

1 **Human gut *Faecalibacterium prausnitzii* deploy a highly efficient conserved**
2 **system to cross-feed on β -mannan-derived oligosaccharides**

3 Lars J. Lindstad¹, Galiana Lo², Shaun Leivers¹, Zijia Lu³, Leszek Michalak¹, Gabriel
4 V. Pereira⁴, Åsmund K. Røhr¹, Eric C. Martens⁴, Lauren S. McKee³, Sylvia H.
5 Duncan², Bjørge Westereng¹, Phillip B. Pope^{1,5}, Sabina Leanti La Rosa^{1,5}

6

7 ¹Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of
8 Life Sciences, 1432, Aas, Norway

9 ²Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen,
10 Scotland, AB25 2ZD, UK.

11 ³Division of Glycoscience, Department of Chemistry, KTH Royal Institute of
12 Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden

13 ⁴Department of Microbiology and Immunology, University of Michigan Medical
14 School, Ann Arbor, 48109, MI, USA.

15 ⁵Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Aas, Norway

16

17

18 *To whom correspondence should be addressed: sabina.leantilarosa@nmbu.no

19

20 **Running title:** β -MOS depolymerization by *Faecalibacterium prausnitzii*

21 **Keywords:** β -Mannan, β -Mannoligosaccharides, Butyrate-producer, Short-Chain
22 Fatty Acids, Carbohydrate Active Enzymes, Human Gut Microbiota, cross-feeding
23 interactions

24 **ABSTRACT**

25 β -Mannans are hemicelluloses that are abundant in modern diets as components in
26 seed endosperms and common additives in processed food. Currently, the collective
27 understanding of β -mannan saccharification in the human colon is limited to a few
28 keystone species, which presumably liberate low-molecular-weight
29 mannooligosaccharide fragments that become directly available to the surrounding
30 microbial community. Here we show that a dominant butyrate-producer in the human
31 gut, *Faecalibacterium prausnitzii*, is able to acquire and degrade various β -
32 mannooligosaccharides (β -MOS), which are derived by the primary mannanolytic
33 activity of neighboring gut microbiota. Detailed biochemical analyses of selected
34 protein components from their two β -mannooligosaccharides (β -MOS) utilization loci
35 (*FpMULs*) supported a concerted model whereby the imported β -MOS are stepwise
36 disassembled intracellularly by highly adapted enzymes. Coculturing experiments of
37 *F. prausnitzii* with the primary degrader *Bacteroides ovatus* on polymeric β -mannan
38 resulted in syntrophic growth and production of butyrate, thus confirming the high
39 efficiency of the *FpMULs*' uptake system. Genomic comparison with human *F.*
40 *prausnitzii* strains and analyses of 2441 public human metagenomes revealed that
41 *FpMULs* are highly conserved and distributed worldwide. Together, our results
42 provide a significant advance in the knowledge of β -mannans metabolism and the
43 degree to which its degradation is mediated by cross-feeding interactions between
44 prominent beneficial microbes in the human gut.

45 **Importance.** Commensal butyrate-producing bacteria belonging to the Firmicutes
46 phylum are abundant in the human gut and are crucial for maintaining health.
47 Currently, insight is lacking into how they target otherwise indigestible dietary fibers
48 and into the trophic interactions they establish with other glycan degraders in the

49 competitive gut environment. By combining cultivation, genomic and detailed
50 biochemical analyses this work reveals the mechanism enabling *F. prausnitzii*, as a
51 model clostridial cluster IV Firmicute, to cross-feed and access β-mannan-derived
52 oligosaccharides released in the gut ecosystem by the action of primary degraders.
53 A comprehensive survey of human gut metagenomes shows that *FpMULs* are
54 ubiquitous in human populations globally, highlighting the importance of microbial
55 metabolism of β-mannans/β-MOS as a common dietary component. Our findings
56 provide a mechanistic understanding of the β-MOS utilization capability by *F.*
57 *prausnitzii* that may be exploited to select dietary formulations specifically boosting
58 this beneficial symbiont, thus butyrate production, in the gut.

59 **INTRODUCTION**

60 The human distal gut supports a densely populated microbial community that
61 extends the metabolic capabilities lacking in the host's genome (1). In particular,
62 recalcitrant glycans that are resistant to human digestive enzymes are broken down
63 by the colonic microbiota to monosaccharides and further fermented into host-
64 absorbable short-chain fatty acids (SCFAs). Microbial-borne SCFAs serve critical
65 functions both as energy source, regulators of inflammation, cell proliferation and
66 apoptosis (2). Therefore, catabolism of complex dietary carbohydrates reaching the
67 distal part of the gastrointestinal tract has a central role in shaping the structure and
68 metabolic output of the human gut microbiota and, in turn, host health status (3).

69 Members of the Gram-positive Firmicutes and the Gram-negative Bacteroidetes
70 phyla constitute the majority of the bacteria found in this ecosystem (4), individual
71 species of which have evolved different strategies to harvest energy from the
72 available dietary glycans (5). Within the Bacteroidetes, *Bacteroides* spp. have been
73 extensively investigated with respect to carbohydrate degradation and they are
74 considered generalists, displaying broad plasticity for glycan utilization (5).
75 *Bacteroides* spp. are particularly notable for dedicating large proportions of their
76 genome to carbohydrate utilization, organizing genes coding for functionally related
77 carbohydrate active enzymes (CAZymes), transport and regulatory proteins into
78 polysaccharide utilization loci (PULs) (6). Despite variations in the polysaccharide
79 they target, the key feature of a PUL is the presence of one or more TonB-
80 dependent receptor (SusC-homolog) and a contiguous substrate binding lipoprotein
81 (SusD-homolog). Compared with *Bacteroides*, Firmicutes encode a lower
82 proportional number of CAZymes and are thought to be nutritionally specialized for
83 selected glycans (1, 5). Recently, species within the Firmicutes phylum have been

84 shown to organize cohorts of genes encoding glycan-utilization systems into loci and
85 being primary degraders of common dietary carbohydrates (7-9). Firmicutes typically
86 utilize glycan-specific ATP-binding cassette (ABC) transporters, which mediate high-
87 affinity capture of oligosaccharides via their extracellular solute-binding proteins
88 (SBPs) (5).

89 *Faecalibacterium prausnitzii*, a member of the clostridial cluster IV within the
90 Firmicutes phylum, is one of the three most abundant species detected in the human
91 gut microbiota and one of the main sources of butyrate in the colon (10). A growing
92 body of evidence recognizes the crucial role played by *F. prausnitzii* populations in
93 maintaining local and systemic host-health as they are often found to be less
94 abundant in individuals affected by colorectal cancer (11) and certain forms of
95 inflammatory disorders, including alternating-type irritable bowel syndrome (IBS),
96 irritable bowel diseases, celiac disease, obesity and type 2 diabetes, appendicitis
97 and chronic diarrhea (12, 13). In addition, studies in mice models have demonstrated
98 that both cell and supernatant fractions of *F. prausnitzii* reduces the severity of
99 acute, chronic and low-level chemically-induced inflammations (14) (15). *F.*
100 *prausnitzii* also contributes to colonic epithelial homeostasis by stimulating the
101 production of mucin O-glycans and by maintaining appropriate proportions of
102 different cell types of the secretory lineage (16). Collectively, these aforementioned
103 properties make *F. prausnitzii* a potential novel health-promoting probiotic (17) and
104 interventions aimed at increasing the representation of these butyrate-producing
105 bacteria may be used to confer protection against several intestinal disorders.

106 A common component of the human diet are β -mannans. These complex plant
107 glycans are found in high concentrations as naturally occurring dietary fibers in
108 certain nuts, beans, legume seeds, tomato seeds, coconut and coffee beans (18). In

109 addition, mannan hydrocolloids, including guar gum and carob galactomannan
110 (CGM) as well as konjac glucomannan (KGM), are widely used in the food industry
111 to improve the rheological properties of processed products (19). The constant
112 exposure of the gut bacterial community to dietary mannans is consistent with the
113 finding that β -mannan metabolism is one of the core pathways in the human gut
114 microbiota (20). Structurally, β -mannans display source-related diversity with respect
115 to presence of β -1,4-linked mannosyl and glycosyl residues, α -1,6-linked galactosyl
116 groups and acetyl decorations at positions O-2, O-3, and/or O-6 (18). PULs
117 degrading homopolymeric mannan and galactomannan have been described in the
118 glycan generalists *Bacteroides fragilis* and *Bacteroides ovatus*, respectively (21, 22).
119 We recently reported the characterization of a novel β -mannan utilization locus
120 conferring *Roseburia intestinalis*, a model for the clostridial cluster XIVa Firmicutes,
121 with the ability to ferment this fiber through to butyrate via a selfish mechanism (7).
122 β -mannan degradation was proven to be initiated by an endo-acting multi-modular
123 GH26 enzyme localized on the cell surface; the resulting oligosaccharides are
124 imported intracellularly through a highly-specific ABC-transporter, and completely de-
125 polymerized to their component monosaccharides by an enzymatic cocktail
126 containing carbohydrate esterases, β -glucosidases and phosphorylases (7).
127 Although *F. prausnitzii* has been described as an efficient degrader of host-derived
128 and plant glycans (23), the ability of this important butyrate-producing microbe to
129 utilize dietary β -mannans has received little attention. In a previous study, we
130 reported that wood-derived acetylated galactoglucomannan stimulates the
131 proliferation of *F. prausnitzii* populations in a pH-controlled batch culture
132 fermentation system inoculated with healthy adult human feces (24). However, the

133 molecular mechanism underlining β -mannan utilization by *F. prausnitzii* in the human
134 gut has not been explored to date.

135 In this study, we describe and biochemically characterize components of two loci that
136 mediate acquisition and catabolism of β -mannooligosaccharides (β -MOS) by *F.*
137 *prausnitzii* SL3/3. Together, these data allowed us to outline a pathway for dietary β -
138 MOS deconstruction and saccharification to monosaccharides through cross-feeding
139 with *Bacteroides* species, which contributes to the ecology of β -mannan utilization in
140 the gut ecosystem. Remarkably, we show that the binding proteins that confers β -
141 MOS capture in *F. prausnitzii* targeted ligands with stronger affinity than that of
142 *Bacteroides* species, thus providing *F. prausnitzii* with the ability to cross-feed on the
143 β -MOS available in the environment with high efficiency.

144 **RESULTS**

145 Genes encoding enzymatic activities required to catabolize mannans were identified
146 within two putative mannan utilization loci (MULs) in *F. prausnitzii* SL3/3. The large
147 MUL (*FpMULL*) consists of fourteen genes encoding nine enzymes, the components
148 of an ABC transporter, a predicted LacI-type transcriptional regulator (TR), and a
149 hypothetical protein (Fig. 1a). The enzymes encoded by *FpMULL* include an α -
150 galactosidase belonging to the glycoside hydrolase (GH) family 36 (*FpGH36*), two
151 carbohydrate esterases (CEs, *FpCE2* and *FpCE17*), a GH113 (*FpGH113*), one
152 epimerase (*FpMep*), a β -1,4-mannooligosaccharide phosphorylase (*FpGH130_2*), a
153 mannosylglucose phosphorylase (*FpGH130_1*), a phosphomutase (*FpPmm*) and a
154 GH1 isomerase (*FpGH1*). In addition, based on the similarity with *RiGH3A* and
155 *RiGH3B* from the previously characterized β -mannan utilization system in *R.*
156 *intestinalis* (7), genes encoding two predicted GH3 β -glucosidases were identified
157 (*FpGH3A* and *FpGH3B*). These two genes are located in a different locus in the

158 genome, hereafter referred to as *FpMULS*, and are likely to be involved in
159 (galacto)glucomannan turnover. Based on known activities within GH families, the β -
160 1,4-mannan backbone is predicted to be hydrolyzed by extracellular GH26, GH5
161 and/or GH134 enzymes (see www.cazy.org). However, no gene coding for such
162 enzyme was identified in the genome of *F. prausnitzii* SL3/3. In addition, endo- β -1,4-
163 mannanase activity was originally reported for two GH113 (see www.cazy.org)
164 although we demonstrated that a GH113 within the mannan utilization locus of *R.*
165 *intestinalis* is a reducing end mannose-releasing exo-oligomannosidase. A gene
166 encoding a GH113 was detected in the *FpMULL* (Fig. 1a). Based on a genomic
167 context analysis and *in silico* prediction of a signal peptide, the function of *FpGH113*
168 would be as an intracellular mannanase or mannosidase, thus its enzymatic function
169 could not be assigned before an in-depth biochemical characterization (see later
170 results for *FpGH113*).

171 Genomic comparisons showed that homologous systems to the *FpMULL* and
172 *FpMULS* occur in other sequenced *Faecalibacterium* members, with high percentage
173 of similarity (Fig. 1a). Comparison of the gene organization and protein sequence
174 also revealed various levels of rearrangements and moderate protein homology with
175 the two β -mannan utilization loci from *R. intestinalis*. Examination of the regions
176 flanking the *FpMULL* of *F. prausnitzii* SL3/3 showed the presence of genes encoding
177 plasmid mobilization-related proteins, including a cell invasion protein, a relaxase
178 MobA/VirD2 and a DNA ligase (Fig. 1a). Interestingly, *R. intestinalis* L1-82 genome
179 harbors a similar region including genes coding for the same plasmid-related
180 components, suggesting that the origin of *FpMULL* could be the result of vertical
181 transfer through bacterial conjugation within colonic microbes. Further comparisons
182 revealed that the genes located upstream and downstream the *FpMULL* of *F.*

183 *prausnitzii* M21/2 and six other sequenced *F. prausnitzii* strains code for an
184 incomplete prophage, including one-two relaxases and an integrase (Fig. 1a). These
185 results indicate that phage-related horizontal gene transfer was an alternative
186 mechanism for the acquisition of this cluster at same point in the evolutionary history
187 of these strains. Orthologues of both MULL and MULS, with some rearrangements,
188 were identified in *Subdoligranulum variabile* CIM:MAG 1127, suggesting that
189 mannan utilization could be a metabolic feature shared with other Ruminococcaceae
190 members.

191 To further understand the distribution of the two MULs within human-associated *F.*
192 *prausnitzii* strains, we surveyed the publicly available metagenome data from a total
193 of 2441 individuals from regions with distinct geography (North America, Europe,
194 China and Japan) and dietary patterns (Fig. 1b). Overall, 26.35% of the subjects
195 harbor the two *FpMULs* identified in this study while 37.7% carries the *FpMULL*,
196 irrespective of the nationality or health state. When examined for frequency within
197 single datasets, different cohorts and nationalities exhibited differing trends. The two
198 *FpMULs* were most common in the European (up to 40.75% of the subjects),
199 Chinese (up to 48.27%) and Japanese metagenomes (20.37%), whereas their
200 prevalence was lower in North American (10.78%) metagenomes. Among the two
201 hunter-gatherer populations, the Yanomami and Hadza, we detected the presence of
202 only *FpMULL* in one Yanomami and two Hadza individuals, indicating that these
203 microbiomes may be able to degrade galactomannan derived from tubers that are
204 part of their diet (25).

205 ***F. prausnitzii* grows efficiently on β -mannooligosaccharides.** Growth studies
206 showed that *F. prausnitzii* SL3/3 failed to grow on KGM and CGM (Fig. 2a), likely
207 reflecting the absence of a surface β -1,4-endomannanase required to generate

208 suitable β -mannooligosaccharides (β -MOS) for import into the cell. This hypothesis
209 was confirmed by growing *F. prausnitzii* on both substrates pre-digested with a
210 GH26 β -1,4-endomannanase from *R. intestinalis* (Fig 2a). To assay for
211 oligosaccharide generation and/or uptake, we used HPAEC-PAD and determined
212 the concentration of β -MOS in the initial and spent supernatant from *F. prausnitzii*
213 cultures (Fig 2b). Only polymeric β -mannan was observed in the spent supernatant
214 after growth of the bacterium on KGM and CGM, demonstrating that *F. prausnitzii*
215 does not display surface β -1,4-endomannanase activity. In contrast, *F. prausnitzii*
216 was able to take up and utilize CGM- and KGM-derived β -MOS while mannose and
217 mannobiose (M2) are seemingly untouched.

218 Taken together, these data support the concept that the two MULs are being
219 expressed and the resulting proteins orchestrate the degradation of different β -MOS.
220 To determine the biochemical basis for β -MOS import and de-ornamentation, the
221 specificity of β -MOS-binding protein, *FpGH36*, *FpGH113* and the two CEs was
222 determined. A model for catabolism of CGM- and KGM-derived β -MOS is presented
223 in Fig. 3.

224 ***FpMOBP* is a binding protein specific for β -MOS.** The binding of mannohexaose
225 and cellobhexaose to the recombinantly produced *FpMOBP* was tested using
226 isothermal calorimetry (ITC). *FpMOBP* bound to mannohexaose with a K_d of $189 \pm$
227 $1.4 \mu\text{M}$ ($\Delta G = -5.08 \pm 0.01 \text{ kcal/mol}$; $\Delta H = -19.8 \pm 0.28 \text{ kcal/mol}$; $T\Delta S = 14.7 \pm 0.14$
228 kcal/mol ; $n = 0.8$; corresponding thermograms are shown in Fig. S2a). *FpMOBP* did
229 not show any appreciable binding to cellobhexaose (Fig. S2b), demonstrating the
230 specificity of *FpMOBP* toward mannopyranosyl-linked ligands. Together, these data
231 demonstrate that *FpMOBP* is part of an ABC transporter specific for β -MOS.

232 ***FpGH113* is a reducing end mannose-releasing exo-oligomannosidase.**

233 *FpGH113* is a 35 KDa protein sharing 53% identity with *RiGH113* from the previously
234 characterized β -mannan utilization system in *R. intestinalis* (7) (Fig. 1). The closest
235 structurally characterized homolog of *FpGH113* is the β -1,4-mannanase AxMan113A
236 from *Amphibacillus xylanus* (26) with 48% identities between the two amino acid
237 sequences. No signal peptide was identified by SignalP 4.0, suggesting that
238 *FpGH113* is likely located intracellularly. The *FpGH113* enzyme released mannose
239 and oligosaccharides from $6^3,6^4\text{-}\alpha\text{-D-galactosyl-mannopentaose}$ (Gal_2Man_5) (Fig.
240 S1a-b) and mannopentaose (Man_5) (Fig. 4a), with mannose increasing over time
241 (Fig. S1c), consistent with exo-activity. When the reducing end of Man_5 was reduced
242 with NaBD_4 (Fig. 4a), no *FpGH113* activity could be detected demonstrating that this
243 enzyme is a reducing end mannose-releasing exo-oligomannosidase. Considering
244 the predicted intracellular location of *FpGH113*, we tested its activity against
245 *RiGH26*-prehydrolysed CGM. Consistent with this view, release of mannose was
246 detected after overnight incubation of the enzyme with *RiGH26*-generated galacto- β -
247 MOS (Fig. 4b), while *FpGH113* was not able to hydrolyze intact CGM (Fig. S1d).

248 **Removal of α -galactosyl and acetyl substitutions from β -MOS.** *FpGH36* is a
249 predicted intracellularly localized 79 KDa enzyme with two GH36 domains, located at
250 the N- and C-terminus of the protein, as well as an internal melibiase domain. The *F.*
251 *prausnitzii* GH36 domains were all similar to those found in well-characterized α -
252 galactosidases, with AgaB from the thermophilic bacterium *Geobacillus*
253 *stearothermophilus* being the closest structurally characterized homolog (44 %
254 identity) (27). *FpGH36* showed 42% identity to *RiGH36* from *R. intestinalis* (Fig. 1).
255 *FpGH36* hydrolyzed α -1,6-galactose side-chains from CGM-derived β -MOS (Fig. 4c)
256 and Gal_2Man_5 (Fig S1a-b), exhibiting minor activity against polymeric galactomannan

257 (Fig. 4c). This is consistent with the sequential activity of *FpGH36* on internalized
258 galacto- β -MOS *in vivo*.

259 We have previously shown that in *R. intestinalis* the complete removal of acetyl
260 substitutions on the β -MOS backbone is achieved through the complementary action
261 of two esterases, where *RiCE2* attacks acetyl groups on either the 3-O, 4-O or 6-O
262 position, while *RiCE17* on the 2-O position (28). To explore whether *F. prausnitzii*
263 employs a similar mechanism, KGM was pre-hydrolyzed with *RiGH26* to generate
264 glucomanno-oligosaccharides (GMOS) that were subsequently incubated with
265 *FpCE2* (32% amino acid sequence identity with *RiCE2*) and *FpCE17* (46% amino
266 acid sequence identity with *RiCE17*). MALDI-ToF MS analysis of products released
267 from GMOS revealed that the two enzymes mediated the complete removal of
268 acetylations when added together while a partial deacetylation was observed when
269 the substrate was treated with each of the enzymes separately (Fig. 4d). To explore
270 the extent to which this strategy for complete substrate deacetylation is conserved in
271 Firmicutes, we exploited the transacetylation specificity of *R. intestinalis* esterases
272 (28) to generate acetylated mannohexaoses (AcM₆) and tested the activity of *FpCE2*
273 and *FpCE17* on these substrates. *FpCE2* was only able to deacetylate the *RiCE2*-
274 generated AcM₆, thus demonstrating that this enzyme removes 3-O-, 4-O- and 6-O-
275 acetylations (Fig. 4e). *FpCE17* was effective on *RiCE17*-generated AcM₆ and
276 displayed no activity on *RiCE2*-generated AcM₆, thus showing that *FpCE17*
277 exclusively removes the axially oriented 2-O-acetylations (Fig. 4e). Taken together,
278 these results prove that the *F. prausnitzii* esterases have the same acetylation site
279 specificity as their corresponding enzymes in *R. intestinalis*.

280 To further characterize the two *F. prausnitzii* esterases, we evaluated their activity
281 both on a commercial substrate, i.e. para-Nitrophenyl (pNP) acetate, and on a

282 natural substrate, i.e. *RiGH26* hydrolyzed AcGGM. When tested on pNP acetate,
283 both *FpCE2* and *FpCE17* were most active at pH 6.75 (Fig. 4f). Deacetylation rate
284 measurements on *RiGH26*-prehydrolyzed AcGGM at pH 6.75 and 35 °C, conditions
285 that prevents acetyl migration, at equal enzyme loadings (50 nM) indicated that
286 *FpCE2* releases acetate approximately four times faster than *FpCE17* (Table 1).
287 When combined, using 25 nM of each esterase, the deacetylation rate, k_{cat} and
288 specific activity were approximately 2-fold higher compared to the values from
289 treatments with *FpCE17* and 2-fold lower compared to the values from treatments
290 with the *FpCE2* when used on its own, respectively (Table 1). The reduced resulting
291 rate of deacetylation suggests that the esterases are not acting synergistically but
292 may rather be competing for the substrate, a behavior previously reported in
293 cocktails of multiple enzymes for lignocellulose hydrolysis (29).
294 Melting curves for both enzymes in buffers at pH 5.0-8.0 were obtained using a
295 protein thermal shift assay (Fig. 4g-h). Both *FpCE2* and *FpCE17* displayed an
296 irreversible thermal unfolding transition, which is consistent with their multi-domain
297 structure (28, 30). *FpCE17* was stable up to 73 °C, with the highest observed melting
298 temperature at pH 6.0; its lowest observed melting temperature was 58 °C at pH 5.
299 For *FpCE2* the unfolding took place at higher temperature, with a melting point of 62
300 °C at pH 6.0 and a highest melting point of 73 °C at pH 7.0 and 8.0 (Fig. 4g-h); its
301 lowest observed melting temperature was 56 °C at pH 5.0.
302 Studies of substrate specificities have shown that acetyl esterases are able to
303 efficiently catalyze the transfer of an acetyl group from a donor, such as vinyl
304 acetate, to precise positions of an oligosaccharide with the generation of highly
305 specific esterified oligosaccharides (28). Consistent with that notion, we found that
306 both *F. prausnitzii* esterases were able to transacetylate mannotriose and

307 mannotetraose (data not shown). To further test the preferred substrate for the
308 esterases, we incubated either *FpCE17* or *FpCE2* with a mix of M₃, G₄ and X₅ and
309 used vinyl acetate as acetyl donor. MALDI-ToF MS analysis of products generated
310 by these reactions showed that the esterases transferred the acetyl group only to M₃
311 (Fig. 4i), thus confirming the manno-oligosaccharide specificity of *FpCE17* and
312 *FpCE2*.

313 **Co-cultivation of *F. prausnitzii* with primary β -mannan degraders.** The data
314 presented above suggest that *F. prausnitzii* has a sufficiently complex enzymatic
315 toolbox to benefit from the uptake of β -MOS liberated in the surrounding environment
316 by other gut microbes. To test this hypothesis and evaluate the competitiveness of
317 this strain in the utilization of β -MOS, we co-cultured *F. prausnitzii* with two keystone
318 commensal organisms for β -mannan utilization, namely the Gram-negative
319 Bacteroidetes *B. ovatus* strain V975 and the Gram-positive Firmicutes *R. intestinalis*
320 strain L1-82. *F. prausnitzii* grew in the presence, but showed poor growth in the
321 absence, of *B. ovatus* in intact KGM (Fig. 5a). The optical densities obtained when
322 *F. prausnitzii* was grown in monoculture in the no-carbon source control (Fig. 5b)
323 were similar to those obtained in 0.2% (w/v) KGM, suggesting that the microbe is not
324 able to utilize this glycan on its own. Notably, the maximum OD₆₅₀ of the co-culture
325 (OD₆₅₀ = 0.45) appeared higher in the β -mannan polymer than those observed by *B.*
326 *ovatus* in single culture (OD₆₅₀ = 0.37), indicating that syntrophic growth exists
327 between these two populations in these conditions (Fig. 5a). *F. prausnitzii* is a
328 butyrate producer while carbohydrate fermentation by *B. ovatus* results in the
329 production of propionate (5). Therefore, comparing differences in butyrate levels
330 between the single *F. prausnitzii* culture and co-culture may provide evidence as to
331 whether cross-feeding of β -mannan breakdown products by *F. prausnitzii* occurred.

332 Butyrate concentrations were significantly increased ($p = 0.004$) in the co-culture
333 compared to the mono-culture in KGM (Fig. 5d) or the co-culture in minimal medium
334 (Fig. 5e), which suggests that *F. prausnitzii* can effectively compete for β -MOS
335 generated by the cell-surface exposed endo-mannanase *BoMan26B* from *B. ovatus*
336 (31). This effect required the presence of living *B. ovatus* cells, as no evidence of an
337 increase of butyrate levels was detected when *F. prausnitzii* was co-grown with a
338 heat-treated *B. ovatus* culture (Fig. S3). When *F. prausnitzii* was co-cultured with *R.*
339 *intestinalis* in 0.2% KGM or in the absence of a carbon source, the growth curves
340 appeared very similar to when *R. intestinalis* was cultured on its own (Fig. 5g-h). As
341 both bacteria produce butyrate, we compared the value observed in the co-culture to
342 the sum of butyrate concentration in both single cultures. No significant increase ($p >$
343 0.05) of butyrate concentrations was observed in the co-culture compared to the
344 single cultures in KGM (Fig. 5j) or minimal medium (Fig. 5k). Co-cultivation of *F.*
345 *prausnitzii* with either *B. ovatus* (Fig. 5c) or *R. intestinalis* (Fig. 5i) on glucose
346 resulted in no increase in the overall levels of butyrate in the co-cultures (Fig. 5f and
347 Fig. 5l). Together with the results observed in the co-cultures grown without any
348 carbon source, these data indicate the specific effect of KGM degradation products
349 to support *F. prausnitzii* growth and exclude the possibility that this microbe is cross-
350 feeding on bacterial derived components (such as capsular polysaccharides).

351 **DISCUSSION**

352 Biochemical work presented herein demonstrates that two MULs support the ability
353 of *F. prausnitzii* to utilize β -MOS. β -MOS from diet are highly variable with respect to
354 sugar composition and linkages and the *F. prausnitzii* enzymatic apparatus is
355 adapted to deal with this diversity. Our findings show that β -MOS are bound by
356 *FpMOBP* at the cell surface and subsequently imported intracellularly; here, they are

357 further saccharified by *FpGH113* and de-galactosylated and de-acetylated by the
358 combined action of *FpGH36*, *FpCE2* and *FpCE17* (Fig. 3). By analogy with the
359 model described in *R. intestinalis* (7), putative β -glucosidases of GH3 may confer the
360 removal of terminal glucose residues in gluco- β -MOS prior to depolymerization of the
361 remaining linear β -MOS by the activity of a putative mannooligosaccharide
362 phosphorylase (*FpGH130_2*) into mannobiose. Mannobiose is subsequently
363 epimerized into mannosyl-glucose by a putative epimerase, *FpMEP* and
364 phosphorolysed by *FpGH130_1* into glucose and mannose-1-phosphate, similar to
365 the pathway described in *Ruminococcus albus* (32). A comparative genomic analysis
366 revealed that these MULs are widespread and highly conserved amongst human
367 gut-associated *F. prausnitzii* (Fig. 1A). Presence of genes associated with
368 conjugation and phage-related events in the flanking regions suggests that the
369 *FpMULL* was acquired through horizontal gene transfer from other gut bacteria, as
370 previously observed for PULs identified in commensal *Bacteroides* genomes (33).

371 Members of the dominant *Bacteroides* genus, such as *B. ovatus*, and *Roseburia*
372 species that possess GH26 endo-mannanases have been described as the keystone
373 bacteria for mannan degradation in the gut (7, 21, 31). In contrast, *F. prausnitzii* may
374 only access oligosaccharides, released by these primary degraders, which can be
375 imported without the need for extracellular enzymatic cleavage. In this context, we
376 demonstrate that β -MOS are indeed released into the culture medium by *B. ovatus*
377 during co-growth on KGM, and that *F. prausnitzii* is capable to efficiently compete for
378 and utilize these oligosaccharides (Fig. 5a and 5d). However, we observed no
379 explicit evidence of cooperative growth between *R. intestinalis* and *F. prausnitzii*
380 (Fig. 5g and 5j). We recently demonstrated the competitiveness of *R. intestinalis* on
381 β -mannan when in co-culture with *B. ovatus* during growth on AcGGM (7), and

382 highlighted a pivotal role of a transport protein (*RIMnBP*) within the uptake system,
383 which exhibited strong binding to short β -MOS (DP 3-6) with different sidechain
384 decoration patterns (7). Similar observations were recently reported in the
385 *Bifidobacterium* genus, with *B. animalis* subsp. *lactis* ATCC 27673 outcompeting *B.*
386 *ovatus* during growth on galactomannan (34). Notably, the two *B. animalis* binding
387 proteins, BIMnBP2 and BIMnBP1, mediated high affinity capture of β -MOS with
388 preference to oligosaccharides of DP 3-4 and K_d values in the 70-80 nM range (34).
389 In contrast, the SusD-like β -MOS binding proteins from *B. ovatus* displayed binding
390 to M6 (K_d value of 1.8 ± 0.2 mM) (31) with about 10-fold lower affinity than that of
391 *FpMOBP*, 53-fold lower affinity than that of *RIMnBP*, and about 900-fold lower
392 affinity than that of BIMnBP2 and BIMnBP1. Thus, the differential transporter' affinity
393 to β -MOS provides a possible rationale for the trophic interactions established by *F.*
394 *prausnitzii* with *Bacteroides*, enabling efficient capture of communally available
395 nutrients within synthetic consortia, and potentially in natural gut communities.
396 However, the binding affinity of MnBPs plausibly gives reason to why cross-feeding
397 on KGM was unlikely to exist between *R. intestinalis* and *F. prausnitzii*, as the affinity
398 of *RIMnBP* to M6 (K_d value of 33.75 ± 0.95 μ M) was five times stronger than that of
399 *FpMOBP*. This difference is likely to be crucial for selfish resource capture by the
400 keystone β -mannan primary degrader *R. intestinalis* (7), with minimal loss in a
401 competitive environment.

402 To understand the capacity of human populations to derive nutrition from β -MOS, we
403 surveyed 2441 publicly available human metagenomes and revealed that MULs
404 closely related to those of *F. prausnitzii* are widely distributed throughout human
405 populations (Fig. 1c). Indeed, we did not observe correlation with any particular
406 population or nation, consistent with the fact that dietary β -MOS/ β -mannan are a

407 ubiquitous component of the human diet. The *FpMULs* were more common than
408 population restricted traits like red algal porphyran degradation, known to be
409 confined to a small cohort of Japanese subjects and absent in the microbiome of
410 western individuals (33), but they were less common than *Bacteroides*-associated
411 PULs for degradation of plant cell-wall xyloglucan (92% of samples) (35), mixed-
412 linkage β -glucans (92.5% of samples) (36), β -(1,3)-glucans (59% of samples) (37)
413 and yeast α -mannans (62% of samples) (38). Moving beyond the human microbiota,
414 we detected two analogous *FpMULs* in a *F. prausnitzii* strain found in the porcine gut
415 microbiota (39). Proteomic analysis identified *FpMUL*-encoded proteins being more
416 abundant in pigs fed a diet supplemented with 4% acetylated galactoglucomannan,
417 thus providing evidence that these analogous MULs are employed by *F. prausnitzii*
418 inhabiting environments beyond the human gut (39).

419 In conclusion, biochemical and microbiological data presented in this study illustrate
420 that *F. prausnitzii* possesses an extensive enzymatic apparatus that targets β -MOS
421 released by neighboring colonic bacteria. ITC data provide evidence that the external
422 recognition machinery is tailored for the capture of β -MOS with stronger affinity than
423 *Bacteroides*. This is in line with the fact that, when in co-culture, *F. prausnitzii*
424 showed cross-feeding behaviors with *B. ovatus*, whose own β -MOS uptake requires
425 a SusD-like protein that binds oligosaccharides with about 10-fold lower affinity than
426 *FpMOBP*. Furthermore, this study in conjunction with a previous report (7) points to a
427 competitive mechanism of β -MOS/ β -mannan utilization in the gut microbiota where
428 keystone Lachnospiraceae members like *R. intestinalis* have developed a
429 sophisticated “selfish” uptake and degrading system to minimize sharing resources
430 with *Bacteroides* and other Ruminococcaceae species such as *F. prausnitzii*.

431 Overall, our study contributes towards the understanding of cross-feeding
432 mechanisms deployed by a beneficial commensal organism to interact with dietary β -
433 mannan. Significantly, these findings could help to design prebiotic/symbiotic
434 formulations that are optimized for selective manipulation of gut microbiome
435 functions in ways that promote human health and beyond.

436 **MATERIALS AND METHODS**

437 **Substrates.** All glycan stocks were prepared at 10 mg/ml in ddH₂O and sterilized
438 by filtration using a 0.22 μ m membrane filter (Sarstedt AG & Co, Germany).

439 **Polysaccharides.** Konjac glucomannan and carob galactomannan were purchased
440 from Megazyme International (Wicklow, Ireland).

441 **Oligo- and monosaccharides.** Mannose (M₁) and glucose (G₁) were purchased from
442 Sigma Aldrich (St. Louis, MO, USA). Xylopentaose (X₅), cellobiose (G₂),
443 celotetraose (G₄), mannobiase (M₂), mannotriose (M₃), mannotetraose (M₄),
444 mannopentaose (M₅), mannohexaose (M₆), 6¹- α -D-galactosyl-mannotriose (GalM₃)
445 and 6³, 6⁴- α -D-galactosyl-mannopentaose (Gal₂M₅) were purchased from
446 Megazyme. Konjac glucomannan digest and carob galactomannan digest were
447 produced in-house using *RiGH26* (7) in 10 mM sodium phosphate, pH 5.8.
448 Reactions were incubated for 16 h at 37 °C following removal of *RiGH26* using a
449 Vivaspin 20 filtration unit (10.000 MWCO PES, Sartorius) and carbohydrate
450 lyophilization on an ALPHA 2-4 LD Plus freeze dryer (Christ, Germany). Acetylated
451 galactoglucomannan (AcGGM) was produced in-house as described by La Rosa et
452 al. (24).

453 **Bacterial strains and culture conditions.** *F. prausnitzii* SL3/3, *R. intestinalis* L1-82
454 and *Bacteroides ovatus* V975 were routinely cultured under CO₂ at 37 °C in M2
455 medium containing 30% clarified rumen fluid supplemented with 0.2% (w/v) glucose,

456 soluble potato starch and cellobiose (GSC) (40). Growth measurements on
457 individual substrates were performed in M2GSC medium containing a single
458 carbohydrate at 0.2% (v/v) final concentration using 96-well plates in a Don
459 Whitley MACS-VA500 workstation (80% N₂, 10% H₂, 10% CO₂). Growth was
460 assessed by measuring the absorbance at 650 nm (OD₆₅₀) at 2 h intervals for up
461 to 24 h using an Epoch 2 microplate reader (BioTek, Vermont, USA). The
462 competition assay of *F. prausnitzii* and either *B. ovatus* or *R. intestinalis* were
463 conducted by growing the strains as above in the presence of 0.2% (v/v) konjac
464 glucomannan. The strains inoculated into M2 medium with no added carbohydrate
465 source and M2 medium with 0.2% (v/v) glucose were included as negative and
466 positive controls, respectively. Five μ l of overnight bacterial cultures from both
467 strains were used to inoculate the wells (final volume of 200 μ l). The co-cultures
468 were incubated at 37 °C anaerobically and growth was followed by measuring the
469 OD₆₅₀ for 24-32 h. Samples (500 μ l) were collected at the end of the experiment for
470 SCFAs analysis. All growth experiments were performed in triplicates.

471 **Cloning, expression, and purification of recombinant proteins.** The genes
472 encoding mature forms of the proteins described in this study were amplified from
473 the *F. prausnitzii* SL3/3 genomic DNA (BioProject accession number PRJNA39151)
474 by PCR, using appropriate primers (Table S1). All primers were designed to
475 amplify constructs to exclude predicted signal peptides (predicted by the SignalP
476 v4.1 server (41)). PCR products were generated using the Q5 High-Fidelity DNA
477 Polymerase (New England BioLabs, United Kingdom) with 50 ng genomic DNA as
478 template. The PCR products were cloned into pNIC-CH (Addgene plasmid 26117)
479 by ligation-independent cloning (42). All constructs were designed to harbor a C-
480 terminal His₆-tag fusion in the translated recombinant peptide although, for

481 *FpGH36*, His-tag translation was prevented by the introduction of one stop codon
482 at the end of the open-reading frame. Successful generation of constructs was
483 verified by sequencing (Eurofins, UK). Plasmids harboring the gene of interest
484 were transformed into chemically competent *E. coli* BL21 STAR cells (Invitrogen)
485 and an overnight pre-culture was inoculated to 1% in 500 ml Tryptone Yeast
486 extract (TYG) containing 50 µg/ml kanamycin, followed by incubation of the fresh
487 culture for 16 h at 25 °C. Protein overexpression was induced by adding isopropyl
488 β-D-thiogalactopyranoside (IPTG) to a final concentration of 200 µM. Recombinant
489 protein production continued overnight at 25 °C, after which the cells were
490 collected by centrifugation. *FpCE17*, *FpCE2*, *FpGH113* and *FpMOBP* were
491 purified by immobilized metal ion affinity chromatography (IMAC). To this aim, the
492 harvested cell pellet was resuspended in binding buffer (20 mM sodium phosphate
493 pH 7.4, 500 mM sodium chloride, 5 mM imidazole) and lysed using a Vibracell
494 Ultrasonic Homogenizer (Sonics and Materials, USA). The cell debris was pelleted
495 by centrifugation and the supernatant was loaded onto a 5 ml HisTrap IMAC HP
496 Nickel Sepharose column (GE Healthcare), using an ÄKTA Pure chromatography
497 system (GE Healthcare). The target His-tagged protein was eluted using a linear
498 gradient of 0–100% elution buffer (20 mM sodium phosphate pH 7.4, 500 mM
499 sodium chloride, 500 mM imidazole) over 16 column volumes. *FpGH36* was
500 purified by hydrophobic interaction chromatography (HIC). *FpGH36*-containing cell
501 pellet was resuspended in a buffer with 1.5 M ammonium sulfate and lysed as
502 described above. The cell free supernatant was loaded onto a 5 ml HiTrap Phenyl
503 FF (GE Healthcare) and protein was eluted by using a linear reverse gradient to
504 100 mM NaCl over 90 min at a flow rate of 2.5 ml/min. After IMAC or HIC
505 purification, eluted protein fractions were pooled, concentrated using a Vivaspin 20

506 centrifugal concentrator (10-kDa molecular weight cutoff) and applied to a HiLoad
507 16/600 Superdex 75 pg gel filtration column (GE Healthcare). Pure protein
508 samples were dialyzed against 10 mM TrisHCl pH 7.0 and concentrated as
509 described above. Protein purity was determined by SDS-PAGE analysis. Protein
510 concentrations were determined using the Bradford assay (Bio-Rad, Germany).

511 **Activity assays.** Unless otherwise stated, enzyme reactions contained 10 mM
512 sodium phosphate, pH 5.8, and 0.1 mg/ml substrate. Reactions were pre-heated
513 (37 °C for 10 min) in a Thermomixer C incubator with a heated lid (Eppendorf),
514 before addition of the enzyme to 1 µM (in a final reaction volume of 100 µl) for
515 further incubation (up to 16 h) at 37 °C and 700 rpm. All experiments were
516 performed in triplicates.

517 **MALDI-ToF MS analysis of oligosaccharides.** Mannooligosaccharides products
518 were analyzed by MALDI-ToF mass spectrometry on a Ultraflex MALDI-ToF/ToF
519 MS instrument (Bruker Daltonics, Germany) equipped with a 337-nm-wavelength
520 nitrogen laser and operated by the MALDI FlexControl software (Bruker Daltonics).
521 A matrix of 2,5-dihydroxybenzoic acid (DHB) (9% 2,5-dihydroxybenzoic acid [DHB]
522 – 30% acetonitrile [v/v]), was used. All measurements were performed in positive
523 ion, reflector mode with 1000 shots taken per spectrum.

524 **Carbohydrate analysis using high-performance anion-exchange**
525 **chromatography.** Oligo- and monosaccharides were analyzed by high-
526 performance anion-exchange chromatography with pulsed amperometric detection
527 (HPAEC-PAD) on a Dionex ICS-3000 system operated by Chromeleon software
528 version 7 (Dionex). Sugars were loaded onto a CarboPac PA1 2 × 250-mm
529 analytical column (Dionex, Thermo Scientific) coupled to a CarboPac PA1 2 × 50-
530 mm guard column kept at 30 °C. Depending on the analytes, the following

531 gradients were used. The system was run at a flow rate of 0.25 ml/min. For manno-
532 oligosaccharides, the elution conditions were 0-9 min 0.1 M NaOH; 9-35 min 0.1 M
533 NaOH with a 0.1 to 0.3 M NaOAc gradient; 35-40 min 0.1 M NaOH with 0.3 M
534 NaOAc; and 40-50 min 0.1 M NaOH. Commercial mannose and manno-
535 oligosaccharides (DP 2 to 6) were used as external standards.

536 **Acetate release measurements using high-performance liquid**
537 **chromatography.** Acetate content in the samples was analyzed on an RSLC
538 Ultimate 3000 (Dionex, USA) HPLC using a REZEX ROA-Organic Acid H+ 300 × 7.8
539 mm ion exclusion column (Phenomenex, USA). The injection volume was 5 µl and
540 separation was conducted at 65°C, with isocratic elution using 0.6 ml/min of 5 mM
541 H₂SO₄ as mobile phase. The UV detector was set to 210 nm. Data collection and
542 analysis were carried out with the Chromeleon 7.0 software (Dionex).

543 **SCFAs analysis.** SCFA concentrations were measured using a gas chromatograph
544 analyzer equipped with a flame ionization detector (GC-FID) as described previously
545 (43). Following derivatization of the samples using N-tertbutyldimethylsilyl- N-
546 methyltrifluoroacetamide, the samples were analyzed on a Hewlett-Packard 6890
547 gas chromatograph equipped with a silica capillary column using helium as the
548 carrier gas. Quantification of SCFA in the chromatograms was determined based on
549 the retention times of the respective SCFA standards (Sigma-Aldrich, United
550 Kingdom) at concentrations ranging between 5 to 30 mM.

551 **Isothermal titration calorimetry.** Binding of mannohexaose and cellobhexaose to
552 *FpMOBP* was measured at 25 °C in 50 mM sodium phosphate pH 6.5 using either a
553 MicroCal ITC₂₀₀ microcalorimeter or a MicroCal VP-ITC system. To assess the
554 binding to mannohexaose using a MicroCal ITC₂₀₀ microcalorimeter, *FpMOBP* in the
555 sample cell (2.5 µM) was titrated by a first injection of 0.5 µl followed by 19 × 2 µl

556 injections of carbohydrate ligand (2.5 mM) with 120 s between injections. To
557 evaluate the binding to cellobiohexaose using a MicroCal VP-ITC system, *FpMOBP* in
558 the sample cell (22.5 μ M) was titrated by a first injection of 2 μ L followed by 29 \times 6 μ L
559 injections of carbohydrate ligand (2.5 mM) with 180 s between injections.
560 Thermodynamic binding parameters were determined using either the MicroCal
561 Origin software (version 7.0) or the VPViewer2000 software (version 2.6).

562 ***FpCE2* and *FpCE17* optimal pH.** The pH optima for *FpCE17* and *FpCE2* were
563 assessed by incubation of the enzymes with 0.5 mM 4-nitrophenyl (pNP) acetate
564 (Sigma-Aldrich, Germany) at 25 °C using 50 mM sodium phosphate buffer at pHs
565 ranging from 5.0 to 8.0. Due to the difference in deacetylation rate of pNP acetate by
566 the two enzymes, 1 nM of *FpCE2* and 0.1 μ M of *FpCE17* were used in these
567 experiments. Standard plots of 4-Nitrophenol (p-Nitrophenol, Sigma-Aldrich) were
568 prepared at each pH. The experiments were conducted in triplicate in a volume of
569 100 μ L of sample mixture in 96-well microtiter plates. The reaction was followed by
570 measuring the absorbance at 405 nm at 1-minute intervals for 10 minutes using a
571 Microplate reader (BioTek, USA).

572 **Protein thermal shift assay.** The thermal stability of *FpCE17* and *FpCE2* was
573 examined using the Protein Thermal ShiftTM Kit (ThermoFisher, USA) by
574 measuring fluorescence in a real-time PCR system (Applied BiosystemsTM, USA).
575 A final concentration of 0.1 mg/ml of *FpCE17* and *FpCE2* was used in 50 mM sodium
576 phosphate buffers at pH 5.0 to 8.0 and mixed with ROX dye according to the kit
577 protocol. The melting temperature was executed in four replicates with temperatures
578 from 25 to 99 °C in 1 % increments. The data was processed using the StepOneTM
579 software (Applied BiosystemsTM, USA).

580 **Transesterification reactions.** Transesterification of oligosaccharides was
581 conducted using vinyl acetate (Thermo scientific, USA) as acetate donors. Enzymes
582 (1 µg/ml final concentration) were mixed with 1 mg/ml oligosaccharides and a
583 volume of vinyl acetate corresponding to 50 % of the sample volume was added.
584 The samples were incubated in a thermomixer (Eppendorf, Norway), shaking at 600
585 rpm, at ambient temperature overnight, then kept at -20 °C until frozen. The vinyl
586 acetate, which remained in liquid phase on top of the frozen aqueous phase, was
587 discarded; enzyme deactivation and carbohydrate precipitation was achieved by
588 adjusting the aqueous phase to 80% (v/v) ethanol with ice-cold 96% ethanol.
589 Enzymes were removed through filtration using a 1 ml Amicon Ultracel 3kDa
590 ultrafiltration device (Merck KGaA, Germany). The samples were then dried using an
591 Eppendorf Concentrator plus (Eppendorf, Norway) at 30 °C and the material
592 dissolved in 100 µl dH₂O.

593 **Comparative genomics analysis.** Searches for the presence of MULL and MULS
594 in other publicly available *F. prausnitzii* genomes were conducted using a similar
595 strategy as described previously (7). Briefly, the identification of similar MULs in
596 strains other than *F. prausnitzii* SL3/3 was done using BLASTN and the Gene
597 Ortholog Neighborhood viewer on the Integrated Microbial Genomes website
598 (<https://img.jgi.doe.gov>) using the sequences of the genes coding for *FpMOBP*
599 (FPR_17280), *FpGH113* (FPR_17310) and *FpGH3* (FPR_09740) as the search
600 homolog and the default threshold e-value of 1e-5. If this generated a hit, we
601 repeated the process with the adjacent gene to verify that the locus was found in the
602 identified strain. Then, the amino acid identities between each *F. prausnitzii* SL3/3
603 MULL-MULS RefSeq annotated protein and the hits identified in other *F. prausnitzii*
604 strains were determined by BLASTP-based analyses. Finally, we compared the

605 genomic regions surrounding each orthologous MUL for gene conservation and
606 amino acid identities.

607 **Analysis of human gut metagenomic data sets for the presence of MULs.**
608 Available cohorts of human gut metagenomic sequence data (National Center for
609 Biotechnology Information projects: PRJNA422434 (44), PRJEB10878 (45),
610 PRJEB12123 (46), PRJEB12124 (47), PRJEB15371 (48), PRJEB6997 (49),
611 PRJDB3601 (50), PRJNA48479 (20), PRJEB4336 (51), PRJEB2054 (52),
612 PRJNA392180 (53), and PRJNA527208 (54)) were searched for the presence of
613 MUL nucleotide sequences from *F. prauznitzii* MULL (17.5 Kb) and *F. prauznitzii*
614 MULS (5.5 Kb) using the following workflow. Each MUL nucleotide sequence was
615 used separately as a template and then Magic-BLAST (55) v1.5.0 was used to
616 recruit raw Illumina reads from the available metagenomic datasets with an identity
617 cutoff of 97%. Next, the alignment files were used to generate a coverage map using
618 bedtools (56) v2.29.0 to calculate the percentage coverage of each sample against
619 each individual reference. We considered a metagenomic data sample to be positive
620 for a particular MUL if it had at least 70% of the corresponding MUL nucleotide
621 sequence covered.

622 **Data availability**

623 All data supporting the findings of this study are available within the article and
624 Supplementary Information.

625 **Acknowledgements**

626 We are grateful for support from The Research Council of Norway (FRIPRO program
627 to PBP: 250479; BIONÆR program to BW: 244259), as well as the European

628 Research Commission Starting Grant Fellowship (awarded to PBP; 336355
629 MicroDE).

630 **Author contributions**

631 S.L.L.R. generated constructs, performed recombinant protein production and
632 purification and functional characterizations of the binding protein and GHs. L.J.L.,
633 S.L. and L.M. expressed, purified and performed functional characterization of
634 *FpCE2* and *FpCE17*. Growth experiments on mannans and SCFA quantifications
635 were performed by G.L. ITC was performed by Å.K.R., Z.L. and L.S.M. G.P. and
636 S.L.L.R. conducted the human metagenomic analysis. S.L.L.R., P.B.P and B.W.
637 conceived the study and supervised research. The manuscript was written primarily
638 by S.L.L.R. with contributions from P.B.P., S.D., G.L, L.M., S.L., G.P., E.M., L.S.M.,
639 B.W. and L.J.L. Figures were prepared by S.L.L.R.

640 **Competing interests**

641 The authors declare no competing interests.

642 **REFERENCES**

643 1. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. 2013. The
644 abundance and variety of carbohydrate-active enzymes in the human gut
645 microbiota. *Nat Rev Microbiol* 11:497-504.

646 2. Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites
647 and colorectal cancer. *Nat Rev Microbiol* 12:661-72.

648 3. Koropatkin NM, Cameron EA, Martens EC. 2012. How glycan metabolism
649 shapes the human gut microbiota. *Nat Rev Microbiol* 10:323-35.

650 4. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial
651 degradation of complex carbohydrates in the gut. *Gut Microbes* 3:289-306.

652 5. Cockburn DW, Koropatkin NM. 2016. Polysaccharide degradation by the
653 intestinal microbiota and its influence on human health and disease. *J Mol
654 Biol* 428:3230-3252.

655 6. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. 2009. Complex glycan
656 catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm.
657 *J Biol Chem* 284:24673-7.

658 7. La Rosa SL, Leth ML, Michalak L, Hansen ME, Pudlo NA, Glowacki R,
659 Pereira G, Workman CT, Arntzen MO, Pope PB, Martens EC, Hachem MA,
660 Westereng B. 2019. The human gut Firmicute *Roseburia intestinalis* is a
661 primary degrader of dietary beta-mannans. *Nat Commun* 10(1):905.

662 8. Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl
663 MI, Licht TR, Aachmann FL, Westereng B, Abou Hachem M. 2018.
664 Differential bacterial capture and transport preferences facilitate co-growth on
665 dietary xylan in the human gut. *Nat Microbiol* 3:570-580.

666 9. Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M,
667 Demeler B, Koropatkin NM. 2015. Molecular details of a starch utilization
668 pathway in the human gut symbiont *Eubacterium rectale*. Mol Microbiol
669 95:209-30.

670 10. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D,
671 Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley
672 GE, Parkhill J, Flint HJ. 2011. Dominant and diet-responsive groups of
673 bacteria within the human colonic microbiota. ISME J 5:220-30.

674 11. Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS.
675 2008. Real-time polymerase chain reaction quantification of specific butyrate-
676 producing bacteria, *Desulfovibrio* and *Enterococcus faecalis* in the feces of
677 patients with colorectal cancer. J Gastroenterol Hepatol 23:1298-303.

678 12. Miquel S, Martin R, Rossi O, Bermudez-Humaran LG, Chatel JM, Sokol H,
679 Thomas M, Wells JM, Langella P. 2013. *Faecalibacterium prausnitzii* and
680 human intestinal health. Curr Opin Microbiol 16:255-61.

681 13. Lopez-Siles M, Martinez-Medina M, Suris-Valls R, Aldeguer X, Sabat-Mir M,
682 Duncan SH, Flint HJ, Garcia-Gil LJ. 2016. Changes in the abundance of
683 *Faecalibacterium prausnitzii* phylogroups I and II in the intestinal mucosa of
684 inflammatory bowel disease and patients with colorectal cancer. Inflamm
685 Bowel Dis 22:28-41.

686 14. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG,
687 Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C,
688 Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau
689 P, Seksik P, Langella P. 2008. *Faecalibacterium prausnitzii* is an anti-

690 inflammatory commensal bacterium identified by gut microbiota analysis of
691 Crohn disease patients. Proc Natl Acad Sci U S A 105:16731-6.

692 15. Martin R, Miquel S, Chain F, Natividad JM, Jury J, Lu J, Sokol H, Theodorou
693 V, Bercik P, Verdu EF, Langella P, Bermudez-Humaran LG. 2015.
694 *Faecalibacterium prausnitzii* prevents physiological damages in a chronic low-
695 grade inflammation murine model. BMC Microbiol 15:67.

696 16. Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M,
697 Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella
698 P, Thomas M. 2013. *Bacteroides thetaiotaomicron* and *Faecalibacterium*
699 *prausnitzii* influence the production of mucus glycans and the development of
700 goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol
701 11:61.

702 17. Martin R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain
703 F, Berteau O, Azevedo V, Chatel JM, Sokol H, Bermudez-Humaran LG,
704 Thomas M, Langella P. 2017. Functional characterization of novel
705 *Faecalibacterium prausnitzii* strains isolated from healthy volunteers: A step
706 forward in the use of *F. prausnitzii* as a next-generation probiotic. Front
707 Microbiol 8:1226.

708 18. Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu Rev Plant Biol 61:263-
709 89.

710 19. Yamabhai M, Sak-Ubol S, Srila W, Haltrich D. 2016. Mannan biotechnology:
711 from biofuels to health. Crit Rev Biotechnol 36:32-42.

712 20. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady
713 A, Creasy HH, McCracken C, Giglio MG, McDonald D, Franzosa EA, Knight

714 R, White O, Huttenhower C. 2017. Strains, functions and dynamics in the
715 expanded Human Microbiome Project. *Nature* 550:61-66.

716 21. Bagenholm V, Reddy SK, Bouraoui H, Morrill J, Kulcinskaia E, Bahr CM,
717 Aurelius O, Rogers T, Xiao Y, Logan DT, Martens EC, Koropatkin NM,
718 Stalbrand H. 2017. Galactomannan catabolism conferred by a Polysaccharide
719 Utilization Locus of *Bacteroides ovatus*: enzyme synergy and crystal structure
720 of a beta-mannanase. *J Biol Chem* 292:229-243.

721 22. Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S,
722 Watanabe J, Wasaki J, Ito S. 2011. New microbial mannan catabolic pathway
723 that involves a novel mannosylglucose phosphorylase. *Biochem Biophys Res
724 Commun* 408:701-6.

725 23. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJ, Garcia-Gil LJ, Flint HJ.
726 2012. Cultured representatives of two major phylogroups of human colonic
727 *Faecalibacterium prausnitzii* can utilize pectin, uronic acids, and host-derived
728 substrates for growth. *Appl Environ Microbiol* 78:420-8.

729 24. La Rosa SL, Kachrimanidou V, Buffetto F, Pope PB, Pudlo NA, Martens EC,
730 Rastall RA, Gibson GR, Westereng B. 2019. Wood-derived dietary fibers
731 promote beneficial human gut microbiota. *mSphere* 4(1):e00554-18.

732 25. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G,
733 Turroni S, Biagi E, Peano C, Severgnini M, Fiori J, Gotti R, De Bellis G,
734 Luiselli D, Brigidi P, Mabulla A, Marlowe F, Henry AG, Crittenden AN. 2014.
735 Gut microbiome of the Hadza hunter-gatherers. *Nat Commun* 5:3654.

736 26. You X, Qin Z, Yan Q, Yang S, Li Y, Jiang Z. 2018. Structural insights into the
737 catalytic mechanism of a novel glycoside hydrolase family 113 beta-1,4-
738 mannanase from *Amphibacillus xylinus*. *J Biol Chem* 293:11746-11757.

739 27. Merceron R, Foucault M, Haser R, Mattes R, Watzlawick H, Gouet P. 2012.
740 The molecular mechanism of thermostable alpha-galactosidases AgaA and
741 AgaB explained by x-ray crystallography and mutational studies. *J Biol Chem*
742 287:39642-52.

743 28. Michalak L, La Rosa SL, Leivers S, Lindstad LJ, Rohr AK, Lillelund Aachmann
744 F, Westereng B. 2020. A pair of esterases from a commensal gut bacterium
745 remove acetylations from all positions on complex beta-mannans. *Proc Natl
746 Acad Sci U S A* 117:7122-7130.

747 29. van Dyk JS, Pletschke, B.I. 2013. Enzyme synergy for enhanced degradation
748 of lignocellulosic waste, p 57–65. *In* Shukla P, Pletschke IB (ed), *Advances in
749 Enzyme Biotechnology*, Springer, New Delhi.

750 30. Strucksberg KH, Rosenkranz T, Fitter J. 2007. Reversible and irreversible
751 unfolding of multi-domain proteins. *Biochim Biophys Acta* 1774:1591-603.

752 31. Bagenholm V, Wiemann M, Reddy SK, Bhattacharya A, Rosengren A, Logan
753 DT, Stalbrand H. 2019. A surface-exposed GH26 beta-mannanase from
754 *Bacteroides ovatus*: Structure, role, and phylogenetic analysis of BoMan26B.
755 *J Biol Chem* 294:9100-9117.

756 32. Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, Matsui H. 2012.
757 Metabolic mechanism of mannan in a ruminal bacterium, *Ruminococcus
758 albus*, involving two mannose phosphorylases and cellobiose 2-epimerase:
759 discovery of a new carbohydrate phosphorylase, beta-1,4-
760 mannooligosaccharide phosphorylase. *J Biol Chem* 287:42389-99.

761 33. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010.
762 Transfer of carbohydrate-active enzymes from marine bacteria to Japanese
763 gut microbiota. *Nature* 464:908-12.

764 34. Ejby M, Guskov A, Pichler MJ, Zanten GC, Schoof E, Saburi W, Slotboom DJ,
765 Abou Hachem M. 2019. Two binding proteins of the ABC transporter that
766 confers growth of *Bifidobacterium animalis* subsp. *lactis* ATCC27673 on beta-
767 mannan possess distinct manno-oligosaccharide-binding profiles. *Mol*
768 *Microbiol* 112:114-130.

769 35. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O,
770 Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG,
771 Cederholm SN, Davies GJ, Martens EC, Brumer H. 2014. A discrete genetic
772 locus confers xyloglucan metabolism in select human gut Bacteroidetes.
773 *Nature* 506:498-502.

774 36. Tamura K, Hemsworth GR, Dejean G, Rogers TE, Pudlo NA, Urs K, Jain N,
775 Davies GJ, Martens EC, Brumer H. 2017. Molecular mechanism by which
776 prominent human gut Bacteroidetes utilize mixed-linkage beta-glucans, major
777 health-promoting cereal polysaccharides. *Cell Rep* 21:2030.

778 37. Dejean G, Tamura K, Cabrera A, Jain N, Pudlo NA, Pereira G, Viborg AH,
779 Van Petegem F, Martens EC, Brumer H. 2020. Synergy between cell surface
780 glycosidases and glycan-binding proteins dictates the utilization of specific
781 beta(1,3)-glucans by human gut Bacteroides. *mBio* 11(2):e00095-20.

782 38. Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, Porter NT,
783 Urs K, Thompson AJ, Cartmell A, Rogowski A, Hamilton BS, Chen R, Tolbert
784 TJ, Piens K, Bracke D, Vervecken W, Hakki Z, Speciale G, Munoz-Munoz JL,
785 Day A, Pena MJ, McLean R, Suits MD, Boraston AB, Atherly T, Ziemer CJ,
786 Williams SJ, Davies GJ, Abbott DW, Martens EC, Gilbert HJ. 2015. Human
787 gut Bacteroidetes can utilize yeast mannan through a selfish mechanism.
788 *Nature* 517:165-169.

789 39. Michalak L, Gaby JC, Lagos L, La Rosa SL, Hvidsten TR, Tetard-Jones C,
790 Willats WGT, Terrapon N, Lombard V, Henrissat B, Droege J, Arntzen MO,
791 Hagen LH, Overland M, Pope PB, Westereng B. 2020. Microbiota-directed
792 fibre activates both targeted and secondary metabolic shifts in the distal gut.
793 Nat Commun 11(1):5773.

794 40. Miyazaki K, Martin JC, Marinsek-Logar R, Flint HJ. 1997. Degradation and
795 utilization of xylans by the rumen anaerobe *Prevotella bryantii* (formerly *P.*
796 *ruminicola* subsp. *brevis*) B(1)4. Anaerobe 3:373-81.

797 41. Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0:
798 discriminating signal peptides from transmembrane regions. Nat Methods
799 8:785-6.

800 42. Aslanidis C, de Jong PJ. 1990. Ligation-independent cloning of PCR products
801 (LIC-PCR). Nucleic Acids Res 18:6069-74.

802 43. Richardson A, Calder, AG, Stewart, CS, Smith, A. 1989. Simultaneous
803 determination of volatile and non-volatile acidic fermentation products of
804 anaerobes by capillary gas chromatography. Lett Appl Microbiol 9:5-8.

805 44. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D,
806 Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y,
807 Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong
808 M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda
809 S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H,
810 Yang R, Zheng W, Li S, Yang H, et al. 2012. A metagenome-wide association
811 study of gut microbiota in type 2 diabetes. Nature 490:55-60.

812 45. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H,
813 Stenvang J, Li Y, Wang X, Xu X, Chen N, Wu WK, Al-Aama J, Nielsen HJ,

814 Kiilerich P, Jensen BA, Yau TO, Lan Z, Jia H, Li J, Xiao L, Lam TY, Ng SC,
815 Cheng AS, Wong VW, Chan FK, Xu X, Yang H, Madsen L, Datz C, Tilg H,
816 Wang J, Brunner N, Kristiansen K, Arumugam M, Sung JJ, Wang J. 2017.
817 Metagenomic analysis of faecal microbiome as a tool towards targeted non-
818 invasive biomarkers for colorectal cancer. Gut 66:70-78.

819 46. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X,
820 Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H,
821 Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H,
822 Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S,
823 Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W. 2017. Gut
824 microbiome and serum metabolome alterations in obesity and after weight-
825 loss intervention. Nat Med 23:859-868.

826 47. Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong
827 J, Ren H, Liu W, Ma J, Su Q, Zhang H, Yang J, Wang X, Zhao X, Gu W, Bi Y,
828 Peng Y, Xu X, Xia H, Li F, Xu X, Yang H, Xu G, Madsen L, Kristiansen K,
829 Ning G, Wang W. 2017. Analyses of gut microbiota and plasma bile acids
830 enable stratification of patients for antidiabetic treatment. Nat Commun
831 8:1785.

832 48. He Q, Gao Y, Jie Z, Yu X, Laursen JM, Xiao L, Li Y, Li L, Zhang F, Feng Q, Li
833 X, Yu J, Liu C, Lan P, Yan T, Liu X, Xu X, Yang H, Wang J, Madsen L, Brix S,
834 Wang J, Kristiansen K, Jia H. 2017. Two distinct metacommunities
835 characterize the gut microbiota in Crohn's disease patients. Gigascience 6:1-
836 11.

837 49. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, Wu X, Li J, Tang L, Li Y,
838 Lan Z, Chen B, Li Y, Zhong H, Xie H, Jie Z, Chen W, Tang S, Xu X, Wang X,

839 Cai X, Liu S, Xia Y, Li J, Qiao X, Al-Aama JY, Chen H, Wang L, Wu QJ,
840 Zhang F, Zheng W, Li Y, Zhang M, Luo G, Xue W, Xiao L, Li J, Chen W, Xu
841 X, Yin Y, Yang H, Wang J, Kristiansen K, Liu L, Li T, Huang Q, Li Y, Wang J.
842 2015. The oral and gut microbiomes are perturbed in rheumatoid arthritis and
843 partly normalized after treatment. *Nat Med* 21:895-905.

844 50. Nishijima S, Suda W, Oshima K, Kim SW, Hirose Y, Morita H, Hattori M.
845 2016. The gut microbiome of healthy Japanese and its microbial and
846 functional uniqueness. *DNA Res* 23:125-33.

847 51. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M,
848 Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N,
849 Jorgensen T, Brändslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F,
850 Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak
851 S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-
852 Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Meta HITc, Bork P,
853 Wang J, Ehrlich SD, Pedersen O. 2013. Richness of human gut microbiome
854 correlates with metabolic markers. *Nature* 500:541-6.

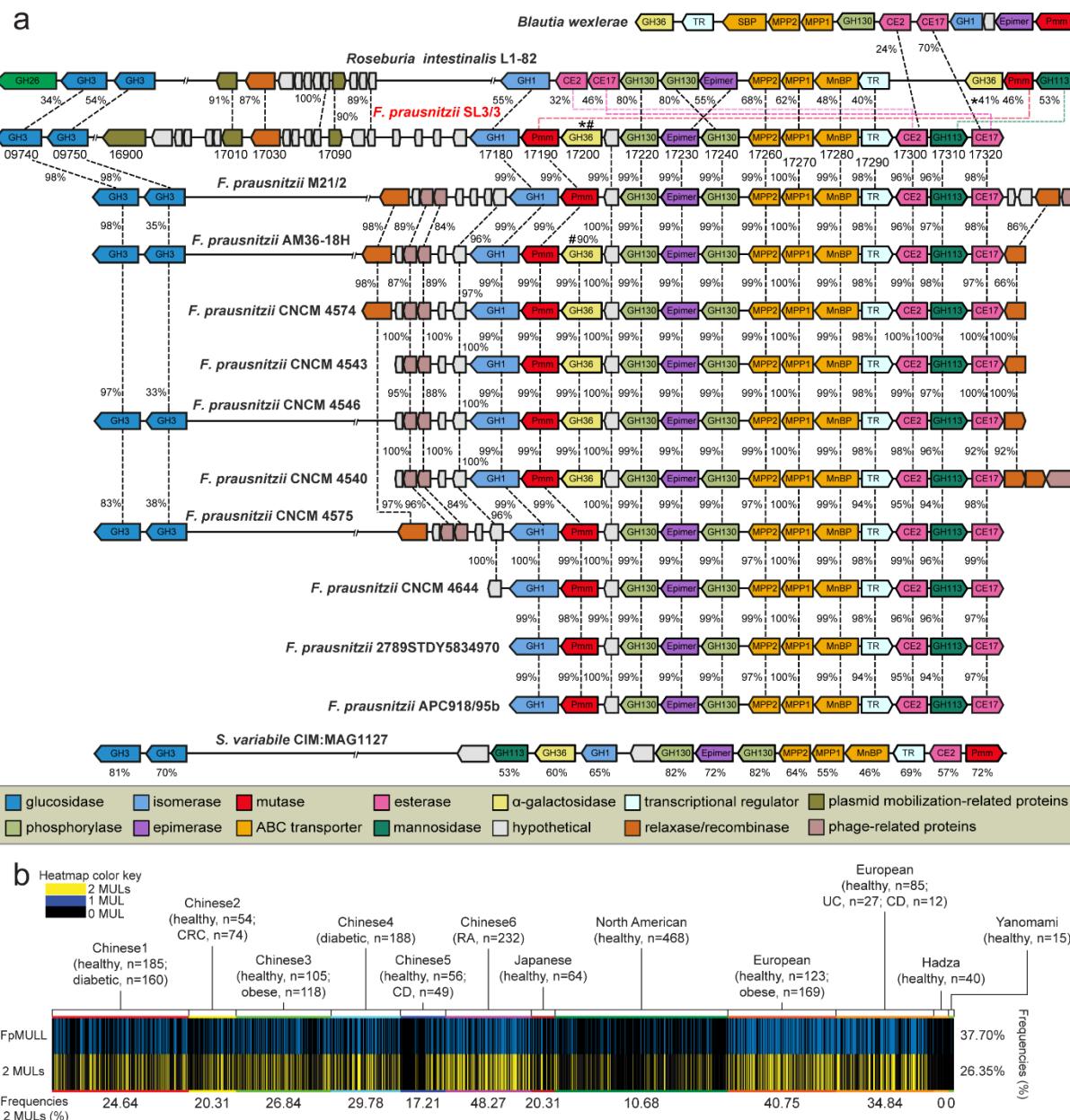
855 52. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,
856 Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J,
857 Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM,
858 Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P,
859 Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang
860 X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K,
861 Pedersen O, Parkhill J, Weissenbach J, et al. 2010. A human gut microbial
862 gene catalogue established by metagenomic sequencing. *Nature* 464:59-65.

863 53. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G,
864 Knight R, Manjurano A, Changalucha J, Elias JE, Dominguez-Bello MG,
865 Sonnenburg JL. 2017. Seasonal cycling in the gut microbiome of the Hadza
866 hunter-gatherers of Tanzania. *Science* 357:802-806.

867 54. Conteville LC, Oliveira-Ferreira J, Vicente ACP. 2019. Gut microbiome
868 biomarkers and functional diversity within an amazonian semi-nomadic
869 hunter-gatherer group. *Front Microbiol* 10:1743.

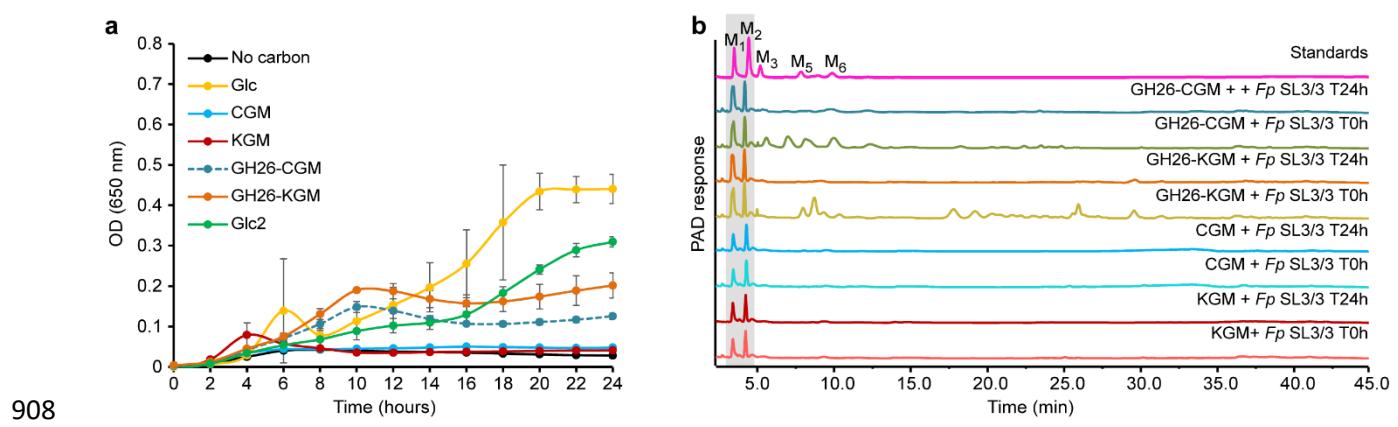
870 55. Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. 2019.
871 Magic-BLAST, an accurate RNA-seq aligner for long and short reads. *BMC
872 Bioinformatics* 20:405.

873 56. Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing
874 genomic features. *Bioinformatics* 26:841-2.


875 **Table 1.** Deacetylation rate, specific activity and turnover rates of *FpCE2* and
876 *FpCE17* on AcGGM from Norway spruce. Values are calculated based on the
877 acetate released in the initial 15 minutes of reaction.

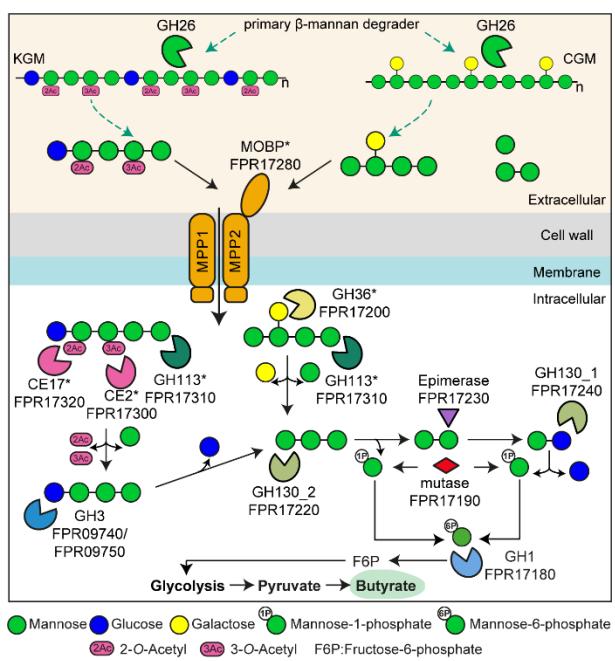
	<i>FpCE17</i>	<i>FpCE2</i>	<i>FpCE17+FpCE2</i>
Deacetylation rate [nmol/s]	4166	16550	7588
k_{cat} [s⁻¹]	83	331	152
Specific activity [nmol acetate/s/μg enzyme]	2	8	-

878


879 **FIGURES**

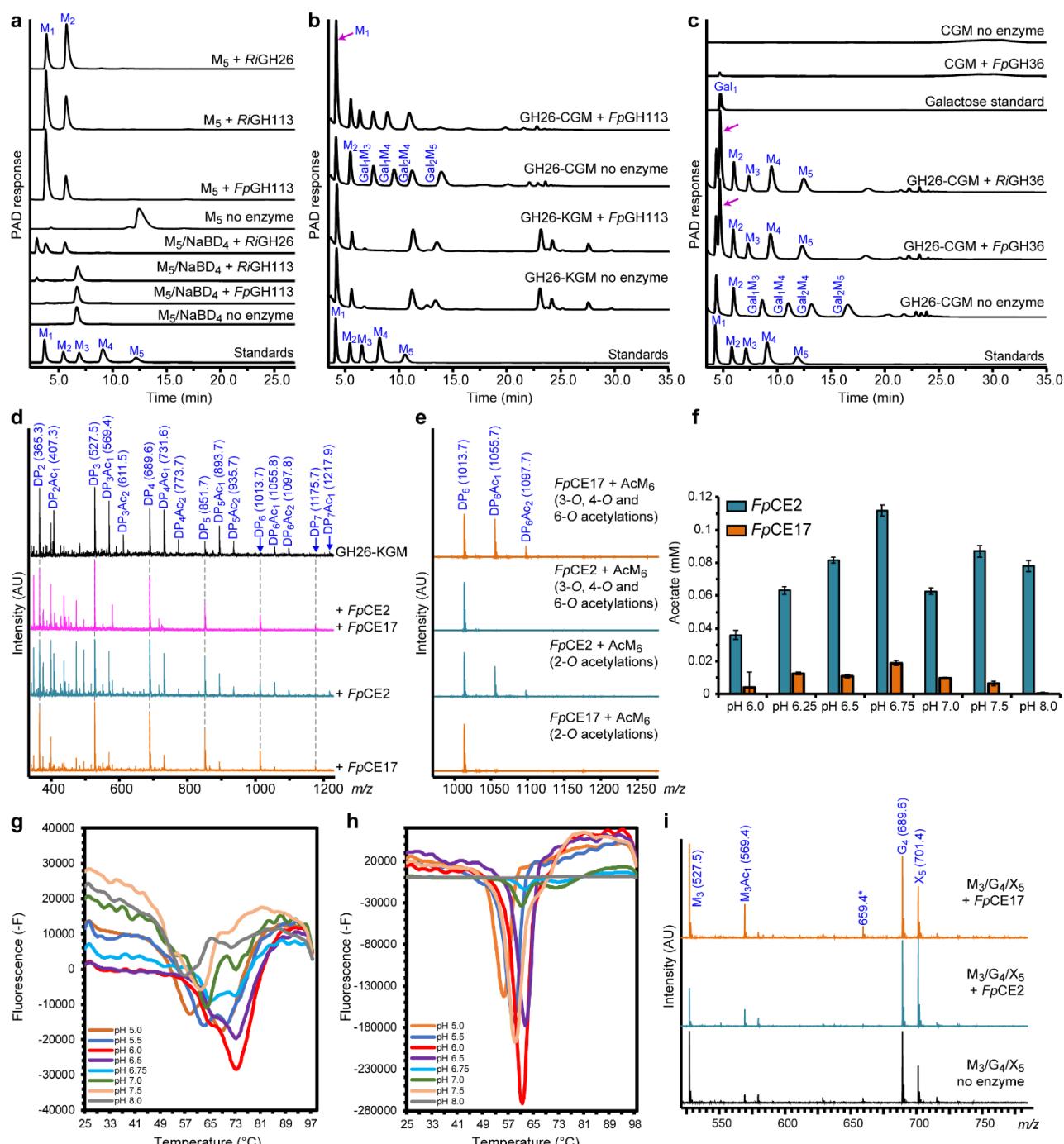
880 **Figure 1. a**, Large and small β -mannooligosaccharide utilization loci (MULL and
881 MULS, respectively) genomic structure in *F. prausnitzii* SL3/3 and across other
882 publicly available *F. prausnitzii* genomes. In *F. prausnitzii* SL3/3, locus tag numbers
883 FPR_XXXXX are abbreviated with the last numbers after the hyphen. *FpMULS*
884 corresponds to the genes 09740-09750 while *FpMULL* includes the genes 17180-
885 17320. Numbers between each gene indicate the percent identity of the encoded
886 protein. Numbers below *S. variabile* CIM:MAG1127 genes indicate the identity of the
887 encoded proteins shared with the same protein in *F. prausnitzii* SL3/3. **b**, Prevalence
888 of *FpMULL* as well as both *FpMULL* and *FpMULS* (2 MULs) in human
889 metagenomes. Each line denotes the presence (blue or yellow) or absence (black) of
890 the *FpMULL/MULs* related in a single human gut metagenomic sample. The
891 numbers below the bottom row represent the frequency of *FpMULs* that each cohort
892 possesses. The frequency of *FpMULL/MULs* incidence across all 2441 individuals is
893 shown on the right.

896 **Figure 2. Growth profile and carbohydrate consumption of *F. prausnitzii* SL3/3.**


897 **a**, Cells were grown on M2 medium supplemented with 0.2% (w/v) polysaccharide
898 (CGM, carob galactomannan; KGM, konjac glucomannan), oligosaccharides (GH26-
899 CGM, *Ri*GH26-pretreated carob galactomannan; GH26-KGM, *Ri*GH26-pretreated
900 konjac glucomannan), cellobiose (Glc2) and glucose (Glc) as the sole carbon
901 source. Data are averages and standard deviations of three biological replicates. **b**,
902 Analysis of the growth medium used in the experiment described in **a** by HPAEC-
903 PAD. Traces show mannose, mannooligosaccharides and polysaccharides detected
904 in the supernatant before (T0h) and after fermentation (T24h) with *F. prausnitzii*.
905 Samples were chromatographed with the following external standards: M₁, mannose;
906 M₂, mannobiose; M₃, mannotriose; M₄, mannotetraose; M₅, mannopentaose; M₆,
907 mannohexaose. The data displayed are examples from three biological replicates.

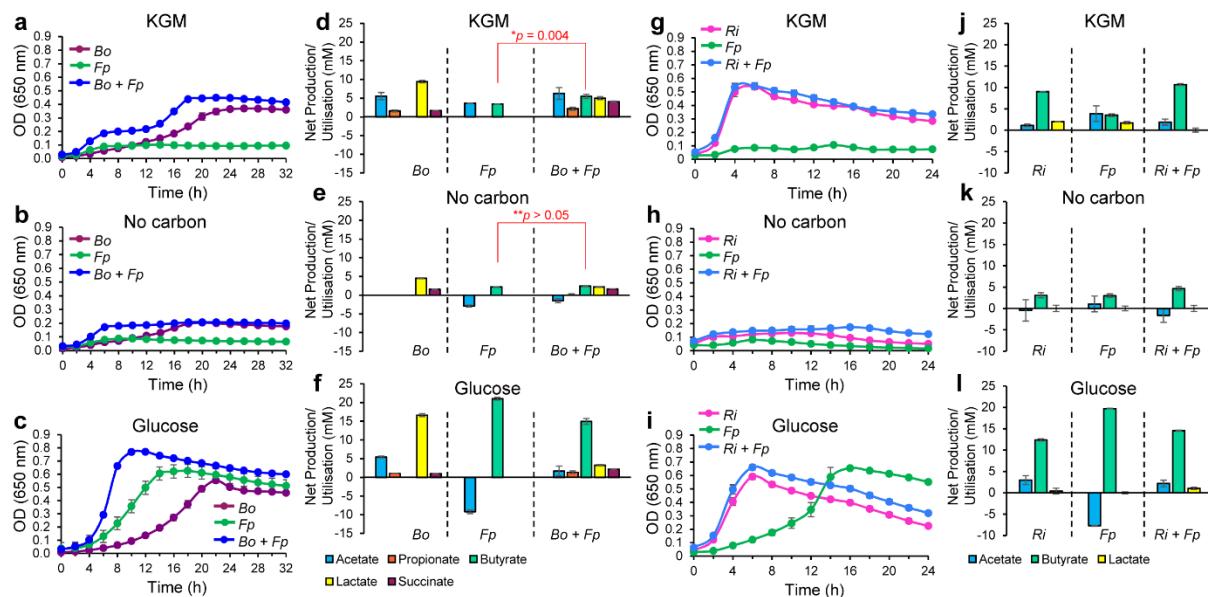
910 **Figure 3. Schematic model of the β -MOS degradation pathway in *F. prausnitzii*.**

911 Gene products are colored as in Figure 1. β -MOS liberated by β -mannan keystone
912 species are bound on the surface of the *F. prausnitzii* cells by the MOBP binding
913 protein. The β -MOS transit intracellularly through the associated ABC-transporter.
914 Once intracellularly, the α -galactosidase GH36 and the reducing end mannose-
915 releasing exo-oligomannosidase GH113, respectively, process the
916 galactomanno-oligosaccharides into galactose, mannose and mannotriose. The
917 glucomanno-oligosaccharides are processed by the acetylersterases CE2 and CE17,
918 two β -glucosidases (GH3) and the reducing end mannose-releasing exo-
919 oligomannosidase GH113, respectively, into acetate, mannose, glucose and
920 mannotriose. The mannotriose is hydrolyzed by the β -1,4-manno-oligosaccharide
921 phosphorylase GH130_2 into mannose-1-phosphate and mannobiose which is then
922 epimerized to mannosyl-glucose by an epimerase. A β -1,4-mannosylglucose
923 phosphorylase GH130_1 phosphorolyses mannosyl-glucose into mannose-1-
924 phosphate and glucose. The mannose-1-phosphate is converted into mannose-6-
925 phosphate by a mannose phosphate mutase and further isomerized into fructose-6-
926 phosphate by a GH1. This product, together with the other liberated
927 monosaccharides and acetate, enters glycolysis that generates pyruvate, some of
928 which is converted into butyrate. Asterisks indicate proteins characterized in this
929 study.


930

931

932 **Figure 4.** HPAEC-PAD and MALDI-ToF analysis of the activity of enzymes removing
933 acetyl and galactosyl side chains and further hydrolyzing the imported β -MOS. **a**,
934 mannose and β -MOS generated when *FpGH113* was incubated with
935 mannopentaose (M_5). *FpGH113* was unable to hydrolyze M_5 that had been pre-
936 treated with sodium borodeuteride ($NaBD_4$), to convert the reducing end
937 monosaccharide unit into its alditol. Control reaction with the previously
938 characterized reducing end mannose-releasing exo-oligomannosidase *RiGH113* and
939 endo-mannanase *RiGH26* are shown. **b**, HPAEC-PAD traces of the product
940 generated before and after hydrolysis of *RiGH26*-pretreated carob galactomannan
941 (GH26-carob) and *RiGH26*-pretreated konjac glucomannan (GH26-KGM) with
942 *FpGH113*. **c**, HPAEC-PAD trace showing the oligosaccharide products of CGM
943 digestion with *RiGH26* and subsequently incubated with *FpGH36* α -galactosidase. **d**,
944 MALDI-ToF spectra showing products (as sodium-adducts) generated after
945 incubation of predigested KGM (*RiGH26*-KGM) with either *FpCE17* or *FpCE2* or both
946 enzymes in combination. Peaks are labelled by DP and number of acetyl (Ac)
947 groups. **e**, Mass spectra of mannohexaose containing acetylations at different
948 positions after treatment with either *FpCE17* or *FpCE2*. These substrates were
949 generated in house using the *R. intestinalis* esterases *RiCE2* and *RiCE17*. The
950 annotated *m/z* values indicate sodium adducts. **f**, pH optima of *FpCE17* or *FpCE2*.
951 pH optima were determined on pNP-acetate in 50 mM sodium phosphate buffers
952 with varying pH at room temperature. Acetate release was measured after a 10 min
953 incubation. **g**, Thermal shift assay melting curve for *FpCE17*. **h**, Thermal shift assay
954 melting curve for *FpCE2*. Both in **g** and **h**, plots show derivative fluorescence data (-
955 F) as a function of temperature ($^{\circ}C$). **i**, MALDI-ToF MS analysis of reactions for
956 identification of preferred oligosaccharides for *FpCE2* and *FpCE17*. The esterases


957 were tested on a mix with mannotriose (*m/z* 527; M₃), cellotetraose (*m/z* 689; G₄)
958 and xylopentaose (*m/z* 701; X5) and with vinyl acetate, vinyl propionate and vinyl
959 butyrate as ester donors. In all panels, data are representative of independent
960 triplicates. Abbreviations: M₁, mannose, M₂, mannobiose; M₃, mannotriose; M₄,
961 mannotetraose; M₅, mannopentaose; M₆, mannohexaose, Gal₁, galactose; Gal₁M₃,
962 galactosylmannotriose; Gal₁M₄, galactosylmannotetraose; Gal₂M₄,
963 digalactosylmannotetraose; Gal₂M₅, digalactosylmannopentaose.

964

965

966 **Figure 5. Co-cultivation experiments of *F. prausnitzii* with keystone β -mannan
967 degraders.** Growth kinetics of mono- and co-cultures of *F. prausnitzii* (*Fp*) and *B.*
968 *ovatus* (*Bo*) in M2 medium containing **a**, 0.2% konjac glucomannan (KGM), **b**, no
969 carbon source (no carbon) or **c**, 0.2% glucose. Fermentation products for mono- and
970 co-cultures of *F. prausnitzii* (*Fp*) and *B. ovatus* (*Bo*) in **d**, KGM, **e**, no carbon source
971 or **f**, glucose. Growth of single and co-cultures of *F. prausnitzii* (*Fp*) and *R.*
972 *intestinalis* (*Ri*) in M2 medium supplemented with **g**, 0.2% konjac glucomannan
973 (KGM), **h**, no carbon source or **i**, glucose. Concentration of different metabolites in
974 the spent media of single and co-cultures of *F. prausnitzii* (*Fp*) and *R. intestinalis* (*Ri*)
975 in M2 medium with **j**, 0.2% konjac glucomannan (KGM) **k**, no carbon source or **l**,
976 glucose. The data are means with standard deviations of biological triplicates.
977 Statistically significant differences were determined using the two-tailed unpaired
978 Student's t test.

979