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Abstract

Daily or circadian rhythms in mammals are orchestrated by a master circadian clock within
the hypothalamic suprachiasmatic nuclei (SCN). Here, cell-autonomous oscillations in gene
expression, intrinsic membrane properties, and synaptic communication shape the electrical
landscape of the SCN across the circadian day, rendering SCN neurons overtly more active
during the day than at night. This well-accepted hallmark bioelectrical feature of the SCN has
overwhelmingly emerged from studies performed on a small number of nocturnal rodent
species. Therefore, for the first time, we investigate the spontaneous and evoked electrical
activity of SCN neurons in a diurnal mammal. To this end, we measured the electrical activity
of individual SCN neurons during the day and at night in brain slices prepared from the
diurnal murid rodent Rhabdomys pumilio and then developed cutting-edge data assimilation
and mathematical modelling approaches to uncover the underlying ionic mechanisms. We
find that R. pumilio SCN neurons were more excited in the day than at night, recapitulating
the prototypical pattern of SCN neuronal activity previously observed in nocturnal rodents.
By contrast, the evoked activity of R. pumilio neurons included a prominent suppressive
response that is not present in the SCN of nocturnal rodents. Our computational modelling
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approaches reveal transient subthreshold A-type potassium channels as the primary
determinant of the suppressive response and highlight a key role for this ionic mechanism in
tuning excitability of clock neurons and optimising SCN function to accommodate R.
pumilio’s diurnal niche.

Keywords: diurnality, circadian rhythms, suprachiasmatic nucleus, electrical activity,
mathematical modelling, data assimilation

INTRODUCTION

The mammalian master circadian clock is localized within the hypothalamic suprachiasmatic
nucleus (SCN), where nearly 20,000 neurons synchronize their daily activity with the light-
dark cycle to orchestrate circadian rhythms in physiology and behaviour (Reppert & Weaver,
2002). SCN neurons are electrically and chemically heterogeneous. Most, if not all, SCN
neurons contain an internal molecular clock that operates on a transcription-translation
feedback loop (TTFL) (Ko & Takahashi, 2006). Activity of the TTFL drives circadian rhythms
in electrical activity, with SCN neurons notably more active during the day (up-state) than at
night (down-state). This excitability landscape within the SCN is reinforced by the
appropriate synaptic integration of extrinsic signals, which includes photic information from
the retina and behavioural feedback reflecting arousal state (Belle & Diekman, 2018).

Our current understanding of SCN neurophysiology comes overwhelmingly from
electrophysiological recordings on a small number of nocturnal rodent species (mice, rats
and hamsters) (Colwell, 2011; Belle & Diekman, 2018; Harvey et al., 2020). A handful of
studies have confirmed that the daytime peak in spontaneous activity (as reflected in
extracellular electrical activity or deoxyglucose uptake) is retained in the SCN of diurnal
species (Sato & Kawamura, 1984; Schwartz, 1991; Ruby & Heller, 1996). However, there
has been no whole-cell recording of SCN neurons from a diurnal species, and the question
of how, or if, SCN neurophysiology is altered to accommodate a diurnal niche remains
unanswered. Rhabdomys pumilio (the four striped mouse) represents an excellent
opportunity to address this question. This species is strongly diurnal (Dewsbury & Dawson,
1979; Schumann et al., 2005; Bano-Otalora et al., 2020) and is a murid rodent, facilitating
comparison with established findings from closely related nocturnal species (mice and rats).

We adopted a parallel approach of experimental recording and advanced computational
modelling to understand the R. pumilio SCN. First, we address the lack of data on single-cell
physiology in diurnal SCN by using whole-cell recordings to describe spontaneous electrical
states and their daily variation. We then determined the evoked membrane properties of
these diurnal SCN neurons by recording their responses to inputs. We then turned to cutting-
edge data assimilation and modelling approaches to gain insight into the cellular and ionic
mechanisms underlying passive and evoked electrical states. Our results revealed
similarities in SCN neurophysiology between the R. pumilio and other rodent species, but
also exposed fundamental differences which may serve to accommodate SCN functioning to
a diurnal niche.

RESULTS

SCN neuropeptidergic organization in the diurnal Rhabdomys pumilio.

Prior to assaying single-cell electrical properties in the R. pumilio SCN, we first described the
anatomical and neuropeptidergic organization of the SCN in this species. This provided us
with a practical guide to ensure only neurons within the SCN were targeted for
electrophysiology since no brain atlas yet exists for this species. To this end, we performed
immunofluorescence labelling for nuclear DNA with DAPI, vasoactive intestinal polypeptide
(VIP), arginine vasopressin (AVP), and gastrin-releasing peptide (GRP) (Fig.1).

The gross neuroanatomy of the R. pumilio SCN across the rostro-caudal axis is broadly
similar to other rodent species (Smale & Boverhof, 1999; Abrahamson & Moore, 2001)
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(Fig.1A). Immunofluorescence labelling for the main neuropeptides showed that the R.
pumilio SCN contains VIP, AVP, and GRP, and importantly, the neuroanatomical localization
of these neuropeptides was broadly similar to the distribution found in other rodent species
(Smale & Boverhof, 1999; Abrahamson & Moore, 2001), AVP-positive cell bodies were
mainly localized in the dorsomedial aspect (sometimes termed “shell” (Fig.1B)), while VIP-
positive somas were localized throughout the ventral region or “core”, with VIP
immunoreactive axonal processes extended into the dorsal SCN (Fig.1C). By contrast, GRP-
positive neurons were localized in the central SCN (Fig.1D).

Diurnal changes in the spontaneous electrical activity of Rhabdomys pumilio SCN
neurons.

The day-night electrical activity and membrane excitability states of SCN neurons at the
single-cell level are well characterized in nocturnal animals (Colwell, 2011; Belle & Diekman,
2018; Harvey et al., 2020), but thus far there are no such measurements performed in the
SCN of diurnal mammals. We therefore set out to describe the intrinsic electrical states of R.
pumilio SCN neurons with respect to the cell’'s passive membrane properties (resting
membrane potential (RMP), spontaneous firing rate (SFR), and input or membrane
resistance (Rinu)), and how these change across the day and at night, using in vitro whole-
cell patch clamp electrophysiology.

Recording (Fig.2A) from a total of 111 SCN neurons (from 8 animals) over the day-night
cycle revealed four spontaneous excitability states in R. pumilio (Fig.2B), similar to previous
descriptions in mice (Belle et al., 2009; Diekman et al., 2013; Paul et al., 2016; Collins et al.,
2020). Thus, some SCN neurons were resting at moderate RMPs (-43.9 +0.41 mV,
n=94/111) and firing action potentials (APs). Other neurons were severely depolarized or
“hyperexcited” (-32.7 £ 2.36, n=6/111), to the extent that rather than generating APs, they
became depolarized-silent or exhibited depolarized low-amplitude membrane oscillations
(DLAMOs). The final category of neurons were hyperpolarized-silent, having RMPs too
negative to sustain firing (-50.5 = 2.29 mV, n=11/111).

SCN neurons were overall more excited during the day than at night (Fig.2C-E), with
hyperpolarized-silent neurons only appearing at night, and the daytime state being
characterized by firing and depolarized cells, indicating a time-of-day control on these
cellular electrical states (x°=21.498, p<0.001: Fig.2C). Accordingly, RMP and SFR showed a
robust circadian variation (Fig.2D-E). During the day, SCN neurons were overall resting at
more depolarized RMP, generating APs at a higher rate. This indicates that, as in nocturnal
species (Belle et al., 2009; Belle & Piggins, 2017), cellular RMP in the diurnal R. pumilio
SCN is a strong determinant of electrical states and SFR. To directly test this, we subjected
depolarized-silent SCN neurons to progressive steps of steady-state suppressive (negative)
currents (from 0 to ~ -16pA; driving RMP from -32mV to -60mV), to see if we could elicit the
range of spontaneous electrical behaviours seen in SCN neurons. Indeed, R. pumilio SCN
neurons could be easily driven to transit from the depolarized- through to hyperpolarized-
silent states, switching to DLAMOs and firing activity at appropriate RMPs in the process
(Fig. 2G).

Measurement of R, values showed a range from 0.84 to 4.23 GQ, skewed towards high
values, as reported in other species (Pennartz et al., 1998; Jackson et al., 2004; Kuhlman &
McMahon, 2004; Belle et al.,, 2009). However, we found neither a significant day-night
variation in this measure (Mann-Whitney U=1966, p>0.05, Fig.2F) nor a correlation with
RMP (R? = 0.0305, p>0.05), which stands in contrast to measurements in the SCN of
nocturnal animals (de Jeu et al., 1998; Kuhlman & McMahon, 2004; Belle et al., 2009). This
represents the first substantial difference between R. pumilio and mouse or rat SCN.

Diversity in the evoked electrical responses of Rhabdomys pumilio SCN neurons.
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In addition to the daily variation in intrinsic electrical activity, SCN clock function also critically
relies on the integrated activity of excitatory and inhibitory synaptic signals (Albers et al.,
2017). These inputs originate both from within the SCN (e.g. excitation or inhibition via
GABA-GABA, receptor signalling) and from other brain circuits (e.g. excitation or inhibition
via glutamate, or GABA signalling). Mimicking these fast signals by depolarizing and
hyperpolarizing current pulses elicits diverse electrical responses in the SCN of nocturnal
animals and is useful for characterizing SCN neurons (Pennartz et al., 1998; Belle et al.,
2009; Harvey et al., 2020). Therefore, we next investigated the spiking responses of R.
pumilio SCN neurons to inputs by challenging the cells with brief current pulses (see
Methods).

When subjected to depolarizing pulses, R. pumilio SCN neurons exhibited electrical
responses similar to those of nocturnal species: a small proportion of cells (21/102)
responded with a sustained and regular train of action potentials, with no, or marginal, spike-
frequency adaptation (non-adapting cells, Fig.3A). The remaining neurons (81/102) showed
some degree of frequency adaptation (Fig. 3B&C). These cells either progressively slowed
firing rate and exhibited increased spike shape broadening and amplitude reduction during
the pulse (adapting-firing, Fig. 3B), or fired only a few APs during the initial phase of the
depolarization before entering a silent state (adapting-to-silent, Fig. 3C). We found non-
adapting and adapting cells resting at similar RMPs, indicating that cellular RMP was not the
determinant of response type (e.g. Fig. 3A vs C). The proportion of cells displaying each of
these responses did not vary across the day-night cycle (x?=0.324, p>0.05, Fig. 3D). This
suggests that, as in the mouse SCN (Belle et al.,, 2009; Belle & Piggins, 2017), these
different types of spiking behaviour likely reflect “hardwire” differences between SCN
neurons, rather than time-of-day dependent variations in physiological state.

We next mimicked the effect of inhibitory signals by injecting hyperpolarizing current pulses
(Fig.3E&F). In all cases, spike firing ceased during these hyperpolarizing currents. Upon
pulse termination, 67% (69/103) of R. pumilio SCN neurons immediately resumed normal
firing or showed rebound depolarization spiking before resuming normal pre-pulse level of
firing (Fig. 3E), as previously reported for mouse and rat SCN (Thomson & West, 1990;
Pennartz et al., 1998; Kuhlman & McMahon, 2004; Belle et al., 2009). The remaining 33%
(34/103) of units displayed a low-threshold spike (LTS) followed by a rebound
hyperpolarization which produced a prominent delay, ranging from 160 to 1430 msec, before
firing resumed (Fig. 3Fi-ii, 6H). A high proportion of cells in this second group (73.5%; 25/34)
also showed an inward rectification or depolarization “sag” (Fig. 3F) during the pulse, an
electrical response that is associated with H-current activation (I4, (Pennartz et al., 1998;
Atkinson et al., 2011)). The hyperpolarization-evoked delay to fire and LTS response (Fig.
3Fi-ii) have not previously been reported for SCN neurons, and thus represents another
significant point of divergence in SCN neurophysiology between R. pumilio and, previously
studied, nocturnal species.

We termed R. pumilio neurons with rebound firing Type-A cells (Fig. 3E), and those with
delays Type-B neurons (Fig. 3Fi-ii), to be consistent with nomenclatures previously used to
identify neurons with those distinct electrical characteristics elsewhere in the brain (Burdakov
& Ashcroft, 2002; Burdakov et al., 2004). The relative abundance of Type-A and -B cells did
not change across the day-night cycle (x2=, p>0.05, Fig.3G), indicating that these response
properties are determined by cell-type rather than time-of-day.

lonic mechanisms underlying evoked electrical responses.

A comprehensive understanding of SCN neurophysiology would encompass an appreciation
of the ionic mechanisms and channel parameters responsible for the electrophysiological
properties revealed in our whole-cell recordings (Belle & Diekman, 2018; Harvey et al.,
2020). Capturing this ionic information from current-clamp data has only recently become
feasible due to advances in data assimilation (DA) techniques (Abarbanel, 2013). Here, we
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developed a state-of-the-art DA algorithm (see Methods section for a detailed description)
and applied it to build detailed computational models of R. pumilio SCN neurons (Fig.S1 &
S2). This modelling approach reproduced the voltage trajectory and nuances of action
potentials and subthreshold electrical activity generated during spontaneous and evoked
firing of SCN neurons in remarkable detail (Fig. 4 and S2), providing confidence that the
ionic currents and parameters estimated by our DA algorithm, and their dynamical
relationship in the models, are indeed a close match to their biological values and activity.

Through simulations of the model, we first assessed how ionic conductances interact with
each other to produce AP firing and other electrical behaviours (information that could never
be obtained experimentally since current-clamp and voltage-clamp cannot be simultaneously
performed). We applied this approach to compare the conductances underlying spontaneous
AP generation in the R. pumilio SCN model (Fig.4A) to our previously published model of
mouse SCN neurons (Belle et al., 2009) containing the same sets of ionic currents (voltage-
dependent transient sodium ly,, voltage-dependent transient calcium Ic,, voltage-dependent
potassium lg, and voltage-independent leak, 1). We found that the overall profile of how
these currents contribute to AP generation is similar across the two species (Fig.S3). In
addition, the types of bifurcations at the transitions between rest states and spiking are the
same in both models (subcritical Hopf from hyperpolarized silent to spiking, and supercritical
Hopf from depolarized-silent to spiking), suggesting the qualitative dynamics that lead to
repetitive AP firing are similar across the two species (Fig. S4A). Furthermore, the R. pumilio
model can produce all the electrical behaviours observed across the day-night cycle
(depolarized-silent, DLAMOs, fast-firing, slow-firing, and hyperpolarized-silent, Fig. S4B-F)
through an antiphase circadian rhythm in sodium and potassium leak currents, consistent
with the “bicycle model” proposed for the circadian regulation of electrical activity in mice and
flies (Flourakis et al., 2015).

We next used the model to gain insight into the mechanisms responsible for the adapting
versus non-adapting firing behaviours observed in response to depolarizing pulses. Our DA
algorithm yielded models that faithfully reproduced the voltage traces and spike shapes from
non-adapting, adapting-firing, and adapting-to-silent cells (Fig. 5A-B). By inspecting the ionic
currents flowing during the simulated voltage traces, we assessed the role of voltage-gated
sodium ly,, calcium lc,, and potassium I currents in producing these responses (Fig. 5C).

Our models revealed that frequency adaptation in SCN neurons in response to excitation
resulted from the progressive inactivation of sodium channels. Indeed, the adapting-firing
model indicated a much smaller amount of Iy, available for the APs during the depolarizing
pulse (peak Iy, =-80pA, Fig. 5Cii), and a greater reduction in sodium conductance Gy, (26
nS before vs 1.5 nS during the pulse, Fig. 5Dii) compared with the non-adapting model
(peak Ina = -580 pA; Gna= 27 nS before vs 13 nS during the pulse, Fig. 5Ci & Di).
Remarkably however, increased sodium channel inactivation (hy, close to 0) could not be
ascribed to intrinsic differences in the sodium channel properties themselves between the
non-adapting and adapting-firing models as the kinetic parameters of the sodium activation
and inactivation gating variables were similar (Fig.5F-G). Rather, the difference was due to
differing properties of the potassium channels. A combination of a flattened steady-state
potassium activation (n.,) curve (Fig. 5H) and the lower gk value (Fig. 5I), led to a smaller Ik
and reduced Gk during AP firing in the adapting-firing compared to the non-adapting model
(250 pA, 3 nS vs 900 pA, 11 ns, respectively) (Fig.5C-D i-ii). Since Ix is an outward current,
this means that the adapting-firing model does not repolarize as strongly after the peak of an
AP, and therefore, the membrane does not hyperpolarize enough to de-inactivate the
sodium channels. Thus, in the adapting-firing model, the inability of a weak Ik to sufficiently
repolarize the membrane is what ultimately leads to the reduced Iy, and low-amplitude APs.
The Ik is even smaller in the adapting-to-silent model (Fig. 5Ciii), failing to repolarize the
membrane, and leads to sustained inactivation of the sodium channel (Fig. 5Eiii), negligible
sodium conductance (Fig. 5Diii) and ultimately the inability to repeatedly fire APs during the
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pulse (Fig. 5Biii). In summary, our models support progressive sodium channel inactivation
as the mechanism of frequency adaptation (consistent with experimental observation in
neurons elsewhere in the brain (Fleidervish et al., 1996; Jung et al., 1997; Kimm et al., 2015)
and our previously published model of mouse SCN neurons (Belle et al., 2009)), while
indicating that this is primarily a consequence of a weak I.

We next interrogated our models for the key ionic origins of Type-A vs Type-B responses to
inhibition (Fig. 3E&F). In both cell types, hyperpolarizing pulses drove the membrane
potential in the real and model cells below the firing threshold, which suppressed firing
activity during the pulse (Fig. 6A-B, i-ii). Model analysis showed that in the Type-A cell, the
Ina @and Ica currents were larger during the first AP immediately following the pulse than
during the APs before the pulse (Fig. 6D), leading to a high-amplitude rebound spike. The
rebound spiking was due to sodium and calcium ion channels becoming completely de-
inactivated (hn, and he, both approach 1) at the hyperpolarized membrane potential reached
during the pulse (Fig. 6F). The time scale of calcium ion channel inactivation causes Ic, to
remain elevated for a few hundred milliseconds after the pulse, resulting in a transient after-
depolarization and a short burst of firing before returning to the baseline pre-pulsed spike
rate (Fig. 6A).

Similar Iy, and lc, dynamics were present in the Type-B neuron model. However, the
rebound hyperpolarization and prominent delay-to-fire after the pulse observed in Type-B
neurons (Fig. 3F and 6Bi-ii), was not possible to reproduce using our existing basic model
(Fig. 4A), consistent with the failure to observe such behaviour in the mouse SCN. It is well
established in neurons elsewhere in the brain that the inhibitory actions of the transient
subthreshold activating A-type (l,) voltage-gated potassium channels (Kv) underpin such
delay-to-fire activity (Schoppa & Westbrook, 1999; Saito & Isa, 2000; Burdakov & Ashcroft,
2002; Burdakov et al., 2004; Nadin & Pfaffinger, 2010). Another feature of Type-B activity
that could not be recreated with our basic model was the prominent depolarization “sag”
seen in the voltage trace during the pulse (Fig. 3F and 6Bi). Such behaviour could be
produced by activation of an I current by the hyperpolarizing pulse. We therefore added I,
as well as a hyperpolarization-activated (I4) current, to our mouse SCN model in an attempt
to recreate the voltage trace and biophysical condition of the Type-B neuron (Fig. 6C).

The expanded model revealed a larger I, current during the first APs after the delay (480 pA)
than during a typical spike (220 pA, Fig. 6E). Importantly, there was also 15 pA of I, current
flowing during the delay itself (Fig. 6E inset). It is noteworthy that this was greater than the 5
pA of I, current that flows during the inter-spike interval. This enhanced I, current following
the pulse was due to de-inactivation of the A-type channel (h, approaches 1) during the
hyperpolarizing pulse (Fig. 6G), rendering the |5 channel fully available upon release of the
pulse, an observation that is consistent with experimental findings (Burdakov et al., 2004).
The I, current then inactivates slowly and, until this outward current decays sufficiently, the
cell cannot reach threshold to fire, thereby prolonging inhibition. This inhibition-supportive
action of |, is consistent with observations made elsewhere in the brain (Burdakov &
Ashcroft, 2002; Burdakov et al., 2004), and previous simulations (Rush & Rinzel, 1995; Patel
et al., 2012).

It has previously been shown that variation in cellular 1, conductances and inactivation time
constant can impact time to fire (e.g. (Saito & Isa, 2000)), and this may explain the broad
range in the delay-to-fire, from 160 to 1430 msec, seen in our Type-B neurons (Fig. 6H).
Indeed, this was the case in our model. By varying the maximal 1, conductance (Fig. 61&J)
and inactivation time constant (Fig. 6M &N) parameters, we were able to capture the full
range of latency to fire seen in Type-B cells, with higher conductances and longer
inactivation time constants producing longer delays. Complete removal of the 1, conductance
eliminated the delay and produced a Type-A response (Fig. 6Ji-iii), reinforcing the different
ionic composition of these two cell types.


https://doi.org/10.1101/2020.12.23.424225
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424225; this version posted December 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

In summary, our revised model was able to mirror all the electrical features observed in R.
pumilio SCN neurons in response to extrinsic inputs, and identified transient subthreshold A-
type potassium channels as playing a key role in evoked-suppression firing in simulated
SCN neurons.

Ia currents suppress firing under physiological simulation.

We finally interrogated our model to understand how the |, conductances required to explain
SCN responses to hyperpolarizing pulses may impact firing activity in a more realistic
neurophysiological setting. To this end, we first subjected the model to simulated synaptic
conductances recorded from R. pumilio SCN neurons (Fig. S5). To account for the ability of
the SCN’s major neurotransmitter (GABA) to be either inhibitory or excitatory (Albers et al.,
2017), we applied GABAergic synaptic conductances of either polarity (gsyn. and gsyng). Our
simulations showed that overall, in the absence of GABAergic synaptic conductance (gsyn. =
0 nS), I, led to a suppression of spontaneous firing rate in model SCN neurons (Fig. 7 A&B,
al vs a4). This observation is consistent with previous experimental work (Granados-
Fuentes et al., 2012; Hermanstyne et al., 2017). This effect was retained following inclusion
of synaptic input of either polarity (Fig.7A-B, compare a2 vs a5, and a3 vs a6), with the
suppressive effect of gsyn €specially augmented by high 1, (Fig.7B).

Having observed such effects of 1, on intrinsic activity and cellular response to inputs, we
next investigated its effects on the spontaneous activity exhibited by SCN neurons across
the circadian day. Here, we simulated the different resting states of R. pumilio SCN neurons
and day-night changes in spontaneous firing rate (as in the neurons, Fig. 2B&E,
respectively) by subjecting the model to a range of leak currents. Specifically, we varied the
scaling factor for the ratio of potassium leak (g.k) to sodium leak (g.na) from 0.85 to 1.15
(Fig. 7C). This was motivated by previous work showing that sodium leak current is higher
during the day than at night in mouse SCN neurons (Flourakis et al., 2015). Furthermore, it
has been suggested that potassium leak currents are lower during the day and higher at
night. According to this “bicycle” model, a g.«/gina Scaling factor less than 1 corresponds to a
daytime “up-state”, and a scaling factor greater than 1 to a night-time “down-state”.
Simulating this variation in leak currents indeed transited the spontaneous RMP and firing
rate of the model cells from the daytime depolarized state to night-time suppressed state (as
in the neurons, Fig. 2B&G; Fig. S4B-F). We then tested the influence of I, on firing rate at
each of these electrical states. As reported above, our results revealed that, overall, I
conductances suppressed spontaneous firing activity (Fig. 7C, c1-c3), but the extent of this
suppression was magnified in slow firing and more hyperpolarized cells (Fig. 7C, ¢3), such
as those frequently recorded at night.

Altogether, these observations are consistent with experimental findings in the SCN, and
elsewhere in the brain, that |, conductances assist suppressive signals. We therefore
conclude that in the R. pumilio SCN, I, conductances may act as a “break” to modulate (tone
down) excitation during the day in depolarized excited cells, and promote inhibition at night
in more hyperpolarized slow-firing neurons.

DISCUSSION

We have applied whole-cell recordings, advanced data assimilation and modelling
approaches to provide the first comprehensive description of spontaneous, and evoked,
electrical activity of individual SCN neurons in a diurnal species. Our approach reveals
strong similarities with the SCN of closely related nocturnal species, but also notable
differences.
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Similarities with the nocturnal SCN

Most importantly, the fundamental daily rhythm in electrical excitability (‘upstate’ during the
day and a ‘downstate’ at night (Allen et al., 2017; Belle & Diekman, 2018; Harvey et al.,
2020)) reported for nocturnal species is retained in R. pumilio. This reinforces the current
view that mechanisms of rhythm generation and regulation are broadly retained across
mammalian species with different circadian niches. Moreover, the response of R. pumilio
SCN neurons to depolarizing inputs and the underlying ionic mechanisms were similar to
that of nocturnal rodents (Belle et al., 2009). In further support of this view, our modelling
revealed similar action potential generation mechanisms in the R. pumilio SCN to those in
the mouse and rat SCN (Jackson et al., 2004; Belle et al., 2009).

Novel properties of the Rhabdomys pumilio SCN

The most obvious point of divergence between the R. pumilio SCN and that of closely
related nocturnal species was its response to hyperpolarizing pulses. Thus, we found that a
substantial fraction of R. pumilio neurons showed a prominent delay-to-fire (for several
hundreds of milliseconds in some cells) following inhibitory pulses. This sort of electrical
reaction to inhibition has been observed in neurons elsewhere in the brain (Schoppa &
Westbrook, 1999; Saito & Isa, 2000; Burdakov & Ashcroft, 2002; Burdakov et al., 2004;
Nadin & Pfaffinger, 2010), but to the best of our knowledge has never before been reported
in SCN neurons (Thomson & West, 1990; Pennartz et al.,, 1998; Kuhlman & McMahon,
2004; Belle et al., 2009; Gamble et al., 2011; Belle & Piggins, 2017). The appearance of
such ‘Type-B’ neurons in the SCN is thus a novel property of R. pumilio.

What causes delay-to-fire activity in R. pumilio neurons (and why are they absent from the
nocturnal SCN)? Our computational models identified the activity of the transient
subthreshold A-type potassium channels (1,) as the likely determinant of this suppressive
bioelectrical effect, with the 1, conductance density (which presumably represents the
number of functional 1, channels), defining the delay-to-fire latency. The implication, that
cells with higher 1, conductances show longer delay-to-fire latencies, finds support from
experimental findings elsewhere in the brain (Schoppa & Westbrook, 1999; Saito & Isa,
2000; Burdakov & Ashcroft, 2002; Burdakov et al., 2004; Nadin & Pfaffinger, 2010).

The pore-forming (a) subunits of In channels (Kvl.4, 4.1, 4.2 and 4.3) are present in
nocturnal rodent (rat, mouse and hamster) SCN neurons, and have been implicated in
regulating electrical activity and supporting core clock function (Huang et al., 1993; Bouskila
& Dudek, 1995; Alvado & Allen, 2008; Itri et al., 2010; Granados-Fuentes et al., 2012;
Granados-Fuentes et al.,, 2015; Hermanstyne et al., 2017). Their failure to produce the
delay-to-fire phenotype in those nocturnal species therefore likely reflects some quantitative
variation in their function. A likely possibility, consistent both with known features of I
physiology and our modelling of the R. pumilio SCN, is variation in inactivation time constant
(timescale over which a channel becomes inactivated following de-inactivation). Elsewhere
in the brain it has been shown experimentally that cells expressing I, channels with faster
inactivation time constants (close to 12 ms) show rebound firing, while slower inactivation
time constants (~140 ms) produce delay-to-fire activity (Saito & Isa, 2000; Burdakov et al.,
2004). Interestingly, the 1, inactivation time constant measured in mouse and hamster SCN
neurons showed relatively fast gating variables (below 22 ms: (Alvado & Allen, 2008; Itri et
al., 2010)), consistent, therefore, with the presence of rebound but not delay-to-fire
characteristics in SCN neurons of these species. In agreement, to fully model the range of
delay-to-fire behaviours observed in R. pumilio SCN neurons, our original mouse model had
to be supplemented with 1, channels with a slow inactivation time constant (near 140 ms)
(Fig. 6C,J&N). Variation in delay-to-fire appeared due to alteration in I, conductances (Fig.
61&J), however, the range of delay latencies observed in our recordings could also be
produced by varying the inactivation time constant while holding the I, conductance constant
(Fig. 6M&N). The inactivation time constants returned by this modelling fall within
physiological ranges, and values required to produce delay-to-fire responses are similar to
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experimentally determined values in other parts of the brain (Saito & Isa, 2000; Burdakov et
al., 2004).

The functional properties of the 1, channel family (Kv4), specifically inactivation time constant
and current density, can be influenced by two classes of auxiliary proteins known as Kv
channel-interacting proteins (KChIP1-4) and dipeptidyl peptidase-like proteins (DPLPs;
DPP6 and DPP10) (Jerng & Pfaffinger, 2014). When associated with the various
complements of these proteins, the 1, channel inactivation time constant can vary from a few
ms to several hundred ms (depending on their expression pattern and the nature of
interaction with the channels), reversibly transforming rebound firing to delay firing cells
(Shibata et al., 2000; Holmqvist et al., 2002; Jerng et al., 2004; Jerng et al., 2005; Jerng et
al., 2007; Amarillo et al., 2008; Maffie et al., 2009; Nadin & Pfaffinger, 2010). The transcripts
for these auxiliary proteins are expressed brain-wide across different mammals, including in
the SCN of nocturnal rodents (Wen et al., 2020) and the diurnal baboon (Mure et al., 2018),
and have been implicated in circadian control mechanisms in other excitable cell types
(Jeyaraj et al., 2012).

A plausible explanation for the range of delay-to-fire activity in the R. pumilio SCN, therefore,
is variation in activity of KChIP and DPLP proteins producing diversity in inactivation time
constants. Interestingly, such a mechanism could also account for the other notably unusual
feature of the R. pumilio SCN - the absence of a clear relationship between RMP and Ri,pu
(Figure 2F). These |, auxiliary proteins are known to regulate the input resistance (Rinpu) Of
neurons without changing resting membrane potential (RMP) and capacitance (Nadin &
Pfaffinger, 2010). Thus, variation in KChIP and DPLP activity across the population of R.
pumilio SCN neurons could both produce diversity in delay-to-fire activity and disrupt the link
between RMP and Ri,,« across neurons observed in nocturnal species (Kuhlman &
McMahon, 2004; Belle et al., 2009).

Putative functional significance

We applied modelling to determine how I, channels may regulate excitability in R. pumilio
SCN neurons in the face of spontaneous (circadian) variations in intrinsic neuronal
properties and synaptic input. Experimental results in nocturnal SCN (Granados-Fuentes et
al., 2012; Hermanstyne et al., 2017) and elsewhere in the brain (Connor & Stevens, 1971;
Rudy, 1988; Liss et al., 2001; Baranauskas, 2007; Khaliq & Bean, 2008) reveal that I,
channels can suppress spontaneous firing rate. Our modelling returned a similar impact of 1,
in R. pumilio, while revealing aspects of this effect that could be especially relevant for a
diurnal species. Thus, in general, 15 reduced the effect of intrinsic or synaptically-driven
increases in excitability on firing, while enhancing the impact of inhibitory currents (Fig. 7).
The weight of this effect though fell differently across the circadian cycle.

In our model, the weight of the imposed suppression of firing by |5 conductances was
stronger at night (in hyperpolarized low-firing neurons) than in the day (in more depolarized
fast-firing neurons) (Fig. 7). In this way, I, would reinforce the SCN’s ‘down-state’ at night. In
nocturnal species, the intrinsic reduction in SCN activity at night is augmented by the
appearance of inhibitory inputs associated with activity and arousal at this circadian phase
(van Oosterhout et al., 2012). Such inhibitory inputs are presumably reduced in diurnal
species such as R. pumilio, in which activity occurs predominantly during the day. The
biophysical properties of 1, channels (conductance active at the subthreshold range of the
RMP and progressively becoming available with hyperpolarization), together with its
sensitivity to neurotransmitters (Aghajanian, 1985; Yang et al., 2001; Burdakov & Ashcroft,
2002), could provide an opportunity for the R. pumilio SCN to compensate for the reduction
in inhibitory inputs at night. Accordingly, our modelling evidence favours the interpretation
that I, acts to amplify suppressive signals at night to maintain the low electrical activity in the
SCN at this time of day.
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The I, conductance may also be an important response to enhanced excitatory inputs during
the day in diurnal species. Day-active animals are exposed to daytime light (the most
important excitatory input to the SCN) to an extent that nocturnal species are not. The ability
of Io to reduce the impact of such excitatory inputs, and perhaps augment the effect of
inhibitory inputs from the thalamus, lateral hypothalamus or retina (Belle et al., 2014; Sonoda
et al., 2020) or intrinsic to the SCN (Hannibal et al., 2010), would apply an appropriate
‘brake’ on daytime activity of the SCN.

In summary, our whole-cell recordings and computational modelling highlight the potential
importance of |, in tuning excitability in the R. pumilio SCN. This may be an important step in
accommodating SCN activity to diurnal living while maintaining the day/night contrast in
electrical activity necessary for health and wellbeing.

Applying the data assimilation method to physiology

Our results demonstrate that data assimilation (DA) is a powerful tool for developing
conductance-based models. Our state-of-the-art DA algorithm was able to reliably perform
state and parameter estimation for R. pumilio SCN neuron models from current-clamp
recordings without the use of voltage-clamp and pharmacological agents to isolate specific
currents, and without the injection of custom-designed stimulus waveforms as used in other
DA approaches (Meliza et al., 2014). Rather, we made judicious use of the voltage traces
resulting from standard depolarizing and hyperpolarizing current steps. This is an important
step forward for the practicality of applying DA methodology in the neuroscience context, as
it enables model-building from the plethora of past, present, and future current-clamp
recordings obtained by electrophysiology labs using classical current-step protocols.

METHODS

Animals

All animal use was in accordance with the UK Animals, Scientific Procedures Act of 1986,
and was approved by the University of Manchester Ethics committee. Adult R. pumilio (male
and female, age 3-9 months) were housed under a 12:12h light dark cycle (14.80 Log
Effective photon flux/cm?s for melanopsin or Melanopic EDI (equivalent daylight
iluminance) of 1941.7 Ix) and 22°C ambient temperature in light tight cabinets. Food and
water were available ad libitum. Cages were equipped with running wheels for environmental
enrichment. Zeitgeber Time (ZT) 0 corresponds to the time of lights on, and ZT12 to lights
off.

Brain slice preparation for electrophysiological recordings

Following sedation with isoflurane (Abbott Laboratories), animals were culled by cervical
dislocation during the light phase (beginning of the day or late day). Brains were immediately
removed and mounted onto a metal stage. Brain slices were prepared as described
previously (Hanna et al., 2017). 250um coronal slices containing mid-SCN levels across the
rostro-caudal axis were cut using a Campden 7000smz-2 vibrating microtome (Campden
Instruments, Loughborough, UK). Slices were cut in an ice-cold (4°C) sucrose-based
incubation solution containing the following (in mM): 3 KCI, 1.25 NaH2PO4, 0.1 CaCl2, 5
MgS04, 26 NaHCO3, 10 D-glucose, 189 sucrose, oxygenated with 95% 02, 5%CO2. After
slicing, tissue was left to recover at room temperature in a holding chamber with
continuously gassed incubation solution for at least 20 min before transferring into recording
aCSF. Recording aCSF has the following composition (mM): 124 NaCl, 3 KCI, 24 NaHCQO3,
1.25 NaH2PO4, 1 MgSO04, 10 D-Glucose and 2 CaCl2, and 0 sucrose; measured osmolarity
of 300-310 mOsmol/kg. Slices were allowed to rest for at least 90 min before starting
electrophysiological recordings.

Whole-cell patch clamp recordings
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SCN brain slice electrophysiology was performed as previously described (Belle et al.,
2014). SCN coronal brain slices were placed in the bath chamber of an upright Leica epi-
fluorescence microscope (DMLFS; Leica Microsystems Ltd) equipped with infra-red video-
enhanced differential interference contrast (IR/DIC) optics. Brain slices were kept in place
with an anchor grid, and continuously perfused with aCSF by gravity (~2.5ml/min).
Recordings were performed from neurons located across the whole SCN during the day and
at night (Fig. 2A). SCN neurons were identified and targeted using a 40x water immersion
UV objective (HCX APO; Leica) and a cooled Teledyne Photometrics camera (Retiga
Electro), specifically designed for whole-cell electrophysiology. Photographs of the patch
pipette sealed to SCN neurons were taken at the end of each recording for accurate
confirmation of anatomical location of the recorded cell within the SCN.

Patch pipettes (resistance 7-10MQ) were fashioned from thick-walled borosilicate glass
capillaries (Harvard Apparatus) pulled using a two-stage micropipette puller (PB-10;
Narishige). Recording pipettes were filled with an intracellular solution containing the
following (in mM): 120 K-gluconate, 20 KCI, 2 MgCI2, 2 K2-ATP, 0.5 Na-GTP, 10 HEPES,
and 0.5 EGTA, pH adjusted to 7.3 with KOH, measured osmolarity 295-300 mOsmol/kg).

An Axopatch Multiclamp 700A amplifier (Molecular Devices) was used for voltage-clamp and
current-clamp recordings. Pipette tip potential was zeroed before establishing membrane-
pipette giga-ohm seal, and cell membrane was ruptured under voltage-clamp mode at -70
mV using minimal negative pressure. Signals were sampled at 25 kHz and appropriately
acquired in gap-free or episodic stimulation mode using pClamp 10.7 (Molecular Devices).
Series resistance (typically 10-30 MQ) was corrected using bridge-balance in current-clamp
experiments and was not compensated during voltage-clamp recordings. Access resistance
for the cells used for analysis was <30 MQ. Post-synaptic currents (PSCs) were measured
under voltage-clamp mode while holding the cells at -70mV. Measurement of spontaneous
activity in current-clamp mode was performed with no holding current (I=0). All data
acquisition and protocols were generated through a Digidata 1322A interface (Molecular
Devices). Recordings were performed at room temperature (~ 23°C). A portion of the data
appearing in this study also contributed to the investigation of the impact of daytime light
intensity on the neurophysiological activity and circadian amplitude in the R. pumilio SCN
(Bano-Otalora et al., 2020)

Membrane properties of SCN neurons

Resting membrane potential (RMP), spontaneous firing rate (SFR) and input resistance
(Rinput) Were determined within 5 min of membrane rupture. Average SFR in firing cells was
calculated as the number of action potentials per second within a 30s window of stable firing
using a custom-written Spike2 script, and average RMP was measured as the mean voltage
over a 30s window. Ri,, was estimated using Ohm’s law (R=V/l) where V represents the
change in voltage induced by a hyperpolarizing current pulse (-30pA for 500 ms) as
previously described (Belle et al., 2009) . The neurone's response to excitatory and inhibitory
stimuli was identified by a series of depolarizing and hyperpolarizing current pulses (from -30
to +30pA in 5pA steps, duration 1s).

Immunohistochemistry

R. pumilio were culled during the light phase and brains were fixed in 4% PFA, followed by 5
days in 30% sucrose. 35um brain sections were cut using a freezing sledge microtome
(Bright Instruments, Huntingdon, UK). Immunofluorescence staining was performed as
previously described (Timothy et al., 2018). Briefly, slices were washed in 0.1M PBS and
0.1% TritonX-100 in PBS before incubation with blocking solution (5% donkey serum
(Jackson ImmunoResearch, Pennsylvania, US) in 0.05% Triton-X100 in 0.1M PBS). After 60
min, sections were incubated for 48h at 4°C with primary antibodies (AVP Rabbit, Millipore
AB1565, 1:5000; VIP Rabbit, Enzo, VA1280-0100, 1:1000; GRP Rabbit, Enzo GA1166-
0100, 1:5000). Following washes, slices were incubated overnight with secondary antibodies

11


https://doi.org/10.1101/2020.12.23.424225
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424225; this version posted December 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(1:800; Donkey anti-rabbit Cy3, Jackson ImmunoResearch). Slices were finally mounted
onto gelatine coated slides and cover-slipped using DAPI-containing Vectashield anti-fade
media (Vector Laboratories, Peterborough, UK). Digital photos were taking using a Leica
DFC365 FX camera connected to a Leica DM2500 microscope using Leica Microsystems
LAS AF6000 software.

Data analysis

Current-clamp data were analysed using Spike2 software (Cambridge Electronic Design,
CED). Non-normal distributed electrophysiological data from different time-of-day were
compared using Mann-Whitney U Test. All statistical analyses were performed using SPSS
version 23 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism 7.04 (GraphPad Software
Inc., CA, USA. For all tests, statistical significance was set at p<0.05. Data are expressed as
mean + SEM. Sample sizes are indicated throughout the text and figure legends.
Percentages of cells in the different electrophysiological states and responses to
depolarizing and hyperpolarizing pulses during the day and at night were analysed using
Chi-Squared test.

Model estimation strategy

Traditionally, conductance-based (or Hodgkin-Huxley-type) models of neurons are
constructed using voltage-clamp (VC) measurements of individual ionic currents. While VC
can provide accurate descriptions of certain channel properties, its execution is
experimentally labour intensive, and by measuring each current in isolation VC protocols do
not capture the dynamical interplay between the many active channels that drive complex
and integrated electrical behaviours in mammalian neurons. Furthermore, it is not feasible to
use VC to measure all the ionic currents of interest from the same cell, due to the limited
amount of time available to perform patch-clamp recordings before the cell dialyzes
(approximately 5 to 10 minutes) and the need to wash out the pharmacological agents used
to isolate and measure one current before isolating and measuring the next. Thus, a model
constructed using VC data is not a representation of the currents active in a single cell, but
rather is a combination of currents measured across several different cells (Golowasch et al.,
2002).

The advantage of current-clamp (CC) protocols is that the recorded voltage trace reflects the
natural interaction of all the ionic conductances within that cell. The challenge for
constructing a model based on CC data is that only one of the state variables of the model,
the membrane voltage, has been measured directly; the gating variables that represent the
opening and closing of ion channels are unobserved. Each ionic current has several
parameters associated with it that are typically not known a priori and must also be
estimated from the data.

Data assimilation is widely used in fields such as geoscience and numerical weather
prediction but has only recently begun to be applied in neuroscience. One of the main
classes of DA algorithms are variational methods such as 4D-Var that seek solutions
through optimization over a time window and are able to deal more effectively with a large
number of unobserved state variables and unknown parameters. Since our R. pumilio SCN
model has many parameters that are not known a priori we chose to employ the variational
approach in this study.

A variational data assimilation algorithm was used to perform model fitting. We used current-
clamp data from multiple protocols (Fig. S1) simultaneously to inform the estimated model of
robust responses to changes in the applied current. We initially used a set of channels in our
R. pumilio model similar to that previously used for a mouse SCN model (Belle et al., 2009)
(Fig.4A), but permitted each of the parameters in the model the freedom to be distinct for
each individual cell that we fit. We started the estimation algorithm for each cell using over
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50 initial guesses for the parameters and state variables, and performed model selection by
assessing a Pareto frontier consisting of the DA cost function evaluation and the mismatch in
firing rate between the model output and the data for simulations the resulting model under
various current-clamp conditions. These simulations were preformed using the odel5s and
ode45 solvers in MATLAB.

Data assimilation algorithm
Here we briefly describe the variational DA algorithm employed in this paper (see (Moye,
2020) for further details). We represent the neuronal recordings using the following state-
space description:
Xks1 = fO0) + wpq, X ERF
Yier1 = Vi1 + kw1, Yk ER?

where x;, is interpreted as the state of the neuron at some time t, and y, are our
observations (i.e. the voltage measurements). The random variables w, and n; represent
model error and measurement error, respectively. We assume that w, ~ N (0, Q) and
Nx ~ N(0, R), where Q and R are the model error and measurement error covariance
matrices, and that these have no cross-covariance.

Strong 4d-var forces our observations to be consistent with the model, f. This can be
considered the result of taking @ — 0, which yields the nonlinearly constrained problem:
N

1
) =3 ) RO~V
k=0

such that
Xpe1 = f(x), k=0..N
where R~ can now be scaled out completely.

In the cost function, the estimated voltage is expected to be consistent with the dynamics for
large model weighting @1, but the dynamics cannot possibly reproduce the irregularity in
the data.

Dynamical State and Parameter Estimation (DSPE) is a technique described by Abarbanel
et al. (2009) (Abarbanel, 2009), with the premise being to stabilise the synchronization
manifold of data assimilation problems by adding a control or “nudging” term u. The cost

function then becomes:
1 N N
C(x) = Ez Ry —Vi)* + Z ui
k=0 k=0

This synchronization procedure has also been considered for specific function forms of u in
the neuroscience context in (Brookings et al., 2014) wherein they set up an optimal search
strategy applied to real data. The nudging strategy in general has been used in geosciences
primarily for state estimation (Park, 2013). As shown in Toth et al. (2011) (Toth et al., 2011)
and Abarbanel et al. (2009) (Abarbanel, 2009), the control u acts to reduce conditional
Lyapunov exponents.

The goal of DSPE is to define a high-dimensional cost functional which weakly constrains
the estimated states to the system observations, and strongly constrains the estimates to the
controlled model dynamics while penalizing the control. Without the control, the problem is
explicitly formulated as a strong constraint 4D-Var. However, the basin of attraction for
global minima along the optimization manifold is shallow. Also, while the minimization term
itself is convex, the nonlinearities present in the model constraints generate a large degree
of non-convexity in the solution manifold. The intended effect of the nudging term is to
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smoothen the surface. Given that the system is so high dimensional and tightly coupled,
formally visualizing this surface is not achievable for our parameter estimation problems.

In the DSPE framework, parameters and states at each point in time are taken on equal
footing. Namely, the solution space of the cost function is (L + 1)(N + 1)+ D where D is
the number of fixed parameters to infer and L is the number of dynamical variables.
Additionally, we are solving for the control u(t) at each point in time. The control is penalised
guadratically in an effort to reduce the impact of it at the end of the optimization procedure.
While having the control present enforces the data in the model equations, by minimizing it,
one is attempting to recover back the minima subject to the uncontrolled model of the
system. So, as u — 0 over the course of the optimization, the physical system strong
constraint is recovered. We note that in the results presented here, the control term was not
fully eliminated by the end of the assimilation window. This may be due to intrinsic voltage-
gated conductances present in the cell that are not included in our model, or other factors
such as synaptic input or channel noise.

We must choose a patrticular transcription method to prescribe our equality constraints. We
define our state vector as x = (V, %) and our uncontrolled dynamics as:

dx
E = fx(x) 9)
where we can separate out the terms with observations. We assume we only have
observations of the voltage of one cell in one compartment (with natural generalizations to
networks and multi-compartment descriptions):
dv
— = x,V;0
ar fo( )
X —
E = ff(x, V, 9)
Then our controlled dynamics become

av

T fv(x,V;8) + u(Vops — V)
dx
P fz(x,V;0)

where it is understood that u(t) appears only at observational times.

We can formulate the constraints using either a multiple-shooting style approach or using
collocation. We will assume measurements are taken uniformly at t, =ty + kt,ps. High
resolution measurements are preferred so that we can have control and knowledge of the
system at basically every knot point. However, there are circumstances where we may not
have data with that level of precision, or we may desire to downsample our data. For that
reason, we will say that we have a set of times upon which our constraint equations are
satisfied, namely t,, =t, + mt.,; where we simply require that the ratio of these time
To

differences is a positive integer, -22° € N.
ol

Tc

To reiterate, the constraints are what connect each of our time points [t,,, t;,4+1] t0O one
another.

We use a direct collocation method due to the stability options afforded to us for our highly
complex, nonlinear problem. With collocation, implementation of implicit methods is
effectively as simple as explicit methods. We choose to use Hermite-Simpson collocation
which approximates the set of discrete integrations using Simpson's rule. We introduce

k+=
2

1
X1 — X = ghk (fk + 4fk+% +fk+1)

midpoints in this fashion (x ) which are approximated using Hermite interpolation.
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1 hy
xk% = E(xk + Xp41) + E(fk — fr+1)

where f; = f,(xx,0) and 8 is the present estimate of 8 constant across our time window.

Here, we take the midpoint and endpoint conditions on equivalent footing for our constraints,
g(x) =0, in what is known as its “separated form". Therefore, we implement these
equations so that h;, = 2t., based upon our previous notation, and we have LN equality
constraints.

State and parameter bounds

Setting lower and upper bounds for the state and parameter estimates, x < x < xY, can
improve the performance of the DA algorithm. For the states, we specify that the voltage is
within a plausible physiological range based on prior knowledge of the system and the
variance in the observations. The gating variables are restricted to their dynamic range
between O and 1. As for the parameters, it is difficult to know how tight the boundaries
should be. As a rule of thumb, if it is possible to parameterise the model in a systematic and
symmetric way, it may be easier to construct meaningful bounds. Also, it is advisable to keep
the parameters within a bounding box which prevents blow-up of the dynamics such as
divisions by zero. The maximal conductances are positive valued, and the sign of the slope
for the steady-state gating functions should dictate if they are activating (positive) or
inactivating (negative).

Background knowledge of the passive properties of the system, such as the capacitance and
reversal potentials, can be informed from isolating step protocols by the electrophysiologist
or voltage-clamp data if that is available.

Implementation

We have implemented 4D-Var in a framework with CasADi, (Andersson et al., 2019), in
MATLAB. The “cas” comes from “computer algebra system”, in which the implementation of
mathematical expressions resembles that of any other symbolic toolbox, and the “AD” for
algorithmic (automatic) differentiation. These expressions are then easily used for generating
derivatives by breaking the expressions into a nhumber of atomic operations with explicit
chain rules, with natural extensions to vector and matrix-valued functions. CasADi data types
are all sparse matrices, and low-level scalar expressions (SX type) are stored as directed
acyclic graphs where their numerical evaluation is conducted using virtual machines. For
nonlinear programming problems, matrix expressions (MX type) are constructed to form the
structure of the nonlinear program e.g. the collocation expression. The low-level expressions
e.g. the differential equations are built using SX type to create a hierarchy of functions for
evaluation efficiency and memory management. CasADi will generate the gradient and
Hessian information through AD which are then passed to the solver of choice. We elect to
solve the optimization problem with IPOPT (Interior Point OPTimize) (Wachter & Biegler,
2006). The high-dimensional linear algebra calculations are done using the linear solver
MUMPS (MUltifrontal Massively Parallel sparse direct Solver) which is readily distributed
with CasADi and interfaced with IPOPT.

Conductance-based model

An issue with the original version of the mouse SCN model (Sim & Forger, 2007; Belle et al.,
2009) is that the structure is asymmetric with huge ranges of parameter values, which
creates complications when constructing our optimization problem. We aim to fit to current-
clamp data of the R. pumilio using the same set of currents, but expressing their kinetics
uniformly. Additionally, we separate the leak into sodium and potassium components to
investigate the role each may play in altering the resting membrane potential of cells in day
versus night, as was done in (Diekman et al., 2013). Lastly, we will approximate the sodium
activation as instantaneous, as has been done previously to reduce the dimensionality of the
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SCN model (Sim & Forger, 2007). Conversely, we will allow the inactivation of sodium to
have a wide range of permissible time constant values, as persistent sodium is known to
play a role in maintaining the pace of firing (Harvey et al., 2020). Thus, our sodium channel
functionally plays the classical role of a transient sodium current in generating the upstroke
of the action-potential, but also is possibly involved in governing certain sub-threshold
properties. The full model is described by the following equations:

CE = Iapp(t) —Ing = Ig —Ica — ILNa - ILK — Iy =1y — Isyne—E - Isyn—l
= Lipp(t) — gnaMyahna(V — Exa) — gxn*(V — Ex) — gcameahca(V — Eca) — 91y, V — Eng)
- gLK(V — Ex) — gumuy(V — Ey) — gAmf:’hA(V — Eg)
_gsyne—ES(t) (V - Esyn—E) - gsyn—ls(t) (V - Esyn—I)

dqg  qo(V)—q
@ L) q = {m;, h;,n}
a
(V) = =+~ tanh (28
1= =272 Ty,

2 V-1,
14(V) =140 + Tq1 | 1 — tanh d—vq

where C is membrane capacitance, V is membrane potential, l.p(t) is the applied current, |
are ionic currents, g are maximal conductances, E are reversal potentials, and q are gating
variables with steady-state functions q., and time constants z,. The active conductance of a
channel, G, is the product of its maximal conductance and gating variables, e.g. Gy, =
myqhya- The ga and T, Scaling factors used in Figures 6 and 7 are coefficients that multiply
the maximal conductance parameter and time constant variable, respectively. The scaling
factor for the ratio of potassium to sodium leak conductance used in Figures 7 and S4 is a
coefficient that divides g,,  and multiplies g,,. We calculated the synaptic gating variable
s(t) from voltage-clamp recordings of post-synaptic currents in R. pumilio SCN neurons with
the cells held at -70 mV. The synaptic currents ls.e and ls,, were not used in the DA
procedure, and were only included in the model simulations shown in Figure 7A-B. The Iy
and I, currents were only included in the DA procedure and model simulations shown in
Figures 6B-C and 7.

Downsampling

We utilized a downsampling strategy on the current-clamp data in order to facilitate the use
of longer stretches of data without exceeding the computational limits on the size of the
optimization problem that our computing resources can handle. We set a threshold of -20
mV for each action potential, and within a region of 30 ms on either side of when this
threshold is hit, the full 25 kHz sampling is preserved. Outside of this window, the data used
is downsampled by some factor. For the results presented here, we used a downsampling
factor of 5 so that during the action potential the resolution is 25kHz and outside the time
window of the action potential it is 5kHz. With this strategy, we can retain as many data
points as possible during the action potential, which occurs on a much faster timescale than
the membrane dynamics during the interspike interval and enables us to better fit the spike
shape. We also used the full 25 kHz sampling for the 30 ms region immediately following the
onset or offset of the depolarizing and hyperpolarizing pulses.

Multiple observations

A novel component of our DA approach is the use of multiple observations to inform a
unified model for each cell’s electrophysiology. We are restricted through a computational
and memory budget with regard to our implementation on the amount of data we can use for
each estimation. In a sense, we have a series of variational sub-problems solved
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simultaneously which are connected through mutually shared parameters. We use
symmetric current-clamp protocols which start with spontaneous activity, followed by either a
depolarizing or hyperpolarizing step for 1s, and a subsequent return to spontaneous activity.
We use a period of a few hundred ms prior to two different hyperpolarizing steps so as to
access leak channel information and transient inactivation profiles. We use two similar
segments from the return from hyperpolarizing steps to inform de-inactivation and activation
time scales from rest. We use similar data for two responses to depolarizing steps to
characterize the firing profiles and understand the limiting behavior for high-amplitude
depolarizing pulses, including regular firing, firing with adaptation, or silence. We bias the
data with a large segment (1500 ms) of data during spontaneous activity to reproduce the
hallmark spontaneous activity and spike shape in our estimated models. In the problem
construction shown by Figure S1, 4.5 seconds of data in total are used for the assimilation,
amounting to around 36,000 time points after incorporating our downsampling strategy.
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Figure 1

C

Rostral
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Figure 1. Anatomy and neuropeptidergic organization of the Rhabdomys pumilio SCN.
(A) Coronal sections of the R. pumilio SCN taken across the rostro-caudal axis labelled with
DAPI, and immunofluorescence for the main SCN neuropeptides: (B) Arginine-vasopressin
(AVP), (C) Vasoactive intestinal peptide (VIP) and (D) Gastrin releasing peptide (GRP). 3V:
third ventricle; OC: optic chiasm. dSCN: dorsal SCN, vSCN: ventral SCN. Labelling at the
rostral level applies to mid and caudal aspects. Scale bar: 250 pum.
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Figure 2. Diurnal changes in the spontaneous electrical activity of Rhabdomys
pumilio SCN neurons. (A) Whole-cell patch clamp recording setup showing bright-field
image of a SCN coronal brain slice. The SCN (delineated by white dotted lines) can be
observed above the optic chiasm (OC), on either side of the third ventricle (3V). Patch
pipette targeting a SCN neuron is indicated by the red arrow and magnified in inset (al). (B)
Representative current-clamp traces for each of the spontaneous excitability states recorded
in R. pumilio SCN neurons (from top): highly depolarized-silent; depolarized low-amplitude
membrane oscillations (DLAMOS); moderate resting membrane potential (RMP) with cells
firing action potentials (APs) at high or low rate; and hyperpolarized-silent neurons. (C) Pie
charts showing the percentages of SCN neurons in the different electrical states during the
day and at night (***p<0.001, Chi-Squared test). Mean RMP (D), spontaneous firing rate
(SFR) (E) and input resistance (Rinput) (F) of neurons recorded during the day (orange, n=67)
and at night (blue, n=44). Data are expressed as mean + SEM with each dot representing an
individual neuron. sxxp < 0.001, Mann-Whitney U-test. (G) Manual hyperpolarization of
hyperexcited SCN neurons elicits a range of electrical states. Silent cell resting at highly
depolarized state could be driven to display DLAMOSs, fire APs, and become hyperpolarized-
silent by injection of progressive steps of steady-state hyperpolarizing currents (red line).
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Figure 3. Diverse responses to depolarizing and hyperpolarizing current pulses in
Rhabdomys pumilio SCN neurons. Representative current-clamp traces showing the
different type of responses to a depolarizing pulse (1s, +30pA): (A) non-adapting; (B)
adapting-firing; or (C) adapting-to-silent response. Phase—plot diagrams on the right of each
panel (A, B, or C) show action potential (AP) velocity, trajectory and rate of frequency
adaptation during the pulse for these neurons. (D) Pie charts showing the percentage of
recorded neurons displaying each of these responses to depolarizing pulses during the day
and at night. (E-F) Representative current-clamp traces showing the different type of
responses to a 1s, -30pA hyperpolarizing pulse: (E) Type-A cells responded with a rebound
spike upon termination of the pulse; (F) Type-B cells exhibited a rebound hyperpolarization
which produced a delay-to-fire, following a LTS ((i-ii) long and short delay, respectively). (G)
Pie charts showing the percentage of cells displaying a rebound spike or a delay-to-fire
response during the day and at night. * indicates a spontaneous synaptic input. LTS: low
threshold spike. Iy: inward membrane rectification or depolarizing “sag”.
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Figure 4. Computational modelling of Rhabdomys pumilio SCN neurons. (A) Schematic
of conductance-based model for R. pumilio SCN neurons containing sodium (ly,), calcium
(Ica), potassium (lx), and leak (l.na, lik) currents. Orange resistors (gna, 9ca, 9k) indicate
voltage-gated conductances, black resistors (gik, Oina) indicate passive leak conductances.
(B) Voltage traces showing similarity in spontaneous firing of action potentials (APS) in the
model (red) compared to a current-clamp recording from a R. pumilio SCN neuron (black).
(C) Phase-plot of the derivative of voltage with respect to time (dV/dt) as a function of
voltage (V) depicting the shape of APs in the model (red) and the current-clamp recording
(black) during spontaneous firing. (D) Similarity in firing rate of the model (red) and current-
clamp recordings (black) as a function of applied current (lapp).
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Figure 5. Model simulation of the responses to depolarizing pulses in Rhabdomys
pumilio SCN neurons and the underlying ionic mechanisms. (A-B) Voltage traces of
models (red) and current-clamp recordings (black) during depolarizing pulses (1s, +30 pA)
showing non-adapting (i), adapting-firing (ii), and adapting-to-silent (iii) responses. (C) lonic
currents sodium (Ina, blue), calcium (Ic,, magenta), and potassium (Ik, green) in the models
during the non-adapting (i), adapting-firing (ii), and adapting-silent (iii) responses. (D) lonic
conductances for sodium (Gya,, blue), calcium (Gc,, magenta), and potassium (G, green) in
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the models during the non-adapting (i), adapting-firing (ii), and adapting-silent (iii) responses.
(E) Sodium activation (my,, blue) and inactivation (hya, oOrange) gating variables in the
models during the non-adapting (i), adapting-firing (ii), and adapting-silent (iii) responses.
lons cannot pass through the channel if it is closed (my, = 0) or inactivated (hya = 0);
maximal current flows when the channel is fully open (my, = 1) and fully de-inactivated (hy, =
1). Steady-state gating variables as a function of voltage in the non-adapting (black),
adapting-firing (red), and adapting-to-silent (cyan) models for (F) sodium activation (Mya.),
(G) sodium inactivation (hna.), and (H) potassium activation (n.). The flattening of the n,
curve in the adapting-firing model indicates that the channel is less activated at depolarized
voltages than the non-adapting model (e.g. at -13 mV, the adapting-firing model is only half
activated (n,, = 0.5), whereas the non-adapting model is almost fully activated (n,, = 0.93)).
(I) Maximal conductance parameters gy, and gg in the non-adapting (black), adapting-firing
(red), and adapting-to-silent (cyan) models. Notice that the maximal potassium conductance
parameter is much smaller in the adapting-firing model (gk = 43 nS) than in the non-adapting
model (gx = 102 nS).
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Figure 6. Model simulation of the responses to hyperpolarizing pulses in Rhabdomys
pumilio SCN neurons and the underlying ionic mechanisms. (A-B) Voltage traces of
models (red) and current-clamp recordings (black) during hyperpolarizing pulses (1s, -30 pA)
showing rebound spiking of Type-A neurons (A) and delay responses of Type-B cells (B).
(C) Schematic of conductance-based model for Type-B R. pumilio SCN neurons showing the
addition of transient potassium (1,) and hyperpolarization-activated (I4) currents (blue). (D)
lonic currents for sodium (lygs, blue) and calcium (Ic,, magenta) in the model during the Type-
A neuronal rebound spiking response. (E) lonic currents Iy (cyan) and I, (green) in the model
during the delay response of Type-B neurons. (F) Sodium (hya, blue) and calcium (hca,
magenta) inactivation gating variables in the model during the Type-A neuronal rebound
spiking response. (G) Transient potassium (l,) inactivation gating variable (ha, green) in the
model during the delay response in Type-B neurons (voltage trace, V, is indicated in grey
and is the same V-trace shown in B). (H) Histogram showing delay-to-fire latencies
measured in Type-B cells. (I) Relationship between I, conductance (g, Scaling Factor) and
delay-to-fire latencies in model of Type-B cells. (J) Data trace for a cell with a 0.75 s delay
(black) overlaid with model voltage traces (red) with varied amounts of |5 conductance: (i)
model of Type-B cell with ga SF = 1 exhibiting a 0.75 s delay; (ii) Model from (i) with reduced
I conductance (ga SF = 0.7) exhibiting a reduced delay-to-fire latency; (iii) Model from (i)
with no I, current (ga SF = 0), exhibiting rebound spiking, as in Type-A neurons. ga SF: ga
Scaling Factor. (K-L) Gating variable functions for model |5 current: (K) steady-state
activation (m,, black), steady-state inactivation (h,, orange), and (L) inactivation time
constant (z,,, green). (M) Relationship between the time constant of I, inactivation and
delay-to-fire latencies in model of Type-B cells. (N) Model simulations for 1, inactivation time
constant scaling factors of 1.2 (i), 0.8 (ii) and 0.1 (jii). 7,, SF: 7,, Scaling Factor
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Figure 7. I, conductances act to amplify extrinsic and intrinsic suppressive signals in
the Rhabdomys pumilio SCN. (A) Heatmap showing the overall effects of inhibitory (gsyn-,
red) and excitatory (gsyn-g, blue) physiological GABAergic synaptic conductances on firing
frequency with increasing |, conductances in the model R. pumilio SCN neurons. (al-a3)
Examples of firing activity in model cell with low I, conductance (ga SF = 0.1) and absence of
GABAergic synaptic conductance (al, gsyni = 9syne = 0 NS), high suppressive GABAergic
synaptic conductance (a2, gsns = 18 nS), or high excitatory GABAergic synaptic
conductance (a3, gsne = 9). (a4-a6) Examples of firing activity in model R. pumilio SCN
neurons with high 1, conductance (ga SF = 0.9) and absence of GABAergic synaptic
conductance (a4, gsyn1 = 0 nS), high suppressive GABAergic synaptic conductance (a5, gsyn-
= 18 nS), or high excitatory GABAergic synaptic conductance (a6, gs,ne = 9). (B) Firing rate
as a function of inhibitory (gsyn., red) and excitatory (gsyn.e, blue) GABAergic synaptic
conductances of different strength. Open and filled dots correspond to model cell with high
(0.9) or low (0.1) In conductance (ga SF), respectively. (C) Overall effect of intrinsic
excitability states (scaling factor for the ratio of potassium leak current (g.«) to sodium leak
current (gune) from 0.85 to 1.15) on firing frequency with increasing I, conductances in the
model cell (ga SF = 0 (cyan), 0.6 (pink) and 1.0 (grey)). g.x/dina SF less than 1 corresponds
to a daytime “up-state”, and a SF greater than 1 to a night-time “down-state”. (c1) Effect of I
(ga = 0, 0.6 and 1.0) on firing rate with nominal potassium/sodium leak current ratio (g.x/Jina
SF = 1). (c2) Effect of In (ga SF = 0, 0.6 and 1.0) on firing rate with reduced
potassium/sodium leak current ratio (gu«/gina SF = 0.95), representing daytime up-state. (c3)
Effect of I (ga SF = 0, 0.6 and 1.0) on firing rate with elevated potassium/sodium leak
current ratio (guk/gina SF = 1.05), representing night-time down-state. Notice that |, amplifies
the suppressive action of the low intrinsic excitability state (during down-state). SF: scaling
factor.
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Figure S1. Example current-clamp traces used in data assimilation algorithm for
building computational models of Rhabdomys pumilio SCN neurons. (A-F) Current-
clamp recordings (blue) with the portion of the voltage trace used by the data assimilation
algorithm (orange) to fit the model of rebound spiking in Type-A neuron shown in Figs. 4, 6A,
and S2. (A-C) Hyperpolarizing current pulses. (D) Spontaneous activity. (E-F) Depolarizing
current pulses.
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Figure S2. Example voltage traces for a computational model of Rhabdomys pumilio
SCN neurons fit using a data assimilation algorithm. (A-F) Current-clamp recordings
(black) and simulated voltage traces (red) from the model of rebound spiking in Type-A
neurons shown in Figs. 4 and 6A using the portions of the data shown in Fig. S1. (A-C)
Hyperpolarizing current pulses. (D) Spontaneous activity. (E-F) Depolarizing current pulses.
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Figure S3

Model of Rhabdomys pumilio SCN neurons
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Figure S3. lonic currents underlying action potential generation in computational
models of Rhabdomys pumilio and mouse SCN neurons. (A) Voltage trace showing
spontaneous firing in model of R. pumilio SCN neurons. (al) Magnified view of second AP
shown in (A). (B) Sodium (lya, blue), calcium (Ica, magenta), potassium (I, green), and leak
(I + lna, Orange) currents during the voltage trace shown in (A). (b1) Magnified view of
currents during second AP shown in (A). (C) Same as (B), with y-axis scaled to emphasise
the currents flowing during the interspike interval. (D) Voltage trace showing spontaneous
firing in model of mouse SCN neurons. (d1) Magnified view of second AP shown in (D). (E)
Sodium (Iya, blue), calcium (lc,, magenta), potassium (lk, green), and leak (I« + I.na, Orange)
currents during the voltage trace shown in (D). (e1) Magnified view of currents during second
AP shown in (D). (F) Same as (E), with y-axis scaled to emphasise the currents flowing
during the interspike interval.
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Figure S4. Bifurcation diagram for a computational model of Rhabdomys pumilio SCN
neurons. (A) Voltage at steady-states and maximum/minimum voltage of oscillations for the
model of rebound spiking in the Type-A neuron shown in Figs. 4, 6A, and S1-S3 with ratio of
potassium leak current (g.x) to sodium leak current (gina) @s the bifurcation parameter
showing stable steady-states (black), unstable steady-states (red), stable periodic orbits
(blue), and unstable periodic orbits (green). Stable periodic orbits correspond to spiking or
DLAMOs. Transition from depolarized rest state to DLAMOs occurs through a supercritical
Hopf bifurcation (grey dot HB;) and transition from spiking to hyperpolarized rest state
occurs through a subcritical Hopf bifurcation (grey dot HB,). Model voltage traces showing
each of the spontaneous excitability states: (B) highly depolarized-silent; (C) depolarized
low-amplitude membrane oscillations (DLAMOS); moderate resting membrane potential
(RMP) firing action potentials (APs) at high (D) or low rate (E); and hyperpolarized-silent
neurons (F). According to the “bicycle model” proposed for the circadian regulation of
electrical activity in mice and flies, a g.x/g.na ratio scaling factor less than 1 corresponds to a
daytime “up-state”, and a scaling factor greater than 1 to a night-time “down-state” (Flourakis
et al., 2015).
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Figure S5
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Figure S5. Spontaneous synaptic events in Rhabdomys pumilio SCN neurons.
Representative trace from a SCN neuron (voltage-clamped at -70mV) showing post-synaptic
currents (PSCs) under baseline conditions (top). Bath application of the GABA, receptor
blocker, Bicuculline (20 uM), abolished most synaptic events (middle trace); all PSCs were
blocked under the presence of Bicuculline (20uM) and specific glutamatergic receptor
antagonists, CNQX (20pM) and D-APS (50uM) (bottom trace).
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Table S1. Parameter values for the computational models of Rhabdomys pumilio SCN
neurons.

Base Model Non-Adapting  Adapting-Firing  Adapting-Silent  Type-A Rebound Spiking  Type-B Delay (with IH) Type-B Delay (without IH)
Symbol Parameter Units  (Fig. 4, 51-54) (Fig. 5A1) (Fig. 5Aii) (Fig. SAiii) (Fig. 6A) (Fig. 6B) (Fig. 6I-N, 7)
C whole-cell capacitance pF 17.04 10.56 12.85 9.84 14.28 14.16 9.36
ENa Na+ reversal potential mV 43.24 40.00 50.00 40.00 40.00 48.69 50
EK K+ reversal potential mV -100.00 -85.12 -100.00 -100.00 -80.00 -100.00 -100
Eca Cal+ reversal potential mV 123.89 130.00 130.00 130.00 130.00 130.00 87.69
EH H-current reversal potential mV - - - - - -40.00 -
gNa INa maximal conductance nS 88.58 58.81 75.92 70.50 90.70 53.27 500
gK IK maximal conductance ns 94.71 101.79 42.29 68.85 1091 23293 122
gla ICa maximal conductance ns 5.13 13.08 417 3.74 6.02 7.86 201
gH IH maximal conductance nS - - - - - 5.34 -
gA |A maximal conductance ns - - - - - 16.23 300
gLNa ILNa maximal conductance ns 0.44 0.16 0.17 022 0.13 0.00 0.02
BLK ILK maximal conductance ns 7.62 119 039 0.99 0153 174 19
wm_Na INa half-activation mV -2478 -26.18 -19.53 -24.94 -21.07 -23.61 -19.11
dvm_Na INa activation slope mV 17.63 14.47 16.24 1378 22,61 1872 25.27
vh_Na INa half-inactivation my -44.46 -38.75 -40.04 -47.67 -39.49 -32.87 -58.18
dvh_Na INa inactivation slope mv -12.89 -15.24 -10.35 -15.03 -14.30 -10.10 -19.16
thO_Na INa inactivation time censtant baseline msec 0.47 0.95 0.43 0.22 0.37 0.70 1.42
thl_Na INa inactivation time constant baseline msec 72.38 400.00 400.00 120.40 223.00 400.00 156.07
wht_Na INa inactivation time constant half-inactivation mV -33.64 -69.63 -68.76 -37.73 -70.00 wvh_Na vh_Na
dvht_Na INa inactivation time constant slope mVv 17.09 16.22 2439 13.88 21.09 16.09 17.82
vn_K IK half-activation mV -6.51 -30.62 -13.18 0.00 -45.23 0.00 -48.23
dwn_K IK half-activation slope mV 11.08 23.38 50.00 13.79 39.56 13.00 19.37
tnd_K IK activation time constant baseline msec 0.01 0.16 1.26 0.01 0.21 162 0.94
tnl_K |K activation time constant baseline msec 16.59 25.20 40.00 40.00 40.00 11.87 40
wnt_K IK activation time constant half-activation mV -30.62 -24.31 -18.50 -52.33 -0.79 wn_K vn_K
dwnt_K IK activation time constant slope mV 31.03 24.50 23.64 36.15 9.44 13.32 7.75
vm_Ca ICa half-activation mV -40.00 0.00 0.00 0.00 -6.78 -15.32 -40
dvm_Ca ICa half-activation slope my 50.00 26.19 2379 36.36 27.23 32.05 50
tmi_Ca ICa activation time constant baseline msec 0.22 0.01 341 9.32 0.01 8.55 10
tml_Ca ICa activation time constant baseline msec 311 5.66 17.63 0.01 40.00 0.01 3.82
vmt_Ca |Ca activation time constant half-activation mV -36.62 -40.72 -24.55 -70.00 -57.85 vm_Ca vm_Ca
dvmt_Ca ICa activation time constant slope mV 10.66 1392 12.85 5.00 5.00 50.00 50
vh_Ca ICa half-inactivation mV -17.72 -18.32 0.00 -34.43 -19.20 -42.15 o
dvh_Ca ICa half-inactivation slope mV -9.56 -50.00 -5.01 -17.49 -42.83 -34.07 -50
th0_Ca ICa inactivation time constant baseline msec 284.73 3.80 1.90 30.30 3.10 0.01 200
thl_Ca ICa inactivation time constant baseline msec 3000.00 400.00 400.00 74.50 1000.00 15.20 400
vht_Ca ICa inactivation time constant half-activation mV -15.99 -57.20 -61.13 0.00 -36.25 vh_Ca vh_Ca
dvht_Ca ICa inactivation time constant slope mV 6.99 2110 3222 5.00 22.14 33.89 312
vm_H IH half-activation mV - - - - - -80.00
dvm_H IH half-activation slope mv - - - - - -17.19
tm0_H IH activation time constant baseline msec - - - - - 283.40
tml_H |H activation time constant baseline msec - - - - - 484.40
vmt_H IH activation time constant half-activation mVv - - - - - vm_H
dvmt_H IH activation time constant slope mV - - - - - 30.00 -
vm_A IA half-activation mV - - - - - -35.00 -28.54
dvm_A |A activation slope myv - - - - - 25.00 25
vh_A |A half-inactivation mV - - - - - -55.00 -61.68
dvh_A |A inactivation slope mV - - - - - -25.00 -10
thO_A IA inactivation time constant baseline msec - - - - - 1.00 11.6
thl_A |A inactivation time constant baseline msec - - - - - 211.40 291.2
vht A |A inactivation time constant half-inactivation  mV - - - - - vh_A vh_A
dvht_A |A inactivation time constant slope mV - - - - - 23.62 14.05
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