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Abstract:

Heart organoids have the potential to generate primary heart-like anatomical struc-
tures and hold great promise as in vitro models for cardiac disease. However, their prop-
erties have not yet been carefully studied, which hinders a wider spread application. Here
we report the development of differentiation systems for ventricular and atrial heart or-
ganoids, enabling the study of heart disease with chamber defects. We show that our
systems generate organoids comprising of major cardiac cell types, and we used single
cell RNA sequencing together with sample multiplexing to characterize the cells we gen-
erate. To that end, we also developed a machine learning label transfer approach lever-
aging cell type, chamber, and laterality annotations available for primary human fetal
heart cells. We then used this model to analyze organoid cells from an isogeneic line
carrying an Ebstein’s anomaly associated genetic variant, and we successfully recapitu-
lated the disease’s atrialized ventricular defects. In summary, we have established a
workflow integrating heart organoids and computational analysis to model heart develop-

ment in normal and disease states.
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Introduction:

Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate into
beating heart muscle cells (cardiomyocytes, CMs) with monolayer differentiation proto-
cols, and into heart organoids comprised of a variety of cell types with three-dimensional
differentiation systems.”2 34 While monolayer differentiation protocols are able to produce
very pure populations of cells, they are not able to model the three-dimensional spatial
microenvironments of cardiac development; therefore these protocols may not be appro-
priate to study congenital heart defects (CHDs), the most frequently observed type of
malformation at birth and the most common cause of infant death due to birth defects in
the United States®. Organoids, on the other hand, are generated using three-dimensional
differentiation methods, which enables them to develop anatomical context through self-
assembly. This has already been leveraged to study developmental processes in several
tissue and organ systems like brain, intestine, and kidney.®® Also in the context of heart
development several three-dimensional differentiation protocols have been published,?*
but their chamber identities have not been carefully investigated and applied to study
CHD. Therefore, we established two three-dimensional differentiation protocols geared
towards producing atrial and ventricular heart organoids, respectively. This approach then
allowed us to study chamber defects in the context of CHDs in general and for Ebstein’s
anomaly (EA) in particular.

EA as a rare but serious CHD occurs in about 1 per 200,000 live births and accounts
for less than 1% of all cases of CHDs®. EA patients suffer from heart chamber malfor-
mations, including enlarged right atrium (RA), reduced right ventricle (RV), and abnormal
tricuspid valves. Genetic causes play a role in EA, albeit the disease is genetically heter-
ogeneous. Known genetic causes include chromosomal alterations (like copy number
variations) and single gene defects in cellular structural proteins, signaling molecules and
cardiac transcription factors.® Specifically, multiple sequence variations within the home-
obox-containing cardiac transcription factor NKX2-5 have been associated with EA."%"!
Given that NKX2-5 is a transcription factor with key roles in cardiac development'?'5, and
because knock out experiments in zebrafish and mouse have demonstrated that NKX2-
5 is involved in chamber specification in the developing vertebrate hearts,'®'” we were
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interested to further investigate a specific EA-associated variant in the coding sequence
of NKX2-5 converting a cytosine to an adenine (c.673C>A)."

Single cell RNA sequencing (scRNA-seq) enables the study of transcriptional profiles
of individual cells, and it has successfully been used to study and elucidate disease etiol-
ogy for CHD."®20 Commercial droplet-based methods (like the 10X genomics platform)
have been shown to capture a large diversity of cell types, and they can be used to assay
a large number of cells in each experiment.?! We used this approach to characterize or-
ganoids generated by our protocols at different differentiation time points, and to compare
wild type heart organoids with organoids that were genetically modified to carry the NKX2-
5 ¢.673C>A variant. A major consideration in the design of scRNA-seq experiments are
batch effects, which arise when samples are processed in separate groups and have the
potential to severely confound analysis results and downstream conclusions.?'?? There-
fore we used the MULTI-seq approach that (through lipid-based sample barcoding) ena-
bles multiplexing of different samples for library preparation and sequencing.??

For comprehensive molecular characterization of cardiac cells based on scRNA-seq,
we used machine learning to implement a label transfer approach (based on random for-
ests) that allowed us to leverage information about cell type, heart chamber (atrial vs.
ventricular) and laterality (left vs. right side) available for primary human fetal cells'®2425
in the context of our in vitro system. The random forest learning algorithm is a machine
learning method that has been successfully employed in the context of scRNA-seq data
annotation,!” and we adopted and modified this approach to generalize well across dif-
ferent sequencing platforms, and to include an anomaly detection step to highlight cells
that are likely not heart-related. This enabled us to characterize the differentiation proto-

cols we established and to compare wild type to genetically modified cells.

Overall, we find that our differentiation approach generated organoids with atrial and
ventricular heart cells. Single cell transcriptional profiling in combination with the label
transfer approach we developed was able to identify a range of cardiac cells in our or-

ganoids. Comparison of cells from wild type organoids with cells from organoids with the


https://doi.org/10.1101/2020.12.24.424346
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.24.424346; this version posted December 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

EA-associated genetic lesion ¢.673C>A identified chamber developmental defects. Addi-
tionally, we found genes down-regulated in mutant cells are related to striated muscle
differentiation, while up-regulated genes are related to energy and metabolism, illustrating
specific molecular consequences of this genetic manipulation in the context of heart de-
velopment. This finding suggests that our overall approach is a promising option for char-
acterizing lineage defects and the functional roles of genetic variants in CHDs in general.
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Results:

Generation of ventricular heart organoids

In order to generate ventricular heart organoids, we established a three-dimensional
differentiation protocol by sequentially modulating the WNT signaling pathway, which is
largely similar to the established monolayer differentiation protocols.??¢ This allowed us
to differentiate two hiPSC lines (WTC line with ACTN2-eGFP reporter and SCVI114 line)
into cardiac lineages in organoid (Org) and monolayer (ML) systems (Figure 1A). Beating
cells and ACTN2-eGFP signal were observable at day 15 and 30 in both protocols (Fig-
ure 1B, Video 1). Interestingly, slightly lower beating rates and shorter sarcomere lengths
were observed in organoid cells compared to monolayer cells (Figure S1A, C). Organoid
size increased throughout early stages of differentiation and remained stable between
day 15 and 30, but the variance increased markedly after day 7 (Figure 1C) when the
cells had been transferred from AggreWell to 6-well plates. Transverse sectioning of the
organoids revealed varied internal structures, which we grouped into three categories:
intact, holes, and cavities, with the latter being the largest group of organoids we observed
(Figure 1D). Staining with cardiac troponin T (cTNT), a marker for cardiomyocytes, we
found the majority of organoids with cavities (90.9%) and holes (71.4%) stained cTNT
positive, while most organoids with intact structures (75%) were cTNT negative (Figure
S1D). Quantification of cTNT-positive areas confirmed that organoids with cavities had
the strongest cTNT signal followed by organoids with holes, while organoids with intact
structures showed little signal (Figure 1E). Immunostaining with MYL7 and NRF2F high-
lighted very few double positive cells (Figure 1Fi), suggesting that most of the generated
cardiomyocytes (CMs) were indeed ventricular CMs. Simultaneous staining of cTNT and
CDHS5 revealed a small number of endothelial cells (ECs) lining the inner cell layer of the
cavities (Figure 1Fii), a similar pattern as endocardial endothelial cells (Endo_ECs)
shown in vivo.?” Finally, RNA staining of POSTN, WT1, and TNNI3 revealed the existence
of fibroblasts (FBs) and epicardial cells (EPIs) in the organoids (Figure 1Fiii, iv). Notably
POSTN-expressing cells were observed throughout entire organoids (similar to the FB
distribution in vivo), while WT1 expression was observed only in a small portion of cells,
suggesting that EPI or EPI-derived cells only developed in a small region of the organoids.
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Overall, these results showed the heart ventricular organoids we generated captured
several important heart developmental characteristics observed in vivo, implying their po-

tential usefulness in studying ventricular cardiogenesis in vitro.

Transcriptional analysis of ventricular organoids

With the goal of better understanding the cellular and molecular heterogeneity of or-
ganoids generated by our protocol, we used single cell RNA sequencing (scRNA-seq) to
profile and analyze cells’ transcriptomes. To control for potential batch effects, we em-
ployed the MULTI-seq protocol.?® In this approach each sample was pre-stained with a
unique MULTI-seq sample barcode, and subsequently samples were pooled together and
processed with the regular 10X single cell-profiling workflow with minor adaptions.?® After
lllumina sequencing, data was demultiplexed based on their MULTI-seq barcodes to iden-

tify sequencing reads from individual samples (Figure 2A, S3).

Using this approach, we profiled organoid and monolayer differentiated cells (WTC
and SCVI114 cell lines) that were generated as described above. After read mapping,
demultiplexing and quality control (see Methods, Figure S2A-B, S3A-B), we recovered
3,612 cells for the WTC cell line (2,361 at day 15 and 1,251 at day 30) and 4,269 cells for
the SCVI114 cell line (2,740 at day 15 and 1,529 at day 30) for further analysis. Unsuper-
vised clustering analysis revealed significant transcriptional differences between cells
based on specific combinations of cell line, differentiation protocol (Org vs. ML) and stage
(day 15 vs. day 30) (Figure 2B). We grouped cells into 15 distinct clusters and identified
corresponding unique gene expression signatures (Figure 2C, Supplemental Table 4).
Together with expression of lineage marker genes (cardiomyocytes: TNNT2, TTN,
ACTNZ2; endothelial cells: CDH5, PECAM1, FLVAP; fibroblasts: COL1A1, POSTN), we
identified three major cardiac cell types (Figure 2D, 2E); non-heart-cells did not express
cardiac lineage genes but showed expression of genes with roles in brain and kidney
development (Figure 2Eii, Supplemental Table 4). We found that D15 and D30 organoid
cells of the SCVI114 cell line and D30 organoids cells from WTC cell line predominantly

differentiated into cardiac cells with only a small percentage specified into non-heart cells;
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however, monolayer cells and D15 organoid cells from the WTC cell line mostly differen-
tiated into non-heart cells (Figure 2F). This observation may be the result of variation in
CM differentiation efficiency between experiments. Finally, we also profiled ventricular
CMs and non-CMs enriched by FACS based on ACTN2-eGFP expression and identified
similar results (Figure S2C, S3C, S4, S5A-C, Supplemental Table 5). Overall, sScRNA-
seq analysis confirmed prior observations about cell function and morphology and
showed we were able to generate organoids predominantly consisting of cardiac cell
types (CMs, FBs, ECs).

Generation of atrial heart organoids

In order to generate atrial organoids, we modified our ventricular differentiation work-
flow by treating cells with retinoic acid (RA) at cardiac mesoderm and progenitor stages,
similar to monolayer atrial differentiation®® (Figure 3A). Like for ventricular organoids, we
differentiated WTC and SCVI114 cell lines and observed beating cells and ACTN-eGFP
signal at day 15 and day 30 (Figure 3B, Video 2). As before we quantified beating rates
and found that atrial organoids showed significantly lower beating rates compared with
monolayer cells (Figure S1B). Similar to ventricular organoids, we found that atrial or-
ganoids grew fast at early stages, then between day 15 and 30 the average size remained
similar, but the variance increased markedly (Figure 3C). Again, transverse section anal-
ysis of the organoids identified three types of internal structures, intact, hole, and cavity;
in contrast to ventricular organoids, the hole group is most frequent for atrial organoids
(Figure 3D). Staining for cardiac troponin (CTNT) revealed that ~66.7% of organoids with
cavities, ~23.3% of organoids with holes, and ~15.4% of organoids with intact structures
are cTNT positive (Figure S1E). Quantification of cTNT positive areas further confirmed
that organoids with cavities had the largest CM areas on average (Figure 3E). Im-
munostaining for MYL7 and NR2F2 revealed that many cells stained double positive,
suggesting this protocol produced predominantly atrial CMs (Figure 3F). Furthermore,
co-staining of CDH5 and cTNT identified a significant proportion of ECs intercalating with
CMs, and some lining the cavities (Figure 3F). Finally, RNA staining of POSTN and
TNNI3 found a large group of fibroblasts; however, most were located separately from
CMs (Figure 3F).
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Overall, like for ventricular organoids, we have developed a protocol to generate atrial
organoids with the potential to become a valuable in-vitro tool to study atrial cardiac line-
age development. Furthermore, together our two differentiation protocols enabled us to
compare and contrast atrial and ventricular differentiations in normal and pathological

conditions.

Transcriptional analysis of atrial organoids

Within the same MULTI-seq experiment as ventricular organoids, we also profiled cells
from atrial organoid and monolayer differentiations. Differentiated cells at D15 and D30
from WTC and SCVI114 cell lines were analyzed as described above. We recovered
3,551 cells for the WTC cell line (2,329 at day 15, 1,222 at day 30) and 4,042 cells for the
SCVI114 cell line (2,060 at day 15 and 1,982 at day 30) for further analysis. Unsupervised
clustering followed by projection into two dimensions revealed clear transcriptional differ-
ences between differentiation protocols (Org vs. ML) and stages (D15 vs. D30), while
differences between the two cell lines (WTC vs. SCVI114) were more subtle and most
pronounced in non-heart cells (Figure 4Ai-iv). Cells were grouped into 13 clusters and
we identified unique expression signatures in each of them (Figure 4Bi, ii, Supplemen-
tary Table 6). Again, making use of lineage marker genes, we identified CMs, ECs, FBs,
and non-heart cells (Figure 4C, D). Consistent with what we observed in ventricular or-
ganoids, we found that most SCVI114 organoid cells (D15 and D30) and most cells from
WTC organoids at D30 differentiated into cardiac cells, whereas WTC and monolayer
cells at D15 mainly comprise “non-heart” cells (Figure 4E). Finally, we also profiled atrial
CMs enriched by FACS based on ACTN2-eGFP expression and found they were a highly
pure population of CMs (Figure S2C, S3C, S4, S5A-C, Supplementary Table 5). Over-
all, scRNA-seq analysis confirmed prior observations and showed we were able to gen-
erate atrial organoids predominantly consisting of cardiac cell types (CMs, FBs, ECs).
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lterative application of random forests for label transfer from human fetal heart cells

In order to more objectively characterize scRNA-seq data generated from our organ-
oids, we developed a computational approach based on the random forest classification
algorithm.3® Our goal was to annotate cells from our organoids using published infor-
mation about (cardiac) cell type, anatomical zone (ventricular vs. atrial) and laterality (left
vs. right) from human fetal cells in Cui et al..?* Briefly, to transfer cell type labels we trained
a feature selector random forest and a classifier random forest that can then be applied
to predict the cell type in test data (our organoid cells, for example). Cells predicted as
CMs can then optionally be processed further to annotate anatomical zone and laterality.
Finally, our method can perform anomaly detection to filter out cell types that were not
present in the training data (Figure 5A, Figure S6).

We assessed the performance of this approach in three ways: First, we performed 10-
fold cross validation on the Cui et al. data itself. While cross validation guards against
overfitting, this is an optimistic scenario because it does not take into account potential
differences between training and test datasets. We found that in this setting our approach
accurately predicted cell types, anatomical zones and literalities (Figure 5B). We noted,
though, that performance for cell type prediction worked better (average accuracy =
87.19%) than predicting anatomical zone or laterality (average conditional accuracies of
81.5% and 79.28%, respectively). Second, to take platform differences, variations be-
tween laboratories, and other biological variables into account, we used data from Asp et
al.?5, which used the 10X platform (Cui et al. used STRT-seq), to profile atrial and ven-
tricular heart cells (Figure 5C). Again, we observed highly accurate prediction of cardiac
cell types (average accuracy = 93.73%) and anatomical zones (average conditional ac-
curacy = 93.55%). Interestingly, epicardial derived cells (ep_der), which mostly are fibro-
blasts, were correctly predicted as such; cardiac skeleton like fibroblasts were predicted
as valve cells. Third, we used 10X data from Miao et al.'® to assess cell type prediction a
second time and, importantly, to assess cross platform laterality prediction. Consistent
with our previous results we found cell type prediction highly accurate (average accuracy
= 96.82%); prediction of laterality however was only moderately successful, with ~84% of
CMs on the right side and ~66% of CMs on the left side correctly classified (Figure 5D).

10
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Overall, these results showed that we can use the Cui et al. data set to annotate
scRNA-seq data generated on different platforms by different laboratories. We can be
highly confident in cell type annotations, confident anatomical zone annotations, and

moderately confident in laterality annotations.

Computational annotation of heart organoid cells’ transcriptomes

Next, we used our computational approach to annotate atrial and ventricular cells at
day 30 (Figure 6). We found that anomaly detection mainly removed non-heart cells as
expected (Figure S6), and that cardiac cell types (CMs, ECs and FBs) account for the
vast majority of cells and contributed to the major variations in this data set (Figure 6A,
B). Importantly, anomaly detection filtered out few heart cells, which mostly were inter-
mediate cells between fibroblasts and cardiomyocytes (Figure S6). Furthermore, remain-
ing non-filtered non-heart cells were predicted as immune cells (macrophages, b/t cells)
and fibroblasts. Visual inspection showed that global transcriptional differences between
ventricular (RA-) and atrial (RA+) differentiation protocols are most strongly apparent in
(Figure 6Biii). Cell type predictions are 91% consistent with our manual cell type anno-
tations, which is also consistent with expectations derived from the validation results as
described above. Interestingly, while classification accuracy (in the sense that predictions
agree with the differentiation protocols) for atrial (RA+) CMs (82.5%) is within the range
of expectation, a fraction of 34.7% of ventricular (RA-) CMs were mis-classified as “atrial”.
Further, analyzing CMs in the context of anatomical zone prediction (Figure 6C) we found
genes that lend support to computational zone predictions (e.g., MYL7 and MYH6 (atrial
markers), MYH?7 (ventricular marker)), while others were more consistent with differenti-
ation protocols (PLN, MYH9, and MEISZ2 (ventricular markers) and /D3 and IGFBPS (atrial
markers)). Other marker genes (NR2F1, NR2F2) were less clear to interpret. In terms of
laterality prediction, we observed that more “left” than “right” CMs, and we found this bias
more pronounced for predicted atrial CMs compared with ventricular CMs (Figure 6E).
For organoids from day 15 we found mostly consistent results (Figure S8); cell type pre-
dictions were highly accurate (average accuracy = 95.53%), RA+ CMs were largely pre-
dicted as atrial (91.2%), however a large fraction of RA- CMs (84.6%) were also predicted
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as atrial. Also, most CMs at day 15 were not substantially different between RA+ and RA-
differentiation protocols (UMAP plot in Figure S8), indicating CMs at day 15 may not have
matured enough to gain zone identities, which was further supported by the detailed com-

parative analysis of cells at day 15 and 30 (Figure S7, Supplementary Table 12).

We also analyzed the cardiac cells enriched by FACS. We again found cell type pre-
dictions highly accurate (average accuracy = 94.4%), as were anatomical zone predic-
tions: 94.7% of RA+ CMs (atrial protocol) were predicted as atrial CMs, and 62.9% of RA-
CMs (ventricular protocol) were predicted as ventricular CMs (Figure S5, Supplemen-
tary Table 5).

Overall, our automatic predictions achieved high accuracy in cell type annotations and
highlighted that zone identities were more established at day 30 compared to day 15 in
our organoid differentiation systems. These results enabled us to use this computational
phenotyping approach to compare wild type and genetically modified organoids.

Generation of hiPSC lines and organoids carrying a genetic variant associated with Eb-

stein’s Anomaly

The homeobox-containing transcription factor NKX2-5 plays critical roles in embryonic
heart development.'23! Notably, NKX2-5 knockout mice die at E10.5 with only two heart
chambers, both with atrial identities as reported by ATLAS-seq predictions.'” Further-
more, a single nucleotide variant in the NKX2-5 gene locus at the 673" nucleotide con-
verting the 188" amino acid from Aspartate (N) to Lysine (K) was associated with Eb-
stein’s Anomaly, a congenital heart defect diagnosed with atrialized right ventricle and
abnormal tricuspid valve.'"32 We next used our two differentiation protocols for producing
atrial and ventricular organoids, together with CRISPR/Cas9 technology, to characterize

and study the effects of the above-mentioned variant.

In order to do so, we produced an isogenic line introducing this mutation into the WTC
line using a single-stranded oligodeoxynucleotide (ssODN) based CRISPR/Cas9 strategy
and selected two clones (PM28 and PM52) for differentiation. As a control we created a

line where the first exon of NKX2-5 was deleted (Del33) using a pair of sgRNAs (Figure
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7A). After differentiation we observed ACTN2-GFP signal and beating cells in ventricular
and atrial organoids at day 30 (Figure 7B). Additionally, in the large deletion line we ob-
served significant reduction of Nkx2-5 immunostaining signal in the differentiated organ-
oids (Figure 7C). We note that, compared with wild type organoids, we also observed
significant reduction of beating rates in the mutant atrial organoids, but not in ventricular

organoids (Figure S9).

Transcriptional analysis of mutant heart organoids

Within the same MULTI-seq setup as discussed above we sequenced organoids from
the PM28, PM52 and Del33 cell lines at day 30. After bioinformatics processing and qual-
ity control, we recovered 5,596 (PM28), 3,465 (PM52) and 4,367 (Del33) cells for down-
stream analysis. Unsupervised clustering and (manual) lineage gene analysis revealed
major cardiac cell types (Figure 7Di, 7Ei, S10). Next, we used our cell type classification
approach to automatically annotate cell types in this dataset. Consistent with previous
results we found that anomaly detection predominantly filtered out non-heart cells, and
that predicted cell type annotations were highly consistent with our manually inferred cell
types (average accuracy =95%, Figure 7D, E, F). We did not observe pronounced differ-
ences between the three mutant lines (PM28, PM52, Del33, Figure 7Dii), but found cells
from organoids were largely different from monolayer-differentiated cells (Figure 7Diii),
a signal that is driven by most monolayer-differentiated cells likely not being heart cells
(Figure 7Di, iii). While, like wild type cells, global transcriptional differences between
ventricular (RA-) and atrial (RA+) differentiation protocols manifest mostly in CMs (Figure
7Ei, ii), the strong distinction between RA- and RA+ treated cells that was observed in
wild type CMs was lost. We also found a significant fraction of RA- (i.e., ventricular) CMs
annotated as “atrial” by our label transfer procedure. While we did observe this type of
“misclassification” in the wild type cell lines, the “misclassified” fraction of cells in mutants
significantly increased (72.8% here vs. 37.4% for wild type organoid cells at day 30, Fig-
ure 7F and Figure 6B). Similar to before we found atrial genes (including MYL7, MYH6,
MYL9) highly expressed in predicted atrial CMs from organoids differentiated with the
ventricular protocol (RA-) (Figure 7G). Like in the wild type cells, we observed laterality
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bias in CMs (Figure 7H); however, for the modified lines we observed slightly more “right”
ventricular cells, which was the opposite of wild type cells (Figure 6D).

Finally, when comparing gene expression between wild type and mutant hiPSC-de-
rived cells, we found that there were significantly more differentially expressed genes
(DEGs, fdr<0.001) between wild type and mutant cells in CMs (166), compared with FBs
(21), and Endo_ECs (2) (Supplementary Table 7). In order to rule out the possibility that
differences in cell type abundances account for this observation (we find 279 Endo_ECs,
2,158 FBs, 5,628 CMs), we down-sampled CMs to either 279 cells (like Endo_ECs) or
2,158 cells (like FBs) 200 times and re-calculated DEGs. This procedure confirmed more
DEGs in CMs compared to other cell types (Figure S$S12). This shows that the mutation of
NKX2-5 mainly affects CMs and we see little evidence for effects on Endo_ECs and FBs.
Focusing on CMs, Gene Ontology enrichment analysis of DEGs, highlights striated mus-
cle development-related biological processes amongst the top down-regulated genes
(low expression in mutant CMs), while the most significantly enriched terms in up-regu-
lated genes (high expression in mutant CMS) highlight processes related to metabolism

and energy (Figure 71, Figure S11).

Overall, these results demonstrate that we successfully generated ventricular and
atrial organoids with a specific genetic variant associated with Ebstein’s Anomaly. Our
classifier predicted most mutant CMs differentiated in the ventricular (RA-) protocol as
atrial CMs, recapitulating the atrialized ventricular defects in EA. Furthermore, our obser-
vations suggested that the NKX2-5 mutation predominantly impacts cardiomyocytes, with
genes related to striated muscle differentiation showing weaker expression in mutant
CMs, while genes related to metabolism and energy production appear up-regulated. This
for the first time provides clear evidence that the EA-associated variant (c.673C>A)"" af-
fects the expression of energy-related and key heart muscle genes during (in vitro) cardi-
ogenesis, building confidence in this particular variant’s relevance and laying the founda-
tion for more detailed disease models of EA.
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Discussion:

In this study, we generated ventricular and atrial heart organoids and used scRNA-
seq in combination with MULTI-seq sample pooling to obtain transcriptional profiles at
single cell resolution.?>28 We established a machine learning label transfer method that
allowed us to leverage annotations (cell type, anatomical compartment, laterality) from
primary human fetal cells, and we used this approach to characterize cells differentiated
with our organoid systems. Finally, we used this experimental and computational combi-
nation to compare differentiated organoids from wild type cell lines with organoids carry-
ing a genetic variant associated with EA, effectively establishing an in vitro hiPSC model
for this type of congenital heart defect.

We find that our organoid systems recapitulated the microenvironment of human de-
veloping hearts by self-assembling into chamber-like structures. We note that this type of
three-dimensional approach has advantages when studying heart developmental pro-
cesses, especially chamber formation, compared to monolayer and co-differentiated mi-
crotissue systems.3334 We note that along the same lines Hofbauer et al®. recently re-
ported that the addition of VEGF to cardioids (a similar type of cardiac organoid) can lead
to the development of endothelial cells that comprise the entire inner layer of chambers,
essentially equivalent to the in vivo anatomical pattern observed in endocardial endothe-
lial cells.® With this study and our work generating specific cell types in environments
resembling their in vivo anatomical compartments, it will be interesting to establish differ-
entiation protocols in the future that mimic the in vivo localization of other cardiac cell
types, like epicardial cells and vascular endothelial cells.

Based on the sarcomere lengths and scRNA-seq data, we found the hiPSC derived
CMs in both organoid and monolayer systems were relatively immature compared to pri-
mary cells. Additionally, we found the CMs in organoids were slightly less mature com-
pared with CMs in monolayer system (Figure S7, Supplementary Table 12). However,
since it has been reported that co-culture of CMs and other cardiac cells (FBs, ECs) can
significantly improve CM maturation, we believe that organoid cells may further mature

after long-term culture.® Furthermore, cells often become more mature after extensive
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culture, as has been reported for other types of organoids such as brain.3® We note,
though, that this phenomenon is likely tissue- or organ-specific, because kidney organ-
oids did not mature after further culturing, but instead showed higher cell death rate.?’
However, it is known that in vitro differentiated CMs can mature significantly after being
transplanted into live organisms.3® While it would be challenging to transplant generated
heart organoids to replace the heart of model organisms, it may be feasible to transplant
them into other parts of animal models, like mice or zebrafish, to study their maturation.

While in silico phenotyping of organoid cells performed well overall, the experimental
setup with different platforms for training (STRT-seq) and testing/application (10X) is
clearly not optimal, and generating more similar test/training data in future experiments
will likely increase accuracy and reliability of computational phenotyping. In addition, mak-
ing use of spatial transcriptomics approaches to increase resolution and confidence of
annotations with regard to anatomical zone and laterality, without the need for tissue dis-
sections, would yield an increased chance of capturing more subtle transcriptional spatial
features. When predicting anatomical zones for wild type organoid cells, the vast majority
of predictions agreed with the differentiation protocol (atrial = RA+, ventricular = RA-, see
Figure 6C). However, for a smaller group of cells the protocols and predictions mismatch,
that is RA- differentiated cells were predicted “atrial” and RA+ differentiated cells were
“ventricular”. Further investigating those mismatching cells yielded zone-specific genes
that support zone predictions (e.g., atrium-specific genes MYL7 and MYH6 are high in
RA- differentiated but “atrial” predicted cells) and others more in-line with the differentia-
tion protocols (e.g., ventricle-specific genes PLN, MEIS2). In the future it will be interest-
ing to further investigate these genes, and more specifically elucidate their relation to RA,
the only difference between the atrial and ventricular differentiation protocols. However,
to assess whether direct regulation by RA plays a role will require further experiments,
like applying ChIP-seq or derivative technologies in generated organoids.3°

We also noted that the fraction of heart cells we recovered by scRNA-seq varied be-
tween the monolayer (low fraction of heart cells recovered) and organoid protocols (high
fraction of heart cells recovered), see Figures 2F ,4E. Exception to that rule were the
WTC organoids at day 15. Since monolayer protocols have been reported to generate
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cardiomyocytes with high efficiency, we believe this observation may be specific to this
batch rather than being representative of the monolayer approach. Therefore, we interpret
the data in the sense that it shows our organoid protocol to be efficient.

Our protocols also allowed us to produce genetically modified cell lines carrying a
mutation associated with EA, and compare resulting organoids with wild type differentia-
tions. We found that genes down-regulated in mutant organoids were associated with
striated muscle differentiation, while mutant up-regulated genes were often related to en-
ergy and metabolism, which provided the first (in vitro) characterization of molecular ef-
fects of the c.673C>A mutation and may constitute a first step towards more detailed
models of the contribution of this genetic lesion towards EA. We note, however, that in
addition to atrial/ventricular CM lineage defects, EA patients also present with tricuspid
valve defects. Our current system does not model this aspect, but we can extend our
approach (differentiation system and cell type / anatomical zone computational modeling)
to include and focus on valve-related cells in the future. Furthermore, EA is known to be
genetically multigenic,®4° and our general approach of in vitro modeling together with
computational phenotyping can be applied to other EA-associated genetic variants to gain
systematic insight into the disease.

In summary, in this work we have established chamber-specific differentiation proto-
cols for heart organoids, and we showed that in combination with scRNA-seq profiling of
organoid cells this system is a useful model for investigating genetic lesions at the NKX2-
5 locus associated with EA. While it was necessary to focus on zone/chamber specificity
(atrial vs. ventricular) in this context, our approach can be repurposed to focus on laterality
(left vs. right), which would be interesting in the context of CHDs with known laterality

phenotypes, such as heterotaxy and hypoplastic left or right heart syndrome.
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Materials and methods

Maintenance of hiPSC lines. WTC line with ACTN2-eGFP transgene (Coriell catalog:
GM25256) and SCVI114 line (Gift from Stanford CVI) were maintained in completely de-
fined albumin-free E8 medium (DMEM/F12 with L-glutamine and HEPES, 64ug/ml L-
Ascorbic Acid-2-phosphate, 20ug/ml insulin, 5ug/ml transferrin, 14ng/ml sodium selenite,
100ng/ml FGF2, 2ng/ml TGFb1) 4! on Matrigel (Corning, CB40230A) coated tissue cul-
ture plates. Medium was changed daily and routinely passaged every three to four days
using 0.5 mM EDTA solution (Invitrogen, 15575020). 10 uM ROCK inhibitor Y27632
(Selleckchem, S10492MG) was supplemented to the medium during cell passaging.

Monolayer cardiac differentiation. Monolayer cardiac differentiation was carried out fol-
lowing a published protocol*?. Briefly, RPMI 1640 media (Corning, 10040CVR) was used
as the basal medium in the entire differentiation process. B-27 Supplement minus Insulin
(Gibco, A1895601) was supplemented to the medium for the first 6 days and B-27 Sup-
plement (Gibco, 17504044 ) was used afterwards. The small molecule inhibitor of GSK3[3
signaling, CHIR99021 (Selleckchem, S292425MG) was used in the first two days of dif-
ferentiation and Wnt signaling inhibitor C59 (Selleckchem, S70375MG) was added from
day 3 to day 4. To differentiate atrial cells, 1 uM retinoic acid (Sigma-Aldrich, R2625) was

added from day 3 to day 6 as described Previously 2°.

Cardiac organoid differentiation. The cardiac organoid differentiation procedure was
adapted from a protocol described Previously 2. Briefly, 1.5x108 hiPSCs were seeded in
each well of AggreWell™800 plates (STEMCELL, 34815) according to the manufacturer’s
instructions. The cells were assembled into 3D structure by culturing in E8 medium for 2
days (day -2 to day 0). From day O to day 6, cells were cultured in RPMI supplemented
with B-27 minus insulin. CHIR99021 at a final concentration of 11uM was used at day 0
and lasted for 1 day. From day 3 to day 5, cells were treated with C59 at a final concen-
tration of 5 uM. The cell aggregates were transferred to 5% Poly(2-hydroxyethyl methac-
rylate) (Sigma-Aldrich, P3932) coated tissue culture plates at day 7 and cultured in RPMI

with B27 supplement until the end of differentiation. Fresh medium was changed every 3
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days until tissue harvest. To differentiate organoids, 1 uM retinoic acid was added from
day 4 to day 7.

Generating Nkx2-5 mutant hiPSC lines To generate Nkx2-5 loss of function mutants, a
pair of single-guide RNAs (sgRNAs) (supplemental Table 1) were used to target the first
exon of Nkx2-5 gene. The sgRNAs were cloned into pSpCas9(BB)-2A-GFP (PX458) vec-
tor and transfected into WTC hiPSCs with nucleofector. Specifically, about 8 x 10° iPSCs
were transfected with 5 pg of plasmids with Lonza Human Stem Cell Nucleofector Kit 1
(Lonza, VPH-5012) on a Nucleofector 2b device (Lonza, AAB1001). After FACS sorting
and PCR genotyping of multiple iPSC clones, we identified the clones with the deletion of
first Nkx2-5 exon and further expanded them for cardiac differentiations.

Besides, we introduced a single nucleotide mutation into the Nkx2-5 gene locus using a
ssODN based CRISPR strategy. We co-transfected a ssODN and sgRNA (supplemental
Table 1) to convert the 673" nucleotide from C to A, which led the protein change at 188
amino acid from Asn to Lysin. After clone picking and genotyping the clones by sanger
sequencing, we identified the positive clones and further expanded them for differentia-

tion.

Single cell isolation Cardiac cells from monolayer differentiation culture at day 15 and
day 30 were washed twice with PBS and incubated with TrypLE Express (Life Technolo-
gies, A1217702) for 15 min at 37 °C. Cells were collected by centrifuge at 300 g for 5 min
and washed once with HBSS-/- (Ca?*/Mg?* free). The cells were further resuspended in
1ml B27 and filtered through a 40 pym filter (Corning, 431750). After that, the cells will be
ready for FACS sorting or directed used for scRNA-seq.

The cardiac organoids were collected and washed twice with HBSS-/- (Ca?*/Mg?* free)
before being incubated with 0.25% Trypsin/EDTA at 37 °C for 5 min. After that, a colla-
genase HBSS+/+ mixture with 10 mg/ml of collagenase A (Sigma-Aldrich, 10103586001),
10 mg/ml of collagenase B (Sigma-Aldrich, 11088815001), and 40% FBS (Gibco,
26140079) was added to the digestion solution and gently pipetted until the organoids
were completely dissociated. The cells were then spun down at 300 x g for 5 min, resus-
pended in 1ml of RPMI/B27 medium, and filtered through a 40 um filter.
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MULTI-seq barcoding First batch (FACS sorted). The cells from monolayer differentia-
tions and organoids were washed once with FACS buffer (HBSS-/-,10% FBS) and resus-
pended in 1 mL of FACS buffer with 10 uM ROCK inhibitor. After FACS sorting based on
GFP expression (BD, FACSAria™ lll), both GFP positive and negative cells were col-
lected separately for scRNA-seq. Each sample was stained with a unique MULTI-seq
barcode following a published protocol with minor modifications?3. Briefly, the cells were
washed twice with PBS (Ca?*/Mg?* free) and resuspended in 180 ul PBS (Ca?*/Mg?* free).
20ul of 2 yM sample specific Anchor/Barcode (Supplemental Table 2) was then added
to each sample and incubated for 5 min on ice. After that, 20 pl of 2 yM Co-Anchor solu-
tion (Supplemental Table 2) was added and kept on ice for another 8 mins. The samples
were then washed once and resuspended in ice cold PBS with 1% BSA. The cell numbers

were counted before pooling the samples together.

Second batch (Not sorted). All cells including the monolayer differentiated cells and or-
ganoid differentiated cells (WTC and SCVI111 line differentiated in atrial and ventricular
differentiation protocols at differentiation day 15 and 30, and Nkx2-5 mutant line in atria
and ventricular differentiation protocols at day 30) were prepared as single cells. The cells
in each sample were stained with MULTI-seq barcode following the same procedure as
the first batch of cells. Afterwards, the cells were counted and pooled together for scRNA-

seq.

Library preparation and single-cell mRNA sequencing. The pooled cells were cap-
tured in 10X Chromium (10X Genomics, 120223) by following the single cell 3’ reagent
kits v3 user guide. Briefly, cells were loaded into each chip well to be partitioned into gel
beads in emulsion (GEMSs) in the Chromium controller. We targeted for 25,000 cells in
each chip well and profiled one well for the first batch experiment and two chip wells for
the second experiment. The cells were then lysed and barcoded reverse transcribed in
the GEMs. After breaking the GEMs and further cleanup and amplification, the cDNA was
enzymatically fragmented and 3’ end fragments were selected for library preparation. Af-
ter further processing including end repair, A-tailing, adaptor ligation, and PCR amplifica-
tion, a string of sequences including sample index, UMI sequences, barcode sequences,
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and sequencing primer P5 and P7 were added to cDNA on both ends. The libraries were
sequenced on lllumina HiSeq X platform.

Bioinformatics analysis

Data processing and quality control Alignment and quantification of UMI counts for
endogenous genes were performed using the cellranger count pipeline of the Cell Ranger
software (version 3.1.0). We used the human reference genome (GRCh38.p12) and ar-
guments --chemistry= SC3Pv3 and --expect-cells as 10,000 or 25,000, depending on the
specific library. For sample demultiplexing, we used the R package deMULTIplex (version
1.0.2, https://github.com/chris-mcginnis-ucsf/MULTI-seq) which consists of alignment of
the MULTI-seq sample barcode read sequences to the reference MULTI-seq sample bar-
codes followed by sample classification into doublets and singlets. Multiple quality control
(QC) metrics were calculated using the R package scater (http://www.bioconduc-
tor.org/packages/release/bioc/ html/scater.html), and cells with total library size >=2000,
number of detected genes >=1000 and <= 8000, and <=30% percentage of mitochondrial
reads were considered. To account for doublets with the same MULTI-seq barcode we
used the scds R package (https://github.com/kostkalab/scds) as described below. We
focused on genes with one or more count in at least five cells (assessed for each batch
separately) and calculated log-normalized counts using the deconvolution method of the
scran R package (https://bioconductor.org/packages/release/bioc/html/scran.html).
There are two batches in the unsorted data, so multiBatchNorm from the package batch-
ler (https://bioconductor.org/packages/devel/bioc/html/batchelor.html) was used to per-
form scaling normalization so that the size factors are comparable across batches. Next,
clustering, dimensionality reduction, and cell type annotation was performed separately
on wildtype atrial, wildtype ventricular, and mutant groups. The top 2000 highly variable
genes were identified using the modelGeneVar function (scran R package). Using these
genes, 50 principal components were calculated (runPCA, scater R package) and used
to generate UMAP plots (runUMAP, scater R package) and to build a shared nearest
neighbor graph followed by walktrap clustering (cluster_walktrap, igraph R package,

https://github.com/ igraph/igraph) as outlined by Amezquita et al.*®
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For FACs sorted data no batch correction was needed, so clustering was performed by
building a shared nearest-neighbor graph using the first 25 first principal components for
each cell; we used Jaccard weights and the Louvain clustering algorithm from the igraph
package with steps = 10 parameter. The R package ComplexHeatmap (http://www.bio-
conductor.org/packages/release/bioc/html/ComplexHeatmap.html) was used to generate
gene expression heatmaps and findMarkers (scran R package) with the fdr = .001 pa-
rameter was used to get inter-cluster differentially expressed genes. Finally, cell type an-
notations were manually resolved using cluster expression patterns of the following
genes: TNNT2, ACTN2, TNNI3, TTN, MYH6, NR2F2, MYL2, MYH7, COL1A1, DCN,
SOX9, POSTN, WT1, TBX18, ALDH1A2, LRRN4, CSF1R, TPSAB1, CD3D, GIMAP4,
PECAM1, CDHS5, TIE1, NPR3, PLVAP, FOXC1, FABP4, CLDN5, HEMGN, HBA-A1,
HBA-A2, C1QA. In the rare case where a cluster expresses marker genes for more that

one cell type, iterative clustering was performed to resolve cell types.

Computational annotation of multiplets in a MULTI-seq workflow The MULTI-seq
approach identifies multiplets based on occurrence of more than one MULTI-seq cell bar-
code. By design, this approach cannot identify mutiplets comprised of cells with identical
MULTI-seq sample barcodes. We use computational multiplet identification (scds) to
identify this type of “within-sample” multiplet computationally. Broadly, we use MULTI-seq
data to estimate the fractions of within-sample and between-sample multiplets and use
them to determine the number of within-sample multiplets that we annotate computation-

ally.

Specifically, in our approach we assume the overall fraction of cells' being multiplets, p,,,
is comprised of within-sample multiplets (p,,, with the same MULTI-seq barcode) and
between-sample multiplets (p,, with distinct barcodes) and no other contributions: p,, =
Pw +Pp = PmPw/Pm + Pb/Pm) = PmTw + PmT,, Where ,, and m;, denote the fraction of
multiplets being within-sample and between-sample, respectively; also: &, + T, = 1. We
then use the following ansatz, where the fraction of different types of multiplets is propor-

tional to the abundance of constituent cells (we only focus on doublets and assume

! We use “cell” as a shorthand for cell/10X-barcode in an abuse of notation, since multiplets are not single
cells by definition.
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higher-order multiplets to be rare): m,, o« ¥; N? /N* and m, < Y j);5; N; Nj/N? where N
denotes the overall number of cells and N, the number of cells with MULTI-seqg/sample
barcode k. Utilizing estimates of these quantities obtained by demultiplexing MULTI-seq

data and the constraint that m,, and m; sum to one we obtain estimates 7, and 7,,.

Let D,, be the number of MULTI-seq annotated between-sample multiplets. We have
D,, = Np,,m;, and therefore p,,, = D, /(Nm;,) and plugging in 7, yields p,,, an estimate for
the fraction of doublets in our data set; note that p,, > D, /N, the fraction of multiplets
obtained from the MULTI-seq data alone. The “missing” number of within-sample multi-
plets is then estimated as Np,,Tt,,, determining the number of doublets we annotate using

scds in addition to the between-sample doublets annotated by MULTI-seq.

Random forest based cell type classification across data sets Training data: We

used the single cell RNA-seq data of Cui et al.?* with cell type, anatomical zone, and
laterality annotations in order to train a random forest classifier that generalizes to other
data sets. Data and cell annotations were downloaded from GEO (GSE106118)%. Itera-
tive clustering was used to further resolve the annotated ECs into Endo_ECs and vascular
ECs based on the expression of Endo_EC markers (NPR3, PLVAP, FOXC1) and
Vasc_EC markers (FABP4 and CLDNY). Additionally, iterative clustering was used to re-
annotate a subcluster of “5w” cells as epicardial cells based on the expression of WTT,
TBX18, ALDH1A2, LRRN4, and UPK3B. Because there were so few (only 27) mast cells
annotated in this dataset, they were not used to train the model. Lastly, only cells from
the left ventricle, right ventricle, left atria, and right atria were used. The final cell type
annotations used are provided in Supplemental Table 8. These cells form the input for

downstream analyses and classifier training.

Development data set 1: We used the single cell RNA-seq data of Asp et al. with zone

and cell type annotations to validate our random forest model?®. Data and cell annotations
were downloaded from https://www.spatialresearch.org/resources-published-da-
tasets/doi-10-1016-j-cell-2019-11-025/. Cells annotated as cardiac neural crest were re-
annotated as immune cells based on high expression of C1QA, CSF1R, and GIMAPA.

The final cell type annotations used are provided in Supplemental Table 9. In order to
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compute log-transformed normalized expression values, clusters were first computed
(quickCluster, scran R package), followed by normalization where size factors are decon-
voluted from clusters (computeSumFactors, scran), followed by log-transform normaliza-

tion (logNormCounts, scater R package).

Development data set 2: We used the single cell RNA-seq data of Miao et al. with later-

ality annotations to validate our random forest model'®. Data were downloaded from GEO
(GSM4125587, GSM4125585, GSM4125586, GSM4125588). In order to compute log-
transformed normalized expression values were computed as for development data set
1. Furthermore, highly variable genes, low dimensional embeddings, clustering, and cell
type annotations were performed as for the unsorted hiPSC data set (see Data pro-
cessing and quality control). The final cell type annotations used are provided in Supple-
mental Table 10.

Model fitting: To fit a model on the training set and apply it to a test data set, typically
generated with different platform technology, we proceed as follows. First highly variable
genes in both data sets were selected. Using the modelGeneCV2 function (scran R pack-
age) we fit the squared coefficient of variation (CV?) and the top 50% of genes with the
largest CV2 and strongest deviation from the fit line were retained as highly variable
genes. Additionally, genes expressed in less than 1/4" of cells were filtered out. Gene
passing both filters on the train and test data were scaled (for each data set inde-
pendently) and kept for RF model fitting. Genes were scaled by subtracting their minimum
expression value, and then dividing by their 95" quartile. Next, we used the R package
ranger (https://cran.r-project.org/web/packages/ranger/index.html) to derive a random
forest classifier on the scaled train data (impurity importance score), using class weights
to account for imbalances between cell-type labels. We then use the top genes in terms
of feature importance to train a second, final random forest on the train data, which is
then used to derive labels on the scaled test data set. Hyper parameters for this procedure
(number of trees, number of genes for the second round of learning) were determined
separately using the training data as both, test and train set, respectively. To optimize a
parameter, the others were held constant while a range of values was tested and the final
value was selected as the elbow point when plotting accuracy against tested parameter
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values. Next, the trained model is used to predict the labels on a test set. Performance is
visualized using Sankey diagrams (ggplot2, https://github.com/cran/ggplot2). Cell type
accuracies are calculated as the percentage of correctly classified cells. Conditional ac-
curacies were calculated as the percentage of correctly classified cells within a given
label.

Cell type classification: For cell type classification all cells in the training data were used

in the above procedure with 300 trees and 500 important genes (Supplementary Table

11) as hyperparameters.

Anatomical zone classification: Here we focus on the anatomical zone of cardiomyocytes

(CMs), and correspondingly only CMs are used in the above procedures. Hyper parame-
ters used are: 300 trees and 100 important (Supplementary Table 11) genes for the

second random forest.

Laterality classification: Here we focus on the laterality (left/right) of CMs; we proceed as

discussed above, with an additional quantile normalization step after determining top-
variable genes and before scaling. Hyper parameters we determined were 500 trees and
100 important genes (Supplementary Table 11).

Anomaly detection: To flag cells in the hiPSC data the model has not seen before we
perform anomaly detection as follows: Cell type classification (see above) was performed
and for each cell the annotated class and its class-probability were recorded. If that prob-
ability was lower than a class-dependent threshold the cell was considered an anomaly.
The threshold for each class was determined as the minimum of the two 5% quantiles of

probabilities of cells in the corresponding class in the two development sets.'825

Single molecular in situ hybridization. To visualize the transcriptional expression pat-
terns of Tnni3, Cdh5, Postn, and Wt1 in the organoids, proximity ligation in situ hybridi-
zation (PLISH) was performed as previously described with minor modifications 44. Briefly,
the organoids were fixed with DEPC treated 4% paraformaldehyde (electron microscopy
sciences, 15710S) before being embedded with OCT (Sakura, 4583). The embeded tis-
sue were then sectioned with the thickness of 6 um and treated with post-fix medium
(3.7% formaldehyde (Sigma-Aldrich, 252549) and 0.1% DEPC (Sigma-Aldrich, D5758)
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for 30 min. After that, the sections were incubated with hybridization buffer (1M NaTCA
, 5mM EDTA , 50mM Tris pH 7.4 , 0.2mg/mL Heparin) and H probes (supplemental

Table 3). After circulation ligation and rolling circle amplifications, the detection probes
conjugated with Cy3 or Cy5 fluorophore were applied and the hybridization signal were
imaged under confocal microscopy (Leica TSC SP8).

Immunofluorescence staining. Organoids were fixed in 4% paraformaldehyde (electron
microscopy sciences, 15710S) for 1 hr. After that, the organoids were washed twice with
PBS and embedded in OCT. The tissues were sectioned at 6 yum and used for staining.
The immunostaining procedure was carried out as previously described 4°. Briefly, the
section slides were washed with PBS for 5 min and permeabilized with PBST (0.2% Triton
X-100 in PBS) for 10 min. After that, the slides were sequentially incubated with blocking
buffer (10% Goat Serum, 1% BSA, 0.1% Tween 20) for 1hr at room temperature and
primary antibody in PBST with 1% BSA overnight at 4°C. The antibodies were diluted
according to the manufacturer’s instructions. The mouse anti-Cardiac Troponin T (5
pug/ml, Invitrogen, MA5-12960), rabbit anti-VE-Cadherin (1:400, Cell signaling, #2500),
mouse anti-Nkx2-5 (25 pg/ml, R&D Systems, #259416), rabbit anti-MYL7 (1:1000,
SAB2701294) were used. The slides were further washed three times with PBS and in-
cubated with secondary antibodies in blocking solution for 1 h at room temperature. The
secondary antibodies used include goat anti-mouse 594 (10 pg/ml, A11005, Invitrogen)
and goat anti-rabbit 647 (10 pg/ml, A-21245, Invitrogen). Finally, the slides were stained
with DAPI for 5 min and mounted using ProLong™ Diamond Antifade Mountant (Molecu-
lar Probe, P36962). The Images were captured using Leica TCS-SP8 confocal micro-
scope. For the quantification of the cardiac Troponin T (cTNT) expression, the mean gray
values of cTNT signal were measured using Fiji 6 and normalized to the whole area of
organoid.

Organoid imaging and processing. The images of beating organoids were taken under
Leica DMIG0O00 microscope, three to ten of images were used to measure the organoid
diameters. The length of both longest axis and shortest axis were measured for each
organoid. Besides, the beating organoids were recorded at an interval of 50 ms with a
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Hamamatsu Orca-ER camera with transmitted light. The beating rates were calculated
with beats/frames multiplied by frames/second.

Statistics Data are presented as the mean + standard error of the mean (SEM) for at
least three replicate samples (see figure legends for additional information). Statistical
significance was determined using a Student’s t-test for all quantification except RNA-seq
data. Results were considered statistically significant when the P value was < 0.05 (*P <
0.05). Box plots and bar plots were generated by Prism GraphPad.

Data Availability Sequencing data underlying this study has been deposited at the Gene
Expression Omnibus (GEO) database. Other data is available from the authors upon re-
quest.

Code Availability Computer code used to generate results reported in this study is avail-

able from the authors upon request.
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Figure Legends

Figure 1: Differentiation and characterization of ventricular heart organoids. (A) Diagram
of the ventricular organoid and monolayer cell differentiation workflow. Two cell lines were
differentiated in each system. (B) Representative images of the differentiated cells. The
GFP signal represents CMs labeled by Actn2-eGFP. (C) Quantification of the organoid
diameters from day 0 to day 30. (D) Transverse section analysis revealed three types of
organoids. (E) Analysis of the CM areas in the three types of organoids based on cTNT
staining (n=10 for each group). (F) In situ expression analysis of cardiac lineage genes
with immunofluorescence and RNA in situ hybridizations. Arrowhead points to the Cdh5

positive cells aligning along the inner layer of the cavity. Scale bar=100 um.

Figure 2: ScCRNA-seq analysis of RA- (ventricular protocol) cells. (A) Diagram of the
MULTI-seq experimental workflow. (B) UMAP projections of the single cells grouped by
i) conditions, ii) differentiation methods, iii) cell lines, and iv) stages. As for all UMAPSs in
this work, the x-axis is UMAP1 and the y-axis is UMAP2. (C) Unsupervised clustering of
the single cells. i) UMAP projection of the clusters and ii) cluster-specific differentially
expressed genes with cluster labels (left) and annotated cell types (right). (D) UMAP pro-
jections of single cells colored by the expression pattern of representative cardiac lineage
genes. (E) i) UMAP projection of single cells grouped by cell type and ii) expression levels
of lineage genes in each annotated cell type. (F) The number of profiled cells in each

condition colored proportionately by annotated cell type.

Figure 3): Differentiation and characterization of atrial heart organoids. (A) Diagram of
the atrial organoid and monolayer cell differentiation workflow. RA was added to induce
the atrial cell lineages. (B) Representative image of the cells at different differentiation
stages. (C) The diameter of atrial organoids from day 0 to day 30. (D) Three types of atrial
organoids were identified based on their internal structures organoids. (E) Analysis of the
CM areas in the three types of atrial organoids based on cTNT staining. (F) In situ ex-

pression analysis of cardiac lineage genes in atrial organoids. Scale bar=100 um.

Figure 4: ScCRNA-seq analysis of RA+ (atrial protocol) cells. (A) UMAP projections of the
single cells grouped by i) conditions, ii) differentiation methods, iii) cell lines, and iv)
stages. (B) Unsupervised clustering of the single cells. i) UMAP projection of the clusters
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and ii) cluster-specific differentially expressed genes with cluster labels (left) and anno-
tated cell types (right). (C) UMAP projections of single cells colored by the expression
pattern of representative cardiac lineage genes. (D) i) UMAP projection of single cells
grouped by cell type and ii) expression levels of lineage genes in each annotated cell
type. (E) The number of profiled cells in each condition colored proportionately by anno-
tated cell type.

Figure 5: Predicting cardiac cell types, anatomical zones, and laterality. (A) Diagram of
hierarchal random forest model. Train and test data are aligned via scaling. Train data is
used to derive a random forest model for cell type, which is then applied to test data. For
cardiomyocytes the procedure is iterated for predicting anatomical zone and laterality.
(B) Sankey diagram of 10-fold cross-validation results on data from Cui et al?*. Table
provides cell type, conditional zone, and conditional laterality/side accuracies. (C) Sankey
diagram and accuracies of prediction results for training on the Cui et al. data and predic-
tion on the Asp et al data?>. (D) Sankey diagram and conditional accuracies of prediction
results on Miao et al. data'® (training again on the Cui et al. data). Abbreviations: cm =
cardiomyocytes, ep = epicardial cell, f = fibroblast, ec_vasc = vascular endothelial cells,
ec_endo = endocardial endothelial cells, v = valvar, mf = macrophage, b/t = b/t cell, 5w =
undifferentiated cells, cm_myzo = Myoz2-enriched CMs, f-lv = fibroblast-like: (related to
larger vascular development), f-sv = fibroblast-like: (related to smaller vascular develop-
ment), sm/f = Smooth muscle cells / fibroblast-like), f-skl = Fibroblast-like: (related to car-
diac skeleton connective tissue), ep-der = Epicardium-derived cells, ec-p-a = Endothe-
lium / pericytes / adventitia, im = immune cells, eryth = erythrocytes, peri = pericyte, ns
= nervous system, LA = left atrium, RA = right atrium, LA = left ventricle, RV = right ven-
tricle.

Figure 6: Prediction of wild type RA- and RA+ cells using the validated hierarchal random
forest model. (A) UMAP projections of RA- and RA+ single cells at day 30 grouped by cell
type annotation. (B) UMAP projections of wild type RA- and RA+ single cells at day 30
with Anomalies removed grouped by i) cell types, ii) treatment, and iii) predicted cell types
and zone. (C) Sankey diagram of prediction results of wild type RA- and RA+ cells at day

30 (Anomalies removed). Table provides cell type and conditional zone accuracies. (C)
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Expression levels of genes used to make prediction decisions that either correlate with
the predictions (A and V) or experimental conditions (RA- and RA+). (D) Bar plot of side
predictions in WT cells at day 30.

Figure 7: Study of EA defects in a mutant isogenic line using random forest predictions.
(A) Diagram of the strategy to generate an isogenic line carrying an EA associated muta-
tion and a control line with a large deletion on Nkx2-5 (Del33). (B) Representative organ-
oids differentiated from the two mutants at day 30. (C) Nkx2-5 expression significantly
reduced in the Del33 line derived organoids. (D) UMAP projections of mutant RA- and
RA+ single cells at day 30 grouped by i) cell types, ii) cell line, and iii) differentiation
method. (E) UMAP projections of day 30 mutant RA- and RA+ single cells with Anomalies
removed grouped by i) cell types, ii) treatment, and iii) predicted cell types and zone. (F)
Sankey diagram of prediction results of mutant RA- and RA+ cells at day 30 (Anomalies
removed). Table provides cell type and conditional zone accuracies. (G) Expression lev-
els of genes used to make prediction decisions that either correlate with the predictions.
(H) The results of side predictions in mutant cells at day 30. (I) Gene pathways that dif-
ferentially enrich in the wild type and mutant (predicted) CMs. Scale bar=100um.
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Figure 4
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Figure 5
B Cross Validation on Cui et. al.
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Figure 6
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Figure 7
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