014-
767 4827(89)90337-6. PMID: 2806398.
768

769 Christian BJ, Loretz LJ, Oberley TD, Reznikoff CA. (1987). Characterization of human
770 uroepithelial cells immortalized in vitro by simian virus 40. *Cancer research*, 47(22), 6066–
771 6073. PMID: 2822239.
772

773 Claassen DA, Desler, MM, Rizzino A. (2009). ROCK inhibition enhances the recovery and
774 growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells.
775 *Molecular reproduction and development*, 76(8), 722–732. doi: 10.1002/mrd.21021. PMID:
776 19235204.
777

778 Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH, Oren M, Jetten, AM. (2004).
779 Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium.
780 *American journal of physiology. Cell physiology*, 287(1), C171–C181. doi:
781 10.1152/ajpcell.00226.2003. PMID: 15189821.
782

783 Danto SI, Shannon JM, Borok Z, Zabski SM, Crandall ED. (1995). Reversible
784 transdifferentiation of alveolar epithelial cells. *Am J Respir Cell Mol Biol*. 12(5):497-502. doi:
785 10.1165/ajrcmb.12.5.7742013. PMID: 7742013.
786

787 Dobbs LG. (1990). Isolation and culture of alveolar type II cells. *The American journal of*
788 *physiology*, 258(4 Pt 1), L134–L147. doi: 10.1152/ajplung.1990.258.4.L134. PMID: 2185652.

789

790 Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R,
791 Klein OD, White ES, Deutsch GH, Spence JR. (2015). In vitro generation of human pluripotent
792 stem cell derived lung organoids. *eLife*, 4, e05098. doi: 10.7554/eLife.05098. PMID: 25803487.
793

794 Evans MJ & Bils RF. (1969). Identification of cells labeled with tritiated thymidine in the
795 pulmonary alveolar walls of the mouse. *The American review of respiratory disease*, 100(3),
796 372–378. doi: 10.1164/arrd.1969.100.3.372. PMID: 5810808.
797

798 Evans MJ & Hackney JD. (1972). Cell proliferation in lungs of mice exposed to elevated
799 concentrations of oxygen. *Aerosp Med*, 43(6):620-622. PMID: 5035549.
800

801 Foster CD, Varghese LS, Skalina RB, Gonzales LW, Guttentag SH. (2007). In vitro
802 transdifferentiation of human fetal type II cells toward a type I-like cell. *Pediatric research*,
803 61(4), 404–409. doi:10.1203/pdr.0b013e3180332c6d. PMID: 17515862.
804

805 Frank DB, Peng T, Zepp JA, Snitow M, Vincent TL, Penkala IJ, Cui Z, Herriges MJ, Morley
806 MP, Zhou S, Lu MM, Morrisey EE. (2016). Emergence of a Wave of Wnt Signaling that
807 Regulates Lung Alveologenesis by Controlling Epithelial Self-Renewal and Differentiation. *Cell
808 reports*, 17(9), 2312–2325. doi: 10.1016/j.celrep.2016.11.001. PMID: 27880906.
809

810 Fuchs S, Hollins AJ, Laue M, Schaefer UF, Roemer K, Gumbleton M, Lehr CM. (2003).
811 Differentiation of human alveolar epithelial cells in primary culture: morphological
812 characterization and synthesis of caveolin-1 and surfactant protein-C. *Cell and tissue research*,
813 311(1), 31–45. doi: 10.1007/s00441-002-0653-5. PMID: 12483282.
814

815 Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP. (1973). In vitro
816 cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.
817 *Journal of the National Cancer Institute*, 51(5), 1417–1423. doi: 10.1093/jnci/51.5.1417. PMID:
818 4357758.
819

820 Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, Matsumoto H, Muro S, Hirai T,
821 Funato M, Mae S, Toyoda T, Sato-Otsubo A, Ogawa S, Osafune K, Mishima M. (2014).
822 Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent
823 stem cells. *Stem cell reports*, 3(3), 394–403. doi: 10.1016/j.stemcr.2014.07.005. PMID:
824 25241738.
825

826 Hackney JD, Evans MJ, Christie BR. (1975). Effects of 60 and 80% oxygen on cell division in
827 lung alveoli of squirrel monkeys. *Aviat Space Environ Med*, 46(6):791-794. PMID: 1156285.
828

829 Hafemeister C & Satija R. (2019). Normalization and variance stabilization of single-cell RNA-
830 seq data using regularized negative binomial regression. *Genome biology*, 20(1), 296. doi:
831 10.1186/s13059-019-1874-1. PMID: 31870423.

832

833 Hahn WC & Weinberg RA. (2002). Rules for making human tumor cells. *N Engl J Med*, Nov
834 14;347(20):1593-603. doi: 10.1056/NEJMra021902. PMID: 12432047.

835

836 Hamvas A, Deterding RR, Wert SE, White FV, Dishop MK, Alfano DN, Halbower AC, Planer
837 B, Stephan MJ, Uchida DA, Williames LD, Rosenfeld JA, Lebel RR, Young LR, Cole FS,
838 Nogee LM. (2013). Heterogeneous pulmonary phenotypes associated with mutations in the
839 thyroid transcription factor gene NKX2-1. *Chest*, 144(3), 794–804. doi: 10.1378/chest.12-2502
840 PMID: 23430038.

841

842 Heo HR, Kim J, Kim WJ, Yang SR, Han SS, Lee SJ, Hong Y, Hong SH. (2019). Human
843 pluripotent stem cell-derived alveolar epithelial cells are alternatives for in vitro pulmotoxicity
844 assessment. *Scientific reports*, 9(1), 505. doi: 10.1038/s41598-018-37193-3. PMID: 30679658.

845

846 Herbert BS, Wright WE, Shay JW. (2002). p16(INK4a) inactivation is not required to
847 immortalize human mammary epithelial cells. *Oncogene*, 21(51), 7897–7900. doi:
848 10.1038/sj.onc.1205902. PMID: 12420227.

849

850 Herranz N & Gil J. (2018). Mechanisms and functions of cellular senescence. *J Clin Invest*,
851 128(4):1238-1246. doi: 10.1172/JCI95148. PMID: 29608137.

852

853 Herriges M & Morrisey EE. (2014). Lung development: orchestrating the generation and
854 regeneration of a complex organ. *Development (Cambridge, England)*, 141(3), 502–513. doi:
855 10.1242/dev.098186. PMID: 24449833.

856

857 Hiemstra PS, Grootaers G, van der Does AM, Krul CAM, Kooter IM. (2018). Human lung
858 epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions.
859 *Toxicology in vitro : an international journal published in association with BIBRA*, 47, 137–146.
860 doi: 10.1016/j.tiv.2017.11.005. PMID: 29155131.

861

862 Horani A, Nath A, Wasserman MG, Huang T, Brody SL. (2013). Rho-associated protein kinase
863 inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction.
864 *American journal of respiratory cell and molecular biology*, 49(3), 341–347. doi:
865 10.1165/rcmb.2013-0046TE. PMID: 23713995.

866

867 Horie M, Castaldi A, Sunohara M, Wang H, Ji Y, Liu Y, Li F, Wilkinson TA, Hung L, Shen H,
868 Kage H, Offringa IA, Marconett CN, Flodby P, Zhou B, Borok Z. (2020). Integrated Single-Cell
869 RNA-Sequencing Analysis of Aquaporin 5-Expressing Mouse Lung Epithelial Cells Identifies
870 GPRC5A as a Novel Validated Type I Cell Surface Marker. *Cells*, 9(11):2460. doi:
871 10.3390/cells9112460. PMID: 33187367.

872

873 Isakson BE, Seedorf GJ, Lubman RL, Boitano S. (2002). Heterocellular cultures of pulmonary
874 alveolar epithelial cells grown on laminin-5 supplemented matrix. *In vitro cellular &*

875 *developmental biology. Animal*, 38(8), 443–449. doi: 10.1290/1071-
876 2690(2002)038<0443:HCOPAE>2.0.CO;2. PMID: 12605538.

877

878 Ishikawa Y, Kozakai T, Morita H, Saida K, Oka S, Masuo Y. (2006). Rapid detection of
879 mycoplasma contamination in cell cultures using SYBR Green-based real-time polymerase chain
880 reaction. *In Vitro Cell Dev Biol Anim*. Mar-Apr;42(3-4):63-9. doi:10.1290/0505035.1.
881 PMID:16759150.

882

883 Jacob A, Morley M, Hawkins F, McCauley KB, Jean JC, Heins H, Na CL, Weaver TE, Vedaie
884 M, Hurley K, Hinds A, Russo SJ, Kook S, Zacharias W, Ochs M, Traber K, Quinton LJ, Crane
885 A, Davis BR, White FV, Wambach J, Whitsett JA, Cole FS, Morrisey EE, Guttentag SH, Beers
886 MF, Kotton DN. (2017). Differentiation of Human Pluripotent Stem Cells into Functional Lung
887 Alveolar Epithelial Cells. *Cell stem cell*, 21(4), 472–488.e10. doi: 10.1016/j.stem.2017.08.014.
888 PMID: 28965766.

889

890 Jain R, Barkauskas CE, Takeda N, Bowie EJ, Aghajanian H, Wang Q, Padmanabhan A,
891 Manderfield LJ, Gupta M, Li D, Li L, Trivedi CM, Hogan BLM, Epstein JA. (2015). Plasticity
892 of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. *Nature communications*, 6,
893 6727. doi: 10.1038/ncomms7727. PMID: 25865356.

894

895 Jiang Y, Cui L, Yie TA, Rom WN, Cheng H, Tchou-Wong KM. (2001). Inhibition of anchorage-
896 independent growth and lung metastasis of A549 lung carcinoma cells by IkappaBbeta.
897 *Oncogene*, 20(18), 2254–2263. doi: 10.1038/sj.onc.1204293. PMID: 11402320.

898

899 Kanagaki S, Ikeo S, Suezawa T, Yamamoto Y, Seki M, Hirai T, Hagiwara M, Suzuki Y, Gotoh
900 S. (2020). Directed induction of alveolar type I cells derived from pluripotent stem cells via Wnt
901 signaling inhibition. *Stem cells (Dayton, Ohio)*, 10.1002/stem.3302. Advance online publication.
902 doi: 10.1002/stem.3302. PMID: 33241896.

903

904 Kang, Y., Omura, M., Suzuki, A., Oka, T., Nakagami, Y., Cheng, C., Nagashima, Y., & Inoue,
905 T. (2006). Development of an orthotopic transplantation model in nude mice that simulates the
906 clinical features of human lung cancer. *Cancer science*, 97(10), 996–1001. doi: 10.1111/j.1349-
907 7006.2006.00276.x. PMID: 16984373.

908

909 Katsura H, Sontake V, Tata A, Kobayashi Y, Edwards CE, Heaton BE, Konkimalla A, Asakura
910 T, Mikami Y, Fritch EJ, Lee PJ, Heaton NS, Boucher RC, Randell SH, Baric RS, Tata PR.
911 (2020). Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-
912 Mediated Interferon Responses and Pneumocyte Dysfunction. *Cell stem cell*, 27(6), 890–904.e8.
913 doi: 10.1016/j.stem.2020.10.005. PMID: 33128895.

914

915 Kelly SE, Bachurski CJ, Burhans MS, Glasser SW. (1996). Transcription of the lung-specific
916 surfactant protein C gene is mediated by thyroid transcription factor 1. *The Journal of biological
917 chemistry*, 271(12), 6881–6888. doi: 10.1074/jbc.271.12.6881. PMID: 8636114.

918

919 Kemp SJ, Thorley AJ, Gorelik J, Seckl MJ, O'Hare MJ, Arcaro A, Korchev Y, Goldstraw P,
920 Tetley TD. (2008). Immortalization of human alveolar epithelial cells to investigate nanoparticle
921 uptake. *Am J Respir Cell Mol Biol.* 39(5):591-7. doi: 10.1165/rcmb.2007-0334OC. PMID:
922 18539954.

923 Khalil N, O'Connor RN, Flanders KC, Shing W, Whitman CI. (1994). Regulation of type II
925 alveolar epithelial cell proliferation by TGF-beta during bleomycin-induced lung injury in rats.
926 *Am J Physiol.* 267(5 Pt 1):L498-L507. doi:10.1152/ajplung.1994.267.5.L498. PMID: 7526703.

927 Korogi Y, Gotoh S, Ikeo S, Yamamoto Y, Sone N, Tamai K, Konishi S, Nagasaki T, Matsumoto
928 H, Ito I, Chen-Yoshikawa TF, Date H, Hagiwara M, Asaka I, Hotta A, Mishima M, Hirai T.
929 (2019). In Vitro Disease Modeling of Hermansky-Pudlak Syndrome Type 2 Using Human
930 Induced Pluripotent Stem Cell-Derived Alveolar Organoids. *Stem cell reports.* 12(3), 431–440.
931 doi: 10.1016/j.stemcr.2019.01.014. PMID: 30773483.

932 Kuehn A, Kletting S, de Souza Carvalho-Wodarz C, Repnik U, Griffiths G, Fischer U, Meese E,
933 Huwer H, Wirth D, May T, Schneider-Daum N, Lehr CM. (2016). Human alveolar epithelial
934 cells expressing tight junctions to model the air-blood barrier. *ALTEX.* 33(3):251-60. doi:
935 10.14573/altex.1511131. PMID: 26985677.

936 Leibel SL, Winquist A, Tseu I, Wang J, Luo D, Shojaie S, Nathan N, Snyder E, Post M. (2019).
937 Reversal of Surfactant Protein B Deficiency in Patient Specific Human Induced Pluripotent Stem
938 Cell Derived Lung Organoids by Gene Therapy. *Scientific reports.* 9(1), 13450. doi:
939 10.1038/s41598-019-49696-8. PMID: 31530844.

940 Liebler JM, Marconett CN, Juul N, Wang, H, Liu Y, Flodby P, Laird-Offringa IA, Minoo P,
941 Zhou B. (2016). Combinations of differentiation markers distinguish subpopulations of alveolar
942 epithelial cells in adult lung. *American journal of physiology. Lung cellular and molecular
943 physiology.* 310(2), L114–L120. doi: 10.1152/ajplung.00337.2015. PMID: 26545903.

944 Little DR, Gerner-Mauro KN, Flodby P, Crandall ED, Borok Z, Akiyama H, Kimura S, Ostrin
945 EJ, Chen J. (2019). Transcriptional control of lung alveolar type 1 cell development and
946 maintenance by NK homeobox 2-1. *Proc Natl Acad Sci U S A.* Oct 8;116(41):20545-20555. doi:
947 10.1073/pnas.1906663116. PMID: 31548395.

948 Liu JP, Cassar L, Pinto A, Li H. (2006). Mechanisms of cell immortalization mediated by EB
949 viral activation of telomerase in nasopharyngeal carcinoma. *Cell research.* 16(10), 809–817. doi:
950 10.1038/sj.cr.7310098. PMID: 17016469.

951 Liu Y, Sadikot RT, Adami GR, Kalinichenko VV, Pendyala S, Natarajan V, Zhao YY, Malik
952 AB. (2011). FoxM1 mediates the progenitor function of type II epithelial cells in repairing
953 alveolar injury induced by *Pseudomonas aeruginosa*. *J Exp Med.* 208(7), 1473–1484. doi:
954 10.1084/jem.20102041. PMID: 21708928.

962
963 Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic
964 A, Simic V, Haddad BR, Rhim JS, Dritschilo A, Riegel A, McBride A, Schlegel R. (2012).
965 ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. *The*
966 *American journal of pathology*, 180(2), 599–607. doi: 10.1016/j.ajpath.2011.10.036. PMID:
967 22189618.

968
969 Love MI, Huber W, Anders S. (2014). Moderated estimation of fold change and dispersion for
970 RNA-seq data with DESeq2. *Genome Biol*, 15(12):550. doi:10.1186/s13059-014-0550-8. PMID:
971 25516281.

972
973 Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW, Fleming MD,
974 Olsen JC, Miller SW, Weinberg RA, Hahn WC. (2002). Immortalization and transformation of
975 primary human airway epithelial cells by gene transfer. *Oncogene*, 21(29):4577-86. doi:
976 10.1038/sj.onc.1205550. PMID: 12085236.

977
978 Luo J, Chimge NO, Zhou B, Flodby P, Castaldi A, Firth AL, Liu Y, Wang H, Yang C, Marconett
979 CN, Crandall ED, Offringa IA, Frenkel B, Borok Z. (2018). CLDN18.1 attenuates malignancy
980 and related signaling pathways of lung adenocarcinoma in vivo and in vitro. *Int J Cancer*,
981 143(12), 3169–3180. doi: 10.1002/ijc.31734. PMID: 30325015.

982
983 Mao P, Wu S, Li J, Fu W, He W, Liu X, Slutsky AS, Zhang H, Li Y. (2015). Human alveolar
984 epithelial type II cells in primary culture. *Physiological reports*, 3(2), e12288. doi:
985 10.14814/phy2.12288. PMID: 25677546.

986
987 Marconett CN, Zhou B, Rieger ME, Selamat SA, Dubourd M, Fang X, Lynch SK, Stueve TR,
988 Siegmund KD, Berman BP, Borok Z, Laird-Offringa IA. (2013). Integrated transcriptomic and
989 epigenomic analysis of primary human lung epithelial cell differentiation. *PLoS genetics*, 9(6),
990 e1003513. doi: 10.1371/journal.pgen.1003513. PMID: 23818859.

991
992 Martinovich KM, Iosifidis T, Buckley AG, Looi K, Ling KM, Sutanto EN, Kicic-Starcevich E,
993 Garratt LW, Shaw NC, Montgomery S, Lannigan FJ, Knight DA, Kicic A, Stick SM. (2017).
994 Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and
995 disease specific functional characteristics. *Scientific reports*, 7(1), 17971. doi: 10.1038/s41598-
996 017-17952-4. PMID: 29269735.

997
998 McCauley KB, Alysandratos KD, Jacob A, Hawkins F, Caballero IS, Vedaie M, Yang W, Slovik
999 KJ, Morley M, Carraro G, Kook S, Guttentag SH, Stripp BR, Morrissey EE, Kotton DN. (2018).
1000 Single-Cell Transcriptomic Profiling of Pluripotent Stem Cell-Derived SCGB3A2+ Airway
1001 Epithelium. *Stem cell reports*, 10(5), 1579–1595. doi: 10.1016/j.stemcr.2018.03.013. PMID:
1002 29657097.

1003
1004 Meng G, Liu S, Rancourt DE. (2012). Synergistic effect of medium, matrix, and exogenous
1005 factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free

1006 conditions. *Stem cells and development*, 21(11), 2036–2048. doi: 10.1089/scd.2011.0489. PMID:
1007 22149941.

1008

1009 Minoo P. (2000). Transcriptional regulation of lung development: emergence of specificity.
1010 *Respiratory research*, 1(2), 109–115. doi: 10.1186/rr20. PMID: 11667973.

1011

1012 Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. (2018). Single-cell Wnt
1013 signaling niches maintain stemness of alveolar type 2 cells. *Science (New York, N.Y.)*, 359(6380),
1014 1118–1123. doi: 10.1126/science.aam6603. PMID: 29420258.

1015

1016 Neufeld DS, Ripley S, Henderson A, Ozer HL. (1987). Immortalization of human fibroblasts
1017 transformed by origin-defective simian virus 40. *Molecular and cellular biology*, 7(8), 2794–
1018 2802. doi: 10.1128/mcb.7.8.2794. PMID: 2823105.

1019

1020 Nikolić MZ, Caritg O, Jeng Q, Johnson JA, Sun D, Howell KJ, Brady JL, Laresgoiti U, Allen G,
1021 Butler R, Zilbauer M, Giangreco A, Rawlins EL. (2017). Human embryonic lung epithelial tips
1022 are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids.
1023 *eLife*, 6, e26575. doi: 10.7554/eLife.26575. PMID: 28665271.

1024

1025 Ochieng JK, Schilders K, Kool H, Boerema-De Munck A, Buscop-Van Kempen M, Gontan C,
1026 Smits R, Grosveld FG, Wijnen RM, Tibboel D, Rottier RJ. (2014). Sox2 regulates the emergence
1027 of lung basal cells by directly activating the transcription of Trp63. *American journal of*
1028 *respiratory cell and molecular biology*, 51(2), 311–322. doi: 10.1165/rcmb.2013-0419OC.
1029 PMID: 24669837.

1030

1031 O'Hare MJ, Bond J, Clarke C, Takeuchi Y, Atherton AJ, Berry C, Moody J, Silver AR, Davies
1032 DC, Alsop AE, Neville AM, Jat PS. (2001). Conditional immortalization of freshly isolated
1033 human mammary fibroblasts and endothelial cells. *Proceedings of the National Academy of*
1034 *Sciences of the United States of America*, 98(2), 646–651. doi: 10.1073/pnas.98.2.646. PMID:
1035 11209060.

1036

1037 Padela S, Yi M, Cabacungan J, Shek S, Belcastro R, Masood A, Jankov RP, Tanswell AK.
1038 (2008). A critical role for fibroblast growth factor-7 during early alveolar formation in the
1039 neonatal rat. *Pediatric research*, 63(3), 232–238. doi: 10.1203/PDR.0b013e31815f6e3a. PMID:
1040 18091341.

1041

1042 Park WY, Miranda B, Lebeche D, Hashimoto G, Cardoso WV. (1998). FGF-10 is a chemotactic
1043 factor for distal epithelial buds during lung development. *Developmental biology*, 201(2), 125–
1044 134. doi: 10.1006/dbio.1998.8994. PMID: 9740653.

1045

1046 Piao CQ, Liu L, Zhao YL, Balajee AS, Suzuki M, Hei TK. (2005). Immortalization of human
1047 small airway epithelial cells by ectopic expression of telomerase. *Carcinogenesis*, 26(4):725-31.
1048 doi: 10.1093/carcin/bgi016. PMID: 15677631.

1049

1050 Porotto M, Ferren M, Chen YW, Siu Y, Makhsoos N, Rima B, Briese T, Greninger AL, Snoeck
1051 HW, Moscona A. (2019). Authentic Modeling of Human Respiratory Virus Infection in Human
1052 Pluripotent Stem Cell-Derived Lung Organoids. *mBio*, 10(3), e00723-19. doi:
1053 10.1128/mBio.00723-19. PMID: 31064833.

1054

1055 Rackley CR & Stripp BR. (2012). Building and maintaining the epithelium of the lung. *J Clin
1056 Invest*, 122(8):2724-30. doi: 10.1172/JCI60519. PMID: 22850882.

1057

1058 Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J, Peyton M, Zou Y, Kurie JM,
1059 Dimaio JM, Milchgrub S, Smith AL, Souza RF, Gilbey L, Zhang X, Gandia K, Vaughan MB,
1060 Wright WE, Gazdar AF, Shay JW, Minna JD. (2004). Immortalization of human bronchial
1061 epithelial cells in the absence of viral oncoproteins. *Cancer Res*, 64(24):9027-34. doi:
1062 10.1158/0008-5472.CAN-04-3703. PMID: 15604268.

1063

1064 Reddel RR, Ke Y, Gerwin BI, McMenamin MG, Lechner JF, Su RT, Brash DE, Park JB, Rhim
1065 JS, Harris CC. (1988). Transformation of human bronchial epithelial cells by infection with
1066 SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate
1067 coprecipitation with a plasmid containing SV40 early region genes. *Cancer Res*, 48(7):1904-9.
1068 PMID: 2450641.

1069

1070 Reddel RR. (2000). The role of senescence and immortalization in carcinogenesis.
1071 *Carcinogenesis*, Mar;21(3):477-84. doi: 10.1093/carcin/21.3.477. PMID: 10688868.

1072

1073 Rock JR, Hogan BL. (2011). Epithelial progenitor cells in lung development, maintenance,
1074 repair, and disease. *Annu Rev Cell Dev Biol*. 27:493-512. doi: 10.1146/annurev-cellbio-100109-
1075 104040. PMID: 21639799.

1076

1077 Rockich BE, Hrycav SM, Shih HP, Nagy MS, Ferguson MA, Kopp JL, Sander M, Wellik DM,
1078 Spence JR. (2013). Sox9 plays multiple roles in the lung epithelium during branching
1079 morphogenesis. *Proc Natl Acad Sci U S A*, 110(47), E4456–E4464. doi:
1080 10.1073/pnas.1311847110. PMID: 24191021.

1081

1082 Sasai K, Sukezane T, Yanagita E, Nakagawa H, Hotta A, Itoh T, Akagi T. (2011). Oncogene-
1083 mediated human lung epithelial cell transformation produces adenocarcinoma phenotypes in
1084 *vivo*. *Cancer Res*, 71(7):2541-9. doi: 10.1158/0008-5472.CAN-10-2221. PMID: 21447735.

1085

1086 Schiller J, Sabatini L, Bittner G, Pinkerman C, Mayotte J, Levitt M, Meissner L. (1994).
1087 Phenotypic, molecular and genetic-characterization of transformed human bronchial epithelial-
1088 cell strains. *Int J Oncol*, Feb;4(2):461-70. doi: 10.3892/ijo.4.2.461. PMID: 21566947.

1089

1090 Schruf E, Schroeder V, Le HQ, Schönberger T, Raedel D, Stewart EL, Fundel-Clemens K,
1091 Bluhmki T, Weigle S, Schuler M, Thomas MJ, Heilker R, Webster MJ, Dass M, Frick M,

1092 Stierstorfer B, Quast K, Garnett JP. (2020). Recapitulating idiopathic pulmonary fibrosis related
1093 alveolar epithelial dysfunction in a human iPSC-derived air-liquid interface model. *FASEB journal : official publication of the Federation of American Societies for Experimental Biology*,
1094 34(6), 7825–7846. doi: 10.1096/fj.201902926R. PMID: 32297676.
1095
1096
1097 Shafa M, Ionescu LI, Vadivel A, Collins JJP, Xu L, Zhong S, Kang M, de Caen G, Daneshmand
1098 M, Shi J, Fu KZ, Qi A, Wang Y, Ellis J, Stanford WL, Thébaud B. (2018). Human induced
1099 pluripotent stem cell-derived lung progenitor and alveolar epithelial cells attenuate hyperoxia-
1100 induced lung injury. *Cyotherapy*, 20(1), 108–125. doi: 10.1016/j.jcyt.2017.09.003. PMID:
1101 29056548.
1102
1103 Siegel RL, Miller KD, Jemal A. (2020). Cancer statistics, 2020. *CA: a cancer journal for*
1104 *clinicians*, 70(1), 7–30. doi: 10.3322/caac.21590. PMID: 31912902.
1105
1106 Smith JL, Lee LC, Read A, Li Q, Yu B, Lee CS, Luo J. (2016). One-step immortalization of
1107 primary human airway epithelial cells capable of oncogenic transformation. *Cell Biosci*, Nov
1108 11:6:57. doi: 10.1186/s13578-016-0122-6. PMID: 27891214.
1109
1110 Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH, Tsidiridis G, Lange M,
1111 Mattner LF, Yee M, Ogar P, Sengupta A, Kukhtevich I, Schneider R, Zhao Z, Voss C, Stoeger T,
1112 Neumann JHL, Hilgendorff A, Behr J, O'Reilly M, Lehmann M, Burgstaller G, Königshoff M,
1113 Chapman HA, Theis FJ, Schiller HB. (2020). Alveolar regeneration through a Krt8+ transitional
1114 stem cell state that persists in human lung fibrosis. *Nature communications*, 11(1), 3559. doi:
1115 10.1038/s41467-020-17358-3. PMID: 32678092.
1116
1117 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M,
1118 Smibert P, Satija R. (2019). Comprehensive Integration of Single-Cell Data. *Cell*, 177(7), 1888–
1119 1902.e21. doi: 10.1016/j.cell.2019.05.031. PMID: 31178118.
1120
1121 Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Hebert JD, Liu X, Yuan H,
1122 Cheluvaraju C, Clapp PW, Boucher RC Jr, Kamonjoh CM, Randell SH, Schlegel R. (2012).
1123 Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells.
1124 *Proceedings of the National Academy of Sciences of the United States of America*, 109(49),
1125 20035–20040. doi: 10.1073/pnas.1213241109. PMID: 23169653.
1126
1127 Tata PR & Rajagopal J. (2017). Plasticity in the lung: making and breaking cell identity.
1128 *Development*, 144(5):755-766. doi: 10.1242/dev.143784. PMID: 28246210.
1129
1130 Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow,
1131 MA, Quake SR. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using
1132 single-cell RNA-seq. *Nature*, 509(7500), 371–375. doi: 10.1038/nature13173. PMID: 24739965.
1133

1134 Vernardis SI, Terzoudis K, Panoskaltsis N, Mantalaris A. (2017). Human embryonic and induced
1135 pluripotent stem cells maintain phenotype but alter their metabolism after exposure to ROCK
1136 inhibitor. *Scientific reports*, 7, 42138. doi: 10.1038/srep42138. PMID: 28165055.

1137

1138 Volpato V & Webber C. (2020). Addressing variability in iPSC-derived models of human
1139 disease: guidelines to promote reproducibility. *Disease models & mechanisms*, 13(1),
1140 dmm042317. doi: 10.1242/dmm.042317. PMID: 31953356.

1141

1142 Wang Y, Tang Z, Huang H, Li J, Wang Z, Yu Y, Zhang C, Li J, Dai H, Wang F, Cai T, Tang N.
1143 (2018). Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in
1144 cell fate. *Proc Natl Acad Sci U S A*, Mar 6;115(10):2407-2412. doi: 10.1073/pnas.1719474115.
1145 PMID: 29463737.

1146

1147 World Health Organization. (2003, Sept 26). *Summary of probable SARS cases with onset of
1148 illness from 1 November 2002 to 31 July 2003*.
1149 https://www.who.int/csr/sars/country/table2003_09_23/en/

1150

1151 World Health Organization. (2020, May 31). *Coronavirus disease (COVID-19) Situation Report
1152 -132*. <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports>

1153

1154 Wu D & Pan W. (2010). GSK3: a multifaceted kinase in Wnt signaling. *Trends in biochemical
1155 sciences*, 35(3), 161–168. doi: 10.1016/j.tibs.2009.10.002. PMID: 19884009.

1156

1157 Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT,
1158 Funari VA, Gokey JJ, Stripp BR, Whitsett JA. (2016). Single-cell RNA sequencing identifies
1159 diverse roles of epithelial cells in idiopathic pulmonary fibrosis. *JCI insight*, 1(20), e90558. doi:
1160 10.1172/jci.insight.90558. PMID: 27942595.

1161

1162 Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, Sone N, Nagasaki T, Matsumoto
1163 H, Muro S, Ito I, Hirai T, Kohno T, Suzuki Y, Mishima M. (2017). Long-term expansion of
1164 alveolar stem cells derived from human iPS cells in organoids. *Nature methods*, 14(11), 1097–
1165 1106. doi: 10.1038/nmeth.4448. PMID: 28967890.

1166

1167 Yang J, Hernandez BJ, Martinez Alanis D, Narvaez del Pilar O, Vila-Ellis L, Akiyama H, Evans
1168 SE, Ostrin EJ, Chen J. (2016). The development and plasticity of alveolar type 1 cells.
1169 *Development*, Jan 1;143(1):54-65. doi: 10.1242/dev.130005. PMID: 26586225.

1170

1171 Yang C, Stueve TR, Yan C, Rhie SK, Mullen DJ, Luo J, Zhou B, Borok Z, Marconett CN,
1172 Offringa IA. (2018). Positional integration of lung adenocarcinoma susceptibility loci with
1173 primary human alveolar epithelial cell epigenomes. *Epigenomics*, 10(9), 1167–1187.
1174 doi: 10.2217/epi-2018-0003. PMID: 30212242.

1175

1176 Yuan B, Li C, Kimura S, Engelhardt RT, Smith BR, Minoo P. (2000). Inhibition of distal lung
1177 morphogenesis in Nkx2.1(-/-) embryos. *Developmental dynamics : an official publication of the*
1178 *American Association of Anatomists*, 217(2), 180–190. doi: 10.1002/(SICI)1097-
1179 0177(200002)217:2<180::AID-DVDY5>3.0.CO;2-3. PMID: 10706142.
1180
1181 Yuan T, Volckaert T, Chanda D, Thannickal VJ, De Langhe SP. (2018). Fgf10 Signaling in
1182 Lung Development, Homeostasis, Disease, and Repair After Injury. *Frontiers in genetics*, 9, 418.
1183 doi: 10.3389/fgene.2018.00418. PMID: 30319693.
1184
1185 Zabner J, Karp P, Seiler M, Phillips SL, Mitchell CJ, Saavedra M, Welsh M, Klingelhutz AJ.
1186 (2003). Development of cystic fibrosis and noncystic fibrosis airway cell lines. *Am J Physiol*
1187 *Lung Cell Mol Physiol*, May;284(5):L844-54. doi: 10.1152/ajplung.00355.2002. PMID:
1188 12676769.
1189
1190 Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, Zhou S, Cantu E,
1191 Morrisey EE. (2018). Regeneration of the lung alveolus by an evolutionarily conserved epithelial
1192 progenitor. *Nature*. 555(7695), 251–255. doi: 10.1038/nature25786. PMID: 29489752.
1193
1194 Zhou B, Flodby P, Luo J, Castillo DR, Liu Y, Yu FX, McConnell A, Varghese B, Li G, Chimge
1195 NO, Sunohara M, Koss MN, Elatre W, Conti P, Liebler JM, Yang C, Marconett CN, Laird-
1196 Offringa IA, Minoo P, Guan K, Stripp BR, Crandall ED, Borok Z. (2018). Claudin-18-mediated
1197 YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. *The*
1198 *Journal of clinical investigation*, 128(3), 970–984. doi: 10.1172/JCI90429. PMID: 29400695.
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

1219 **FIGURE LEGENDS**

1220

1221 **Figure 1. Derivation and characterization of novel alveolar epithelial cell lines. A)** Alveolar
1222 epithelial cell line derivation scheme. Previously frozen purified human AT2 cells from Lung-FT
1223 (Table 1) were first cultured in media containing ROCK inhibitor, Y-27632, to promote cell
1224 proliferation. Proliferative cells (a) were then transduced with LeGO iT (tdTomato) and LeGO iG
1225 (eGFP) lentiviruses carrying hTERT (b), CDK4^{R24C} (c), CDK4^{R24C}+hTERT (d), and SV40 LgT
1226 (e). Single and merged fluorescence images are shown as small panels on the right. Scale bar, 100
1227 μm . Additional SV40 LgT transduced cell lines were established from AT2 cells purified from **B)**
1228 Lung-ON and **C)** Lung-TN, derived in the same manner as the schematic in (A), first by expanding
1229 in ROCK inhibitor media (f and h), then transducing with SV40 LgT (g and i). **D)** Cell proliferation
1230 assay to determine growth kinetics. One thousand cells were seeded per well in technical
1231 quadruplets and counted every day for 6 days. Plotted values are mean total number of cells \pm
1232 standard deviation, $n = 3$ independent experiments. Differences in cell growth relative to AEC-
1233 FT-ROCKinh cells on days 4, 5, and 6 were calculated by the independent two-sample t test.
1234 Statistical significance was attained for A549 (D4: $p=0.0005$, D5: $p=0.004$, D6: $p=0.02$), AEC-FT
1235 (D4: $p=0.002$, D5: $p=0.003$, D6 $p=0.01$), and AEC-CDK4^{R24C} (D4: $p=0.007$, D5: $p=0.005$, D6:
1236 $p=0.03$) cells. *asterisk, $p < 0.05$. **E)** Cell proliferation assays for AEC-LgT replicate lines, AEC-
1237 ON and AEC-TN, under standard (1000 cells/well) and high density (5000 cells/well) conditions.
1238 **F)** Representative whole well images of anchorage-independent growth assays. Five thousand cells
1239 were plated in soft agar with ROCK inhibitor growth media. A549 human lung adenocarcinoma
1240 cancer cell line, positive control. Colonies were stained with crystal violet and counted using
1241 Image J/Fiji after 1 month. Inset images are 2.5X magnified to show colonies. **G)** Colony
1242 quantification based on 6 technical replicates from at least 3 independent experiments. Plotted
1243 values are centered on mean \pm standard deviation. N.S., not significant, *asterisk, $p < 0.05$ by
1244 nonparametric Wilcoxon test. **H)** Tumorigenicity of AEC-FT, AEC-ON, and AEC-TN cell lines
1245 was assessed by subcutaneous injection into 6-week old nude (NU/J) mice for 3 months. A549
1246 cells were used as positive control; AEC-hTERT line was used as negative control. Equal numbers
1247 of male and female mice were used in each group. Sample labels indicate which cell line was
1248 injected into the left and right flanks (Left/Right). **I)** Photos of excised nodules (scale bar, 5 mm)
1249 and corresponding H&E stainings. **J)** Graph of nodule growth starting at 3 weeks post-injection.

1250

1251 **Figure 2. Exploratory and differential gene expression analyses of transcriptomic profiles of**
1252 **AEC lines, lung fibroblasts, primary AECs, and LUAD cell lines reveal widespread gene**
1253 **expression differences. A)** Left: PCA plot showing 6 groupings based on the top 500 most
1254 variable genes using DESeq2 pipeline. Each sample is represented by a dot and colored according

1255 to sample type. Right: Bar chart of percent variance across principal components (PCs) showing
1256 the majority of the variance in gene expression within the dataset is described by the first two PCs.
1257 **B)** Sample-sample distance matrix showing 6 sample groups based on similarity calculations using
1258 Euclidean distance metric. Dark red diagonal indicates complete similarity between identical
1259 samples. Blue hues indicate low similarity. Primary human AT2 cells are labeled as “AEC-
1260 ...AT2,” with “f,” “m,” and “a” indicating three separate donor lungs. Primary human AT1-like
1261 cells *in vitro* differentiated from AT2 cells are labeled as “—D2,” “—D4,” “—D6,” with numbers
1262 representing days transdifferentiated in culture. **C)** Unsupervised hierarchical clustering on the the
1263 top 500 most variable genes. Cell type categories are indicated by the horizontal colored bars: F,
1264 fetal lung tissue; AT2, primary human AT2 cells; AT1, human AT1-like cells; AEC (yellow),
1265 AEC-ON and AEC-TN replicate cell lines; Fibro, human lung fibroblasts; AEC (pink), AEC line
1266 collection derived from Lung-FT; LUAD, human lung adenocarcinoma cancer cell lines. Gene
1267 clusters identified from the dendrogram are shown by vertical colored bars, labeled A-I. **D)** GO
1268 terms corresponding to Gene Clusters A, B, and C (dotted line) which differentiate primary AECs,
1269 lung fibroblasts, and AEC lines from LUAD cancer lines. GO terms were determined by
1270 PANTHERv14.1 Overrepresentation Test (Released 20200728) using Fisher’s Exact Test from
1271 the Gene Ontology Consortium. Statistical significance cutoff was set to FDR-corrected p-value <
1272 0.05. Differential gene expression analyses were performed between all derived AEC lines and:
1273 **E)** AT2, **F)** AT1-like, **G)** lung fibroblasts, and **H)** LUAD cancer cell lines and shown as Volcano
1274 plots. Statistically significant differentially expressed genes relative to AEC lines are shown in
1275 **blue (downregulated)** and **red (upregulated)**. Significance cut offs (dotted lines) were set at
1276 absolute value of Log_2 Fold Change ≥ 1 (therefore $|\text{Fold Change}| \geq 2$) and Benjamini-Hochberg
1277 (BH) adjusted p-value < 0.05; x-axis, Log_2 Fold Change; y-axis, $-\text{Log}_{10}$ BH adjusted p-value. **I-L)**
1278 Table of GO terms for the top 5 most significantly upregulated and 5 most significantly
1279 downregulated protein-coding genes. Listed Log_2 Fold Change and BH adjusted p-values are from
1280 differential gene expression analyses.

1281
1282 **Figure 3. Alveolar epithelial cell lines prominently express lung progenitor markers over**
1283 **mature AEC markers.** Merged and single channel images of representative immunofluorescence
1284 staining of AEC-LgT cells grown on standard culture dishes. **A)** Co-staining of SOX9 and SOX2
1285 lung progenitor markers for AEC-FT, AEC-ON, and AEC-TN cell lines. **B)** Staining of SV40 LgT
1286 and epithelial marker, E-cadherin (ECAD), and mature AEC markers NKX2-1, pro-SPC, APQ5,
1287 and HOPX. Staining patterns were consistent across different passages. At least three independent
1288 experiments were performed. Scale bar, 25 μm .

1289

1290 **Figure 4. AEC-LgT cell lines form organoids in 3D co-culture and express mature lung**
1291 **markers.** **A)** AEC-LgT cells were co-cultured with MLg mouse neonatal fibroblasts in growth
1292 factor reduced (GFR) Matrigel on Transwell inserts surrounded by media containing 10 μ M SB-
1293 431542 for at least 1 month. **B)** Organoids arise from a single cell suspension of SV40 LgT⁺
1294 epithelial cells, as determined by presence of GFP. Scale bar, 100 μ m. **C)** Time course growth of
1295 AEC-FT, AEC-ON, and AEC-TN organoids. AEC-FT organoids grew much slower than either
1296 AEC-ON or AEC-TN organoids, therefore time course imaging began at 4 weeks, with subsequent
1297 imaging every 2 weeks (a-d). AEC-ON (e-h) and AEC-TN (i-l) cultures were imaged at 1 week
1298 until 4 weeks, imaging every week. Scale bar, 1000 μ m. **D)** Organoid formation efficiencies and
1299 **E)** organoid size measurements for AEC-FT, AEC-ON, and AEC-TN cells at 2 months, n = 3
1300 biological replicates, each with at least 6 inserts. Immunofluorescence staining of representative
1301 organoid sections from **F)** AEC-FT, **G)** AEC-ON, and **H)** AEC-TN cell lines after 1 month of
1302 growth. Organoids were confirmed to retain epithelial characteristics by SV40 LgT and ECAD
1303 staining. Ki67, proliferation marker; AQP5, HOPX, NKK2-1, mature AEC markers. Scale bar, 50
1304 μ m.

1305

1306 **Figure 5. Single-cell transcriptomic analyses of AEC-ON cells reveal increased cellular**
1307 **heterogeneity in response to organotypic culture.** **A)** Brief workflow of scRNA-sequencing
1308 experiment showing whole-well images of AEC-ON organoids and brightfield image of AEC-ON
1309 2D cells, before dissociation and FACS isolation. Following 10x Genomics Chromium Single Cell
1310 (v3) barcoding, library prep, and sequencing, 7144 3D cells and 4320 2D cells (11,464 total cells)
1311 were pre-processed and quality controlled. After filtering out cells with low reads and a
1312 mitochondrial content of greater than 18%, a total of 10,965 cells were analyzed (6883 3D cells;
1313 4082 2D cells). **B)** Uniform Manifold Approximation and Projection (UMAP) representation of
1314 10,965 total cells showing grouping by sample type (left) and called clusters (right). **C)** Cell
1315 clustering proportions showing all 2D cells grouped into Cluster 0. **D)** Heat map of the top 20 gene
1316 markers enriched in each cluster compared to all cells, ordered by average expression
1317 (Log₂FoldChange). Genes related to immune response and cytokine signaling are highlighted in
1318 **black**. Genes related to development/morphogenesis are highlighted in **red**. **E)** GO terms for the
1319 top 50 (top 75 genes, Cluster 5 only) most highly expressed genes in each cluster, as determined
1320 by PANTHERv14.1 Overrepresentation Test (released 20200728) using Fisher's Exact Test with
1321 FDR correction for multiple testing. Only FDR values p < 0.05 were considered statistically
1322 significant and are shown in the graphs. Abbreviations: org., organization; resp., response;
1323 process., processing; present., presentation; morph., morphogenesis. **F-I)** Feature plots of selected
1324 AT2 and AT1 cell markers, alveolar epithelial progenitor (AEP) genes, and lung-related
1325 transcription factors.

1326

1327 **Figure 6. WNT- and FGF treatment of AEC-ON cells in 3D culture results in larger sized**
1328 **organoids.** Three-dimensional co-cultures of AEC-ON cells were treated with either vehicle
1329 (DMSO), 1 μ M Wnt agonist CHIR99021, or a mix of 10 ng/mL FGF7 and 10 ng/mL FGF10
1330 (FGFs) for 2 months. **A**) Whole-well and 10X magnification images of a representative well, per
1331 treatment condition. Top scale bar, 1000 μ m, bottom scale bar 360 μ m. **B**) Organoid size and **C**)
1332 organoid formation efficiency were measured for organoids of diameter > 20 μ m after 2 months.
1333 Plotted values are centered on mean \pm standard deviation; n = 4 independent experiments in
1334 technical duplicates. *p<0.05, **p<0.005 by nonparametric Wilcoxon test.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367 **MATERIALS AND METHODS**

1368 **Ethics statement**

1369 Remnant human transplant lungs were obtained in compliance with the University of Southern
1370 California Institutional Review Board-approved protocols for the use of human source material in
1371 research (HS-07-0060). Lungs were processed within 3 days of death. All donors were de-
1372 identified. Mouse experiments were performed under the guidance of the University of Southern
1373 California Institutional Animal Care and Use Committee (IACUC protocol ID 21116).

1374 **Isolation and culture of primary human alveolar epithelial cells**

1375 Lung tissue was collected from de-identified, cancer-free donors: Lung-FT, 25 years old (yr),
1376 Caucasian, male; Lung-ON, 66 yr, Caucasian, female; Lung-TN, 62 yr, Caucasian, male (**Table**
1377 **1**). Human AT2 cells were isolated and purified as previously described ([Ballard et al., 2010](#)),
1378 modified by using anti-EpCAM beads and purity was assessed by staining of cytospins (**Table 2**).
1379 Cells were resuspended in 50:50 growth medium [50% DMEM-F12 (Sigma-Aldrich D64421),
1380 50% DMEM High glucose (Gibco 21063) supplemented with 10% FBS (Omega Scientific FB-
1381 11), Pen/Strep, Gentamycin, and Amphotericin B]. The ability to differentiate into AT1-like cells
1382 was assessed by *SFTPC* and *AQP5* expression by qPCR and Western blot analyses as described
1383 by [Marconett et al. \(2013\)](#). Remaining purified AT2 cells were resuspended in 90% growth
1384 medium-10% DMSO, frozen in cryovials at 1-2x10⁶ cells/mL, and stored in liquid nitrogen.

1385 **Mycoplasma and rodent pathogens testing**

1386 Cells used in the study were negative for mycoplasma and rodent pathogens. Cells were routinely
1387 tested using an in-house qPCR-based method adapted from [Ishikawa et al. \(2006\)](#). Briefly, cells
1388 to be tested were passaged two times in antibiotic- and antimycotic-free media, then collected for
1389 genomic DNA (gDNA) extraction using Qiagen DNeasy Blood and Tissue kit (Qiagen 69504)
1390 following the manufacturer's instructions with the exception of the last step in which gDNA was
1391 eluted in DNase-RNase-free water. Genomic DNA was diluted to a concentration of 10 ng/µL in
1392 water, then 50 ng gDNA was used per qPCR reaction using iQ SYBR Green Supermix (Bio-Rad
1393 1708880). Mycoplasma-specific primer sequences are listed on **Table 3**. Each assayed primer set
1394 was tested in technical triplicates. Per 50 ng gDNA (5 µL), 0.375 µL 3 µM forward primer, 0.375
1395 µL 3 µM reverse primer, and 6.25 µL SYBR Supermix was combined, mixed gently, then run on
1396 an MJ DNA Engine Opticon 2 Research thermocycler. Cycling conditions: Initial 94°C, 3 min,
1397 followed by 40 cycles of: (i) 94°C for 15 s; (ii) 65°C for 30 s, (iii) 72°C for 30 s, followed by final
1398 extension at 72°C for 10 min. A melting curve (55°C to 95°C) was performed at the end of the
1399 PCR to confirm the identity of each product and verify controls. Results were considered negative
1400 if Ct values were above 30 cycles. Negative controls typically have Ct between 35-40, positive
1401 controls around Ct 15-20. In cases where Ct values were not clear, samples were sent to the Norris
1402 Cancer Center Bioreagent and Cell Culture Core for additional testing. For cell line injections into
1403 mice, rodent pathogen testing was managed through the USC Department of Animal Resources,
1404 which sent cell samples and Matrigel to Charles River Laboratories for testing.

1405 **Derivation of human alveolar epithelial cell lines**

1406 Previously frozen isolated AT2 cells were quick-thawed in a 37°C water bath, spun down to
1407 remove freezing medium, and resuspended in Fmed+ROCKinh medium, modified from [Liu et al.](#)
1408 ([2012](#)) [3:1 (v/v) DMEM/F12 (Corning 10-090-CV) to DMEM (Gibco 21063-029), 5% FBS, 0.4

1409 μ g/mL hydrocortisone (Sigma-Aldrich H0888), 5 μ g/mL insulin (Sigma-Aldrich I0516), 8.4
1410 ng/mL cholera toxin (Sigma-Aldrich C8052), 10 ng/mL human recombinant EGF (ThermoFisher
1411 PHG0311), Antibiotic-Antimycotic (Gibco 15240-062), and 10 μ M Y-27632 (Enzo Life Sciences
1412 270-333)].

1413 Resuspended AT2 cells were plated in 96-well Primaria culture plates (BD Falcon 3872), ~6250
1414 cells per well and allowed to attach for 2 days. On the second day, Fmed+ROCKinh medium was
1415 completely replaced with fresh medium. Wells were monitored every day for surviving cells and
1416 proliferation. Media were changed every 2-3 days. Once cells reached 90-100% confluence, cells
1417 were detached with Accutase (Innovative Cell Technologies AT-104) and re-plated onto 48-well
1418 culture plates ("Passage 1"). This procedure was performed again, re-plating cells onto 24-well
1419 culture plates ("Passage 2"), then 12-well culture plates ("Passage 3"), then 6-well culture plates
1420 ("Passage 4"). Stocks of cells were frozen down starting at passages 3 and 4 in medium containing
1421 10% DMSO and 90% 0.22 μ m filtered FBS.

1422 **Construction of lentiviral plasmids and production of viral particles**

1423 LeGO iG and LeGO iT plasmids (<http://www.lentigo-vectors.de/>) were kind gifts from Dr. Kate
1424 Lawrenson (Cedars Sinai Medical Center, Los Angeles, CA). CDK4^{R24C} coding sequence (CDS)
1425 was subcloned from pBABE-hygro-CDK4^{R24C} plasmid (Addgene 11254) by PCR amplification
1426 into LeGO iG vector between *Bam*HI and *Sbf*I sites, upstream of enhanced green fluorescent
1427 protein (eGFP). hTERT CDS was subcloned from pBABE-puro-hTERT plasmid (Addgene 1771)
1428 into LeGO iT vector between *Bgl*III and *Eco*RI sites, upstream of tdTomato. SV40 Large T antigen
1429 CDS was subcloned from pBABE-puro-SV40 LgT plasmid (Addgene 13970) into LeGO iG vector
1430 between *Bam*HI and *Eco*RI sites, upstream of eGFP. Plasmids were propagated in Stbl3 chemically
1431 competent *E.coli* (ThermoFisher C737303). Plasmid sequences were verified by Sanger
1432 sequencing (GENEWIZ Inc).

1433 Third generation lentiviral particles were produced in low passage 293T cells by transfection. Per
1434 10 cm dish of 4-5x10⁶ 293T cells, we used: 15 μ L BioT (Bioland Scientific LLC B01-00), 2 μ g
1435 pCMV-VSVG (Addgene 8454), 2 μ g pMDLg/pRRE (Addgene 12251), 2 μ g pRSV-Rev (Addgene
1436 12253), and 2 μ g lentiviral plasmid carrying transgene (LeGO iG-CDK4^{R24C}, LeGO iT-hTERT,
1437 LeGO iG-SV40 LgT). Viral supernatant was collected at 48- and 72-hours post-transfection,
1438 pooled, spun down at 300 g to remove cell debris, filtered through 0.45 μ m PES filters, and
1439 concentrated using Lenti-X Concentrator (Takara Bio 631231). Lentiviral pellets were
1440 resuspended in DMEM, aliquoted, and stored at -80°C. Transduction efficiency was tested
1441 empirically on 293T cells.

1442 **Lentiviral transduction of human AECs**

1443 AEC-ROCKinh cells (passage 4) were plated onto 96-well culture plate in Fmed+ROCKinh
1444 media. The following day when cells were at 40-50% confluence, different volumes of the
1445 lentiviruses, either singly or in combination, were mixed with 8 μ g/mL polybrene in
1446 Fmed+ROCKinh media and added to each well. Of 300 μ L resuspended viral supernatant, 1, 2,
1447 and 3 μ L of LeGO iG-CDK4^{R24C}, LeGO iT-hTERT, and LeGO iG-SV40 LgT viruses were used
1448 to transduce cells in a total media volume of 50 μ L. The following day, 100 μ L of Fmed+ROCKinh
1449 media were added to each well to dilute out the viral supernatant. Two days post-transduction
1450 when cells were 90-100% confluent, cells were detached using Accutase and re-plated onto 48-

1451 well culture plates. At four days post-transduction, expression of CDK4^{R24C}, hTERT, and SV40
1452 LgT was checked by fluorescence microscopy (Nikon Eclipse Ti-U inverted fluorescence
1453 microscope). Cells transduced with LeGO iT-hTERT only, LeGO iT-hTERT + LeGO iG-
1454 CDK4^{R24C}, or LeGO iT-hTERT + LeGO iG-SV40 LgT were sorted by fluorescence-activated cell
1455 sorting (FACS) on eGFP, tdTomato, or dual fluorescence at the USC Flow Cytometry Core
1456 Facility (FACS Aria II, BD Biosciences). Negative fluorescence was set by AEC-ROCKinh cells.
1457 All cell lines were maintained in Fmed+ROCKinh media.

1458 **Proliferation assay**

1459 One thousand cells were plated on 24-well culture plates in quadruplicate and monitored for seven
1460 days. Twenty-four hours post seeding (day 1), cells were detached with Trypsin-EDTA (0.05%
1461 Trypsin, 0.02% EDTA) and resuspended in growth media. Cells were counted manually using a
1462 hemocytometer. Cell counts were reported as average total cell number \pm standard deviation from
1463 at least three biological replicates. Population doubling time (PDT) was calculated based on the
1464 linear part of the growth curve using the equation $[(t_2-t_1)/3.32] \times (\log n_2 - \log n_1)$, where n_2 was
1465 the number of cells on day 6 and n_1 was the number of cells on day 4. High density proliferation
1466 assays were performed as described above with an initial cell seed count of 5000 cells per well.

1467 **Anchorage-independent growth assay**

1468 Per well of a 6-well culture plate, 1.5 mL of 0.6% (w/v) Difco Noble Agar (BD Biosciences
1469 214220) in Fmed+ROCKinh media was added to form the bottom layer of the soft agar assay. For
1470 the top layer, in 1.5 mL, five thousand cells were mixed with 0.3% final concentration Noble Agar
1471 in Fmed+ROCKinh media. The top layer was allowed to solidify at room temperature (RT) before
1472 1 mL Fmed+ROCKinh media was carefully added. For A549 positive control cells (ATCC CCL-
1473 185), RPMI 10% FBS was used to set up soft agar layers. Media for all cell lines were changed
1474 every 3 days. Colony growth was monitored for 1 month. Colonies were visualized by staining
1475 soft agar samples with crystal violet solution (crystal violet dissolved in 10% ethanol) according
1476 to Borowicz *et al.* (2014) and counted using ImageJ software. Experiments were replicated
1477 biologically at least three times, each with six technical replicates. Data were reported as mean
1478 number of colonies \pm standard deviation.

1479 **Subcutaneous injection of nude mice**

1480 Tumorigenicity of the three AEC-LgT cell lines was assessed by subcutaneous injection of 1×10^6
1481 cells into each flank of 6 week old, male and female homozygous Foxn1^{nu}, NU/J mice (Jackson
1482 Laboratories, strain 002019). NU/J mice were kept in sterile housing and given irradiated rodent
1483 feed *ad libitum*. On the day of injection, cells were detached with Accutase, collected in
1484 Fmed+ROCKinh growth media, and spun down. Supernatant was removed, cells were
1485 resuspended in 1 mL growth media, and manually counted using a hemocytometer. For each flank,
1486 a master mix of cells resuspended in sterile phosphate-buffered saline (PBS) and 50% final
1487 concentration of Matrigel Membrane Matrix solution (Corning 354234) was prepared such that
1488 1×10^6 cells were delivered in 150 μ L of solution. Mixes were kept on ice as injections were
1489 performed to prevent premature solidification. Cell mixtures were injected using a tuberculin
1490 syringe with attached 27G needle (BD 305620). Mice were anesthetized by inhaled isoflurane
1491 according to IACUC-approved procedures. AEC-hTERT cells were used as negative controls;
1492 A549 cells were used as positive controls. We used 4 mice for A549 cells and 8 mice for each
1493 AEC line, with equal numbers of males and females. Injections were performed as a single-blind

1494 study, where sample identities were unknown to the experimenter performing injections. Mice
1495 were monitored every 3 days, weighed every week, and nodule length (L) and width (W) were
1496 measured with a digital caliper (iKKEGOL model 714838802360, Shenzen, China) weekly
1497 starting 3 weeks post-injection. Nodule volume (V) was calculated as $V = L \times (W/2)^2$ (Luo et al.,
1498 2018). Excised nodules were fixed in 4% paraformaldehyde (PFA) overnight at 4°C, processed for
1499 paraffin embedding and sectioning by the Norris Cancer Center Pathology Core at USC. An expert
1500 lung pathologist blind to sample identities was consulted to evaluate H&E nodule sections.

1501 **Three-dimensional (3D) co-culture**

1502 Actively dividing AEC-LgT cells between passages 6 and 19 were used to set up 3D co-culture
1503 with neonatal mouse lung fibroblasts, MLg (ATCC CCL-206). MLgs were cultured in EMEM
1504 10% FBS and maintained at sub-confluence. Noticeably lower organoid formation efficiency was
1505 observed when MLgs that had been grown beyond 70% confluence were used in the 3D co-culture.
1506 Five thousand AEC-LgT cells were mixed with 50,000 MLgs in Basic medium [phenol-red free
1507 DMEM/F12 (Gibco 11039021), 1X ITS (Gibco 41400-045), 10% FBS, 1X Antibiotic-
1508 Antimycotic] with 50% Growth Factor Reduced Matrigel (Corning 354230) and plated on Clear
1509 Transwell inserts (Corning 3470), 100 µL per insert. Basic medium supplemented with 10 µM SB-
1510 431542 (BioVision 1674), a transforming growth factor beta (TGFβ) inhibitor, was added to the
1511 outer chamber and replaced every 2 days. Organoid formation was monitored under brightfield
1512 microscopy for 1-2 months. Whole-well images were captured using a Leica MZ16 F fluorescence
1513 stereomicroscope and Spot Advanced software (v4.5.8) through the USC Hastings Center for
1514 Pulmonary Research Core. Brightfield and fluorescence images at 4X magnification were captured
1515 using ECHO Revolve R4 fluorescence microscope (San Diego, CA). Organoid size in microns
1516 was measured using the “Annotation length” feature on the ECHO Revolve R4 microscope;
1517 reported sizes are based on the longest diameter. Organoid number was determined using the
1518 “Annotation count” feature on ECHO Revolve R4 microscope. Values were reported as the mean
1519 ± standard deviation.

1520 **Treatment of 3D co-cultures**

1521 Three-dimensional co-cultures were set up as described above. Treatment with 1 µM WNT agonist
1522 CHIR99021 (Sigma-Aldrich SML1046) dissolved in DMSO or 10 ng/mL FGF7 (Peprotech 100-
1523 19) and 10 ng/mL FGF10 (Peprotech 100-26) dissolved in sterile PBS began two days following
1524 culture set up, where SB Basic medium was replaced with fresh SB media containing either
1525 CHIR99021 or FGF7+FGF10, or DMSO (vehicle control). Media were changed every two days.
1526 Cultures were maintained for two months before sphere size and number were assessed.

1527 **Histological processing of organoids**

1528 Once organoids formed, inserts were removed and fixed with 4% PFA for 30 min. PFA solution
1529 was removed by inverting inserts. Inserts were then submerged in 1X PBS for 15 min with two
1530 changes and dehydrated in 70% ethanol for 30 min with three changes. Matrigel samples were
1531 removed from insert housing by cutting the filter out from the bottom face with a feather razor,
1532 then embedded in Histogel (ThermoFisher HG-4000) and equilibrated in 70% ethanol for 1 h at
1533 RT. Histogel “buttons” were further dehydrated using standard methods, then embedded in
1534 paraffin wax. Paraffin blocks were sliced to 5 µm sections in-house using Microm HM 314
1535 microtome through the USC Hastings Center for Pulmonary Research Core.

1536 **Immunofluorescence staining**

1537 For 2D cultures: Cells were plated on standard multiwell culture plate to reach confluence the
1538 following day. Cells were rinsed with filtered 1X PBS, fixed with ice cold methanol for 10 min,
1539 washed three times with PBS, blocked with 5% filtered bovine serum albumin (BSA) in PBS, then
1540 probed overnight at 4°C with respective primary antibodies in 5% BSA-PBS solution. Horse serum
1541 (RMBIO DES-BBT) diluted to 30% in PBS was used as blocking solution for pro-SPC antibody.
1542 The following day, cells were washed with 1X TBST (20 mM Tris, 150 mM NaCl, 0.01% Tween
1543 20, pH 7.5), probed in PBS with biotinylated secondary antibodies for 1 h, washed, then probed
1544 with Streptavidin-Alexa Fluor 647 conjugate (ThermoFisher S21374). For double staining, cells
1545 were blocked again, then probed with either donkey anti-rabbit Alexa Fluor 488 secondary
1546 antibody (ThermoFisher A21206) or donkey anti-mouse Alexa Fluor 488 secondary antibody
1547 (ThermoFisher A21202). Mounting solution with 4',6-diamidino-2-phenylindole (DAPI) was used
1548 as nuclear counterstain (Vector Laboratories H-1200). Stained cells were viewed using Nikon
1549 Eclipse Ti-U inverted fluorescence microscope and imaging software, NIS-Elements Br (v4.00.12,
1550 build 802, 64-bit).

1551 For 3D cultures: Organoid paraffin sections were baked in a 60°C oven for 12 hours. Excess
1552 paraffin was wiped off with Kimwipes. Slides were then submerged in xylene, two changes, 5 min
1553 each, rehydrated through a series of ethanol baths, each with two changes (100% ethanol, 95%,
1554 85%, 75%, 50%), and rinsed with distilled water. Samples were boiled for 6 min on high power,
1555 then for 5 min at 10% power in Tris-based antigen unmasking solution (Vector Laboratories H-
1556 3301) in a standard microwave oven, cooled to RT, then permeabilized with 2% Triton X-100 in
1557 PBS for 15 min, washed with PBS, then blocked with 5% BSA-PBS or 30% horse serum in PBS
1558 (for pro-SPC antibody) for 1 h RT. Citrate-based unmasking solution was used for pro-SPC probed
1559 samples (Vector Laboratories H-3300). Primary antibodies were diluted in 5% BSA-PBS or 30%
1560 horse serum (pro-SPC antibody) and probed overnight at 4°C. Subsequently, all washes were with
1561 1X TBST. For single and double stainings, biotinylated secondary antibodies, fluorochrome-
1562 conjugated secondaries, Streptavidin-Alexa Fluor 647, Streptavidin-Alexa Fluor 488
1563 (ThermoFisher S11223), and Streptavidin-FITC antibodies (ThermoFisher SA-10002) in PBS
1564 were incubated 1 h at RT for each step. Sections were mounted with Prolong Gold antifade reagent
1565 with DAPI (Invitrogen P36931), sealed, cured overnight at RT, then stored at 4°C. Slides were
1566 visualized the following day using the ECHO Revolve R4 fluorescence microscope.

1567 Antibodies: Primary antibodies were: HOPX (SCBT sc-30216), pro-SPC (Seven Hills Bioreagent
1568 WRAB-9337), SV40 LgT (SCBT sc-147), AQP5 (Abcam ab92320), ECAD (BD Transduction
1569 Laboratories 610181), NKX2-1 (Leica TTF-1-L-CE), Ki67 (Abcam ab16667), SOX2 (SCBT sc-
1570 365823), SOX9 (SCBT sc-20095), GPRC5A (Abbexa ab005719), HTII280 (Terrace Biotech TB-
1571 27AHT2-280), KRT5 (Abcam ab52635), mouse control IgG (Vector Laboratories I-2000), rabbit
1572 control IgG (Vector Laboratories I-1000), mouse control IgM (Sigma-Aldrich M5909). Secondary
1573 antibodies were: biotinylated horse anti-mouse IgG (Vector Laboratories BA-2000), biotinylated
1574 goat anti-rabbit IgG (Vector Laboratories BA-1000), biotinylated goat anti-mouse IgM (Vector
1575 Laboratories BA-2020). See **Table 4. Key Resources Table** for additional reagent details.

1576 **Statistical Analyses**

1577 The Wilcoxon nonparametric rank sum test on independent samples was performed for anchorage-
1578 independent growth assays, 3D organoid size, and percent organoid forming efficiency

1579 comparisons. Wilcoxon tests were performed using the R platform (v3.6.0 “Planting of a Tree”)
1580 with the function *wilcox.test()* on the appropriate datasets. The student’s t-test was performed for
1581 proliferation assays using the R software function *t.test()* (v3.6.0).

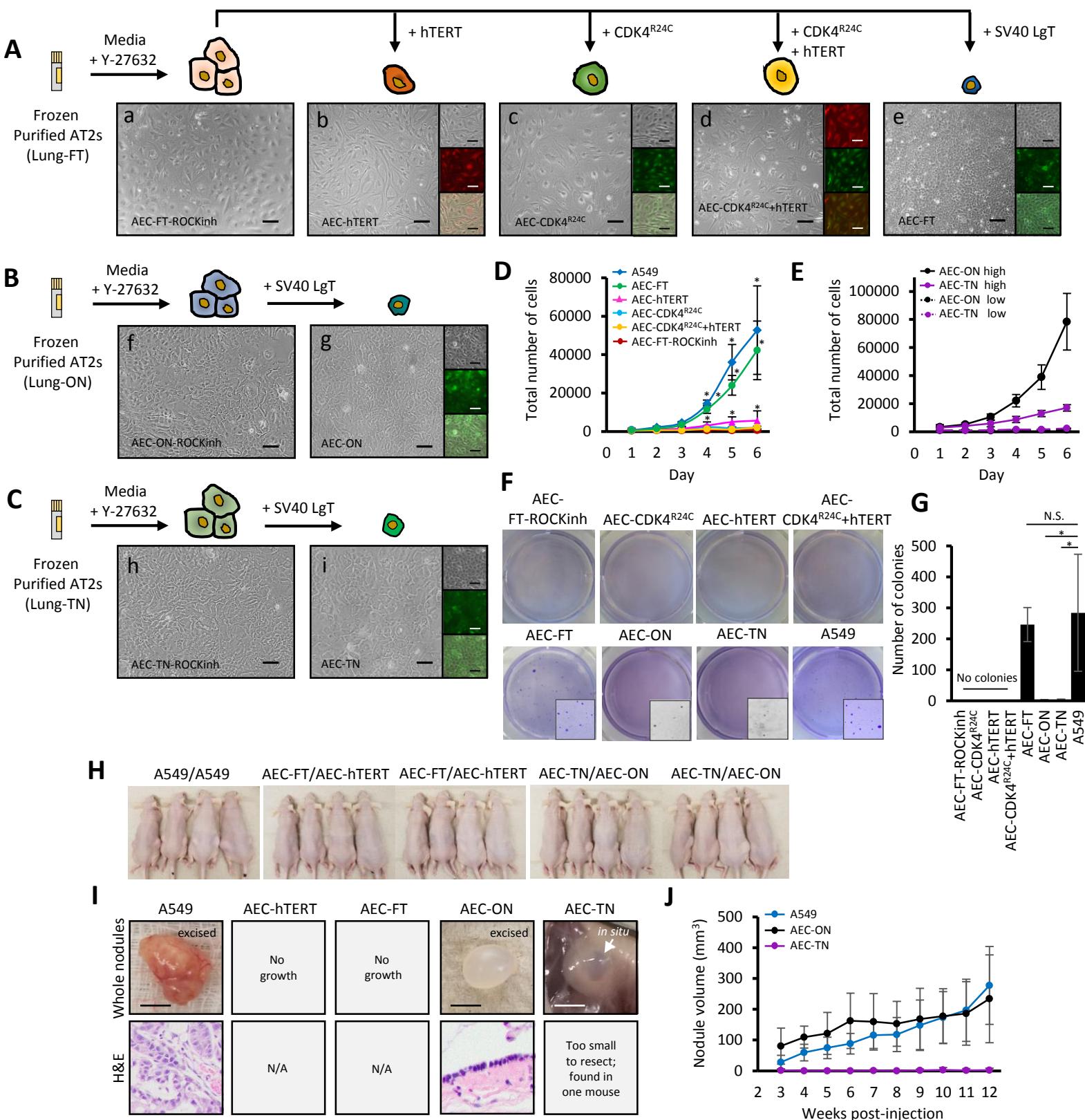
1582 **Bulk RNA-sequencing analyses**

1583 RNA-seq analyses comparing derived AEC lines with normal lung cells and LUAD cancer cell
1584 lines were performed using publicly available data from ENCODE
1585 (<https://www.encodeproject.org/>) and DBTSS (<https://dbtss.hgc.jp/>) databases (**Figure 2 – Source**
1586 **Data 1**). For the AEC lines (AEC-FT-ROCKinh, AEC-CDK4^{R24C}, AEC-hTERT, AEC-
1587 CDK4^{R24C}+hTERT, and AEC-FT) and the adult human lung fibroblast cell line, HLF-133, total
1588 RNA was isolated from subconfluent, exponentially dividing cells using Illustra TriplePrep kit
1589 (GE Healthcare 28-9425-44) following manufacturer’s instructions. For the primary AECs,
1590 purified alveolar epithelial cells from three de-identified human donor lungs were used. Cells from
1591 each lung were distinguished from each other by the sample name extension “-m,” “-f,” or “-a.”
1592 From each lung, purified primary AT2 cells and AT2 cells transdifferentiated on filters for 6 days
1593 into AT1-like cells (Danto et al., 1995) were isolated and total RNA extracted. Total RNA from
1594 purified AT2 cells and AT1-like cells from one of the donor lungs (labeled “AEC-m” in **Figure 2**
1595 – **Source Data 1**) had been previously characterized (Yang et al., 2018; GEO record GSE84273).
1596 Total RNA from the remaining two donor lungs (“AEC-f” and “AEC-a” in **Figure 2 – Source**
1597 **Data 1**) was also previously isolated in our laboratory and sequenced, however without subsequent
1598 publication. For the AEC lines, HLF-133 cell line, and primary AECs, 2 µg of RNA were
1599 submitted to the USC Molecular Genomics Core facility for sequencing. RNA quality was
1600 assessed on the Bioanalyzer (Agilent) then rRNA-depleted using Ribo-Zero rRNA Removal kit
1601 for human samples (Illumina MRZH11124) before proceeding with library preparation (TruSeq
1602 mRNA Stranded Library preparation kit, Illumina 20020594). These samples were sequenced
1603 paired-end 75 bp (PE75) at a depth of ~ 20-30 million reads per sample, on HiSeq2000/2500
1604 (Illumina). For AEC-ON and AEC-TN cell lines, total RNA was isolated using the Illustra
1605 TriplePrep kit as detailed above and 1 µg of RNA was submitted to the UCLA Technology Center
1606 for Genomics and Bioinformatics for sequencing. Samples were rRNA depleted and libraries were
1607 prepared at the UCLA facility, PE75, sequenced at a depth of ~ 30 million reads per sample on
1608 NextSeq500 Mid Output (Illumina). Raw fastq files were retrieved and processed as follows:

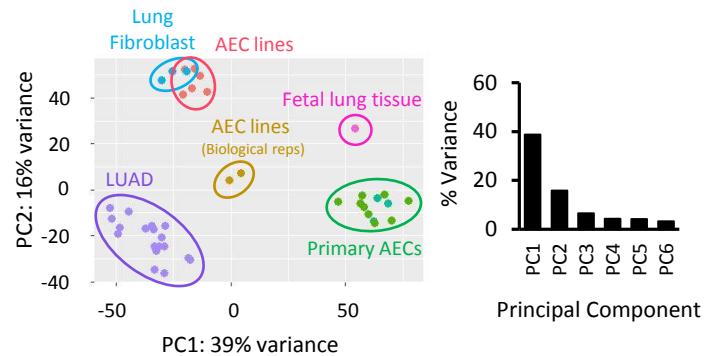
1609 Raw fastq files generated from our samples and taken from ENCODE and DBTSS databases were
1610 uploaded to Partek Flow through the USC Norris Medical Library Bioinformatics Core and the
1611 USC High-Performance Computing nodes. Files were quality controlled using Partek’s QC tool
1612 and trimmed at both ends using Partek default parameters, then aligned using STAR RNA-
1613 sequence aligner (v 2.6.1d) to the human genome assembly, hg38 GENCODE Genes, release 29.
1614 Raw read counts were generated by quantification to the transcriptome using Partek E/M algorithm
1615 under default parameters, using hg38 GENCODE, release 29. Raw counts were then analyzed and
1616 processed in R (v3.6.0) using the DESeq2 package (Love et al., 2014).

1617 Gene clusters from unsupervised clustering: GO terms were analyzed using PANTHER14.1
1618 (2018_04 release) PANTHER Overrepresentation Test (Released 20200728) with the default
1619 reference gene list of all *Homo sapiens* genes in the GO Ontology database (released 2019-07-03)
1620 (www.geneontology.org). Statistically significant GO terms were calculated using Fisher’s Exact
1621 Test with FDR corrected p-value cutoff of < 0.05.

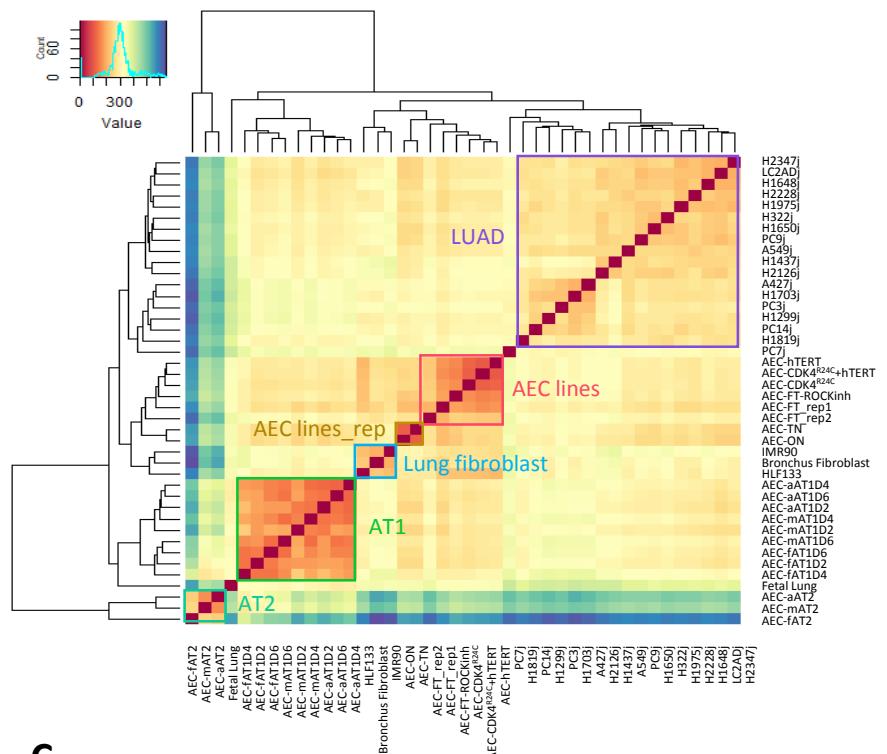
1622

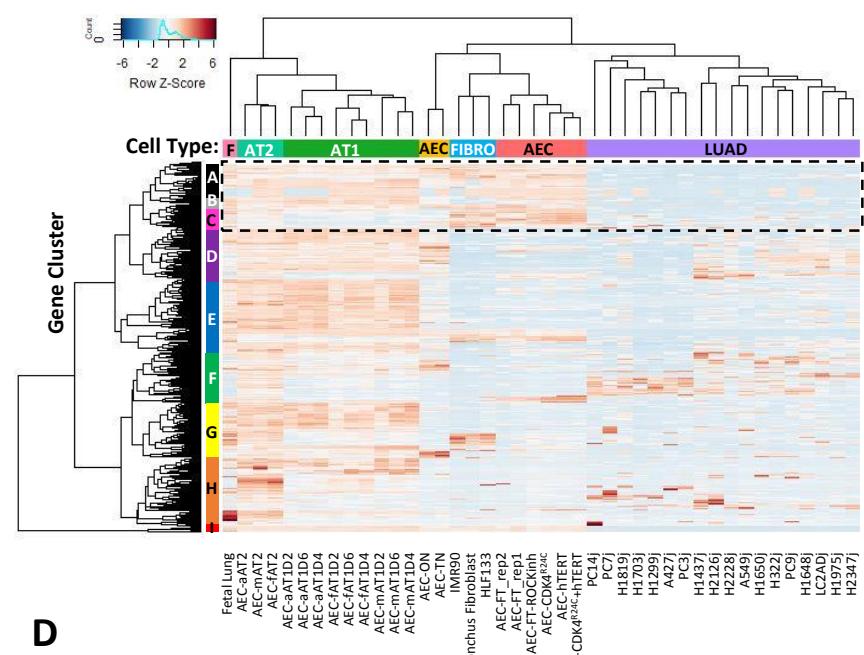

1623 GO terms of differentially expressed genes: Associated GO terms for each gene were taken from
1624 Ensembl gene database of annotated genes (release 98, Human genome assembly GRCh38.p13,
1625 www.ensembl.org).

1626

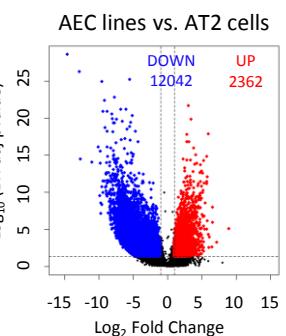

1627 Single cell-sequencing analyses

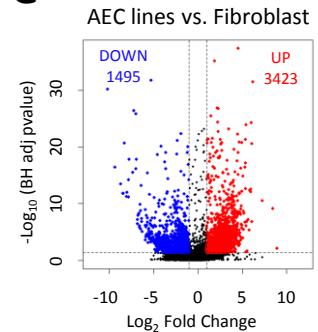
1628 AEC-ON cells grown in 2D and as organoids in 3D co-culture were harvested in parallel by
1629 sequential Dispase protease treatment (StemCell Technologies 07923) and gentle centrifugation.
1630 Dissociation of organoids into a single-cell suspension was assessed by brightfield microscopy
1631 using a hemocytometer. Surrounding single cells in the 3D culture that did not form organoids
1632 were excluded from collection by first incubating samples with Dispase briefly for ~15 min in a
1633 37°C water bath, followed by gentle centrifugation. The subsequent iterations of Dispase treatment
1634 were for 30 min in a 37°C water bath, followed by centrifugation. Cells were immediately FACS
1635 sorted for GFP⁺ epithelial cells using MLg fibroblasts as a negative control for GFP fluorescence
1636 gating. Retrieved cells for each sample were then washed in 0.04% BSA-PBS solution. Barcoding
1637 and library preparation for scRNA-seq was performed following the manufacturer's protocol for
1638 the 10x Genomics Chromium Single Cell 3' GEM, Library & Gel Bead Kit v3 (PN-1000092).
1639 cDNA libraries were assessed for quality and quantification according to the Chromium Single
1640 Cell 3' Reagent kit v3 user guide using the High Sensitivity D5000 ScreenTape (Agilent 5067-
1641 5592) and 2200 TapeStation Controller software (Agilent, Santa Clara, CA). Sequencing was
1642 performed using Illumina HiSeq 3000/4000 kit at a coverage of 50,000 raw reads per cell (Paired-
1643 end; Read 1: 28 cycles, i7 Index: 8 cycles, i5 Index: 0 cycles, Read 2: 91 cycles). Raw data were
1644 processed using the CellRanger function *cellranger count* (10x Genomics, v3.1.0, default settings)
1645 to align to the human reference genome (hg19, 10x Genomics, v1.2.0) and identify 4320 2D cells
1646 and 7144 3D cells (11,464 total cells), which were then aggregated using the CellRanger pipeline
1647 (10x Genomics, v3.1.0, *cellranger aggr* function on default settings). Pre-processed outputs were
1648 then analyzed in R using the Seurat package for additional quality control assessment and
1649 downstream analyses (Butler et al., 2018; Stuart et al., 2019). Cells with less than 500 transcripts
1650 profiled and more than 18% of their transcriptome of mitochondrial origin were removed, leaving
1651 a total of 10,965 cells (4082 2D and 6883 3D cells) used for clustering and visualization. Read
1652 counts were normalized using the SCTransform method (Hafemeister and Satija, 2019).
1653 Dimensionality reduction and clustering analyses were performed as outlined in the Seurat vignette
1654 (https://satijalab.org/seurat/v3.2/pbmc3k_tutorial.html) with modifications: a Shared Nearest
1655 Neighbor (SNN) graph was constructed using the *FindNeighbors()* function on 20 dimensions of
1656 reduction and clusters were determined using the *FindClusters()* function with a reduction of 0.3.
1657


Fig 1. Derivation and characterization of novel alveolar epithelial cell lines

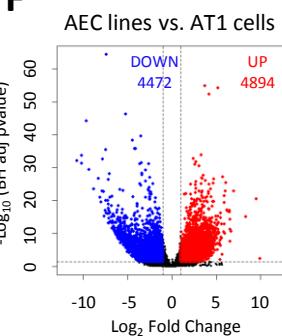

A

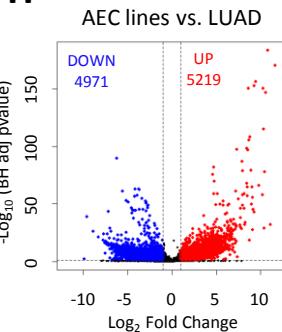
B


6


4

Enriched GO Biological Process	FDR p-value
surfactant homeostasis	9.36E-08
respiratory gas exchange	4.46E-08
extracellular matrix organization	1.62E-02
tube development	1.70E-02

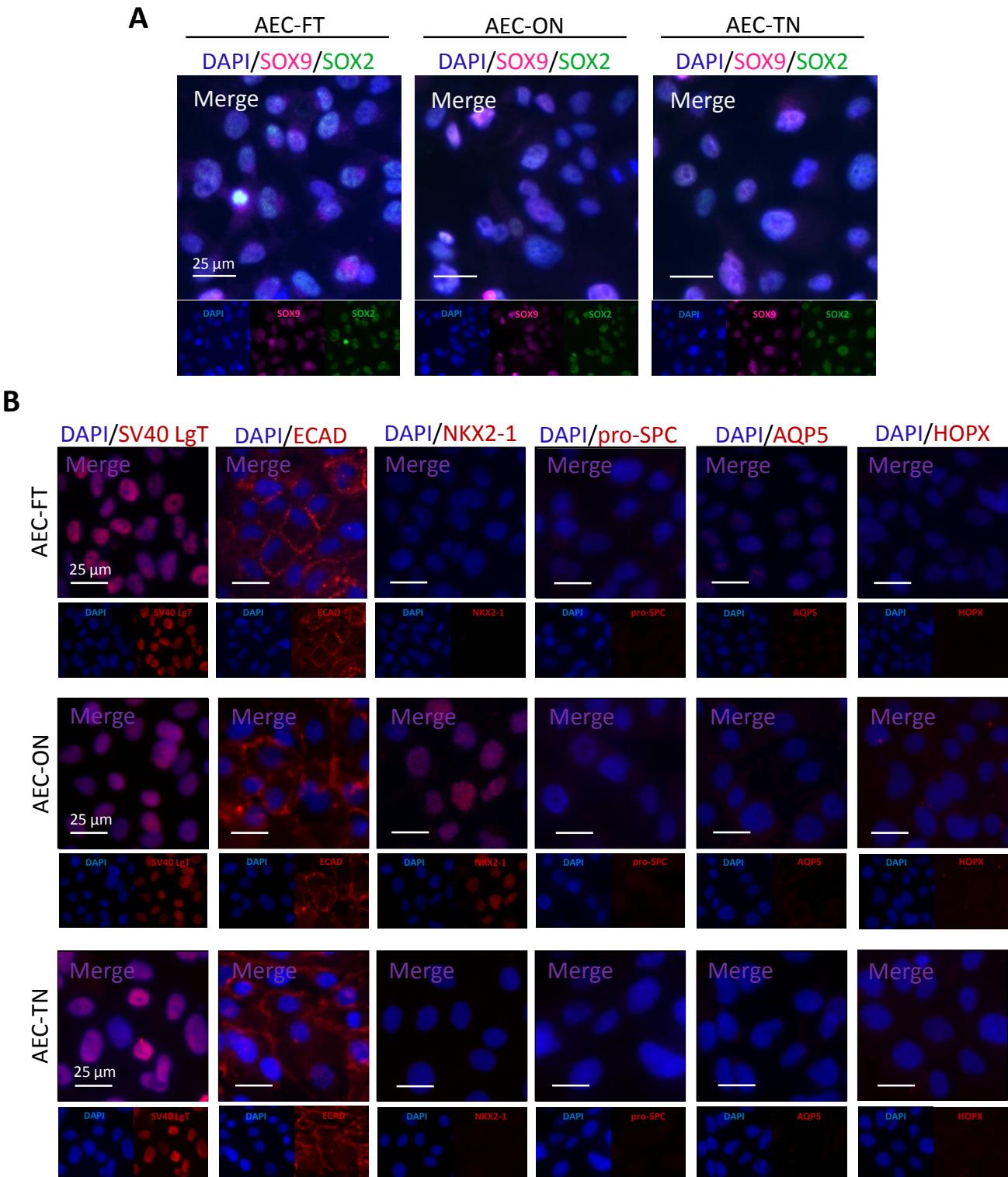

F


G

F

H

	AEC Lines vs. AT2 cells			
	Gene Symbol	GO term (Biological Process/Molecular Function)	Log2FC	BH adj p-value
UP	CADM3	Extracellular matrix organization	9.0	8.97E-06
	ACKR1	G protein-coupled receptor signaling pathway	7.2	6.13E-04
	TNS4	Protein localization	6.6	1.24E-06
	NID2	Extracellular matrix organization	6.6	1.03E-08
	FNDC1	Protein binding	6.5	2.52E-03
DOWN	SFTPC	Respiratory gaseous exchange	-14.6	2.52E-29
	PGC	Proteolysis/catabolic process	-12.8	5.11E-27
	SFTPA2	Respiratory gaseous exchange	-12.7	3.24E-15
	NAPSA	Surfactant homeostasis	-11.0	8.55E-17
	SELE	Receptor internalization, inflammatory response	-10.1	8.10E-17


	AEC Lines vs. AT1 cells			
	Gene Symbol	GO term (Biological Process/Molecular Function)	Log2FC	BH adj p-value
UP	TERT	Telomere maintenance	9.9	4.18E-03
	CADM3	Extracellular matrix organization	9.5	3.63E-21
	ACKR1	G protein-coupled receptor signaling pathway	8.3	7.68E-16
	NID2	Extracellular matrix organization	7.0	1.59E-23
DOWN	FNDC1	Protein binding	6.7	2.89E-11
	SFTPC	Respiratory gaseous exchange	-10.7	9.47E-33
	CRTAC1	Regulation of receptor binding	-10.2	4.32E-32
	SCTR	G protein-coupled receptor signaling pathway	-10.2	1.72E-34
	GKN2	Response to bacterium	-9.7	6.72E-45
N/A	NAPS1	Surfactant homeostasis	-9.4	4.10E-30
	SLC25A30	Organic acid catabolic process	-9.3	4.10E-30

1

	AEC Lines vs. Fibroblast			
	Gene Symbol	GO term (Biological Process/Molecular Function)	Log2FC	BH adj p-value
UP	TERT	Telomere maintenance	8.9	8.88E-03
	CADM3	Cell adhesion	8.4	7.60E-10
	ACKR1	G protein-coupled receptor signaling pathway	7.3	3.33E-11
	TPD52	Anatomical structure morphogenesis	6.2	2.93E-32
DOWN	TFCP2L1	Epithelial cell maturation	6.1	2.70E-21
	TBX5	Cell fate specification	-10.2	6.23E-31
	COL6A2	Extracellular matrix organization	-9.3	4.04E-17
	LDB2	Regulation of cell migration	-8.5	1.67E-12
	TMEM119	Regulation of gene expression	-8.3	2.18E-21
HOXA6	Multicellular organism development			8.0
	Regulation of cell migration			6.01E-19

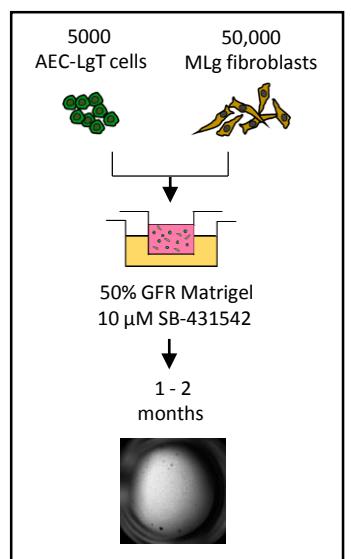

	ACC Lines vs. LOAD			
	Gene Symbol	GO term (Biological Process/Molecular Function)	Log2FC	BH adj p-value
UP	CADM3	Cell adhesion	11.1	1.57E-32
	ACKR1	G protein-coupled receptor signaling pathway	10.4	1.59E-29
	HIST1H4F	Nucleosome assembly	9.8	1.40E-66
	FMO2	Metabolic process	9.3	1.26E-43
	HIST1H2BB	Nucleosome assembly	9.2	7.32E-46
DOWN	ASCL1	Regulation of mitotic cell cycle	-9.9	9.73E-03
	COL6A2	Cell adhesion	-7.7	1.96E-24
	HOXB7	Regulation of transcription	-7.6	6.40E-17
	DDC	Metabolic/biosynthetic process	-7.6	6.96E-08
	HOXC8	Regulation of transcription	-7.5	1.14E-16

Fig 3. AEC-LgT cells prominently express lung progenitor markers over mature AEC markers

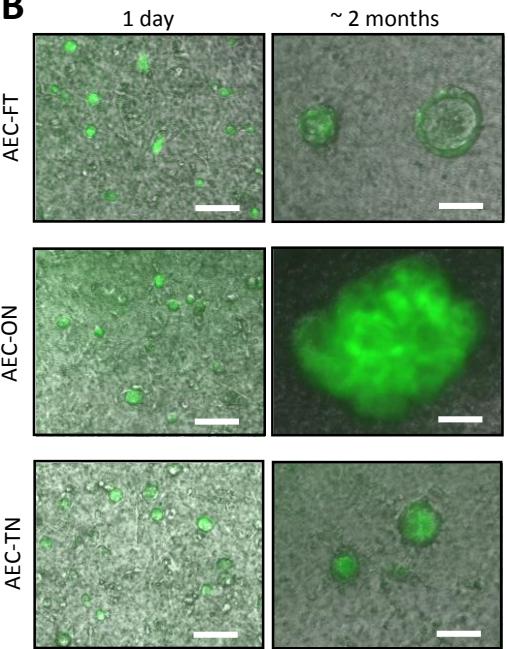
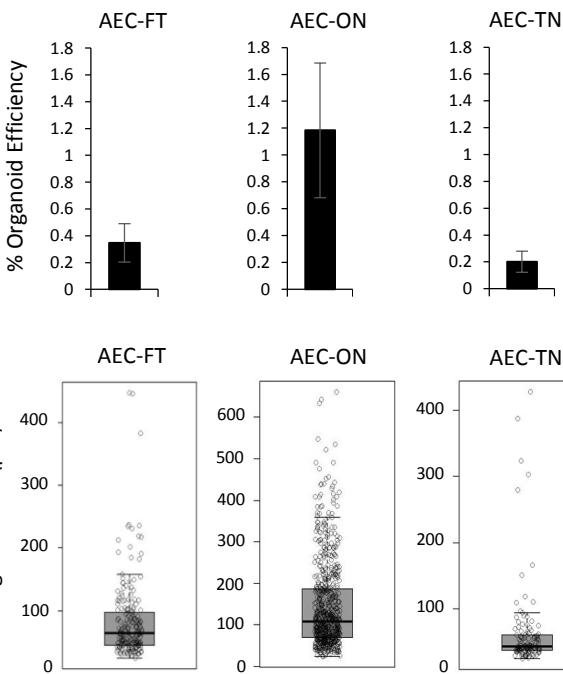
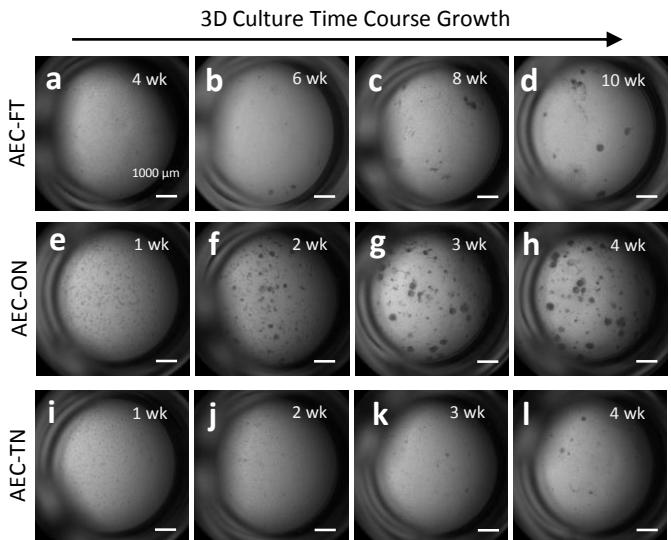
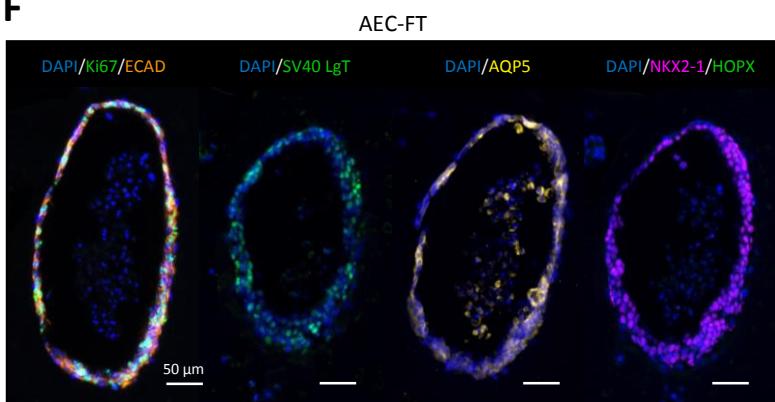


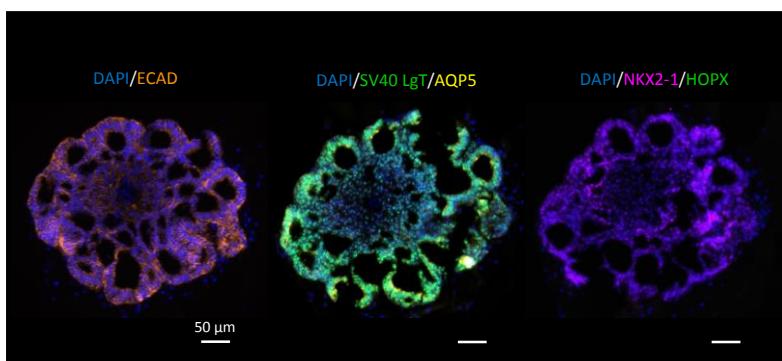
Fig 4. AEC-LgT cell lines form organoids in 3D co-culture and express mature lung markers


A

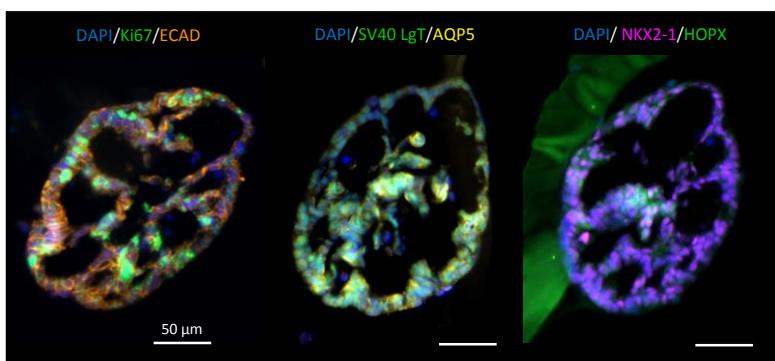

B


D

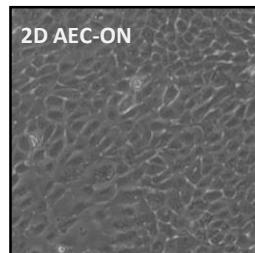
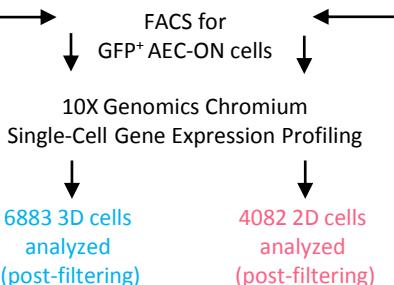
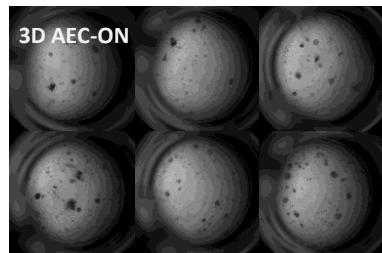
C



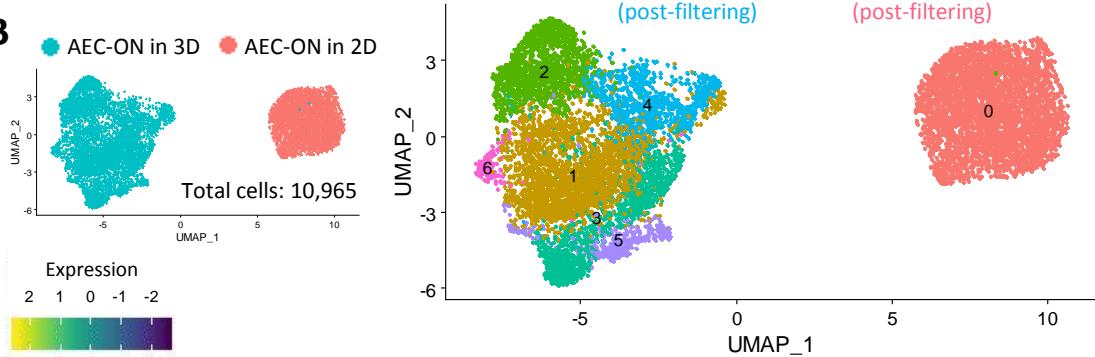
F


G

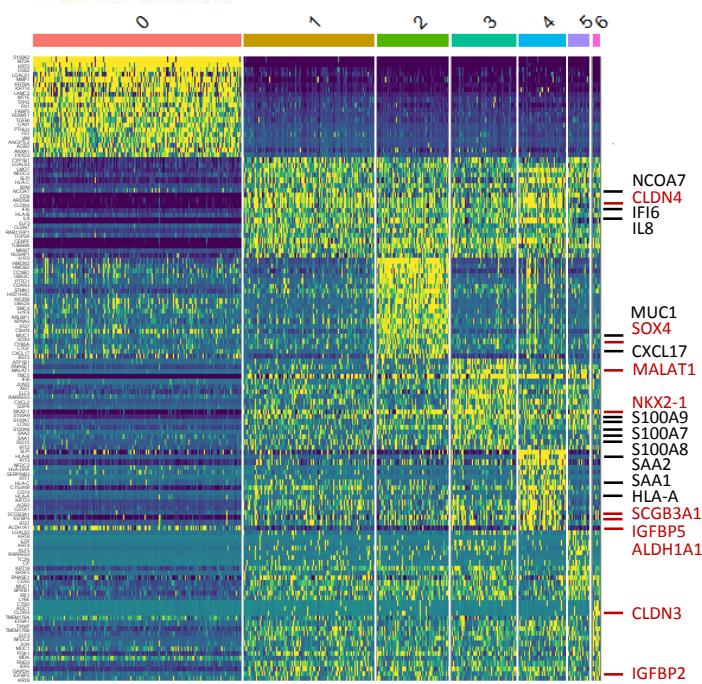
AEC-ON

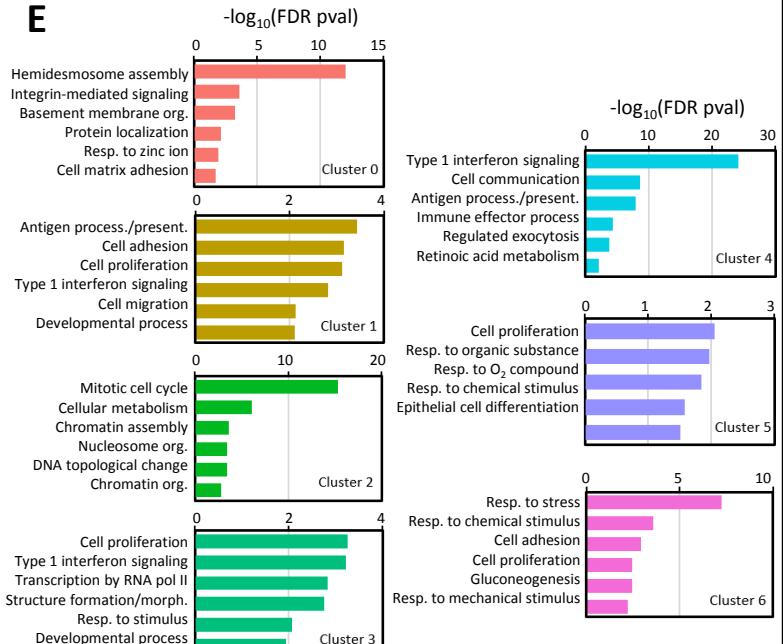




H

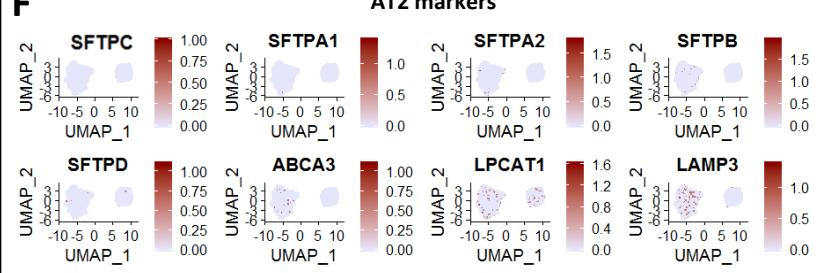

AEC-TN

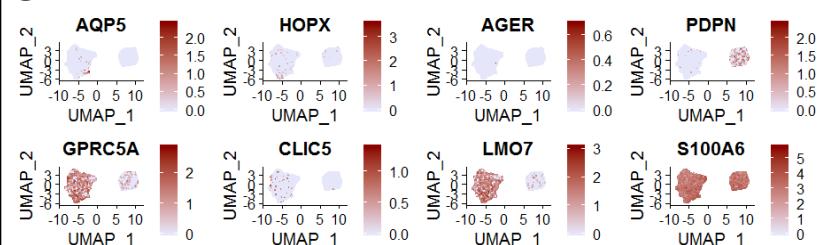
A

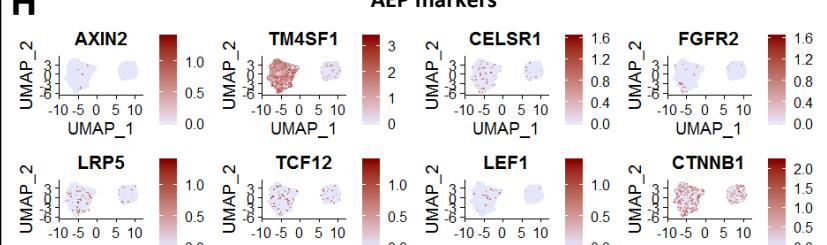

B

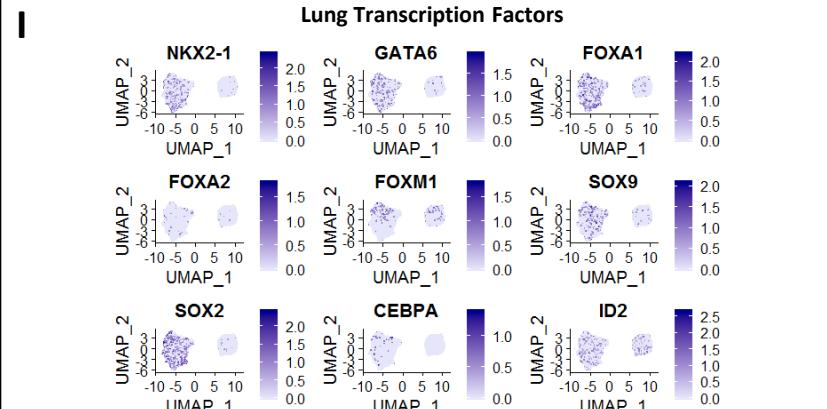

C

Cluster	Sample	#Cells (% total)
0	2D	4082 (37%)
1	3D	2610 (24%)
2	3D	1427 (13%)
3	3D	1283 (12%)
4	3D	961 (9%)
5	3D	445 (4%)
6	3D	157 (1%)

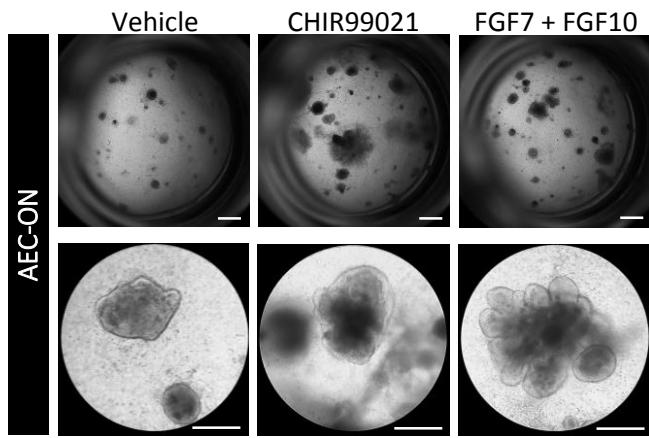

D


E


AT3 markers


G AT1 markers

H AER markers



—
—
—

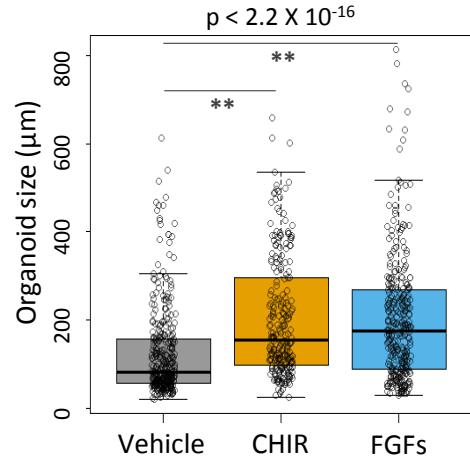
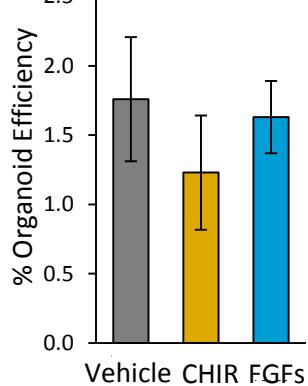


Fig 6. WNT and FGF treatment of AEC-ON cells in 3D results in larger sized organoids


A

B

C

Table 1. De-identified lung donor information

Lung Sample	Age (years)	Sex	Race/Ethnicity	Disease Status	Cause of Death	Tobacco Use
Lung-FT	25	M	Caucasian	Normal	Head Trauma	Non-smoker*
Lung-ON	66	F	Caucasian	Normal	ICH-Stroke	Non-smoker
Lung-TN	62	M	Caucasian	Normal	Stroke	Former smoker**

ICH = Intracerebral hemorrhage

* Patient reported as non-smoker, but gross lung displayed black speckles/particulate matter suggesting possible inhalant exposure

** Patient smoked 1 pack per day for 18 years, then quit in 1991

Table 2. Lung cell purity metrics

Lung Sample	Preparation Date (days post-tissue approval)	SFTPC ⁺	NKX2-1 ⁺	CD45 ⁺	VIM ⁺	TUBB4A ⁺
Lung-FT	2	88%	96%	3%	4%	3%
Lung-ON	3	79%	--	15%	--	--
Lung-TN	3	84%	86%	5%	12%	--

Following anti-EpCAM bead purification, cell suspensions were assessed for AT2 cell enrichment by cytospin preparation, then IF staining with AT2 lung markers (SFTPC, NKX2-1), hematopoietic marker (CD45), fibroblast marker (VIM), and lung airway cell marker (TUBB4A).

Table 3. Mycoplasma detection primers

Primer Name	Sequence
Forward Primers	
AF (for <i>Acholeplasma laidlawii</i> species only)	5'-GGAATCCCGTTGAAGATAGGA-3'
PF (for <i>Mycoplasma pirum</i> species only)	5'-GGAAAATGTTATTTGACGGAACCT-3
MF (for six other species of mycoplasma)	5'-TCTGAAT(C/T)TGCGGGACCACC-3'
Reverse Primer	
MR (for all eight species of mycoplasma above)	5'-CTTTCC(A/C)TCAC(G/T)GTACT(A/G)GTTCACT-3'

Table 4. Key Resources Table

KEY RESOURCES TABLE

REAGENT or RESOURCE	COMPANY	CAT. NO	Research Resource Identifier (RRID)
Primary and Secondary Antibodies	Dilution		
Monoclonal rabbit anti-AQP5	1:50	Abcam	ab92320 RRID:AB_2049171
Monoclonal mouse anti-E Cadherin	1:200	BD Transduction Laboratories	610181 RRID:AB_397581
Polyclonal rabbit anti-HOPX	1:200	SCBT	sc-30216 RRID:AB_2120833
Monoclonal rabbit anti-Ki67	1:200	Abcam	ab16667 RRID:AB_302459
Monoclonal mouse anti-NKX2-1 (NCL-L-TTF1)	1:200	Leica	TTF-1-L-CE RRID:AB_442138
Polyclonal rabbit anti-proSPC	1:50	Seven Hills Bioreagent	WRAB-9337 RRID:AB_2335890
Monoclonal mouse anti-SOX2	1:200	SCBT	sc-365823 RRID:AB_10842165
Polyclonal rabbit anti-SOX9	1:200	SCBT	sc-20095 RRID:AB_661282
Monoclonal mouse anti-SV40 Large T antigen	1:300	SCBT	sc-147 RRID:AB_628305
Mouse IgG control	1:100	Vector Laboratories	I-2000 RRID:AB_2336354
Rabbit IgG control	1:100	Vector Laboratories	I-1000 RRID:AB_2336355
Mouse IgM control	1:100	Sigma-Aldrich	M5909 RRID:AB_1163655
Biotinylated horse anti-mouse IgG	1:250	Vector Laboratories	BA-2000 RRID:AB_2313581
Biotinylated goat anti-rabbit IgG	1:250	Vector Laboratories	BA-1000 RRID:AB_2313606
Biotinylated goat anti-mouse IgM	1:250	Vector Laboratories	BA-2020 RRID:AB_2336183
Streptavidin-Alexa Fluor 647 conjugate	1:300	ThermoFisher	S21374 RRID:AB_2336066
Streptavidin-Alexa Fluor 488 conjugate	1:300	ThermoFisher	S11223 n/a
Streptavidin-FITC conjugate	1:300	ThermoFisher	SA-10002 n/a
Donkey anti-mouse Alexa Fluor 488 secondary	1:250	ThermoFisher	A21202 RRID:AB_141607
Donkey anti-rabbit Alexa Fluor 488 secondary	1:250	ThermoFisher	A21206 RRID:AB_2535792
Plasmids			
pBABE-hygro-CDK4 R24C	Addgene	11254	RRID:Addgene_11254
pBABE-puro-hTERT	Addgene	1771	RRID:Addgene_1771
pBABE-puro SV40 LgT	Addgene	13970	RRID:Addgene_13970
pMDLg/pRRE	Addgene	12251	RRID:Addgene_12251
pRSV-Rev	Addgene	12253	RRID:Addgene_12253
pCMV-VSVG	Addgene	8454	RRID:Addgene_8454
LeGO iG	Dr. Kate Lawrenson (Cedars Sinai Medical Center)		RRID:Addgene_27358
LeGO iT	Dr. Kate Lawrenson (Cedars Sinai Medical Center)		RRID:Addgene_27361
Cell and Animal Lines			
MLg	ATCC	CCL-206	RRID:CVCL_0437
A549	ATCC	CCL-185	RRID:CVCL_0023
NU/J mice, 6 weeks, homozygous Foxn1 ^{nu}	Jackson Laboratories	002019	RRID:IMSR_JAX:002019
Bacterial Strain			
Stbl3 chemically competent E.coli	ThermoFisher	C737303	
Chemicals			
Y-27632	Enzo Life Sciences	270-333	
SB-431542	BioVision	1674	
CHIR99021	Sigma-Aldrich	SML1046	
FGF7	Peprotech	100-19	
FGF10	Peprotech	100-26	
Insulin	Sigma-Aldrich	I0516	
hEGF	ThermoFisher	PHG0311	
Cholera toxin	Sigma-Aldrich	C8052	
Hydrocortisone	Sigma-Aldrich	H0888	
Insulin-Transferrin-Selenium (ITS)	Gibco	41400-045	
Matrigel Matrix Growth Factor Reduced	Corning	354230	
Matrigel Membrane Matrix	Corning	354234	
Histogel	ThermoFisher	HG-4000	
DAPI mounting solution	Vector Laboratories	H-1200	